
Spring 5 Recipes
A Problem-Solution Approach
—
Fourth Edition
—
Marten Deinum
Daniel Rubio
Josh Long

www.allitebooks.com

http://www.allitebooks.org

Spring 5 Recipes
A Problem-Solution Approach

Fourth Edition

Marten Deinum

Daniel Rubio

Josh Long

www.allitebooks.com

http://www.allitebooks.org

Spring 5 Recipes: A Problem-Solution Approach

Marten Deinum Daniel Rubio
Meppel, Drenthe, The Netherlands Ensenada, Baja California, Mexico

Josh Long
Canyon Country, California, USA

ISBN-13 (pbk): 978-1-4842-2789-3 ISBN-13 (electronic): 978-1-4842-2790-9
DOI 10.1007/978-1-4842-2790-9

Library of Congress Control Number: 2017954984

Copyright © 2017 by Marten Deinum, Daniel Rubio, and Josh Long

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Cover image by Freepik (www.freepik.com)

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Technical Reviewer: Massimo Nardone
Coordinating Editor: Mark Powers
Copy Editor: Kim Wimpsett

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484227893. For more
detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

www.allitebooks.com

www.freepik.com
mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
http://www.apress.com/rights-permissions
http://www.apress.com/rights-permissions
http://www.apress.com/bulk-sales
http://www.apress.com/9781484227893
http://www.apress.com/source-code
http://www.allitebooks.org

iii

Contents at a Glance

About the Authors ���xxxi

About the Technical Reviewer ��xxxiii

Acknowledgments ���xxxv

Introduction ���xxxvii

 ■Chapter 1: Spring Development Tools �� 1

 ■Chapter 2: Spring Core Tasks �� 27

 ■Chapter 3: Spring MVC �� 117

 ■Chapter 4: Spring REST ��� 183

 ■Chapter 5: Spring MVC: Async Processing �� 209

 ■Chapter 6: Spring Social �� 267

 ■Chapter 7: Spring Security �� 297

 ■Chapter 8: Spring Mobile ��� 345

 ■Chapter 9: Data Access ��� 361

 ■Chapter 10: Spring Transaction Management ��� 415

 ■Chapter 11: Spring Batch �� 447

 ■Chapter 12: Spring with NoSQL ��� 483

 ■Chapter 13: Spring Java Enterprise Services and Remoting Technologies ������� 541

 ■Chapter 14: Spring Messaging �� 615

 ■Chapter 15: Spring Integration �� 655

www.allitebooks.com

http://www.allitebooks.org

■ Contents at a GlanCe

iv

 ■Chapter 16: Spring Testing �� 691

 ■Chapter 17: Grails �� 731

 ■Appendix A: Deploying to the Cloud �� 775

 ■Appendix B: Caching�� 795

Index ��� 821

www.allitebooks.com

http://www.allitebooks.org

v

Contents

About the Authors ���xxxi

About the Technical Reviewer ��xxxiii

Acknowledgments ���xxxv

Introduction ���xxxvii

 ■Chapter 1: Spring Development Tools �� 1

1-1. Build a Spring Application with the Spring Tool Suite ... 1

Problem .. 1

Solution... 1

How It Works ... 2

1-2. Build a Spring Application with the IntelliJ IDE ... 10

Problem .. 10

Solution... 10

How It Works ... 10

1-3. Build a Spring Application with the Maven Command-Line Interface 20

Problem .. 20

Solution... 21

How It Works ... 21

1-4. Build a Spring Application with the Gradle Wrapper ... 22

Problem .. 22

Solution... 22

How It Works ... 22

www.allitebooks.com

http://www.allitebooks.org

■ Contents

vi

1-5. Build a Spring Application with the Gradle Command-Line Interface 23

Problem .. 23

Solution... 23

How It Works ... 24

1-6. Build a Spring Application with the Gradle Wrapper ... 25

Problem .. 25

Solution... 25

How It Works ... 25

Summary .. 26

 ■Chapter 2: Spring Core Tasks �� 27

2-1. Use a Java Config to Configure POJOs ... 28

Problem .. 28

Solution... 28

How It Works ... 28

2-2. Create POJOs by Invoking a Constructor .. 34

Problem .. 34

Solution... 34

How It Works ... 34

2-3. Use POJO References and Autowiring to Interact with Other POJOs 37

Problem .. 37

Solution... 37

How It Works ... 37

2-4. Autowire POJOs with the @Resource and @Inject Annotations 44

Problem .. 44

Solution... 44

How It Works ... 44

2-5. Set a POJO’s Scope with the @Scope Annotation .. 46

Problem .. 46

Solution... 46

How It Works ... 47

www.allitebooks.com

http://www.allitebooks.org

■ Contents

vii

2-6. Use Data from External Resources (Text Files, XML Files,
Properties Files, or Image Files) ... 49

Problem .. 49

Solution... 50

How It Works ... 50

2-7. Resolve I18N Text Messages for Different Locales in Properties Files 54

Problem .. 54

Solution... 54

How It Works ... 54

2-8. Customize POJO Initialization and Destruction with Annotations 56

Problem .. 56

Solution... 57

How It Works ... 57

2-9. Create Post-Processors to Validate and Modify POJOs ... 61

Problem .. 61

Solution... 61

How It Works ... 61

2-10. Create POJOs with a Factory (Static Method, Instance Method,
Spring’s FactoryBean) .. 64

Problem .. 64

Solution... 64

How It Works ... 64

2-11. Use Spring Environments and Profiles to Load Different Sets of POJOs 69

Problem .. 69

Solution... 69

How It Works ... 69

2-12. Make POJOs Aware of Spring’s IoC Container Resources 71

Problem .. 71

Solution... 71

How It Works ... 73

www.allitebooks.com

http://www.allitebooks.org

■ Contents

viii

2-13. Use Aspect-Oriented Programming with Annotations ... 73

Problem .. 73

Solution... 73

How It Works ... 74

2-14. Access the Join Point Information .. 81

Problem .. 81

Solution... 81

How It Works ... 82

2-15. Specify Aspect Precedence with the @Order Annotation 83

Problem .. 83

Solution... 83

How It Works ... 83

2-16. Reuse Aspect Pointcut Definitions .. 85

Problem .. 85

Solution... 85

How It Works ... 85

2-17. Write AspectJ Pointcut Expressions .. 87

Problem .. 87

Solution... 87

How It Works ... 87

2-18. Use AOP for introductions for POJOs .. 92

Problem .. 92

Solution... 92

How It Works ... 92

2-19. Introduce States to Your POJOs with AOP ... 94

Problem .. 94

Solution... 94

How It Works ... 95

www.allitebooks.com

http://www.allitebooks.org

■ Contents

ix

2-20. Use Load-Time Weaving AspectJ Aspects in Spring ... 97

Problem .. 97

Solution... 97

How It Works ... 97

2-21. Configure AspectJ Aspects in Spring .. 101

Problem .. 101

Solution... 101

How It Works ... 102

2-22. Inject POJOs into Domain Objects with AOP ... 103

Problem .. 103

Solution... 103

How It Works ... 104

2-23. Applying Concurrency with Spring and TaskExecutors 105

Problem .. 105

Solution... 105

How It Works ... 106

2-24. Communicate Application Events Between POJOs ... 112

Problem .. 112

Solution... 112

How It Works ... 112

Summary .. 115

 ■Chapter 3: Spring MVC �� 117

3-1. Develop a Simple Web Application with Spring MVC .. 117

Problem .. 117

Solution... 117

How It Works ... 119

3-2. Map Requests with @RequestMapping .. 129

Problem .. 129

Solution... 129

How It Works ... 129

www.allitebooks.com

http://www.allitebooks.org

■ Contents

x

3-3. Intercept Requests with Handler Interceptors .. 133

Problem .. 133

Solution... 133

How It Works ... 134

3-4. Resolve User Locales .. 136

Problem .. 136

Solution... 137

How It Works ... 137

Changing a User’s Locale ... 138

3-5. Externalize Locale-Sensitive Text Messages .. 139

Problem .. 139

Solution... 139

How It Works ... 140

3-6. Resolve Views by Name .. 141

Problem .. 141

Solution... 141

How It Works ... 141

3-7. Use Views and Content Negotiation .. 144

Problem .. 144

Solution... 144

How It Works ... 144

3-8. Map Exceptions to Views .. 146

Problem .. 146

Solution... 146

How It Works ... 147

3-9. Handle Forms with Controllers ... 149

Problem .. 149

Solution... 149

How It Works ... 149

■ Contents

xi

3-10. Handle Multipage Forms with Wizard Form Controllers 162

Problem .. 162

Solution... 162

How It Works ... 163

3-11. Use Bean Validation with Annotations (JSR-303) .. 173

Problem .. 173

Solution... 173

How It Works ... 174

3-12. Create Excel and PDF Views ... 175

Problem .. 175

Solution... 175

How It Works ... 176

Summary .. 181

 ■Chapter 4: Spring REST ��� 183

4-1. Publish XML with REST Services .. 183

Problem .. 183

Solution... 183

How It Works ... 184

4-2. Publish JSON with REST Services .. 191

Problem .. 191

Solution... 191

How It Works ... 192

4-3. Access a REST Service with Spring .. 196

Problem .. 196

Solution... 196

How It Works ... 196

4-4. Publish RSS and Atom Feeds .. 200

Problem .. 200

Solution... 200

How It Works ... 200

Summary .. 208

■ Contents

xii

 ■Chapter 5: Spring MVC: Async Processing �� 209

5-1. Handle Requests Asynchronously with Controllers and TaskExecutor 209

Problem .. 209

Solution... 209

How It Works ... 210

5-2. Use Response Writers ... 217

Problem .. 217

Solution... 217

How It Works ... 217

5-3. Use Asynchronous Interceptors .. 222

Problem .. 222

Solution... 222

How It Works ... 222

5-4. Use WebSockets ... 224

Problem .. 224

Solution... 224

How It Works ... 225

5-5. Develop a Reactive Application with Spring WebFlux ... 233

Problem .. 233

Solution... 233

How It Works ... 235

5-6. Handle Forms with Reactive Controllers ... 244

Problem .. 244

Solution... 244

How It Works ... 244

5-7. Publish and Consume JSON with Reactive REST Services 257

Problem .. 257

Solution... 257

How It Works ... 257

■ Contents

xiii

5-8. Use an Asynchronous Web Client .. 259

Problem .. 259

Solution... 259

How It Works ... 260

5-9. Write a Reactive Handler Function .. 264

Problem .. 264

Solution... 264

How It Works ... 264

Summary .. 266

 ■Chapter 6: Spring Social �� 267

6-1. Set Up Spring Social ... 267

Problem .. 267

Solution... 267

How It Works ... 267

6-2. Connect to Twitter ... 269

Problem .. 269

Solution... 269

How It Works ... 269

6-3. Connect to Facebook .. 274

Problem .. 274

Solution... 274

How It Works ... 274

6-4. Show the Service Provider’s Connection Status ... 277

Problem .. 277

Solution... 277

How It Works ... 277

6-5. Use the Twitter API .. 282

Problem .. 282

Solution... 282

How It Works ... 283

■ Contents

xiv

6-6. Use a Persistent UsersConnectionRepository ... 284

Problem .. 284

Solution... 284

How It Works ... 284

6-7. Integrate Spring Social and Spring Security ... 286

Problem .. 286

Solution... 286

How It Works ... 286

Summary .. 295

 ■Chapter 7: Spring Security �� 297

7-1. Secure URL Access ... 298

Problem .. 298

Solution... 298

How It Works ... 299

7-2. Log In to Web Applications .. 303

Problem .. 303

Solution... 303

How It Works ... 303

7-3. Authenticate Users .. 310

Problem .. 310

Solution... 310

How It Works ... 310

7-4. Make Access Control Decisions .. 319

Problem .. 319

Solution... 319

How It Works ... 320

7-5. Secure Method Invocations .. 327

Problem .. 327

Solution... 327

How It Works ... 327

■ Contents

xv

7-6. Handle Security in Views .. 330

Problem .. 330

Solution... 330

How It Works ... 330

7-7. Handle Domain Object Security .. 332

Problem .. 332

Solution... 332

How It Works ... 332

7-8. Add Security to a WebFlux Application.. 340

Problem .. 340

Solution... 340

How It Works ... 340

Summary .. 344

 ■Chapter 8: Spring Mobile ��� 345

8-1. Detect Devices Without Spring Mobile .. 345

Problem .. 345

Solution... 345

How It Works ... 345

8-2. Detect Devices with Spring Mobile ... 350

Problem .. 350

Solution... 350

How It Works ... 350

8-3. Use Site Preferences .. 352

Problem .. 352

Solution... 352

How It Works ... 352

8-4. Use the Device Information to Render Views .. 354

Problem .. 354

Solution... 354

How It Works ... 354

■ Contents

xvi

8-5. Implement Site Switching ... 358

Problem .. 358

Solution... 358

How It Works ... 358

Summary .. 360

 ■Chapter 9: Data Access ��� 361

Problems with Direct JDBC .. 362

Setting Up the Application Database .. 362

Understanding the Data Access Object Design Pattern .. 363

Implementing the DAO with JDBC .. 364

Configuring a Data Source in Spring .. 366

Running the DAO .. 368

Taking It a Step Further .. 368

9-1. Use a JDBC Template to Update a Database ... 368

Problem .. 368

Solution... 369

How It Works ... 369

9-2. Use a JDBC Template to Query a Database... 373

Problem .. 373

Solution... 374

How It Works ... 374

9-3. Simplify JDBC Template Creation ... 379

Problem .. 379

Solution... 379

How It Works ... 379

■ Contents

xvii

9-4. Use Named Parameters in a JDBC Template .. 382

Problem .. 382

Solution... 382

How It Works ... 382

9-5. Handle Exceptions in the Spring JDBC Framework .. 384

Problem .. 384

Solution... 384

How It Works ... 385

9-6. Avoid Problems by Using ORM Frameworks Directly .. 389

Problem .. 389

Solution... 389

How It Works ... 389

9-7. Configure ORM Resource Factories in Spring ... 398

Problem .. 398

Solution... 399

How It Works ... 399

9-8. Persist Objects with Hibernate’s Contextual Sessions.. 406

Problem .. 406

Solution... 406

How It Works ... 407

9-9. Persist Objects with JPA’s Context Injection ... 409

Problem .. 409

Solution... 409

How It Works ... 409

9-10. Simplify JPA with Spring Data JPA ... 412

Problem .. 412

Solution... 412

How It Works ... 413

Summary .. 414

■ Contents

xviii

 ■Chapter 10: Spring Transaction Management ��� 415

10-1. Avoid Problems with Transaction Management .. 416

Manage Transactions with JDBC Commit and Rollback ... 422

10-2. Choose a Transaction Manager Implementation ... 423

Problem .. 423

Solution... 423

How It Works ... 423

10-3. Manage Transactions Programmatically with the Transaction Manager API 424

Problem .. 424

Solution... 425

How It Works ... 425

10-4. Manage Transactions Programmatically with a Transaction Template 427

Problem .. 427

Solution... 427

How It Works ... 427

10-5. Manage Transactions Declaratively with the @Transactional Annotation 430

Problem .. 430

Solution... 430

How It Works ... 430

10-6. Set the Propagation Transaction Attribute .. 431

Problem .. 431

Solution... 431

How It Works ... 432

10-7. Set the Isolation Transaction Attribute .. 436

Problem .. 436

Solution... 436

How It Works ... 437

10-8. Set the Rollback Transaction Attribute .. 444

Problem .. 444

Solution... 444

How It Works ... 444

■ Contents

xix

10-9. Set the Timeout and Read-Only Transaction Attributes 444

Problem .. 444

Solution... 445

How It Works ... 445

10-10. Manage Transactions with Load-Time Weaving .. 445

Problem .. 445

Solution... 445

How It Works ... 446

Summary .. 446

 ■Chapter 11: Spring Batch �� 447

Runtime Metadata Model ... 448

11-1. Set Up Spring Batch’s Infrastructure .. 449

Problem .. 449

Solution... 449

How It Works ... 449

11-2. Read and Write Data ... 453

Problem .. 453

Solution... 453

How It Works ... 453

11-3. Write a Custom ItemWriter and ItemReader ... 460

Problem .. 460

Solution... 460

How It Works ... 460

11-4. Process Input Before Writing .. 463

Problem .. 463

Solution... 463

How It Works ... 463

■ Contents

xx

11-5. Achieve Better Living Through Transactions ... 465

Problem .. 465

Solution... 465

How It Works ... 465

11-6. Retry ... 467

Problem .. 467

Solution... 467

How It Works ... 467

11-7. Control Step Execution.. 470

Problem .. 470

Solution... 470

How It Works ... 471

11-8. Launch a Job .. 474

Problem .. 474

Solution... 475

How It Works ... 475

11-9. Parameterize a Job ... 479

Problem .. 479

Solution... 479

How It Works ... 479

Summary .. 481

 ■Chapter 12: Spring with NoSQL ��� 483

12-1. Use MongoDB ... 483

Problem .. 483

Solution... 483

How It Works ... 484

12-2. Use Redis .. 497

Problem .. 497

Solution... 497

How It Works ... 497

■ Contents

xxi

12-3. Use Neo4j .. 503

Problem .. 503

Solution... 503

How It Works ... 503

12-4. Use Couchbase ... 521

Problem .. 521

Solution... 521

How It Works ... 521

Summary .. 540

 ■Chapter 13: Spring Java Enterprise Services and Remoting Technologies ������� 541

13-1. Register Spring POJOs as JMX MBeans ... 541

Problem .. 541

Solution... 542

How It Works ... 542

13-2. Publish and Listen to JMX Notifications ... 557

Problem .. 557

Solution... 557

How It Works ... 557

13-3. Access Remote JMX MBeans in Spring .. 559

Problem .. 559

Solution... 559

How It Works ... 560

13-4. Send E-mail with Spring’s E-mail Support ... 564

Problem .. 564

Solution... 564

How It Works ... 564

13-5. Schedule Tasks with Spring’s Quartz Support .. 572

Problem .. 572

Solution... 572

How It Works ... 572

■ Contents

xxii

13-6. Schedule Tasks with Spring’s Scheduling .. 577

Problem .. 577

Solution... 577

How It Works ... 577

13-7. Expose and Invoke Services Through RMI .. 580

Problem .. 580

Solution... 580

How It Works ... 581

13-8. Expose and Invoke Services Through HTTP .. 584

Problem .. 584

Solution... 585

How It Works ... 585

13-9. Expose and Invoke SOAP Web Services with JAX-WS .. 588

Problem .. 588

Solution... 588

How It Works ... 588

13-10. Use Contract-First SOAP Web Services ... 594

Problem .. 594

Solution... 594

How It Works ... 594

13-11. Expose and Invoke SOAP Web Services with Spring-WS 599

Problem .. 599

Solution... 599

13-12. Develop SOAP Web Services with Spring-WS and XML Marshalling 606

Problem .. 606

Solution... 607

How It Works ... 607

Summary .. 613

■ Contents

xxiii

 ■Chapter 14: Spring Messaging �� 615

14-1. Send and Receive JMS Messages with Spring ... 615

Problem .. 615

Solution... 616

How It Works ... 616

14-2. Convert JMS Messages .. 627

Problem .. 627

Solution... 627

How It Works ... 627

14-3. Manage JMS Transactions .. 630

Problem .. 630

Solution... 630

How It Works ... 630

14-4. Create Message-Driven POJOs in Spring .. 631

Problem .. 631

Solution... 631

How It Works ... 632

14-5. Cache and Pool JMS Connections .. 638

Problem .. 638

Solution... 638

How It Works ... 638

14-6. Send and Receive AMQP Messages with Spring .. 639

Problem .. 639

Solution... 639

How It Works ... 639

14-7. Send and Receive Messages with Spring Kafka ... 646

Problem .. 646

Solution... 646

How It Works ... 646

Summary .. 654

■ Contents

xxiv

 ■Chapter 15: Spring Integration �� 655

15-1. Integrate One System with Another Using EAI .. 655

Problem .. 655

Solution... 655

How It Works ... 655

15-2. Integrate Two Systems Using JMS .. 658

Problem .. 658

Solution... 658

How It Works ... 658

15-3. Interrogate Spring Integration Messages for Context Information 662

Problem .. 662

Solution... 662

How It Works ... 662

15-4. Integrate Two Systems Using a File System ... 665

Problem .. 665

Solution... 665

How It Works ... 666

15-5. Transform a Message from One Type to Another .. 667

Problem .. 667

Solution... 668

How It Works ... 668

15-6. Handle Errors Using Spring Integration .. 671

Problem .. 671

Solution... 671

How It Works ... 671

15-7. Fork Integration Control: Splitters and Aggregators ... 674

Problem .. 674

Solution... 674

How It Works ... 674

■ Contents

xxv

15-8. Implement Conditional Routing with Routers ... 678

Problem .. 678

Solution... 678

How It Works ... 678

15-9. Stage Events Using Spring Batch ... 679

Problem .. 679

Solution... 679

How It Works ... 679

15-10. Use Gateways ... 682

Problem .. 682

Solution... 682

How It Works ... 682

Summary .. 689

 ■Chapter 16: Spring Testing �� 691

16-1. Create Tests with JUnit and TestNG .. 692

Problem .. 692

Solution... 692

How It Works ... 692

16-2. Create Unit Tests and Integration Tests ... 696

Problem .. 696

Solution... 696

How It Works ... 697

16-3. Implement Unit Testing for Spring MVC Controllers .. 705

Problem .. 705

Solution... 705

How It Works ... 706

16-4. Manage Application Contexts in Integration Tests .. 707

Problem .. 707

Solution... 707

How It Works ... 708

■ Contents

xxvi

16-5. Inject Test Fixtures into Integration Tests ... 712

Problem .. 712

Solution... 712

How It Works ... 712

16-6. Manage Transactions in Integration Tests ... 714

Problem .. 714

Solution... 714

How It Works ... 715

16-7. Access a Database in Integration Tests .. 719

Problem .. 719

Solution... 719

How It Works ... 719

16-8. Use Spring’s Common Testing Annotations... 721

Problem .. 721

Solution... 722

How It Works ... 722

16-9. Implement Integration Tests for Spring MVC Controllers 723

Problem .. 723

Solution... 723

How It Works ... 723

16-10. Write Integration Tests for REST Clients.. 726

Problem .. 726

Solution... 726

How It Works ... 726

Summary .. 730

 ■Chapter 17: Grails �� 731

17-1. Get and Install Grails ... 731

Problem .. 731

Solution... 731

How It Works ... 731

■ Contents

xxvii

17-2. Create a Grails Application .. 732

Problem .. 732

Solution... 732

How It Works ... 732

17-3. Get Grails Plug-Ins .. 737

Problem .. 737

Solution... 737

How It Works ... 738

17-4. Develop, Produce, and Test in Grails Environments .. 738

Problem .. 738

Solution... 738

How It Works ... 739

17-5. Create an Application’s Domain Classes ... 740

Problem .. 740

Solution... 740

How It Works ... 741

17-6. Generate CRUD Controllers and Views for an Application’s Domain Classes 743

Problem .. 743

Solution... 743

How It Works ... 743

17-7. Implement Internationalization (I18n) for Message Properties 747

Problem .. 747

Solution... 747

How It Works ... 747

17-8. Change Permanent Storage Systems ... 750

Problem .. 750

Solution... 750

How It Works ... 750

■ Contents

xxviii

17-9. Customize Log Output ... 753

Problem .. 753

Solution... 753

How It Works ... 753

17-10. Run Unit and Integration Tests .. 755

Problem .. 755

Solution... 755

How It Works ... 755

17-11. Use Custom Layouts and Templates ... 761

Problem .. 761

Solution... 761

How It Works ... 761

17-12. Use GORM Queries .. 764

Problem .. 764

Solution... 764

How It Works ... 764

17-13. Create Custom Tags .. 766

Problem .. 766

Solution... 766

How It Works ... 766

17-14. Add Security .. 768

Problem .. 768

Solution... 768

How It Works ... 768

Summary .. 772

 ■Appendix A: Deploying to the Cloud �� 775

A-1. Sign Up for CloudFoundry ... 775

Problem .. 775

Solution... 775

How It Works ... 776

■ Contents

xxix

A-2. Install and Use the CloudFoundry CLI ... 781

Problem .. 781

Solution... 781

How It Works ... 781

A-3. Deploy a Spring MVC Application .. 784

Problem .. 784

Solution... 784

How It Works ... 784

A-4. Remove an Application ... 794

Problem .. 794

Solution... 794

How It Works ... 794

Summary .. 794

 ■Appendix B: Caching�� 795

B-1. Implement Caching with Ehcache .. 795

Problem .. 795

Solution... 795

How It Works ... 795

B-2. Cache with Spring’s Cache Abstraction .. 800

Problem .. 800

Solution... 800

How It Works ... 801

B-3. Implement Declarative Caching with AOP .. 803

Problem .. 803

Solution... 803

How It Works ... 803

B-4. Configure a Custom KeyGenerator.. 805

Problem .. 805

Solution... 805

How It Works ... 805

www.allitebooks.com

http://www.allitebooks.org

■ Contents

xxx

B-5. Add and Remove Objects from the Cache .. 807

Problem .. 807

Solution... 807

How It Works ... 807

B-6. Synchronize Caching with a Transactional Resource ... 816

Problem .. 816

Solution... 816

How It Works ... 817

B-7. Use Redis as a Cache Provider ... 819

Problem .. 819

Solution... 819

How It Works ... 819

Summary .. 820

Index ��� 821

xxxi

About the Authors

Marten Deinum is a submitter on the open source Spring Framework project. He is also a Java/software
consultant working for Conspect. He has developed and architected software, primarily in Java, for small and
large companies. He is an enthusiastic open source user and longtime fan, user, and advocate of the Spring
Framework. He has held a number of positions including software engineer, development lead, coach, and
Java and Spring trainer.

Daniel Rubio has more than ten years of experience in enterprise and web-based software and is currently
the founder and technical lead at MashupSoft.com. He has authored several books for Apress. Daniel’s
expertise lies in Java, Spring, Python, Django, JavaScript/CSS, and HTML.

Josh Long is the Spring developer advocate at Pivotal. Josh is a Java champion, the author of five books
(including O’Reilly’s upcoming Cloud Native Java) and three best-selling training videos (including
Building Microservices with Spring Boot with Phil Webb), and an open source contributor (Spring Boot,
Spring Integration, Spring Cloud, Activiti, and Vaadin).

xxxiii

About the Technical Reviewer

Massimo Nardone has more than 23 years of experience in security,
web/mobile development, cloud computing, and IT architecture. His true
IT passions are security and Android.

He currently works as the chief information security officer (CISO) for
Cargotec Oyj and is a member of the ISACA Finland Chapter board. Over
his long career, he has held these positions: project manager, software
engineer, research engineer, chief security architect, information security
manager, PCI/SCADA auditor, and senior lead IT security/cloud/SCADA
architect. In addition, he has been a visiting lecturer and supervisor
for exercises at the Networking Laboratory of the Helsinki University of
Technology (Aalto University).

Massimo has a master of science degree in computing science from
the University of Salerno in Italy, and he holds four international patents
(PKI, SIP, SAML, and proxy areas).

Besides working on this book, Massimo has reviewed more than 40 IT books for different publishing
companies and is the coauthor of Pro Android Games (Apress, 2015).

xxxv

Acknowledgments

The acknowledgments are probably the hardest thing to write in a book. It is impossible to name everyone
personally that I want to thank, and I will forget someone. For that, I want to apologize beforehand.

Although this is the third book I have written, I couldn’t have done it without the great team at Apress.
Special thanks to Mark Powers for keeping me focused and on schedule and to Amrita for keeping me on
track with the final reviews.

I thank Massimo Nardone, without whose comments and suggestions this book would never have
become what it is now.

Thanks to my family and friends for the times they had to miss me and to my dive buddies for all the
dives and trips I missed.

Last but definitely not least, I thank my wife, Djoke Deinum, and daughters, Geeske and Sietske, for
their endless support, love, and dedication, despite the long evenings and sacrificed weekends and holidays
to finish the book. Without your support, I probably would have abandoned the endeavor long ago.

—Marten Deinum

xxxvii

Introduction

The Spring Framework is growing. It has always been about choice. Java EE focused on a few technologies,
largely to the detriment of alternative, better solutions. When the Spring Framework debuted, few would
have agreed that Java EE represented the best-in-breed architectures of the day. Spring debuted to great
fanfare, because it sought to simplify Java EE. Each release since has marked the introduction of new features
designed to both simplify and enable solutions.

With version 2.0 and newer, the Spring Framework started targeting multiple platforms. The framework
provided services on top of existing platforms, as always, but was decoupled from the underlying platform
wherever possible. Java EE is a still a major reference point, but it’s not the only target. Additionally, the
Spring Framework runs on different cloud environments. Frameworks built on top of Spring have emerged
to support application integration, batch processing, messaging, and much more. Version 5 of the the
Spring Framework is a major upgrade, the baseline was raised to Java 8, more support for annotation based
configuration has been added and support for jUnit 5 was introduced. A newly added feature is the support
for reactive programming in the form o Spring WebFlux.

This is the fourth edition of this superb recipe book, and it covers the updated framework, describing the
new features and explaining the different configuration options.

It was impossible to describe every project in the Spring ecosystem, so we had to decide what to
keep, what to add, and what to update. This was a hard decision, but we think we have included the most
important content.

Who This Book Is For
This book is for Java developers who want to simplify their architecture and solve problems outside the
scope of the Java EE platform. If you are already using Spring in your projects, the more advanced chapters
discuss newer technologies that you might not know about already. If you are new to the framework, this
book will get you started in no time.

This book assumes you have some familiarity with Java and an IDE of some sort. While it is possible,
and indeed useful, to use Java exclusively with client applications, Java’s largest community lives in the
enterprise space, and that, too, is where you’ll see these technologies deliver the most benefit. Thus, some
familiarity with basic enterprise programming concepts such as the Servlet API is assumed.

How This Book Is Structured
Chapter 1, “Spring Development Tools,” gives an overview of tools supporting the Spring Framework and
how to use them.

Chapter 2, “Spring Core Tasks,” gives a general overview of the Spring Framework, including how to set it up,
what it is, and how it’s used.

Chapter 3, “Spring MVC,” covers web-based application development using the Spring Web
MVC framework.

http://dx.doi.org/10.1007/978-1-4842-2790-9_1
http://dx.doi.org/10.1007/978-1-4842-2790-9_2
http://dx.doi.org/10.1007/978-1-4842-2790-9_3

■ IntroduCtIon

xxxviii

Chapter 4, “Spring REST,” introduces Spring’s support for RESTful web services.

Chapter 5, “Spring MVC: Async Processing,” introduces async processing using Spring MVC.

Chapter 6, “Spring Social,” introduces Spring Social, which lets you integrate easily with social networks.

Chapter 7, “Spring Security,” provides an overview of the Spring Security project to help you better secure
your application.

Chapter 8, “Spring Mobile,” introduces Spring Mobile, which lets you integrate mobile device detection and
usage in your application.

Chapter 9, “Data Access,” discusses how to use Spring to talk to data stores using APIs such as JDBC,
Hibernate, and JPA.

Chapter 10, “Spring Transaction Management,” introduces the concepts behind Spring’s robust transaction
management facilities.

Chapter 11, “Spring Batch,” introduces the Spring Batch framework, which provides a way to model solutions
traditionally considered the domain of mainframes.

Chapter 12, “Spring with NoSQL,” introduces multiple Spring Data portfolio projects, covering different
NoSQL technologies and Big Data with Hadoop.

Chapter 13, “Spring Java Enterprise Services and Remoting Technologies,” introduces you to JMX support,
scheduling, e-mail support, and various facilities for RPC, including the Spring Web Services project.

Chapter 14, “Spring Messaging,” discusses using Spring with message-oriented middleware through JMS and
RabbitMQ and the simplifying Spring abstractions.

Chapter 15, “Spring Integration,” discusses using the Spring Integration framework to integrate disparate
services and data.

Chapter 16, “Spring Testing,” discusses unit testing with the Spring Framework.

Chapter 17, “Grails,” discusses the Grails framework, with which you can increase your productivity by using
best-of-breed pieces and gluing them together with Groovy code.

Appendix A, “Deploying to the Cloud,” shows how to deploy a Java (web) application to the cloud using the
Pivotal’s CloudFoundry solution.

Appendix B, “Caching,” introduces the Spring Caching abstraction, including how to configure it and how to
transparently add caching to your application.

Conventions
Sometimes when we want you to pay particular attention to a part within a code example, we will make the
font bold. Please note that the bold doesn’t necessarily reflect a code change from the previous version.

In cases when a code line is too long to fit the page’s width, we will break it with a code continuation
character. Please note that when you enter the code, you have to concatenate the line without any spaces.

Prerequisites
Because the Java programming language is platform independent, you are free to choose any supported
operating system. However, some of the examples in this book use platform-specific paths. Translate them
as necessary to your operating system’s format before typing the examples.

http://dx.doi.org/10.1007/978-1-4842-2790-9_4
http://dx.doi.org/10.1007/978-1-4842-2790-9_5
http://dx.doi.org/10.1007/978-1-4842-2790-9_6
http://dx.doi.org/10.1007/978-1-4842-2790-9_7
http://dx.doi.org/10.1007/978-1-4842-2790-9_8
http://dx.doi.org/10.1007/978-1-4842-2790-9_9
http://dx.doi.org/10.1007/978-1-4842-2790-9_10
http://dx.doi.org/10.1007/978-1-4842-2790-9_11
http://dx.doi.org/10.1007/978-1-4842-2790-9_12
http://dx.doi.org/10.1007/978-1-4842-2790-9_13
http://dx.doi.org/10.1007/978-1-4842-2790-9_14
http://dx.doi.org/10.1007/978-1-4842-2790-9_15
http://dx.doi.org/10.1007/978-1-4842-2790-9_16
http://dx.doi.org/10.1007/978-1-4842-2790-9_17

■ IntroduCtIon

xxxix

To make the most of this book, install JDK version 1.8 or higher. You should have a Java IDE installed
to make development easier. For this book, the sample code is Gradle-based. If you’re running Eclipse and
install the Gradle plug-in, you can open the same code in Eclipse and the CLASSPATH and dependencies will
be filled in by the Gradle metadata.

If you’re using Eclipse, you might prefer the SpringSource Tool Suite (STS), as it comes preloaded with
the plug-ins you’ll need to be productive with the Spring Framework in Eclipse. If you use IntelliJ IDEA, you
need to enable the Gradle (and Groovy) plug-ins.

Downloading the Code
The source code for this book is available from the Apress web site (www.apress.com/9781484227893).
The source code is organized by chapters, each of which includes one or more independent examples.

Contacting the Authors
We always welcome your questions and feedback regarding the contents of this book. You can contact
Marten Deinum at marten@deinum.biz.

http://www.apress.com/9781484227893

1© Marten Deinum, Daniel Rubio, and Josh Long 2017
M. Deinum et al., Spring 5 Recipes, DOI 10.1007/978-1-4842-2790-9_1

CHAPTER 1

Spring Development Tools

In this chapter, you’ll learn how to set up and work with the most popular development tools to create Spring
applications. Like many other software frameworks, Spring has a wide array of development tools to choose
from, from bare-bones command-line tools to sophisticated graphical tools called integrated development
environments (IDEs).

Whether you already use certain Java development tools or are a first-time developer, the following
recipes will guide you through how to set up different toolboxes to do the exercises in the upcoming
chapters, as well as develop any Spring application.

The following are the three toolboxes and the corresponding recipes you need to follow to get set up to
start a Spring application:

•	 Spring Tool Suite: Recipe 1-1

•	 IntelliJ IDE: Recipe 1-2 (and recipes 1-3 and 1-4 for the Maven command-line
interface; recipes 1-5 and 1-6 for the Gradle command-line interface)

•	 Text editor: Recipes 1-3 and 1-4 for the Maven command-line interface; recipes 1-5
and 1-6 for the Gradle command-line interface

Bear in mind you don’t need to install all three toolboxes to work with Spring. It can be helpful to try
them all out, but you can use the toolbox you feel most comfortable with.

1-1. Build a Spring Application with the Spring Tool Suite
Problem
You want to use the Spring Tool Suite (STS) to build a Spring application.

Solution
Install STS on your workstation. Open STS and click the Open Dashboard link. To create a new Spring
application, click the “Spring project” link in the Dashboard window inside the Create table. To open a Spring
application that uses Maven, from the top-level File menu select the Import option, click the Maven icon, and
select “Existing Maven projects.” Next, select the Spring application based on Maven from your workstation.

To install Gradle on STS, click the Extensions tab at the bottom of the Dashboard window. Click
the Gradle Support check box. Proceed with the Gradle extension installation and restart STS once the
installation is complete. To open a Spring application that uses Gradle, from the top-level File menu, select
the Import option, click the Gradle icon, and select the Gradle project. Next, select the Spring application
based on Gradle from your workstation. Click the Build Model button and finally click Finish to start working
on the project.

Chapter 1 ■ Spring Development toolS

2

How It Works
STS is the IDE developed by SpringSource, which is a division of Pivotal, the creators of the Spring
Framework. STS is specifically designed to develop Spring applications, making it one of the most complete
tools for this purpose. STS is an Eclipse-powered tool, so it has the same look and feel as the open source
Eclipse IDE.

STS can be downloaded for free from http://spring.io/tools/sts. STS is available for all major
operating system (OS) versions: Windows (32 bit or 64 bit), macOS (Cocoa, 64 bit), and Linux (GTK, 32 bit
and 64 bit). In addition, STS is versioned, so you have the option to download the latest stable release or a
milestone/development version. Download the version suited to your OS.

Once you download STS, ensure you have a Java SDK installed on your system since this is an STS
installation requirement. Proceed to install STS. Follow the installation wizard and you should have STS
set up in five to ten minutes. Upon termination, a folder with the name STS_<VERSION> is created under the
home folder of the user making the installation or where the user chooses to place the installation-based
folder. If you inspect this folder, you’ll see the STS executable that is used to start STS.

Start STS. At startup, STS asks you to define a workspace location. A workspace is where STS places all
project information. You can keep the default directory that is under the main STS installation directory
or define a different directory to your liking. After startup is complete, you’ll see a screen like the one in
Figure 1-1.

Figure 1-1. STS startup screen

http://spring.io/tools/sts

Chapter 1 ■ Spring Development toolS

3

On the STS Dashboard, in the center column inside the Get Started! box, there’s a link called Create
Spring Starter Project. You can click this link to create a new Spring application. You can go ahead and create
an empty application if you like. You’ll be asked for a name and to define a series of parameters, which you
can leave with the default values.

A more common case than creating a Spring application from scratch is to continue development on an
existing Spring application. Under such circumstances, the owner of an application generally distributes the
application’s source code with a build script to facilitate its ongoing development.

The build script of choice for most Java applications is a pom.xml file designed around the Maven build
tool or, more recently, a build.gradle file designed around the Gradle build tool. The book’s source code
and its applications are provided with Gradle build files, in addition to a single application with a Maven
build file.

In a Java application there can be dozens or hundreds of menial tasks required to put together an
application (e.g., copying JARs or configuration files, setting up Java’s classpath to perform compilation,
downloading JAR dependencies, etc.). Java build tools can perform such tasks in Java applications.

Java build tools continue to have their place because applications distributed with build files ensure
that all menial tasks intended by the creator of an application are replicated exactly by anyone else using the
application. If an application is distributed with an Ant build.xml file, a Maven pom.xml file, an Ivy ivy.xml
file, or a Gradle build.gradle file, each of these build files guarantees build consistency across users and
different systems.

Some of the newer Java build tools are more powerful and enhance the way their earlier counterparts
work, and each build file uses its own syntax to define actions, dependencies, and practically any other task
required to build an application. However, you should never lose sight of the fact that a Java build tool is just
a means to an end. It’s a choice made by the creator of an application to streamline the build process. Don’t
panic if you see an application distributed with a build file from the oldest Ant version or the newest Gradle
version; from an end user perspective, all you need to do is download and install the build tool to create the
application as its creator intended.

Since many Spring applications continue to use Maven and some of the newer Spring applications use
Gradle, we’ll describe the import process into STS for both types of projects.

Importing and Building a Maven Project
Once you download the book’s source and unpack it to a local directory, click the STS top-level File menu
and select the Import option. A pop-up window appears. In the pop-up window, click the Maven icon and
select the Existing Maven Projects option, as illustrated in Figure 1-2.

Chapter 1 ■ Spring Development toolS

4

Figure 1-2. Importing an existing Maven project

Chapter 1 ■ Spring Development toolS

5

Click the Next button. On the following screen, click the Browse button and select the directory of the
book’s source code in ch01 called springintro_mvn, as illustrated in Figure 1-3.

Notice in Figure 1-3 the Import Maven Projects window is updated to include the line pom.xml com.
apress.springrecipes…, which reflects the Maven project to import. Select the project check box and
click the Finish button to import the project. All projects in STS are accessible on the left side of the Package
Explorer window. In this case, the project appears with the name springintro_mvn.

If you click the project icon in the Package Explorer, you’ll be able to see the project structure (i.e., java
classes, dependencies, configuration files, etc.). If you double-click any of the project files in the Package
Explorer, the file is opened in a separate tab in the center window—alongside the Dashboard. Once a file is
opened, you can inspect, edit, or delete its contents.

Figure 1-3. Selecting a Maven project

Chapter 1 ■ Spring Development toolS

6

Select the project icon in the Package Explorer and right-click. A contextual menu appears with various
project commands. Select the “Run as” option followed by the “Maven build” option. A pop-up window
appears do you can edit and configure the project build. Just click the Run button in the bottom right. In
the bottom center of STS you’ll see the Console window appear. In this case, the Console window displays a
series of build messages produced by Maven, as well as any possible errors in case the build process fails.

You’ve just built the application, congratulations! Now let’s run it. Select the project icon from the
Package Explorer once again and press the F5 key to refresh the project directory. Expand the project tree.
Toward the bottom you’ll see a new directory called target, which contains the built application. Expand
the target directory by clicking its icon. Next, select the file springintro_mvn-4.0.0-SNAPSHOT.jar, as
illustrated in Figure 1-4.

With the file selected, right-click to open a contextual menu with various project commands. Select the
“Run as” option followed by the “Run configurations” option. A pop-up window to edit and configure the
run appears. Ensure the “Java application” option is selected on the left side. In the “Main class” box, enter
com.apress.springrecipes.hello.Main. This is the main class for this project, as illustrated in Figure 1-5.

Figure 1-4. Selecting the executable in STS

Chapter 1 ■ Spring Development toolS

7

Click the Run button in the bottom right. In the bottom center of STS, you’ll see the Console window.
In this case, the Console window displays the application logging messages, as well as a greeting message
defined by the application.

Even though you’ve built and run a Spring application with STS, you’re still not done. The process
you just completed with STS was mostly done behind the scenes by the Maven build tool. Next, it’s time to
import a Spring application that uses one of the newer build tools, called Gradle.

Importing and Building a Gradle Project
While Gradle is still a relatively new tool, there are signs that Gradle will supplant Maven in the future. For
example, many large Java projects—such as the Spring Framework itself—now use Gradle instead of Maven
because of its greater power. Given this tendency, it’s worth describing how to use Gradle with STS.

Figure 1-5. Defining the main executable class in STS

Chapter 1 ■ Spring Development toolS

8

 ■ Tip if you have a maven project (i.e., pom.xml file), you can use the bootstrap plug-in or maven2gradle
tool to create a gradle project (i.e., build.gradle file). the bootstrap plug-in is included with gradle (see
the documentation at http://gradle.org/docs/current/userguide/bootstrap_plugin.html), and the
maven2gradle tool is available at https://github.com/jbaruch/maven2gradle.git.

To install Gradle support in STS, you need to install the Buildship extension. For that, open the Eclipse
Marketplace through the Help menu and search for Gradle, as shown in Figure 1-6.

Figure 1-6. Buildship STS installation

http://gradle.org/docs/current/userguide/bootstrap_plugin.html
https://github.com/jbaruch/maven2gradle.git

Chapter 1 ■ Spring Development toolS

9

Click the Install button at the bottom right of the BuildShip integration to proceed with the installation.
Click the pop-up window’s Next button. Once you read the license and accept the terms, click the pop-

up window’s Finish button. The Gradle extension installation process starts. Once the installation process
finishes, you’ll be prompted to restart STS for the changes to take effect. Confirm the STS restart to finish the
Gradle installation.

The book’s source contains numerous Spring applications designed to be built with Gradle, so we’ll
describe how to import these Spring applications into STS. Once you download the book’s source and
unpack it to a local directory, in STS click the top-level File menu and select the Import option. A pop-up
window appears. In the pop-up window, click the Gradle icon and select the Existing Gradle Project option,
as illustrated in Figure 1-7.

Figure 1-7. Importing a Gradle project

Chapter 1 ■ Spring Development toolS

10

Click the Next button. On the following screen, click the Browse button and select the book’s Ch01/
springintro directory. Click the Finish button to import the projects. If you look at the left side of STS in the
Package Explorer, you’ll see the project is loaded with the name springintro. If you click the project icon,
you’ll be able to see the project structure (i.e., Java classes, dependencies, configuration files, etc.).

In the right corner of the IDE there is a Gradle Tasks tab. Find the springintro project, open the Build
menu, and select Build. Now right-click and select Run Gradle Tasks. You’ve just built the application. Now
let’s run it.

Select the project icon once again and press the F5 key to refresh the project directory. Expand the
project tree. Toward the middle you’ll see a new directory called libs, which contains the built application.
Expand the libs directory by clicking the icon. Next, select the file springintro.jar.

With the file selected, from the top-level menu Run, select the “Run configurations” option. A pop-up
window appears to edit and configure the run. Ensure the “Java application” option is selected on the left
side. In the “Main class” box, enter com.apress.springrecipes.hello.Main. This is the main class for
this project. Click the Run button in the bottom right. In the bottom center of STS, you’ll see the Console
window. In this case, the Console window displays the application logging messages, as well as a greeting
message defined by the application.

1-2. Build a Spring Application with the IntelliJ IDE
Problem
You want to use the IntelliJ IDE to build Spring applications.

Solution
To start a new Spring application in the IntelliJ Quick Start window, click the Create New Project link. In the
next window, assign a name to the project, select a runtime JDK, and select the Java Module option. In the
next window, click the various Spring check boxes so IntelliJ downloads the necessary Spring dependencies
for the project.

To open a Spring application that uses Maven, you first need to install Maven to work from a command-
line interface (see recipe 1-4). From the IntelliJ top-level File menu, select the Import Project option. Next,
select the Spring application based on Maven from your workstation. On the next screen, select the “Import
project from external model” option and select a Maven type.

To open a Spring application that uses Gradle, you first need to install Gradle to work from a command-
line interface (see recipe 1-5). From the IntelliJ top-level File menu, select the Import Project option. Next,
select the Spring application based on Gradle from your workstation. In the next screen, select the “Import
project from external model” option and select a Gradle type.

How It Works
IntelliJ is one of the most popular commercial IDEs in the market. Unlike other IDEs that are produced
by a foundation, such as Eclipse, or are made to support the flagship software of a company, such as STS
for the Spring Framework, IntelliJ is produced by a company called JetBrains whose sole business is to
commercialize development tools. It’s this focus that makes IntelliJ particularly popular for professional
developers in corporate environments.

For this recipe, we’ll assume you’ve already installed the IntelliJ Ultimate edition and just want to get up
and running with Spring applications.

Chapter 1 ■ Spring Development toolS

11

 ■ Warning intelliJ is available in a free Community edition and an Ultimate edition with a 30-day free trial.
although the free Community edition provides good value for application development, the Community edition
does not include support for Spring applications. the instructions that follow are based on the assumption that
you’re using the intelliJ Ultimate edition.

Creating a Spring Application
To start a Spring application, in the IntelliJ Quick Start window click the Create New Project link. In the New
Project window, select the Spring option and click the various Spring check boxes, as illustrated in Figure 1-8.

Figure 1-8. IntelliJ, creating a Spring project

Click the Next button. In the next window, assign a name to the project and click Finish.

Chapter 1 ■ Spring Development toolS

12

Importing and Building a Maven Project
A more common case than creating a Spring application from scratch is to continue development of an
existing Spring application. Under such circumstances, the owner of an application generally distributes the
application’s source code with a build script to facilitate its ongoing development.

The build script of choice for most Java application is a pom.xml file designed around the Maven build
tool or, more recently, a build.gradle file designed around the Gradle build tool. The book’s source code
and its applications are provided with Gradle build files, in addition to a single application with a Maven
build file.

Once you download the book’s source and unpack it to a local directory, click the IntelliJ top-level File
menu and select the Import Project option. A pop-up window appears, as illustrated in Figure 1-9.

Figure 1-9. IntelliJ, selecting a file or directory to import

Chapter 1 ■ Spring Development toolS

13

Figure 1-10. IntelliJ, selecting a project type

In this window, drill down in the directory tree until you get to the directory of the book’s source code
inside ch01 and then select springintro_mvn. Click the Open button. In the next screen, select the “Import
project from external model” option and select a Maven type, as illustrated in Figure 1-10.

www.allitebooks.com

http://www.allitebooks.org

Chapter 1 ■ Spring Development toolS

14

In the next window (see Figure 1-11), you can fine-tune some of the Maven project settings, such as
automatically importing changes to pom.xml, downloading sources for dependencies, and so on. When
satisfied with the settings, click Next.

Figure 1-11. IntelliJ, fine-tuning the Maven project settings

Chapter 1 ■ Spring Development toolS

15

Ensure the project check box is selected, as shown in Figure 1-12, and click the Next button to import
the project.

Next, choose the SDK version for the project. Confirm the project name and location and click the
Finish button. All projects in IntelliJ are loaded on the left side of the Project window. In this case, the project
appears with the name springintro_mvn.

If you click the project icon, you’ll be able to see the project structure (i.e., Java classes, dependencies,
configuration files, etc.). If you double-click any of the project files in the Project window, the file is opened in a
separate tab in the center window. You can inspect the contents of the file, as well as edit or delete its contents.

Next, you need to set up Maven to work with IntelliJ. Follow the instructions in recipe 1-3 to install
Maven to work from the command line. Once you do this, you can set up IntelliJ to work with Maven.

Figure 1-12. IntelliJ, selecting the Maven project

Chapter 1 ■ Spring Development toolS

16

Click the IntelliJ top-level File menu and select the Settings option. A pop-up window appears to
configure the IntelliJ settings. Click the Maven option and in the Maven home directory introduce the Maven
installation directory based on your system, as illustrated in Figure 1-13. Click the Apply button, followed by
the OK button.

Figure 1-13. IntelliJ, setting the Maven settings

Chapter 1 ■ Spring Development toolS

17

Next, on the right side of IntelliJ, click the vertical tab Maven Projects to show the Maven Projects pane,
as illustrated in Figure 1-14.

Select the project’s Introduction to Spring line in the Maven Projects pane and right-click to open a
contextual menu with various commands for the project. Select the Run Maven Build option. In the bottom
center of IntelliJ, you’ll see the Run window appear. In this case, the Run window displays a series of build
messages produced by Maven, as well as any possible errors in case the build process fails.

 ■ Warning if you see the error message “no valid maven installation found. either set the home directory
in the configuration dialog or set the m2_home environment variable on your system,” it means maven is not
being found by intelliJ. verify the maven installation and configuration process.

Figure 1-14. IntelliJ, Maven Projects pane

Chapter 1 ■ Spring Development toolS

18

You’ve just built the application, congratulations! Now let’s run it. If you don’t see the target directory,
press the Ctrl+Alt+Y key combination to synchronize the project. Expand the target directory by clicking
its icon. Next, right-click the file springintro_mvn-4.0.0-SNAPSHOT.jar, as illustrated in Figure 1-15, and
select the Run option.

Figure 1-15. IntelliJ, running the application

Chapter 1 ■ Spring Development toolS

19

In the bottom center of IntelliJ in the Run window, you’ll see the application logging messages, as well
as a greeting message defined by the application.

Importing and Building a Gradle Project
Now let’s build a Gradle application with IntelliJ. First you need to install Gradle. Follow the instructions in
recipe 1-4 to install Gradle to work from the command line. Once you do this, you can set up IntelliJ to work
with Gradle.

Click the IntelliJ top-level File menu and select the Import Project option. A pop-up window appears,
as illustrated in Figure 1-9. Drill down in the directory tree in the pop-up window until you can select the file
build.gradle in the ch01/springintro directory of the book’s source code.

Click the Open button. On the next screen, select the “Import project from external model” option and
select Gradle. On the next screen, enter the Gradle home directory in the “Gradle home” box, based on the
Gradle installation of your system, as illustrated in Figure 1-16.

Figure 1-16. Defining the Gradle home for IntelliJ

Chapter 1 ■ Spring Development toolS

20

Click the Finish button to confirm the import process and then click the Finish button to complete the
import process. Next, in the Project window, right-click build.gradle and select Run Build.

You’ve just built the application. Now let’s run it. In the Project window, expand the build directory and
go into the libs directory. Find springintro-all.jar, as illustrated in Figure 1-17.

 ■ Note the build.gradle file is configured to produce a shadow Jar, which means it contains all the
classes and dependencies it needs to run.

Now right-click the springintro-all.jar file and select the Run option. In the bottom center of IntelliJ
in the Run window, you’ll see the application logging messages, as well as a greeting message defined by the
application.

1-3. Build a Spring Application with the Maven
Command-Line Interface
Problem
You want to build a Spring application with Maven from the command line.

Figure 1-17. IntelliJ, selecting an application to run

Chapter 1 ■ Spring Development toolS

21

Solution
Download Maven from http://maven.apache.org/download.cgi. Ensure the JAVA_HOME environment
variable is set to Java’s SDK main directory. Modify the PATH environment variable to include Maven’s bin
directory.

How It Works
Maven is available as a stand-alone command-line interface tool. This allows Maven to be leveraged from
a wide variety of development environments. For example, if you prefer to use a text editor like emacs or vi
to edit an application’s code, it becomes essential to be able to access a build tool like Maven to automate
the grunt work (e.g., copying files, one-step compiling) typically associated with the build process for Java
applications.

Maven can be downloaded for free from http://maven.apache.org/download.cgi. Maven is available
in both source code and binary versions. Since Java tools are cross-platform, we recommend you download
the binary version to avoid the additional compilation step. At the time of this writing, the latest stable
release of Maven is the 3.5.0 version.

Once you download Maven, ensure you have a Java SDK installed on your system because Maven
requires it at runtime. Proceed to install Maven by unpacking it and defining the JAVA_HOME and PATH
environment variables.

Run the following command to unpack it:

www@ubuntu:~$ tar -xzvf apache-maven-3.5.0-bin.tar.gz

Add the JAVA_HOME variable with the following command:

www@ubuntu:~$ export JAVA_HOME=/usr/lib/jvm/java-8-openjdk/

Add the Maven executable to the PATH variable with the following command:

www@ubuntu:~$ export PATH=$PATH:/home/www/apache-maven-3.5.0/bin/

 ■ Tip if you declare the variables JAVA_HOME and PATH as illustrated previously, you’ll need to do this
process every time you open a new shell session to use maven. on Unix/linux systems, you can open the
.bashrc file inside a user’s home directory and add the same export lines to avoid the need to declare the
environment variables each session. on Windows systems, you can set environment variables permanently by
selecting the my Computer icon, right-clicking, and then selecting the properties option. in the pop-up window,
select the advanced tab and click the “environment variables” button.

The Maven executable is available through the mvn command. If you set the environment variables
correctly as described previously, typing mvn from any directory on your system invokes Maven. Describing
any more details about Maven execution would go beyond the scope of this recipe. However, next we’ll
describe how to use Maven to build a Spring application from the book’s source code.

Once you download the book’s source code and unpack it to a local directory, go to the directory called
ch01/springintro_mvn. Type mvn to invoke Maven and build the application under springintro_mvn.
The output should look like Figure 1-18.

http://maven.apache.org/download.cgi
http://maven.apache.org/download.cgi

Chapter 1 ■ Spring Development toolS

22

You’ve just built the application, congratulations! Now let’s run it. Drill down into the directory called
target created by Maven under the ch01/springintro_mvn directory. You’ll see the file springintro_mvn-
4.0.0-SNAPSHOT.jar, which is the built application. Execute the command java -jar springintro_mvn-
1-0.SNAPSHOT.jar to run the application. You’ll see application logging messages, as well as a greeting
message defined by the application.

1-4. Build a Spring Application with the Gradle Wrapper
Problem
You want to build a Spring application utilizing the Maven wrapper from the command line.

Solution
Run the mvnw script from the command line.

How It Works
Although Maven (see recipe 1-3) is available as a stand-alone command-line tool, a lot of (open source)
projects use the Maven wrapper to give you access to Maven. The advantage of this approach is that the
application is completely self-providing. You as a developer don’t need to have Maven installed, as the
Maven wrapper will download a specific version of Maven to build the project.

Figure 1-18. Maven build output

Chapter 1 ■ Spring Development toolS

23

Once you have a project that utilizes the Maven wrapper, you can simply type ./mvnw package on the
command line to have Maven automatically download and run the build. The only prerequisite is to have a
Java SDK installed because Maven requires it at runtime and the Maven wrapper needs it to run.

Once you download the book’s source code and unpack it to a local directory, go to the directory called
ch01/springintro_mvnw. Type ./mvnw to invoke the Maven wrapper and automatically build the application.
The output will look something like Figure 1-19.

Notice that the first part of the output is downloading the actual Maven version used for this project.

1-5. Build a Spring Application with the Gradle
Command-Line Interface
Problem
You want to build a Spring application with Gradle from the command line.

Solution
Download Gradle from www.gradle.org/downloads. Ensure the JAVA_HOME environment variable is set to
Java’s SDK main directory. Modify the PATH environment variable to include Gradle’s bin directory.

Figure 1-19. Maven wrapper build output

http://www.gradle.org/downloads

Chapter 1 ■ Spring Development toolS

24

How It Works
Gradle is available as a stand-alone command-line tool. This allows Gradle to be leveraged from a wide
variety of development environments. For example, if you prefer to use a text editor like emacs or vi to
edit an application’s code, it becomes essential to be able to access a build tool like Gradle to automate
the grunt work (e.g., copying files, one-step compiling) typically associated with the build process for Java
applications.

Gradle can be downloaded for free from www.gradle.org/downloads. Gradle is available in both source
code and binary versions. Since Java tools are cross-platform, we recommend you download the binary
version to avoid the additional compilation step. At the time of this writing, the latest stable release of Gradle
is the 3.5 version.

Once you download Gradle, ensure you have a Java SDK installed on your system because Gradle
requires it at runtime. Proceed to install Gradle by unpacking it and defining the JAVA_HOME and PATH
environment variables.

Run the following command to unpack it:

www@ubuntu:~$ unzip gradle-3.5-bin.zip

Add the JAVA_HOME variable with the following command:

www@ubuntu:~$ export JAVA_HOME=/usr/lib/jvm/java-8-openjdk/

Add the Gradle executable to the PATH variable with the following command:

www@ubuntu:~$ export PATH=$PATH:/home/www/gradle-3.5/bin/

 ■ Tip if you declare the variables JAVA_HOME and PATH as illustrated previously, you’ll need to do this process

every time you open a new shell session to use gradle. on Unix/linux systems, you can open the .bashrc file

inside a user’s home directory and add the same export lines to avoid the need to declare the environment

variables each session. on Windows systems, you can set environment variables permanently by selecting the

my Computer icon, right-clicking, and then selecting the properties option. in the pop-up window, select the

advanced tab and click the “environment variables” button.

The Gradle executable is available through the gradle command. If you set the environment variables
correctly as described previously, typing gradle from any directory on your system invokes Gradle.
Describing any more details about Gradle execution would go beyond the scope of this recipe. However,
since the book’s source code has numerous Spring applications that use Gradle, we’ll describe how to use
Gradle to build one of these Spring applications.

Once you download the book’s source and unpack it to a local directory, go to the directory called
ch01/springintro. Type gradle to invoke Gradle and build the application under springintro. The output
should look like the output in Figure 1-20.

http://www.gradle.org/downloads

Chapter 1 ■ Spring Development toolS

25

Figure 1-20. Gradle build output

You’ve just built the application, congratulations! Now let’s run it. Drill down into the directory called
libs created by Gradle under the ch01/springintro directory. You’ll see the file springintro-all.jar,
which is the built application. Execute the command java -jar springintro-all.jar to run the
application. You’ll see application logging messages, as well as a greeting message defined by the application.

1-6. Build a Spring Application with the Gradle Wrapper
Problem
You want to build a Spring application utilizing the Gradle wrapper from the command line.

Solution
Run the gradlew script from the command line.

How It Works
Although Gradle (see recipe 1-5) is available as a stand-alone command-line tool, a lot of (open source)
projects use the Gradle wrapper to give you access to Gradle. The advantage of this approach is that the
application is completely self-providing. You as a developer don’t need to have Gradle installed because the
Gradle wrapper will download a specific version of Gradle to build the project.

Once you have a project that utilizes the Gradle wrapper, you can simply type ./gradlew build on the
command line to have Gradle automatically download and run the build. The only prerequisite is to have a
Java SDK installed because Gradle requires it at runtime and the Gradle wrapper needs it to run.

Chapter 1 ■ Spring Development toolS

26

Once you download the book’s source code and unpack it to a local directory, go to the directory called
ch01/Recipe_1_6. Type ./gradlew to invoke the Gradle wrapper and automatically build the application
under Recipe_1_6. The output will look something like Figure 1-21.

 ■ Tip the source code from the book can be built with either plain gradle or the gradle wrapper. the latter is
preferable as the code will be built using the same gradle version while developing the samples.

Summary
In this chapter, you learned how to set up the most popular development tools to create Spring applications.
You explored how to build and run the Spring application with four toolboxes. Two toolboxes consisted of
using IDEs: the Spring Tool Suite distributed by the creators of the Spring Framework and the IntelliJ IDE
distributed by JetBrains. The other two toolboxes consisted of using command-line tools: the Maven build
tool and the newer Gradle build tool, which is gaining popularity over the Maven build tool.

Figure 1-21. Gradle build output

27© Marten Deinum, Daniel Rubio, and Josh Long 2017
M. Deinum et al., Spring 5 Recipes, DOI 10.1007/978-1-4842-2790-9_2

CHAPTER 2

Spring Core Tasks

In this chapter, you’ll learn about the core tasks associated with Spring. At the heart of the Spring
Framework is the Spring Inversion of Control (Io0043) container. The IoC container is used to manage and
configure Plain Old Java Objects (POJOs). Because one of the primary appeals of the Spring Framework
is to build Java applications with POJOs, many of Spring’s core tasks involve managing and configuring
POJOs in the IoC container.

So, whether you plan to use the Spring Framework for web applications, enterprise integration, or some
other type of project, working with POJOs and the IoC container is one of the first steps you need to take. The
majority of the recipes in this chapter cover tasks that you’ll use throughout the book and on a daily basis to
develop Spring applications.

 ■ Note The term bean is used interchangeably with a POJO instance both in the book and in the Spring
documentation. Both refer to an object instance created from a Java class. In addition, the term component is
used interchangeably with a POJO class both in the book and in the Spring documentation. Both refer to the
actual Java class from which object instances are created.

 ■ Tip The source code download is organized to use Gradle (through the Gradle wrapper) to build the recipe
applications. Gradle takes care of loading all the necessary Java classes and dependencies and creating an
executable JAR file. Chapter 1 describes how to set up the Gradle tool. Furthermore, if a recipe illustrates more
than one approach, the source code is classified with various examples with roman letters (e.g., Recipe_2_1_i,
Recipe_2_1_ii, Recipe_2_1_iii, etc.).

To build each application, go in the Recipe directory (e.g., Ch2/Recipe_2_1_i/) and execute the
./gradlew build command to compile the source code. Once the source code is compiled, a build/libs
subdirectory is created with the application executable. You can then run the application JAR from the
command line (e.g., java -jar Recipe_2_1_i-4.0.0.jar).

http://dx.doi.org/10.1007/978-1-4842-2790-9_1

ChAPTeR 2 ■ SPRInG CORe TASkS

28

2-1. Use a Java Config to Configure POJOs
Problem
You want to manage POJOs with annotations with Spring’s IoC container.

Solution
Design a POJO class. Next, create a Java config class with @Configuration and @Bean annotations to
configure POJO instance values or set up Java components with @Component, @Repository, @Service, or
@Controller annotations to later create POJO instance values. Next, instantiate the Spring IoC container to
scan for Java classes with annotations. The POJO instances or bean instances then become accessible to put
together as part of an application.

How It Works
Suppose you’re going to develop an application to generate sequence numbers and you are going to need
many series of sequence numbers for different purposes. Each sequence will have its own prefix, suffix, and
initial values. So, you have to create and maintain multiple generator instances for the application. Create a
POJO class to create beans with a Java config.

In accordance with the requirements, you create a SequenceGenerator class that has three properties:
prefix, suffix, and initial. You also create a private field counter to store the numeric value of each
generator. Each time you call the getSequence() method on a generator instance, you get the last sequence
number with the prefix and suffix joined.

package com.apress.springrecipes.sequence;

import java.util.concurrent.atomic.AtomicInteger;

public class SequenceGenerator {

 private String prefix;
 private String suffix;
 private int initial;
 private final AtomicInteger counter = new AtomicInteger();

 public SequenceGenerator() {
 }

 public void setPrefix(String prefix) {
 this.prefix = prefix;
 }

 public void setSuffix(String suffix) {
 this.suffix = suffix;
 }

 public void setInitial(int initial) {
 this.initial = initial;
 }

ChAPTeR 2 ■ SPRInG CORe TASkS

29

 public String getSequence() {
 StringBuilder builder = new StringBuilder();
 builder.append(prefix)
 .append(initial)
 .append(counter.getAndIncrement())
 .append(suffix);
 return builder.toString();
 }
}

Create a Java Config with @Configuration and @Bean to Create POJOs
To define instances of a POJO class in the Spring IoC container, you can create a Java config class with
instantiation values. A Java config class with a POJO or bean definition looks like this:

package com.apress.springrecipes.sequence.config;

import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import com.apress.springrecipes.sequence.SequenceGenerator;

@Configuration
public class SequenceGeneratorConfiguration {

 @Bean
 public SequenceGenerator sequenceGenerator() {
 SequenceGenerator seqgen = new SequenceGenerator();
 seqgen.setPrefix("30");
 seqgen.setSuffix("A");
 seqgen.setInitial("100000");
 return seqgen;
 }
}

Notice the SequenceGeneratorConfiguration class is decorated with the @Configuration annotation;
this tells Spring it’s a configuration class. When Spring encounters a class with the @Configuration
annotation, it looks for bean instance definitions in the class, which are Java methods decorated with the
@Bean annotation. The Java methods create and return a bean instance.

Any method definitions decorated with the @Bean annotation generates a bean name based on the
method name. Alternatively, you can explicitly specify the bean name in the @Bean annotation with the name
attribute. For example, @Bean(name="mys1") makes the bean available as mys1.

 ■ Note If you explicitly specify the bean name, the method name is ignored for the purposes of bean creation.

ChAPTeR 2 ■ SPRInG CORe TASkS

30

Instantiate the Spring IoC Container to Scan for Annotations
You have to instantiate the Spring IoC container to scan for Java classes that contain annotations. In doing
so, Spring detects @Configuration and @Bean annotations so you can later get bean instances from the IoC
container itself.

Spring provides two types of IoC container implementations. The basic one is called a bean factory. The
more advanced one is called an application context, which is compatible with the bean factory. Note the
configuration files for these two types of IoC containers are identical.

The application context provides more advanced features than the bean factory while keeping the basic
features compatible. Therefore, we strongly recommend using the application context for every application
unless the resources of an application are restricted (e.g., such as when running Spring for an applet or
a mobile device). The interfaces for the bean factory and the application context are BeanFactory and
ApplicationContext, respectively. The ApplicationContext interface is a subinterface of BeanFactory for
maintaining compatibility.

Since ApplicationContext is an interface, you have to instantiate an implementation
of it. Spring has several application context implementations; we recommend you use
AnnotationConfigApplicationContext, which is the newest and most flexible implementation. With this
class you can load the Java config file.

ApplicationContext context = new AnnotationConfigApplicationContext
 (SequenceGeneratorConfiguration.class);

Once the application context is instantiated, the object reference—in this case context—provides an
entry point to access the POJO instances or beans.

Get POJO Instances or Beans from the IoC Container
To get a declared bean from a bean factory or an application context, you just make a call to the getBean()
method and pass in the unique bean name. The return type of the getBean() method is java.lang.Object,
so you have to cast it to its actual type before using it.

SequenceGenerator generator =
 (SequenceGenerator) context.getBean("sequenceGenerator");

The getBean() method also supports another variation where you can provide the bean class name to
avoid making the cast.

SequenceGenerator generator = context.getBean("sequenceGenerator",SequenceGenerator.class);

If there is only a single bean, you can omit the bean name.

SequenceGenerator generator = context.getBean(SequenceGenerator.class);

Once you reach this step, you can use the POJO or bean just like any object created using a constructor
outside of Spring.

A Main class to run the sequence generator application would look like the following:

package com.apress.springrecipes.sequence;

import com.apress.springrecipes.sequence.config.SequenceGeneratorConfiguration;
import org.springframework.context.ApplicationContext;
import org.springframework.context.annotation.AnnotationConfigApplicationContext;

ChAPTeR 2 ■ SPRInG CORe TASkS

31

public class Main {

 public static void main(String[] args) {
 ApplicationContext context =
 new AnnotationConfigApplicationContext(SequenceGeneratorConfiguration.class);

 SequenceGenerator generator = context.getBean(SequenceGenerator.class);

 System.out.println(generator.getSequence());
 System.out.println(generator.getSequence());
 }
}

If everything is available in the Java classpath (the SequenceGenerator POJO class and the Spring JAR
dependencies), you should see the following output, along with some logging messages:

30100000A
30100001A

Create POJO Class with the @Component Annotation to Create Beans
with DAO
Up to this point, the Spring bean instantiations have been done by hard-coding the values in a Java config
class. This was the preferred approach to simplify the Spring examples.

However, the POJO instantiation process for most applications is done from either a database or
user input. So, now it’s time to move forward and use a more real-world scenario. For this section, we’ll
use a Domain class and a Data Access Object (DAO) class to create POJOs. You still won’t need to set up a
database—you’ll actually hard-code values in the DAO class—but familiarizing yourself with this type of
application structure is important since it’s the basis for most real-world applications and future recipes.

Suppose you are asked to develop a sequence generator application like the one you did in the previous
section. You’ll need to modify the class structure slightly to accommodate a Domain class and DAO pattern.
First, create a domain class called Sequence containing the id, prefix, and suffix properties.

package com.apress.springrecipes.sequence;

public class Sequence {

 private final String id;
 private final String prefix;
 private final String suffix;

 public Sequence(String id, String prefix, String suffix) {
 this.id = id;
 this.prefix = prefix;
 this.suffix = suffix;
 }

 public String getId() {
 return id;
 }

ChAPTeR 2 ■ SPRInG CORe TASkS

32

 public String getPrefix() {
 return prefix;
 }

 public String getSuffix() {
 return suffix;
 }

}

Then, you create an interface for the DAO, which is responsible for accessing data from the database.
The getSequence() method loads a POJO or Sequence object from a database table by its ID, while the
getNextValue() method retrieves the next value of a particular database sequence.

package com.apress.springrecipes.sequence;

public interface SequenceDao {

 public Sequence getSequence(String sequenceId);
 public int getNextValue(String sequenceId);
}

In a production application, you would implement this DAO interface to use a data-access technology.
But to simplify this example, you’ll implement a DAO with hard-coded values in a Map to store the sequence
instances and values.

package com.apress.springrecipes.sequence;

import org.springframework.stereotype.Component;

import java.util.HashMap;
import java.util.Map;
import java.util.concurrent.atomic.AtomicInteger;

@Component("sequenceDao")
public class SequenceDaoImpl implements SequenceDao {

 private final Map<String, Sequence> sequences = new HashMap<>();
 private final Map<String, AtomicInteger> values = new HashMap<>();

 public SequenceDaoImpl() {
 sequences.put("IT", new Sequence("IT", "30", "A"));
 values.put("IT", new AtomicInteger(10000));
 }

 public Sequence getSequence(String sequenceId) {
 return sequences.get(sequenceId);
 }

ChAPTeR 2 ■ SPRInG CORe TASkS

33

 public int getNextValue(String sequenceId) {
 AtomicInteger value = values.get(sequenceId);
 return value.getAndIncrement();
 }
}

Observe how the SequenceDaoImpl class is decorated with the @Component("sequenceDao")
annotation. This marks the class so Spring can create POJOs from it. The value inside the @Component
annotation defines the bean instance ID, in this case sequenceDao. If no bean value name is provided in the
@Component annotation, by default the bean name is assigned as the uncapitalized nonqualified class name.
For example, for the SequenceDaoImpl class, the default bean name would be sequenceDaoImpl.

A call to the getSequence method returns the value of the given sequenceID. And a call to the getNextValue
method creates a new value based on the value of the given sequenceID and returns the new value.

POJOs are classified in application layers. In Spring there are three layers: persistence, service, and
presentation. @Component is a general-purpose annotation to decorate POJOs for Spring detection, whereas
@Repository, @Service, and @Controller are specializations of @Component for more specific cases of POJOs
associated with the persistence, service, and presentation layers.

If you’re unsure about a POJO’s purpose, you can decorate it with the @Component annotation. However,
it’s better to use the specialization annotations where possible because these provide extra facilities based
on a POJO’s purpose (e.g., @Repository causes exceptions to be wrapped up as DataAccessExceptions,
which makes debugging easier).

Instantiate the Spring IoC Container with Filters to Scan for Annotations
By default, Spring detects all classes decorated with @Configuration, @Bean, @Component, @Repository,
@Service, and @Controller annotations, among others. You can customize the scan process to include one
or more include/exclude filters. This is helpful when a Java package has dozens or hundreds of classes. For
certain Spring application contexts, it can be necessary to exclude or include POJOs with certain annotations.

 ■ Warning Scanning every package can slow down the startup process unnecessarily.

Spring supports four types of filter expressions. The annotation and assignable types are to specify
an annotation type and a class/interface for filtering. The regex and aspectj types allow you to specify a
regular expression and an AspectJ pointcut expression for matching the classes. You can also disable the
default filters with the use-default-filters attribute.

For example, the following component scan includes all classes in com.apress.springrecipes.sequence
whose name contains the word Dao or Service and excludes the classes with the @Controller annotation:

@ComponentScan(
 includeFilters = {
 @ComponentScan.Filter(
 type = FilterType.REGEX,
 pattern = { "com.apress.springrecipes.sequence.*Dao",

"com.apress.springrecipes.sequence.*Service"})
 },
 excludeFilters = {
 @ComponentScan.Filter(
 type = FilterType.ANNOTATION,
 classes = {org.springframework.stereotype.Controller.class}) }
)

ChAPTeR 2 ■ SPRInG CORe TASkS

34

When applying include filters to detect all classes whose name contains the word Dao or Service, even
classes that don’t have annotations are autodetected.

Get POJO Instances or Beans from the IoC Container
Then, you can test the preceding components with the following Main class:

package com.apress.springrecipes.sequence;

import org.springframework.context.ApplicationContext;
import org.springframework.context.annotation.AnnotationConfigApplicationContext;

public class Main {

 public static void main(String[] args) {

 ApplicationContext context =
 new AnnotationConfigApplicationContext("com.apress.springrecipes.sequence");

 SequenceDao sequenceDao = context.getBean(SequenceDao.class);

 System.out.println(sequenceDao.getNextValue("IT"));
 System.out.println(sequenceDao.getNextValue("IT"));
 }
}

2-2. Create POJOs by Invoking a Constructor
Problem
You want to create a POJO instance or bean in the Spring IoC container by invoking its constructor, which
is the most common and direct way of creating beans. It is equivalent to using the new operator to create
objects in Java.

Solution
Define a POJO class with a constructor or constructors. Next, create a Java config class to configure POJO
instance values with constructors for the Spring IoC container. Next, instantiate the Spring IoC container to
scan for Java classes with annotations. The POJO instances or bean instances become accessible to be put
together as part of an application.

How It Works
Suppose you’re going to develop a shop application to sell products online. First, you create the Product
POJO class, which has several properties, such as the product name and price. As there are many types of
products in your shop, you make the Product class abstract to extend it for different product subclasses.

ChAPTeR 2 ■ SPRInG CORe TASkS

35

package com.apress.springrecipes.shop;

public abstract class Product {

 private String name;
 private double price;

 public Product() {}

 public Product(String name, double price) {
 this.name = name;
 this.price = price;
 }

 // Getters and Setters
 ...

 public String toString() {
 return name + " " + price;
 }
}

Create the POJO Classes with Constructors
Then you create two product subclasses, Battery and Disc. Each of them has its own properties.

package com.apress.springrecipes.shop;

public class Battery extends Product {

 private boolean rechargeable;

 public Battery() {
 super();
 }

 public Battery(String name, double price) {
 super(name, price);
 }

 // Getters and Setters
 ...
}

package com.apress.springrecipes.shop;

public class Disc extends Product {

 private int capacity;

ChAPTeR 2 ■ SPRInG CORe TASkS

36

 public Disc() {
 super();
 }

 public Disc(String name, double price) {
 super(name, price);
 }

 // Getters and Setters
 ...
}

Create a Java Config for Your POJO
To define instances of a POJO class in the Spring IoC container, you have to create a Java config class with
instantiation values. A Java config class with a POJO or bean definition made by invoking constructors would
look like this:

package com.apress.springrecipes.shop.config;

import com.apress.springrecipes.shop.Battery;
import com.apress.springrecipes.shop.Disc;
import com.apress.springrecipes.shop.Product;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;

@Configuration
public class ShopConfiguration {

 @Bean
 public Product aaa() {
 Battery p1 = new Battery("AAA", 2.5);
 p1.setRechargeable(true);
 return p1;
 }

 @Bean
 public Product cdrw() {
 Disc p2 = new Disc("CD-RW", 1.5);
 p2.setCapacity(700);
 return p2;
 }
}

Next, you can write the following Main class to test your products by retrieving them from the Spring
IoC container:

package com.apress.springrecipes.shop;

import com.apress.springrecipes.shop.config.ShopConfiguration;
import org.springframework.context.ApplicationContext;
import org.springframework.context.annotation.AnnotationConfigApplicationContext;

ChAPTeR 2 ■ SPRInG CORe TASkS

37

public class Main {

 public static void main(String[] args) throws Exception {

 ApplicationContext context =
 new AnnotationConfigApplicationContext(ShopConfiguration.class);

 Product aaa = context.getBean("aaa", Product.class);
 Product cdrw = context.getBean("cdrw", Product.class);
 System.out.println(aaa);
 System.out.println(cdrw);
 }
}

2-3. Use POJO References and Autowiring to Interact with
Other POJOs
Problem
The POJO instances or beans that make up an application often need to collaborate with each other to
complete the application’s functions. You want to use annotations to use POJO references and autowiring.

Solution
For POJO instances defined in a Java config class, you can use standard Java code to create references
between beans. To autowire POJO references, you can mark a field, a setter method, a constructor, or even
an arbitrary method with the @Autowired annotation.

How It Works
First we will introduce you to different methods of autowiring using constructors, fields and properties.
Finally you will see how you could solve issues in autowiring.

Reference POJOs in a Java Config Class
When POJO instances are defined in a Java config class—as illustrated in recipe 2-1 and recipe 2-2—POJO
references are straightforward to use because everything is Java code. In the following example, a bean
property references another bean:

package com.apress.springrecipes.sequence.config;

import com.apress.springrecipes.sequence.DatePrefixGenerator;
import com.apress.springrecipes.sequence.SequenceGenerator;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;

ChAPTeR 2 ■ SPRInG CORe TASkS

38

@Configuration
public class SequenceConfiguration {

 @Bean
 public DatePrefixGenerator datePrefixGenerator() {
 DatePrefixGenerator dpg = new DatePrefixGenerator();
 dpg.setPattern("yyyyMMdd");
 return dpg;
 }

 @Bean
 public SequenceGenerator sequenceGenerator() {
 SequenceGenerator sequence = new SequenceGenerator();
 sequence.setInitial(100000);
 sequence.setSuffix("A");
 sequence.setPrefixGenerator(datePrefixGenerator());
 return sequence;
 }
}

The prefixGenerator property of the SequenceGenerator class is an instance of a
DatePrefixGenerator bean.

The first bean declaration creates a DatePrefixGenerator POJO. By convention, the bean becomes
accessible with the bean name datePrefixGenerator (i.e., the method name). But since the bean
instantiation logic is also a standard Java method, the bean is also accessible by making a standard Java call.
When the prefixGenerator property is set—in the second bean, via a setter—a standard Java call is made to
the method datePrefixGenerator() to reference the bean.

Autowire POJO Fields with the @Autowired Annotation
Next, let’s use autowiring on the SequenceDao field of the DAO SequenceDaoImpl class introduced in the
second part of recipe 2-1. You’ll add a service class to the application to illustrate autowiring with the DAO
class.

A service class to generate service objects is another real-world application best practice, which acts as
a façade to access DAOs—instead of accessing DAOs directly. Internally, the service object interacts with the
DAO to handle the sequence generation requests.

package com.apress.springrecipes.sequence;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Component;

@Component
public class SequenceService {

 @Autowired
 private SequenceDao sequenceDao;

 public void setSequenceDao(SequenceDao sequenceDao) {
 this.sequenceDao = sequenceDao;
 }

ChAPTeR 2 ■ SPRInG CORe TASkS

39

 public String generate(String sequenceId) {
 Sequence sequence = sequenceDao.getSequence(sequenceId);
 int value = sequenceDao.getNextValue(sequenceId);
 return sequence.getPrefix() + value + sequence.getSuffix();
 }
}

The SequenceService class is decorated with the @Component annotation. This allows Spring to detect
the POJO. Because the @Component annotation has no name, the default bean name is sequenceService,
which is based on the class name.

The sequenceDao property of the SequenceService class is decorated with the @Autowired annotation.
This allows Spring to autowire the property with the sequenceDao bean (i.e., the SequenceDaoImpl class).

The @Autowired annotation can also be applied to a property of an array type to have Spring autowire
all the matching beans. For example, you can annotate a PrefixGenerator[] property with @Autowired.
Then, Spring will autowire all the beans whose type is compatible with PrefixGenerator at one time.

package com.apress.springrecipes.sequence;

import org.springframework.beans.factory.annotation.Autowired;

public class SequenceGenerator {

 @Autowired
 private PrefixGenerator[] prefixGenerators;
 ...
}

If you have multiple beans whose type is compatible with the PrefixGenerator defined in the IoC
container, they will be added to the prefixGenerators array automatically.

In a similar way, you can apply the @Autowired annotation to a type-safe collection. Spring can read the
type information of this collection and autowire all the beans whose type is compatible.

package com.apress.springrecipes.sequence;

import org.springframework.beans.factory.annotation.Autowired;

public class SequenceGenerator {

 @Autowired
 private List<PrefixGenerator> prefixGenerators;
 ...
}

If Spring notices that the @Autowired annotation is applied to a type-safe java.util.Map with strings as
the keys, it will add all the beans of the compatible type, with the bean names as the keys, to this map.

ChAPTeR 2 ■ SPRInG CORe TASkS

40

package com.apress.springrecipes.sequence;

import org.springframework.beans.factory.annotation.Autowired;

public class SequenceGenerator {

 @Autowired
 private Map<String, PrefixGenerator> prefixGenerators;
 ...
}

Autowire POJO Methods and Constructors with the @Autowired Annotation
and Make Autowiring Optional
The @Autowired annotation can also be applied directly to the setter method of a POJO. As an example, you
can annotate the setter method of the prefixGenerator property with @Autowired. Then, Spring attempts to
wire a bean whose type is compatible with prefixGenerator.

package com.apress.springrecipes.sequence;

import org.springframework.beans.factory.annotation.Autowired;

public class SequenceGenerator {
 ...
 @Autowired
 public void setPrefixGenerator(PrefixGenerator prefixGenerator) {
 this.prefixGenerator = prefixGenerator;
 }
}

By default, all the properties with @Autowired are required. When Spring can’t find a matching bean to
wire, it will throw an exception. If you want a certain property to be optional, set the required attribute of
@Autowired to false. Then, when Spring can’t find a matching bean, it will leave this property unset.

package com.apress.springrecipes.sequence;

import org.springframework.beans.factory.annotation.Autowired;

public class SequenceGenerator {
 ...
 @Autowired(required=false)
 public void setPrefixGenerator(PrefixGenerator prefixGenerator) {
 this.prefixGenerator = prefixGenerator;
 }
}

ChAPTeR 2 ■ SPRInG CORe TASkS

41

You may also apply the @Autowired annotation to a method with an arbitrary name and an arbitrary
number of arguments; in that case, Spring attempts to wire a bean with the compatible type for each of the
method arguments.

package com.apress.springrecipes.sequence;

import org.springframework.beans.factory.annotation.Autowired;

public class SequenceGenerator {
 ...
 @Autowired
 public void myOwnCustomInjectionName(PrefixGenerator prefixGenerator) {
 this.prefixGenerator = prefixGenerator;
 }
}

Finally, you may also apply the @Autowired annotation to a constructor that you want to be used for
autowiring. The constructor can have any number of arguments, and Spring will attempt to wire a bean with
the compatible type for each of the constructor arguments.

@Service
public class SequenceService {

 private final SequenceDao sequenceDao;

 @Autowired
 public SequenceService(SequenceDao sequenceDao) {
 this.sequenceDao=sequenceDao;
 }

 public String generate(String sequenceId) {
 Sequence sequence = sequenceDao.getSequence(sequenceId);
 int value = sequenceDao.getNextValue(sequenceId);
 return sequence.getPrefix() + value + sequence.getSuffix();
 }
}

 ■ Tip As of Spring Framework 4.3, if you have only a single constructor, Spring will automatically use that
constructor for autowiring. In that case, you can omit the @Autowired annotation.

Resolve Autowire Ambiguity with Annotations
By default, autowiring by type will not work when there is more than one bean with the compatible type
in the IoC container and the property isn’t a group type (e.g., array, list, map), as illustrated previously.
However, there are two workarounds to autowiring by type if there’s more than one bean of the same type:
the @Primary annotation and the @Qualifier annotation.

ChAPTeR 2 ■ SPRInG CORe TASkS

42

Resolve Autowire Ambiguity with the @Primary Annotation

Spring allows you to specify a candidate bean by type by decorating the candidate with the @Primary
annotation. The @Primary annotation gives preference to a bean when multiple candidates are qualified to
autowire a single-valued dependency.

package com.apress.springrecipes.sequence;
...
import org.springframework.stereotype.Component;
import org.springframework.context.annotation.Primary;

@Component
@Primary
public class DatePrefixGenerator implements PrefixGenerator {

 public String getPrefix() {
 DateFormat formatter = new SimpleDateFormat("yyyyMMdd");
 return formatter.format(new Date());
 }
}

Notice that the previous POJO implements the PrefixGenerator interface and is decorated with the
@Primary annotation. If you attempted to autowire a bean with a PrefixGenerator type, even if Spring
had more than one bean instance with the same PrefixGenerator type, Spring would autowire the
DatePrefixGenerator because it’s marked with the @Primary annotation.

Resolve Autowire Ambiguity with the @Qualifier Annotation

Spring also allows you to specify a candidate bean by type by providing its name in the @Qualifier annotation.

package com.apress.springrecipes.sequence;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.Qualifier;

public class SequenceGenerator {

 @Autowired
 @Qualifier("datePrefixGenerator")
 private PrefixGenerator prefixGenerator;
 ...
}

Once you’ve done this, Spring attempts to find a bean with that name in the IoC container and wire it
into the property.

The @Qualifier annotation can also be applied to a method argument for autowiring.

package com.apress.springrecipes.sequence;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.Qualifier;

ChAPTeR 2 ■ SPRInG CORe TASkS

43

public class SequenceGenerator {
 ...
 @Autowired
 public void myOwnCustomInjectionName(
 @Qualifier("datePrefixGenerator") PrefixGenerator prefixGenerator) {
 this.prefixGenerator = prefixGenerator;
 }
}

If you want to autowire bean properties by name, you can annotate a setter method, a constructor, or a
field with the JSR-250 @Resource annotation described in the next recipe.

Resolve POJO References from Multiple Locations
As an application grows, it can become difficult to manage every POJO in a single Java configuration class.
A common practice is to separate POJOs into multiple Java configuration classes according to their functionalities.
When you create multiple Java configuration classes, obtaining references and autowiring POJOs that are defined
in different classes isn’t as straightforward as when everything is in a single Java configuration class.

One approach is to initialize the application context with the location of each Java configuration class.
In this manner, the POJOs for each Java configuration class are loaded into the context and references, and
autowiring between POJOs is possible.

AnnotationConfigApplicationContext context = new AnnotationConfigApplicationContext
 (PrefixConfiguration.class, SequenceGeneratorConfiguration.class);

Another alternative is to use the @Import annotation so Spring makes the POJOs from one configuration
file available in another.

package com.apress.springrecipes.sequence.config;

import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Import;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Configuration;
import com.apress.springrecipes.sequence.SequenceGenerator;
import com.apress.springrecipes.sequence.PrefixGenerator;

@Configuration
@Import(PrefixConfiguration.class)
public class SequenceConfiguration {
 @Value("#{datePrefixGenerator}")
 private PrefixGenerator prefixGenerator;

 @Bean
 public SequenceGenerator sequenceGenerator() {
 SequenceGenerator sequence= new SequenceGenerator();
 sequence.setInitial(100000);
 sequence.setSuffix("A");
 sequence.setPrefixGenerator(prefixGenerator);
 return sequence;
 }
}

ChAPTeR 2 ■ SPRInG CORe TASkS

44

The sequenceGenerator bean requires you to set a prefixGenerator bean. But notice no
prefixGenerator bean is defined in the Java configuration class. The prefixGenerator bean is defined in
a separate Java configuration class called PrefixConfiguration. With the @Import(PrefixConfiguration.
class) annotation, Spring brings all the POJOs in the Java configuration class into the scope of the present
configuration class. With the POJOs from PrefixConfiguration in scope, you use the @Value annotation
and SpEL to inject the bean named datePrefixGenerator into the prefixGenerator field. Once the bean is
injected, it can be used to set a prefixGenerator bean for the sequenceGenerator bean.

2-4. Autowire POJOs with the @Resource and @Inject
Annotations
Problem
You want to use the Java standard @Resource and @Inject annotations to reference POJOs via autowiring,
instead of using the Spring-specific @Autowired annotation.

Solution
JSR-250, or Common Annotations for the Java Platform, defines the @Resource annotation to autowire POJO
references by name. JSR-330, or Standard Annotations for Injection, defines the @Inject annotations to
autowire POJO references by type.

How It Works
The @Autowired annotation described in the previous recipe belongs to the Spring Framework, specifically
to the org.springframework.beans.factory.annotation package. This means it can be used only in the
context of the Spring Framework.

Soon after Spring added support for the @Autowired annotation, the Java language standardized various
annotations to fulfill the same purpose of the @Autowired annotation. These annotations are @Resource,
which belongs to the javax.annotation package, and @Inject, which belongs to the javax.inject package.

Autowire POJOs with the @Resource Annotation
By default, the @Resource annotation works like Spring’s @Autowired annotation and attempts to autowire
by type. For example, the following POJO attribute is decorated with the @Resource annotation, so Spring
attempts to locate a POJO that matches the PrefixGenerator type.

package com.apress.springrecipes.sequence;

import javax.annotation.Resource;

public class SequenceGenerator {

 @Resource
 private PrefixGenerator prefixGenerator;
 ...
}

ChAPTeR 2 ■ SPRInG CORe TASkS

45

However, unlike the @Autowired annotation, which requires the @Qualifier annotation to autowire a
POJO by name, the @Resource ambiguity is eliminated if more than one POJO type of the same kind exists.
Essentially, the @Resource annotation provides the same functionality as putting together the @Autowired
annotation and the @Qualifier annotation.

Autowire POJOs with the @Inject Annotation
Also, the @Inject annotation attempts to autowire by type, like the @Resource and @Autowired annotations.
For example, the following POJO attribute is decorated with the @Inject annotation, so Spring attempts to
locate a POJO that matches the PrefixGenerator type:

package com.apress.springrecipes.sequence;

import javax.inject.Inject;

public class SequenceGenerator {

 @Inject
 private PrefixGenerator prefixGenerator;
 ...
}

But just like the @Resource and @Autowired annotations, a different approach has to be used to match
POJOs by name or avoid ambiguity if more than one POJO type of the same kind exists. The first step to do
autowiring by name with the @Inject annotation is to create a custom annotation to identify both the POJO
injection class and the POJO injection point.

package com.apress.springrecipes.sequence;

import java.lang.annotation.Documented;
import java.lang.annotation.ElementType;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;
import java.lang.annotation.Target;

import javax.inject.Qualifier;

@Qualifier
@Target({ElementType.TYPE, ElementType.FIELD, ElementType.PARAMETER})
@Documented
@Retention(RetentionPolicy.RUNTIME)
public @interface DatePrefixAnnotation {
}

Notice the custom annotation makes use of the @Qualifier annotation. This annotation is different
from the one used with Spring’s @Qualifier annotation, as this last class belongs to the same Java package
as the @Inject annotation (i.e., javax.inject).

ChAPTeR 2 ■ SPRInG CORe TASkS

46

Once the custom annotation is done, it’s necessary to decorate the POJO injection class that generates
the bean instance, which in this case is the DatePrefixGenerator class.

package com.apress.springrecipes.sequence;
...
@DatePrefixAnnotation
public class DatePrefixGenerator implements PrefixGenerator {
...
}

Finally, the POJO attribute or injection point is decorated with the same custom annotation to qualify
the POJO and eliminate any ambiguity.

package com.apress.springrecipes.sequence;

import javax.inject.Inject;

public class SequenceGenerator {

 @Inject @DataPrefixAnnotation
 private PrefixGenerator prefixGenerator;
 ...
}

As you’ve seen in recipes 2-3 and 2-4, the three annotations @Autowired, @Resource, and @Inject can
achieve the same result. The @Autowired annotation is a Spring-based solution, whereas the @Resource and
@Inject annotations are Java standard (i.e., JSR) solutions. If you’re going to do name-based autowiring,
the @Resource annotation offers the simplest syntax. For autowiring by class type, all three annotations are
straightforward to use because all three require a single annotation.

2-5. Set a POJO’s Scope with the @Scope Annotation
Problem
When you declare a POJO instance with an annotation like @Component, you are actually defining a template
for bean creation, not an actual bean instance. When a bean is requested by the getBean() method or
referenced from other beans, Spring decides which bean instance should be returned according to the bean
scope. Sometimes you have to set an appropriate scope for a bean other than the default scope.

Solution
A bean’s scope is set with the @Scope annotation. By default, Spring creates exactly one instance for each
bean declared in the IoC container, and this instance is shared in the scope of the entire IoC container. This
unique bean instance is returned for all subsequent getBean() calls and bean references. This scope is
called singleton, which is the default scope of all beans. Table 2-1 lists all valid bean scopes in Spring.

ChAPTeR 2 ■ SPRInG CORe TASkS

47

How It Works
To demonstrate the concept of bean scope, let’s consider a shopping cart example in a shopping application.
First, you create the ShoppingCart class as follows:

package com.apress.springrecipes.shop;
...
@Component
public class ShoppingCart {

 private List<Product> items = new ArrayList<>();

 public void addItem(Product item) {
 items.add(item);
 }

 public List<Product> getItems() {
 return items;
 }
}

Then, you declare some product beans in a Java config file so they can later be added to the shopping cart.

package com.apress.springrecipes.shop.config;

import com.apress.springrecipes.shop.Battery;
import com.apress.springrecipes.shop.Disc;
import com.apress.springrecipes.shop.Product;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.ComponentScan;
import org.springframework.context.annotation.Configuration;

@Configuration
@ComponentScan("com.apress.springrecipes.shop")
public class ShopConfiguration {

Table 2-1. Valid Bean Scopes in Spring

Scope Description

singleton Creates a single bean instance per Spring IoC container

prototype Creates a new bean instance each time when requested

request Creates a single bean instance per HTTP request; valid only in the context of a web
application

session Creates a single bean instance per HTTP session; valid only in the context of a web
application

globalSession Creates a single bean instance per global HTTP session; valid only in the context of a
portal application

ChAPTeR 2 ■ SPRInG CORe TASkS

48

 @Bean
 public Product aaa() {
 Battery p1 = new Battery();
 p1.setName("AAA");
 p1.setPrice(2.5);
 p1.setRechargeable(true);
 return p1;
 }

 @Bean
 public Product cdrw() {
 Disc p2 = new Disc("CD-RW", 1.5);
 p2.setCapacity(700);
 return p2;
 }

 @Bean
 public Product dvdrw() {
 Disc p2 = new Disc("DVD-RW", 3.0);
 p2.setCapacity(700);
 return p2;
 }
}

Once you do this, you can define a Main class to test the shopping cart by adding some products to it.
Suppose there are two customers navigating in your shop at the same time. The first one gets a shopping cart
by the getBean() method and adds two products to it. Then, the second customer also gets a shopping cart
by the getBean() method and adds another product to it.

package com.apress.springrecipes.shop;

import com.apress.springrecipes.shop.config.ShopConfiguration;
import org.springframework.context.ApplicationContext;
import org.springframework.context.annotation.AnnotationConfigApplicationContext;

public class Main {

 public static void main(String[] args) throws Exception {
 ApplicationContext context =
 new AnnotationConfigApplicationContext(ShopConfiguration.class);

 Product aaa = context.getBean("aaa", Product.class);
 Product cdrw = context.getBean("cdrw", Product.class);
 Product dvdrw = context.getBean("dvdrw", Product.class);

 ShoppingCart cart1 = context.getBean("shoppingCart", ShoppingCart.class);
 cart1.addItem(aaa);
 cart1.addItem(cdrw);
 System.out.println("Shopping cart 1 contains " + cart1.getItems());

ChAPTeR 2 ■ SPRInG CORe TASkS

49

 ShoppingCart cart2 = context.getBean("shoppingCart", ShoppingCart.class);
 cart2.addItem(dvdrw);
 System.out.println("Shopping cart 2 contains " + cart2.getItems());

 }
}

As a result of the preceding bean declaration, you can see that the two customers get the same shopping
cart instance.

Shopping cart 1 contains [AAA 2.5, CD-RW 1.5]
Shopping cart 2 contains [AAA 2.5, CD-RW 1.5, DVD-RW 3.0]

This is because Spring’s default bean scope is singleton, which means Spring creates exactly one
shopping cart instance per IoC container.

In your shop application, you expect each customer to get a different shopping cart instance when the
getBean() method is called. To ensure this behavior, the scope of the shoppingCart bean needs to be set to
prototype. Then Spring creates a new bean instance for each getBean() method call.

package com.apress.springrecipes.shop;
...
import org.springframework.stereotype.Component;
import org.springframework.context.annotation.Scope;

@Component
@Scope("prototype")
public class ShoppingCart { ... }

Now if you run the Main class again, you can see the two customers get a different shopping cart instance.

Shopping cart 1 contains [AAA 2.5, CD-RW 1.5]
Shopping cart 2 contains [DVD-RW 3.0]

2-6. Use Data from External Resources (Text Files, XML
Files, Properties Files, or Image Files)
Problem
Sometimes applications need to read external resources (e.g., text files, XML files, properties file, or image
files) from different locations (e.g., a file system, classpath, or URL). Usually, you have to deal with different
APIs for loading resources from different locations.

ChAPTeR 2 ■ SPRInG CORe TASkS

50

Solution
Spring offers the @PropertySource annotation as a facility to load the contents of a .properties file
(i.e., key-value pairs) to set up bean properties.

Spring also has a resource loader mechanism that provides a unified Resource interface to retrieve any type
of external resource by a resource path. You can specify different prefixes for this path to load resources from
different locations with the @Value annotation. To load a resource from a file system, you use the file prefix. To
load a resource from the classpath, you use the classpath prefix. You can also specify a URL in the resource path.

How It Works
To read the contents of a properties file (i.e., key-value pairs) to set up bean properties, you can use Spring’s
@PropertySource annotation with PropertySourcesPlaceholderConfigurer. If you want to read the
contents of any file, you can use Spring’s Resource mechanism decorated with the @Value annotation.

Use Properties File Data to Set Up POJO Instantiation Values
Let’s assume you have a series of values in a properties file you want to access to set up bean properties.
Typically this can be the configuration properties of a database or some other application values composed
of key values. For example, take the following key values stored in a file called discounts.properties:

specialcustomer.discount=0.1
summer.discount=0.15
endofyear.discount=0.2

 ■ Note To read properties files for the purpose of internationalization (i18n), see the next recipe.
To make the contents of the discounts.properties file accessible to set up other beans, you can use the
@PropertySource annotation to convert the key values into a bean inside a Java config class.

package com.apress.springrecipes.shop.config;

import com.apress.springrecipes.shop.Battery;
import com.apress.springrecipes.shop.Disc;
import com.apress.springrecipes.shop.Product;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.ComponentScan;
import org.springframework.context.annotation.Configuration;
import org.springframework.context.annotation.PropertySource;
import org.springframework.context.support.PropertySourcesPlaceholderConfigurer;

@Configuration
@PropertySource("classpath:discounts.properties")
@ComponentScan("com.apress.springrecipes.shop")
public class ShopConfiguration {

 @Value("${endofyear.discount:0}")
 private double specialEndofyearDiscountField;

ChAPTeR 2 ■ SPRInG CORe TASkS

51

 @Bean
 public static PropertySourcesPlaceholderConfigurer
 propertySourcesPlaceholderConfigurer() {
 return new PropertySourcesPlaceholderConfigurer();
 }

 @Bean
 public Product dvdrw() {
 Disc p2 = new Disc("DVD-RW", 3.0, specialEndofyearDiscountField);
 p2.setCapacity(700);
 return p2;
 }
}

You define a @PropertySource annotation with a value of classpath:discounts.properties to
decorate the Java config class. The classpath: prefix tells Spring to look for the discounts.properties file
in the Java classpath.

Once you define the @PropertySource annotation to load the properties file, you also need to define a
PropertySourcePlaceholderConfigurer bean with the @Bean annotation. Spring automatically wires the
@PropertySource discounts.properties file so its properties become accessible as bean properties.

Next, you need to define Java variables to take values from the discount discounts.properties file.
To define the Java variable values with these values, you make use of the @Value annotation with a
placeholder expression.

The syntax is @Value("${key:default_value}"). A search is done for the key value in all the loaded
application properties. If a matching key=value is found in the properties file, the corresponding value
is assigned to the bean property. If no matching key=value is found in the loaded application properties,
default_value (i.e., after ${key:) is assigned to the bean property.

Once a Java variable is set with a discount value, you can use it to set up bean instances for a bean’s
discount property.

If you want to use properties file data for a different purpose than setting up bean properties, you should
use Spring’s Resource mechanism, which is described next.

Use Data from Any External Resource File for Use in a POJO
Suppose you want to display a banner on application startup. The banner consists of the following
characters and stored in a text file called banner.txt. This file can be put in the classpath of your application.

* Welcome to My Shop! *

Next, let’s write a BannerLoader POJO class to load the banner and output it to the console.

package com.apress.springrecipes.shop;
import org.springframework.core.io.Resource;
...
import javax.annotation.PostConstruct;
public class BannerLoader {

 private Resource banner;

ChAPTeR 2 ■ SPRInG CORe TASkS

52

 public void setBanner(Resource banner) {
 this.banner = banner;
 }

 @PostConstruct
 public void showBanner() throws IOException {
 InputStream in = banner.getInputStream();

 BufferedReader reader = new BufferedReader(new InputStreamReader(in));
 while (true) {
 String line = reader.readLine();
 if (line == null)
 break;
 System.out.println(line);
 }
 reader.close();
 }
}

Notice the POJO banner field is a Spring Resource type. The field value will be populated through setter
injection when the bean instance is created—to be explained shortly. The showBanner() method makes a
call to the getInputStream() method to retrieve the input stream from the Resource field. Once you have an
InputStream, you’re able to use a standard Java file manipulation class. In this case, the file contents are read
line by line with BufferedReader and output to the console.

Also notice the showBanner() method is decorated with the @PostConstruct annotation. Because you
want to show the banner at startup, you use this annotation to tell Spring to invoke the method automatically
after creation. This guarantees the showBanner() method is one of the first methods to be run by the
application and therefore ensures the banner appears at the outset.

Next, the POJO BannerLoader needs to be initialized as an instance. In addition, the banner field of the
BannerLoader also needs to be injected. So, let’s create a Java config class for these tasks.

@Configuration
@PropertySource("classpath:discounts.properties")
@ComponentScan("com.apress.springrecipes.shop")
public class ShopConfiguration {

 @Value("classpath:banner.txt")
 private Resource banner;

 @Bean
 public static PropertySourcesPlaceholderConfigurer propertySourcesPlaceholderConfigurer() {
 return new PropertySourcesPlaceholderConfigurer();
 }

 @Bean
 public BannerLoader bannerLoader() {
 BannerLoader bl = new BannerLoader();
 bl.setBanner(banner);
 return bl;
 }
}

ChAPTeR 2 ■ SPRInG CORe TASkS

53

See how the banner property is decorated with the @Value("classpath:banner.txt") annotation.
This tells Spring to search for the banner.txt file in the classpath and inject it. Spring uses the preregistered
property editor ResourceEditor to convert the file definition into a Resource object before injecting it into
the bean.

Once the banner property is injected, it’s assigned to the BannerLoader bean instance via setter injection.
Because the banner file is located in the Java classpath, the resource path starts with the classpath:

prefix. The previous resource path specifies a resource in the relative path of the file system. You can specify
an absolute path as well.

file:c:/shop/banner.txt

When a resource is located in Java’s classpath, you have to use the classpath prefix. If there’s no path
information presented, it will be loaded from the root of the classpath.

classpath:banner.txt

If the resource is located in a particular package, you can specify the absolute path from the
classpath root.

classpath:com/apress/springrecipes/shop/banner.txt

Besides support to load from a file system path or the classpath, a resource can also be loaded by
specifying a URL.

http://springrecipes.apress.com/shop/banner.txt

Since the bean class uses the @PostConstruct annotation on the showBanner() method, the
banner is sent to output when the IoC container is set up. Because of this, there’s no need to tinker with
an application’s context or explicitly call the bean to output the banner. However, sometimes it can be
necessary to access an external resource to interact with an application’s context. Now suppose you want to
display a legend at the end of an application. The legend consists of the discounts previously described in
the discounts.properties file. To access the contents of the properties file, you can also leverage Spring’s
Resource mechanism.

Next, let’s use Spring’s Resource mechanism, but this time directly inside an application’s Main class to
output a legend when the application finishes.

import org.springframework.core.io.ClassPathResource;
import org.springframework.core.io.support.PropertiesLoaderUtils;
...
...
public class Main {

 public static void main(String[] args) throws Exception {
 ...
 Resource resource = new ClassPathResource("discounts.properties");
 Properties props = PropertiesLoaderUtils.loadProperties(resource);
 System.out.println("And don't forget our discounts!");
 System.out.println(props);

 }
}

http://springrecipes.apress.com/shop/banner.txt

ChAPTeR 2 ■ SPRInG CORe TASkS

54

Spring’s ClassPathResource class is used to access the discounts.properties file, which casts the
file’s contents into a Resource object. Next, the Resource object is processed into a Properties object with
Spring’s PropertiesLoaderUtils class. Finally, the contents of the Properties object are sent to the console
as the final output of the application.

Because the legend file (i.e., discounts.properties) is located in the Java classpath, the resource is
accessed with Spring’s ClassPathResource class. If the external resource were in a file system path, the
resource would be loaded with Spring’s FileSystemResource.

Resource resource = new FileSystemResource("c:/shop/banner.txt")

If the external resource were at a URL, the resource would be loaded with Spring’s UrlResource.

Resource resource = new UrlResource("http://www.apress.com/")

2-7. Resolve I18N Text Messages for Different Locales in
Properties Files
Problem
You want an application to support internationalization via annotations.

Solution
MessageSource is an interface that defines several methods for resolving messages in resource bundles.
ResourceBundleMessageSource is the most common MessageSource implementation that resolves messages
from resource bundles for different locales. After you implement a ResourceBundleMessageSource POJO,
you can use the @Bean annotation in a Java config file to make the i18n data available in an application.

How It Works
As an example, create a resource bundle called messages_en_US.properties for the English language in the
United States. Resource bundles are loaded from the root of the classpath, so ensure it’s available on the Java
classpath. Place the following key-value in the file:

alert.checkout=A shopping cart has been checked out.
alert.inventory.checkout=A shopping cart with {0} has been checked out at {1}.

To resolve messages from resource bundles, let’s create a Java config file with an instance of a
ReloadableResourceBundleMessageSource bean.

package com.apress.springrecipes.shop.config;

import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.context.support.ReloadableResourceBundleMessageSource;

ChAPTeR 2 ■ SPRInG CORe TASkS

55

@Configuration
public class ShopConfiguration {

 @Bean
 public ReloadableResourceBundleMessageSource messageSource() {
 ReloadableResourceBundleMessageSource messageSource =
 new ReloadableResourceBundleMessageSource();
 messageSource.setBasenames("classpath:messages");
 messageSource.setCacheSeconds(1);
 return messageSource;
 }
}

The bean instance must have the name messageSource for the application context to detect it.
Inside the bean definition you declare a String list via the setBasenames method to locate bundles

for the ResourceBundleMessageSource. In this case, you just specify the default convention to look up
files located in the Java classpath that start with messages. In addition, the setCacheSeconds methods
sets the caching to 1 second to avoid reading stale messages. Note that a refresh attempt first checks the
last-modified timestamp of the properties file before actually reloading it, so if files don’t change, the
setCacheSeconds interval can be set rather low, as refresh attempts aren’t actually reloaded.

For this MessageSource definition, if you look up a text message for the United States locale, whose
preferred language is English, the resource bundle messages_en_US.properties is considered first. If there’s
no such resource bundle or the message can’t be found, then a messages_en.properties file that matches
the language is considered. If a resource bundle still can’t be found, the default messages.properties for
all locales is chosen. For more information on resource bundle loading, you can refer to the Javadoc of the
java.util.ResourceBundle class.

Next, you can configure the application context to resolve messages with the getMessage() method.
The first argument is the key corresponding to the message, and the third is the target locale.

package com.apress.springrecipes.shop;

import com.apress.springrecipes.shop.config.ShopConfiguration;
import org.springframework.context.ApplicationContext;
import org.springframework.context.annotation.AnnotationConfigApplicationContext;

import java.util.Date;
import java.util.Locale;

public class Main {

 public static void main(String[] args) throws Exception {

 ApplicationContext context =
 new AnnotationConfigApplicationContext(ShopConfiguration.class);

 String alert = context.getMessage("alert.checkout", null, Locale.US);
 String alert_inventory = context.getMessage("alert.inventory.checkout", new Object[]

{"[DVD-RW 3.0]", new Date()}, Locale.US);

ChAPTeR 2 ■ SPRInG CORe TASkS

56

 System.out.println("The I18N message for alert.checkout is: " + alert);
 System.out.println("The I18N message for alert.inventory.checkout is: " +

alert_inventory);
 }
}

The second argument of the getMessage() method is an array of message parameters. In the first
String statement the value is null, and in the second String statement an object array to fill in the message
parameters is used.

In the Main class, you can resolve text messages because you can access the application context directly.
But for a bean to resolve text messages, you have to inject a MessageSource implementation into the bean
that needs to resolve text messages. Let’s implement a Cashier class for the shopping application that
illustrates how to resolve messages.

package com.apress.springrecipes.shop;
...
@Component
public class Cashier {

 @Autowired
 private MessageSource messageSource;

 public void setMessageSource(MessageSource messageSource) {
 this.messageSource = messageSource;
 }

 public void checkout(ShoppingCart cart) throws IOException {
 String alert = messageSource.getMessage("alert.inventory.checkout",
 new Object[] { cart.getItems(), new Date() },

Locale.US);
 System.out.println(alert);
 }
}

Notice the POJO messageSource field is a Spring MessageSource type. The field value is decorated with
the @Autowired annotation, so it’s populated through injection when the bean instance is created. Then
the checkout method can access the messageSource field, which gives the bean access to the getMessage
method to gain access to text messages based on i18n criteria.

2-8. Customize POJO Initialization and Destruction with
Annotations
Problem
Some POJOs have to perform certain types of initialization tasks before they’re used. These tasks can include
opening a file, opening a network/database connection, allocating memory, and so on. In addition, these
same POJOs have to perform the corresponding destruction tasks at the end of their life cycle. Therefore,
sometimes it’s necessary to customize bean initialization and destruction in the Spring IoC container.

ChAPTeR 2 ■ SPRInG CORe TASkS

57

Solution
Spring can recognize initialization and destruction callback methods by setting the initMethod and
destroyMethod attributes of the @Bean definition in a Java config class. Or Spring can also recognize
initialization and destruction callback methods if POJO methods are decorated with the @PostConstruct
and @PreDestroy annotations, respectively. Spring can also delay the creation of a bean up until the point
it’s required—a process called lazy initialization—with the @Lazy annotation. Spring can also ensure the
initialization of certain beans before others with the @DependsOn annotation.

How It Works
Define methods to run before POJO initialization and destruction with @Bean. Let’s take the case of the
shopping application and consider an example involving a checkout function. Let’s modify the Cashier class
to record a shopping cart’s products and the checkout time to a text file.

package com.apress.springrecipes.shop;

import java.io.*;
import java.util.Date;

public class Cashier {

 private String fileName;
 private String path;
 private BufferedWriter writer;

 public void setFileName(String fileName) {
 this.fileName = fileName;
 }

 public void setPath(String path) {
 this.path = path;
 }

 public void openFile() throws IOException {

 File targetDir = new File(path);
 if (!targetDir.exists()) {
 targetDir.mkdir();
 }

 File checkoutFile = new File(path, fileName + ".txt");
 if (!checkoutFile.exists()) {
 checkoutFile.createNewFile();
 }

 writer = new BufferedWriter(new OutputStreamWriter(
 new FileOutputStream(checkoutFile, true)));
 }

ChAPTeR 2 ■ SPRInG CORe TASkS

58

 public void checkout(ShoppingCart cart) throws IOException {
 writer.write(new Date() + "\t" + cart.getItems() + "\r\n");
 writer.flush();
 }

 public void closeFile() throws IOException {
 writer.close();
 }

}

In the Cashier class, the openFile() method first verifies whether the target directory and the file to
write the data exists. It then opens the text file in the specified system path and assigns it to the writer field.
Then each time the checkout() method is called, the date and cart items are appended to the text file.
Finally, the closeFile() method closes the file to release its system resources.

Next, let’s explore how this bean definition has to be set up in a Java config class to execute the
openFile() method just before the bean is created and the closeFile() method just before it’s destroyed.

@Configuration
public class ShopConfiguration {

 @Bean(initMethod = "openFile", destroyMethod = "closeFile")
 public Cashier cashier() {

 String path = System.getProperty("java.io.tmpdir") + "/cashier";
 Cashier c1 = new Cashier();
 c1.setFileName("checkout");
 c1.setPath(path);
 return c1;
 }
}

Notice the POJO’s initialization and destruction tasks are defined with the initMethod and destroyMethod
attributes of an @Bean annotation. With these two attributes set in the bean declaration, when the Cashier
class is created, it first triggers the openFile() method, verifying whether the target directory and the file to
write the data exist, as well as opening the file to append records. When the bean is destroyed, it triggers the
closeFile() method, ensuring the file reference is closed to release system resources.

Define Methods to Run Before POJO Initialization and Destruction with
@PostConstruct and @PreDestroy
Another alterative if you’re defining POJO instances outside a Java config class (e.g., with the @Component
annotation) is to use the @PostConstruct and @PreDestroy annotations directly in the POJO class.

@Component
public class Cashier {

 @Value("checkout")
 private String fileName;
 @Value("c:/Windows/Temp/cashier")

ChAPTeR 2 ■ SPRInG CORe TASkS

59

 private String path;
 private BufferedWriter writer;

 public void setFileName(String fileName) {
 this.fileName = fileName;
 }

 public void setPath(String path) {
 this.path = path;
 }

 @PostConstruct
 public void openFile() throws IOException {
 File targetDir = new File(path);
 if (!targetDir.exists()) {
 targetDir.mkdir();
 }
 File checkoutFile = new File(path, fileName + ".txt");
 if(!checkoutFile.exists()) {
 checkoutFile.createNewFile();
 }
 writer = new BufferedWriter(new OutputStreamWriter(
 new FileOutputStream(checkoutFile, true)));
 }

 public void checkout(ShoppingCart cart) throws IOException {
 writer.write(new Date() + "\t" +cart.getItems() + "\r\n");
 writer.flush();
 }

 @PreDestroy
 public void closeFile() throws IOException {
 writer.close();
 }
}

The @Component annotation tells Spring to manage the POJO, just like it’s been used in previous recipes.
Two of the POJO fields’ values are set with the @Value annotation, a concept that was also explored in a
previous recipe. The openFile() method is decorated with the @PostConstruct annotation, which tells
Spring to execute the method right after a bean is constructed. The closeFile() method is decorated with
the @PreDestroy annotation, which tells Spring to execute the method right before a bean is destroyed.

Define Lazy Initialization for POJOs with @Lazy
By default, Spring performs eager initialization on all POJOs. This means POJOs are initialized at startup. In
certain circumstances, though, it can be convenient to delay the POJO initialization process until a bean is
required. Delaying the initialization is called lazy initialization.

Lazy initialization helps limit resource consumption peaks at startup and save overall system resources.
Lazy initialization can be particularly relevant for POJOs that perform heavyweight operations (e.g., network
connections, file operations). To mark a bean with lazy initialization, you decorate a bean with the @Lazy
annotation.

ChAPTeR 2 ■ SPRInG CORe TASkS

60

package com.apress.springrecipes.shop;
...
import org.springframework.stereotype.Component;
import org.springframework.context.annotation.Scope;
import org.springframework.context.annotation.Lazy;

@Component
@Scope("prototype")
@Lazy
public class ShoppingCart {

 private List<Product> items = new ArrayList<>();

 public void addItem(Product item) {
 items.add(item);
 }

 public List<Product> getItems() {
 return items;
 }
}

In the previous declaration, because the POJO is decorated with the @Lazy annotation, if the POJO is
never required by the application or referenced by another POJO, it’s never instantiated.

Define Initialization of POJOs Before Other POJOs with @DependsOn
As an application’s POJOs grow, so does the number of POJO initializations. This can create race conditions
if POJOs reference one another and are spread out in different Java configuration classes. What happens if
bean C requires the logic in bean B and bean F? If bean C is detected first and Spring hasn’t initialized bean B
and bean F, you’ll get an error that can be hard to detect. To ensure that certain POJOs are initialized before
other POJOs and to get a more descriptive error in case of a failed initialization process, Spring offers the
@DependsOn annotation. The @DependsOn annotation ensures a given bean is initialized before another bean.

package com.apress.springrecipes.sequence.config;

import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.DependsOn;
import org.springframework.context.annotation.Configuration;
import com.apress.springrecipes.sequence.DatePrefixGenerator;
import com.apress.springrecipes.sequence.NumberPrefixGenerator;
import com.apress.springrecipes.sequence.SequenceGenerator;

@Configuration
public class SequenceConfiguration {
 @Bean
 @DependsOn("datePrefixGenerator")
 public SequenceGenerator sequenceGenerator() {
 SequenceGenerator sequence= new SequenceGenerator();
 sequence.setInitial(100000);

ChAPTeR 2 ■ SPRInG CORe TASkS

61

 sequence.setSuffix("A");
 return sequence;
 }
}

In the previous snippet, the declaration @DependsOn("datePrefixGenerator") ensures the
datePrefixGenerator bean is created before the sequenceGenerator bean. The @DependsOn attribute also
supports defining multiple dependency beans with a CSV list surrounded by {} (e.g.,
@DependsOn({"datePrefixGenerator,numberPrefixGenerator,randomPrefixGenerator"})

2-9. Create Post-Processors to Validate and Modify POJOs
Problem
You want to apply tasks to all bean instances or specific types of instances during construction to validate or
modify bean properties according to particular criteria.

Solution
A bean post-processor allows bean processing before and after the initialization callback method
(i.e., the one assigned to the initMethod attribute of the @Bean annotation or the method decorated with
the @PostConstruct annotation). The main characteristic of a bean post-processor is that it processes all
the bean instances in the IoC container, not just a single bean instance. Typically, bean post-processors are
used to check the validity of bean properties, alter bean properties according to particular criteria, or apply
certain tasks to all bean instances.

Spring also supports the @Required annotation, which is backed by the built-in Spring post-processor
RequiredAnnotationBeanPostProcessor. The RequiredAnnotationBeanPostProcessor bean post-processor
checks whether all the bean properties with the @Required annotation have been set.

How It Works
Suppose you want to audit the creation of every bean. You may want to do this to debug an application, to
verify the properties of every bean, or in some other scenario. A bean post-processor is an ideal choice to
implement this feature because you don’t have to modify any preexisting POJO code.

Create POJO to Process Every Bean Instance
To write a bean post-processor, a class has to implement BeanPostProcessor. When Spring detects
a bean that implements this class, it applies the postProcessBeforeInitialization() and
postProcessAfterInitialization() methods to all bean instances managed by Spring. You can implement
any logic you want in these methods to either inspect, modify, or verify the status of a bean.

package com.apress.springrecipes.shop;

import org.springframework.beans.BeansException;
import org.springframework.beans.factory.config.BeanPostProcessor;

import org.springframework.stereotype.Component;

ChAPTeR 2 ■ SPRInG CORe TASkS

62

@Component
public class AuditCheckBeanPostProcessor implements BeanPostProcessor {

 public Object postProcessBeforeInitialization(Object bean, String beanName)
 throws BeansException {
 System.out.println("In AuditCheckBeanPostProcessor.

postProcessBeforeInitialization, processing bean type: " + bean.getClass());
 return bean;
 }

 public Object postProcessAfterInitialization(Object bean, String beanName)
 throws BeansException {
 return bean;
 }
}

Notice the postProcessBeforeInitialization() and postProcessAfterInitialization() methods
must return the original bean instance even if you don’t do anything in the method.

To register a bean post-processor in an application context, just annotate the class with the @Component
annotation. The application context is able to detect which bean implements the BeanPostProcessor
interface and register it to process all other bean instances in the container.

Create a POJO to Process Selected Bean Instances
During bean construction, the Spring IoC container passes all the bean instances to the bean post-processor
one by one. This means if you want to apply a bean post-processor to only certain types of beans, you must
filter the beans by checking their instance type. This allows you to apply logic more selectively across beans.

Suppose you now want to apply a bean post-processor but just to Product bean instances. The following
example is another bean post-processor that does this:

package com.apress.springrecipes.shop;

import org.springframework.beans.BeansException;
import org.springframework.beans.factory.config.BeanPostProcessor;

import org.springframework.stereotype.Component;

@Component
public class ProductCheckBeanPostProcessor implements BeanPostProcessor {

 public Object postProcessBeforeInitialization(Object bean, String beanName)
 throws BeansException {
 if (bean instanceof Product) {
 String productName = ((Product) bean).getName();
 System.out.println("In ProductCheckBeanPostProcessor.

postProcessBeforeInitialization, processing Product: " + productName);
 }
 return bean;
 }

ChAPTeR 2 ■ SPRInG CORe TASkS

63

 public Object postProcessAfterInitialization(Object bean, String beanName)
 throws BeansException {
 if (bean instanceof Product) {
 String productName = ((Product) bean).getName();
 System.out.println("In ProductCheckBeanPostProcessor.

postProcessAfterInitialization, processing Product: " + productName);
 }
 return bean;
 }
}

Both the postProcessBeforeInitialization() and postProcessAfterInitialization() methods
must return an instance of the bean being processed. However, this also means you can even replace the
original bean instance with a new instance in your bean post-processor.

Verify POJO Properties with the @Required Annotation
In certain cases, it may be necessary to check whether particular properties have been set. Instead
of creating of custom post-constructor to verify the particular properties of a bean, it’s possible to
decorate a property with the @Required annotation. The @Required annotation provides access to the
RequiredAnnotationBeanPostProcessor class—a Spring bean post-processor that can check whether
certain bean properties have been set. Note that this processor can check only whether the properties have
been set but can’t check whether their value is null or something else.

Suppose that both the prefixGenerator and suffix properties are required for a sequence generator.
You can annotate their setter methods with @Required.

package com.apress.springrecipes.sequence;

import org.springframework.beans.factory.annotation.Required;

public class SequenceGenerator {

 private PrefixGenerator prefixGenerator;
 private String suffix;
 ...
 @Required
 public void setPrefixGenerator(PrefixGenerator prefixGenerator) {
 this.prefixGenerator = prefixGenerator;
 }

 @Required
 public void setSuffix(String suffix) {
 this.suffix = suffix;
 }
 ...
}

To ask Spring to check whether these properties have been set, you just need to enable scanning so
Spring can detect and enforce the @Required annotation. If any properties with @Required have not been set,
a BeanInitializationException error is thrown.

www.allitebooks.com

http://www.allitebooks.org

ChAPTeR 2 ■ SPRInG CORe TASkS

64

2-10. Create POJOs with a Factory (Static Method, Instance
Method, Spring’s FactoryBean)
Problem
You want to create a POJO instance in the Spring IoC container by invoking a static factory method or instance
factory method. The purpose of this approach is to encapsulate the object-creation process either in a static
method or in a method of another object instance, respectively. The client who requests an object can simply
make a call to this method without knowing about the creation details. You want to create a POJO instance
in the Spring IoC container using Spring’s factory bean. A factory bean is a bean that serves as a factory for
creating other beans within the IoC container. Conceptually, a factory bean is similar to a factory method, but
it’s a Spring-specific bean that can be identified by the Spring IoC container during bean construction.

Solution
To create a POJO by invoking a static factory inside an @Bean definition of a Java configuration class, you
use standard Java syntax to call the static factory method. To create a POJO by invoking an instance factory
method inside an @Bean definition of a Java configuration class, you create a POJO to instantiate the factory
values and another POJO to act as a façade to access the factory.

As a convenience, Spring provides an abstract template class called AbstractFactoryBean to extend
Spring’s FactoryBean interface.

How It Works
You will explore the different ways of defining and using factory methods with Spring. First you will learn
how to use a static factory method, next an instance based factory method and finally you will look at the
Spring FactoryBean.

Create POJOs by Invoking a Static Factory Method
For example, you can write the following createProduct static factory method to create a product from a
predefined product ID. According to the product ID, this method decides which concrete product class to
instantiate. If there is no product matching this ID, it throws an IllegalArgumentException.

package com.apress.springrecipes.shop;

public class ProductCreator {

 public static Product createProduct(String productId) {
 if ("aaa".equals(productId)) {
 return new Battery("AAA", 2.5);
 } else if ("cdrw".equals(productId)) {
 return new Disc("CD-RW", 1.5);
 } else if ("dvdrw".equals(productId)) {
 return new Disc("DVD-RW", 3.0);
 }
 throw new IllegalArgumentException("Unknown product");
 }
}

ChAPTeR 2 ■ SPRInG CORe TASkS

65

To create a POJO with a static factory method inside an @Bean definition of a Java configuration class,
you use regular Java syntax to call the factory method.

package com.apress.springrecipes.shop.config;

import com.apress.springrecipes.shop.Product;
import com.apress.springrecipes.shop.ProductCreator;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;

@Configuration
public class ShopConfiguration {
 @Bean
 public Product aaa() {
 return ProductCreator.createProduct("aaa");
 }

 @Bean
 public Product cdrw() {
 return ProductCreator.createProduct("cdrw");
 }

 @Bean
 public Product dvdrw() {
 return ProductCreator.createProduct("dvdrw");
 }
}

Create POJOs by Invoking an Instance Factory Method
For example, you can write the following ProductCreator class by using a configurable map to store
predefined products. The createProduct() instance factory method finds a product by looking up
the supplied productId value in the map. If there is no product matching this ID, it will throw an
IllegalArgumentException.

package com.apress.springrecipes.shop;
...
public class ProductCreator {

 private Map<String, Product> products;

 public void setProducts(Map<String, Product> products) {
 this.products = products;
 }

ChAPTeR 2 ■ SPRInG CORe TASkS

66

 public Product createProduct(String productId) {
 Product product = products.get(productId);
 if (product != null) {
 return product;
 }
 throw new IllegalArgumentException("Unknown product");
 }
}

To create products from this ProductCreator, you first declare an @Bean to instantiate the factory values.
Next, you declare a second bean to act as a façade to access the factory. Finally, you can call the factory and
execute the createProduct() method to instantiate other beans.

package com.apress.springrecipes.shop.config;

import com.apress.springrecipes.shop.Battery;
import com.apress.springrecipes.shop.Disc;
import com.apress.springrecipes.shop.Product;
import com.apress.springrecipes.shop.ProductCreator;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;

import java.util.HashMap;
import java.util.Map;

@Configuration
public class ShopConfiguration {

 @Bean
 public ProductCreator productCreatorFactory() {

 ProductCreator factory = new ProductCreator();
 Map<String, Product> products = new HashMap<>();
 products.put("aaa", new Battery("AAA", 2.5));
 products.put("cdrw", new Disc("CD-RW", 1.5));
 products.put("dvdrw", new Disc("DVD-RW", 3.0));
 factory.setProducts(products);
 return factory;
 }
 @Bean
 public Product aaa() {
 return productCreatorFactory().createProduct("aaa");
 }

 @Bean
 public Product cdrw() {
 return productCreatorFactory().createProduct("cdrw");
 }

ChAPTeR 2 ■ SPRInG CORe TASkS

67

 @Bean
 public Product dvdrw() {
 return productCreatorFactory().createProduct("dvdrw");
 }

}

Create POJOs Using Spring’s Factory Bean
Although you’ll seldom have to write custom factory beans, you may find it helpful to understand their
internal mechanisms through an example. For example, you can write a factory bean for creating a product
with a discount applied to the price. It accepts a product property and a discount property to apply the
discount to the product and return it as a new bean.

package com.apress.springrecipes.shop;

import org.springframework.beans.factory.config.AbstractFactoryBean;

public class DiscountFactoryBean extends AbstractFactoryBean<Product> {

 private Product product;
 private double discount;

 public void setProduct(Product product) {
 this.product = product;
 }

 public void setDiscount(double discount) {
 this.discount = discount;
 }

 public Class<?> getObjectType() {
 return product.getClass();
 }

 protected Product createInstance() throws Exception {
 product.setPrice(product.getPrice() * (1 - discount));
 return product;
 }
}

By extending the AbstractFactoryBean class, the factory bean can simply override the
createInstance() method to create the target bean instance. In addition, you have to return the target
bean’s type in the getObjectType() method for the autowiring feature to work properly.

Next, you can declare product instances using a regular @Bean annotation to apply DiscountFactoryBean.

package com.apress.springrecipes.shop.config;

import com.apress.springrecipes.shop.Battery;
import com.apress.springrecipes.shop.Disc;
import com.apress.springrecipes.shop.DiscountFactoryBean;

ChAPTeR 2 ■ SPRInG CORe TASkS

68

import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.ComponentScan;
import org.springframework.context.annotation.Configuration;

@Configuration
@ComponentScan("com.apress.springrecipes.shop")
public class ShopConfiguration {
 @Bean
 public Battery aaa() {
 Battery aaa = new Battery("AAA", 2.5);
 return aaa;
 }

 @Bean
 public Disc cdrw() {
 Disc aaa = new Disc("CD-RW", 1.5);
 return aaa;
 }

 @Bean
 public Disc dvdrw() {
 Disc aaa = new Disc("DVD-RW", 3.0);
 return aaa;
 }

 @Bean
 public DiscountFactoryBean discountFactoryBeanAAA() {
 DiscountFactoryBean factory = new DiscountFactoryBean();
 factory.setProduct(aaa());
 factory.setDiscount(0.2);
 return factory;
 }

 @Bean
 public DiscountFactoryBean discountFactoryBeanCDRW() {
 DiscountFactoryBean factory = new DiscountFactoryBean();
 factory.setProduct(cdrw());
 factory.setDiscount(0.1);
 return factory;
 }

 @Bean
 public DiscountFactoryBean discountFactoryBeanDVDRW() {
 DiscountFactoryBean factory = new DiscountFactoryBean();
 factory.setProduct(dvdrw());
 factory.setDiscount(0.1);
 return factory;
 }
}

ChAPTeR 2 ■ SPRInG CORe TASkS

69

2-11. Use Spring Environments and Profiles to Load
Different Sets of POJOs
Problem
You want to use the same set of POJO instances or beans but with different instantiation values for different
application scenarios (e.g., production and development and testing).

Solution
Create multiple Java configuration classes and group POJOs instances or beans into each of these classes.
Assign a profile name to the Java configuration class with the @Profile annotation based on the purpose
of the group. Get the environment for an application’s context and set the profile to load a specific group of
POJOs.

How It Works
POJO instantiation values can vary depending on different application scenarios. For example, a common
scenario can occur when an application goes from development to testing and on to production. In each of
these scenarios, the properties for certain beans can vary slightly to accommodate environment changes
(e.g., database username/password, file paths, etc.).

You can create multiple Java configuration classes each with different POJOs (e.g.,
ShopConfigurationGlobal, ShopConfigurationStr, and ShopConfigurationSumWin) and, in the application
context, only load a given configuration class file based on the scenario.

Create a Java Configuration Class with the @Profile Annotation
Let’s create a multiple Java configuration class with an @Profile annotation for the shopping application
presented in previous recipes.

package com.apress.springrecipes.shop.config;

import com.apress.springrecipes.shop.Cashier;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.ComponentScan;
import org.springframework.context.annotation.Configuration;
import org.springframework.context.annotation.Profile;

@Configuration
@Profile("global")
@ComponentScan("com.apress.springrecipes.shop")
public class ShopConfigurationGlobal {

 @Bean(initMethod = "openFile", destroyMethod = "closeFile")
 public Cashier cashier() {
 final String path = System.getProperty("java.io.tmpdir") + "cashier";
 Cashier c1 = new Cashier();
 c1.setFileName("checkout");

ChAPTeR 2 ■ SPRInG CORe TASkS

70

 c1.setPath(path);
 return c1;
 }
}
package com.apress.springrecipes.shop.config;

import com.apress.springrecipes.shop.Battery;
import com.apress.springrecipes.shop.Disc;
import com.apress.springrecipes.shop.Product;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.context.annotation.Profile;

@Configuration
@Profile({"summer", "winter"})
public class ShopConfigurationSumWin {
 @Bean
 public Product aaa() {
 Battery p1 = new Battery();
 p1.setName("AAA");
 p1.setPrice(2.0);
 p1.setRechargeable(true);
 return p1;
 }

 @Bean
 public Product cdrw() {
 Disc p2 = new Disc("CD-RW", 1.0);
 p2.setCapacity(700);
 return p2;
 }

 @Bean
 public Product dvdrw() {
 Disc p2 = new Disc("DVD-RW", 2.5);
 p2.setCapacity(700);
 return p2;
 }
}

The @Profile annotation decorates the entire Java configuration class, so all the @Bean instances
belong to the same profile. To assign an @Profile name, you just place the name inside "". Notice it’s also
possible to assign multiple @Profile names using a comma-separated value (CSV) syntax surrounded by {}
(e.g., {"summer","winter"}).

Load the Profile into Environment
To load the beans from a certain profile into an application, you need to activate a profile. You can load
multiple profiles at a time, and it’s also possible to load profiles programmatically, through a Java runtime
flag or even as an initialization parameter of a WAR file.

ChAPTeR 2 ■ SPRInG CORe TASkS

71

To load profiles programmatically (i.e., via the application context), you get the context environment
from where you can load profiles via the setActiveProfiles() method.

AnnotationConfigApplicationContext context = new AnnotationConfigApplicationContext();
context.getEnvironment().setActiveProfiles("global", "winter");
context.scan("com.apress.springrecipes.shop");
context.refresh();

It’s also possible to indicate which Spring profile to load via a Java runtime flag. In this manner, you can
pass the following runtime flag to load all beans that belong to the global and winter profiles:

-Dspring.profiles.active=global,winter

Set a Default Profile
To avoid the possibility of errors because no profiles are loaded into an application, you can define default
profiles. Default profiles are used only when Spring can’t detect any active profiles, which are defined
programmatically, via a Java runtime flag, or with a web application initialization parameter.

To set up default profiles, you can also use any of the three methods to set up active profiles.
Programmatically you use the method setDefaultProfiles() instead of setActiveProfiles(), and via a
Java runtime flag or web application initialization parameter, you can use the spring.profiles.default
parameter instead of spring.profiles.active.

2-12. Make POJOs Aware of Spring’s IoC Container Resources
Problem
Even though a well-designed component should not have direct dependencies on Spring’s IoC container,
sometimes it’s necessary for beans to be aware of the container’s resources.

Solution
Your beans can be aware of the Spring IoC container’s resources by implementing certain “aware” interfaces.
Table 2-2 lists the most common ones. Spring injects the corresponding resources to beans that implement
these interfaces via the setter methods defined in these interfaces.

ChAPTeR 2 ■ SPRInG CORe TASkS

72

 ■ Note The ApplicationContext interface in fact extends the MessageSource,
ApplicationEventPublisher, and ResourceLoader interfaces, so you only need to be aware of the application
context to access all these services. however, the best practice is to choose an aware interface with minimum
scope that can satisfy your requirement.

The setter methods in the aware interfaces are called by Spring after the bean properties have been set
but before the initialization callback methods are called, as illustrated in the following list:

 1. Create the bean instance either by a constructor or by a factory method.

 2. Set the values and bean references to the bean properties.

 3. Call the setter methods defined in the aware interfaces.

 4. Pass the bean instance to the postProcessBeforeInitialization() method of
each bean post-processor. Call the initialization callback methods.

 5. Pass the bean instance to the postProcessAfterInitialization() method of
each bean post-processor. The bean is ready to be used.

 6. When the container is shut down, call the destruction callback methods.

Keep in mind that once a class implements an aware interface, they are bound to Spring and won’t work
properly outside the Spring IoC container. So, consider carefully whether it’s necessary to implement such
proprietary interfaces.

 ■ Note With the newer versions of Spring, it is not strictly necessary to implement the aware interfaces. You
could also use @Autowired to get, for instance, access to the ApplicationContext. however, if you are writing
a framework/library, it might be better to implement the interfaces.

Table 2-2. Common Aware Interfaces in Spring

Aware Interface Target Resource Type

BeanNameAware The bean name of its instances configured in the IoC container.

BeanFactoryAware The current bean factory, through which you can invoke the
container’s services

ApplicationContextAware The current application context, through which you can invoke the
container’s services

MessageSourceAware A message source, through which you can resolve text messages

ApplicationEventPublisherAware An application event publisher, through which you can publish
application events

ResourceLoaderAware A resource loader, through which you can load external resources

EnvironmentAware The org.springframework.core.env.Environment instance
associated with the ApplicationContext interface

ChAPTeR 2 ■ SPRInG CORe TASkS

73

How It Works
For example, you can make the shopping application’s POJO instances of the Cashier class aware of their
corresponding bean names by implementing the BeanNameAware interface. By implementing the interface,
Spring automatically injects the bean name into the POJO instance. In addition to implementing the
interface, you also need to add the necessary setter method to handle the bean name.

package com.apress.springrecipes.shop;
...
import org.springframework.beans.factory.BeanNameAware;

public class Cashier implements BeanNameAware {
 ...
 private String fileName;

 public void setBeanName(String beanName) {
 this.fileName = beanName;
 }
}

When a bean name is injected, you can use the value to do a related POJO task that requires the bean
name. For example, you could use the value to set the file name to record a cashier’s checkout data. In this
way, you can erase the configuration of the fileName property and setFileName() method.

@Bean(initMethod = "openFile", destroyMethod = "closeFile")
public Cashier cashier() {
 final String path = System.getProperty("java.io.tmpdir") + "cashier";
 Cashier cashier = new Cashier();
 cashier.setPath(path);
 return c1;
}

2-13. Use Aspect-Oriented Programming with Annotations
Problem
You want to use aspect-oriented programming with Spring and annotations.

Solution
You define an aspect by decorating a Java class with the @Aspect annotation. Each of the methods in a class can
become an advice with another annotation. You can use five types of advice annotations: @Before, @After,
@AfterReturning, @AfterThrowing, and @Around.

To enable annotation support in the Spring IoC container, you have to add @EnableAspectJAutoProxy
to one of your configuration classes. To apply AOP, Spring creates proxies, and by default it creates JDK
dynamic proxies, which are interface-based. For cases in which interfaces are not available or not used in an
application’s design, it’s possible to create proxies by relying on CGLIB. To enable CGLIB, you need to set the
attribute proxyTargetClass=true on the @EnableAspectJAutoProxy annotation.

ChAPTeR 2 ■ SPRInG CORe TASkS

74

How It Works
To support aspect-oriented programming with annotations, Spring uses the same annotations as AspectJ,
using a library supplied by AspectJ for pointcut parsing and matching. However, the AOP runtime is still
pure Spring AOP, and there is no dependency on the AspectJ compiler or weaver.

To illustrate the enablement of aspect-oriented programming with annotations, you’ll use the following
calculator interfaces to define a set of sample POJOs:

package com.apress.springrecipes.calculator;

public interface ArithmeticCalculator {

 public double add(double a, double b);
 public double sub(double a, double b);
 public double mul(double a, double b);
 public double div(double a, double b);
}
package com.apress.springrecipes.calculator;

public interface UnitCalculator {

 public double kilogramToPound(double kilogram);
 public double kilometerToMile(double kilometer);
}

Next, let’s create POJO classes for each interface with println statements to know when each method is
executed:

package com.apress.springrecipes.calculator;

import org.springframework.stereotype.Component;

@Component("arithmeticCalculator")
public class ArithmeticCalculatorImpl implements ArithmeticCalculator {

 public double add(double a, double b) {
 double result = a + b;
 System.out.println(a + " + " + b + " = " + result);
 return result;
 }

 public double sub(double a, double b) {
 double result = a - b;
 System.out.println(a + " - " + b + " = " + result);
 return result;
 }
 public double mul(double a, double b) {
 double result = a * b;
 System.out.println(a + " * " + b + " = " + result);
 return result;
 }

ChAPTeR 2 ■ SPRInG CORe TASkS

75

 public double div(double a, double b) {
 if (b == 0) {
 throw new IllegalArgumentException("Division by zero");
 }
 double result = a / b;
 System.out.println(a + " / " + b + " = " + result);
 return result;
 }
}

package com.apress.springrecipes.calculator;

import org.springframework.stereotype.Component;

@Component("unitCalculator")
public class UnitCalculatorImpl implements UnitCalculator {

 public double kilogramToPound(double kilogram) {
 double pound = kilogram * 2.2;
 System.out.println(kilogram + " kilogram = " + pound + " pound");
 return pound;
 }

 public double kilometerToMile(double kilometer) {
 double mile = kilometer * 0.62;
 System.out.println(kilometer + " kilometer = " + mile + " mile");
 return mile;
 }
}

Note that each POJO implementation is decorated with the @Component annotation to create bean instances.

Declare Aspects, Advices, and Pointcuts
An aspect is a Java class that modularizes a set of concerns (e.g., logging or transaction management) that
cuts across multiple types and objects. Java classes that modularize such concerns are decorated with the
@Aspect annotation. In AOP terminology, aspects are also complemented by advices, which in themselves
have pointcuts. An advice is a simple Java method with one of the advice annotations. AspectJ supports five
types of advice annotations: @Before, @After, @AfterReturning, @AfterThrowing, and @Around. A pointcut
is an expression that looks for types and objects on which to apply the aspect’s advices.

Aspect with @Before Advice
To create a before advice to handle crosscutting concerns before particular program execution points, you
use the @Before annotation and include the pointcut expression as the annotation value.

package com.apress.springrecipes.calculator;

import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.annotation.Before;
import org.springframework.stereotype.Component;

ChAPTeR 2 ■ SPRInG CORe TASkS

76

@Aspect
@Component
public class CalculatorLoggingAspect {

 private Log log = LogFactory.getLog(this.getClass());

 @Before("execution(* ArithmeticCalculator.add(..))")
 public void logBefore() {
 log.info("The method add() begins");
 }
}

This pointcut expression matches the add() method execution of the ArithmeticCalculator interface.
The preceding wildcard in this expression matches any modifier (public, protected, and private) and any
return type. The two dots in the argument list match any number of arguments.

For the previous aspect to work (i.e., output its message), you need to set up logging. Specifically, create
a logback.xml file with configuration properties like the following.

<?xml version="1.0" encoding="UTF-8"?>
<configuration>

 <appender name="STDOUT" class="ch.qos.logback.core.ConsoleAppender">
 <layout class="ch.qos.logback.classic.PatternLayout">
 <Pattern>%d [%15.15t] %-5p %30.30c - %m%n</Pattern>
 </layout>
 </appender>

 <root level="INFO">
 <appender-ref ref="STDOUT" />
 </root>

</configuration>

 ■ Note The @Aspect annotation is not sufficient for autodetection in the classpath. Therefore, you need to
add a separate @Component annotation for the POJO to be detected.

Next, you create a Spring configuration to scan all POJOs, including the POJO calculator
implementation and aspect and including the @EnableAspectJAutoProxy annotation.

@Configuration
@EnableAspectJAutoProxy
@ComponentScan
public class CalculatorConfiguration {
}

ChAPTeR 2 ■ SPRInG CORe TASkS

77

As the last step, you can test the aspect with the following Main class:

package com.apress.springrecipes.calculator;

import org.springframework.context.ApplicationContext;
import org.springframework.context.annotation.AnnotationConfigApplicationContext;

public class Main {

 public static void main(String[] args) {

 ApplicationContext context =
 new AnnotationConfigApplicationContext(CalculatorConfiguration.class);

 ArithmeticCalculator arithmeticCalculator =
 context.getBean("arithmeticCalculator", ArithmeticCalculator.class);
 arithmeticCalculator.add(1, 2);
 arithmeticCalculator.sub(4, 3);
 arithmeticCalculator.mul(2, 3);
 arithmeticCalculator.div(4, 2);

 UnitCalculator unitCalculator = context.getBean("unitCalculator", UnitCalculator.class);
 unitCalculator.kilogramToPound(10);
 unitCalculator.kilometerToMile(5);
 }
}

The execution points matched by a pointcut are called join points. In this term, a pointcut is an
expression to match a set of join points, while an advice is the action to take at a particular join point.

For your advice to access the detail of the current join point, you can declare an argument of type
JoinPoint in your advice method. Then, you can get access to join point details such as the method name
and argument values. Now, you can expand your pointcut to match all methods by changing the class name
and method name to wildcards.

package com.apress.springrecipes.calculator;
...
import java.util.Arrays;

import org.aspectj.lang.JoinPoint;
import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.annotation.Before;

@Aspect
@Component
public class CalculatorLoggingAspect {
 ...
 @Before("execution(* *.*(..))")
 public void logBefore(JoinPoint joinPoint) {
 log.info("The method " + joinPoint.getSignature().getName()
 + "() begins with " + Arrays.toString(joinPoint.getArgs()));
 }
}

ChAPTeR 2 ■ SPRInG CORe TASkS

78

Use an Aspect with @After Advice
An after advice is executed after a join point finishes and is represented by a method annotated with @After,
whenever it returns a result or throws an exception. The following after advice logs the calculator method
ending:

package com.apress.springrecipes.calculator;
...
import org.aspectj.lang.JoinPoint;
import org.aspectj.lang.annotation.After;
import org.aspectj.lang.annotation.Aspect;

@Aspect
public class CalculatorLoggingAspect {
 ...
 @After("execution(* *.*(..))")
 public void logAfter(JoinPoint joinPoint) {
 log.info("The method " + joinPoint.getSignature().getName()
 + "() ends");
 }
}

Use an Aspect with @AfterReturning Advice
An after advice is executed regardless of whether a join point returns normally or throws an exception. If you
would like to perform logging only when a join point returns, you should replace the after advice with an
after returning advice.

package com.apress.springrecipes.calculator;
...
import org.aspectj.lang.JoinPoint;
import org.aspectj.lang.annotation.AfterReturning;
import org.aspectj.lang.annotation.Aspect;

@Aspect
public class CalculatorLoggingAspect {
 ...
 @AfterReturning("execution(* *.*(..))")
 public void logAfterReturning(JoinPoint joinPoint) {
 log.info("The method {}() ends with {}", joinPoint.getSignature().getName(), result);
 }
}

In an after returning advice, you can get access to the return value of a join point by adding a returning
attribute to the @AfterReturning annotation. The value of this attribute should be the argument name of
this advice method for the return value to pass in. Then, you have to add an argument to the advice method
signature with this name. At runtime, Spring AOP will pass in the return value through this argument. Also
note that the original pointcut expression needs to be presented in the pointcut attribute instead.

ChAPTeR 2 ■ SPRInG CORe TASkS

79

package com.apress.springrecipes.calculator;
...
import org.aspectj.lang.JoinPoint;
import org.aspectj.lang.annotation.AfterReturning;
import org.aspectj.lang.annotation.Aspect;

@Aspect
public class CalculatorLoggingAspect {
 ...
 @AfterReturning(
 pointcut = "execution(* *.*(..))",
 returning = "result")
 public void logAfterReturning(JoinPoint joinPoint, Object result) {
 log.info("The method " + joinPoint.getSignature().getName()
 + "() ends with " + result);
 }
}

Use an Aspect with @AfterThrowing Advice
An after throwing advice is executed only when an exception is thrown by a join point.

package com.apress.springrecipes.calculator;
...
import org.aspectj.lang.JoinPoint;
import org.aspectj.lang.annotation.AfterThrowing;
import org.aspectj.lang.annotation.Aspect;

@Aspect
public class CalculatorLoggingAspect {
 ...
 @AfterThrowing("execution(* *.*(..))")
 public void logAfterThrowing(JoinPoint joinPoint) {
 log.error("An exception has been thrown in {}()", joinPoint.getSignature().getName());
 }
}

Similarly, the exception thrown by the join point can be accessed by adding a throwing attribute to the
@AfterThrowing annotation. The type Throwable is the superclass of all errors and exceptions in the Java
language. So, the following advice will catch any of the errors and exceptions thrown by the join points:

package com.apress.springrecipes.calculator;
...
import org.aspectj.lang.JoinPoint;
import org.aspectj.lang.annotation.AfterThrowing;
import org.aspectj.lang.annotation.Aspect;

ChAPTeR 2 ■ SPRInG CORe TASkS

80

@Aspect
public class CalculatorLoggingAspect {
 ...
 @AfterThrowing(
 pointcut = "execution(* *.*(..))",
 throwing = "e")
 public void logAfterThrowing(JoinPoint joinPoint, Throwable e) {
 log.error("An exception {} has been thrown in {}()", e, joinPoint.getSignature().

getName());
 }
}

However, if you are interested in one particular type of exception only, you can declare it as the
argument type of the exception. Then your advice will be executed only when exceptions of compatible
types (i.e., this type and its subtypes) are thrown.

package com.apress.springrecipes.calculator;
...
import java.util.Arrays;

import org.aspectj.lang.JoinPoint;
import org.aspectj.lang.annotation.AfterThrowing;
import org.aspectj.lang.annotation.Aspect;

@Aspect
public class CalculatorLoggingAspect {
 ...
 @AfterThrowing(
 pointcut = "execution(* *.*(..))",
 throwing = "e")
 public void logAfterThrowing(JoinPoint joinPoint, IllegalArgumentException e) {
 log.error("Illegal argument {} in {}()", Arrays.toString(joinPoint.getArgs()),

joinPoint.getSignature().getName());
 }
}

Use an Aspect with @Around Advice
The last type of advice is an around advice. It is the most powerful of all the advice types. It gains full control
of a join point, so you can combine all the actions of the preceding advices into one single advice. You can
even control when, and whether, to proceed with the original join point execution.

The following around advice is the combination of the before, after returning, and after throwing
advices you created earlier. Note that for an around advice, the argument type of the join point must be
ProceedingJoinPoint. It’s a subinterface of JoinPoint that allows you to control when to proceed with the
original join point.

package com.apress.springrecipes.calculator;

import org.aspectj.lang.ProceedingJoinPoint;
import org.aspectj.lang.annotation.Around;
import org.aspectj.lang.annotation.Aspect;

ChAPTeR 2 ■ SPRInG CORe TASkS

81

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.stereotype.Component;

import java.util.Arrays;

@Aspect
@Component
public class CalculatorLoggingAspect {

 private Logger log = LoggerFactory.getLogger(this.getClass());

 @Around("execution(* *.*(..))")
 public Object logAround(ProceedingJoinPoint joinPoint) throws Throwable {

 log.info("The method {}() begins with {}", joinPoint.getSignature().getName(),
Arrays.toString(joinPoint.getArgs()));

 try {
 Object result = joinPoint.proceed();
 log.info("The method {}() ends with ", joinPoint.getSignature().getName(),

result);
 return result;
 } catch (IllegalArgumentException e) {
 log.error("Illegal argument {} in {}()", Arrays.toString(joinPoint.getArgs()) ,

joinPoint.getSignature().getName());
 throw e;
 }
 }
}

The around advice type is powerful and flexible in that you can even alter the original argument values
and change the final return value. You must use this type of advice with great care, as the call to proceed with
the original join point may easily be forgotten.

 ■ Tip A common rule for choosing an advice type is to use the least powerful one that can satisfy your
requirements.

2-14. Access the Join Point Information
Problem
In AOP, an advice is applied to different program execution points that are called join points. For an advice to
take the correct action, it often requires detailed information about join points.

Solution
An advice can access the current join point information by declaring an argument of type org.aspectj.
lang.JoinPoint in the advice method signature.

ChAPTeR 2 ■ SPRInG CORe TASkS

82

How It Works
For example, you can access the join point information through the following advice. The information
includes the join point kind (only method execution in Spring AOP), the method signature (declaring type
and method name), and the argument values, as well as the target object and proxy object.

package com.apress.springrecipes.calculator;

import org.aspectj.lang.JoinPoint;
import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.annotation.Before;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.stereotype.Component;

import java.util.Arrays;

@Aspect
@Component
public class CalculatorLoggingAspect {

 private Logger log = LoggerFactory.getLogger(this.getClass());

 @Before("execution(* *.*(..))")
 public void logJoinPoint(JoinPoint joinPoint) {

 log.info("Join point kind : {}", joinPoint.getKind());
 log.info("Signature declaring type : {}", joinPoint.getSignature().

getDeclaringTypeName());
 log.info("Signature name : {}", joinPoint.getSignature().getName());
 log.info("Arguments : {}", Arrays.toString(joinPoint.getArgs()));
 log.info("Target class : {}", joinPoint.getTarget().getClass().getName());
 log.info("This class : {}", joinPoint.getThis().getClass().getName());
 }
}

The original bean that was wrapped by a proxy is called the target object, while the proxy object is
the this object. They can be accessed by the join point’s getTarget() and getThis() methods. From the
following outputs, you can see that the classes of these two objects are not the same:

Join point kind : method-execution
Signature declaring type : com.apress.springrecipes.calculator.ArithmeticCalculator
Signature name : add
Arguments : [1.0, 2.0]
Target class : com.apress.springrecipes.calculator.ArithmeticCalculatorImpl
This class : com.sun.proxy.$Proxy6

ChAPTeR 2 ■ SPRInG CORe TASkS

83

2-15. Specify Aspect Precedence with the @Order Annotation
Problem
When there’s more than one aspect applied to the same join point, the precedence of the aspects is
undefined unless you have explicitly specified it.

Solution
The precedence of aspects can be specified either by implementing the Ordered interface or by using the @
Order annotation.

How It Works
Suppose you have written another aspect to validate the calculator arguments. There’s only one before
advice in this aspect.

package com.apress.springrecipes.calculator;

import org.aspectj.lang.JoinPoint;
import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.annotation.Before;

import org.springframework.stereotype.Component;

@Aspect
@Component
public class CalculatorValidationAspect {

 @Before("execution(* *.*(double, double))")
 public void validateBefore(JoinPoint joinPoint) {
 for (Object arg : joinPoint.getArgs()) {
 validate((Double) arg);
 }
 }

 private void validate(double a) {
 if (a < 0) {
 throw new IllegalArgumentException("Positive numbers only");
 }
 }
}

If you apply this aspect and the previous, you can’t guarantee which one is applied first. To guarantee
that one aspect is applied before another, you need to specify precedence. To specify precedence, you have
to make both aspects implement the Ordered interface or use the @Order annotation.

ChAPTeR 2 ■ SPRInG CORe TASkS

84

If you decide to implement the Ordered interface, the lower value returned by the getOrder method
represents higher priority. So, if you prefer the validation aspect to be applied first, it should return a value
lower than the logging aspect.

package com.apress.springrecipes.calculator;
...
import org.springframework.core.Ordered;

@Aspect
@Component
public class CalculatorValidationAspect implements Ordered {
 ...
 public int getOrder() {
 return 0;
 }
}
package com.apress.springrecipes.calculator;
...
import org.springframework.core.Ordered;

@Aspect
@Component
public class CalculatorLoggingAspect implements Ordered {
 ...
 public int getOrder() {
 return 1;
 }
}

Another way to specify precedence is through the @Order annotation. The order number should be
presented in the annotation value.

package com.apress.springrecipes.calculator;
...
import org.springframework.core.annotation.Order;

@Aspect
@Component
@Order(0)
public class CalculatorValidationAspect { ... }
package com.apress.springrecipes.calculator;
...
import org.springframework.core.annotation.Order;

@Aspect
@Component
@Order(1)
public class CalculatorLoggingAspect { ... }

ChAPTeR 2 ■ SPRInG CORe TASkS

85

2-16. Reuse Aspect Pointcut Definitions
Problem
When writing aspects, you can directly embed a pointcut expression in an advice annotation. You want to
use the same pointcut expression in multiple advices without embedding it multiple times.

Solution
You can use the @Pointcut annotation to define a pointcut independently to be reused in multiple advices.

How It Works
In an aspect, a pointcut can be declared as a simple method with the @Pointcut annotation. The method
body of a pointcut is usually empty because it is unreasonable to mix a pointcut definition with application
logic. The access modifier of a pointcut method controls the visibility of this pointcut as well. Other advices
can refer to this pointcut by the method name.

package com.apress.springrecipes.calculator;
...
import org.aspectj.lang.annotation.Pointcut;

@Aspect
@Component
public class CalculatorLoggingAspect {
 ...
 @Pointcut("execution(* *.*(..))")
 private void loggingOperation() {}

 @Before("loggingOperation()")
 public void logBefore(JoinPoint joinPoint) {
 ...
 }

 @AfterReturning(
 pointcut = "loggingOperation()",
 returning = "result")
 public void logAfterReturning(JoinPoint joinPoint, Object result) {
 ...
 }

 @AfterThrowing(
 pointcut = "loggingOperation()",
 throwing = "e")
 public void logAfterThrowing(JoinPoint joinPoint, IllegalArgumentException e) {
 ...
 }

ChAPTeR 2 ■ SPRInG CORe TASkS

86

 @Around("loggingOperation()")
 public Object logAround(ProceedingJoinPoint joinPoint) throws Throwable {
 ...
 }
}

Usually, if your pointcuts are shared between multiple aspects, it is better to centralize them in a
common class. In this case, they must be declared as public.

package com.apress.springrecipes.calculator;

import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.annotation.Pointcut;

@Aspect
public class CalculatorPointcuts {

 @Pointcut("execution(* *.*(..))")
 public void loggingOperation() {}
}

When you refer to this pointcut, you have to include the class name as well. If the class is not located in
the same package as the aspect, you have to include the package name also.

package com.apress.springrecipes.calculator;
...
@Aspect
public class CalculatorLoggingAspect {
 ...
 @Before("CalculatorPointcuts.loggingOperation()")
 public void logBefore(JoinPoint joinPoint) {
 ...
 }

 @AfterReturning(
 pointcut = "CalculatorPointcuts.loggingOperation()",
 returning = "result")
 public void logAfterReturning(JoinPoint joinPoint, Object result) {
 ...
 }

 @AfterThrowing(
 pointcut = "CalculatorPointcuts.loggingOperation()",
 throwing = "e")
 public void logAfterThrowing(JoinPoint joinPoint, IllegalArgumentException e) {
 ...
 }

 @Around("CalculatorPointcuts.loggingOperation()")
 public Object logAround(ProceedingJoinPoint joinPoint) throws Throwable {
 ...
 }
}

ChAPTeR 2 ■ SPRInG CORe TASkS

87

2-17. Write AspectJ Pointcut Expressions
Problem
Crosscutting concerns can happen at different program execution points called join points. Because of the
variety of join points, you need a powerful expression language to help match them.

Solution
The AspectJ pointcut language is a powerful expression language that can match various kinds of join points.
However, Spring AOP only supports method execution join points for beans declared in its IoC container.
For this reason, only those pointcut expressions supported by Spring AOP are presented in this recipe. For
a full description of the AspectJ pointcut language, please refer to the AspectJ programming guide available
on AspectJ’s web site (www.eclipse.org/aspectj/). Spring AOP makes use of the AspectJ pointcut language
for its pointcut definition and interprets the pointcut expressions at runtime by using a library provided
by AspectJ. When writing AspectJ pointcut expressions for Spring AOP, you must keep in mind that Spring
AOP only supports method execution join points for the beans in its IoC container. If you use a pointcut
expression out of this scope, an IllegalArgumentException is thrown.

How It Works
Lets explore the, by Spring, supported patterns for writing pointcut expression. First you will see how to write
pointcuts based on message signatures, type patterns and how to use (and access) method arguments.

Use Method Signature Patterns
The most typical pointcut expressions are used to match a number of methods by their signatures.
For example, the following pointcut expression matches all of the methods declared in the
ArithmeticCalculator interface. The initial wildcard matches methods with any modifier (public,
protected, and private) and any return type. The two dots in the argument list match any number of
arguments.

execution(* com.apress.springrecipes.calculator.ArithmeticCalculator.*(..))

You can omit the package name if the target class or interface is located in the same package as the aspect.

execution(* ArithmeticCalculator.*(..))

The following pointcut expression matches all the public methods declared in the
ArithmeticCalculator interface:

execution(public * ArithmeticCalculator.*(..))

You can also restrict the method return type. For example, the following pointcut matches the methods
that return a double number:

execution(public double ArithmeticCalculator.*(..))

http://www.eclipse.org/aspectj/

ChAPTeR 2 ■ SPRInG CORe TASkS

88

The argument list of the methods can also be restricted. For example, the following pointcut matches
the methods whose first argument is of primitive double type. The two dots then match any number of
followed arguments.

execution(public double ArithmeticCalculator.*(double, ..))

Or, you can specify all the argument types in the method signature for the pointcut to match.

execution(public double ArithmeticCalculator.*(double, double))

Although the AspectJ pointcut language is powerful in matching various join points, sometimes you
may not be able to find any common characteristics (e.g., modifiers, return types, method name patterns,
or arguments) for the methods you want to match. In such cases, you can consider providing a custom
annotation for them. For instance, you can define the following marker annotation. This annotation can be
applied to both method level and type level.

package com.apress.springrecipes.calculator;

import java.lang.annotation.Documented;
import java.lang.annotation.ElementType;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;
import java.lang.annotation.Target;

@Target({ ElementType.METHOD, ElementType.TYPE })
@Retention(RetentionPolicy.RUNTIME)
@Documented
public @interface LoggingRequired {
}

Next, you can annotate all methods that require logging with this annotation or the class itself to apply
the behavior to all methods. Note that the annotations must be added to the implementation class but not
the interface, as they will not be inherited.

package com.apress.springrecipes.calculator;

@LoggingRequired
public class ArithmeticCalculatorImpl implements ArithmeticCalculator {

 public double add(double a, double b) {
 ...
 }

 public double sub(double a, double b) {
 ...
 }

 ...
}

ChAPTeR 2 ■ SPRInG CORe TASkS

89

Then you can write a pointcut expression to match a class or methods with the @LoggingRequired
annotation using the annotation keyword on the @Pointcut annotation.

package com.apress.springrecipes.calculator;

import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.annotation.Pointcut;

@Aspect
public class CalculatorPointcuts {

 @Pointcut("annotation(com.apress.springrecipes.calculator.LoggingRequired)")
 public void loggingOperation() {}

}

Use Type Signature Patterns
Another kind of pointcut expression matches all join points within certain types. When applied to Spring
AOP, the scope of these pointcuts will be narrowed to matching all method executions within the types.
For example, the following pointcut matches all the method execution join points within the com.apress.
springrecipes.calculator package:

within(com.apress.springrecipes.calculator.*)

To match the join points within a package and its subpackage, you have to add one more dot before
the wildcard.

within(com.apress.springrecipes.calculator..*)

The following pointcut expression matches the method execution join points within a particular class:

within(com.apress.springrecipes.calculator.ArithmeticCalculatorImpl)

Again, if the target class is located in the same package as this aspect, the package name can be omitted.

within(ArithmeticCalculatorImpl)

You can match the method execution join points within all classes that implement the
ArithmeticCalculator interface by adding a plus symbol.

within(ArithmeticCalculator+)

The custom annotation @LoggingRequired can be applied to the class or method level, as illustrated
previously.

ChAPTeR 2 ■ SPRInG CORe TASkS

90

package com.apress.springrecipes.calculator;

@LoggingRequired
public class ArithmeticCalculatorImpl implements ArithmeticCalculator {
 ...
}

Then you can match the join points within the classes or methods that have been annotated with @
LoggingRequired using the within keyword on the @Pointcut annotation.

@Pointcut("within(com.apress.springrecipes.calculator.LoggingRequired)")
public void loggingOperation() {}

Combine Pointcut Expressions
In AspectJ, pointcut expressions can be combined with the operators && (and), || (or), and ! (not).
For example, the following pointcut matches the join points within classes that implement either the
ArithmeticCalculator or UnitCalculator interface:

within(ArithmeticCalculator+) || within(UnitCalculator+)

The operands of these operators can be any pointcut expressions or references to other pointcuts.

package com.apress.springrecipes.calculator;

import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.annotation.Pointcut;

@Aspect
public class CalculatorPointcuts {

 @Pointcut("within(ArithmeticCalculator+)")
 public void arithmeticOperation() {}

 @Pointcut("within(UnitCalculator+)")
 public void unitOperation() {}

 @Pointcut("arithmeticOperation() || unitOperation()")
 public void loggingOperation() {}
}

Declare Pointcut Parameters
One way to access join point information is by reflection (i.e., via an argument of type org.aspectj.lang.
JoinPoint in the advice method). Besides, you can access join point information in a declarative way
by using some kinds of special pointcut expressions. For example, the expressions target() and args()
capture the target object and argument values of the current join point and expose them as pointcut
parameters. These parameters are passed to your advice method via arguments of the same name.

ChAPTeR 2 ■ SPRInG CORe TASkS

91

package com.apress.springrecipes.calculator;
...
import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.annotation.Before;

@Aspect
public class CalculatorLoggingAspect {
 ...
 @Before("execution(* *.*(..)) && target(target) && args(a,b)")
 public void logParameter(Object target, double a, double b) {
 log.info("Target class : {}", target.getClass().getName());
 log.info("Arguments : {}, {}", a,b);
 }
}

When declaring an independent pointcut that exposes parameters, you have to include them in the
argument list of the pointcut method as well.

package com.apress.springrecipes.calculator;

import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.annotation.Pointcut;

@Aspect
public class CalculatorPointcuts {
 ...
 @Pointcut("execution(* *.*(..)) && target(target) && args(a,b)")
 public void parameterPointcut(Object target, double a, double b) {}
}

Any advice that refers to this parameterized pointcut can access the pointcut parameters via method
arguments of the same name.

package com.apress.springrecipes.calculator;
...
import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.annotation.Before;

@Aspect
public class CalculatorLoggingAspect {
 ...
 @Before("CalculatorPointcuts.parameterPointcut(target, a, b)")
 public void logParameter(Object target, double a, double b) {
 log.info("Target class : {}", target.getClass().getName());
 log.info("Arguments : {}, {}"a,b);
 }
}

ChAPTeR 2 ■ SPRInG CORe TASkS

92

2-18. Use AOP for introductions for POJOs
Problem
Sometimes you may have a group of classes that share a common behavior. In OOP, they must extend the
same base class or implement the same interface. This issue is actually a crosscutting concern that can be
modularized with AOP. In addition, the single inheritance mechanism of Java only allows a class to extend one
base class at most. So, you cannot inherit behaviors from multiple implementation classes at the same time.

Solution
An introduction is a special type of advice in AOP. It allows objects to implement an interface dynamically by
providing an implementation class for that interface. It seems as if objects extend an implementation class
at runtime. Moreover, you are able to introduce multiple interfaces with multiple implementation classes to
your objects at the same time. This can achieve the same effect as multiple inheritance.

How It Works
Suppose you have two interfaces, MaxCalculator and MinCalculator, to define the max() and min()
operations.

package com.apress.springrecipes.calculator;

public interface MaxCalculator {

 public double max(double a, double b);
}
package com.apress.springrecipes.calculator;

public interface MinCalculator {

 public double min(double a, double b);
}

Then you have an implementation for each interface with println statements to let you know when the
methods are executed.

package com.apress.springrecipes.calculator;

public class MaxCalculatorImpl implements MaxCalculator {

 public double max(double a, double b) {
 double result = (a >= b) ? a : b;
 System.out.println("max(" + a + ", " + b + ") = " + result);
 return result;
 }
}
package com.apress.springrecipes.calculator;

ChAPTeR 2 ■ SPRInG CORe TASkS

93

public class MinCalculatorImpl implements MinCalculator {

 public double min(double a, double b) {
 double result = (a <= b) ? a : b;
 System.out.println("min(" + a + ", " + b + ") = " + result);
 return result;
 }
}

Now, suppose you want ArithmeticCalculatorImpl to perform the max() and min() calculation also.
As the Java language supports single inheritance only, it is not possible for the ArithmeticCalculatorImpl
class to extend both the MaxCalculatorImpl and MinCalculatorImpl classes at the same time. The only
possible way is to extend either class (e.g., MaxCalculatorImpl) and implement another interface (e.g.,
MinCalculator), either by copying the implementation code or by delegating the handling to the actual
implementation class. In either case, you have to repeat the method declarations.

With an introduction, you can make ArithmeticCalculatorImpl dynamically implement both the
MaxCalculator and MinCalculator interfaces by using the implementation classes MaxCalculatorImpl
and MinCalculatorImpl. It has the same effect as multiple inheritance from MaxCalculatorImpl
and MinCalculatorImpl. The idea behind an introduction is that you needn’t modify the
ArithmeticCalculatorImpl class to introduce new methods. That means you can introduce methods to
your existing classes even without source code available.

 ■ Tip You may wonder how an introduction can do that in Spring AOP. The answer is a dynamic proxy.
As you may recall, you can specify a group of interfaces for a dynamic proxy to implement. Introduction works
by adding an interface (e.g., MaxCalculator) to the dynamic proxy. When the methods declared in this interface
are called on the proxy object, the proxy will delegate the calls to the back-end implementation class
(e.g., MaxCalculatorImpl).

Introductions, like advices, must be declared within an aspect. You may create a new aspect or reuse an
existing aspect for this purpose. In this aspect, you can declare an introduction by annotating an arbitrary
field with the @DeclareParents annotation.

package com.apress.springrecipes.calculator;

import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.annotation.DeclareParents;

import org.springframework.stereotype.Component;

@Aspect
@Component
public class CalculatorIntroduction {

 @DeclareParents(
 value = "com.apress.springrecipes.calculator.ArithmeticCalculatorImpl",
 defaultImpl = MaxCalculatorImpl.class)
 public MaxCalculator maxCalculator;

ChAPTeR 2 ■ SPRInG CORe TASkS

94

 @DeclareParents(
 value = "com.apress.springrecipes.calculator.ArithmeticCalculatorImpl",
 defaultImpl = MinCalculatorImpl.class)
 public MinCalculator minCalculator;
}

The value attribute of the @DeclareParents annotation type indicates which classes are the targets for
this introduction. The interface to introduce is determined by the type of the annotated field. Finally, the
implementation class used for this new interface is specified in the defaultImpl attribute.

Through these two introductions, you can dynamically introduce a couple of interfaces to the
ArithmeticCalculatorImpl class. Actually, you can specify an AspectJ type-matching expression in the
value attribute of the @DeclareParents annotation to introduce an interface to multiple classes.

As you have introduced both the MaxCalculator and MinCalculator interfaces to your arithmetic
calculator, you can cast it to the corresponding interface to perform the max() and min() calculations.

package com.apress.springrecipes.calculator;

public class Main {

 public static void main(String[] args) {
 ...
 ArithmeticCalculator arithmeticCalculator =
 (ArithmeticCalculator) context.getBean("arithmeticCalculator");
 ...
 MaxCalculator maxCalculator = (MaxCalculator) arithmeticCalculator;
 maxCalculator.max(1, 2);

 MinCalculator minCalculator = (MinCalculator) arithmeticCalculator;
 minCalculator.min(1, 2);
 }
}

2-19. Introduce States to Your POJOs with AOP
Problem
Sometimes you may want to add new states to a group of existing objects to keep track of their usage, such
as the calling count, the last modified date, and so on. It should not be a solution if all the objects have the
same base class. However, it’s difficult to add such states to different classes if they are not in the same class
hierarchy.

Solution
You can introduce a new interface to your objects with an implementation class that holds the state field.
Then, you can write another advice to change the state according to a particular condition.

ChAPTeR 2 ■ SPRInG CORe TASkS

95

How It Works
Suppose you want to keep track of the calling count of each calculator object. Since there is no field for
storing the counter value in the original calculator classes, you need to introduce one with Spring AOP. First,
let’s create an interface for the operations of a counter.

package com.apress.springrecipes.calculator;

public interface Counter {

 public void increase();
 public int getCount();
}

Next, just write a simple implementation class for this interface. This class has a count field for storing
the counter value.

package com.apress.springrecipes.calculator;

public class CounterImpl implements Counter {

 private int count;

 public void increase() {
 count++;
 }

 public int getCount() {
 return count;
 }
}

To introduce the Counter interface to all your calculator objects with CounterImpl as the
implementation, you can write the following introduction with a type-matching expression that
matches all the calculator implementations:

package com.apress.springrecipes.calculator;
...
import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.annotation.DeclareParents;

@Aspect
@Component
public class CalculatorIntroduction {
 ...
 @DeclareParents(
 value = "com.apress.springrecipes.calculator.*CalculatorImpl",
 defaultImpl = CounterImpl.class)
 public Counter counter;
}

ChAPTeR 2 ■ SPRInG CORe TASkS

96

This introduction introduces CounterImpl to each of your calculator objects. However, it’s still not
enough to keep track of the calling count. You have to increase the counter value each time a calculator
method is called. You can write an after advice for this purpose. Note that you must get this object but not
the target object, as only the proxy object implements the Counter interface.

package com.apress.springrecipes.calculator;
...
import org.aspectj.lang.annotation.After;
import org.aspectj.lang.annotation.Aspect;

@Aspect
@Component
public class CalculatorIntroduction {
 ...
 @After("execution(* com.apress.springrecipes.calculator.*Calculator.*(..))"
 + " && this(counter)")
 public void increaseCount(Counter counter) {
 counter.increase();
 }
}

In the Main class, you can output the counter value for each of the calculator objects by casting them
into the Counter type.

package com.apress.springrecipes.calculator;

public class Main {

 public static void main(String[] args) {
 ...
 ArithmeticCalculator arithmeticCalculator =
 (ArithmeticCalculator) context.getBean("arithmeticCalculator");
 ...

 UnitCalculator unitCalculator =
 (UnitCalculator) context.getBean("unitCalculator");
 ...

 Counter arithmeticCounter = (Counter) arithmeticCalculator;
 System.out.println(arithmeticCounter.getCount());

 Counter unitCounter = (Counter) unitCalculator;
 System.out.println(unitCounter.getCount());
 }
}

ChAPTeR 2 ■ SPRInG CORe TASkS

97

2-20. Use Load-Time Weaving AspectJ Aspects in Spring
Problem
The Spring AOP framework supports only limited types of AspectJ pointcuts and allows aspects to apply
to beans declared in the IoC container. If you want to use additional pointcut types or apply your aspects
to objects created outside the Spring IoC container, you have to use the AspectJ framework in your Spring
application.

Solution
Weaving is the process of applying aspects to your target objects. With Spring AOP, weaving happens at
runtime through dynamic proxies. In contrast, the AspectJ framework supports both compile-time and load-
time weaving.

AspectJ compile-time weaving is done through a special AspectJ compiler called ajc. It can weave
aspects into your Java source files and output woven binary class files. It can also weave aspects into your
compiled class files or JAR files. This process is known as post-compile-time weaving. You can perform
compile-time and post-compile-time weaving for your classes before declaring them in the Spring IoC
container. Spring is not involved in the weaving process at all. For more information on compile-time and
post-compile-time weaving, please refer to the AspectJ documentation.

AspectJ load-time weaving (also known as LTW) happens when the target classes are loaded into JVM
by a class loader. For a class to be woven, a special class loader is required to enhance the bytecode of the
target class. Both AspectJ and Spring provide load-time weavers to add load-time weaving capability to the
class loader. You need only simple configurations to enable these load-time weavers.

How It Works
To understand the AspectJ load-time weaving process in a Spring application, let’s consider a calculator
for complex numbers. First, you create the Complex class to represent complex numbers. You define the
toString() method for this class to convert a complex number into the string representation (a + bi).

package com.apress.springrecipes.calculator;

public class Complex {

 private int real;
 private int imaginary;

 public Complex(int real, int imaginary) {
 this.real = real;
 this.imaginary = imaginary;
 }

 // Getters and Setters
 ...

 public String toString() {
 return "(" + real + " + " + imaginary + "i)";
 }
}

ChAPTeR 2 ■ SPRInG CORe TASkS

98

Next, you define an interface for the operations on complex numbers. For simplicity’s sake, only add()
and sub() are supported.

package com.apress.springrecipes.calculator;

public interface ComplexCalculator {

 public Complex add(Complex a, Complex b);
 public Complex sub(Complex a, Complex b);
}

The implementation code for this interface is as follows. Each time, you return a new complex object as
the result.

package com.apress.springrecipes.calculator;

import org.springframework.stereotype.Component;

@Component("complexCalculator")
public class ComplexCalculatorImpl implements ComplexCalculator {

 public Complex add(Complex a, Complex b) {
 Complex result = new Complex(a.getReal() + b.getReal(),
 a.getImaginary() + b.getImaginary());
 System.out.println(a + " + " + b + " = " + result);
 return result;
 }

 public Complex sub(Complex a, Complex b) {
 Complex result = new Complex(a.getReal() - b.getReal(),
 a.getImaginary() - b.getImaginary());
 System.out.println(a + " - " + b + " = " + result);
 return result;
 }
}

Now, you can test this complex number calculator with the following code in the Main class:

package com.apress.springrecipes.calculator;

import org.springframework.context.ApplicationContext;
import org.springframework.context.annotation.AnnotationConfigApplicationContext;

public class Main {

 public static void main(String[] args) {

ChAPTeR 2 ■ SPRInG CORe TASkS

99

 ApplicationContext context =
 new AnnotationConfigApplicationContext(CalculatorConfiguration.class);

 ComplexCalculator complexCalculator =
 context.getBean("complexCalculator", ComplexCalculator.class);

 complexCalculator.add(new Complex(1, 2), new Complex(2, 3));
 complexCalculator.sub(new Complex(5, 8), new Complex(2, 3));
 }
}

So far, the complex calculator is working fine. However, you may want to improve the performance of
the calculator by caching complex number objects. As caching is a well-known crosscutting concern, you
can modularize it with an aspect.

package com.apress.springrecipes.calculator;

import java.util.Collections;
import java.util.HashMap;
import java.util.Map;

import org.aspectj.lang.ProceedingJoinPoint;
import org.aspectj.lang.annotation.Around;
import org.aspectj.lang.annotation.Aspect;

@Aspect
public class ComplexCachingAspect {

 private final Map<String, Complex> cache = new ConcurrentHashMap<>();

 @Around("call(public Complex.new(int, int)) && args(a,b)")
 public Object cacheAround(ProceedingJoinPoint joinPoint, int a, int b)
 throws Throwable {
 String key = a + "," + b;
 Complex complex = cache.get(key);
 if (complex == null) {
 System.out.println("Cache MISS for (" + key + ")");
 complex = (Complex) joinPoint.proceed();
 cache.put(key, complex);
 }
 else {
 System.out.println("Cache HIT for (" + key + ")");
 }
 return complex;
 }
}

ChAPTeR 2 ■ SPRInG CORe TASkS

100

In this aspect, you cache the complex objects in a map with their real and imaginary values as
keys. Then, the most suitable time to look up the cache is when a complex object is created by invoking
the constructor. You use the AspectJ pointcut expression call to capture the join points of calling the
Complex(int,int) constructor.

Next, you need an around advice to alter the return value. If a complex object of the same value is
found in the cache, you return it to the caller directly. Otherwise, you proceed with the original constructor
invocation to create a new complex object. Before you return it to the caller, you cache it in the map for
subsequent usages.

The call pointcut is not supported by Spring AOP, so if you attempt to let Spring scan the pointcut
annotation, you’ll get the error “unsupported pointcut primitive call.”

Because this type of pointcut is not supported by Spring AOP, you have to use the AspectJ framework to
apply this aspect. The configuration of the AspectJ framework is done through a file named aop.xml in the
META-INF directory of the classpath root.

<!DOCTYPE aspectj PUBLIC "-//AspectJ//DTD//EN"
 "http://www.eclipse.org/aspectj/dtd/aspectj.dtd">

<aspectj>
 <weaver>
 <include within="com.apress.springrecipes.calculator.*" />
 </weaver>

 <aspects>
 <aspect
 name="com.apress.springrecipes.calculator.ComplexCachingAspect" />
 </aspects>
</aspectj>

In this AspectJ configuration file, you have to specify the aspects and which classes you want your
aspects to weave in. Here, you specify weaving ComplexCachingAspect into all the classes in the com.
apress.springrecipes.calculator package.

Finally, to make this load-time weaving, you need to run the application in one of two ways, as
described in the next sections.

Implement Load-Time Weaving with the AspectJ Weaver
AspectJ provides a load-time weaving agent to enable load-time weaving. You need only to add a VM
argument to the command that runs your application. Then your classes will get woven when they are
loaded into the JVM.

java -javaagent:lib/aspectjweaver-1.9.0.jar -jar Recipe_2_19_ii-4.0.0.jar

If you run your application with the preceding argument, you will get the following output and cache
status. The AspectJ agent advises all calls to the Complex(int,int) constructor.

ChAPTeR 2 ■ SPRInG CORe TASkS

101

Cache MISS for (1,2)
Cache MISS for (2,3)
Cache MISS for (3,5)
(1 + 2i) + (2 + 3i) = (3 + 5i)
Cache MISS for (5,8)
Cache HIT for (2,3)
Cache HIT for (3,5)
(5 + 8i) - (2 + 3i) = (3 + 5i)

Implement Load-Time Weaving with Spring Load-Time Weaver
Spring has several load-time weavers for different runtime environments. To turn on a suitable load-time
weaver for your Spring application, you need only to add @EnableLoadTimeWeaving to your configuration class.

Spring will be able to detect the most suitable load-time weaver for your runtime environment. Some
Java EE application servers have class loaders that support the Spring load-time weaver mechanism, so
there’s no need to specify a Java agent in their startup commands.

However, for a simple Java application, you still require a weaving agent provided by Spring to enable
load-time weaving. You have to specify the Spring agent in the VM argument of the startup command.

java -javaagent:lib/spring-instrument-5.0.0.jar -jar Recipe_2_19_iii-4.0.0.jar

However, if you run your application, you will get the following output and cache status:

Cache MISS for (3,5)
(1 + 2i) + (2 + 3i) = (3 + 5i)
Cache HIT for (3,5)
(5 + 8i) - (2 + 3i) = (3 + 5i)

This is because the Spring agent advises only the Complex(int,int) constructor calls made by beans
declared in the Spring IoC container. As the complex operands are created in the Main class, the Spring agent
will not advise their constructor calls.

2-21. Configure AspectJ Aspects in Spring
Problem
Aspects used in the AspectJ framework are instantiated by the AspectJ framework itself. Therefore, you have
to retrieve the aspect instances from the AspectJ framework to configure them.

Solution
Each AspectJ aspect provides a factory class called Aspects that has a static factory method called
aspectOf(), which allows you to access the current aspect instance. In the Spring IoC container, you can
declare a bean created by this factory method by calling Aspects.aspectOf(ComplexCachingAspect.class).

ChAPTeR 2 ■ SPRInG CORe TASkS

102

How It Works
For instance, you can allow the cache map of ComplexCachingAspect to be preconfigured via a setter
method.

package com.apress.springrecipes.calculator;

import org.aspectj.lang.ProceedingJoinPoint;
import org.aspectj.lang.annotation.Around;
import org.aspectj.lang.annotation.Aspect;

import java.util.Map;
import java.util.concurrent.ConcurrentHashMap;

@Aspect
public class ComplexCachingAspect {

 private Map<String, Complex> cache = new ConcurrentHashMap<>();

 public void setCache(Map<String, Complex> cache) {
 this.cache.clear();
 this.cache.putAll(cache);
 }

 @Around("call(public Complex.new(int, int)) && args(a,b)")
 public Object cacheAround(ProceedingJoinPoint joinPoint, int a, int b) throws Throwable {
 String key = a + "," + b;
 Complex complex = cache.get(key);
 if (complex == null) {
 System.out.println("Cache MISS for (" + key + ")");
 complex = (Complex) joinPoint.proceed();
 cache.put(key, complex);
 } else {
 System.out.println("Cache HIT for (" + key + ")");
 }
 return complex;
 }

}

To configure the aspect, create an @Bean annotated method that calls the aforementioned factory method
Aspects.aspectOf; this will give you the instance of the aspect. This instance can in turn be configured.

package com.apress.springrecipes.calculator;

import org.aspectj.lang.Aspects;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.ComponentScan;
import org.springframework.context.annotation.Configuration;

ChAPTeR 2 ■ SPRInG CORe TASkS

103

import java.util.HashMap;
import java.util.Map;

@Configuration
@ComponentScan
public class CalculatorConfiguration {

 @Bean
 public ComplexCachingAspect complexCachingAspect() {

 Map<String, Complex> cache = new HashMap<>();
 cache.put("2,3", new Complex(2,3));
 cache.put("3,5", new Complex(3,5));

 ComplexCachingAspect complexCachingAspect =
 Aspects.aspectOf(ComplexCachingAspect.class);
 complexCachingAspect.setCache(cache);
 return complexCachingAspect;
 }
}

To run the application, you use AspectJ’s weaver.

java -javaagent:lib/aspectjweaver-1.9.0.jar -jar Recipe_2_20-4.0.0.jar

2-22. Inject POJOs into Domain Objects with AOP
Problem
Beans declared in the Spring IoC container can wire themselves to one another through Spring’s dependency
injection capability. However, objects created outside the Spring IoC container cannot wire themselves to
Spring beans via configuration. You have to perform the wiring manually with programming code.

Solution
Objects created outside the Spring IoC container are usually domain objects. They are often created using
the new operator or from the results of database queries. To inject a Spring bean into domain objects created
outside Spring, you need the help of AOP. Actually, the injection of Spring beans is also a kind of crosscutting
concern. As the domain objects are not created by Spring, you cannot use Spring AOP for injection. Spring
supplies an AspectJ aspect specialized for this purpose. You can enable this aspect in the AspectJ framework.

ChAPTeR 2 ■ SPRInG CORe TASkS

104

How It Works
Suppose you have a global formatter to format complex numbers. This formatter accepts a pattern for
formatting and uses the standard @Component and @Value annotations to instantiate a POJO.

package com.apress.springrecipes.calculator;

@Component
public class ComplexFormatter {

 @Value("(a + bi)")
 private String pattern;

 public void setPattern(String pattern) {
 this.pattern = pattern;
 }

 public String format(Complex complex) {
 return pattern.replaceAll("a", Integer.toString(complex.getReal()))
 .replaceAll("b", Integer.toString(complex.getImaginary()));
 }
}

In the Complex class, you want to use this formatter in the toString() method to convert a complex
number into a string. It exposes a setter method for ComplexFormatter.

package com.apress.springrecipes.calculator;

public class Complex {

 private int real;
 private int imaginary;
 ...
 private ComplexFormatter formatter;

 public void setFormatter(ComplexFormatter formatter) {
 this.formatter = formatter;
 }

 public String toString() {
 return formatter.format(this);
 }
}

However, because Complex objects are not instantiated by the Spring IoC container, they cannot be
configured for dependency injection in the regular manner. Spring includes AnnotationBeanConfigurerAspect
in its aspect library to configure the dependencies of any objects, even if they were not created by the Spring
IoC container.

First, you have to annotate your object type with the @Configurable annotation to declare that this type
of object is configurable.

ChAPTeR 2 ■ SPRInG CORe TASkS

105

package com.apress.springrecipes.calculator;

import org.springframework.beans.factory.annotation.Configurable;
import org.springframework.beans.factory.annotation.Configurable;
import org.springframework.context.annotation.Scope;

@Configurable
@Component
@Scope("prototype")
public class Complex {
 ...
 @Autowired
 public void setFormatter(ComplexFormatter formatter) {
 this.formatter = formatter;
 }

}

In addition to the @Configurable annotation, you decorate the POJO with the standard @Component,
@Scope, and @Autowired annotations so the bean gets its standard Spring behaviors. However, the
@Configurable annotation is the most important configuration piece, and for this Spring defines a
convenient annotation, @EnableSpringConfigured, for you to enable the mentioned aspect.

@Configuration
@EnableSpringConfigured
@ComponentScan
public class CalculatorConfiguration {}

When a class with the @Configurable annotation is instantiated, the aspect will look for a prototype-
scoped bean definition whose type is the same as this class. Then, it will configure the new instances
according to this bean definition. If there are properties declared in the bean definition, the new instances
will also have the same properties set by the aspect.

Finally, to run the application, you weave the aspect into your classes at load time with the AspectJ agent.

java -javaagent:lib/aspectjweaver-1.9.0.jar -jar Recipe_2_21-4.0.0.jar

2-23. Applying Concurrency with Spring and TaskExecutors
Problem
You want to build a threaded, concurrent program with Spring but don’t know what approach to use since
there’s no standard approach.

Solution
Use Spring’s TaskExecutor abstraction. This abstraction provides numerous implementations for
many environments, including basic Java SE Executor implementations, CommonJ WorkManager
implementations, and custom implementations.

In Spring all the implementations are unified and can be cast to Java SE’s Executor interface, too.

ChAPTeR 2 ■ SPRInG CORe TASkS

106

How It Works
Threading is a difficult issue that can be particularly tedious to implement using standard threading in
the Java SE environment. Concurrency is another important aspect of server-side components but has
little to no standardization in the enterprise Java space. In fact, some parts of the Java Enterprise Edition
specifications forbid the explicit creation and manipulation of threads.

In the Java SE landscape, many options have been introduced over the years to deal with threading
and concurrency. First, there was the standard java.lang.Thread support present since Java Development
Kit (JDK) 1.0. Java 1.3 saw the introduction of java.util.TimerTask to support doing some sort of work
periodically. Java 5 debuted the java.util.concurrent package, as well as a reworked hierarchy for
building thread pools, oriented around java.util.concurrent.Executor.

The application programming interface (API) for Executor is simple.

package java.util.concurrent;
public interface Executor {
 void execute(Runnable command);
}

ExecutorService, a subinterface, provides more functionality for managing threads and provides support
to raise events to threads, such as shutdown(). There are several implementations that have shipped with the
JDK since Java SE 5.0. Many of them are available via static factory methods in the java.util.concurrent
package. What follows are several examples using Java SE classes.

The ExecutorService class provides a submit() method, which returns a Future<T> object. An instance
of Future<T> can be used to track the progress of a thread that’s usually executing asynchronously. You
can call Future.isDone() or Future.isCancelled() to determine whether the job is finished or cancelled,
respectively. When you use ExecutorService and submit() inside a Runnable instance whose run method
has no return type, calling get() on the returned Future returns null, or the value specified on submission.

Runnable task = new Runnable(){
 public void run(){
 try{
 Thread.sleep(1000 * 60) ;
 System.out.println("Done sleeping for a minute, returning! ");
 } catch (Exception ex) { /* ... */ }
 }
};

ExecutorService executorService = Executors.newCachedThreadPool() ;

if(executorService.submit(task, Boolean.TRUE).get().equals(Boolean.TRUE))
 System.out.println("Job has finished!");

With this background information, you can explore some of the characteristics of the various
implementations. For example, the following is a class designed to mark the passage of time using Runnable:

package com.apress.springrecipes.spring3.executors;

import java.util.Date;

public class DemonstrationRunnable implements Runnable {
 public void run() {
 try {

ChAPTeR 2 ■ SPRInG CORe TASkS

107

 Thread.sleep(1000);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 System.out.println(Thread.currentThread().getName());
 System.out.printf("Hello at %s \n", new Date());
 }
}

You’ll use the same instance when you explore Java SE Executors and Spring’s TaskExecutor support.

package com.apress.springrecipes.spring3.executors;
import java.util.Date;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.ScheduledExecutorService;
import java.util.concurrent.TimeUnit;

public class ExecutorsDemo {

 public static void main(String[] args) throws Throwable {
 Runnable task = new DemonstrationRunnable();

 ExecutorService cachedThreadPoolExecutorService =
 Executors.newCachedThreadPool();
 if (cachedThreadPoolExecutorService.submit(task).get() == null)
 System.out.printf("The cachedThreadPoolExecutorService "
 + "has succeeded at %s \n", new Date());

 ExecutorService fixedThreadPool = Executors.newFixedThreadPool(100);
 if (fixedThreadPool.submit(task).get() == null)
 System.out.printf("The fixedThreadPool has " +
 "succeeded at %s \n",
 new Date());

 ExecutorService singleThreadExecutorService =
 Executors.newSingleThreadExecutor();
 if (singleThreadExecutorService.submit(task).get() == null)
 System.out.printf("The singleThreadExecutorService "
 + "has succeeded at %s \n", new Date());

 ExecutorService es = Executors.newCachedThreadPool();
 if (es.submit(task, Boolean.TRUE).get().equals(Boolean.TRUE))
 System.out.println("Job has finished!");

ChAPTeR 2 ■ SPRInG CORe TASkS

108

 ScheduledExecutorService scheduledThreadExecutorService =
 Executors.newScheduledThreadPool(10);
 if (scheduledThreadExecutorService.schedule(
 task, 30, TimeUnit.SECONDS).get() == null)
 System.out.printf("The scheduledThreadExecutorService "
 + "has succeeded at %s \n", new Date());

 scheduledThreadExecutorService.scheduleAtFixedRate(task, 0, 5,
 TimeUnit.SECONDS);

 }
}

If you use the submit() method version of the ExecutorService subinterface that accepts Callable<T>,
then submit() returns whatever was returned from the main call() method in Callable. The following is
the interface for Callable:

package java.util.concurrent;

public interface Callable<V> {
 V call() throws Exception;
}

In the Java EE landscape, different approaches for solving these sorts of problems have been created,
since Java EE by design restricts the handling of threads.

Quartz (a job scheduling framework) was among the first solutions to fill this thread feature gap with a
solution that provided scheduling and concurrency. JCA 1.5 (or the J2EE Connector Architecture) is another
specification that provides a primitive type of gateway for integration functionality and supports ad hoc
concurrency. With JCA, components are notified about incoming messages and respond concurrently. JCA
1.5 provides a primitive, limited enterprise service bus—similar to integration features without nearly as
much of the finesse of something like SpringSource’s Spring Integration framework.

The requirement for concurrency wasn’t lost on application server vendors, though. Many other
initiatives came to the forefront. For example, in 2003, IBM and BEA jointly created the Timer and
WorkManager APIs, which eventually became JSR-237 and was then merged with JSR-236 to focus on how to
implement concurrency in a managed environment. The Service Data Object (SDO) specification, JSR-235,
had a similar solution. In addition, open source implementations of the CommonJ API have sprung up in
recent years to achieve the same solution.

The issue is that there’s no portable, standard, simple way of controlling threads and providing
concurrency for components in a managed environment, similar to the case of Java SE solutions.

Spring provides a unified solution via the org.springframeworks.core.task.TaskExecutor interface.
The TaskExecutor abstraction extends java.util.concurrent.Executor, which is part of Java 1.5.

In fact, the TaskExecutor interface is used quite a bit internally in the Spring Framework. For example,
for Spring Quartz integration (which supports threading) and the message-driven POJO container support,
there’s wide use of TaskExecutor.

package org.springframework.core.task;

import java.util.concurrent.Executor;

public interface TaskExecutor extends Executor {
 void execute(Runnable task);
}

ChAPTeR 2 ■ SPRInG CORe TASkS

109

In some places, the various solutions mirror the functionality provided by the core JDK options.
In others, they’re quite unique and provide integrations with other frameworks such as with CommonJ
WorkManager. These integrations usually take the form of a class that can exist in the target framework but
that you can manipulate just like any other TaskExecutor abstraction.

Although there’s support for adapting an existing Java SE Executor or ExecutorService as a
TaskExecutor, this isn’t so important in Spring because the base class for TaskExecutor is an Executor
anyway. In this way, the TaskExecutor in Spring bridges the gap between various solutions on Java EE and
Java SE.

Next, let’s see a simple example of the TaskExecutor, using the same Runnable defined previously. The
client for the code is a simple Spring POJO, into which you’ve injected various instances of TaskExecutor
with the sole aim of submitting Runnable.

package com.apress.springrecipes.executors;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.context.ApplicationContext;
import org.springframework.context.annotation.AnnotationConfigApplicationContext;
import org.springframework.core.task.SimpleAsyncTaskExecutor;
import org.springframework.core.task.SyncTaskExecutor;
import org.springframework.core.task.support.TaskExecutorAdapter;
import org.springframework.scheduling.concurrent.ThreadPoolTaskExecutor;
import org.springframework.stereotype.Component;

import javax.annotation.PostConstruct;

@Component
public class SpringExecutorsDemo {

 @Autowired
 private SimpleAsyncTaskExecutor asyncTaskExecutor;
 @Autowired
 private SyncTaskExecutor syncTaskExecutor;
 @Autowired
 private TaskExecutorAdapter taskExecutorAdapter;
 @Autowired
 private ThreadPoolTaskExecutor threadPoolTaskExecutor;
 @Autowired
 private DemonstrationRunnable task;

 @PostConstruct
 public void submitJobs() {
 syncTaskExecutor.execute(task);
 taskExecutorAdapter.submit(task);
 asyncTaskExecutor.submit(task);

 for (int i = 0; i < 500; i++)
 threadPoolTaskExecutor.submit(task);
 }

ChAPTeR 2 ■ SPRInG CORe TASkS

110

 public static void main(String[] args) {

 new AnnotationConfigApplicationContext(ExecutorsConfiguration.class)
 .registerShutdownHook();
 }
}

The application context demonstrates the creation of these various TaskExecutor implementations.
Most are so simple that you could create them manually. Only in one case do you delegate to a factory bean
to automatically trigger the execution, shown here:

package com.apress.springrecipes.executors;

import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.ComponentScan;
import org.springframework.context.annotation.Configuration;
import org.springframework.core.task.SimpleAsyncTaskExecutor;
import org.springframework.core.task.SyncTaskExecutor;
import org.springframework.core.task.support.TaskExecutorAdapter;
import org.springframework.scheduling.concurrent.ScheduledExecutorFactoryBean;
import org.springframework.scheduling.concurrent.ScheduledExecutorTask;
import org.springframework.scheduling.concurrent.ThreadPoolTaskExecutor;

import java.util.concurrent.Executors;

@Configuration
@ComponentScan
public class ExecutorsConfiguration {

 @Bean
 public TaskExecutorAdapter taskExecutorAdapter() {
 return new TaskExecutorAdapter(Executors.newCachedThreadPool());
 }

 @Bean
 public SimpleAsyncTaskExecutor simpleAsyncTaskExecutor() {
 return new SimpleAsyncTaskExecutor();
 }

 @Bean
 public SyncTaskExecutor syncTaskExecutor() {
 return new SyncTaskExecutor();
 }
 @Bean
 public ScheduledExecutorFactoryBean scheduledExecutorFactoryBean(ScheduledExecutorTask

scheduledExecutorTask) {
 ScheduledExecutorFactoryBean scheduledExecutorFactoryBean =

new ScheduledExecutorFactoryBean();
 scheduledExecutorFactoryBean.setScheduledExecutorTasks(scheduledExecutorTask);
 return scheduledExecutorFactoryBean;
 }

ChAPTeR 2 ■ SPRInG CORe TASkS

111

 @Bean
 public ScheduledExecutorTask scheduledExecutorTask(Runnable runnable) {
 ScheduledExecutorTask scheduledExecutorTask = new ScheduledExecutorTask();
 scheduledExecutorTask.setPeriod(1000);
 scheduledExecutorTask.setRunnable(runnable);
 return scheduledExecutorTask;
 }

 @Bean
 public ThreadPoolTaskExecutor threadPoolTaskExecutor() {
 ThreadPoolTaskExecutor taskExecutor = new ThreadPoolTaskExecutor();
 taskExecutor.setCorePoolSize(50);
 taskExecutor.setMaxPoolSize(100);
 taskExecutor.setAllowCoreThreadTimeOut(true);
 taskExecutor.setWaitForTasksToCompleteOnShutdown(true);
 return taskExecutor;
 }
}

The previous code shows different implementations of the TaskExecutor interface. The first bean, the
TaskExecutorAdapter instance, is a simple wrapper around a java.util.concurrence.Executors instance
so you can deal with it in terms of the Spring TaskExecutor interface. You use Spring here to configure an
instance of an Executor and pass it in as the constructor argument.

SimpleAsyncTaskExecutor provides a new Thread for each submitted job. It does no thread pooling or
reuse. Each job submitted runs asynchronously in a thread.

SyncTaskExecutor is the simplest of the implementations of TaskExecutor. Submission of a job
is synchronous and tantamount to launching a Thread, running it, and then using join() to connect it
immediately. It’s effectively the same as manually invoking the run() method in the calling thread, skipping
threading altogether.

ScheduledExecutorFactoryBean automatically triggers jobs defined as ScheduledExecutorTask
beans. You can specify a list of ScheduledExecutorTask instances to trigger multiple jobs simultaneously.
A ScheduledExecutorTask instance can accept a period to space out the execution of tasks.

The last example is ThreadPoolTaskExecutor, which is a full-on thread pool implementation built on
java.util.concurrent.ThreadPoolExecutor.

If you want to build applications using the CommonJ WorkManager/TimerManager support available in
application servers like IBM WebSphere, you can use org.springframework.scheduling.commonj.Work
ManagerTaskExecutor. This class delegates to a reference to the CommonJ Work Manager available inside of
WebSphere. Usually, you’ll provide it with a JNDI reference to the appropriate resource.

In JEE 7, the javax.enterprise.concurrent package and specifically the ManagedExecutorService,
was added. An instance of this ManagedExecutorService must be provided by JEE 7–compliant
servers. If you want to use this mechanism with Spring TaskExecutor support, you can configure a
DefaultManagedTaskExecutor, which will try to detect the default ManagedExecutorService (as mentioned
by the specification), or you can explictly configure it.

The TaskExecutor support provides a powerful way to access scheduling services on an application
server via a unified interface. If you’re looking for more robust (albeit much more heavyweight) support that
can be deployed on any app server (e.g., Tomcat and Jetty), you might consider Spring’s Quartz support.

ChAPTeR 2 ■ SPRInG CORe TASkS

112

2-24. Communicate Application Events Between POJOs
Problem
In a typical communication between POJOs, the sender has to locate the receiver to call a method on it. In
this case, the sender POJO must be aware of the receiver component. This kind of communication is direct
and simple, but the sender and receiver POJOs are tightly coupled.

When using an IoC container, POJOs can communicate by interface rather than by implementation.
This communication model helps reduce coupling. However, it is efficient only when a sender component
has to communicate with one receiver. When a sender needs to communicate with multiple receivers, it has
to call the receivers one by one.

Solution
Spring’s application context supports event-based communication between its beans. In the event-based
communication model, the sender POJO just publishes an event without knowing who the receiver is since
there can actually be more than one receiver. Also, the receiver doesn’t necessarily know who is publishing
the event. It can listen to multiple events from different senders at the same time. In this way, the sender and
receiver components are loosely coupled.

Traditionally to listen for events, a bean has to implement the ApplicationListener interface
and specify the type of events they want to be notified about by specifying the type parameter, i.e., Ap
plicationListener<CheckoutEvent>. Listeners of this kind can only listen to events that extend from
ApplicationEvent as that is the type signature of the ApplicationListener interface.

To publish an event, a bean needs access to the ApplicationEventPublisher, and for sending,
an event needs to call the publishEvent method. To get access to the ApplicationEventPublisher,
a class can either implement ApplicationEventPublisherAware or use @Autowired on a field of type
ApplicationEventPublisher.

How It Works
First you will write a custom ApplicationEvent then publish it and finally write a component to receive those
events and act upon it.

Define Events Using ApplicationEvent
The first step of enabling event-based communication is to define the event. Suppose you want a cashier
bean to publish a CheckoutEvent after the shopping cart is checked out. This event includes a checkout time
property.

package com.apress.springrecipes.shop;

import org.springframework.context.ApplicationEvent;

import java.util.Date;

public class CheckoutEvent extends ApplicationEvent {

 private final ShoppingCart cart;
 private final Date time;

ChAPTeR 2 ■ SPRInG CORe TASkS

113

 public CheckoutEvent(ShoppingCart cart, Date time) {
 super(cart);
 this.cart=cart;
 this.time = time;
 }

 public ShoppingCart getCart() {
 return cart;
 }

 public Date getTime() {
 return this.time;
 }
}

Publish Events
To publish an event, you just create an event instance and make a call to the publishEvent()
method of an application event publisher, which becomes accessible by implementing the
ApplicationEventPublisherAware interface.

package com.apress.springrecipes.shop;
...
import org.springframework.context.ApplicationEventPublisher;
import org.springframework.context.ApplicationEventPublisherAware;

public class Cashier implements ApplicationEventPublisherAware {
 ...
 private ApplicationEventPublisher applicationEventPublisher;

 public void setApplicationEventPublisher(
 ApplicationEventPublisher applicationEventPublisher) {
 this.applicationEventPublisher = applicationEventPublisher;
 }

 public void checkout(ShoppingCart cart) throws IOException {
 ...
 CheckoutEvent event = new CheckoutEvent(this, new Date());
 applicationEventPublisher.publishEvent(event);
 }
}

ChAPTeR 2 ■ SPRInG CORe TASkS

114

Or you could simply autowire it on a field property.

package com.apress.springrecipes.shop;
...
import org.springframework.context.ApplicationEventPublisher;

public class Cashier {
 ...
 @Autowired
 private ApplicationEventPublisher applicationEventPublisher;

 public void checkout(ShoppingCart cart) throws IOException {
 ...
 CheckoutEvent event = new CheckoutEvent(cart, new Date());
 applicationEventPublisher.publishEvent(event);
 }
}

Listen to Events
Any bean defined in the application context that implements the ApplicationListener interface is notified
of all type of events that match the type parameter (this way you can listen for a certain group of events such
as ApplicationContextEvent).

package com.apress.springrecipes.shop;
...
import org.springframework.context.ApplicationListener;

@Component
public class CheckoutListener implements ApplicationListener<CheckoutEvent> {

 public void onApplicationEvent(CheckoutEvent event) {
 // Do anything you like with the checkout amount and time
 System.out.println("Checkout event [" + event.getTime() + "]");
 }
}

Newer versions of Spring also allow you to create event listeners using the @EventListener annotation
instead of implementing the ApplicationListener interface.

package com.apress.springrecipes.shop;

...

@Component
public class CheckoutListener {

 @EventListener
 public void onApplicationEvent(CheckoutEvent event) {
 // Do anything you like with the checkout amount and time
 System.out.println("Checkout event [" + event.getTime() + "]");
 }
}

ChAPTeR 2 ■ SPRInG CORe TASkS

115

Next, you have to register the listener in the application context to listen for all events. The registration
is as simple as declaring a bean instance of this listener or letting component scanning detect it. The
application context recognizes beans that implement the ApplicationListener interface and beans that
have methods annotated with @EventListener and notify them of each event they are interested in.

Using @EventListener has another nice feature, which is that the events don’t have to extend
ApplicationEvent anymore. This way, your events don’t rely on Spring Framework classes but are plain
POJOs again.

package com.apress.springrecipes.shop;

import java.util.Date;

public class CheckoutEvent {

 private final ShoppingCart cart;
 private final Date time;

 public CheckoutEvent(ShoppingCart cart, Date time) {
 this.cart=cart;
 this.time = time;
 }

 public ShoppingCart getCart() {
 return cart;
 }

 public Date getTime() {
 return this.time;
 }
}

 ■ Note Finally, remember the application context itself also publishes container events such as
ContextClosedEvent, ContextRefreshedEvent, and RequestHandledEvent. If any beans want to be notified
of these events, they can implement the ApplicationListener interface.

Summary
In this chapter, you learned about Spring’s core tasks. You learned how Spring supports the @Configuration
and @Bean annotations to instantiate POJO via a Java config class. You also learned how to use the
@Component annotation to administer POJOs with Spring. In addition, you learned about the @Repository,
@Service, and @Controller annotations, which provide more specific behavior than the @Component
annotation.

You also learned how to reference POJOs from other POJOs, as well as how to use the @Autowired
annotation, which can automatically associate POJOs by either type or name. In addition, you explored how
the standard @Resource and @Inject annotations work to reference POJOs via autowiring, instead of using
the Spring-specific @Autowired annotation.

ChAPTeR 2 ■ SPRInG CORe TASkS

116

You then learned how to set a Spring POJOs scope with the @Scope annotation. You also learned how
Spring can read external resources and use this data in the context of POJO configuration and creation
using the @PropertySource and @Value annotations. In addition, you learned how Spring supports different
languages in POJOs through the use of i18n resource bundles.

Next, you learned how to customize the initialization and destruction of POJOs with the initmethod
and destroyMethod attributes of an @Bean annotation, as well as the @PostConstruct and @PreDestroy
annotations. In addition, you learned how to do lazy initialization with the @PreDestroy annotation and
define initialization dependencies with the @DependsOn annotation.

You then learned about Spring post-processors to validate and modify POJO values, including how to
use the @Required annotation. Next, you explored how to work with Spring environments and profiles to
load different sets of POJOs, including how to use the @Profile annotation.

Next, you explored aspect-oriented programming in the context of Spring and learned how to create
aspects, pointcuts, and advices. This included the use of the @Aspect annotation, as well as the @Before,
@After, @AfterReturning, @AfterThrowing, and @Around annotations.

Next, you learned how to access AOP join point information and apply it to different program execution
points. And then you learned how specify aspect precedence with the @Order annotations, followed by how
to reuse aspect pointcut definition.

In this chapter, you also learned how to write AspectJ pointcut expressions, as well as how to apply
the concept of AOP introductions so a POJO can inherit behaviors from multiple implementation classes
at the same time. You also learned how to introduce states to POJOs with AOP, as well as how to apply the
technique of load-time weaving.

Finally, you learned how to configure AspectJ aspects in Spring, how to inject POJOs into domain
objects, how to deal with concurrency with Spring and TaskExecutors, and, last but not least, how to create,
publish, and listen to events in Spring.

117© Marten Deinum, Daniel Rubio, and Josh Long 2017
M. Deinum et al., Spring 5 Recipes, DOI 10.1007/978-1-4842-2790-9_3

CHAPTER 3

Spring MVC

MVC is one of the most important modules of the Spring Framework. It builds on the powerful Spring IoC
container and makes extensive use of the container features to simplify its configuration.

Model-View-Controller (MVC) is a common design pattern in UI design. It decouples business logic
from UIs by separating the roles of model, view, and controller in an application. Models are responsible for
encapsulating application data for views to present. Views should only present this data, without including any
business logic. Controllers are responsible for receiving requests from users and invoking back-end services for
business processing. After processing, back-end services may return some data for views to present. Controllers
collect this data and prepare models for views to present. The core idea of the MVC pattern is to separate
business logic from UIs to allow them to change independently without affecting each other.

In a Spring MVC application, models usually consist of domain objects that are processed by the service
layer and persisted by the persistence layer. Views are usually JSP templates written with the Java Standard
Tag Library (JSTL). However, it’s also possible to define views as PDF files, Excel files, RESTful web services,
or even Flex interfaces, the last of which are often dubbed rich Internet applications (RIAs).

Upon finishing this chapter, you will be able to develop Java web applications using Spring MVC.
You will also understand Spring MVC’s common controller and view types, including what has become
the de facto use of annotations for creating controllers since the release of Spring 3.0. Moreover, you will
understand the basic principles of Spring MVC, which will serve as the foundation for more advanced topics
covered in the upcoming chapters.

3-1. Develop a Simple Web Application with Spring MVC
Problem
You want to develop a simple web application with Spring MVC to learn the basic concepts and
configurations of this framework.

Solution
The central component of Spring MVC is a front controller. In the simplest Spring MVC application, this
controller is the only servlet you need to configure in a Java web deployment descriptor (i.e., the web.xml file
or a ServletContainerInitializer). A Spring MVC controller—often referred to as a dispatcher servlet—
implements one of Sun’s core Java EE design patterns called Front Controller. It acts as the front controller
of the Spring MVC framework, and every web request must go through it so that it can manage the entire
request-handling process.

Chapter 3 ■ Spring MVC

118

When a web request is sent to a Spring MVC application, a controller first receives the request. Then it
organizes the different components configured in Spring’s web application context or annotations present in
the controller itself, all needed to handle the request. Figure 3-1 shows the primary flow of request handling
in Spring MVC.

To define a controller class in Spring, a class has to be marked with the @Controller or @RestController
annotation.

When an @Controller annotated class (i.e., a controller class) receives a request, it looks for an
appropriate handler method to handle the request. This requires that a controller class map each request to
a handler method by one or more handler mappings. To do so, a controller class’s methods are decorated
with the @RequestMapping annotation, making them handler methods.

The signature for these handler methods—as you can expect from any standard class—is open ended.
You can specify an arbitrary name for a handler method and define a variety of method arguments. Equally,
a handler method can return any of a series of values (e.g., String or void), depending on the application
logic it fulfills. As the book progresses, you will encounter the various method arguments that can be used
in handler methods using the @RequestMapping annotation. The following is only a partial list of valid
argument types, just to give you an idea.

•	 HttpServletRequest or HttpServleResponse

•	 Request parameters of arbitrary type, annotated with @RequestParam

•	 Model attributes of arbitrary type, annotated with @ModelAttribute

•	 Cookie values included in an incoming request, annotated with @CookieValue

•	 Map or ModelMap, for the handler method to add attributes to the model

Handler
Mapping

Dispatcher
Servlet

View View
Resolver

Controller

Request

Request

Response

Response Model

Request

ModelAndView

View Name

View

Controller

Figure 3-1. Primary flow of request handling in Spring MVC

Chapter 3 ■ Spring MVC

119

•	 Errors or BindingResult, for the handler method to access the binding and
validation result for the command object

•	 SessionStatus, for the handler method to notify its completion of session
processing

Once the controller class has picked an appropriate handler method, it invokes the handler method’s
logic with the request. Usually, a controller’s logic invokes back-end services to handle the request.
In addition, a handler method’s logic is likely to add or remove information from the numerous input
arguments (e.g., HttpServletRequest, Map, Errors, or SessionStatus) that will form part of the ongoing
Spring MVC flow.

After a handler method has finished processing the request, it delegates control to a view, which is
represented as the handler method’s return value. To provide a flexible approach, a handler method’s return
value doesn’t represent a view’s implementation (e.g., user.jsp or report.pdf) but rather a logical view
(e.g., user or report)—note the lack of file extension.

A handler method’s return value can be either a String, representing a logical view name, or void, in
which case a default logical view name is determined on the basis of a handler method’s or controller’s name.

To pass information from a controller to a view, it’s irrelevant that a handler’s method returns a logical
view name—String or a void—since the handler method input arguments will be available to a view. For
example, if a handler method takes a Map and SessionStatus objects as input parameters—modifying their
contents inside the handler method’s logic—these same objects will be accessible to the view returned by
the handler method.

When the controller class receives a view, it resolves the logical view name into a specific view
implementation (e.g., user.jsp or report.pdf) by means of a view resolver. A view resolver is a bean
configured in the web application context that implements the ViewResolver interface. Its responsibility is
to return a specific view implementation (HTML, JSP, PDF, or other) for a logical view name.

Once the controller class has resolved a view name into a view implementation, per the view
implementation’s design, it renders the objects (e.g., HttpServletRequest, Map, Errors, or SessionStatus)
passed by the controller’s handler method. The view’s responsibility is to display the objects added in the
handler method’s logic to the user.

How It Works
Suppose you are going to develop a court reservation system for a sports center. The UIs of this application
are web-based so that users can make online reservations through the Internet. You want to develop this
application using Spring MVC. First, you create the following domain classes in the domain subpackage:

package com.apress.springrecipes.court.domain;

public class Reservation {

 private String courtName;
 private Date date;
 private int hour;
 private Player player;
 private SportType sportType;

 // Constructors, Getters and Setters
 ...
}
package com.apress.springrecipes.court.domain;

Chapter 3 ■ Spring MVC

120

public class Player {

 private String name;
 private String phone;

 // Constructors, Getters and Setters
 ...
}
package com.apress.springrecipes.court.domain;

public class SportType {

 private int id;
 private String name;

 // Constructors, Getters and Setters
 ...
}

Then, you define the following service interface in the service subpackage to provide reservation
services to the presentation layer:

package com.apress.springrecipes.court.service;

import com.apress.springrecipes.court.domain.Reservation;

import java.util.List;

public interface ReservationService {

 public List<Reservation> query(String courtName);
}

In a production application, you should implement this interface with database persistence. But for
simplicity’s sake, you can store the reservation records in a list and hard-code several reservations for testing
purposes.

package com.apress.springrecipes.court.service;

import com.apress.springrecipes.court.domain.Player;
import com.apress.springrecipes.court.domain.Reservation;
import com.apress.springrecipes.court.domain.SportType;
import org.springframework.stereotype.Service;

import java.time.LocalDate;
import java.util.ArrayList;
import java.util.List;
import java.util.Objects;
import java.util.stream.Collectors;

Chapter 3 ■ Spring MVC

121

@Service
public class ReservationServiceImpl implements ReservationService {

 public static final SportType TENNIS = new SportType(1, "Tennis");
 public static final SportType SOCCER = new SportType(2, "Soccer");

 private final List<Reservation> reservations = new ArrayList<>();

 public ReservationServiceImpl() {

 reservations.add(new Reservation("Tennis #1", LocalDate.of(2008, 1, 14), 16,
 new Player("Roger", "N/A"), TENNIS));
 reservations.add(new Reservation("Tennis #2", LocalDate.of(2008, 1, 14), 20,
 new Player("James", "N/A"), TENNIS));
 }

 @Override
 public List<Reservation> query(String courtName) {

 return this.reservations.stream()
 .filter(reservation -> Objects.equals(reservation.getCourtName(), courtName))
 .collect(Collectors.toList());
 }
}

Set Up a Spring MVC Application
Next, you need to create a Spring MVC application layout. In general, a web application developed with
Spring MVC is set up in the same way as a standard Java web application, except that you have to add a
couple of configuration files and required libraries specific to Spring MVC.

The Java EE specification defines the valid directory structure of a Java web application made up of
a web archive (WAR file). For example, you have to provide a web deployment descriptor (i.e., web.xml)
in the WEB-INF root or one or more classes implementing ServletContainerInitializer. The class files
and JAR files for this web application should be put in the WEB-INF/classes and WEB-INF/lib directories,
respectively.

For your court reservation system, you create the following directory structure. Note that the highlighted
files are Spring-specific configuration files.

 ■ Note to develop a web application with Spring MVC, you have to add all the normal Spring dependencies
(see Chapter 1 for more information) as well as the Spring Web and Spring MVC dependencies to your
CLASSPATH. if you are using Maven, add the following dependencies to your Maven project:

<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-webmvc</artifactId>
 <version>${spring.version}</version>
</dependency>

http://dx.doi.org/10.1007/978-1-4842-2790-9_1

Chapter 3 ■ Spring MVC

122

if you are using gradle, add the following:

dependencies {
 compile "org.springframework:spring-webmvc:$springVersion"

}

The files outside the WEB-INF directory are directly accessible to users via URLs, so the CSS files and
image files must be put there. When using Spring MVC, the JSP files act as templates. They are read by the
framework for generating dynamic content, so the JSP files should be put inside the WEB-INF directory to
prevent direct access to them. However, some application servers don’t allow the files inside WEB-INF to be
read by a web application internally. In that case, you can only put them outside the WEB-INF directory.

Create the Configuration Files
The web deployment descriptor (web.xml or ServletContainerInitializer is the essential
configuration file for a Java web application). In this file, you define the servlets for your application and
how web requests are mapped to them. For a Spring MVC application, you have to define only a single
DispatcherServlet instance that acts as the front controller for Spring MVC, although you are allowed
to define more than one if required.

In large applications, it can be convenient to use multiple DispatcherServlet instances. This allows
DispatcherServlet instances to be designated to specific URLs, making code management easier and
letting individual team members work on an application’s logic without getting in each other’s way.

package com.apress.springrecipes.court.web;

import com.apress.springrecipes.court.config.CourtConfiguration;
import org.springframework.web.context.support.AnnotationConfigWebApplicationContext;
import org.springframework.web.servlet.DispatcherServlet;

import javax.servlet.ServletContainerInitializer;
import javax.servlet.ServletContext;
import javax.servlet.ServletException;
import javax.servlet.ServletRegistration;
import java.util.Set;

public class CourtServletContainerInitializer implements ServletContainerInitializer {

 @Override
 public void onStartup(Set<Class<?>> c, ServletContext ctx) throws ServletException {

 AnnotationConfigWebApplicationContext applicationContext =
 new AnnotationConfigWebApplicationContext();
 applicationContext.register(CourtConfiguration.class);

 DispatcherServlet dispatcherServlet = new DispatcherServlet(applicationContext);

 ServletRegistration.Dynamic courtRegistration =
 ctx.addServlet("court", dispatcherServlet);
 courtRegistration.setLoadOnStartup(1);
 courtRegistration.addMapping("/");
 }
}

Chapter 3 ■ Spring MVC

123

In this CourtServletContainerInitializer, you define a servlet of type DispatcherServlet.
This is the core servlet class in Spring MVC that receives web requests and dispatches them to appropriate
handlers. You set this servlet’s name to court and map all URLs using a slash (/), with the slash representing
the root directory. Note that the URL pattern can be set to more granular patterns. In larger applications,
it can make more sense to delegate patterns among various servlets, but for simplicity, all URLs in the
application are delegated to the single court servlet.

To have the CourtServletContainerInitializer detected, you also have to add a file named
javax.servlet.ServletContainerInitializer into the META-INF/services directory. The content of the
file should be the full name of the CourtServletContainerInitializer. This file is loaded by the servlet
container and used to bootstrap the application.

com.apress.springrecipes.court.web.CourtServletContainerInitializer

Finally, add the CourtConfiguration class, which is a simple @Configuration class.

package com.apress.springrecipes.court.config;

import org.springframework.context.annotation.ComponentScan;
import org.springframework.context.annotation.Configuration;

@Configuration
@ComponentScan("com.apress.springrecipes.court")
public class CourtConfiguration {}

This defines an @ComponentScan annotation, which will scan the com.apress.springrecipes.court
package (and subpackages) and register all the detected beans (in this case, the ReservationServiceImpl
and the yet to be created @Controller annotated classes).

Create Spring MVC Controllers
An annotation-based controller class can be an arbitrary class that doesn’t implement a particular interface
or extend a particular base class. You can annotate it with the @Controller annotation. There can be one
or more handler methods defined in a controller to handle single or multiple actions. The signature of the
handler methods is flexible enough to accept a range of arguments.

The @RequestMapping annotation can be applied to the class level or the method level. The first
mapping strategy is to map a particular URL pattern to a controller class and then a particular HTTP method
to each handler method.

package com.apress.springrecipes.court.web;

import org.springframework.stereotype.Controller;
import org.springframework.ui.Model;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestMethod;

import java.util.Date;

@Controller
@RequestMapping("/welcome")
public class WelcomeController {

Chapter 3 ■ Spring MVC

124

 @RequestMapping(method = RequestMethod.GET)
 public String welcome(Model model) {

 Date today = new Date();
 model.addAttribute("today", today);
 return "welcome";
 }
}

This controller creates a java.util.Date object to retrieve the current date and then adds it to the input
Model object as an attribute so the target view can display it.

Since you’ve already activated annotation scanning on the com.apress.springrecipes.court package,
the annotations for the controller class are detected upon deployment.

The @Controller annotation defines the class as a Spring MVC controller. The @RequestMapping
annotation is more interesting since it contains properties and can be declared at the class or handler
method level. The first value used in this class— ("/welcome")—is used to specify the URL on which
the controller is actionable, meaning any request received on the /welcome URL is attended by the
WelcomeController class.

Once a request is attended by the controller class, it delegates the call to the default HTTP GET handler
method declared in the controller. The reason for this behavior is that every initial request made on a URL
is of the HTTP GET kind. So, when the controller attends a request on the /welcome URL, it subsequently
delegates to the default HTTP GET handler method for processing.

The annotation @RequestMapping(method = RequestMethod.GET) is used to decorate the welcome
method as the controller’s default HTTP GET handler method. It’s worth mentioning that if no default HTTP
GET handler method is declared, a ServletException is thrown. Hence, it’s important for a Spring MVC
controller to have at a minimum a URL route and default HTTP GET handler method.

Another variation to this approach can be declaring both values—URL route and default HTTP
GET handler method—in the @RequestMapping annotation used at the method level. This declaration is
illustrated next:

@Controller
public class WelcomeController {

 @RequestMapping(value = "/welcome", method=RequestMethod.GET)
 public String welcome(Model model) { ... }

}

This declaration is equivalent to the earlier one. The value attribute indicates the URL to which
the handler method is mapped, and the method attribute defines the handler method as the controller’s
default HTTP GET method. Finally, there are also some convenient annotations such as @GetMapping,
@PostMapping, and so on, to minimize the configuration. The following mapping will do the same as the
earlier mentioned declarations:

@Controller
public class WelcomeController {

 @GetMapping("/welcome")
 public String welcome(Model model) { ... }

}

Chapter 3 ■ Spring MVC

125

The @GetMapping annotation makes the class a bit shorter and maybe easier to read.
This last controller illustrates the basic principles of Spring MVC. However, a typical controller may

invoke back-end services for business processing. For example, you can create a controller for querying
reservations of a particular court as follows:

package com.apress.springrecipes.court.web;

import com.apress.springrecipes.court.domain.Reservation;
import com.apress.springrecipes.court.service.ReservationService;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Controller;
import org.springframework.ui.Model;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestMethod;
import org.springframework.web.bind.annotation.RequestParam;

import java.util.List;

@Controller
@RequestMapping("/reservationQuery")
public class ReservationQueryController {

 private final ReservationService reservationService;

 public ReservationQueryController(ReservationService reservationService) {
 this.reservationService = reservationService;
 }

 @GetMapping
 public void setupForm() {}

 @PostMapping
 public String sumbitForm(@RequestParam("courtName") String courtName, Model model) {

 List<Reservation> reservations = java.util.Collections.emptyList();
 if (courtName != null) {
 reservations = reservationService.query(courtName);
 }
 model.addAttribute("reservations", reservations);
 return "reservationQuery";
 }
}

As outlined earlier, the controller then looks for a default HTTP GET handler method. Since the public void
setupForm() method is assigned the necessary @RequestMapping annotation for this purpose, it’s called next.

Unlike the previous default HTTP GET handler method, notice that this method has no input
parameters, has no logic, and has a void return value. This means two things. By having no input parameters
and no logic, a view only displays data hard-coded in the implementation template (e.g., JSP) since no
data is being added by the controller. By having a void return value, a default view name based on the
request URL is used; therefore, since the requesting URL is /reservationQuery, a return view named
reservationQuery is assumed.

Chapter 3 ■ Spring MVC

126

The remaining handler method is decorated with the @PostMapping annotation. At first sight, having
two handler methods with only the class-level /reservationQuery URL statement can be confusing, but it’s
really simple. One method is invoked when HTTP GET requests are made on the /reservationQuery URL;
the other is invoked when HTTP POST requests are made on the same URL.

The majority of requests in web applications are of the HTTP GET kind, whereas requests of the HTTP
POST kind are generally made when a user submits an HTML form. So, revealing more of the application’s
view (which we will describe shortly), one method is called when the HTML form is initially loaded (i.e.,
HTTP GET), whereas the other is called when the HTML form is submitted (i.e., HTTP POST).

Looking closer at the HTTP POST default handler method, notice the two input parameters. First notice
the @RequestParam("courtName") String courtName declaration, used to extract a request parameter
named courtName. In this case, the HTTP POST request comes in the form /reservationQuery?courtName
=<value>; this declaration makes said value available in the method under the variable named courtName.
Second, notice the Model declaration, which is used to define an object in which to pass data onto the
returning view.

The logic executed by the handler method consists of using the controller’s reservationService to
perform a query using the courtName variable. The results obtained from this query are assigned to the
Model object, which will later become available to the returning view for display.

Finally, note that the method returns a view named reservationQuery. This method could have also
returned void, just like the default HTTP GET, and have been assigned to the same reservationQuery
default view on account of the requesting URL. Both approaches are identical.

Now that you are aware of how Spring MVC controllers are constituted, it’s time to explore the views to
which a controller’s handler methods delegate their results.

Create JSP Views
Spring MVC supports many types of views for different presentation technologies. These include JSPs,
HTML, PDF, Excel worksheets (XLS), XML, JSON, Atom and RSS feeds, JasperReports, and other third-party
view implementations.

In a Spring MVC application, views are most commonly JSP templates written with JSTL. When the
DispatcherServlet—defined in an application’s web.xml file—receives a view name returned from a
handler, it resolves the logical view name into a view implementation for rendering. For example, you can
configure the InternalResourceViewResolver bean, in this case in the CourtConfiguration, of a web
application’s context to resolve view names into JSP files in the /WEB-INF/jsp/ directory.

@Bean
public InternalResourceViewResolver internalResourceViewResolver() {

 InternalResourceViewResolver viewResolver = new InternalResourceViewResolver();
 viewResolver.setPrefix("/WEB-INF/jsp/");
 viewResolver.setSuffix(".jsp");
 return viewResolver;
}

By using this last configuration, a logical view named reservationQuery is delegated to a view
implementation located at /WEB-INF/jsp/reservationQuery.jsp. Knowing this, you can create the
following JSP template for the welcome controller, naming it welcome.jsp and putting it in the /WEB-INF/
jsp/ directory:

Chapter 3 ■ Spring MVC

127

<%@ taglib prefix="fmt" uri="http://java.sun.com/jsp/jstl/fmt" %>

<html>
<head>
 <title>Welcome</title>
</head>

<body>
<h2>Welcome to Court Reservation System</h2>
Today is <fmt:formatDate value="${today}" pattern="yyyy-MM-dd" />.
</body>
</html>

In this JSP template, you make use of the fmt tag library in JSTL to format the today model attribute into
the pattern yyyy-MM-dd. Don’t forget to include the fmt tag library definition at the top of this JSP template.

Next, you can create another JSP template for the reservation query controller and name it
reservationQuery.jsp to match the view name.

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<%@ taglib prefix="fmt" uri="http://java.sun.com/jsp/jstl/fmt" %>

<html>
<head>
<title>Reservation Query</title>
</head>

<body>
<form method="post">
Court Name
<input type="text" name="courtName" value="${courtName}" />
<input type="submit" value="Query" />
</form>

<table border="1">
 <tr>
 <th>Court Name</th>
 <th>Date</th>
 <th>Hour</th>
 <th>Player</th>
 </tr>
 <c:forEach items="${reservations}" var="reservation">
 <tr>
 <td>${reservation.courtName}</td>
 <td><fmt:formatDate value="${reservation.date}" pattern="yyyy-MM-dd" /></td>
 <td>${reservation.hour}</td>
 <td>${reservation.player.name}</td>
 </tr>
 </c:forEach>
</table>
</body>
</html>

In this JSP template, you include a form for users to input the court name they want to query and then
use the <c:forEach> tag to loop the reservation’s model attribute to generate the result table.

Chapter 3 ■ Spring MVC

128

Deploy the Web Application
In a web application’s development process, we strongly recommend installing a local Java EE application
server that comes with a web container for testing and debugging purposes. For the sake of easy
configuration and deployment, we have chosen Apache Tomcat 8.5.x as the web container.

The deployment directory for this web container is located in the webapps directory. By default, Tomcat
listens on port 8080 and deploys applications onto a context by the same name of an application WAR.
Therefore, if you package the application in a WAR named court.war, the welcome controller and the
reservation query controller can be accessed through the following URLs:

http://localhost:8080/court/welcome
http://localhost:8080/court/reservationQuery

 ■ Tip the project can also create a Docker container with the app. run ../gradlew buildDocker to get a
container with tomcat and the application. You can then start a Docker container to test the application (docker
run -p 8080:8080 spring-recipes-4th/court-web).

Bootstrap the Application Using a WebApplicationInitializer
In the previous section, you created a CourtServletContainerInitializer together with a file in META-INF/
services to bootstrap the application.

Instead of implementing your own, you are now going to leverage the convenient Spring
implementation the SpringServletContainerInitializer. This class is an implementation
of the ServletContainerInitializer interface and scans the classpath for implementations
of a WebApplicationInitializer interface. Luckily, Spring provides some convenience
implementations of this interface, which you can leverage for the application; one of them is the
AbstractAnnotationConfigDispatcherServletInitializer.

package com.apress.springrecipes.court.web;

import com.apress.springrecipes.court.config.CourtConfiguration;
import org.springframework.web.servlet.support.
AbstractAnnotationConfigDispatcherServletInitializer;

public class CourtWebApplicationInitializer extends
AbstractAnnotationConfigDispatcherServletInitializer {

 @Override
 protected Class<?>[] getRootConfigClasses() {
 return null;
 }

 @Override
 protected Class<?>[] getServletConfigClasses() {
 return new Class[] {CourtConfiguration.class};
 }

Chapter 3 ■ Spring MVC

129

 @Override
 protected String[] getServletMappings() {
 return new String[] { "/"};
 }
}

The newly introduced CourtWebApplicationInitializer already creates a DispatcherServlet,
so the only thing you need to do is to configure the mappings in the getServletMappings method and
the configuration classes you want to load in the getServletConfigClasses. Next to the servlet there
is also another component being created, optionally, which is the ContextLoaderListener. This is a
ServletContextListener, which also creates an ApplicationContext, which will be used as a parent
ApplicationContext for the DispatcherServlet. This is convenient if you have multiple servlets needing
access to the same beans (services, data sources, etc.).

3-2. Map Requests with @RequestMapping
Problem
When DispatcherServlet receives a web request, it attempts to dispatch requests to the various controller
classes that have been declared with the @Controller annotation. The dispatching process depends on the
various @RequestMapping annotations declared in a controller class and its handler methods. You want to
define a strategy for mapping requests using the @RequestMapping annotation.

Solution
In a Spring MVC application, web requests are mapped to handlers by one or more @RequestMapping
annotations declared in controller classes.

Handler mappings match URLs according to their paths relative to the context path (i.e., the web
application context’s deployed path) and the servlet path (i.e., the path mapped to DispatcherServlet).
So, for example, in the URL http://localhost:8080/court/welcome, the path to match is /welcome,
as the context path is /court and there’s no servlet path—recall the servlet path declared as / in the
CourtWebApplicationInitializer.

How It Works
First you will see the request mapping applied at the method level, next you will explore the request
mapping on the class level and combined together with method level request mapping. Finally you will see
how you can use the HTTP method for request mapping methods as well.

Map Requests by Method
The simplest strategy for using @RequestMapping annotations is to decorate the handler methods
directly. For this strategy to work, you have to declare each handler method with the @RequestMapping
annotation containing a URL pattern. If a handler’s @RequestMapping annotation matches a request’s URL,
DispatcherServlet dispatches the request to this handler for it to handle the request.

package com.apress.springrecipes.court.web;

import com.apress.springrecipes.court.domain.Member;
import com.apress.springrecipes.court.service.MemberService;

Chapter 3 ■ Spring MVC

130

import org.springframework.stereotype.Controller;
import org.springframework.ui.Model;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestMethod;
import org.springframework.web.bind.annotation.RequestParam;

@Controller
public class MemberController {

 private MemberService memberService;

 public MemberController(MemberService memberService) {
 this.memberService = memberService;
 }

 @RequestMapping("/member/add")
 public String addMember(Model model) {

 model.addAttribute("member", new Member());
 model.addAttribute("guests", memberService.list());
 return "memberList";
 }

 @RequestMapping(value = {"/member/remove", "/member/delete"}, method = RequestMethod.GET)
 public String removeMember(@RequestParam("memberName")String memberName) {
 memberService.remove(memberName);
 return "redirect:";
 }
}

This code illustrates how each handler method is mapped to a particular URL using the
@RequestMapping annotation. The second handler method illustrates the assignment of multiple URLs,
so both /member/remove and /member/delete trigger the execution of the handler method. By default, it’s
assumed all incoming requests to URLs are of the HTTP GET kind.

Map Requests by Class
The @RequestMapping annotation can also be used to decorate a controller class. This allows
handler methods to either forgo the use of @RequestMapping annotations, as illustrated in the
ReservationQueryController controller in recipe 4-1, or use finer-grained URLs with their own
@RequestMapping annotation. For broader URL matching, the @RequestMapping annotation also supports
the use of wildcards (i.e., *).

The following code illustrates the use of URL wildcards in an @RequestMapping annotation, as well as
finer-grained URL matching on @RequestMapping annotations for handler methods:

package com.apress.springrecipes.court.web;

import com.apress.springrecipes.court.domain.Member;
import com.apress.springrecipes.court.service.MemberService;
import org.springframework.stereotype.Controller;

Chapter 3 ■ Spring MVC

131

import org.springframework.ui.Model;
import org.springframework.web.bind.annotation.PathVariable;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestMethod;
import org.springframework.web.bind.annotation.RequestParam;

@Controller
@RequestMapping("/member/*")
public class MemberController {

 private final MemberService memberService;

 public MemberController(MemberService memberService) {
 this.memberService = memberService;
 }

 @RequestMapping("add")
 public String addMember(Model model) {

 model.addAttribute("member", new Member());
 model.addAttribute("guests", memberService.list());
 return "memberList";
 }

 @RequestMapping(value={"remove","delete"}, method=RequestMethod.GET)
 public String removeMember(@RequestParam("memberName") String memberName) {
 memberService.remove(memberName);
 return "redirect:";
 }

 @RequestMapping("display/{member}")
 public String displayMember(@PathVariable("member") String member, Model model) {
 model.addAttribute("member", memberService.find(member).orElse(null));
 return "member";
 }

 @RequestMapping
 public void memberList() {}

 public void memberLogic(String memberName) {}

}

Note the class-level @RequestMapping annotation uses a URL wildcard: /member/* . This in turn
delegates all requests under the /member/ URL to the controller’s handler methods.

The first two handler methods make use of the @RequestMapping annotation. The addMember() method is
invoked when an HTTP GET request is made on the /member/add URL, whereas the removeMember() method
is invoked when an HTTP GET request is made on either the /member/remove or /member/delete URL.

Chapter 3 ■ Spring MVC

132

The third handler method uses the special notation {path_variable} to specify its @RequestMapping
value. By doing so, a value present in the URL can be passed as input to the handler method. Notice the
handler method declares @PathVariable("user") String user. In this manner, if a request is received in
the form member/display/jdoe, the handler method has access to the member variable with a jdoe value.
This is mainly a facility that allows you to avoid tinkering with a handler’s request object and an approach
that is especially helpful when you design RESTful web services.

The fourth handler method also uses the @RequestMapping annotation, but in this case it lacks a URL
value. Since the class level uses the /member/* URL wildcard, this handler method is executed as a catchall.
So, any URL request (e.g., /member/abcdefg or /member/randomroute) triggers this method. Note the void
return value, which in turn makes the handler method default to a view by its name (i.e., memberList).

The last method—memberLogic—lacks any @RequestMapping annotations, which means the method is
a utility for the class and has no influence on Spring MVC.

Map Requests by HTTP Request Type
By default, @RequestMapping annotations handle all types of incoming requests. However, in most cases, you
do not want the same method to be executed for both a GET request and a POST request. To differentiate on
HTTP requests, it’s necessary to specify the type explicitly in the @RequestMapping annotation as follows:

@RequestMapping(value= "processUser", method = RequestMethod.POST)
public String submitForm(@ModelAttribute("member") Member member,

BindingResult result, Model model) {

}

The extent to which you require specifying a handler method’s HTTP type depends on how and what
is interacting with a controller. For the most part, web browsers perform the bulk of their operations using
HTTP GET and HTTP POST requests. However, other devices or applications (e.g., RESTful web services)
may require support for other HTTP request types. In all, there are nine different HTTP request types: HEAD,
GET, POST, PUT, DELETE, PATCH, TRACE, OPTIONS, and CONNECT. However, support for handling all
these request types goes beyond the scope of an MVC controller, since a web server, as well as the requesting
party, needs to support such HTTP request types. Considering the majority of HTTP requests are of the GET
or POST kind, you will rarely if ever need to implement support for these additional HTTP request types.

For the most commonly used request methods, Spring MVC provides specialized annotations, as shown
in Table 3-1.

Table 3-1. Request Method to Annotation Mapping

Request Method Annotation

POST @PostMapping

GET @GetMapping

DELETE @DeleteMapping

PUT @PutMapping

Chapter 3 ■ Spring MVC

133

These convenience annotations are all specialized @RequestMapping annotations and make writing
request-handling methods a bit more compact.

@PostMapping("processUser")
public String submitForm(@ModelAttribute("member") Member member,

BindingResult result, Model model) {

}

You might have noticed that in all the URLs specified in @RequestMapping annotations, there was
no trace of a file extension like .html or .jsp. This is good practice in accordance with MVC design, even
though it’s not widely adopted.

A controller should not be tied to any type of extension that is indicative of a view technology, such as
HTML or JSP. This is why controllers return logical views and also why matching URLs should be declared
without extensions.

In an age where it’s common to have applications serve the same content in different formats, such as
XML, JSON, PDF, or XLS (Excel), it should be left to a view resolver to inspect the extension provided in a
request—if any—and determine which view technology to use.

In this short introduction, you’ve seen how a resolver is configured in an MVC’s configuration class to
map logical views to JSP files, all without every using a URL file extension like .jsp.

In later recipes, you will learn how Spring MVC uses this same nonextension URL approach to serve
content using different view technologies.

3-3. Intercept Requests with Handler Interceptors
Problem
Servlet filters defined by the Servlet API can pre-handle and post-handle every web request before and after
it’s handled by a servlet. You want to configure something with similar functions as filters in Spring’s web
application context to take advantage of the container features.

Moreover, sometimes you may want to pre-handle and post-handle web requests that are handled
by Spring MVC handlers and manipulate the model attributes returned by these handlers before they are
passed to the views.

Solution
Spring MVC allows you to intercept web requests for pre-handling and post-handling through handler
interceptors. Handler interceptors are configured in Spring’s web application context, so they can make
use of any container features and refer to any beans declared in the container. A handler interceptor can be
registered for particular URL mappings, so it only intercepts requests mapped to certain URLs.

Each handler interceptor must implement the HandlerInterceptor interface, which contains three
callback methods for you to implement: preHandle(), postHandle(), and afterCompletion(). The first
and second methods are called before and after a request is handled by a handler. The second method also
allows you to get access to the returned ModelAndView object, so you can manipulate the model attributes
in it. The last method is called after the completion of all request processing (i.e., after the view has been
rendered).

Chapter 3 ■ Spring MVC

134

How It Works
Suppose you are going to measure each web request’s handling time by each request handler and allow the
views to show this time to the user. You can create a custom handler interceptor for this purpose.

package com.apress.springrecipes.court.web;
...
import org.springframework.web.servlet.HandlerInterceptor;
import org.springframework.web.servlet.ModelAndView;

public class MeasurementInterceptor implements HandlerInterceptor {

 public boolean preHandle(HttpServletRequest request,
 HttpServletResponse response, Object handler) throws Exception {
 long startTime = System.currentTimeMillis();
 request.setAttribute("startTime", startTime);
 return true;
 }

 public void postHandle(HttpServletRequest request,
 HttpServletResponse response, Object handler,
 ModelAndView modelAndView) throws Exception {
 long startTime = (Long) request.getAttribute("startTime");
 request.removeAttribute("startTime");

 long endTime = System.currentTimeMillis();
 modelAndView.addObject("handlingTime", endTime - startTime);
 }

 public void afterCompletion(HttpServletRequest request,
 HttpServletResponse response, Object handler, Exception ex)
 throws Exception {
 }
}

In the preHandle() method of this interceptor, you record the start time and save it to a request
attribute. This method should return true, allowing DispatcherServlet to proceed with request
handling. Otherwise, DispatcherServlet assumes that this method has already handled the request, so
DispatcherServlet returns the response to the user directly. Then, in the postHandle() method, you load
the start time from the request attribute and compare it with the current time. You can calculate the total
duration and then add this time to the model for passing to the view. Finally, as there is nothing for the
afterCompletion() method to do, you can leave its body empty.

When implementing an interface, you must implement all the methods even though you may not have
a need for all of them. A better way is to extend the interceptor adapter class instead. This class implements
all the interceptor methods by default. You can override only the methods that you need.

package com.apress.springrecipes.court.web;
...
import org.springframework.web.servlet.ModelAndView;
import org.springframework.web.servlet.handler.HandlerInterceptorAdapter;

public class MeasurementInterceptor extends HandlerInterceptorAdapter {

Chapter 3 ■ Spring MVC

135

 public boolean preHandle(HttpServletRequest request,
 HttpServletResponse response, Object handler) throws Exception {
 ...
 }

 public void postHandle(HttpServletRequest request,
 HttpServletResponse response, Object handler,
 ModelAndView modelAndView) throws Exception {
 ...
 }
}

To register an interceptor, you need to modify the CourtConfiguration that was created in the first
recipe. You need to have it implement WebMvcConfigurer and override the addInterceptors method. The
method gives you access to the InterceptorRegistry, which you can use to add interceptors. The modified
class looks like the following:

@Configuration
public class InterceptorConfiguration implements WebMvcConfigurer {

 @Override
 public void addInterceptors(InterceptorRegistry registry) {
 registry.addInterceptor(measurementInterceptor());
 }

 @Bean
 public MeasurementInterceptor measurementInterceptor() {
 return new MeasurementInterceptor();
 }

 ...
}

Now you can show this time in welcome.jsp to verify this interceptor’s functionality. As WelcomeController
doesn’t have much to do, you may likely see that the handling time is 0 milliseconds. If this is the case, you can
add a sleep statement to this class to see a longer handling time.

<%@ taglib prefix="fmt" uri="http://java.sun.com/jsp/jstl/fmt" %>

<html>
<head>
<title>Welcome</title>
</head>

<body>
...
<hr />
Handling time : ${handlingTime} ms
</body>
</html>

Chapter 3 ■ Spring MVC

136

By default HandlerInterceptors apply to all @Controllers; however, sometimes you want
to discriminate on which controllers interceptors are applied. The namespace and the Java-based
configuration allow for interceptors to be mapped to particular URLs. It is only a matter of configuration.
The following is the Java configuration of this:

package com.apress.springrecipes.court.config;

import com.apress.springrecipes.court.web.ExtensionInterceptor;
import com.apress.springrecipes.court.web.MeasurementInterceptor;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.web.servlet.config.annotation.InterceptorRegistry;
import org.springframework.web.servlet.config.annotation.WebMvcConfigurer;

@Configuration
public class InterceptorConfiguration implements WebMvcConfigurer {

 @Override
 public void addInterceptors(InterceptorRegistry registry) {

 registry.addInterceptor(measurementInterceptor());
 registry .addInterceptor(summaryReportInterceptor())

.addPathPatterns("/reservationSummary*");
 }

 @Bean
 public MeasurementInterceptor measurementInterceptor() {
 return new MeasurementInterceptor();
 }

 @Bean
 public ExtensionInterceptor summaryReportInterceptor() {
 return new ExtensionInterceptor();
 }
}

First there is the addition of the interceptor bean summaryReportInterceptor. The structure of the
backing class for this bean is identical to that of the measurementInterceptor (i.e., it implements the
HandlerInterceptor interface). However, this interceptor performs logic that should be restricted to a
particular controller, which is mapped to the /reservationSummary URI. When registering an interceptor,
you can specify which URLs it maps to; by default this takes an Ant-style expression. You pass this pattern
into the addPathPatterns method; there is also an excludePathPatterns method that you can use to
exclude the interceptor for certain URLs.

3-4. Resolve User Locales
Problem
For your web application to support internationalization, you have to identify each user’s preferred locale
and display contents according to this locale.

Chapter 3 ■ Spring MVC

137

Solution
In a Spring MVC application, a user’s locale is identified by a locale resolver, which has to implement the
LocaleResolver interface. Spring MVC comes with several LocaleResolver implementations for you
to resolve locales by different criteria. Alternatively, you may create your own custom locale resolver by
implementing this interface.

You can define a locale resolver by registering a bean of type LocaleResolver in the web application
context. You must set the bean name of the locale resolver to localeResolver for DispatcherServlet to
autodetect. Note that you can register only one locale resolver per DispatcherServlet.

How It Works
You will explore the different available LocaleResolvers avaiable in Spring MVC and how you can change
the users locale using an interceptor.

Resolve Locales by an HTTP Request Header
The default locale resolver used by Spring is AcceptHeaderLocaleResolver. It resolves locales by inspecting
the accept-language header of an HTTP request. This header is set by a user’s web browser according to the
locale setting of the underlying operating system. Note that this locale resolver cannot change a user’s locale
because it is unable to modify the locale setting of the user’s operating system.

Resolve Locales by a Session Attribute
Another option of resolving locales is by SessionLocaleResolver. It resolves locales by inspecting a
predefined attribute in a user’s session. If the session attribute doesn’t exist, this locale resolver determines
the default locale from the accept-language HTTP header.

@Bean
public LocaleResolver localeResolver () {
 SessionLocaleResolver localeResolver = new SessionLocaleResolver();
 localeResolver.setDefaultLocale(new Locale("en"));
 return localeResolver;
}

You can set the defaultLocale property for this resolver in case the session attribute doesn’t exist. Note
that this locale resolver is able to change a user’s locale by altering the session attribute that stores the locale.

Resolve Locales by a Cookie
You can also use CookieLocaleResolver to resolve locales by inspecting a cookie in a user’s browser. If the
cookie doesn’t exist, this locale resolver determines the default locale from the accept-language HTTP
header.

@Bean
public LocaleResolver localeResolver() {
 return new CookieLocaleResolver();
}

Chapter 3 ■ Spring MVC

138

The cookie used by this locale resolver can be customized by setting the cookieName and cookieMaxAge
properties. The cookieMaxAge property indicates how many seconds this cookie should be persisted.
The value -1 indicates that this cookie will be invalid after the browser is closed.

@Bean
public LocaleResolver localeResolver() {
 CookieLocaleResolver cookieLocaleResolver = new CookieLocaleResolver();
 cookieLocaleResolver.setCookieName("language");
 cookieLocaleResolver.setCookieMaxAge(3600);
 cookieLocaleResolver.setDefaultLocale(new Locale("en"));
 return cookieLocaleResolver;
}

You can also set the defaultLocale property for this resolver in case the cookie doesn’t exist in a user’s
browser. This locale resolver is able to change a user’s locale by altering the cookie that stores the locale.

Changing a User’s Locale
In addition to changing a user’s locale by calling LocaleResolver.setLocale() explicitly, you can also apply
LocaleChangeInterceptor to your handler mappings. This interceptor detects whether a special parameter
is present in the current HTTP request. The parameter name can be customized with the paramName
property of this interceptor. If such a parameter is present in the current request, this interceptor changes the
user’s locale according to the parameter value.

package com.apress.springrecipes.court.web.config;

import org.springframework.web.servlet.i18n.CookieLocaleResolver;
import org.springframework.web.servlet.i18n.LocaleChangeInterceptor;
import org.springframework.web.servlet.view.InternalResourceViewResolver;

import java.util.Locale;

// Other imports omitted

@Configuration
public class I18NConfiguration implements WebMvcConfigurer {

 @Override
 public void addInterceptors(InterceptorRegistry registry) {
 registry.addInterceptor(measurementInterceptor());
 registry.addInterceptor(localeChangeInterceptor());
 registry .addInterceptor(summaryReportInterceptor())

.addPathPatterns("/reservationSummary*");
 }

 @Bean
 public LocaleChangeInterceptor localeChangeInterceptor() {
 LocaleChangeInterceptor localeChangeInterceptor = new LocaleChangeInterceptor();
 localeChangeInterceptor.setParamName("language");
 return localeChangeInterceptor;
 }

Chapter 3 ■ Spring MVC

139

 @Bean
 public CookieLocaleResolver localeResolver() {
 CookieLocaleResolver cookieLocaleResolver = new CookieLocaleResolver();
 cookieLocaleResolver.setCookieName("language");
 cookieLocaleResolver.setCookieMaxAge(3600);
 cookieLocaleResolver.setDefaultLocale(new Locale("en"));
 return cookieLocaleResolver;
 }
 ...
}

Now a user’s locale can be changed by any URLs with the language parameter. For example, the
following two URLs change the user’s locale to English for the United States, and to German, respectively:

http://localhost:8080/court/welcome?language=en_US
http://localhost:8080/court/welcome?language=de

Then you can show the HTTP response object’s locale in welcome.jsp to verify the locale interceptor’s
configuration.

<%@ taglib prefix="fmt" uri="http://java.sun.com/jsp/jstl/fmt" %>

<html>
<head>
<title>Welcome</title>
</head>

<body>
...

Locale : ${pageContext.response.locale}
</body>
</html>

3-5. Externalize Locale-Sensitive Text Messages
Problem
When developing an internationalized web application, you have to display your web pages in a user’s
preferred locale. You don’t want to create different versions of the same page for different locales.

Solution
To avoid creating different versions of a page for different locales, you should make your web page
independent of the locale by externalizing locale-sensitive text messages. Spring is able to resolve text
messages for you by using a message source, which has to implement the MessageSource interface.
Then your JSP files can use the <spring:message> tag, defined in Spring’s tag library, to resolve a message
given the code.

Chapter 3 ■ Spring MVC

140

How It Works
You can define a message source by registering a bean of type MessageSource in the web application
context. You must set the bean name of the message source to messageSource for DispatcherServlet
to autodetect. Note that you can register only one message source per DispatcherServlet. The
ResourceBundleMessageSource implementation resolves messages from different resource bundles for
different locales. For example, you can register it in WebConfiguration to load resource bundles whose base
name is messages.

@Bean
public MessageSource messageSource() {
 ResourceBundleMessageSource messageSource = new ResourceBundleMessageSource();
 messageSource.setBasename("messages");
 return messageSource;
}

Then you create two resource bundles, messages.properties and messages_de.properties, to store
messages for the default and German locales. These resource bundles should be put in the root of the
classpath.

welcome.title=Welcome
welcome.message=Welcome to Court Reservation System

welcome.title=Willkommen
welcome.message=Willkommen zum Spielplatz-Reservierungssystem

Now, in a JSP file such as welcome.jsp, you can use the <spring:message> tag to resolve a message
given the code. This tag automatically resolves the message according to a user’s current locale. Note that
this tag is defined in Spring’s tag library, so you have to declare it at the top of your JSP file.

<%@ taglib prefix="spring" uri="http://www.springframework.org/tags" %>

<html>
<head>
<title><spring:message code="welcome.title" text="Welcome" /></title>
</head>

<body>
<h2><spring:message code="welcome.message"
 text="Welcome to Court Reservation System" /></h2>
...
</body>
</html>

In <spring:message>, you can specify the default text to output when a message for the given code
cannot be resolved.

Chapter 3 ■ Spring MVC

141

3-6. Resolve Views by Name
Problem
After a handler has finished handling a request, it returns a logical view name, in which case
DispatcherServlet has to delegate control to a view template so the information is rendered. You want to
define a strategy for DispatcherServlet to resolve views by their logical names.

Solution
In a Spring MVC application, views are resolved by one or more view resolver beans declared in the web
application context. These beans have to implement the ViewResolver interface for DispatcherServlet to
autodetect them. Spring MVC comes with several ViewResolver implementations for you to resolve views
using different strategies.

How It Works
You will explore different view resolving strategies, starting with a naming template using a prefix and
suffix to generate the actual name to resolving views based on the name from either an XML file or
ResourceBundle. Finally you will learn how to use multiple ViewResolvers together.

Resolve Views Based on a Template’s Name and Location
The basic strategy of resolving views is to map them to a template’s name and location directly. The view
resolver InternalResourceViewResolver maps each view name to an application’s directory by means of a
prefix and a suffix declaration. To register InternalResourceViewResolver, you can declare a bean of this
type in the web application context.

@Bean
public InternalResourceViewResolver viewResolver() {
 InternalResourceViewResolver viewResolver = new InternalResourceViewResolver();
 viewResolver.setPrefix("/WEB-INF/jsp/");
 viewResolver.setSuffix(".jsp");
 return viewResolver;
}

For example, InternalResourceViewResolver resolves the view names welcome and reservationQuery
in the following way:

welcome --> /WEB-INF/jsp/welcome.jsp
reservationQuery --> /WEB-INF/jsp/reservationQuery.jsp

The type of the resolved views can be specified by the viewClass property. By default,
InternalResourceViewResolver resolves view names into view objects of type JstlView if the JSTL library
(i.e., jstl.jar) is present in the classpath. So, you can omit the viewClass property if your views are JSP
templates with JSTL tags.

InternalResourceViewResolver is simple, but it can only resolve internal resource views that can be
forwarded by the Servlet API’s RequestDispatcher (e.g., an internal JSP file or a servlet). As for other view
types supported by Spring MVC, you have to resolve them using other strategies.

Chapter 3 ■ Spring MVC

142

Resolve Views from an XML Configuration File
Another strategy for resolving views is to declare them as Spring beans and resolve them by their bean
names. You can declare the view beans in the same configuration file as the web application context, but it’s
better to isolate them in a separate configuration file. By default, XmlViewResolver loads view beans from
/WEB-INF/views.xml, but this location can be overridden through the location property.

Configuration
public class ViewResolverConfiguration implements WebMvcConfigurer, ResourceLoaderAware {

 private ResourceLoader resourceLoader;

 @Bean
 public ViewResolver viewResolver() {
 XmlViewResolver viewResolver = new XmlViewResolver();
 viewResolver.setLocation(resourceLoader.getResource("/WEB-INF/court-views.nl"));
 return viewResolver;
 }

 @Override
 public void setResourceLoader(ResourceLoader resourceLoader) {
 this.resourceLoader=resourceLoader;
 }
}

Note in the implementation of the ResourceLoaderAware interface, you need to load resources as
the location property takes an argument of the type Resource. In a Spring XML file, the conversion from
String to Resource is handled for you; however, when using a Java-based configuration, you have to do
some additional work. In the court-views.xml configuration file, you can declare each view as a normal
Spring bean by setting the class name and properties. In this way, you can declare any types of views
(e.g., RedirectView and even custom view types).

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd">

 <bean id="welcome"
 class="org.springframework.web.servlet.view.JstlView">
 <property name="url" value="/WEB-INF/jsp/welcome.jsp" />
 </bean>

 <bean id="reservationQuery"
 class="org.springframework.web.servlet.view.JstlView">
 <property name="url" value="/WEB-INF/jsp/reservationQuery.jsp" />
 </bean>

 <bean id="welcomeRedirect"
 class="org.springframework.web.servlet.view.RedirectView">
 <property name="url" value="welcome" />
 </bean>
</beans>

Chapter 3 ■ Spring MVC

143

Resolve Views from a Resource Bundle
In addition to an XML configuration file, you can declare view beans in a resource bundle.
ResourceBundleViewResolver loads view beans from a resource bundle in the classpath root. Note that
ResourceBundleViewResolver can also take advantage of the resource bundle capability to load view beans
from different resource bundles for different locales.

@Bean
public ResourceBundleViewResolver viewResolver() {
 ResourceBundleViewResolver viewResolver = new ResourceBundleViewResolver();
 viewResolver.setBasename("court-views");
 return viewResolver;
}

As you specify court-views as the base name of ResourceBundleViewResolver, the resource bundle is
court-views.properties. In this resource bundle, you can declare view beans in the format of properties.
This type of declaration is equivalent to the XML bean declaration.

welcome.(class)=org.springframework.web.servlet.view.JstlView
welcome.url=/WEB-INF/jsp/welcome.jsp
reservationQuery.(class)=org.springframework.web.servlet.view.JstlView
reservationQuery.url=/WEB-INF/jsp/reservationQuery.jsp
welcomeRedirect.(class)=org.springframework.web.servlet.view.RedirectView
welcomeRedirect.url=welcome

Resolve Views with Multiple Resolvers
If you have a lot of views in your web application, it is often insufficient to choose only one view-resolving
strategy. Typically, InternalResourceViewResolver can resolve most of the internal JSP views, but there are
usually other types of views that have to be resolved by ResourceBundleViewResolver. In this case, you have
to combine both strategies for view resolution.

@Bean
public ResourceBundleViewResolver viewResolver() {
 ResourceBundleViewResolver viewResolver = new ResourceBundleViewResolver();
 viewResolver.setOrder(0);
 viewResolver.setBasename("court-views");
 return viewResolver;
}

@Bean
public InternalResourceViewResolver internalResourceViewResolver() {
 InternalResourceViewResolver viewResolver = new InternalResourceViewResolver();
 viewResolver.setOrder(1);
 viewResolver.setPrefix("/WEB-INF/jsp/");
 viewResolver.setSuffix(".jsp");
 return viewResolver;
}

Chapter 3 ■ Spring MVC

144

When choosing more than one strategy at the same time, it’s important to specify the resolving priority.
You can set the order properties of the view resolver beans for this purpose. The lower-order value represents
the higher priority. Note that you should assign the lowest priority to InternalResourceViewResolver
because it always resolves a view no matter whether it exists. So, other resolvers will have no chance to resolve
a view if they have lower priorities. Now the resource bundle court-views.properties should only contain
the views that can’t be resolved by InternalResourceViewResolver (e.g., the redirect views).

welcomeRedirect.(class)=org.springframework.web.servlet.view.RedirectView
welcomeRedirect.url=welcome

Use the Redirect Prefix
If you have InternalResourceViewResolver configured in your web application context, it can resolve
redirect views by using the redirect: prefix in the view name. Then the rest of the view name is treated
as the redirect URL. For example, the view name redirect:welcome triggers a redirect to the relative URL
welcome. You can also specify an absolute URL in the view name.

3-7. Use Views and Content Negotiation
Problem
You are relying on extension-less URLs in your controllers—welcome and not welcome.html or welcome.pdf.
You want to devise a strategy so the correct content and type are returned for all requests.

Solution
When a request is received for a web application, it contains a series of properties that allow the processing
framework, in this case Spring MVC, to determine the correct content and type to return to the requesting
party. The main two properties include the URL extension provided in a request and the HTTP Accept
header. For example, if a request is made to a URL in the form /reservationSummary.xml, a controller is
capable of inspecting the extension and delegating it to a logical view representing an XML view. However,
the possibility can arise for a request to be made to a URL in the form /reservationSummary. Should this
request be delegated to an XML view or an HTML view? Or perhaps some other type of view? It’s impossible
to tell through the URL. But instead of deciding on a default view for such requests, a request can be
inspected for its HTTP Accept header to decide what type of view is more appropriate.

Inspecting HTTP Accept headers in a controller can be a messy process. So, Spring MVC supports the
inspection of headers through ContentNegotiatingViewResolver, allowing view delegation to be made
based on either a URL file extension or an HTTP Accept header value.

How It Works
The first thing you need to realize about Spring MVC content negotiation is that it’s configured as a resolver,
just like those illustrated in recipe 3-6. The Spring MVC content negotiating resolver is based on the
ContentNegotiatingViewResolver class. But before we describe how it works, we will illustrate how to
configure and integrate it with other resolvers.

Chapter 3 ■ Spring MVC

145

@Configuration
ublic class ViewResolverConfiguration implements WebMvcConfigurer {

 @Autowired
 private ContentNegotiationManager contentNegotiationManager;

 @Override
 public void configureContentNegotiation(ContentNegotiationConfigurer configurer) {
 Map<String, MediaType> mediatypes = new HashMap<>();
 mediatypes.put("html", MediaType.TEXT_HTML);
 mediatypes.put("pdf", MediaType.valueOf("application/pdf"));
 mediatypes.put("xls", MediaType.valueOf("application/vnd.ms-excel"));
 mediatypes.put("xml", MediaType.APPLICATION_XML);
 mediatypes.put("json", MediaType.APPLICATION_JSON);
 configurer.mediaTypes(mediatypes);
 }

 @Bean
 public ContentNegotiatingViewResolver contentNegotiatingViewResolver() {
 ContentNegotiatingViewResolver viewResolver = new ContentNegotiatingViewResolver();
 viewResolver.setContentNegotiationManager(contentNegotiationManager);
 return viewResolver;
 }
}

First you need to configure content negotiation. The default configuration adds a
ContentNegotiationManager, which can be configured by implementing the configureContentNegotiation
method. To get access to the configured ContentNegotiationManager, you can simply autowire it in your
configuration class.

Turn your attention back to the ContentNegotiatingViewResolver resolver. This configuration sets
up the resolver to have the highest priority among all resolvers, which is necessary to make the content
negotiating resolver work. The reason for this resolver having the highest priority is that it does not resolve
views themselves but rather delegates them to other view resolvers (which it automatically detects). Since a
resolver that does not resolve views can be confusing, we will elaborate with an example.

Let’s assume a controller receives a request for /reservationSummary.xml. Once the handler method
finishes, it sends control to a logical view named reservation. At this point, Spring MVC resolvers come into
play, the first of which is the ContentNegotiatingViewResolver resolver, since it has the highest priority.

The ContentNegotiatingViewResolver resolver first determines the media type for a request
based on the following criteria: it checks a request path extension (e.g., .html, .xml, or .pdf) against
the default media types (e.g., text/html) specified by the mediaTypes map in the configuration of the
ContentNegotiatingManager bean. If a request path has an extension but no match can be found in the
default mediaTypes section, an attempt is made to determine an extension’s media type using FileTypeMap
belonging to Java Activation Framework. If no extension is present in a request path, the HTTP Accept
header of the request is used. For the case of a request made on /reservationSummary.xml, the media
type is determined in step 1 to be application/xml. However, for a request made on a URL like /
reservationSummary, the media type is not determined until step 3.

The HTTP Accept header contains values such as Accept: text/html or Accept: application/pdf.
These values help the resolver determine the media type a requester is expecting, given that no extension is
present in the requesting URL.

Chapter 3 ■ Spring MVC

146

At this juncture, the ContentNegotiatingViewResolver resolver has a media type and logical view named
reservation. Based on this information, an iteration is performed over the remaining resolvers—based on
their order—to determine what view best matches the logical name based on the detected media type.

This process allows you to have multiple logical views with the same name, each supporting a
different media type (e.g., HTML, PDF, or XLS), with ContentNegotiatingViewResolver resolving
which is the best match. In such cases, a controller’s design is further simplified, since it won’t be
necessary to hard-code the logical view necessary to create a certain media type (e.g., pdfReservation,
xlsReservation, or htmlReservation) but instead a single view (e.g., reservation), letting the
ContentNegotiatingViewResolver resolver determine the best match.

A series of outcomes for this process can be the following:

•	 The media type is determined to be application/pdf. If the resolver with the highest
priority (lower order) contains a mapping to a logical view named reservation
but such a view does not support the application/pdf type, no match occurs—the
lookup process continues onto the remaining resolvers.

•	 The media type is determined to be application/pdf. The resolver with the highest
priority (lower order) containing a mapping to a logical view named reservation
and having support for application/pdf is matched.

•	 The media type is determined to be text/html. There are four resolvers with a
logical view named reservation, but the views mapped to the two resolvers with
highest priority do not support text/html. It’s the remaining resolver containing a
mapping for a view named reservation that supports text/html that is matched.

This search process for views automatically takes place on all the resolvers configured in an
application. It’s also possible to configure—within the ContentNegotiatingViewResolver bean—
default views and resolvers, in case you don’t want to fall back on configurations made outside the
ContentNegotiatingViewResolver resolver.

Recipe 3-11 will illustrate a controller that relies on the ContentNegotiatingViewResolver resolver to
determine an application’s views.

3-8. Map Exceptions to Views
Problem
When an unknown exception occurs, your application server usually displays the evil exception stack trace
to the user. Your users have nothing to do with this stack trace and complain that your application is not user
friendly. Moreover, it’s also a potential security risk, as you may expose the internal method call hierarchy to
users. However, a web application’s web.xml can be configured to display friendly JSP pages in case an HTTP
error or class exception occur. Spring MVC supports a more robust approach to managing views for class
exceptions.

Solution
In a Spring MVC application, you can register one or more exception resolver beans in the web application
context to resolve uncaught exceptions. These beans have to implement the HandlerExceptionResolver
interface for DispatcherServlet to autodetect them. Spring MVC comes with a simple exception resolver
for you to map each category of exceptions to a view.

Chapter 3 ■ Spring MVC

147

How It Works
Suppose your reservation service throws the following exception because of a reservation not being available:

package com.apress.springrecipes.court.service;
...
public class ReservationNotAvailableException extends RuntimeException {

 private String courtName;
 private Date date;
 private int hour;

 // Constructors and Getters
 ...
}

To resolve uncaught exceptions, you can write your custom exception resolver by implementing the
HandlerExceptionResolver interface. Usually, you’ll want to map different categories of exceptions into
different error pages. Spring MVC comes with the exception resolver SimpleMappingExceptionResolver for
you to configure the exception mappings in the web application context. For example, you can register the
following exception resolver in your configuration:

@Override
 publ ic void configureHandlerExceptionResolvers(List<HandlerExceptionResolver>

exceptionResolvers) {
 exceptionResolvers.add(handlerExceptionResolver());
}

@Bean
public HandlerExceptionResolver handlerExceptionResolver() {
 Properties exceptionMapping = new Properties();
 exceptionMapping.setProperty(
 ReservationNotAvailableException.class.getName(), "reservationNotAvailable");

 SimpleMappingExceptionResolver exceptionResolver = new SimpleMappingExceptionResolver();
 exceptionResolver.setExceptionMappings(exceptionMapping);
 exceptionResolver.setDefaultErrorView("error");
 return exceptionResolver;
}

In this exception resolver, you define the logical view name reservationNotAvailable for
ReservationNotAvailableException. You can add any number of exception classes using the
exceptionMappings property, all the way down to the more general exception class java.lang.Exception.
In this manner, depending on the type of class exception, a user is served a view in accordance with the
exception.

The property defaultErrorView is used to define a default view named error, used if an exception
class not mapped in the exceptionMapping element is raised.

Chapter 3 ■ Spring MVC

148

Addressing the corresponding views, if the InternalResourceViewResolver is configured in your
web application context, the following reservationNotAvailable.jsp page is shown if a reservation is
not available:

<%@ taglib prefix="fmt" uri="http://java.sun.com/jsp/jstl/fmt" %>
<html>
<head>
<title>Reservation Not Available</title>
</head>
<body>
Your reservation for ${exception.courtName} is not available on <fmt:formatDate
value="${exception.date}" pattern="yyyy-MM-dd" /> at ${exception.hour}:00.
</body>

In an error page, the exception instance can be accessed by the variable ${exception}, so you can show
the user more details on this exception.

It’s a good practice to define a default error page for any unknown exceptions. You can use the property
defaultErrorView to define a default view or map a page to the key java.lang.Exception as the last entry
of the mapping, so it will be shown if no other entry has been matched before. Then you can create this
view’s JSP— error.jsp—as follows:

<html>
<head>
<title>Error</title>
</head>
<body>
An error has occurred. Please contact our administrator for details.
</body>
</html>

Map Exceptions Using @ExceptionHandler
Instead of configuring a HandlerExceptionResolver, you can annotate a method with @ExceptionHandler.
It works in a similar way as the @RequestMapping annotation.

@Controller
@RequestMapping("/reservationForm")
@SessionAttributes("reservation")
public class ReservationFormController {

 @ExceptionHandler(ReservationNotAvailableException.class)
 public String handle(ReservationNotAvailableException ex) {
 return "reservationNotAvailable";
 }

 @ExceptionHandler
 public String handleDefault(Exception e) {
 return "error";
 }
 ...
}

Chapter 3 ■ Spring MVC

149

You have here two methods annotated as @ExceptionHandler. The first is for handling the specific
ReservationNotAvailableException; the second is the general (catchall) exception-handling method. You
also don’t have to specify a HandlerExceptionResolver in the WebConfiguration anymore.

Methods annotated with @ExceptionHandler can have a variety of return types (like the @RequestMapping
methods); here you just return the name of the view that needs to be rendered, but you could also have
returned a ModelAndView, a View, and so on.

Although using @ExceptionHandler annotated methods is very powerful and flexible, there
is a drawback when you put them in controllers. Those methods will work only for the controller
they are defined in, so if you have an exception occurring in another controller (for instance, the
WelcomeController), these methods won’t be called. Generic exception-handling methods have to be
moved to a separate class, and that class has to be annotated with @ControllerAdvice.

@ControllerAdvice
public class ExceptionHandlingAdvice {

 @ExceptionHandler(ReservationNotAvailableException.class)
 public String handle(ReservationNotAvailableException ex) {
 return "reservationNotAvailable";
 }

 @ExceptionHandler
 public String handleDefault(Exception e) {
 return "error";
 }
}

This class will apply to all controllers in the application context, which is why it’s called @ControllerAdvice.

3-9. Handle Forms with Controllers
Problem
In a web application, you often have to deal with forms. A form controller has to show a form to a user and
also handle the form submission. Form handling can be a complex and variable task.

Solution
When a user interacts with a form, it requires support for two operations from a controller. First, when a form
is initially requested, it asks the controller to show a form by an HTTP GET request, which renders the form
view to the user. Then when the form is submitted, an HTTP POST request is made to handle things such
as validation and business processing for the data present in the form. If the form is handled successfully, it
renders the success view to the user. Otherwise, it renders the form view again with errors.

How It Works
Suppose you want to allow a user to make a court reservation by filling out a form. To give you a better idea
of the data handled by a controller, we will introduce the controller’s view (i.e., the form) first.

Chapter 3 ■ Spring MVC

150

Create a Form’s Views
Let’s create the form view reservationForm.jsp. The form relies on Spring’s form tag library, as this
simplifies a form’s data binding, display of error messages, and the redisplay of original values entered by the
user in case of errors.

<%@ taglib prefix="form" uri="http://www.springframework.org/tags/form"%>

<html>
<head>
<title>Reservation Form</title>
<style>
.error {
 color: #ff0000;
 font-weight: bold;
}
</style>
</head>

<body>
<form:form method="post" modelAttribute="reservation">
<form:errors path="*" cssClass="error" />
<table>
 <tr>
 <td>Court Name</td>
 <td><form:input path="courtName" /></td>
 <td><form:errors path="courtName" cssClass="error" /></td>
 </tr>
 <tr>
 <td>Date</td>
 <td><form:input path="date" /></td>
 <td><form:errors path="date" cssClass="error" /></td>
 </tr>
 <tr>
 <td>Hour</td>
 <td><form:input path="hour" /></td>
 <td><form:errors path="hour" cssClass="error" /></td>
 </tr>
 <tr>
 <td colspan="3"><input type="submit" /></td>
 </tr>
</table>
</form:form>
</body>
</html>

The Spring <form:form> declares two attributes. The method="post" attribute indicates that a form
performs an HTTP POST request upon submission. The modelAttribute="reservation" attribute indicates
that the form data is bound to a model named reservation. The first attribute should be familiar to you
since it’s used on most HTML forms. The second attribute will become clearer once we describe the
controller that handles the form.

Chapter 3 ■ Spring MVC

151

Bear in mind the <form:form> tag is rendered into standard HTML before it’s sent to a user, so it’s not
that modelAttribute="reservation" is of use to a browser; the attribute is used as a facility to generate the
actual HTML form.

Next, you can find the <form:errors> tag, used to define a location in which to place errors in case a
form does not meet the rules set forth by a controller. The attribute path="*" is used to indicate the display
of all errors—given the wildcard *—whereas the attribute cssClass="error" is used to indicate a CSS
formatting class to display the errors.

Next, you can find the form’s various <form:input> tags accompanied by another set of corresponding
<form:errors> tags. These tags make use of the attribute path to indicate the form’s fields, which in this case
are courtName, date, and hour.

The <form:input> tags are bound to properties corresponding to modelAttribute by using the path
attribute. They show the user the original value of the field, which will be either the bound property value or
the value rejected because of a binding error. They must be used inside the <form:form> tag, which defines a
form that binds to modelAttribute by its name.

Finally, you can find the standard HTML tag <input type="submit" /> that generates a Submit button
and trigger the sending of data to the server, followed by the </form:form> tag that closes out the form. If the
form and its data are processed correctly, you need to create a success view to notify the user of a successful
reservation. The reservationSuccess.jsp illustrated next serves this purpose:

<html>
<head>
<title>Reservation Success</title>
</head>

<body>
Your reservation has been made successfully.
</body>
</html>

It’s also possible for errors to occur because of invalid values being submitted in a form. For example,
if the date is not in a valid format or an alphabetic character is presented for hour, the controller is designed
to reject such field values. The controller will then generate a list of selective error codes for each error to be
returned to the form view, and the values are placed inside the <form:errors> tag.

For example, for an invalid value input in the date field, the following error codes are generated by
a controller:

typeMismatch.command.date
typeMismatch.date
typeMismatch.java.time.LocalDate
typeMismatch

If you have a ResourceBundleMessageSource defined, you can include the following error messages in
your resource bundle for the appropriate locale (e.g., messages.properties for the default locale):

typeMismatch.date=Invalid date format
typeMismatch.hour=Invalid hour format

The corresponding error codes and their values are returned to a user if a failure occurs when
processing form data.

Now that you know the structure of the views involved with a form, as well as the data handled by it, let’s
take a look at the logic that handles the submitted data (i.e., the reservation) in a form.

Chapter 3 ■ Spring MVC

152

Create a Form’s Service Processing
This is not the controller but rather the service used by the controller to process the form’s data reservation.
First define a make() method in the ReservationService interface.

package com.apress.springrecipes.court.service;
...
public interface ReservationService {
 ...
 void make(Reservation reservation)
 throws ReservationNotAvailableException;
}

Then you implement this make() method by adding a Reservation item to the list that stores the
reservations. You throw a ReservationNotAvailableException in case of a duplicate reservation.

package com.apress.springrecipes.court.service;
...
public class ReservationServiceImpl implements ReservationService {
 ...
 @Override
 public void make(Reservation reservation) throws ReservationNotAvailableException {
 long cnt = reservations.stream()
 .filter(made -> Objects.equals(made.getCourtName(), reservation.getCourtName()))
 .filter(made -> Objects.equals(made.getDate(), reservation.getDate()))
 .filter(made -> made.getHour() == reservation.getHour())

.count();

 if (cnt > 0) {
 throw new ReservationNotAvailableException(reservation
 .getCourtName(), reservation.getDate(), reservation
 .getHour());
 } else {
 reservations.add(reservation);
 }
 }
}

Now that you have a better understanding of the two elements that interact with a controller—a form’s
views and the reservation service class—let’s create a controller to handle the court reservation form.

Create a Form’s Controller
A controller used to handle forms makes use of practically the same annotations you’ve already used in the
previous recipes. So let’s get right to the code.

package com.apress.springrecipes.court.web;
...

@Controller
@RequestMapping("/reservationForm")

Chapter 3 ■ Spring MVC

153

@SessionAttributes("reservation")
public class ReservationFormController {

 private final ReservationService reservationService;

 @Autowired
 public ReservationFormController(ReservationService reservationService) {
 this.reservationService = reservationService;
 }

 @RequestMapping(method = RequestMethod.GET)
 public String setupForm(Model model) {
 Reservation reservation = new Reservation();
 model.addAttribute("reservation", reservation);
 return "reservationForm";
 }

 @RequestMapping(method = RequestMethod.POST)
 public String submitForm(
 @ModelAttribute("reservation") Reservation reservation,
 BindingResult result, SessionStatus status) {
 reservationService.make(reservation);
 return "redirect:reservationSuccess";
 }
}

The controller starts by using the standard @Controller annotation, as well as the @RequestMapping
annotation that allows access to the controller through the following URL:

http://localhost:8080/court/reservationForm

When you enter this URL in your browser, it will send an HTTP GET request to your web application.
This in turn triggers the execution of the setupForm method, which is designated to handle this type of
request based on its @RequestMapping annotation.

The setupForm method defines a Model object as an input parameter, which serves to send model
data to the view (i.e., the form). Inside the handler method, an empty Reservation object is created that is
added as an attribute to the controller’s Model object. Then the controller returns the execution flow to the
reservationForm view, which in this case is resolved to reservationForm.jsp (i.e., the form).

The most important aspect of this last method is the addition of an empty Reservation object. If
you analyze the form reservationForm.jsp, you will notice the <form:form> tag declares the attribute
modelAttribute="reservation". This means that upon rendering the view, the form expects an object
named reservation to be available, which is achieved by placing it inside the handler method’s Model. In
fact, further inspection reveals that the path values for each <form:input> tag correspond to the field names
belonging to the Reservation object. Since the form is being loaded for the first time, it should be evident
that an empty Reservation object is expected.

Another aspect that is vital to describe prior to analyzing the other controller handler method is the
@SessionAttributes("reservation") annotation—declared at the top of the controller class. Since it’s
possible for a form to contain errors, it can be an inconvenience to lose whatever valid data was already
provided by a user on every subsequent submission. To solve this problem, the @SessionAttributes
annotation is used to save a reservation field to a user’s session so that any future reference to the reservation
field is in fact made on the same reference, whether a form is submitted twice or more times. This is also the

Chapter 3 ■ Spring MVC

154

reason why only a single Reservation object is created and assigned to the reservation field in the entire
controller. Once the empty Reservation object is created—inside the HTTP GET handler method—all
actions are made on the same object, since it’s assigned to a user’s session.

Now let’s turn our attention to submitting the form for the first time. After you have filled in the
form fields, submitting the form triggers an HTTP POST request, which in turn invokes the submitForm
method—on account of this method’s @RequestMapping value. The input fields declared for the submitForm
method are three. The @ModelAttribute("reservation") Reservation reservation is used to reference
the reservation object. The BindingResult object contains newly submitted data by the user. The
SessionStatus object is used so that it is possible to mark the processing as completed, after which the
Reservation object will be removed from the HttpSession.

At this juncture, the handler method doesn’t incorporate validation or perform access to a user’s
session, which is the purpose of the BindingResult object and SessionStatus object—we will describe and
incorporate them shortly.

The only operation performed by the handler method is reservationService.make(reservation);.
This operation invokes the reservation service using the current state of the reservation object. Generally,
controller objects are first validated prior to performing this type of operation on them. Finally, note the
handler method returns a view named redirect:reservationSuccess. The actual name of the view in this
case is reservationSuccess, which is resolved to the reservationSuccess.jsp page you created earlier.

The redirect: prefix in the view name is used to avoid a problem known as duplicate form submission.
When you refresh the web page in the form success view, the form you just submitted is resubmitted.

To avoid this problem, you can apply the post/redirect/get design pattern, which recommends redirecting
to another URL after a form submission is handled successfully, instead of returning an HTML page directly.
This is the purpose of prefixing a view name with redirect:.

Initialize a Model Attribute Object and Prepopulate a Form with Values
The form is designed to let users make reservations. However, if you analyze the Reservation domain class,
you will note the form is still missing two fields to create a complete reservation object. One of these fields is
the player field, which corresponds to a Player object. Per the Player class definition, a Player object has
both a name field and a phone field.

So, can the player field be incorporated into a form view and controller? Let’s analyze the form view first.

<html>
<head>
<title>Reservation Form</title>
</head>
<body>
<form method="post" modelAttribute="reservation">
<table>
 ...
 <tr>
 <td>Player Name</td>
 <td><form:input path="player.name" /></td>
 <td><form:errors path="player.name" cssClass="error" /></td>
 </tr>
 <tr>
 <td>Player Phone</td>
 <td><form:input path="player.phone" /></td>
 <td><form:errors path="player.phone" cssClass="error" /></td>
 </tr>

Chapter 3 ■ Spring MVC

155

 <tr>
 <td colspan="3"><input type="submit" /></td>
 </tr>
</table>
</form>
</body>
</html>

Using a straightforward approach, you add two additional <form:input> tags to represent the Player
object’s fields. Though these form declarations are simple, you also need to perform modifications to the
controller. Recall that by using <form:input> tags, a view expects to have access to model objects passed by
the controller that match the path value for <form:input> tags.

Though the controller’s HTTP GET handler method returns an empty reservation named Reservation
to this last view, the player property is null, so it causes an exception when rendering the form. To solve this
problem, you have to initialize an empty Player object and assign it to the Reservation object returned to
the view.

@RequestMapping(method = RequestMethod.GET)
public String setupForm(
@RequestParam(required = false, value = "username") String username, Model model) {
 Reservation reservation = new Reservation();
 reservation.setPlayer(new Player(username, null));
 model.addAttribute("reservation", reservation);
 return "reservationForm";
}

In this case, after creating the empty Reservation object, the setPlayer method is used to assign it
an empty Player object. Further note that the creation of the Person object relies on the username value.
This particular value is obtained from the @RequestParam input value, which was also added to the handler
method. By doing so, the Player object can be created with a specific username value passed in as a request
parameter, resulting in the username form field being prepopulated with this value.

So, for example, if a request to the form is made in the following manner:

http://localhost:8080/court/reservationForm?username=Roger

this allows the handler method to extract the username parameter to create the Player object, in turn
prepopulating the form’s username form field with a Roger value. It’s worth noting that the @RequestParam
annotation for the username parameter uses the property required=false; this allows a form request to be
processed even if such a request parameter is not present.

Provide Form Reference Data
When a form controller is requested to render the form view, it may have some types of reference data to
provide to the form (e.g., the items to display in an HTML selection). Now suppose you want to allow a user to
select the sport type when reserving a court—which is the final unaccounted field for the Reservation class.

<html>
<head>
<title>Reservation Form</title>
</head>
<body>
<form method="post" modelAttribute="reservation">

Chapter 3 ■ Spring MVC

156

<table>
 ...
 <tr>
 <td>Sport Type</td>
 <td><form:select path="sportType" items="${sportTypes}"
 itemValue="id" itemLabel="name" /></td>
 <td><form:errors path="sportType" cssClass="error" /></td>
 </tr>
 <tr>
 <td colspan="3"><input type="submit" /></td>
 /<tr>
</table>
</form>
</body>
</html>

The <form:select> tag provides a way to generate a drop-down list of values passed to the view by the
controller. Thus, the form represents the sportType field as a set of HTML <select> elements, instead of the
previous open-ended fields—<input>—that require a user to introduce text values.

Next, let’s take a look at how the controller assigns the sportType field as a model attribute; the process
is a little different from the previous fields.

First let’s define the getAllSportTypes() method in the ReservationService interface for retrieving all
available sport types.

package com.apress.springrecipes.court.service;
...
public interface ReservationService {
 ...
 public List<SportType> getAllSportTypes();
}

Then you can implement this method by returning a hard-coded list.

package com.apress.springrecipes.court.service;
...
public class ReservationServiceImpl implements ReservationService {
 ...
 public static final SportType TENNIS = new SportType(1, "Tennis");
 public static final SportType SOCCER = new SportType(2, "Soccer");

 public List<SportType> getAllSportTypes() {
 return Arrays.asList(TENNIS, SOCCER);
 }
}

Now that you have an implementation that returns a hard-coded list of SportType objects, let’s take a
look at how the controller associates this list for it to be returned to the form view.

package com.apress.springrecipes.court.service;
.....
 @ModelAttribute("sportTypes")
 public List<SportType> populateSportTypes() {

Chapter 3 ■ Spring MVC

157

 return reservationService.getAllSportTypes();
 }

 @RequestMapping(method = RequestMethod.GET)
 public String setupForm(
 @RequestParam(required = false, value = "username") String username, Model model) {
 Reservation reservation = new Reservation();
 reservation.setPlayer(new Player(username, null));
 model.addAttribute("reservation", reservation);
 return "reservationForm";
 }

Notice that the setupForm handler method charged with returning the empty Reservation object to the
form view remains unchanged.

The new addition and what is responsible for passing a SportType list as a model attribute to the form
view is the method decorated with the @ModelAttribute("sportTypes") annotation. The @ModelAttribute
annotation is used to define global model attributes, available to any returning view used in handler
methods. In the same way, a handler method declares a Model object as an input parameter and assigns
attributes that can be accessed in the returning view.

Since the method decorated with the @ModelAttribute("sportTypes") annotation has a return type of
List<SportType> and makes a call to reservationService.getAllSportTypes(), the hard-coded TENNIS
and SOCCER SportType objects are assigned to the model attribute named sportTypes. This last model
attribute is used in the form view to populate a drop-down list (i.e., <form:select> tag).

Bind Properties of Custom Types
When a form is submitted, a controller binds the form field values to the model object’s properties of the
same name, in this case a Reservation object. However, for properties of custom types, a controller is not
able to convert them unless you specify the corresponding property editors for them.

For example, the sport type selection field only submits the selected sport type ID—as this is the
way HTML <select> fields operate. Therefore, you have to convert this ID into a SportType object with
a property editor. First, you require the getSportType() method in ReservationService to retrieve a
SportType object by its ID.

package com.apress.springrecipes.court.service;
...
public interface ReservationService {
 ...
 public SportType getSportType(int sportTypeId);
}

For testing purposes, you can implement this method with a switch/case statement.

package com.apress.springrecipes.court.service;
...
public class ReservationServiceImpl implements ReservationService {
 ...
 public SportType getSportType(int sportTypeId) {
 switch (sportTypeId) {
 case 1:
 return TENNIS;

Chapter 3 ■ Spring MVC

158

 case 2:
 return SOCCER;
 default:
 return null;
 }
 }
}

Then you create the SportTypeConverter class to convert a sport type ID into a SportType object.
This converter requires ReservationService to perform the lookup.

package com.apress.springrecipes.court.domain;

import com.apress.springrecipes.court.service.ReservationService;
import org.springframework.core.convert.converter.Converter;

public class SportTypeConverter implements Converter<String, SportType> {

 private ReservationService reservationService;

 public SportTypeConverter(ReservationService reservationService) {
 this.reservationService = reservationService;
 }

 @Override
 public SportType convert(String source) {
 int sportTypeId = Integer.parseInt(source);
 SportType sportType = reservationService.getSportType(sportTypeId);
 return sportType;
 }
}

Now that you have the supporting SportTypeConverter class required to bind form properties to a
custom class like SportType, you need to associate it with the controller. For this purpose, you can use the
addFormatters method from the WebMvcConfigurer.

By overriding this method in your configuration class, custom types can be associated with a controller.
This includes the SportTypeConverter class and other custom types like Date. Though we didn’t mention
the date field earlier, it suffers from the same problem as the sport type selection field. A user introduces
date fields as text values. For the controller to assign these text values to the Reservation object’s date field,
this requires the date fields to be associated with a Date object. Given that the Date class is part of the Java
language, it won’t be necessary to create a special class like SportTypeConverter. For this purpose, the
Spring Framework already includes a custom class.

Knowing you need to bind both the SportTypeConverter class and a Date class to the underlying
controller, the following code illustrates the modifications to the configuration class:

package com.apress.springrecipes.court.web.config;
...
import com.apress.springrecipes.court.domain.SportTypeConverter;
import com.apress.springrecipes.court.service.ReservationService;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.format.FormatterRegistry;
import org.springframework.format.datetime.DateFormatter;

Chapter 3 ■ Spring MVC

159

@Configuration
@EnableWebMvc
@ComponentScan("com.apress.springrecipes.court.web")
public class WebConfiguration implements WebMvcConfigurer {

 @Autowired
 private ReservationService reservationService;

 @Override
 public void addFormatters(FormatterRegistry registry) {
 registry.addConverter(new SportTypeConverter(reservationService));
 }
 }

The only field for this last class corresponds to reservationService, used to access the application’s
ReservationService bean. Note the use of the @Autowired annotation that enables the injection of the
bean. Next, you can find the addFormatters method used to bind the Date and SportTypeConverter
classes. You can then find two calls to register the converter and formatter. These methods belong to the
FormatterRegistry object, which is passed as an input parameter to the addFormatters method.

The first call is used to bind a Date class to the DateFormatter class. The DateFormatter class is
provided by the Spring Framework and offers functionality to parse and print Date objects.

The second call is used to register the SportTypeConverter class. Since you created the
SportTypeConverter class, you should know that its only input parameter is a ReservationService bean. By
using this approach, every annotation-based controller (i.e., classes using the @Controller annotation) can
have access to the same custom converters and formatters in their handler methods.

Validate Form Data
When a form is submitted, it’s standard practice to validate the data provided by a user before a submission
is successful. Spring MVC supports validation by means of a validator object that implements the Validator
interface. You can write the following validator to check whether the required form fields are filled and
whether the reservation hour is valid on holidays and weekdays:

package com.apress.springrecipes.court.domain;

import org.springframework.stereotype.Component;
import org.springframework.validation.Errors;
import org.springframework.validation.ValidationUtils;
import org.springframework.validation.Validator;

import java.time.DayOfWeek;
import java.time.LocalDate;

@Component
public class ReservationValidator implements Validator {

 public boolean supports(Class<?> clazz) {
 return Reservation.class.isAssignableFrom(clazz);
 }

 public void validate(Object target, Errors errors) {
 ValidationUtils.rejectIfEmptyOrWhitespace(errors, "courtName",
 "required.courtName", "Court name is required.");

Chapter 3 ■ Spring MVC

160

 ValidationUtils.rejectIfEmpty(errors, "date",
 "required.date", "Date is required.");
 ValidationUtils.rejectIfEmpty(errors, "hour",
 "required.hour", "Hour is required.");
 ValidationUtils.rejectIfEmptyOrWhitespace(errors, "player.name",
 "required.playerName", "Player name is required.");
 ValidationUtils.rejectIfEmpty(errors, "sportType",
 "required.sportType", "Sport type is required.");

 Reservation reservation = (Reservation) target;
 LocalDate date = reservation.getDate();
 int hour = reservation.getHour();
 if (date != null) {
 if (date.getDayOfWeek() == DayOfWeek.SUNDAY) {
 if (hour < 8 || hour > 22) {
 errors.reject("invalid.holidayHour", "Invalid holiday hour.");
 }
 } else {
 if (hour < 9 || hour > 21) {
 errors.reject("invalid.weekdayHour", "Invalid weekday hour.");
 }
 }
 }
 }
}

In this validator, you use utility methods such as rejectIfEmptyOrWhitespace() and rejectIfEmpty()
in the ValidationUtils class to validate the required form fields. If any of these form fields are empty,
these methods will create a field error and bind it to the field. The second argument of these methods is the
property name, while the third and fourth are the error code and default error message.

You also check whether the reservation hour is valid on holidays and weekdays. In case of invalidity, you
should use the reject() method to create an object error to be bound to the reservation object, not to a field.

Since the validator class is annotated with the @Component annotation, Spring attempts to instantiate the
class as a bean in accordance with the class name, in this case reservationValidator.

Since validators may create errors during validation, you should define messages for the error codes for
displaying to the user. If you have ResourceBundleMessageSource defined, you can include the following error
messages in your resource bundle for the appropriate locale (e.g., messages.properties for the default locale):

required.courtName=Court name is required
required.date=Date is required
required.hour=Hour is required
required.playerName=Player name is required
required.sportType=Sport type is required
invalid.holidayHour=Invalid holiday hour
invalid.weekdayHour=Invalid weekday hour

To apply this validator, you need to perform the following modification to your controller:

package com.apress.springrecipes.court.service;
.....
 private ReservationService reservationService;
 private ReservationValidator reservationValidator;

Chapter 3 ■ Spring MVC

161

 public ReservationFormController(ReservationService reservationService,
 ReservationValidator reservationValidator) {
 this.reservationService = reservationService;
 this.reservationValidator = reservationValidator;
 }

 @RequestMapping(method = RequestMethod.POST)
 public String submitForm(
 @ModelAttribute("reservation") @Validated Reservation reservation,
 BindingResult result, SessionStatus status) {
 if (result.hasErrors()) {
 return "reservationForm";
 } else {
 reservationService.make(reservation);
 return "redirect:reservationSuccess";
 }
 }

 @InitBinder
 public void initBinder(WebDataBinder binder) {
 binder.setValidator(reservationValidator);
 }

The first addition to the controller is the ReservationValidator field, which gives the controller access
to an instance of the validator bean.

The next modification takes place in the HTTP POST handler method, which is always called when
a user submits a form. Next to the @ModelAttribute annotation there is now an @Validated annotation,
which triggers validation of the object. After the validation, the result parameter—the BindingResult
object—contains the results for the validation process. Next, a conditional based on the value of result.
hasErrors() is made. If the validation class detects errors, this value is true.

If errors are detected in the validation process, the method handler returns the view
reservationForm, which corresponds to the same form so a user can resubmit information. If no errors
are detected in the validation process, a call is made to perform the reservation— reservationService.
make(reservation);—followed by a redirection to the success view reservationSuccess.

The registration of the validator is done in the @InitBinder annotated method, and the validator is
set on the WebDataBinder so that it can be used after binding. To register the validator, you need to use the
setValidator method. You can also register multiple validators using the addValidators method, which
takes a varargs argument for one or more Validator instances.

 ■ Note the WebDataBinder can also be used to register additional ProperyEditor, Converter, and
Formatter instances for type conversion. this can be used instead of registering global PropertyEditors,
Converters, or Formatters.

Expire a Controller’s Session Data
To support the possibility of a form being submitted multiple times and not losing data provided by a user
between submissions, the controller relies on the use of the @SessionAttributes annotation. By doing so, a
reference to the reservation field represented as a Reservation object is saved between requests.

Chapter 3 ■ Spring MVC

162

However, once a form is submitted successfully and a reservation is made, there is no point in keeping
the Reservation object in a user’s session. In fact, if a user revisits the form within a short period of time,
there is a possibility that remnants of this old Reservation object emerge if not removed.

Values assigned using the @SessionAttributes annotation can be removed using the SessionStatus
object, which is an object that can be passed as an input parameter to handler methods. The following code
illustrates how to expire the controller’s session data:

package com.apress.springrecipes.court.web;

@Controller
@RequestMapping("/reservationForm")
@SessionAttributes("reservation")
public class ReservationFormController {

 @RequestMapping(method = RequestMethod.POST)
 public String submitForm(
 @ModelAttribute("reservation") Reservation reservation,
 BindingResult result, SessionStatus status) {

 if (result.hasErrors()) {
 return "reservationForm";
 } else {
 reservationService.make(reservation);
 status.setComplete();
 return "redirect:reservationSuccess";
 }
 }
 }

Once the handler method performs the reservation by calling reservationService.make(reservation);
and right before a user is redirected to a success page, it becomes an ideal time in which expire a controller’s
session data. This is done by calling the setComplete() method on the SessionStatus object. It’s that simple.

3-10. Handle Multipage Forms with Wizard Form Controllers
Problem
In a web application, you sometimes have to deal with complex forms that span multiple pages. Forms like
this are usually called wizard forms because users have to fill them page by page—just like using a software
wizard. Undoubtedly, you can create one or more form controllers to handle a wizard form.

Solution
As there are multiple form pages for a wizard form, you have to define multiple page views for a wizard form
controller. A controller then manages the form status across all these form pages. In a wizard form, there can
also be a single controller handler method for form submissions, just like an individual form. However, to
distinguish between a user’s action, a special request parameter needs to be embedded in each form, usually
specified as the name of a submit button.

`_finish`: Finish the wizard form.
`_cancel`: Cancel the wizard form.
`_targetx`: Step to the target page, where x is the zero-based page index.

Chapter 3 ■ Spring MVC

163

Using these parameters, a controller’s handler method can determine what steps to take based on the
form and user’s action.

How It Works
Suppose you want to provide a function that allows a user to reserve a court at fixed hours periodically.
You first define the PeriodicReservation class in the domain subpackage.

package com.apress.springrecipes.court.domain;
...
public class PeriodicReservation {

 private String courtName;
 private Date fromDate;
 private Date toDate;
 private int period;
 private int hour;
 private Player player;

 // Getters and Setters
 ...
}

Then you add a makePeriodic() method to the ReservationService interface for making a periodic
reservation.

package com.apress.springrecipes.court.service;
...
public interface ReservationService {
 ...
 public void makePeriodic(PeriodicReservation periodicReservation)
 throws ReservationNotAvailableException;
}

The implementation of this method involves generating a series of Reservation objects from
PeriodicReservation and passing each reservation to the make() method. Obviously in this simple
application, there’s no transaction management support.

package com.apress.springrecipes.court.service;
...
public class ReservationServiceImpl implements ReservationService {
 ...
 @Override
 public void makePeriodic(PeriodicReservation periodicReservation)
 throws ReservationNotAvailableException {

 LocalDate fromDate = periodicReservation.getFromDate();

Chapter 3 ■ Spring MVC

164

 while (fromDate.isBefore(periodicReservation.getToDate())) {
 Reservation reservation = new Reservation();
 reservation.setCourtName(periodicReservation.getCourtName());
 reservation.setDate(fromDate);
 reservation.setHour(periodicReservation.getHour());
 reservation.setPlayer(periodicReservation.getPlayer());
 make(reservation);

 fromDate = fromDate.plusDays(periodicReservation.getPeriod());

 }
 }
}

Create Wizard Form Pages
Suppose you want to show users the periodic reservation form split across three different pages. Each page
has a portion of the form fields. The first page is reservationCourtForm.jsp, which contains only the court
name field for the periodic reservation.

<%@ taglib prefix="form" uri="http://www.springframework.org/tags/form"%>

<html>
<head>
<title>Reservation Court Form</title>
<style>
.error {
 color: #ff0000;
 font-weight: bold;
}
</style>
</head>

<body>
<form:form method="post" modelAttribute="reservation">
<table>
 <tr>
 <td>Court Name</td>
 <td><form:input path="courtName" /></td>
 <td><form:errors path="courtName" cssClass="error" /></td>
 </tr>
 <tr>
 <td colspan="3">
 <input type="hidden" value="0" name="_page" />
 <input type="submit" value="Next" name="_target1" />
 <input type="submit" value="Cancel" name="_cancel" />
 </td>
 </tr>
</table>
</form:form>
</body>
</html>

Chapter 3 ■ Spring MVC

165

The form and input fields in this page are defined with Spring’s <form:form> and <form:input>
tags. They are bound to the model attribute reservation and its properties. There’s also an error tag for
displaying the field error message to the user. Note that there are two submit buttons in this page. The Next
button’s name must be _target1. It asks the wizard form controller to step forward to the second page,
whose page index is 1 (zero-based). The Cancel button’s name must be _cancel. It asks the controller to
cancel this form. In addition, there is also a hidden form field to keep track of the page a user is on; in this
case, it corresponds to 0.

The second page is reservationTimeForm.jsp. It contains the date and time fields for a periodic
reservation.

<%@ taglib prefix="form" uri="http://www.springframework.org/tags/form"%>

<html>
<head>
<title>Reservation Time Form</title>
<style>
.error {
 color: #ff0000;
 font-weight: bold;
}
</style>
</head>

<body>
<form:form method="post" modelAttribute="reservation">
<table>
 <tr>
 <td>From Date</td>
 <td><form:input path="fromDate" /></td>
 <td><form:errors path="fromDate" cssClass="error" /></td>
 </tr>
 <tr>
 <td>To Date</td>
 <td><form:input path="toDate" /></td>
 <td><form:errors path="toDate" cssClass="error" /></td>
 </tr>
 <tr>
 <td>Period</td>
 <td><form:select path="period" items="${periods}" /></td>
 <td><form:errors path="period" cssClass="error" /></td>
 </tr>
 <tr>
 <td>Hour</td>
 <td><form:input path="hour" /></td>
 <td><form:errors path="hour" cssClass="error" /></td>
 </tr>
 <tr>
 <td colspan="3">
 <input type="hidden" value="1" name="_page"/>
 <input type="submit" value="Previous" name="_target0" />
 <input type="submit" value="Next" name="_target2" />

Chapter 3 ■ Spring MVC

166

 <input type="submit" value="Cancel" name="_cancel" />
 </td>
 </tr>
</table>
</form:form>
</body>
</html>

There are three submit buttons in this form. The names of the Previous and Next buttons must be
_target0 and _target2, respectively. They ask the wizard form controller to step to the first page and the
third page. The Cancel button asks the controller to cancel this form. In addition, there is a hidden form field
to keep track of the page a user is on; in this case, it corresponds to 1.

The third page is reservationPlayerForm.jsp. It contains the player information fields for a periodic
reservation.

<%@ taglib prefix="form" uri="http://www.springframework.org/tags/form"%>

<html>
<head>
<title>Reservation Player Form</title>
<style>
.error {
 color: #ff0000;
 font-weight: bold;
}
</style>
</head>

<body>
<form:form method="POST" commandName="reservation">
<table>
 <tr>
 <td>Player Name</td>
 <td><form:input path="player.name" /></td>
 <td><form:errors path="player.name" cssClass="error" /></td>
 </tr>
 <tr>
 <td>Player Phone</td>
 <td><form:input path="player.phone" /></td>
 <td><form:errors path="player.phone" cssClass="error" /></td>
 </tr>
 <tr>
 <td colspan="3">
 <input type="hidden" value="2" name="_page"/>
 <input type="submit" value="Previous" name="_target1" />
 <input type="submit" value="Finish" name="_finish" />
 <input type="submit" value="Cancel" name="_cancel" />
 </td>
 </tr>
</table>
</form:form>
</body>
</html>

Chapter 3 ■ Spring MVC

167

There are three submit buttons in this form. The Previous button asks the wizard form controller to step
back to the second page. The Finish button’s name must be _finish. It asks the controller to finish this form.
The Cancel button asks the controller to cancel this form. In addition, there is a hidden form field to keep
track of the page a user is on; in this case, it corresponds to 2.

Create a Wizard Form Controller
Now let’s create a wizard form controller to handle this periodic reservation form. Like the previous Spring
MVC controllers, this controller has four main handler methods—one for HTTP GET requests and others for
HTTP POST requests—as well as makes use of the same controller elements (e.g., annotations, validation, or
sessions) used in prior controllers. For a wizard form controller, all the form fields in different pages are bound
to a single model attribute’s Reservation object, which is stored in a user’s session across multiple requests.

package com.apress.springrecipes.court.web;

import com.apress.springrecipes.court.domain.PeriodicReservation;
import com.apress.springrecipes.court.domain.Player;
import com.apress.springrecipes.court.service.ReservationService;
import org.springframework.stereotype.Controller;
import org.springframework.ui.Model;
import org.springframework.validation.BindingResult;
import org.springframework.validation.annotation.Validated;
import org.springframework.web.bind.annotation.*;
import org.springframework.web.bind.support.SessionStatus;
import org.springframework.web.util.WebUtils;

import javax.annotation.PostConstruct;
import javax.servlet.http.HttpServletRequest;
import java.util.Enumeration;
import java.util.HashMap;
import java.util.Map;

@Controller
@RequestMapping("/periodicReservationForm")
@SessionAttributes("reservation")
public class PeriodicReservationController {

 private final Map<Integer, String> pageForms = new HashMap<>(3);
 private final ReservationService reservationService;

 public PeriodicReservationController(ReservationService reservationService) {
 this.reservationService = reservationService;
 }

 @PostConstruct
 public void initialize() {
 pageForms.put(0, "reservationCourtForm");
 pageForms.put(1, "reservationTimeForm");
 pageForms.put(2, "reservationPlayerForm");
 }

Chapter 3 ■ Spring MVC

168

 @GetMapping
 public String setupForm(Model model) {
 PeriodicReservation reservation = new PeriodicReservation();
 reservation.setPlayer(new Player());
 model.addAttribute("reservation", reservation);
 return "reservationCourtForm";
 }

 @PostMapping(params = {"_cancel"})
 public String cancelForm(@RequestParam("_page") int currentPage) {

 return pageForms.get(currentPage);
 }

 @PostMapping(params = {"_finish"})
 public String completeForm(
 @ModelAttribute("reservation") PeriodicReservation reservation,
 BindingResult result, SessionStatus status,
 @RequestParam("_page") int currentPage) {

 if (!result.hasErrors()) {
 reservationService.makePeriodic(reservation);
 status.setComplete();
 return "redirect:reservationSuccess";
 } else {
 return pageForms.get(currentPage);
 }
 }

 @PostMapping
 public String submitForm(
 HttpServletRequest request,
 @ModelAttribute("reservation") PeriodicReservation reservation,
 BindingResult result, @RequestParam("_page") int currentPage) {

 int targetPage = getTargetPage(request, "_target", currentPage);
 if (targetPage < currentPage) {
 return pageForms.get(targetPage);
 }

 if (!result.hasErrors()) {
 return pageForms.get(targetPage);
 } else {
 return pageForms.get(currentPage);
 }
 }

 @ModelAttribute("periods")
 public Map<Integer, String> periods() {

Chapter 3 ■ Spring MVC

169

 Map<Integer, String> periods = new HashMap<Integer, String>();
 periods.put(1, "Daily");
 periods.put(7, "Weekly");
 return periods;
 }

 private int getTargetPage(HttpServletRequest request, String paramPrefix, int currentPage) {

 Enumeration<String> paramNames = request.getParameterNames();
 while (paramNames.hasMoreElements()) {
 String paramName = paramNames.nextElement();
 if (paramName.startsWith(paramPrefix)) {
 for (int i = 0; i < WebUtils.SUBMIT_IMAGE_SUFFIXES.length; i++) {
 String suffix = WebUtils.SUBMIT_IMAGE_SUFFIXES[i];
 if (paramName.endsWith(suffix)) {
 paramName = paramName.substring(0, paramName.length() -

suffix.length());
 }
 }
 return Integer.parseInt(paramName.substring(paramPrefix.length()));
 }
 }
 return currentPage;
 }
}

This controller uses some of the same elements used in the previous ReservationFormController
controller, so we won’t go into specifics about what’s already been explained. But to recap, it uses the
@SessionAttributes annotation to place the reservation object in a user’s session. It has the same HTTP
GET method used to assign empty Reservation and Player objects upon loading the first form view.

Next, the controller defines a HashMap in which it associates page numbers to view names. This HashMap
is used various times in the controller since the controller needs to determine target views for a variety of
scenarios (e.g., validation or a user clicking Cancel or Next).

You can also find the method decorated with the @ModelAttribute("periods") annotation. As it
was illustrated in previous controllers, this declaration allows a list of values to be made available to any
returning view placed in the controller. If you look at the previous form reservationTimeForm.jsp, you can
see that it expects to have access to a model attribute named periods.

Then you can find that the first @PostMapping will be called if the incoming request has the _cancel
parameter in the URL. It also tries to extract the currentPage value by extracting the page attribute from
the request using @RequestParam("page"). When this method is called, it returns control to the view
corresponding to the currentPage value. The result is that the input is reset to the input prior to changing
the content of the input fields.

The next @PostMapping(params={"_finish"}) will be called if the incoming request has the _finish
parameter in the URL, which is the case if the user clicked the Finish button. As this is the final step in the
process, you want to validate the Reservation object, and for that you annotate the attribute with @Validated.
When there are no errors, the handler method makes the reservation by calling reservationService.
makePeriodic(reservation); and redirects the user to the reservationSuccess view.

Chapter 3 ■ Spring MVC

170

The final handler method with @PostMapping handles the remaining cases and declares an input
parameter for the HttpServletRequest, allowing the handler method to access this object’s contents.
Previous handler methods used parameters such as @RequestParam to input data typically located
in these standard objects, as a shortcut mechanism. It demonstrates that full access to the standard
HttpServletRequest and HttpServletResponse objects inside a handler method is possible. The names
and notation for the remaining input parameters should be familiar to you from earlier controllers. If this
handler method is called, it means the user clicked either the Next or Previous button on either of the forms.
As a consequence, this means that inside the HttpServletRequest object there is a parameter named
_target. This is because each of the form’s Next and Previous buttons is assigned this parameter.

Using the getTargetPage method, the value for the _target parameter is extracted, which corresponds
to either target0, target1, or target2 and is trimmed to 0, 1, or 2 representing the target page.

Once you have the target page number and the current page number, you can determine whether the
user clicked the Next or Previous button. If the target page is lower than the current page, this means the
user clicked the Previous button. If the target page number is greater than the current page number, this
means the user clicked the Next button.

At this juncture, it isn’t clear why you need to determine whether a user clicked the Next or Previous
button, especially since a view corresponding to the target page is always returned. But the reason behind
this logic is the following: if a user clicked the Next button, you will want to validate the data, whereas if a
user clicked the Previous button, there is no need to validate anything. This will become obvious in the next
section when validation is incorporated into the controller.

As you have the PeriodicReservationController class decorated with the @RequestMapping
("/periodicReservationForm") annotation, you can access this controller through the following URL:

http://localhost:8080/court/periodicReservation

Validate Wizard Form Data
In a simple form controller, you validate the entire model attribute object in one shot when the form is
submitted. However, as there are multiple form pages for a wizard form controller, you have to validate each
page when it’s submitted. For this reason, you create the following validator, which splits the validate()
method into several fine-grained validate methods, each of which validates fields in a particular page:

package com.apress.springrecipes.court.domain;

import org.springframework.validation.Errors;
import org.springframework.validation.ValidationUtils;
import org.springframework.validation.Validator;

public class PeriodicReservationValidator implements Validator {

 public boolean supports(Class clazz) {
 return PeriodicReservation.class.isAssignableFrom(clazz);
 }

 public void validate(Object target, Errors errors) {
 validateCourt(target, errors);
 validateTime(target, errors);
 validatePlayer(target, errors);
 }

Chapter 3 ■ Spring MVC

171

 public void validateCourt(Object target, Errors errors) {
 ValidationUtils.rejectIfEmptyOrWhitespace(errors, "courtName",
 "required.courtName", "Court name is required.");
 }

 public void validateTime(Object target, Errors errors) {
 ValidationUtils.rejectIfEmpty(errors, "fromDate",
 "required.fromDate", "From date is required.");
 ValidationUtils.rejectIfEmpty(errors, "toDate", "required.toDate",
 "To date is required.");
 ValidationUtils.rejectIfEmpty(errors, "period",
 "required.period", "Period is required.");
 ValidationUtils.rejectIfEmpty(errors, "hour", "required.hour",
 "Hour is required.");
 }

 public void validatePlayer(Object target, Errors errors) {
 ValidationUtils.rejectIfEmptyOrWhitespace(errors, "player.name",
 "required.playerName", "Player name is required.");
 }
}

Similar to the earlier validator example, notice that this validator also relies on the @Component
annotation to automatically register the validator class as a bean. Once the validator bean is registered, the
only thing left to do is incorporate the validator into the controller.

package com.apress.springrecipes.court.web;

import com.apress.springrecipes.court.domain.PeriodicReservation;
import com.apress.springrecipes.court.domain.PeriodicReservationValidator;
import com.apress.springrecipes.court.domain.Player;
import com.apress.springrecipes.court.service.ReservationService;
import org.springframework.stereotype.Controller;
import org.springframework.ui.Model;
import org.springframework.validation.BindingResult;
import org.springframework.validation.annotation.Validated;
import org.springframework.web.bind.WebDataBinder;
import org.springframework.web.bind.annotation.*;
import org.springframework.web.bind.support.SessionStatus;
import org.springframework.web.util.WebUtils;

import javax.annotation.PostConstruct;
import javax.servlet.http.HttpServletRequest;
import java.util.Enumeration;
import java.util.HashMap;
import java.util.Map;

Chapter 3 ■ Spring MVC

172

@Controller
@RequestMapping("/periodicReservationForm")
@SessionAttributes("reservation")
public class PeriodicReservationController {

 private final Map<Integer, String> pageForms = new HashMap<>(3);
 private final ReservationService reservationService;
 private final PeriodicReservationValidator validator;

 public PeriodicReservationController(ReservationService reservationService,
 PeriodicReservationValidator

periodicReservationValidator) {
 this.reservationService = reservationService;
 this.validator = periodicReservationValidator;
 }

 @InitBinder
 public void initBinder(WebDataBinder binder) {
 binder.setValidator(this.validator);
 }

 @PostMapping(params = {"_finish"})
 public String completeForm(
 @Validated @ModelAttribute("reservation") PeriodicReservation reservation,
 BindingResult result, SessionStatus status,
 @RequestParam("_page") int currentPage) {
 if (!result.hasErrors()) {
 reservationService.makePeriodic(reservation);
 status.setComplete();
 return "redirect:reservationSuccess";
 } else {
 return pageForms.get(currentPage);
 }
 }

 @PostMapping
 public String submitForm(
 HttpServletRequest request,
 @ModelAttribute("reservation") PeriodicReservation reservation,
 BindingResult result, @RequestParam("_page") int currentPage) {
 int targetPage = getTargetPage(request, "_target", currentPage);
 if (targetPage < currentPage) {
 return pageForms.get(targetPage);
 }
 validateCurrentPage(reservation, result, currentPage);
 if (!result.hasErrors()) {
 return pageForms.get(targetPage);
 } else {
 return pageForms.get(currentPage);
 }
 }

Chapter 3 ■ Spring MVC

173

 private void validateCurrentPage(PeriodicReservation reservation,
 BindingResult result, int currentPage) {
 switch (currentPage) {
 case 0:
 validator.validateCourt(reservation, result);
 break;
 case 1:
 validator.validateTime(reservation, result);
 break;
 case 2:
 validator.validatePlayer(reservation, result);
 break;
 }
 }

 ...
}

The first addition to the controller is the validator field that is assigned an instance of the
PeriodicReservationValidator validator bean via the class’s constructor. You can then find two references
to the validator in the controller.

The first one is when a user finishes submitting a form. To call the validator, you need to add the
@Validated annotation to the method’s Reservation argument. To make that actually do something, you
also need to add an @InitBinder annotated method, which registers the PeriodicReservationValidator
with the data binder. If the validator returns no errors, the reservation is committed, a user’s session is
reset, and the user is redirected to the reservationSuccess view. If the validator returns errors, a user is sent
to the current view form to correct the errors. (See also recipe 3-9.)

The second occasion the validator is used in the controller is when a user clicks the Next button on
a form. Since a user is attempting to advance to the next form, it’s necessary to validate whatever data a
user provided. Given there are three possible form views to validate, a case statement is used to determine
what validator method to invoke. Once the execution of a validator method returns, if errors are detected, a
user is sent to the currentPage view to can correct the errors; if no errors are detected, a user is sent to the
targetPage view; note that these target pages numbers are mapped to a Map in the controller.

3-11. Use Bean Validation with Annotations (JSR-303)
Problem
You want to validate Java beans in a web application using annotations based on the JSR-303 standard.

Solution
JSR-303, or Bean Validation, is a specification whose objective is to standardize the validation of Java beans
through annotations.

In the previous examples, you saw how the Spring Framework supports an ad hoc technique for
validating beans. This requires you to extend one of the Spring Framework’s classes to create a validator
class for a particular type of Java bean.

The objective of the JSR-303 standard is to use annotations directly in a Java bean class. This allows
validation rules to be specified directly in the code they are intended to validate, instead of creating
validation rules in separate classes—just like you did earlier using the Spring Validator class.

Chapter 3 ■ Spring MVC

174

How It Works
The first thing you need to do is decorate a Java bean with the necessary JSR-303 annotations. The following
code illustrates the Reservation domain class used in the court application decorated with JSR-303
annotations:

public class Reservation {

 @NotNull
 @Size(min = 4)
 private String courtName;

 @NotNull
 private Date date;

 @Min(9)
 @Max(21)
 private int hour;

 @Valid
 private Player player;

 @NotNull
 private SportType sportType;

 // Getter/Setter methods omitted for brevity
}

The courtName field is assigned two annotations: the @NotNull annotation, which indicates that a field
cannot be null, and the @Size annotation, which is used to indicate a field has to have a minimum of four
characters.

The date and sportType fields are annotated with @NotNull because those are required.
The hour field is annotated with @Min and @Max because those are the lower and upper limits of the

hour field.
The player fields is annoated with @Valid to trigger validation of the nested Player object, both fields in

the Player domain class are annotated with @NotNull.
Now that you know how a Java bean class is decorated with annotations belonging to the JSR-303

standard. Let’s take a look at how these validator annotations are enforced in a controller.

package com.apress.springrecipes.court.service;
.....
 private final ReservationService reservationService;

 public ReservationFormController(ReservationService reservationService) {
 this.reservationService = reservationService;
 }

 @RequestMapping(method = RequestMethod.POST)
 public String submitForm(
 @ModelAttribute("reservation") @Valid Reservation reservation,
 BindingResult result, SessionStatus status) {

Chapter 3 ■ Spring MVC

175

 if (result.hasErrors()) {
 return "reservationForm";
 } else {
 reservationService.make(reservation);
 return "redirect:reservationSuccess";
 }
 }

The controller is almost similar to the one from recipe 3-9. The only difference is the absence of the
@InitBinder annotated method. Spring MVC detects a javax.validation.Validator if that is on the
classpath. We added hibernate-validator to the classpath, and that is a validation implementation.

Next, you find the controller’s HTTP POST handler method, which is used to handle the submission
of user data. Since the handler method is expecting an instance of the Reservation object, which you
decorated with JSR-303 annotations, you can validate its data.

The remainder of the submitForm method is the same as from recipe 3-9.

 ■ Note to use JSr-303 bean validation in a web application, you must add a dependency to an implementation
to your CLASSPATH. if you are using Maven, add the following dependencies to your Maven project:

<dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-validator</artifactId>
 <version>5.4.0.Final</version>
</dependency>

add the following for gradle:

compile 'org.hibernate:hibernate-validator:5.4.0.Final'

3-12. Create Excel and PDF Views
Problem
Although HTML is the most common method of displaying web contents, sometimes your users may want
to export contents from your web application in Excel or PDF format. In Java, several libraries can help
generate Excel and PDF files. However, to use these libraries directly in a web application, you have to
generate the files behind the scenes and return them to users as binary attachments. You have to deal with
HTTP response headers and output streams for this purpose.

Solution
Spring integrates the generation of Excel and PDF files into its MVC framework. You can consider Excel
and PDF files as special kinds of views so that you can consistently handle a web request in a controller
and add data to a model for passing to Excel and PDF views. In this way, you have no need to deal with
HTTP response headers and output streams. Spring MVC supports generating Excel files using the
Apache POI library (http://poi.apache.org/). The corresponding view classes are AbstractExcelView,
AbstractXlsxView and AbstractXlsxStreamingView. PDF files are generated by the iText library
(www.lowagie.com/iText/), and the corresponding view class is AbstractPdfView.

http://poi.apache.org/
http://www.lowagie.com/iText/

Chapter 3 ■ Spring MVC

176

How It Works
Suppose your users want to generate a report of the reservation summary for a particular day. They want this
report to be generated in either Excel, PDF, or the basic HTML format. For this report generation function,
you need to declare a method in the service layer that returns all the reservations of a specified day.

package com.apress.springrecipes.court.service;
...
public interface ReservationService {
 ...
 public List<Reservation> findByDate(LocalDate date);
}

Then you provide a simple implementation for this method by iterating over all the made reservations.

package com.apress.springrecipes.court.service;
...
public class ReservationServiceImpl implements ReservationService {
 ...
 public List<Reservation> findByDate(LocalDate date) {
 return reservations.stream()
 .filter(r -> Objects.equals(r.getDate(), date))
 .collect(Collectors.toList());
 }
}

Now you can write a simple controller to get the date parameters from the URL. The date parameter is
formatted into a date object and passed to the service layer for querying reservations. The controller relies
on the content negotiation resolver described in recipe 3-7. Therefore, the controller returns a single logic
view and lets the resolver determine whether a report should be generated in Excel, PDF, or a default HTML
web page.

package com.apress.springrecipes.court.web;
...
@Controller
@RequestMapping("/reservationSummary*")
public class ReservationSummaryController {
 private ReservationService reservationService;

 @Autowired
 public ReservationSummaryController(ReservationService reservationService) {
 this.reservationService = reservationService;
 }

 @RequestMapping(method = RequestMethod.GET)
 public String generateSummary(
 @RequestParam(required = true, value = "date")
 String selectedDate,
 Model model) {
 List<Reservation> reservations = java.util.Collections.emptyList();

Chapter 3 ■ Spring MVC

177

 try {
 Date summaryDate = new SimpleDateFormat("yyyy-MM-dd").parse(selectedDate);
 reservations = reservationService.findByDate(summaryDate);
 } catch (java.text.ParseException ex) {
 StringWriter sw = new StringWriter();
 PrintWriter pw = new PrintWriter(sw);
 ex.printStackTrace(pw);
 throw new ReservationWebException("Invalid date format for reservation

summary",new Date(),sw.toString());
 }
 model.addAttribute("reservations",reservations);
 return "reservationSummary";
 }
}

This controller only contains a default HTTP GET handler method. The first action performed by this
method is creating an empty Reservation list to place the results obtained from the reservation service.
Next, you can find a try/catch block that attempts to create a Date object from the selectedDate
@RequestParam, as well as invoke the reservation service with the created Date object. If creating a Date
object fails, a custom Spring exception named ReservationWebException is thrown.

If no errors are raised in the try/catch block, the Reservation list is placed into the controller’s Model
object. Once this is done, the method returns control to the reservationSummary view.

Note that the controller returns a single view, even though it supports PDF, XLS, and HTML views. This
is possible because of the ContentNegotiatingViewResolver resolver, which determines on the basis of this
single view name which of these multiple views to use. See recipe 3-7 for more information on this resolver.

Create Excel Views
An Excel view can be created by extending the AbstractXlsView or AbstractXlsxView class (for Apache
POI). Here, AbstractXlsxView is used as an example. In the buildExcelDocument() method, you can access
the model passed from the controller and also a precreated Excel workbook. Your task is to populate the
workbook with the data in the model.

 ■ Note to generate excel files with apache pOi in a web application, you must have the apache pOi dependencies
on your CLASSPATH. if you are using apache Maven, add the following dependencies to your Maven project:

<dependency>
 <groupId>org.apache.poi</groupId>
 <artifactId>poi</artifactId>
 <version>3.10-FINAL</version>
</dependency>

package com.apress.springrecipes.court.web.view;

import com.apress.springrecipes.court.domain.Reservation;
import org.apache.poi.ss.usermodel.Row;
import org.apache.poi.ss.usermodel.Sheet;
import org.apache.poi.ss.usermodel.Workbook;
import org.springframework.web.servlet.view.document.AbstractXlsxView;

Chapter 3 ■ Spring MVC

178

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import java.text.DateFormat;
import java.text.SimpleDateFormat;
import java.util.List;
import java.util.Map;

public class ExcelReservationSummary extends AbstractXlsxView {

 @Override
 protected void buildExcelDocument(Map<String, Object> model, Workbook workbook,

HttpServletRequest request, HttpServletResponse
response) throws Exception {

 @SuppressWarnings({"unchecked"})
 final List<Reservation> reservations =
 (List<Reservation>) model.get("reservations");
 final DateFormat dateFormat = new SimpleDateFormat("yyyy-MM-dd");
 final Sheet sheet = workbook.createSheet();

 addHeaderRow(sheet);

 reservations.forEach(reservation -> createRow(dateFormat, sheet, reservation));
 }

 private void addHeaderRow(Sheet sheet) {
 Row header = sheet.createRow(0);
 header.createCell((short) 0).setCellValue("Court Name");
 header.createCell((short) 1).setCellValue("Date");
 header.createCell((short) 2).setCellValue("Hour");
 header.createCell((short) 3).setCellValue("Player Name");
 header.createCell((short) 4).setCellValue("Player Phone");
 }

 private void createRow(DateFormat dateFormat, Sheet sheet, Reservation reservation) {
 Row row = sheet.createRow(sheet.getLastRowNum() + 1);
 row.createCell((short) 0).setCellValue(reservation.getCourtName());
 row.createCell((short) 1).setCellValue(dateFormat.format(reservation.getDate()));
 row.createCell((short) 2).setCellValue(reservation.getHour());
 row.createCell((short) 3).setCellValue(reservation.getPlayer().getName());
 row.createCell((short) 4).setCellValue(reservation.getPlayer().getPhone());
 }
}

In the preceding Excel view, you first create a sheet in the workbook. In this sheet, you show the headers
of this report in the first row. Then you iterate over the reservation list to create a row for each reservation.

As you have @RequestMapping("/reservationSummary*") configured in your controller and the handler
method requires a date as a request parameter, you can access this Excel view through the following URL:

http://localhost:8080/court/reservationSummary.xls?date=2009-01-14

Chapter 3 ■ Spring MVC

179

Create PDF Views
A PDF view is created by extending the AbstractPdfView class. In the buildPdfDocument() method, you can
access the model passed from the controller and also a precreated PDF document. Your task is to populate
the document with the data in the model.

 ■ Note to generate pDF files with itext in a web application, you must have the itext library on your
CLASSPATH. if you are using apache Maven, add the following dependency to your Maven project:

<dependency>
 <groupId>com.lowagie</groupId>
 <artifactId>itext</artifactId>
 <version>4.2.1</version>
</dependency

package com.apress.springrecipes.court.web.view;
...
import org.springframework.web.servlet.view.document.AbstractPdfView;

import com.lowagie.text.Document;
import com.lowagie.text.Table;
import com.lowagie.text.pdf.PdfWriter;

public class PdfReservationSummary extends AbstractPdfView {

 protected void buildPdfDocument(Map model, Document document,
 PdfWriter writer, HttpServletRequest request,
 HttpServletResponse response) throws Exception {
 List<Reservation> reservations = (List) model.get("reservations");
 DateFormat dateFormat = new SimpleDateFormat("yyyy-MM-dd");
 Table table = new Table(5);

 table.addCell("Court Name");
 table.addCell("Date");
 table.addCell("Hour");
 table.addCell("Player Name");
 table.addCell("Player Phone");

 for (Reservation reservation : reservations) {
 table.addCell(reservation.getCourtName());
 table.addCell(dateFormat.format(reservation.getDate()));
 table.addCell(Integer.toString(reservation.getHour()));
 table.addCell(reservation.getPlayer().getName());
 table.addCell(reservation.getPlayer().getPhone());
 }

 document.add(table);
 }
}

Chapter 3 ■ Spring MVC

180

As you have @RequestMapping("/reservationSummary*") configured in your controller and the handler
method requires a date as a request parameter, you can access this PDF view through the following URL:

http://localhost:8080/court/reservationSummary.pdf?date=2009-01-14

Create Resolvers for Excel and PDF Views
In recipe 3-6, you learned different strategies for resolving logical view names to specific view implementations.
One of these strategies was resolving views from a resource bundle; this is the better-suited strategy for mapping
logical view names to view implementations consisting of PDF or XLS classes.

Ensuring you have the ResourceBundleViewResolver bean configured in your web application context
as a view resolver, you can then define views in the views.properties file included in a web application’s
classpath root.

You can add the following entry to views.properties to map the XLS view class to a logical view name:

reservationSummary.(class)=com.apress.springrecipes.court.web.view.ExcelReservationSummary

Since the application relies on the process of content negotiation, this implies that the same view name
is mapped to multiple view technologies. In addition, since it’s not possible to have duplicate names in the
same views.properties file, you need to create a separate file named secondaryviews.properties to map
the PDF view class to a logical view name, as illustrated next:

reservationSummary.(class)=com.apress.springrecipes.court.web.view.PdfReservationSummary

Take note that this file—secondaryviews.properties—needs to be configured in its own
ResourceBundleViewResolver resolver. The property name—reservationSummary—corresponds to the
view’s name returned by the controller. It’s the task of the ContentNegotiatingViewResolver resolver to
determine which of these classes to use based on a user’s request. Once this is determined, the execution of
the corresponding class generates either a PDF or XLS file.

Create Date-Based PDF and XLS File Names
When a user makes a request for a PDF or XLS file using any of the following URLs:

http://localhost:8080/court/reservationSummary.pdf?date=2008-01-14
http://localhost:8080/court/reservationSummary.xls?date=2008-02-24

the browser prompts a user with a question like “Save as reservationSummary.pdf ?” or “Save as
reservationSummary.xls?” This convention is based on the URL a user is requesting a resource from.
However, given that a user is also providing a date in the URL, a nice feature can be an automatic prompt in
the form “Save as ReservationSummary_2009_01_24.xls?” or “Save as ReservationSummary_2009_02_24.
xls?” This can be done by applying an interceptor to rewrite the returning URL. The following code illustrates
this interceptor:

package com.apress.springrecipes.court.web
...

public class ExtensionInterceptor extends HandlerInterceptorAdapter {

Chapter 3 ■ Spring MVC

181

 public void postHandle(HttpServletRequest request,
 HttpServletResponse response, Object handler,
 ModelAndView modelAndView) throws Exception {
 // Report date is present in request
 String reportName = null;
 String reportDate = request.getQueryString().replace("date=","").replace("-","_");
 if(request.getServletPath().endsWith(".pdf")) {
 reportName= "ReservationSummary_" + reportDate + ".pdf";
 }
 if(request.getServletPath().endsWith(".xls")) {
 reportName= "ReservationSummary_" + reportDate + ".xls";
 }
 if (reportName != null) {
 response.setHeader("Content-Disposition","attachment; filename="+reportName);
 }
 }
}

The interceptor extracts the entire URL if it contains a .pdf or .xls extension. If it detects such an extension,
it creates a value for the return file name in the form ReservationSummary_<report_date>.<.pdf|.xls>.
To ensure a user receives a download prompt in this form, the HTTP header Content-Disposition is set with
this file name format.

To deploy this interceptor and that it only be applied to the URL corresponding to the controller
charged with generating PDF and XLS files, we advise you to look over recipe 3-3, which contains this
particular configuration and more details about interceptor classes.

CONTENT NEGOTIATION AND SETTING HTTP HEADERS IN AN INTERCEPTOR
Though this application uses the ContentNegotiatingViewResolver resolver to select an appropriate

view, the process of modifying a return URL is outside the scope of view resolvers. Therefore, it’s necessary
to use an interceptor to manually inspect a request extension, as well as set the necessary HTTP headers to
modify the outgoing URL.

Summary
In this chapter, you learned how to develop a Java web application using the Spring MVC framework. The
central component of Spring MVC is DispatcherServlet, which acts as a front controller that dispatches
requests to appropriate handlers for them to handle requests. In Spring MVC, controllers are standard Java
classes that are decorated with the @Controller annotation. Throughout the various recipes, you learned
how to leverage other annotations used in Spring MVC controllers, which included @RequestMapping to
indicate access URLs, @Autowired to automatically inject bean references, and @SessionAttributes to
maintain objects in a user’s session, among many others. You also learned how to incorporate interceptors
into an application; this allows you to alter request and response objects in a controller. In addition, you
explored how Spring MVC supports form processing, including data validation using both Spring validators
and the JSR-303 bean validation standard. You also explored how Spring MVC incorporates SpEL to facilitate
certain configuration tasks and how Spring MVC supports different types of views for different presentation
technologies. Finally, you also learned how Spring supports content negotiation to determine a view based
on a request’s extensions.

183© Marten Deinum, Daniel Rubio, and Josh Long 2017
M. Deinum et al., Spring 5 Recipes, DOI 10.1007/978-1-4842-2790-9_4

CHAPTER 4

Spring REST

In this chapter, you will learn how Spring addresses Representational State Transfer, usually referred to by
its acronym REST. REST has had an important impact on web applications since the term was coined by Roy
Fielding (http://en.wikipedia.org/wiki/Roy_Fielding) in 2000.

Based on the foundations of the Web’s Hypertext Transfer Protocol (HTTP), the architecture set
forth by REST has become increasingly popular in the implementation of web services. Web services in
and of themselves have become the cornerstone for much machine-to-machine communication taking
place on the Web. It’s the fragmented technology choices (e.g., Java, Python, Ruby, .NET) made by many
organizations that have necessitated a solution capable of bridging the gaps between these disparate
environments. For example, how is information in an application backed by Java accessed by one written in
Python? How can a Java application obtain information from an application written in .NET? Web services
fill this void.

There are various approaches to implementing web services, but RESTful web services have become the
most common choice in web applications. They are used by some of the largest Internet sites (e.g., Google
and Yahoo) to provide access to their information, to back access to Ajax calls made by browsers, and to
provide the foundations for the distribution of information such as news feeds (e.g., RSS).

In this chapter, you will learn how Spring applications can use REST so that you can both access and
provide information using this popular approach.

4-1. Publish XML with REST Services
Problem
You want to publish an XML-based REST service with Spring.

Solution
There are two possibilities when designing REST services in Spring. One involves publishing an application’s
data as a REST service; the other involves accessing data from third-party REST services to be used in
an application. This recipe describes how to publish an application’s data as a REST service. Recipe 4-2
describes how to access data from third-party REST services. Publishing an application’s data as a REST
service revolves around the use of the Spring MVC annotations @RequestMapping and @PathVariable.
By using these annotations to decorate a Spring MVC handler method, a Spring application is capable of
publishing an application’s data as a REST service.

In addition, Spring supports a series of mechanisms to generate a REST service’s payload. This recipe
will explore the simplest mechanism, which involves the use of Spring’s MarshallingView class. As the
recipes in this chapter progress, you will learn about more advanced mechanisms supported by Spring to
generate REST service payloads.

http://en.wikipedia.org/wiki/Roy_Fielding

Chapter 4 ■ Spring reSt

184

How It Works
Publishing a web application’s data as a REST service (or as it’s more technically known in web services
parlance, “creating an endpoint”) is strongly tied to Spring MVC, which you explored in Chapter 3. Since
Spring MVC relies on the annotation @RequestMapping to decorate handler methods and define access
points (i.e., URLs), it’s the preferred way in which to define a REST service’s endpoint.

Use MarshallingView to Produce XML
The following code illustrates a Spring MVC controller class with a handler method that defines a REST
service endpoint:

package com.apress.springrecipes.court.web;

import com.apress.springrecipes.court.domain.Members;
import com.apress.springrecipes.court.service.MemberService;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Controller;
import org.springframework.ui.Model;
import org.springframework.web.bind.annotation.RequestMapping;

@Controller
public class RestMemberController {

 private final MemberService memberService;

 @Autowired
 public RestMemberController(MemberService memberService) {
 super();
 this.memberService=memberService;
 }

 @RequestMapping("/members")
 public String getRestMembers(Model model) {
 Members members = new Members();
 members.addMembers(memberService.findAll());
 model.addAttribute("members", members);
 return "membertemplate";
 }
}

By using @RequestMapping("/members") to decorate a controller’s handler method, a REST service
endpoint is made accessible at host_name/[app-name]/members. You can observe that control is
relinquished to a logical view named membertemplate. The following code illustrates the declaration used to
define the logical view named membertemplate:

@Configuration
@EnableWebMvc
@ComponentScan(basePackages = "com.apress.springrecipes.court")
public class CourtRestConfiguration {

http://dx.doi.org/10.1007/978-1-4842-2790-9_3

Chapter 4 ■ Spring reSt

185

 @Bean
 public View membertemplate() {
 return new MarshallingView(jaxb2Marshaller());
 }

 @Bean
 public Marshaller jaxb2Marshaller() {
 Jaxb2Marshaller marshaller = new Jaxb2Marshaller();
 marshaller.setClassesToBeBound(Members.class, Member.class);
 return marshaller;
 }

 @Bean
 public ViewResolver viewResolver() {
 return new BeanNameViewResolver();
 }
}

The membertemplate view is defined as a MarshallingView type, which is a general-purpose class
that allows a response to be rendered using a marshaller. Marshalling is the process of transforming an
in-memory representation of an object into a data format. Therefore, for this particular case, a marshaller
is charged with transforming Members and Member objects into an XML data format. The marshaller used
by MarshallingView belongs to one of a series of XML marshallers provided by Spring—Jaxb2Marshaller.
Other marshallers provided by Spring include CastorMarshaller, JibxMarshaller, XmlBeansMarshaller,
and XStreamMarshaller.

Marshallers themselves also require configuration. We opted to use the Jaxb2Marshaller marshaller
because of its simplicity and Java Architecture for XML Binding (JAXB) foundations. However, if you’re more
comfortable using the Castor XML framework, you might find it easier to use CastorMarshaller; if you’re
more at ease using XStream, you would likely find it easier to use XStreamMarshaller; and it’s similar for the
rest of the available marshallers.

The Jaxb2Marshaller marshaller needs to be configured with either a property named
classesToBeBound or a property named contextPath. In the case of classesToBeBound, the classes assigned
to this property indicate the class (i.e., object) structure that is to be transformed into XML. The following
code illustrates the Members and Member classes assigned to the Jaxb2Marshaller marshaller:

package com.apress.springrecipes.court.domain;

import javax.xml.bind.annotation.XmlRootElement;

@XmlRootElement
public class Member {
 private String name;
 private String phone;
 private String email;

 public String getEmail() {
 return email;
 }

Chapter 4 ■ Spring reSt

186

 public String getName() {
 return name;
 }

 public String getPhone() {
 return phone;
 }

 public void setEmail(String email) {
 this.email = email;
 }

 public void setName(String name) {
 this.name = name;
 }

 public void setPhone(String phone) {
 this.phone = phone;
 }
}

Here’s the Members class:

package com.apress.springrecipes.court.domain;

import javax.xml.bind.annotation.XmlAccessType;
import javax.xml.bind.annotation.XmlAccessorType;
import javax.xml.bind.annotation.XmlElement;
import javax.xml.bind.annotation.XmlRootElement;
import java.util.ArrayList;
import java.util.Collection;
import java.util.List;

@XmlRootElement
@XmlAccessorType(XmlAccessType.FIELD)
public class Members {

 @XmlElement(name="member")
 private List<Member> members = new ArrayList<>();

 public List<Member> getMembers() {
 return members;
 }

 public void setMembers(List<Member> members) {
 this.members = members;
 }

 public void addMembers(Collection<Member> members) {
 this.members.addAll(members);
 }
}

Chapter 4 ■ Spring reSt

187

Note the Member class is a POJO decorated with the @XmlRootElement annotation. This annotation
allows the Jaxb2Marshaller marshaller to detect a class’s (i.e., object’s) fields and transform them into XML
data (e.g., name=John into <name>john</name>, email=john@doe.com into <email>john@doe.com</email>).

To recap what’s been described, this means that when a request is made to a URL in the form
http://[host_name]//app-name]/members.xml, the corresponding handler is charged with creating a
Members object, which is then passed to a logical view named membertemplate. Based on this last view’s
definition, a marshaller is used to convert a Members object into an XML payload that is returned to the REST
service’s requesting party. The XML payload returned by the REST service is illustrated in the following code:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<members>
 <member>
 <email>marten@deinum.biz</email>
 <name>Marten Deinum</name>
 <phone>00-31-1234567890</phone>
 </member>
 <member>
 <email>john@doe.com</email>
 <name>John Doe</name>
 <phone>1-800-800-800</phone>
 </member>
 <member>
 <email>jane@doe.com</email>
 <name>Jane Doe</name>
 <phone>1-801-802-803</phone>
 </member>
</members>

This XML payload represents a simple approach to generating a REST service’s response. As the recipes
in this chapter progress, you will learn more sophisticated approaches, such as the ability to create widely
used REST service payloads such as RSS, Atom, and JSON.

If you look closely at the REST service endpoint or URL described in the previous paragraph, you’ll
note that it has an .xml extension. If you try another extension—or even omit the extension—this particular
REST service may not be triggered. This last behavior is directly tied to Spring MVC and how it handles view
resolution. It has nothing do with REST services per se.

By default, since the view associated with this particular REST service handler method returns XML,
it’s triggered by an .xml extension. This allows the same handler method to support multiple views. For
example, it can be convenient for a request like http://[host_name]/[app-name]/members.pdf to return
the same information in a PDF document, as well as a request like http://[host_name]/[app-name]/
members.html to return content in HTML or a request like http://[host_name]/[app-name]/members.xml
to return XML for a REST request.

So, what happens to a request with no URL extension, like http://[host_name]/[app-name]/members?
This also depends heavily on Spring MVC view resolution. For this purpose, Spring MVC supports a process
called content negotiation, by which a view is determined based on a request’s extension or HTTP headers.

Since REST service requests typically have HTTP headers in the form Accept: application/xml,
Spring MVC configured to use content negotiation can determine to serve XML (REST) payloads to such
requests even if requests are made extensionless. This also allows extensionless requests to be made in
formats such as HTML, PDF, and XLS, all simply based on HTTP headers. Recipe 3-7 in Chapter 3 discusses
content negotiation.

http://dx.doi.org/10.1007/978-1-4842-2790-9_3

Chapter 4 ■ Spring reSt

188

Use @ResponseBody to Produce XML
Using MarshallingView to produce XML is one way of producing results; however, when you want to have
multiple representations (JSON, for instance) of the same data (a list of Member objects), adding another view
can be a cumbersome task. Instead, you can rely on the Spring MVC HttpMessageConverters to convert
an object to the representation requested by the user. The following code shows the changes made to
RestMemberController:

@Controller
public class RestMemberController {
...
 @RequestMapping("/members")
 @ResponseBody
 public Members getRestMembers() {
 Members members = new Members();
 members.addMembers(memberService.findAll());
 return members;
 }
}

The first change is that you have now, additionally, annotated the controller method
with @ResponseBody. This annotation tells Spring MVC that the result of the method should
be used as the body of the response. Because you want XML, this marshalling is done by the
Jaxb2RootElementHttpMessageConverter class provided by Spring. The second change is that because of
the @ResponseBody annotation, you don’t need the view name anymore but can simply return the Members
object.

 ■ Tip When using Spring 4 or higher instead of annotating the method with @ResponseBody, you can also
annotate your controller with @RestController instead of @Controller, which would give the same result.
this is especially convenient if you have a single controller with multiple methods.

These changes also allow you to clean up your configuration, as you don’t need MarshallingView and
Jaxb2Marshaller anymore.

package com.apress.springrecipes.court.web.config;

import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.ComponentScan;
import org.springframework.context.annotation.Configuration;
import org.springframework.web.servlet.config.annotation.EnableWebMvc;

@Configuration
@EnableWebMvc
@ComponentScan(basePackages = "com.apress.springrecipes.court")
public class CourtRestConfiguration {}

When the application is deployed and you do request the members from http://localhost:8080/
court/members.xml, it will yield the same results as before.

Chapter 4 ■ Spring reSt

189

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<members>
 <member>
 <email>marten@deinum.biz</email>
 <name>Marten Deinum</name>
 <phone>00-31-1234567890</phone>
 </member>
 <member>
 <email>john@doe.com</email>
 <name>John Doe</name>
 <phone>1-800-800-800</phone>
 </member>
 <member>
 <email>jane@doe.com</email>
 <name>Jane Doe</name>
 <phone>1-801-802-803</phone>
 </member>
</members>

Use @PathVariable to Limit the Results
It’s common for REST service requests to have parameters. This is done to limit or filter a service’s payload.
For example, a request in the form http://[host_name]/[app-name]/member/353/ can be used to retrieve
information exclusively on member 353. Another variation can be a request like http://[host_name]/
[app-name]/reservations/07-07-2010/ to retrieve reservations made on the date July 7, 2010.

To use parameters for constructing a REST service in Spring, you use the @PathVariable annotation.
The @PathVariable annotation is added as an input parameter to the handler method, per Spring’s MVC
conventions, for it to be used inside the handler method body. The following snippet illustrates a handler
method for a REST service using the @PathVariable annotation:

import org.springframework.web.bind.annotation.PathVariable;

@Controller
public class RestMemberController {
...
 @RequestMapping("/member/{memberid}")
 @ResponseBody
 public Member getMember(@PathVariable("memberid") long memberID) {
 return memberService.find(memberID);
 }
}

Notice the @RequestMapping value contains {memberid}. Values surrounded by { } are used to indicate
that URL parameters are variables. Further note that the handler method is defined with the input parameter
@PathVariable("memberid") long memberID. This last declaration associates whatever memberid value
forms part of the URL and assigns it to a variable named memberID that can be accessible inside the handler
method. Therefore, REST endpoints in the form /member/353/ and /member/777/ will be processed by this
last handler method, with the memberID variable being assigned values of 353 and 777, respectively. Inside
the handler method, the appropriate queries can be made for members 353 and 777—via the memberID
variable—and returned as the REST service’s payload.

Chapter 4 ■ Spring reSt

190

A request to http://localhost:8080/court/member/2 will result in an XML representation of the
member with an ID of 2.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<member>
 <email>john@doe.com</email>
 <name>John Doe</name>
 <phone>1-800-800-800</phone>
</member>

In addition to the supporting { } notation, it’s also possible to use a wildcard (*) notation for defining
REST endpoints. This is often the case when a design team has opted to use expressive URLs (often called
pretty URLs) or opts to use search engine optimization (SEO) techniques to make a REST URL search engine
friendly. The following snippet illustrates a declaration for a REST service using the wildcard notation:

@RequestMapping("/member/*/{memberid}")
@ResponseBody
public Member getMember(@PathVariable("memberid") long memberID) { ... }

In this case, the addition of a wildcard doesn’t have any influence over the logic performed by the
REST service. But it will match endpoint requests in the form of /member/John+Smith/353/ and /member/
Mary+Jones/353/, which can have an important impact on end user readability and SEO.

It’s also worth mentioning that data binding can be used in the definition of handler methods for REST
endpoints. The following snippet illustrates a declaration for a REST service using data binding:

@InitBinder
public void initBinder(WebDataBinder binder) {
 SimpleDateFormat dateFormat = new SimpleDateFormat("yyyy-MM-dd");
 binder.registerCustomEditor(Date.class, new CustomDateEditor(dateFormat, false));
}

@RequestMapping("/reservations/{date}")
public void getReservation(@PathVariable("date") Date resDate) { ... }

In this case, a request in the form http://[host_name]/[app-name]/reservations/07-07-2010/ is
matched by this last handler method, with the value 07-07-2010 passed into the handler method—as the
variable resDate—where it can be used to filter the REST web service payload.

Use ResponseEntity to Inform the Client
The endpoint for retrieving a single Member instance returns either a valid member or nothing at all. Both
lead to a request that will send the HTTP response code 200, which means OK, back to the client. However,
this is probably not what your users will expect. When working with resources, you should inform them of
the fact that a resource cannot be found. Ideally, you would want to return the HTTP response code 404,
which indicates “not found.” The following code snippet shows the modified getMember method:

package com.apress.springrecipes.court.web;

import org.springframework.http.HttpStatus;
import org.springframework.http.ResponseEntity;
...

Chapter 4 ■ Spring reSt

191

@Controller
public class RestMemberController {
...
 @RequestMapping("/member/{memberid}")
 @ResponseBody
 public ResponseEntity<Member> getMember(@PathVariable("memberid") long memberID) {
 Member member = memberService.find(memberID);
 if (member != null) {
 return new ResponseEntity<Member>(member, HttpStatus.OK);
 }
 return new ResponseEntity(HttpStatus.NOT_FOUND);
 }
}

The return value of the method has been changed to ResponseEntity<Member>. The ResponseEntity
class in Spring MVC acts as a wrapper for an object to be used as the body of the result together with an
HTTP status code. When you find a Member, it is returned with HttpStatus.OK, which corresponds to an HTTP
status code of 200. When there is no result, you return HttpStatus.NOT_FOUND, corresponding to the HTTP
status code 404, which means “not found.”

4-2. Publish JSON with REST Services
Problem
You want to publish a JavaScript Object Notation (JSON)–based REST service with Spring.

Solution
JSON has blossomed into a favorite payload format for REST services. However, unlike most REST service
payloads, which rely on XML markup, JSON is different in the sense that its content is a special notation
based on the JavaScript language. For this recipe, in addition to relying on Spring’s REST support, you will
also use the MappingJackson2JsonView class that forms part of Spring to facilitate the publication of JSON
content.

 ■ Note the MappingJackson2JsonView class depends on the presence of the Jackson JSOn processor
library, version 2, which can be downloaded at http://wiki.fasterxml.com/JacksonDownload. if you are
using Maven or gradle you can simply add the Jackson library as a dependency in your projects build file.

If your Spring applications incorporate Ajax designs, it’s likely that you’ll find yourself designing REST
services that publish JSON as their payload. This is mainly because of the limited processing capabilities
in browsers. Although browsers can process and extract information from REST services that publish XML
payloads, it’s not very efficient. By instead delivering payloads in JSON, which is based on a language for
which browsers have a native interpreter—JavaScript—the processing and extraction of data becomes
more efficient. Unlike RSS and Atom feeds, which are standards, JSON has no specific structure it needs
to follow—except its syntax, which you’ll explore shortly. Therefore, a JSON element’s payload structure is
likely to be determined in coordination with the team members charged with an application’s Ajax design.

http://wiki.fasterxml.com/JacksonDownload

Chapter 4 ■ Spring reSt

192

How It Works
The first thing you need to do is determine the information you want to publish as a JSON payload. This
information can be located in an RDBMS or text file, be accessed through JDBC or ORM, or inclusively be
part of a Spring bean or some other type of construct. Describing how to obtain this information would
go beyond the scope of this recipe, so we will assume you’ll use whatever means you deem appropriate to
access it. In case you’re unfamiliar with JSON, the following snippet illustrates a fragment of this format:

{
 "glossary": {
 "title": "example glossary",
 "GlossDiv": {
 "title": "S",
 "GlossList": {
 "GlossEntry": {
 "ID": "SGML",
 "SortAs": "SGML",
 "GlossTerm": "Standard Generalized Markup Language",
 "Acronym": "SGML",
 "Abbrev": "ISO 8879:1986",
 "GlossDef": {
 "para": "A meta-markup language, used to create markup

languages such as DocBook.",
 "GlossSeeAlso": ["GML", "XML"]
 },
 "GlossSee": "markup"
 }
 }
 }
 }
}

As you can observe, a JSON payload consists of text and separators such as { , } ,[,] , :, and ". We won’t
go into details about using one separator over another, but it suffices to say this type of syntax makes it easier
for a JavaScript engine to access and manipulate data than if it was to process it in an XML-type format.

Use MappingJackson2JsonView to Produce XML
Since you’ve already explored how to publish data using a REST service in recipes 4-1 and 4-3, we’ll cut to the
chase and show you the actual handler method needed in a Spring MVC controller to achieve this process.

@RequestMapping("/members")
public String getRestMembers(Model model) {

 Members members = new Members();
 members.addMembers(memberService.findAll());
 model.addAttribute("members", members);
 return "jsonmembertemplate";
}

Chapter 4 ■ Spring reSt

193

You probably notice that it is quite similar to the controller method mentioned in recipe 4-1. The only
difference is that you return a different name for the view. The name of the view you are returning here,
jsonmembertemplate, is different and maps to a MappingJackson2JsonView view. You need to configure this
view in your configuration class.

@Configuration
@EnableWebMvc
@ComponentScan(basePackages = "com.apress.springrecipes.court")
public class CourtRestConfiguration {
 ...
 @Bean
 public View jsonmembertemplate() {
 MappingJackson2JsonView view = new MappingJackson2JsonView();
 view.setPrettyPrint(true);
 return view;
 }
}

The MappingJackson2JsonView view uses the Jackson2 library to convert objects to and from JSON. It uses
a Jackson2 ObjectMapper instance for the conversion. When a request is made to http://localhost:8080/
court/members.json, the controller method will be invoked, and a JSON representation will be returned.

{
 "members" : {
 "members" : [{
 "name" : "Marten Deinum",
 "phone" : "00-31-1234567890",
 "email" : "marten@deinum.biz"
 }, {
 "name" : "John Doe",
 "phone" : "1-800-800-800",
 "email" : "john@doe.com"
 }, {
 "name" : "Jane Doe",
 "phone" : "1-801-802-803",
 "email" : "jane@doe.com"
 }]
 }
}

Actually, this JSON will be produced by each call to /members or /members.* (for instance, /members.xml
will also produce JSON). Let’s add the method and view from recipe 4-1 to the controller.

@Controller
public class RestMemberController {
...
 @RequestMapping(value="/members", produces=MediaType.APPLICATION_XML_VALUE)
 public String getRestMembersXml(Model model) {
 Members members = new Members();
 members.addMembers(memberService.findAll());
 model.addAttribute("members", members);
 return "xmlmembertemplate";
 }

Chapter 4 ■ Spring reSt

194

 @RequestMapping(value="/members", produces= MediaType.APPLICATION_JSON_VALUE)
 public String getRestMembersJson(Model model) {
 Members members = new Members();
 members.addMembers(memberService.findAll());
 model.addAttribute("members", members);
 return "jsonmembertemplate";
 }
}

You have now a getMembersXml method and a getMembersJson method; both are basically the
same with the distinction that they return a different view name. Notice the produces attribute on the
@RequestMapping annotation. This is used to determine which method to call: /members.xml will now
produce XML, whereas /members.json will produce JSON.

Although this approach works, duplicating all the methods for the different supported view types isn’t a
feasible solution for enterprise applications. You could create a helper method to reduce the duplication, but
you would still need a lot of boilerplate because of the differences in the @RequestMapping annotations.

Use @ResponseBody to Produce JSON
Using a MappingJackson2JsonView to produce JSON is one way of producing results; however, as mentioned
in the previous section, it can be troublesome, especially with multiple supported view types. Instead, you
can rely on the Spring MVC HttpMessageConverters to convert an object to the representation requested by
the user. The following code shows the changes made to RestMemberController:

@Controller
public class RestMemberController {
...
 @RequestMapping("/members")
 @ResponseBody
 public Members getRestMembers() {
 Members members = new Members();
 members.addMembers(memberService.findAll());
 return members;
 }
}

The first change is that you have now, additionally, annotated the controller method with @ResponseBody.
This annotation tells Spring MVC that the result of the method should be used as the body of the response.
Because you want JSON, this marshalling is done by the Jackson2JsonMessageConverter class provided by
Spring. The second change is that because of the @ResponseBody annotation, you don’t need the view name
anymore but can simply return the Members object.

 ■ Tip When using Spring 4 or higher instead of annotating the method with @ResponseBody, you can also
annotate your controller with @RestController instead of @Controller, which would give the same result.
this is especially convenient if you have a single controller with multiple methods.

These changes also allow you to clean up your configuration because you don’t need
MappingJackson2JsonView anymore.

Chapter 4 ■ Spring reSt

195

package com.apress.springrecipes.court.web.config;

import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.ComponentScan;
import org.springframework.context.annotation.Configuration;
import org.springframework.web.servlet.config.annotation.EnableWebMvc;

@Configuration
@EnableWebMvc
@ComponentScan(basePackages = "com.apress.springrecipes.court")
public class CourtRestConfiguration {}

When the application is deployed and you request the members from http://localhost:8080/court/
members.json, it will give the same results as before.

{
 "members" : {
 "members" : [{
 "name" : "Marten Deinum",
 "phone" : "00-31-1234567890",
 "email" : "marten@deinum.biz"
 }, {
 "name" : "John Doe",
 "phone" : "1-800-800-800",
 "email" : "john@doe.com"
 }, {
 "name" : "Jane Doe",
 "phone" : "1-801-802-803",
 "email" : "jane@doe.com"
 }]
 }
}

You probably noticed that RestMemberController and CourtRestConfiguration are now the same as
in recipe 4-1. When calling http://localhost:8080/court/members.xml, you will get XML.

How is this possible without any additional configuration? Spring MVC will detect what is on the
classpath; when it automatically detects JAXB 2, Jackson, and Rome (see recipe 4-4), it will register the
appropriate HttpMessageConverter for the available technologies.

Use GSON to Produce JSON
Up until now you have been using Jackson to produce JSON from your objects; another popular library is
GSON, and Spring has out-of-the-box support for it. To use GSON, you will need to add it to your classpath
(instead of Jackson), and then it will be used to produce the JSON.

When using Maven, add the following dependency:

<dependency>
 <groupId>com.google.code.gson</groupId>
 <artifactId>gson</artifactId>
 <version>2.8.0</version>
</dependency>

Chapter 4 ■ Spring reSt

196

When using Gradle, add the following:

compile 'com.google.code.gson:gson:2.8.0'

This, just like when using Jackson, is all you need to implement JSON serialization with GSON. If you
start the application and call http://localhost:8080/court/members.json, you will still receive JSON but
now through GSON instead.

4-3. Access a REST Service with Spring
Problem
You want to access a REST service from a third party (e.g., Google, Yahoo, or another business partner) and
use its payload inside a Spring application.

Solution
Accessing a third-party REST service inside a Spring application revolves around the use of the Spring
RestTemplate class. The RestTemplate class is designed on the same principles as many other Spring
*Template classes (e.g., JdbcTemplate, JmsTemplate), providing a simplified approach with default
behaviors for performing lengthy tasks. This means the processes of invoking a REST service and using its
returning payload are streamlined in Spring applications.

How It Works
Before describing the particularities of the RestTemplate class, it’s worth exploring the life cycle of a REST
service so you’re aware of the actual work the RestTemplate class performs. Exploring the life cycle of a
REST service can best be done from a browser, so open your favorite browser on your workstation to get
started. The first thing that’s needed is a REST service endpoint. You are going to reuse the endpoint you
created in recipe 4-2. This endpoint should be available at http://localhost:8080/court/members.xml
(or .json). If you load this last REST service endpoint on your browser, the browser performs a GET request,
which is one of the most popular HTTP requests supported by REST services. Upon loading the REST
service, the browser displays a responding payload like the following:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<members>
 <member>
 <email>marten@deinum.biz</email>
 <name>Marten Deinum</name>
 <phone>00-31-1234567890</phone>
 </member>
 <member>
 <email>john@doe.com</email>
 <name>John Doe</name>
 <phone>1-800-800-800</phone>
 </member>
 <member>
 <email>jane@doe.com</email>
 <name>Jane Doe</name>

Chapter 4 ■ Spring reSt

197

 <phone>1-801-802-803</phone>
 </member>
</members>

This last payload represents a well-formed XML fragment, which is in line with most REST services’
responses. The actual meaning of the payload is highly dependent on a REST service. In this case, the XML
tags (<members>, <member>, etc.) are definitions set forth by yourself, while the character data enclosed in
each XML tag represents information related to a REST service’s request.

It’s the task of a REST service consumer (i.e., you) to know the payload structure—sometimes referred to
as the vocabulary—of a REST service to appropriately process its information. Though this last REST service
relies on what can be considered a custom vocabulary, a series of REST services often relies on standardized
vocabularies (e.g., RSS), which make the processing of REST service payloads uniform. In addition, it’s
worth noting that some REST services provide Web Application Description Language (WADL) contracts to
facilitate the discovery and consumption of payloads.

Now that you’re familiar with a REST service’s life cycle using your browser, you can take a look at how
to use the Spring RestTemplate class to incorporate a REST service’s payload into a Spring application.
Given that the RestTemplate class is designed to call REST services, it should come as no surprise that
its main methods are closely tied to REST’s underpinnings, which are the HTTP protocol’s methods:
HEAD, GET, POST, PUT, DELETE, and OPTIONS. Table 4-1 contains the main methods supported by the
RestTemplate class.

As you can observe in Table 4-1, the RestTemplate class methods are prefixed with a series of HTTP
protocol methods that include HEAD, GET, POST, PUT, DELETE, and OPTIONS. In addition, the execute
method serves as a general-purpose method that can perform any HTTP operation, including the more
esoteric HTTP protocol TRACE method, except the CONNECT method, which is not supported by the
underlying HttpMethod enum used by the execute method. Note that by far the most common HTTP method

Table 4-1. RestTemplate Class Methods Based on HTTP Protocol’s Request Methods

Method Description

headForHeaders(String, Object...) Performs an HTTP HEAD operation

getForObject(String, Class, Object...) Performs an HTTP GET operation and returns
the result as a type of the given class

getForObject(String, Class, Object...) Performs an HTTP GET operation and returns
a ResponseEntity

postForLocation(String, Object, Object...) Performs an HTTP POST operation and returns
the value of the location header

postForObject(String, Object, Class, Object...) Performs an HTTP POST operation and returns
the result as a type of the given class

postForEntity(String, Object, Class, Object...) Performs an HTTP POST operation and returns
a ResponseEntity

put(String, Object, Object...) Performs an HTTP PUT operation

delete(String, Object...) Performs an HTTP DELETE operation

optionsForAllow(String, Object...) Performs an HTTP OPTIONS operation

execute(String, HttpMethod, RequestCallback,
ResponseExtractor, Object...)

Can perform any HTTP operation with the
exception of CONNECT

Chapter 4 ■ Spring reSt

198

used in REST services is GET since it represents a safe operation to obtain information (i.e., it doesn’t modify
any data). On the other hand, HTTP methods such as PUT, POST, and DELETE are designed to modify a
provider’s information, which makes them less likely to be supported by a REST service provider. For cases
in which data modification needs to take place, many providers opt for the SOAP protocol, which is an
alternative mechanism to using REST services.

Now that you’re aware of the RestTemplate class methods, you can move on to invoking the same REST
service you did with your browser previously, except this time using Java code from the Spring Framework.
The following code illustrates a class that accesses the REST service and returns its contents to System.out:

package com.apress.springrecipes.court;

import org.springframework.web.client.RestTemplate;

public class Main {

 public static void main(String[] args) throws Exception {
 final String uri = "http://localhost:8080/court/members.json";
 RestTemplate restTemplate = new RestTemplate();
 String result = restTemplate.getForObject(uri, String.class);
 System.out.println(result);
 }
}

 ■ Caution Some reSt service providers restrict access to their data feeds depending on the requesting
party. access is generally denied by relying on data present in a request (e.g., http headers or ip address).
So, depending on the circumstances, a provider can return an access denied response even when a data feed
appears to be working in another medium (e.g., you might be able to access a reSt service in a browser but
get an accessed denied response when attempting to access the same feed from a Spring application). this
depends on the terms of use set forth by a reSt provider.

The first line declares the import statement needed to access the RestTemplate class within a class’s
body. First you need to create an instance of the RestTemplate class. Next, you can find a call made to the
getForObject method that belongs to the RestTemplate class, which as described in Table 4-1 is used
to perform an HTTP GET operation—just like the one performed by a browser to obtain a REST service’s
payload. There are two important aspects related to this last method: its response and its parameters.

The response of calling the getForObject method is assigned to a String object. This means the same
output you saw in your browser for this REST service (i.e., the XML structure) is assigned to a String. Even
if you’ve never processed XML in Java, you’re likely aware that extracting and manipulating data as a Java
String is not an easy task. In other words, there are classes better suited for processing XML data (and with
it a REST service’s payload) than a String object. For the moment, just keep this in mind; other recipes in
the chapter illustrate how to better extract and manipulate the data obtained from a REST service.

The parameters passed to the getForObject method consist of the actual REST service endpoint. The
first parameter corresponds to the URL (i.e., endpoint) declaration. Notice the URL is identical to the one
used when you relied on a browser to call it.

When you execute this, the output will be the same as in the browser except that it is now printed in the
console.

Chapter 4 ■ Spring reSt

199

Retrieve Data from a Parameterized URL
The previous section showed how you can call a URI to retrieve data, but what about a URI that requires
parameters? You don’t want to hard-code parameters into the URL. With the RestTemplate class, you can
use a URL with placeholders, and these placeholders will be replaced with actual values upon execution.
Placeholders are defined using { and }, just as with request mapping (see recipes 4-1 and 4-2).

The URI http://localhost:8080/court/member/{memberId} is an example of such a parameterized
URI. To be able to call this method, you need to pass in a value for the placeholder. You can do this by using a
Map and passing that as the third parameter to the getForObject method of the RestTemplate class.

public class Main {

 public static void main(String[] args) throws Exception {
 final String uri = "http://localhost:8080/court/member/{memberId}";
 Map<String, String> params = new HashMap<>();
 params.put("memberId", "1");
 RestTemplate restTemplate = new RestTemplate();
 String result = restTemplate.getForObject(uri, String.class, params);
 System.out.println(result);
 }
}

This last snippet makes use of the HashMap class—part of the Java collections framework—and creates
an instance with the corresponding REST service parameters, which is later passed to the getForObject
method of the RestTemplate class. The results obtained by passing either a series of String parameters or a
single Map parameter to the various RestTemplate methods are identical.

Retrieve Data as a Mapped Object
Instead of returning a String to be used in your application, you can also (re)use your Members and Member
classes to map the result. Instead of passing in String.class as the second parameter, pass Members.class,
and the response will be mapped onto this class.

package com.apress.springrecipes.court;

import com.apress.springrecipes.court.domain.Members;
import org.springframework.web.client.RestTemplate;

public class Main {

 public static void main(String[] args) throws Exception {
 final String uri = "http://localhost:8080/court/members.xml";
 RestTemplate restTemplate = new RestTemplate();
 Members result = restTemplate.getForObject(uri, Members.class);
 System.out.println(result);
 }
}

The RestTemplate class makes use of the same HttpMessageConverter infrastructure as a controller
with @ResponseBody marked methods. As JAXB 2 (as well as Jackson) is automatically detected, mapping to a
JAXB-mapped object is quite easy.

Chapter 4 ■ Spring reSt

200

4-4. Publish RSS and Atom Feeds
Problem
You want to publish an RSS or Atom feed in a Spring application.

Solution
RSS and Atom feeds have become a popular means by which to publish information. Access to these types
of feeds is provided by means of a REST service, which means building a REST service is a prerequisite to
publishing RSS and Atom feeds. In addition to relying on Spring’s REST support, it’s also convenient to
rely on a third-party library especially designed to deal with the particularities of RSS and Atom feeds. This
makes it easier for a REST service to publish this type of XML payload. For this last purpose, you will use
Project Rome, an open source library available at http://rometools.github.io/rome/.

 ■ Tip even though rSS and atom feeds are often categorized as news feeds, they have surpassed this initial
usage scenario of providing just news. nowadays, rSS and atom feeds are used to publish information related
to blogs, weather, travel, and many other things in a cross-platform manner (i.e., using XML). hence, if you
require publishing information of any sort that’s to be accessible in a cross-platform manner, doing so as rSS
or atom feeds can be an excellent choice given their wide adoption (e.g., many applications support them, and
many developers know their structure).

How It Works
The first thing you need to do is determine the information you want to publish as an RSS or Atom news
feed. This information can be located in an RDBMS or text file, be accessed through JDBC or ORM,
or inclusively be part of a Spring bean or some other type of construct. Describing how to obtain this
information would go beyond the scope of this recipe, so we will assume you’ll use whatever means you
deem appropriate to access it. Once you’ve pinpointed the information you want to publish, it’s necessary to
structure it as an RSS or Atom feed, which is where Project Rome comes into the picture.

In case you’re unfamiliar with an Atom feed’s structure, the following snippet illustrates a fragment of
this format:

<?xml version="1.0" encoding="utf-8"?>
<feed xmlns="http://www.w3.org/2005/Atom">
 <title>Example Feed</title>
 <link href="http://example.org/"/>
 <updated>2010-08-31T18:30:02Z</updated>
 <author>
 <name>John Doe</name>
 </author>
 <id>urn:uuid:60a76c80-d399-11d9-b93C-0003939e0af6</id>
 <entry>
 <title>Atom-Powered Robots Run Amok</title>
 <link href="http://example.org/2010/08/31/atom03"/>
 <id>urn:uuid:1225c695-cfb8-4ebb-aaaa-80da344efa6a</id>

http://rometools.github.io/rome/

Chapter 4 ■ Spring reSt

201

 <updated>2010-08-31T18:30:02Z</updated>
 <summary>Some text.</summary>
 </entry>
</feed>

The following snippet illustrates a fragment of an RSS feed’s structure:

<?xml version="1.0" encoding="utf-8"?>
<rss version="2.0">
 <channel>
 <title>RSS Example</title>
 <description>This is an example of an RSS feed</description>
 <link>http://www.example.org/link.htm</link>
 <lastBuildDate>Mon, 28 Aug 2006 11:12:55 -0400 </lastBuildDate>
 <pubDate>Tue, 31 Aug 2010 09:00:00 -0400</pubDate>
 <item>
 <title>Item Example</title>
 <description>This is an example of an Item</description>
 <link>http://www.example.org/link.htm</link>
 <guid isPermaLink="false"> 1102345</guid>
 <pubDate>Tue, 31 Aug 2010 09:00:00 -0400</pubDate>
 </item>
 </channel>
</rss>

As you can observe from these last two snippets, RSS and Atom feeds are just XML payloads that rely
on a series of elements to publish information. Though going into the finer details of either an RSS or Atom
feed structure would require a book in itself, both formats possess a series of common characteristics; chief
among them are these:

•	 They have a metadata section to describe the contents of a feed (e.g., the <author>
and <title> elements for the Atom format and the <description> and <pubDate>
elements for the RSS format).

•	 They have recurring elements to describe information (e.g., the <entry> element for the
Atom feed format and the <item> element for the RSS feed format). In addition, each
recurring element has its own set of elements with which to further describe information.

•	 They have multiple versions. RSS versions include 0.90, 0.91 Netscape, 0.91 Userland,
0.92, 0.93, 0.94, 1.0, and 2.0. Atom versions include 0.3 and 1.0. Project Rome allows
you to create a feed’s metadata section, recurring elements, and any of the previously
mentioned versions, from the information available in the Java code (e.g., Strings,
Maps, or other such constructs).

Now that you’re aware of the structure of RSS and Atom feeds, as well as the role Project Rome plays in
this recipe, let’s take a look at a Spring MVC controller charged with presenting a feed to an end user:

//FINAL
package com.apress.springrecipes.court.web;

import com.apress.springrecipes.court.feeds.TournamentContent;
import org.springframework.stereotype.Controller;
import org.springframework.ui.Model;
import org.springframework.web.bind.annotation.RequestMapping;

Chapter 4 ■ Spring reSt

202

import java.util.ArrayList;
import java.util.Date;
import java.util.List;

@Controller
public class FeedController {
 @RequestMapping("/atomfeed")
 public String getAtomFeed(Model model) {
 List<TournamentContent> tournamentList = new ArrayList<>();
 tournamentList.add(TournamentContent.of("ATP", new Date(), "Australian Open",

"www.australianopen.com"));
 tournamentList.add(TournamentContent.of("ATP", new Date(), "Roland Garros",

"www.rolandgarros.com"));
 tournamentList.add(TournamentContent.of("ATP", new Date(), "Wimbledon",

"www.wimbledon.org"));
 tournamentList.add(TournamentContent.of("ATP", new Date(), "US Open",

"www.usopen.org"));
 model.addAttribute("feedContent", tournamentList);

 return "atomfeedtemplate";
 }

 @RequestMapping("/rssfeed")
 public String getRSSFeed(Model model) {
 List<TournamentContent> tournamentList;
 tournamentList = new ArrayList<TournamentContent>();
 tournamentList.add(TournamentContent.of("FIFA", new Date(), "World Cup",

"www.fifa.com/worldcup/"));
 tournamentList.add(TournamentContent.of("FIFA", new Date(), "U-20 World Cup",

"www.fifa.com/u20worldcup/"));
 tournamentList.add(TournamentContent.of("FIFA", new Date(), "U-17 World Cup",

"www.fifa.com/u17worldcup/"));
 tournamentList.add(TournamentContent.of("FIFA", new Date(), "Confederations Cup",

"www.fifa.com/confederationscup/"));
 model.addAttribute("feedContent", tournamentList);

 return "rssfeedtemplate";
 }
}

This Spring MVC controller has two handler methods. One is called getAtomFeed(), which is mapped to
a URL in the form http://[host_name]/[app-name]/atomfeed, and the other is called getRSSFeed(), which
is mapped to a URL in the form http://[host_name]/[app-name]/rssfeed.

Each handler method defines a List of TournamentContent objects, where the backing class for a
TournamentContent object is a POJO. This List is then assigned to the handler method’s Model object for
it to become accessible to the returning view. The returning logical views for each handler methods are
atomfeedtemplate and rssfeedtemplate, respectively. These logical views are defined in the following
manner inside a Spring configuration class:

package com.apress.springrecipes.court.web.config;

import com.apress.springrecipes.court.feeds.AtomFeedView;
import com.apress.springrecipes.court.feeds.RSSFeedView;

Chapter 4 ■ Spring reSt

203

import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.ComponentScan;
import org.springframework.context.annotation.Configuration;
import org.springframework.web.servlet.HandlerMapping;
import org.springframework.web.servlet.config.annotation.EnableWebMvc;
import org.springframework.web.servlet.handler.BeanNameUrlHandlerMapping;

@Configuration
@EnableWebMvc
@ComponentScan(basePackages = "com.apress.springrecipes.court")
public class CourtRestConfiguration {

 @Bean
 public AtomFeedView atomfeedtemplate() {
 return new AtomFeedView();
 }

 @Bean
 public RSSFeedView rssfeedtemplate() {
 return new RSSFeedView();
 }
...
}

As you can observe, each logical view is mapped to a class. Each of these classes is charged with
implementing the necessary logic to build either an Atom or RSS view. If you recall from Chapter 3, you used
an identical approach (i.e., using classes) for implementing PDF and Excel views.

In the case of Atom and RSS views, Spring comes equipped with two classes specially equipped
and built on the foundations of Project Rome. These classes are AbstractAtomFeedView and
AbstractRssFeedView. Such classes provide the foundations to build an Atom or RSS feed, without dealing
in the finer details of each of these formats.

The following code illustrates the AtomFeedView class that implements the AbstractAtomFeedView class
and is used to back the atomfeedtemplate logical view:

package com.apress.springrecipes.court.feeds;

import com.rometools.rome.feed.atom.Content;
import com.rometools.rome.feed.atom.Entry;
import com.rometools.rome.feed.atom.Feed;
import org.springframework.web.servlet.view.feed.AbstractAtomFeedView;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import java.util.List;
import java.util.Map;
import java.util.stream.Collectors;

public class AtomFeedView extends AbstractAtomFeedView {

 @Override
 protected void buildFeedMetadata(Map model, Feed feed, HttpServletRequest request) {
 feed.setId("tag:tennis.org");
 feed.setTitle("Grand Slam Tournaments");

http://dx.doi.org/10.1007/978-1-4842-2790-9_3

Chapter 4 ■ Spring reSt

204

 List<TournamentContent> tournamentList = (List<TournamentContent>)
model.get("feedContent");

 feed.setUpdated(tournamentList.stream().map(TournamentContent::getPublicationDate).
sorted().findFirst().orElse(null));

 }

 @Override
 protected List buildFeedEntries(Map model, HttpServletRequest request,

HttpServletResponse response)
 throws Exception {
 List<TournamentContent> tournamentList = (List<TournamentContent>) model.

get("feedContent");
 return tournamentList.stream().map(this::toEntry).collect(Collectors.toList());
 }

 private Entry toEntry(TournamentContent tournament) {
 Entry entry = new Entry();
 String date = String.format("%1$tY-%1$tm-%1$td", tournament.getPublicationDate());
 entry.setId(String.format("tag:tennis.org,%s:%d", date, tournament.getId()));
 entry.setTitle(String.format("%s - Posted by %s", tournament.getName(), tournament.

getAuthor()));
 entry.setUpdated(tournament.getPublicationDate());

 Content summary = new Content();
 summary.setValue(String.format("%s - %s", tournament.getName(), tournament.

getLink()));
 entry.setSummary(summary);
 return entry;
 }
}

The first thing to notice about this class is that it imports several Project Rome classes from the
com.sun.syndication.feed.atom package, in addition to implementing the AbstractAtomFeedView
class provided by the Spring Framework. In doing so, the only thing that’s needed next is to provide
a feed’s implementation details for two methods inherited from the AbstractAtomFeedView class:
buildFeedMetadata and buildFeedEntries.

buildFeedMetadata has three input parameters: a Map object that represents the data used to build the
feed (i.e., data assigned inside the handler method, in this case a List of TournamentContent objects), a Feed
object based on a Project Rome class that is used to manipulate the feed itself, and an HttpServletRequest
object in case it’s necessary to manipulate the HTTP request.

Inside the buildFeedMetadata method, you can observe several calls are made to the Feed object’s
setter methods (e.g., setId, setTitle, setUpdated). Two of these calls are made using hard-coded strings,
while another is made with a value determined after looping over a feed’s data (i.e., the Map object). All these
calls represent the assignment of an Atom feed’s metadata information.

 ■ Note Consult project rome’s api if you want to assign more values to an atom feed’s metadata section, as
well as specify a particular atom version. the default version is atom 1.0.

Chapter 4 ■ Spring reSt

205

The buildFeedEntries method also has three input parameters: a Map object that represents
the data used to build the feed (i.e., data assigned inside the handler method, in this case a List of
TournamentContent objects), an HttpServletRequest object in case it’s necessary to manipulate the HTTP
request, and an HttpServletResponse object in case it’s necessary to manipulate the HTTP response. It’s
also important to note that the buildFeedEntries method returns a List of objects, which in this case
corresponds to a List of Entry objects based on a Project Rome class and containing an Atom feed’s
recurring elements.

Inside the buildFeedEntries method, you can observe that the Map object is accessed to obtain
the feedContent object assigned inside the handler method. Once this is done, an empty List of Entry
objects is created. Next, a loop is performed on the feedContent object, which contains a list of a List of
TournamentContent objects, and for each element, an Entry object is created that is assigned to the top-level
List of Entry objects. Once the loop is finished, the method returns a filled List of Entry objects.

 ■ Note Consult project rome’s api if you want to assign more values to an atom feed’s recurring elements
section.

Upon deploying the previous class, in addition to the previously cited Spring MVC controller, accessing
a URL in the form http://[host_name]/[app-name]/atomfeed.atom (or http://[host_name]/atomfeed.xml)
would result in the following response:

<?xml version="1.0" encoding="UTF-8"?>
<feed xmlns="http://www.w3.org/2005/Atom">
 <title>Grand Slam Tournaments</title>
 <id>tag:tennis.org</id>
 <updated>2017-04-19T01:32:52Z</updated>
 <entry>
 <title>Australian Open - Posted by ATP</title>
 <id>tag:tennis.org,2017-04-19:5</id>
 <updated>2017-04-19T01:32:52Z</updated>
 <summary>Australian Open - www.australianopen.com</summary>
 </entry>
 <entry>
 <title>Roland Garros - Posted by ATP</title>
 <id>tag:tennis.org,2017-04-19:6</id>
 <updated>2017-04-19T01:32:52Z</updated>
 <summary>Roland Garros - www.rolandgarros.com</summary>
 </entry>
 <entry>
 <title>Wimbledon - Posted by ATP</title>
 <id>tag:tennis.org,2017-04-19:7</id>
 <updated>2017-04-19T01:32:52Z</updated>
 <summary>Wimbledon - www.wimbledon.org</summary>
 </entry>
 <entry>
 <title>US Open - Posted by ATP</title>
 <id>tag:tennis.org,2017-04-19:8</id>
 <updated>2017-04-19T01:32:52Z</updated>
 <summary>US Open - www.usopen.org</summary>
 </entry>
</feed>

Chapter 4 ■ Spring reSt

206

Turning your attention to the remaining handler method—getRSSFeed—from the previous Spring MVC
controller charged with building an RSS feed, you’ll see that the process is similar to the one just described
for building Atom feeds. The handler methods also creates a List of TournamentContent objects, which is
then assigned to the handler method’s Model object for it to become accessible to the returning view. The
returning logical view in this case, though, now corresponds to one named rssfeedtemplate. As described
earlier, this logical view is mapped to a class named RssFeedView.

The following code illustrates the RssFeedView class, which implements the AbstractRssFeedView class:

package com.apress.springrecipes.court.feeds;

import com.rometools.rome.feed.rss.Channel;
import com.rometools.rome.feed.rss.Item;
import org.springframework.web.servlet.view.feed.AbstractRssFeedView;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import java.util.List;
import java.util.Map;
import java.util.stream.Collectors;

public class RSSFeedView extends AbstractRssFeedView {

 @Override
 protected void buildFeedMetadata(Map model, Channel feed, HttpServletRequest request) {
 feed.setTitle("World Soccer Tournaments");
 feed.setDescription("FIFA World Soccer Tournament Calendar");
 feed.setLink("tennis.org");

 List<TournamentContent> tournamentList = (List<TournamentContent>) model.
get("feedContent");

 feed.setLastBuildDate(tournamentList.stream().map(TournamentContent::getPublication
Date).sorted().findFirst().orElse(null));

 }

 @Override
 protected List<Item> buildFeedItems(Map model, HttpServletRequest request,

HttpServletResponse response)
 throws Exception {
 List<TournamentContent> tournamentList = (List<TournamentContent>) model.

get("feedContent");

 return tournamentList.stream().map(this::toItem).collect(Collectors.toList());
 }

 private Item toItem(TournamentContent tournament) {
 Item item = new Item();
 item.setAuthor(tournament.getAuthor());
 item.setTitle(String.format("%s - Posted by %s", tournament.getName(),

tournament.getAuthor()));
 item.setPubDate(tournament.getPublicationDate());
 item.setLink(tournament.getLink());
 return item;
 }
}

Chapter 4 ■ Spring reSt

207

The first thing to notice about this class is that it imports several Project Rome classes from the
com.sun.syndication.feed.rss package, in addition to implementing the AbstractRssFeedView class
provided by the Spring Framework. Once it does so, the only thing that’s needed next is to provide a feed’s
implementation details for two methods inherited from the AbstractRssFeedView class: buildFeedMetadata
and buildFeedItems. The buildFeedMetadata method is similar in nature to the one by the same name
used in building an Atom feed. Notice the buildFeedMetadata method manipulates a Channel object based
on a Project Rome class, which is used to build RSS feeds, instead of a Feed object, which is used to build
Atom feeds. The setter method calls made on the Channel object (e.g., setTitle, setDescription, setLink)
represent the assignment of an RSS feed’s metadata information. The buildFeedItems method, which
differs in name from its Atom counterpart buildFeedEntries, is so named because an Atom feed’s recurring
elements are called entries and an RSS feed’s recurring elements are items. Naming conventions aside, their
logic is similar.

Inside the buildFeedItems method, you can observe that the Map object is accessed to obtain the
feedContent object assigned inside the handler method. Once this is done, an empty List of Item objects is
created. Next, a loop is performed on the feedContent object, which contains a List of TournamentContent
objects, and for each element, an Item object is created that is assigned to the top-level List of Item objects.
Once the loop is finished, the method returns a filled List of x§x§ objects.

 ■ Note Consult project rome’s api if you want to assign more values to an rSS feed’s metadata and
recurring element sections, as well as specify a particular rSS version. the default version is rSS 2.0.

When you deploy the previous class, in addition to the previously cited Spring MVC controller,
accessing a URL in the form http://[host_name]/rssfeed.rss (or http://[host_name]/rssfeed.xml)
results in the following response:

<?xml version="1.0" encoding="UTF-8"?>
<rss version="2.0">
 <channel>
 <title>World Soccer Tournaments</title>
 <link>tennis.org</link>
 <description>FIFA World Soccer Tournament Calendar</description>
 <lastBuildDate>Wed, 19 Apr 2017 01:32:31 GMT</lastBuildDate>
 <item>
 <title>World Cup - Posted by FIFA</title>
 <link>www.fifa.com/worldcup/</link>
 <pubDate>Wed, 19 Apr 2017 01:32:31 GMT</pubDate>
 314861_4_EnFIFA</author>
 </item>
 <item>
 <title>U-20 World Cup - Posted by FIFA</title>
 <link>www.fifa.com/u20worldcup/</link>
 <pubDate>Wed, 19 Apr 2017 01:32:31 GMT</pubDate>
 314861_4_EnFIFA</author>
 </item>
 <item>
 <title>U-17 World Cup - Posted by FIFA</title>
 <link>www.fifa.com/u17worldcup/</link>
 <pubDate>Wed, 19 Apr 2017 01:32:31 GMT</pubDate>
 314861_4_EnFIFA</author>

Chapter 4 ■ Spring reSt

208

 </item>
 <item>
 <title>Confederations Cup - Posted by FIFA</title>
 <link>www.fifa.com/confederationscup/</link>
 <pubDate>Wed, 19 Apr 2017 01:32:31 GMT</pubDate>
 314861_4_EnFIFA</author>
 </item>
 </channel>
</rss>

Summary
In this chapter, you learned how to develop and access REST services using Spring. REST services are closely
tied to Spring MVC, whereby a controller acts to dispatch requests made to REST services, as well as access
third-party REST services to use this information for application content.

You learned how REST services leverage annotations used in Spring MVC controllers, which included
@RequestMapping to indicate service endpoints, as well as @PathVariable to specify access parameters
for filtering a service’s payload. In addition, you learned about Spring’s XML marshallers, such as
Jaxb2Marshaller, which allow application objects to be transformed into XML and be output as a REST
service’s payload. You also learned about Spring’s RestTemplate class and how it supports the series of
HTTP methods that include HEAD, GET, POST, PUT, and DELETE—all of which allow you to access and
perform operations on third-party REST services directly from the context of a Spring application.

Finally, you explored how to publish Atom and RSS feeds in a Spring application by leveraging the
Project Rome API.

209© Marten Deinum, Daniel Rubio, and Josh Long 2017
M. Deinum et al., Spring 5 Recipes, DOI 10.1007/978-1-4842-2790-9_5

CHAPTER 5

Spring MVC: Async Processing

When the Servlet API was released, the majority of the implementing containers used one thread per
request. This meant a thread was blocked until the request processing had finished and the response was
sent to the client.

However, in those early days, there weren’t as many devices connected to the Internet as today. Because
of the increased number of devices, the number of HTTP requests being handled has grown significantly, and
because of this increase, for lots of web applications, keeping a thread blocked isn’t feasible anymore. As of
the Servlet 3 specification, it is possible to handle an HTTP request asynchronously and release the thread
that initially handled HTTP request. The new thread will run in the background, and as soon as the result is
available, it will be written to the client. This, when done right, can all take place in a nonblocking way on a
Servlet 3.1–compliant servlet container. Of course, all resources being used also would have to be nonblocking.

In the past couple of years, there has also been an uptick in reactive programming, and as of Spring 5,
it is possible to write reactive web applications. A reactive Spring project utilizes Project Reactor (just like
Spring, it is maintained by Pivotal) as an implementation of the Reactive Streams API. It goes beyond the
scope of this book to do a full dive into reactive programming, but in short it is a way of doing nonblocking
functional programming.

Traditionally, when working with web applications, there would be a request; HTML would be rendered on
the server and then get sent back to the client. The last couple of years, the job of rendering HTML moved to the
client, and communication was done not through HTML but by returning JSON, XML, or another representation
to the client. This was traditionally still a request-and-response cycle although it was driven by an async call from
the client through the XMLHttpRequest object. However, there are also other ways of communicating between
the client and server; you could utilize server-sent events to have one-way communication from the server to the
client, and for full-duplex communication, you could use the WebSocket protocol.

5-1. Handle Requests Asynchronously with
Controllers and TaskExecutor
Problem
To reduce the load on the servlet container, you want to asynchronously handle a request.

Solution
When a request comes in, it is handled synchronously, which blocks the HTTP request-handling thread. The
response stays open and is available to be written to. This is useful when a call, for instance, takes some time
to finish. Instead of blocking threads, you can have this processed in the background and return a value to
the user when finished.

Chapter 5 ■ Spring MVC: aSynC proCeSSing

210

How It Works
As mentioned in recipe 3-1, Spring MVC supports a number of return types from methods. In addition to the
return types, the types in Table 5-1 are processed in an asynchronous way.

The generic async return types can hold any of the return types for the controller, including an object to
be added to the model, the name of the view, or even a ModelAndView object.

Configure Async Processing
To use the async processing features of Spring MVC, you first have to enable them. Async request-handling
support has been added to the Servlet 3.0 specification, and to enable it, you have to tell all your filters
and servlets to behave asynchronously. To do this, you can call the setAsyncSupported() method when
registering a filter or servlet.

When writing a WebApplicationInitializer, you have to do the following:

public class CourtWebApplicationInitializer implements WebApplicationInitializer {

 public void onStartup(ServletContext ctx) {

 DispatcherServlet servlet = new DispatcherServlet();
 ServletRegistration.Dynamic registration = ctx.addServlet("dispatcher", servlet);
 registration.setAsyncSupported(true);
 }

}

 ■ Note When doing async processing, all the servlet filters and servlets in your app should have this
property switched to true or async processing won’t work!

Table 5-1. Asynchronous Return Types

Type Description

DeferredResult Async result produced later from another thread

ListenableFuture<?> Async result produced later from another thread; an equivalent alternative for
DeferredResult

CompletableStage<?> /
CompletableFuture<?>

Async result produced later from another thread; an equivalent alternative for
DeferredResult

Callable<?> Async computation with the result produced after the computation finishes

ResponseBodyEmitter Can be used to write multiple objects to the response asynchronously

SseEmitter Can be used to write a server-sent event asynchronously

StreamingResponseBody Can be used to write to OutputStream asynchronously

Chapter 5 ■ Spring MVC: aSynC proCeSSing

211

Luckily, Spring helps you with this, and when using the AbstractAnnotationConfigDispatcherServlet
Initializer as a superclass, this property is enabled by default for the registered DispatcherServlet and
filters. To change it, override isAsyncSupported() and implement the logic to determine whether it should
be on or off.

Depending on your needs, you probably also need to configure an AsyncTaskExecutor and wire that in
the MVC configuration.

package com.apress.springrecipes.court.config;

import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.core.task.AsyncTaskExecutor;
import org.springframework.scheduling.concurrent.ThreadPoolTaskExecutor;
import org.springframework.web.servlet.config.annotation.AsyncSupportConfigurer;
import org.springframework.web.servlet.config.annotation.WebMvcConfigurationSupport;

@Configuration
public class AsyncConfiguration extends WebMvcConfigurationSupport {

 @Override
 protected void configureAsyncSupport(AsyncSupportConfigurer configurer) {
 configurer.setDefaultTimeout(5000);
 configurer.setTaskExecutor(mvcTaskExecutor());
 }

 @Bean
 public ThreadPoolTaskExecutor mvcTaskExecutor() {
 ThreadPoolTaskExecutor taskExecutor = new ThreadPoolTaskExecutor();
 taskExecutor.setThreadGroupName("mvc-executor");
 return taskExecutor;
 }
}

To configure async processing, you need to override the configureAsyncSupport method of
WebMvcConfigurationSupport; overriding this method gives you access to the AsyncSupportConfigurer and
allows you to set the defaultTimeout and AsyncTaskExecutor values. The timeout is set to five seconds, and
for an executor, you will use a ThreadPoolTaskExecutor (see also recipe 2-23).

Write an Asynchronous Controller
Writing a controller and having it handle the request asynchronously is as simple as changing the return
type of the controller’s handler method. Let’s imagine that the call to ReservationService.query takes quite
some time, but you don’t want to block the server for that.

Chapter 5 ■ Spring MVC: aSynC proCeSSing

212

Use a Callable
Here’s how to use a callable:

package com.apress.springrecipes.court.web;

import com.apress.springrecipes.court.Delayer;
import com.apress.springrecipes.court.domain.Reservation;
import com.apress.springrecipes.court.service.ReservationService;
import org.springframework.stereotype.Controller;
import org.springframework.ui.Model;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.PostMapping;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestParam;

import java.util.List;
import java.util.concurrent.Callable;

@Controller
@RequestMapping("/reservationQuery")
public class ReservationQueryController {

 private final ReservationService reservationService;

 public ReservationQueryController(ReservationService reservationService) {
 this.reservationService = reservationService;
 }

 @GetMapping
 public void setupForm() {}

 @PostMapping
 public Callable<String> sumbitForm(@RequestParam("courtName") String courtName, Model model) {
 return () -> {
 List<Reservation> reservations = java.util.Collections.emptyList();
 if (courtName != null) {
 Delayer.randomDelay(); // Simulate a slow service
 reservations = reservationService.query(courtName);
 }
 model.addAttribute("reservations", reservations);
 return "reservationQuery";
 };
 }
}

If you look at the submitForm method, it now returns a Callable<String> instead of returning a String
directly. Inside the newly constructed Callable<String>, there is a random wait to simulate a delay before
calling the query method.

Chapter 5 ■ Spring MVC: aSynC proCeSSing

213

Now when making a reservation, you will see something like this in the logs:

2017-06-20 10:37:04,836 [nio-8080-exec-2] DEBUG o.s.w.c.request.async.WebAsyncManager :
Concurrent handling starting for POST [/court/reservationQuery]
2017-06-20 10:37:04,838 [nio-8080-exec-2] DEBUG o.s.web.servlet.DispatcherServlet :
Leaving response open for concurrent processing
2017-06-20 10:37:09,954 [mvc-executor-1] DEBUG o.s.w.c.request.async.WebAsyncManager :
Concurrent result value [reservationQuery] - dispatching request to resume processing
2017-06-20 10:37:09,959 [nio-8080-exec-3] DEBUG o.s.web.servlet.DispatcherServlet :
DispatcherServlet with name 'dispatcher' resumed processing POST request for [/court/
reservationQuery]

Notice that request handling is handled on a certain thread (here nio-8080-exec-2), which is released,
and then another thread does the processing and returns the result (here mvc-executor-1). Finally, the
request is dispatched to the DispatcherServlet again to handle the result on yet another thread.

Use a DeferredResult
Instead of a Callable<String>, you could have used a DeferredResult<String>. When using a
DeferredResult, you need to construct an instance of this class, submit a task to be async processed, and in
that task fill the result of the DeferredResult using the setResult method. When an exception occurs, you
can pass this exception to the setErrorResult method of the DeferredResult.

package com.apress.springrecipes.court.web;

import com.apress.springrecipes.court.Delayer;
import com.apress.springrecipes.court.domain.Reservation;
import com.apress.springrecipes.court.service.ReservationService;

import org.springframework.core.task.AsyncTaskExecutor;
import org.springframework.core.task.TaskExecutor;
import org.springframework.stereotype.Controller;
import org.springframework.ui.Model;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.PostMapping;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.context.request.async.DeferredResult;

import java.util.List;

@Controller
@RequestMapping("/reservationQuery")
public class ReservationQueryController {

 private final ReservationService reservationService;
 private final TaskExecutor taskExecutor;

Chapter 5 ■ Spring MVC: aSynC proCeSSing

214

 public ReservationQueryController(ReservationService reservationService,
AsyncTaskExecutor taskExecutor) {

 this.reservationService = reservationService;
 this.taskExecutor = taskExecutor;
 }

 @GetMapping
 public void setupForm() {}

 @PostMapping
 public DeferredResult<String> sumbitForm(@RequestParam("courtName") String courtName,

Model model) {
 final DeferredResult<String> result = new DeferredResult<>();

 taskExecutor.execute(() -> {
 List<Reservation> reservations = java.util.Collections.emptyList();
 if (courtName != null) {
 Delayer.randomDelay(); // Simulate a slow service
 reservations = reservationService.query(courtName);
 }
 model.addAttribute("reservations", reservations);
 result.setResult("reservationQuery");
 });
 return result;
 }
}

The method now returns a DeferredResult<String>, which is still the name of the view to render. The
actual result is set through a Runnable, which is passed to the execute method of the injected TaskExecutor.
The main difference between returning a DeferredResult and a Callable is that for a DeferredResult you
have to create your own Thread (or delegate it to a TaskExecutor); for a Callable, that isn’t needed.

Use a CompletableFuture
Change the signature of the method to return a CompletableFuture<String> and use the TaskExecutor to
async execute the code.

package com.apress.springrecipes.court.web;

import com.apress.springrecipes.court.Delayer;
import com.apress.springrecipes.court.domain.Reservation;
import com.apress.springrecipes.court.service.ReservationService;

import org.springframework.core.task.TaskExecutor;
import org.springframework.stereotype.Controller;
import org.springframework.ui.Model;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.PostMapping;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestParam;

Chapter 5 ■ Spring MVC: aSynC proCeSSing

215

import java.util.List;
import java.util.concurrent.CompletableFuture;

@Controller
@RequestMapping("/reservationQuery")
public class ReservationQueryController {

 private final ReservationService reservationService;
 private final TaskExecutor taskExecutor;

 public ReservationQueryController(ReservationService reservationService,
TaskExecutor taskExecutor) {

 this.reservationService = reservationService;
 this.taskExecutor = taskExecutor;
 }

 @GetMapping
 public void setupForm() {}

 @PostMapping
 public CompletableFuture<String> sumbitForm(@RequestParam("courtName")

String courtName, Model model) {

 return CompletableFuture.supplyAsync(() -> {
 List<Reservation> reservations = java.util.Collections.emptyList();
 if (courtName != null) {
 Delayer.randomDelay(); // Simulate a slow service
 reservations = reservationService.query(courtName);
 }
 model.addAttribute("reservations", reservations);
 return "reservationQuery";
 }, taskExecutor);
 }
}

When calling supplyAsync (or when using void; you could use runAsync), you submit a task and get
back a CompletableFuture. Here you use the supplyAsync method, which takes both a Supplier and an
Executor so that you can reuse the TaskExecutor for async processing. If you use the supplyAsync method,
which takes only a Supplier, it will be executed using the default fork/join pool available on the JVM.

When returning a CompletableFuture, you can take advantage of all the features of it, such as
composing and chaining multiple CompletableFuture instances.

Chapter 5 ■ Spring MVC: aSynC proCeSSing

216

Use a ListenableFuture
Spring provides the ListenableFuture interface, which is a Future implementation that will do a callback
when the Future has completed. To create a ListenableFuture, you would need to submit a task to
an AsyncListenableTaskExecutor, which will return a ListenableFuture. The previously configured
ThreadPoolTaskExecutor is an implementation of the AsyncListenableTaskExecutor interface.

// FINAL
package com.apress.springrecipes.court.web;

import com.apress.springrecipes.court.Delayer;
import com.apress.springrecipes.court.domain.Reservation;
import com.apress.springrecipes.court.service.ReservationService;
import org.springframework.core.task.AsyncListenableTaskExecutor;
import org.springframework.stereotype.Controller;
import org.springframework.ui.Model;
import org.springframework.util.concurrent.ListenableFuture;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.PostMapping;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestParam;

import java.util.List;

@Controller
@RequestMapping("/reservationQuery")
public class ReservationQueryController {

 private final ReservationService reservationService;
 private final AsyncListenableTaskExecutor taskExecutor;

 public ReservationQueryController(ReservationService reservationService,
AsyncListenableTaskExecutor taskExecutor) {

 this.reservationService = reservationService;
 this.taskExecutor = taskExecutor;
 }

 @GetMapping
 public void setupForm() {}

 @PostMapping
 public ListenableFuture<String> sumbitForm(@RequestParam("courtName")

String courtName, Model model) {

 return taskExecutor.submitListenable(() -> {

Chapter 5 ■ Spring MVC: aSynC proCeSSing

217

 List<Reservation> reservations = java.util.Collections.emptyList();
 if (courtName != null) {
 Delayer.randomDelay(); // Simulate a slow service
 reservations = reservationService.query(courtName);
 }
 model.addAttribute("reservations", reservations);
 return "reservationQuery";
 });
 }
}

You submit a task to the taskExecutor using the submitListenable method; this returns a
ListenableFuture, which in turn can be used as the result for the method.

You might wonder where the success and failure callbacks are for the created ListenableFuture.
Spring MVC will adapt the ListenableFuture to a DeferredResult and upon successful completion will
call DeferredResult.setResult and, when an error happens, DeferredResult.setErrorResult. This is all
handled for you with one of the HandlerMethodReturnValueHandler implementations shipped with Spring;
in this case, it is handled by DeferredResultMethodReturnValueHandler.

5-2. Use Response Writers
Problem
You have a service, or multiple calls, and want to send the response in chunks to the client.

Solution
Use a ResponseBodyEmitter (or its sibling SseEmitter) to send the response in chunks.

How It Works
Spring supports writing objects as plain objects using the HttpMessageConverter infrastructure, the result
will be a chunked (or streaming) list to the client. Instead of objects you could also send them as events, so
called Server-Sent Events.

Send Multiple Results in a Response
Spring MVC has class named ResponseBodyEmitter that is particularly useful if, instead of a single result
(like a view name or ModelAndView), you want to return multiple objects to the client. When sending an
object, the object is converted to a result using an HttpMessageConverter (see also recipe 4-2). To use the
ResponseBodyEmitter, you have to return it from the request-handling method.

Modify the find method of the ReservationQueryController to return a ResponseBodyEmitter and
send the results one by one to the client.

// FINAL
package com.apress.springrecipes.court.web;

import com.apress.springrecipes.court.Delayer;
import com.apress.springrecipes.court.domain.Reservation;
import com.apress.springrecipes.court.service.ReservationService;

Chapter 5 ■ Spring MVC: aSynC proCeSSing

218

import org.springframework.core.task.TaskExecutor;
import org.springframework.http.MediaType;
import org.springframework.stereotype.Controller;
import org.springframework.ui.Model;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.PostMapping;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.servlet.mvc.method.annotation.ResponseBodyEmitter;

import java.io.IOException;
import java.util.Collection;
import java.util.List;
import java.util.concurrent.Callable;

@Controller
@RequestMapping("/reservationQuery")
public class ReservationQueryController {

 private final ReservationService reservationService;
 private final TaskExecutor taskExecutor;

 ...

 @GetMapping(params = "courtName")
 public ResponseBodyEmitter find(@RequestParam("courtName") String courtName) {
 final ResponseBodyEmitter emitter = new ResponseBodyEmitter();
 taskExecutor.execute(() -> {
 Collection<Reservation> reservations = reservationService.query(courtName);
 try {
 for (Reservation reservation : reservations) {
 emitter.send(reservation);
 }
 emitter.complete();
 } catch (IOException e) {
 emitter.completeWithError(e);
 }
 });
 return emitter;
 }
}

First, a ResponseBodyEmitter is created and in the end returned from this method. Next, a task is
executed that will query the reservations using the ReservationService.query method. All the results from
that call are returned one by one using the send method of the ResponseBodyEmitter. When all the objects
have been sent, the complete() method needs to be called so that the thread responsible for sending the
response can complete the request and be freed up for the next response to handle. When an exception
occurs and you want to inform the user of this, you call the completeWithError. The exception will pass
through the normal exception handling of Spring MVC (see also recipe 3-8), and after that the response is
completed.

Chapter 5 ■ Spring MVC: aSynC proCeSSing

219

When using a tool like httpie or curl, calling the URL http://localhost:8080/court/
reservationQuery courtName=='Tennis #1' will yield something like Figure 5-1. The result will be
chunked and have a status of 200 (OK).

If you want to change the status code or add custom headers, you could also wrap the
ResponseBodyEmitter in a ResponseEntity, which would allow for the customization of the return code,
headers, and so on (see recipe 4-1).

@GetMapping(params = "courtName")
public ResponseEntity<ResponseBodyEmitter> find(@RequestParam("courtName") String courtName)
{
 final ResponseBodyEmitter emitter = new ResponseBodyEmitter();

 return ResponseEntity.status(HttpStatus.I_AM_A_TEAPOT)
 .header("Custom-Header", "Custom-Value")
 .body(emitter);
}

Now the status code will be changed to 418, and it will contain a custom header (see Figure 5-2).

Figure 5-1. Chunked result

Figure 5-2. Modified chunked result

Chapter 5 ■ Spring MVC: aSynC proCeSSing

220

Send Multiple Results as Events
A sibling of the ResponseBodyEmitter is the SseEmitter, which can deliver events from the server to the
client using server-sent events. Server-sent events are messages from the server side to the client, and they
have a content type header of text/event-stream. They are quite lightweight and allow for four fields to be
defined (see Table 5-2).

To send events from a request-handling method, you need to create an instance of SseEmitter and
return it from the request-handling method. Then you can use the send method to send individual elements
to the client.

@GetMapping(params = "courtName")
public SseEmitter find(@RequestParam("courtName") String courtName) {
 final SseEmitter emitter = new SseEmitter();
 taskExecutor.execute(() -> {
 Collection<Reservation> reservations = reservationService.query(courtName);
 try {
 for (Reservation reservation : reservations) {
 Delayer.delay(125);
 emitter.send(reservation);
 }
 emitter.complete();
 } catch (IOException e) {
 emitter.completeWithError(e);
 }
 });
 return emitter;
}

 ■ Note here there is a delay in sending each item to the client, just so you can see the different events
coming in. you wouldn’t do this in real code.

Table 5-2. Allowed Fields for Server-Sent Events

Field Description

id The ID of the event

event The type of event

data The event data

retry Reconnection time for the event stream

Chapter 5 ■ Spring MVC: aSynC proCeSSing

221

Now when using something like curl to call the URL http://localhost:8080/court/reservationQuery
courtName=='Tennis #1', you will see events coming in one by one (Figure 5-3).

Note that the Content-Type header has a value of text/event-stream to indicate that you get a stream
of events. You could keep the stream open and keep receiving event notifications. You will also notice that
each object written is converted to JSON; this is done with an HttpMessageConverter just like with a plain
ResponseBodyEmitter. Each object is written in the data tag as the event data.

If you want to add more information to the event (in other words, fill in one of the other fields
mentioned in Table 5-2), you can use the SseEventBuilder. To get an instance of that, you can call the
event() factory method on the SseEmitter. Let’s use it to fill in the id field with the hash code of the
Reservation.

@GetMapping(params = "courtName")
public SseEmitter find(@RequestParam("courtName") String courtName) {
 final SseEmitter emitter = new SseEmitter();
 taskExecutor.execute(() -> {
 Collection<Reservation> reservations = reservationService.query(courtName);
 try {
 for (Reservation reservation : reservations) {
 Delayer.delay(120);
 emitter.send(emitter.event().id(String.valueOf(reservation.hashCode())).

data(reservation));
 }
 emitter.complete();
 } catch (IOException e) {
 emitter.completeWithError(e);
 }
 });
 return emitter;
}

Figure 5-3. Result of server-sent events

Chapter 5 ■ Spring MVC: aSynC proCeSSing

222

Now when using something like curl to call the URL http://localhost:8080/court/reservationQuery
courtName=='Tennis #1', you will see events coming in one by one, and they will contain both id and data
fields.

5-3. Use Asynchronous Interceptors
Problem
Servlet filters defined by the Servlet API can pre-handle and post-handle every web request before and after
it’s handled by a servlet. You want to configure something with similar functions as filters in Spring’s web
application context to take advantage of the container features.

Moreover, sometimes you may want to pre-handle and post-handle web requests that are handled
by Spring MVC handlers and manipulate the model attributes returned by these handlers before they are
passed to the views.

Solution
Spring MVC allows you to intercept web requests for pre-handling and post-handling through handler
interceptors. Handler interceptors are configured in Spring’s web application context, so they can make
use of any container features and refer to any beans declared in the container. A handler interceptor can be
registered for particular URL mappings so that it only intercepts requests mapped to certain URLs.

As described in recipe 3-3, Spring provides the HandlerInterceptor interface, which contains three
callback methods for you to implement: preHandle(), postHandle(), and afterCompletion(). The first
and second methods are called before and after a request is handled by a handler. The second method also
allows you to get access to the returned ModelAndView object so you can manipulate the model attributes
in it. The last method is called after the completion of all request processing (i.e., after the view has been
rendered).

For async processing, Spring provides the AsyncHandlerInterceptor, which contains an additional
callback method for you to implement afterConcurrentHandlingStarted. This method is called as soon
as the async handling starts, instead of calling postHandle and/or afterCompletion. When the async
processing is done, the normal flow is called again.

How It Works
In recipe 3-3 you created a MeasurementInterceptor that measured each web request’s handling time
by each request handler and added it to the ModelAndView. Let’s modify it to log the handling time for the
request and response, including the thread that was used to handle the request.

package com.apress.springrecipes.court.web;

import org.springframework.web.servlet.AsyncHandlerInterceptor;
import org.springframework.web.servlet.ModelAndView;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

Chapter 5 ■ Spring MVC: aSynC proCeSSing

223

public class MeasurementInterceptor implements AsyncHandlerInterceptor {

 public static final String START_TIME = "startTime";

 publ ic boolean preHandle(HttpServletRequest request, HttpServletResponse response,
Object handler) throws Exception {

 if (request.getAttribute(START_TIME) == null) {
 request.setAttribute(START_TIME, System.currentTimeMillis());
 }
 return true;
 }

 publ ic void postHandle(HttpServletRequest request, HttpServletResponse response,
Object handler, ModelAndView modelAndView) throws Exception {

 long startTime = (Long) request.getAttribute(START_TIME);
 request.removeAttribute(START_TIME);
 long endTime = System.currentTimeMillis();
 System.out.println("Response-Processing-Time: " + (endTime - startTime) + "ms.");
 System.out.println("Response-Processing-Thread: " + Thread.currentThread().

getName());
 }

 @Override
 publ ic void afterConcurrentHandlingStarted(HttpServletRequest request,

HttpServletResponse response, Object handler) throws Exception {

 long startTime = (Long) request.getAttribute(START_TIME);
 request.setAttribute(START_TIME, System.currentTimeMillis());
 long endTime = System.currentTimeMillis();

 System.out.println("Request-Processing-Time: " + (endTime - startTime) + "ms.");
 System.out.println("Request-Processing-Thread: " + Thread.currentThread().

getName());
 }
}

In the preHandle() method of this interceptor, you record the start time and save it to a request
attribute. This method should return true, allowing DispatcherServlet to proceed with request
handling. Otherwise, DispatcherServlet assumes that this method has already handled the request, so
DispatcherServlet returns the response to the user directly. Next, in afterConcurrentHandlingStarted,
you get the time registered and calculate the time it took to start async processing. After that, you reset the
start time and print the request-processing time and thread to the console.

Then, in the postHandle() method, you load the start time from the request attribute and compare it
with the current time. You then calculate the total duration and print that, together with the current thread
name to the console.

To register an interceptor, you need to modify the AsyncConfiguration, which was created in the first
recipe. You need to have it implement WebMvcConfigurer and override the addInterceptors method. The
method gives you access to InterceptorRegistry, which you can use to add interceptors. The modified
class looks like this:

Chapter 5 ■ Spring MVC: aSynC proCeSSing

224

package com.apress.springrecipes.court.config;

import com.apress.springrecipes.court.web.MeasurementInterceptor;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.scheduling.concurrent.ThreadPoolTaskExecutor;
import org.springframework.web.servlet.config.annotation.AsyncSupportConfigurer;
import org.springframework.web.servlet.config.annotation.InterceptorRegistry;
import org.springframework.web.servlet.config.annotation.WebMvcConfigurer;

import java.util.concurrent.TimeUnit;

@Configuration
public class AsyncConfiguration implements WebMvcConfigurer {

 ...

 @Override
 public void addInterceptors(InterceptorRegistry registry) {
 registry.addInterceptor(new MeasurementInterceptor());
 }
}

Now when running the application and when a request is handled, the logging looks something like
Figure 5-4.

 ■ Note Server-sent events aren’t supported on Microsoft browsers (internet explorer or edge). to make them
work with a Microsoft browser, you would have to use a polyfill to add the support.

5-4. Use WebSockets
Problem
You want to use bidirectional communication from the client to the server over the Web.

Solution
Use WebSockets to communicate from the client to the server, and vice versa. The WebSocket technology
provides a full-duplex communication, unlike HTTP.

Figure 5-4. Request/response processing times

Chapter 5 ■ Spring MVC: aSynC proCeSSing

225

How It Works
A full explanation of the WebSocket technology goes beyond the scope of this recipe; one thing worth
mentioning, though, is that the relation between HTTP and the WebSocket technology is actually quite
thin. The only usage of HTTP for the WebSocket technology is that the initial handshake uses HTTP. This
upgrades the connection from plain HTTP to a TCP socket connection.

Configure WebSocket Support
Enabling the use of the WebSocket technology is just a matter of adding @EnableWebSocket to a
configuration class.

@Configuration
@EnableWebSocket
public class WebSocketConfiguration {}

For further configuration of the WebSocket engine, you can add a ServletServerContainer
FactoryBean object to configure things such as buffer size, timeouts, and so on.

@Bean
public ServletServerContainerFactoryBean configureWebSocketContainer() {
 ServletServerContainerFactoryBean factory = new ServletServerContainerFactoryBean();
 factory.setMaxBinaryMessageBufferSize(16384);
 factory.setMaxTextMessageBufferSize(16384);
 factory.setMaxSessionIdleTimeout(TimeUnit.MINUTES.convert(30, TimeUnit.MILLISECONDS));
 factory.setAsyncSendTimeout(TimeUnit.SECONDS.convert(5, TimeUnit.MILLISECONDS));
 return factory;
}

This will configure the text and binary buffer size to 16KB, set asyncSendTimeout to 5 seconds, and set
the session timeout to 30 minutes.

Create a WebSocketHandler
To handle WebSocket messages and life-cycle events (handshake, connection established, etc.), you need to
create a WebSocketHandler and register it to an endpoint URL.

WebSocketHandler defines five methods that you need to implement (see Table 5-3) if you want
to implement this interface directly. However, Spring already provides a nice class hierarchy that you
can use to your advantage. When writing your own custom handlers, it is often enough to extend one of
TextWebSocketHandler or BinaryWebSocketHandler, which, as their names imply, can handle either text or
binary messages.

Chapter 5 ■ Spring MVC: aSynC proCeSSing

226

Create EchoHandler by extending TextWebSocketHandler and then implement the
afterConnectionEstablished and handleMessage methods.

package com.apress.springrecipes.websocket;

import org.springframework.web.socket.CloseStatus;
import org.springframework.web.socket.TextMessage;
import org.springframework.web.socket.WebSocketSession;
import org.springframework.web.socket.handler.TextWebSocketHandler;

public class EchoHandler extends TextWebSocketHandler {

 @Override
 public void afterConnectionEstablished(WebSocketSession session) throws Exception {
 session.sendMessage(new TextMessage("CONNECTION ESTABLISHED"));
 }

 @Override
 protected void handleTextMessage(WebSocketSession session, TextMessage message)
 throws Exception {
 String msg = message.getPayload();
 session.sendMessage(new TextMessage("RECEIVED: " + msg));
 }
}

When a connection is established, a TextMessage will be sent back to the client telling it that the
connection was established. When a TextMessage is received, the payload (the actual message) is extracted
and prefixed with RECEIVED: and sent back to the client.

Next you need to register this handler with a URI. To do so, you can create an @Configuration class that
implements WebSocketConfigurer and register it in the registerWebSocketHandlers method. Let’s add this
interface to the WebSocketConfiguration class, as shown here:

package com.apress.springrecipes.websocket;

import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.web.socket.config.annotation.EnableWebSocket;
import org.springframework.web.socket.config.annotation.WebSocketConfigurer;
import org.springframework.web.socket.config.annotation.WebSocketHandlerRegistry;

Table 5-3. WebSocketHandler Methods

Method Description

afterConnectionEstablished Invoked when the WebSocket connection is open and ready for use.

handleMessage Called when a WebSocket message arrives for this handler.

handleTransportError Called when an error occurs.

afterConnectionClosed Invoked after the WebSocket connection has been closed.

supportsPartialMessages Invoked if this handler supports partial messages. If set to true,
WebSocket messages can arrive over multiple calls.

Chapter 5 ■ Spring MVC: aSynC proCeSSing

227

import java.util.concurrent.TimeUnit;

@Configuration
@EnableWebSocket
public class WebSocketConfiguration implements WebSocketConfigurer {

 @Bean
 public EchoHandler echoHandler() {
 return new EchoHandler();
 }

 @Override
 public void registerWebSocketHandlers(WebSocketHandlerRegistry registry) {
 registry.addHandler(echoHandler(), "/echo");
 }
}

First you register the EchoHandler as a bean so that it can be used to attach it to a URI. In the
registerWebSocketHandlers, you can use the WebSocketHandlerRegistry to register the handler. Using the
addHandler method, you can register the handler to a URI, in this case /echo. With this configuration, you
could use the ws://localhost:8080/echo-ws/echo URL to open a WebSocket connection from the client.

Now that the server is ready, you need a client to connect to your WebSocket endpoint. For this you will
need some JavaScript and HTML. Write the following app.js:

var ws = null;
var url = "ws://localhost:8080/echo-ws/echo";

function setConnected(connected) {
 document.getElementById('connect').disabled = connected;
 document.getElementById('disconnect').disabled = !connected;
 document.getElementById('echo').disabled = !connected;
}

function connect() {
 ws = new WebSocket(url);

 ws.onopen = function () {
 setConnected(true);
 };

 ws.onmessage = function (event) {
 log(event.data);
 };

 ws.onclose = function (event) {
 setConnected(false);
 log('Info: Closing Connection.');
 };
}

Chapter 5 ■ Spring MVC: aSynC proCeSSing

228

function disconnect() {
 if (ws != null) {
 ws.close();
 ws = null;
 }
 setConnected(false);
}
function echo() {
 if (ws != null) {
 var message = document.getElementById('message').value;
 log('Sent: ' + message);
 ws.send(message);
 } else {
 alert('connection not established, please connect.');
 }
}

function log(message) {
 var console = document.getElementById('logging');
 var p = document.createElement('p');
 p.appendChild(document.createTextNode(message));
 console.appendChild(p);
 while (console.childNodes.length > 12) {
 console.removeChild(console.firstChild);
 }
 console.scrollTop = console.scrollHeight;
}

There are a few functions here. The first connect will be invoked when clicking the Connect button. This
will open a WebSocket connection to ws://localhost:8080/echo-ws/echo, which is the URL to the handler
created and registered earlier. Connecting to the server will create a WebSocket JavaScript object, which
gives you the ability to listen to messages and events on the client. Here the onopen, onmessage, and onclose
callbacks are defined. The most important is the onmessage callback because that will be invoked whenever
a message comes in from the server; this method simply calls the log function, which will add the received
message to the logging element on the screen.

Next there is disconnect, which will close the WebSocket connection and clean up the JavaScript
objects. Finally, there is the echo function, which will be invoked whenever the Echo Message button is
clicked. The given message will be sent to the server (and eventually will be returned).

To use app.js, add the index.html file shown here:

<!DOCTYPE html>
<html>
<head>
 <link type="text/css" rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/

semantic-ui/2.2.10/semantic.min.css" />
 <script type="text/javascript" src="app.js"></script>
</head>
<body>
<div>
 <div id="connect-container" class="ui centered grid">
 <div class="row">

Chapter 5 ■ Spring MVC: aSynC proCeSSing

229

 <button id="connect" onclick="connect();" class="ui green button ">
Connect</button>

 <button id="disconnect" disabled="disabled" onclick="disconnect();" class="ui
red button">Disconnect</button>

 </div>
 <div class="row">
 <textarea id="message" style="width: 350px" class="ui input"

placeholder="Message to Echo"></textarea>
 </div>
 <div class="row">
 <button id="echo" onclick="echo();" disabled="disabled" class="ui button">

Echo message</button>
 </div>
 </div>
 <div id="console-container">
 <h3>Logging</h3>
 <div id="logging"></div>
 </div>
</div>
</body>
</html>

Now when deploying the application, you can connect to the echo WebSocket service and send some
messages and have them sent back (see Figure 5-5).

Figure 5-5. WebSocket client output

Chapter 5 ■ Spring MVC: aSynC proCeSSing

230

Use STOMP and MessageMapping
When using the WebSocket technology to create an application, that more or less implies messaging.
Although you can use the WebSocket protocol as is, the protocol also allows you to use subprotocols. One of
those protocols, supported by Spring WebSocket, is STOMP.

STOMP is a simple text-oriented protocol that was created for scripting languages like Ruby and Python
to connect to message brokers. STOMP can be used over any reliable bidirectional network protocol like TCP
and also WebSocket. The protocol itself is text-oriented, but the payload of the messages isn’t strictly bound
to this; it can also contain binary data.

When configuring and using STOMP with Spring WebSocket support, the WebSocket application
acts as a broker for all connected clients. The broker can be an in-memory broker or an actual full-blown
enterprise solution that supports the STOMP protocol (like RabbitMQ or ActiveMQ). In the latter case, the
Spring WebSocket application will act as a relay for the actual broker. To add messaging over the WebSocket
protocol, Spring uses Spring Messaging (see Chapter 14 for more recipes on messaging).

To be able to receive messages, you need to mark a method in an @Controller with @MessageMapping
and tell it from which destination it will receive messages. Let’s modify the EchoHandler to work with
annotations.

package com.apress.springrecipes.websocket;

import org.springframework.messaging.handler.annotation.MessageMapping;
import org.springframework.messaging.handler.annotation.SendTo;
import org.springframework.stereotype.Controller;

@Controller
public class EchoHandler {

 @MessageMapping("/echo")
 @SendTo("/topic/echo")
 public String echo(String msg) {
 return "RECEIVED: " + msg;
 }
}

When a message is received on the /app/echo destination, it will be passed on to the @MessageMapping
annotated method. Notice the @SendTo("/topic/echo") annotation on the method as well; this instructs
Spring to put the result, a String, on said topic.

Now you need to configure the message broker and add an endpoint for receiving messages.
For this, add @EnableWebSocketMessageBroker to the WebSocketConfiguration and let it extend the
AbstractWebSocketMessageBrokerConfigurer (which implements the WebSocketMessageBroker
Configurer, which is used to do further configuration for WebSocket messaging).

package com.apress.springrecipes.websocket;

import org.springframework.context.annotation.ComponentScan;
import org.springframework.context.annotation.Configuration;
import org.springframework.messaging.simp.config.MessageBrokerRegistry;
import org.springframework.web.socket.config.annotation.
AbstractWebSocketMessageBrokerConfigurer;
import org.springframework.web.socket.config.annotation.EnableWebSocketMessageBroker;
import org.springframework.web.socket.config.annotation.StompEndpointRegistry;

http://dx.doi.org/10.1007/978-1-4842-2790-9_14

Chapter 5 ■ Spring MVC: aSynC proCeSSing

231

@Configuration
@EnableWebSocketMessageBroker
@ComponentScan
public class WebSocketConfiguration extends AbstractWebSocketMessageBrokerConfigurer {

 @Override
 public void configureMessageBroker(MessageBrokerRegistry registry) {
 registry.enableSimpleBroker("/topic");
 registry.setApplicationDestinationPrefixes("/app");
 }

 @Override
 public void registerStompEndpoints(StompEndpointRegistry registry) {
 registry.addEndpoint("/echo-endpoint");
 }
}

The @EnableWebSocketMessageBroker annotation will enable the use of STOMP over WebSocket. The
broker is configured in the configureMessageBroker method; here we are using the simple message broker.
To connect to an enterprise broker, use registry.enableStompBrokerRelay to connect to the actual broker.
To distinquish between messages handled by the broker versus by the app, there are different prefixes.
Anything on a destination starting with /topic will be passed on to the broker, and anything on a destination
starting with /app will be sent to a message handler (i.e., the @MessageMapping annotated method).

The final part is the registration of a WebSocket endpoint that listens to incoming STOMP
messages; in this case, the endpoint is mapped to /echo-endpoint. This registration is done in the
registerStompEndpoints method, which can be overridden.

Finally, you need to modify the client to use STOMP instead of plain WebSocket. The HTML can remain
pretty much the same; you need an additional library to be able to work with STOMP in the browser. This
recipe uses webstomp-client (https://github.com/JSteunou/webstomp-client), but there are different
libraries that you can use.

<head>
 <link type="text/css" rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/

libs/semantic-ui/2.2.10/semantic.min.css" />

 <script type="text/javascript" src="webstomp.js"></script>
 <script type="text/javascript" src="app.js"></script>

</head>

The biggest change is in the app.js file.

var ws = null;
var url = "ws://localhost:8080/echo-ws/echo-endpoint";

function setConnected(connected) {
 document.getElementById('connect').disabled = connected;
 document.getElementById('disconnect').disabled = !connected;
 document.getElementById('echo').disabled = !connected;
}

https://github.com/JSteunou/webstomp-client

Chapter 5 ■ Spring MVC: aSynC proCeSSing

232

function connect() {
 ws = webstomp.client(url);
 ws.connect({}, function(frame) {
 setConnected(true);
 log(frame);
 ws.subscribe('/topic/echo', function(message){
 log(message.body);
 })
 });
}

function disconnect() {
 if (ws != null) {
 ws.disconnect();
 ws = null;
 }
 setConnected(false);
}
function echo() {
 if (ws != null) {
 var message = document.getElementById('message').value;
 log('Sent: ' + message);
 ws.send("/app/echo", message);
 } else {
 alert('connection not established, please connect.');
 }
}

function log(message) {
 var console = document.getElementById('logging');
 var p = document.createElement('p');
 p.appendChild(document.createTextNode(message));
 console.appendChild(p);
 while (console.childNodes.length > 12) {
 console.removeChild(console.firstChild);
 }
 console.scrollTop = console.scrollHeight;
}

The connect function now uses webstomp.client to create a STOMP client connection to your broker.
When connected, the client will subscribe to /topic/echo and receive the messages put on the topic. The
echo function has been modified to use the send method of the client to send the message to the /app/echo
destination, which in turn will be passed on to the @MessageMapping annotated method.

When starting the application and opening the client, you are still able to send and receive messages
but now using the STOMP subprotocol. You could even connect multiple browsers, and each browser would
see the messages on the /topic/echo destination as it acts like a topic.

When writing @MessageMapping annotated methods, you can use a variety of method arguments and
annotations (see Table 5-4) to receive more or less information about the message. By default, it is assumed
that a single argument will map to the payload of the message, and a MessageConverter will be used to
convert the message payload to the desired type. (See recipe 14-2 for converting messages.)

Chapter 5 ■ Spring MVC: aSynC proCeSSing

233

5-5. Develop a Reactive Application with Spring WebFlux
Problem
You want to develop a simple reactive web application with Spring WebFlux to learn the basic concepts and
configurations of this framework.

Solution
The lowest component of Spring WebFlux is HttpHandler. This is an interface with a single handle method.

public interface HttpHandler {

 Mono<Void> handle(ServerHttpRequest request, ServerHttpResponse response);

}

The handle method returns Mono<Void>, which is the reactive way of saying it returns void. It takes
both a ServerHttpRequest object and a ServerHttpResonse object from the org.springframework.http.
server.reactive package. These are again interfaces, and depending on the container used for running
an instance of the interface is created. For this, several adapters or bridges for containers exist. When
running on a Servlet 3.1 container (supporting nonblocking I/O), ServletHttpHandlerAdapter (or one of
its subclasses) is used to adapt from the plain servlet world to the reactive world. When running on a native
reactive engine like Netty, ReactorHttpHandlerAdapter is used.

When a web request is sent to a Spring WebFlux application, HandlerAdapter first receives the request.
Then it organizes the different components configured in Spring’s application context that are needed to
handle the request.

To define a controller class in Spring WebFlux, a class has to be marked with the @Controller or
@RestController annotation (just like with Spring MVC; see Chapters 3 and 4).

When an @Controller annotated class (i.e., a controller class) receives a request, it looks for an
appropriate handler method to handle the request. This requires that a controller class map each request to
a handler method by one or more handler mappings. To do so, a controller class’s methods are decorated
with the @RequestMapping annotation, making them handler methods.

Table 5-4. Supported Method Arguments and Annotations

Type Description

Message The actual underlying message including the headers and body

@Payload The payload of the message (default); arguments can also be annotated with @
Validated to be validated

@Header Gets the given header from Message

@Headers Can be placed on a Map argument to get all Message headers

MessageHeaders All the Message headers

Principal The current user, if set

http://dx.doi.org/10.1007/978-1-4842-2790-9_3
http://dx.doi.org/10.1007/978-1-4842-2790-9_4

Chapter 5 ■ Spring MVC: aSynC proCeSSing

234

The signature for these handler methods—as you can expect from any standard class—is open ended.
You can specify an arbitrary name for a handler method and define a variety of method arguments. Equally,
a handler method can return any of a series of values (e.g., String or void), depending on the application
logic it fulfills. The following is only a partial list of valid argument types, just to give you an idea.

•	 ServerHttpRequest or ServerHttpResponse

•	 Request parameters from the URL of arbitrary type, annotated with @RequestParam

•	 Model attributes of arbitrary type, annotated with @ModelAttribute

•	 Cookie values included in an incoming request, annotated with @CookieValue

•	 Request header values of arbitraty type, annotated with @RequestHeader

•	 Request attribute of arbitrary type, annotated with @RequestAttribute

•	 Map or ModelMap, for the handler method to add attributes to the model

•	 Errors or BindingResult, for the handler method to access the binding and
validation result for the command object

•	 WebSession, for the session

Once the controller class has picked an appropriate handler method, it invokes the handler method’s
logic with the request. Usually, a controller’s logic invokes back-end services to handle the request.
In addition, a handler method’s logic is likely to add or remove information from the numerous input
arguments (e.g., ServerHttpRequest, Map, or Errors) that will form part of the ongoing flow.

After a handler method has finished processing the request, it delegates control to a view, which is
represented as the handler method’s return value. To provide a flexible approach, a handler method’s return
value doesn’t represent a view’s implementation (e.g., user.html or report.pdf) but rather a logical view
(e.g., user or report)—note the lack of file extension.

A handler method’s return value can be either a String, representing a logical view name, or void,
in which case a default logical view name is determined on the basis of a handler method’s or controller’s
name.

To pass information from a controller to a view, it’s irrelevant that a handler’s method returns a logical
view name—String or a void—since the handler method input arguments will be available to a view.

For example, if a handler method takes Map and Model objects as input parameters—modifying their
contents inside the handler method’s logic—these same objects will be accessible to the view returned by
the handler method.

When the controller class receives a view, it resolves the logical view name into a specific view
implementation (e.g., user.html or report.fmt) by means of a view resolver. A view resolver is a bean
configured in the web application context that implements the ViewResolver interface. Its responsibility is
to return a specific view implementation for a logical view name.

Once the controller class has resolved a view name into a view implementation, per the view
implementation’s design, it renders the objects (e.g., ServerHttpRequest, Map, Errors, or WebSession)
passed by the controller’s handler method. The view’s responsibility is to display the objects added in the
handler method’s logic to the user.

Chapter 5 ■ Spring MVC: aSynC proCeSSing

235

How It Works
Let’s write a reactive version of the course reservation system mentioned in Chapter 3. First you write the
following domain classes, which are regular classes (nothing reactive so far):

package com.apress.springrecipes.reactive.court;

public class Reservation {

 private String courtName;

 @DateTimeFormat(iso = DateTimeFormat.ISO.DATE)
 private LocalDate date;
 private int hour;
 private Player player;
 private SportType sportType;

 // Constructors, Getters and Setters
 ...
}

package com.apress.springrecipes.court.domain;

public class Player {

 private String name;
 private String phone;

 // Constructors, Getters and Setters
 ...
}

package com.apress.springrecipes.court.domain;

public class SportType {

 private int id;
 private String name;

 // Constructors, Getters and Setters
 ...
}

Then you define the following service interface to provide reservation services to the presentation layer:

package com.apress.springrecipes.reactive.court;

import reactor.core.publisher.Flux;

public interface ReservationService {

 Flux<Reservation> query(String courtName);
}

http://dx.doi.org/10.1007/978-1-4842-2790-9_3

Chapter 5 ■ Spring MVC: aSynC proCeSSing

236

Notice the return type of the query method that returns a Flux<Reservation>, which means zero or
more reservations.

In a production application, you should implement this interface with data store persistence and
preferably one that has reactive support. But for simplicity’s sake, you can store the reservation records in a
list and hard-code several reservations for testing purposes.

package com.apress.springrecipes.reactive.court;

import reactor.core.publisher.Flux;

import java.time.LocalDate;
import java.util.ArrayList;
import java.util.List;
import java.util.Objects;

public class InMemoryReservationService implements ReservationService {
 public static final SportType TENNIS = new SportType(1, "Tennis");
 public static final SportType SOCCER = new SportType(2, "Soccer");

 private final List<Reservation> reservations = new ArrayList<>();

 public InMemoryReservationService() {

 reservations.add(new Reservation("Tennis #1", LocalDate.of(2008, 1, 14), 16,
 new Player("Roger", "N/A"), TENNIS));
 reservations.add(new Reservation("Tennis #2", LocalDate.of(2008, 1, 14), 20,
 new Player("James", "N/A"), TENNIS));
 }

 @Override
 public Flux<Reservation> query(String courtName) {
 return Flux.fromIterable(reservations)
 .filter(r -> Objects.equals(r.getCourtName(), courtName));
 }
}

The query method returns a Flux based on the embedded list of Reservations, and the Flux will filter
the reservations that don’t match.

Set Up a Spring WebFlux Application
To be able to handle request in a reactive way, you need to enable WebFlux. This is done by adding
@EnableWebFlux to an @Configuration class (much like @EnableWebMvc for normal request processing).

package com.apress.springrecipes.websocket;

import org.springframework.context.annotation.ComponentScan;
import org.springframework.context.annotation.Configuration;
import org.springframework.web.reactive.config.EnableWebFlux;
import org.springframework.web.reactive.config.WebFluxConfigurer;

Chapter 5 ■ Spring MVC: aSynC proCeSSing

237

@Configuration
@EnableWebFlux
@ComponentScan
public class WebFluxConfiguration implements WebFluxConfigurer { ... }

The @EnableWebFlux annotation is what is turning on reactive processing. To do more WebFlux
configuration, you can implement WebFluxConfigurer and add additional converters and so on.

Bootstrap the Application
Just as with a regular Spring MVC application, you need to bootstrap the application. How to bootstrap the
application depends a little on the runtime you choose to run on. For all supported containers (see Table 5-5),
there are different handler adapters so that the runtime can work with the HttpHandler abstraction for Spring
WebFlux.

Before adapting to the runtime, you would need to bootstrap the application using AnnotationConfig
ApplicationContext and use that to configure a HttpHandler. You can create it using the
WebHttpHandlerBuilder.applicationContext factory method. It will create a HttpHandler and configure it
using the passed in ApplicationContext.

Anno tationConfigApplicationContext context =
new AnnotationConfigApplicationContext(WebFluxConfiguration.class);

HttpHandler handler = WebHttpHandlerBuilder.applicationContext(context).build();

Next you would adapt HttpHandler to the runtime.
For Reactor Netty, it would be something like this:

ReactorHttpHandlerAdapter adapter = new ReactorHttpHandlerAdapter(handler);
HttpServer.create(host, port).newHandler(adapter).block();

First you create a ReactorHttpHandlerAdapter component, which is the component that knows how
to adapt from the Reactor Netty handling to the internal HttpHandler. Next you register this adapter as a
handler to the newly created Reactor Netty server.

Table 5-5. Supported Runtimes and HandlerAdapter

Runtime Adapter

Servlet 3.1 container ServletHttpHandlerAdapter

Tomcat ServletHttpHandlerAdapter or TomcatHttpHandlerAdapter

Jetty ServletHttpHandlerAdapter or JettyHttpHandlerAdapter

Reactor Netty ReactorHttpHandlerAdapter

RxNetty RxNettyHttpHandlerAdapter

Undertow UndertowHttpHandlerAdapter

Chapter 5 ■ Spring MVC: aSynC proCeSSing

238

When deploying an application to a servlet container, you can create a class implementing
WebApplicationInitializer and do the setup manually.

public class WebFluxInitializer implements WebApplicationInitializer {

 public void onStartup(ServletContext servletContext) throws ServletException {}
 Anno tationConfigApplicationContext context =
 new AnnotationConfigApplicationContext(WebFluxConfiguration.class);
 HttpHandler handler = WebHttpHandlerBuilder.applicationContext(context).build();
 ServletHttpHandlerAdapter handlerAdapter = new ServletHttpHandlerAdapter(httpHandler)
 Serv letRegistration.Dynamic registration =

servletContext.addServlet("dispatcher-handler", handlerAdapter);
 registration.setLoadOnStartup(1);
 registration.addMapping("/");
 registration.setAsyncSupported(true);
 }
}

First you create an AnnotationConfigApplicationContext because you want to use annotations for
configuration and pass that your WebFluxConfiguration class. Next you need an HttpHandler to handle
and dispatch the request. This HttpHandler needs to be registered to the servlet container you are using
as a servlet. For this, you wrap it in a ServletHttpHandlerAdapter. To be able to do reactive processing,
asyncSupported needs to be true.

To make this configuration easier, Spring WebFlux provides a few convenience implementations for you
to extend. In this case, you can use AbstractAnnotationConfigDispatcherHandlerInitializer as a base
class. The configuration now looks like this:

package com.apress.springrecipes.websocket;

import org.springframework.web.reactive.support.AbstractAnnotationConfigDispatcherHandler
Initializer;

public class WebFluxInitializer extends AbstractAnnotationConfigDispatcherHandlerInitializer {

 @Override
 protected Class<?>[] getConfigClasses() {
 return new Class<?>[] {WebFluxConfiguration.class};
 }
}

The only thing required is the getConfigClasses method; all the moving parts are now handled by the
base configuration provided by Spring WebFlux.

Now you are ready to run your application on a regular servlet container.

Chapter 5 ■ Spring MVC: aSynC proCeSSing

239

Create Spring WebFlux Controllers
An annotation-based controller class can be an arbitrary class that doesn’t implement a particular interface
or extend a particular base class. You can annotate it with the @Controller or @RestController annotation.
There can be one or more handler methods defined in a controller to handle single or multiple actions. The
signature of the handler methods is flexible enough to accept a range of arguments. (See also recipe 3-2 for
more information on request mapping.)

The @RequestMapping annotation can be applied to the class level or the method level. The first
mapping strategy is to map a particular URL pattern to a controller class and then a particular HTTP method
to each handler method.

package com.apress.springrecipes.reactive.court.web;

import org.springframework.stereotype.Controller;
import org.springframework.ui.Model;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestMapping;
import reactor.core.publisher.Mono;

import java.time.LocalDate;

@Controller
@RequestMapping("/welcome")
public class WelcomeController {

 @GetMapping
 public String welcome(Model model) {
 model.addAttribute("today", Mono.just(LocalDate.now()));
 return "welcome";
 }

}

This controller creates a java.util.Date object to retrieve the current date and then adds it to the input
Model as an attribute so the target view can display it. Although this controller looks like a regular controller,
the main difference is the way things are added to the model. Instead of directly adding it to the model, the
current date will eventually appear in the model, due to the use of Mono.just(...).

Since you’ve already activated annotation scanning on the com.apress.springrecipes.reactive.
court package, the annotations for the controller class are detected upon deployment.

The @Controller annotation defines the class as a controller. The @RequestMapping annotation is more
interesting since it contains properties and can be declared at the class or handler method level. The first
value in this class— ("/welcome")—is used to specify the URL on which the controller is actionable, meaning
any request received on the /welcome URL is attended by the WelcomeController class.

Once a request is attended by the controller class, it delegates the call to the default HTTP GET handler
method declared in the controller. The reason for this behavior is that every initial request made on a URL
is of the HTTP GET kind. So when the controller attends to a request on the /welcome URL, it subsequently
delegates to the default HTTP GET handler method for processing.

The annotation @GetMapping is used to decorate the welcome method as the controller’s default HTTP
GET handler method. It’s worth mentioning that if no default HTTP GET handler method is declared, a
ServletException is thrown. That’s why it’s important that a Spring MVC controller have at a minimum a
URL route and default HTTP GET handler method.

Chapter 5 ■ Spring MVC: aSynC proCeSSing

240

Another variation to this approach can be declaring both values—URL route and default HTTP GET
handler method—in the @GetMapping annotation used at the method level. This declaration is illustrated next:

@Controller
public class WelcomeController {

 @GetMapping("/welcome")
 public String welcome(Model model) { ... }

}

This last controller illustrates the basic principles of Spring MVC. However, a typical controller may
invoke back-end services for business processing. For example, you can create a controller for querying
reservations of a particular court as follows:

package com.apress.springrecipes.reactive.court.web;

import com.apress.springrecipes.reactive.court.Reservation;
import com.apress.springrecipes.reactive.court.ReservationService;
import org.springframework.stereotype.Controller;
import org.springframework.ui.Model;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.PostMapping;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.server.ServerWebExchange;
import reactor.core.publisher.Flux;

@Controller
@RequestMapping("/reservationQuery")
public class ReservationQueryController {

 private final ReservationService reservationService;

 public ReservationQueryController(ReservationService reservationService) {
 this.reservationService = reservationService;
 }

 @GetMapping
 public void setupForm() {
 }

 @PostMapping
 public String sumbitForm(ServerWebExchange serverWebExchange, Model model) {

 Flux<Reservation> reservations =
 serverWebExchange.getFormData()
 .map(form -> form.get("courtName"))
 .flatMapMany(Flux::fromIterable)
 .concatMap(courtName -> reservationService.query(courtName));
 model.addAttribute("reservations", reservations);
 return "reservationQuery";
 }
}

Chapter 5 ■ Spring MVC: aSynC proCeSSing

241

As outlined earlier, the controller then looks for a default HTTP GET handler method. Since the
public void setupForm() method is assigned the necessary @GetMapping annotation for this purpose, it’s
called next.

Unlike the previous default HTTP GET handler method, notice that this method has no input
parameters, has no logic, and has a void return value. This means two things. By having no input parameters
and no logic, a view only displays data hard-coded in the implementation template (e.g., JSP) since no data
is being added by the controller. By having a void return value, a default view name based on the request
URL is used; therefore, since the requesting URL is /reservationQuery, a view named reservationQuery is
assumed.

The remaining handler method is decorated with the @PostMapping annotation. At first sight, having
two handler methods with only the class-level /reservationQuery URL statement can be confusing, but it’s
really simple. One method is invoked when HTTP GET requests are made on the /reservationQuery URL;
the other is invoked when HTTP POST requests are made on the same URL.

The majority of requests in web applications are of the HTTP GET kind, whereas requests of the HTTP
POST kind are generally made when a user submits an HTML form. So, revealing more of the application’s
view (which we will describe shortly), one method is called when the HTML form is initially loaded (i.e.,
HTTP GET), whereas the other is called when the HTML form is submitted (i.e., HTTP POST).

Looking closer at the HTTP POST default handler method, notice the two input parameters. First is the
ServerWebExchange declaration, used to extract a request parameter named courtName. In this case, the
HTTP POST request comes in the form /reservationQuery?courtName=<value>. This declaration makes
said value available in the method under the variable named courtName. Second is the Model declaration,
used to define an object in which to pass data onto the returning view. In a regular Spring MVC controller,
you could have used @RequestParam("courtName") String courtName (see recipe 3-1) to obtain the
parameter, but for Spring WebFlux that will not work for parameters passed as part of the form data; it will
work only for parameters that are part of the URL. Hence, ServerWebExchange is needed to get the form data,
obtain the parameter, and invoke the service.

The logic executed by the handler method consists of using the controller’s reservationService to
perform a query using the courtName variable. The results obtained from this query are assigned to the
Model object, which will later become available to the returning view for display.

Finally, note that the method returns a view named reservationQuery. This method could have also
returned void, just like the default HTTP GET, and have been assigned to the same reservationQuery
default view on account of the requesting URL. Both approaches are identical.

Now that you are aware of how Spring MVC controllers are constituted, it’s time to explore the views to
which a controller’s handler methods delegate their results.

Create Thymeleaf Views
Spring WebFlux supports several types of views for different presentation technologies. These include
HTML, XML, JSON, Atom and RSS feeds, JasperReports, and other third-party view implementations.
Here you will use Thymeleaf to write a few simple HTML-based templates. For this you need to add
some additional configuration to the WebFluxConfiguration class to set up Thymeleaf and to register a
ViewResolver, which will return the view name, returned from the controller, into the actual resource to
load.

Chapter 5 ■ Spring MVC: aSynC proCeSSing

242

Here’s the Thymeleaf configuration:

@Bean
public SpringResourceTemplateResolver thymeleafTemplateResolver() {

 final SpringResourceTemplateResolver resolver = new SpringResourceTemplateResolver();
 resolver.setPrefix("classpath:/templates/");
 resolver.setSuffix(".html");
 resolver.setTemplateMode(TemplateMode.HTML);
 return resolver;
}

@Bean
public ISpringWebFluxTemplateEngine thymeleafTemplateEngine(){

 final SpringWebFluxTemplateEngine templateEngine = new SpringWebFluxTemplateEngine();
 templateEngine.setTemplateResolver(thymeleafTemplateResolver());
 return templateEngine;
}

Thymeleaf uses a template engine to convert templates into actual HTML. Next you need to configure
the ViewResolver, which knows how to work with Thymeleaf. ThymeleafReactiveViewResolver is the
reactive implementation of ViewResolver. Finally, you need to make the WebFlux configuration aware of
the new view resolver. This is done by overriding the configureViewResolvers method and adding it to
ViewResolverRegistry.

@Bean
public ThymeleafReactiveViewResolver thymeleafReactiveViewResolver() {

 final ThymeleafReactiveViewResolver viewResolver = new ThymeleafReactiveViewResolver();
 viewResolver.setTemplateEngine(thymeleafTemplateEngine());
 viewResolver.setResponseMaxChunkSizeBytes(16384);
 return viewResolver;
}

@Override
public void configureViewResolvers(ViewResolverRegistry registry) {
 registry.viewResolver(thymeleafReactiveViewResolver());
}

The templates are resolved through a template resolver; here SpringResourceTemplateResolver uses
the Spring resource-loading mechanism to load the templates. The templates are going to be in the src/
main/resources/templates directory. For instance, for the welcome view, the actual src/main/resources/
templates/welcome.html file will be loaded and parsed by the template engine.

Chapter 5 ■ Spring MVC: aSynC proCeSSing

243

Let’s write the welcome.html template.

<!DOCTYPE html>
<html lang="en" xmlns:th="http://www.thymeleaf.org">
<head>
 <meta charset="UTF-8">
 <title>Welcome</title>
</head>
<body>
<h2>Welcome to Court Reservation System</h2>
Today is <strong th:text="${#temporals.format(today, 'dd-MM-yyyy')}">21-06-2017
</body>
</html>

In this template, you make use of the temporals object in EL to format the today model attribute into
the pattern dd-MM-yyyy.

Next, you can create another JSP template for the reservation query controller and name it
reservationQuery.html to match the view name.

<!DOCTYPE html>
<html lang="en" xmlns:th="http://www.thymeleaf.org">
<head>
 <meta charset="UTF-8">
 <title>Reservation Query</title>
</head>
<body>
<form method="post">
 Court Name
 <input type="text" name="courtName" value="${courtName}"/>
 <input type="submit" value="Query"/>
</form>

<table border="1">
 <thead>
 <tr>
 <th>Court Name</th>
 <th>Date</th>
 <th>Hour</th>
 <th>Player</th>
 </tr>
 </thead>
 <tbody>
 <tr th:each="reservation : ${reservations}">
 <td th:text="${reservation.courtName}">Court</td>
 <td th:text="${#temporals.format(reservation.date, 'dd-MM-yyyy')}">21-06-2017</td>
 <td th:text="${reservation.hour}">22</td>
 <td th:text="${reservation.player.name}">Player</td>
 </tr>
 </tbody>
</table>
</body>
</html>

Chapter 5 ■ Spring MVC: aSynC proCeSSing

244

In this template, you include a form for users to input the court name they want to query and then use
the th:each tag to loop the reservations model attribute to generate the result table.

Run the Web Application
Depending on the runtime, either you can just run the application by executing the main method or you can
build a WAR archive and deploy it to a servlet container. Here you will do the latter and use Apache Tomcat
8.5.x as the web container.

 ■ Tip the project can also create a Docker container with the app. run ../gradlew buildDocker to get a
container with tomcat and the application. you can then start a Docker container to test the application
(docker run -p 8080:8080 spring-recipes-4th/court-rx/welcome).

5-6. Handle Forms with Reactive Controllers
Problem
In a web application, you often have to deal with forms. A form controller has to show a form to a user and
also handle the form submission. Form handling can be a complex and variable task.

Solution
When a user interacts with a form, it requires support for two operations from a controller. First, when a
form is initially requested, it asks the controller to show a form with an HTTP GET request, which renders
the form view to the user. Then, when the form is submitted, an HTTP POST request is made to handle
things such as validation and business processing for the data present in the form. If the form is handled
successfully, it renders the success view to the user. Otherwise, it renders the form view again with errors.

How It Works
Suppose you want to allow a user to make a court reservation by filling out a form. To give you a better idea
of the data handled by a controller, we will introduce the controller’s view (i.e., the form) first.

Create a Form’s Views
Let’s create the form view called reservationForm.html. The form relies on the Thymeleaf form tag library
because this simplifies a form’s data binding, display of error messages, and the redisplay of original values
entered by the user in the case of errors.

Chapter 5 ■ Spring MVC: aSynC proCeSSing

245

<!DOCTYPE html>
<html lang="en" xmlns:th="http://www.thymeleaf.org">
<head>
 <title>Reservation Form</title>
 <style>
 .error {
 color: #ff0000;
 font-weight: bold;
 }
 </style>
</head>

<body>
<form method="post" th:object="${reservation}">

</form>
<table>
 <tr>
 <td>Court Name</td>
 <td><input type="text" th:field="*{courtName}" required/></td>
 <td><span class="error" th:if="${#fields.hasErrors('courtName')}"

th:errors="*{courtName}"></td>
 </tr>
 <tr>
 <td>Date</td>
 <td><input type="date" th:field="*{date}" required/></td>
 <td>

</td>
 </tr>
 <tr>
 <td>Hour</td>
 <td><input type="number" min="8" max="22" th:field="*{hour}" /></td>
 <td>

</td>
 </tr>
 <tr>
 <td colspan="3"><input type="submit" /></td>
 </tr>
</table>

</form>
</body>
</html>

This form uses Thymeleaf to bind all form fields to a model attribute named reservation because of
the th:object=${reservation} tag on the form tag. Each field will bind (and display the value) of the actual
field on the Reservation object. This is what the th:field tag is used for. When there are errors on the field,
those are displayed through the use of the th:errors tags.

Finally, you see the standard HTML tag <input type="submit" /> that generates a Submit button and
triggers the sending of data to the server.

Chapter 5 ■ Spring MVC: aSynC proCeSSing

246

If the form and its data are processed correctly, you need to create a success view to notify the user of a
successful reservation. The reservationSuccess.html file illustrated next serves this purpose:

<html>
<head>
<title>Reservation Success</title>
</head>

<body>
Your reservation has been made successfully.
</body>
</html>

It’s also possible for errors to occur because of invalid values being submitted in a form. For example,
if the date is not in a valid format or an alphabetic character is presented for the hour field, the controller is
designed to reject such field values. The controller will then generate a list of selective error codes for each
error to be returned to the form view; these values are placed in the th:errors tag.

For example, for an invalid value input in the date field, the following error codes are generated by the
data binding:

typeMismatch.command.date
typeMismatch.date
typeMismatch.java.time.LocalDate
typeMismatch

If you have a ResourceBundleMessageSource object defined, you can include the following error
messages in your resource bundle for the appropriate locale (e.g., messages.properties for the default
locale); see also recipe 3-5 on how to externalize localization concerns:

typeMismatch.date=Invalid date format
typeMismatch.hour=Invalid hour format

The corresponding error codes and their values are what are returned to a user if a failure occurs when
processing form data.

Now that you know the structure of the views involved with a form, as well as the data handled by it, let’s
take a look at the logic that handles the submitted data (i.e., the reservation) in a form.

Create a Form’s Service Processing
This is not the controller but rather the service used by the controller to process the form’s data reservation.
First define a make() method in the ReservationService interface.

package com.apress.springrecipes.court.service;
...
public interface ReservationService {
 ...
 Mono<Reservation> make(Mono<Reservation> reservation)
 throws ReservationNotAvailableException;
}

Chapter 5 ■ Spring MVC: aSynC proCeSSing

247

Then you implement this make() method by adding a Reservation item to the list that stores the
reservations. You throw a ReservationNotAvailableException in the case of a duplicate reservation.

package com.apress.springrecipes.reactive.court;
...
public class InMemoryReservationService implements ReservationService {
 ...
 @Override
 public Mono<Reservation> make(Reservation reservation) {

 long cnt = reservations.stream()
 .filter(made -> Objects.equals(made.getCourtName(), reservation.getCourtName()))
 .filter(made -> Objects.equals(made.getDate(), reservation.getDate()))
 .filter(made -> made.getHour() == reservation.getHour())
 .count();

 if (cnt > 0) {
 return Mono.error(new ReservationNotAvailableException(reservation
 .getCourtName(), reservation.getDate(), reservation
 .getHour()));
 } else {
 reservations.add(reservation);
 return Mono.just(reservation);
 }
 }
}

Now that you have a better understanding of the two elements that interact with a controller—a form’s
views and the reservation service class—let’s create a controller to handle the court reservation form.

Create a Form’s Controller
A controller used to handle forms makes use of practically the same annotations you’ve already used in the
previous recipes. So, let’s get right to the code.

package com.apress.springrecipes.reactive.court.web;
...

@Controller
@RequestMapping("/reservationForm")
public class ReservationFormController {

 private final ReservationService reservationService;

 @Autowired
 public ReservationFormController(ReservationService reservationService) {
 this.reservationService = reservationService;
 }

Chapter 5 ■ Spring MVC: aSynC proCeSSing

248

 @RequestMapping(method = RequestMethod.GET)
 public String setupForm(Model model) {
 Reservation reservation = new Reservation();
 model.addAttribute("reservation", reservation);
 return "reservationForm";
 }

 @RequestMapping(method = RequestMethod.POST)
 public String submitForm(
 @ModelAttribute("reservation") Reservation reservation,
 BindingResult result) {
 reservationService.make(reservation);
 return "redirect:reservationSuccess";
 }
}

The controller starts by using the standard @Controller annotation, as well as the @RequestMapping
annotation that allows access to the controller through the following URL:

http://localhost:8080/court-rx/reservationForm

When you enter this URL in your browser, it will send an HTTP GET request to your web application.
This in turn triggers the execution of the setupForm method, which is designated to attend to this type of
request based on its @GetMapping annotation.

The setupForm method defines a Model object as an input parameter, which serves to send model
data to the view (i.e., the form). Inside the handler method, an empty Reservation object is created that is
added as an attribute to the controller’s Model object. Then the controller returns the execution flow to the
reservationForm view, which in this case is resolved to reservationForm.jsp (i.e., the form).

The most important aspect of this last method is the addition of an empty Reservation
object. If you analyze the form reservationForm.html, you will notice the form tag declares the
th:object="${reservation}" attribute. This means that upon rendering the view, the form expects an
object named reservation to be available, which is achieved by placing it inside the handler method’s
Model. In fact, further inspection reveals that the th:field=*{expression} values for each input tag
correspond to the field names belonging to the Reservation object. Since the form is being loaded for the
first time, it should be evident that an empty Reservation object is expected.

Now turn your attention to submitting the form for the first time. After you have filled in the form fields,
submitting the form triggers an HTTP POST request, which in turn invokes the submitForm method—on
account of this method’s @PostMapping value.

The input fields declared for the submitForm method are the @ModelAttribute("reservation")
Reservation reservation used to reference the reservation object and the BindingResult object that
contains newly submitted data by the user.

At this juncture, the handler method doesn’t incorporate validation, which is the purpose of the
BindingResult object.

The only operation performed by the handler method is reservationService.make(reservation);.
This operation invokes the reservation service using the current state of the reservation object.

Generally, controller objects are first validated prior to performing this type of operation on them.
Finally, note the handler method returns a view named redirect:reservationSuccess. The actual

name of the view in this case is reservationSuccess, which is resolved to the reservationSuccess.html
page you created earlier.

The redirect: prefix in the view name is used to avoid a problem known as duplicate form submission.

Chapter 5 ■ Spring MVC: aSynC proCeSSing

249

When you refresh the web page in the form success view, the form you just submitted is resubmitted.
To avoid this problem, you can apply the post/redirect/get design pattern, which recommends redirecting
to another URL after a form submission is handled successfully, instead of returning an HTML page directly.
This is the purpose of prefixing a view name with redirect:.

Initialize a Model Attribute Object and Prepopulate a Form with Values
The form is designed to let users make reservations. However, if you analyze the Reservation domain class,
you will note the form is still missing two fields to create a complete reservation object. One of these fields is
the player field, which corresponds to a Player object. Per the Player class definition, a Player object has
both name and phone fields.

So, can the player field be incorporated into a form view and controller? Let’s analyze the form view
first, shown here:

<!DOCTYPE html>
<html lang="en" xmlns:th="http://www.thymeleaf.org">
<body>
<form method="post" th:object="${reservation}">

 <table>
 ...
 <tr>
 <td>Player Name</td>
 <td><input type="text" th:field="*{player.name}" required/></td>
 <td><span class="error" th:if="${#fields.hasErrors('player.name')}"

th:errors="*{player.name}"></td>
 </tr>
 <tr>
 <td>Player Phone</td>
 <td><input type="text" th:field="*{player.phone}" required/></td>
 <td><span class="error" th:if="${#fields.hasErrors('player.phone')}"

th:errors="*{player.phone}">
 </td>
 </tr>
 <tr>
 <td colspan="3"><input type="submit"/></td>
 </tr>
 </table>

</form>
</body>
</html>

Using a straightforward approach, you add two additional <input> tags to represent the Player object’s
fields. Though these form declarations are simple, you also need to perform modifications to the controller.
Recall that by using <input> tags, a view expects to have access to model objects passed by the controller,
which match the path value for <input> tags.

Chapter 5 ■ Spring MVC: aSynC proCeSSing

250

Though the controller’s HTTP GET handler method returns an empty Reservation object to this last
view, the player property is null, so it causes an exception when rendering the form. To solve this problem,
you have to initialize an empty Player object and assign it to the Reservation object returned to the view.

@RequestMapping(method = RequestMethod.GET)
public String setupForm(
@RequestParam(required = false, value = "username") String username, Model model) {
 Reservation reservation = new Reservation();
 reservation.setPlayer(new Player(username, null));
 model.addAttribute("reservation", reservation);
 return "reservationForm";
}

In this case, after creating the empty Reservation object, the setPlayer method is used to assign it
an empty Player object. Further note that the creation of the Person object relies on the username value.
This particular value is obtained from the @RequestParam input value, which was also added to the handler
method. By doing so, the Player object can be created with a specific username value passed in as a request
parameter, resulting in the username form field being prepopulated with this value.

So, for example, if a request to the form is made in the following manner:

http://localhost:8080/court/reservationForm?username=Roger

this allows the handler method to extract the username parameter to create the Player object, in turn
prepopulating the form’s username form field with a Roger value. It’s worth noting that the @RequestParam
annotation for the username parameter uses the property required=false; this allows a form request to be
processed even if such a request parameter is not present.

Provide Form Reference Data
When a form controller is requested to render the form view, it may have some types of reference data
to provide to the form (e.g., the items to display in an HTML selection). Now suppose you want to allow
a user to select the sport type when reserving a court—which is the final unaccounted field for the
Reservation class.

<!DOCTYPE html>
<html lang="en" xmlns:th="http://www.thymeleaf.org">
<body>
<form method="post" th:object="${reservation}">

 <table>
 ...
 <tr>
 <td>Sport Type</td>
 <td>
 <select th:field="*{sportType}">
 <option th:each="sportType : ${sportTypes}" th:value="${sportType.id}"

th:text="${sportType.name}"/>
 </select>
 </td>

Chapter 5 ■ Spring MVC: aSynC proCeSSing

251

 <td><span class="error" th:if="${#fields.hasErrors('sportType')}"
th:errors="*{sportType}"></td>

 </tr>
 <tr>
 <td colspan="3"><input type="submit"/></td>
 </tr>
 </table>

</form>
</body>
</html>

The <form:select> tag provides a way to generate a drop-down list of values passed to the view by the
controller. Thus, the form represents the sportType field as a set of HTML <select> elements, instead of the
previous open-ended fields—<input>—that require a user to introduce text values.

Next, let’s take a look at how the controller assigns the sportType field as a model attribute; the process
is a little different than the previous fields.

First let’s define the getAllSportTypes() method in the ReservationService interface for retrieving all
available sport types.

package com.apress.springrecipes.reactive.court;
...
public interface ReservationService {
 ...
 Flux<SportType> getAllSportTypes();
}

Then you can implement this method by returning a hard-coded list.

package com.apress.springrecipes.reactive.court;
...
public class InMemoryReservationService implements ReservationService {
 ...
 public static final SportType TENNIS = new SportType(1, "Tennis");
 public static final SportType SOCCER = new SportType(2, "Soccer");

 public Flux<SportType> getAllSportTypes() {
 return Flux.fromIterable(Arrays.asList(TENNIS, SOCCER));
 }
}

Now that you have an implementation that returns a hard-coded list of SportType objects, let’s take a
look at how the controller associates this list for it to be returned to the form view.

package com.apress.springrecipes.court.service;
.....
 @ModelAttribute("sportTypes")
 public Flux<SportType> populateSportTypes() {
 return reservationService.getAllSportTypes();
 }

Chapter 5 ■ Spring MVC: aSynC proCeSSing

252

 @RequestMapping(method = RequestMethod.GET)
 public String setupForm(
 @RequestParam(required = false, value = "username") String username, Model model) {
 Reservation reservation = new Reservation();
 reservation.setPlayer(new Player(username, null));
 model.addAttribute("reservation", reservation);
 return "reservationForm";
 }

Notice that the setupForm handler method charged with returning the empty Reservation object to the
form view remains unchanged.

The new addition, which is responsible for passing a SportType list as a model attribute to the form
view, is the method decorated with the @ModelAttribute("sportTypes") annotation. The @ModelAttribute
annotation is used to define global model attributes, available to any returning view used in handler
methods. In the same way, a handler method declares a Model object as an input parameter and assigns
attributes that can be accessed in the returning view.

Since the method decorated with the @ModelAttribute("sportTypes") annotation has a return type of
Flux<SportType> and makes a call to reservationService.getAllSportTypes(), the hard-coded TENNIS
and SOCCER SportType objects are assigned to the model attribute named sportTypes. This last model
attribute is used in the form view to populate a drop-down list (i.e., <select> tag).

Bind Properties of Custom Types
When a form is submitted, a controller binds the form field values to the model object’s properties of the
same name, in this case a Reservation object. However, for properties of custom types, a controller is not
able to convert them unless you specify the corresponding property editors for them.

For example, the sport type selection field submits only the selected sport type ID—as this is the
way HTML <select> fields operate. Therefore, you have to convert this ID into a SportType object with
a property editor. First, you require the getSportType() method in ReservationService to retrieve a
SportType object by its ID.

package com.apress.springrecipes.court.service;
...
public interface ReservationService {
 ...
 public SportType getSportType(int sportTypeId);
}

For testing purposes, you can implement this method with a switch/case statement.

package com.apress.springrecipes.court.service;
...
public class ReservationServiceImpl implements ReservationService {
 ...
 public SportType getSportType(int sportTypeId) {
 switch (sportTypeId) {
 case 1:
 return TENNIS;

Chapter 5 ■ Spring MVC: aSynC proCeSSing

253

 case 2:
 return SOCCER;
 default:
 return null;
 }
 }
}

Then you create the SportTypeConverter class to convert a sport type ID into a SportType object. This
converter requires ReservationService to perform the lookup.

package com.apress.springrecipes.reactive.court.domain;

import com.apress.springrecipes.court.service.ReservationService;
import org.springframework.core.convert.converter.Converter;

public class SportTypeConverter implements Converter<String, SportType> {

 private final ReservationService reservationService;

 public SportTypeConverter(ReservationService reservationService) {
 this.reservationService = reservationService;
 }

 @Override
 public SportType convert(String source) {
 int sportTypeId = Integer.parseInt(source);
 SportType sportType = reservationService.getSportType(sportTypeId);
 return sportType;
 }
}

Now that you have the supporting SportTypeConverter class required to bind form properties to a
custom class like SportType, you need to associate it with the controller. For this purpose, you can use the
addFormatters method from the WebFluxConfigurer.

By overriding this method in your configuration class, custom types can be associated with a controller.
This includes the SportTypeConverter class and other custom types like Date. Though we didn’t mention
the date field earlier, it suffers from the same problem as the sport type selection field. A user introduces
date fields as text values. For the controller to assign these text values to the Reservation object’s date
field, this requires the date fields to be associated with a Date object. Given the Date class is part of the Java
language, it won’t be necessary to create a special class like SportTypeConverter for this purpose. The
Spring Framework already includes a custom class for this purpose.

Knowing you need to bind both the SportTypeConverter class and a Date class to the underlying
controller, the following code illustrates the modifications to the configuration class:

package com.apress.springrecipes.reactive.court;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.ComponentScan;
import org.springframework.context.annotation.Configuration;
import org.springframework.format.FormatterRegistry;

Chapter 5 ■ Spring MVC: aSynC proCeSSing

254

import org.springframework.web.reactive.config.EnableWebFlux;
import org.springframework.web.reactive.config.ViewResolverRegistry;
import org.springframework.web.reactive.config.WebFluxConfigurer;
import org.thymeleaf.extras.java8time.dialect.Java8TimeDialect;
import org.thymeleaf.spring5.ISpringWebFluxTemplateEngine;
import org.thymeleaf.spring5.SpringWebFluxTemplateEngine;
import org.thymeleaf.spring5.templateresolver.SpringResourceTemplateResolver;
import org.thymeleaf.spring5.view.reactive.ThymeleafReactiveViewResolver;
import org.thymeleaf.templatemode.TemplateMode;

@Configuration
@EnableWebFlux
@ComponentScan
public class WebFluxConfiguration implements WebFluxConfigurer {

 @Autowired
 private ReservationService reservationService;

 ...

 @Override
 public void addFormatters(FormatterRegistry registry) {
 registry.addConverter(new SportTypeConverter(reservationService));
 }
}

The only field for this last class corresponds to reservationService, used to access the application’s
ReservationService bean. Note the use of the @Autowired annotation that enables the injection of the
bean. Next, you can override the addFormatters method used to bind the Date and SportTypeConverter
classes. You can then find two calls to register the converter and formatter. These methods belong to the
FormatterRegistry object, which is passed as an input parameter to the addFormatters method.

The first call is used to bind a Date class to the DateFormatter class. The DateFormatter class is
provided by the Spring Framework and offers functionality to parse and print Date objects.

The second call is used to register the SportTypeConverter class. Since you created the
SportTypeConverter class, you should know that its only input parameter is a ReservationService bean. By
using this approach, every annotation-based controller (i.e., classes using the @Controller annotation) can
have access to the same custom converters and formatters in their handler methods.

Validate Form Data
When a form is submitted, it’s standard practice to validate the data provided by a user before a submission
is successful. Spring WebFlux, like Spring MVC, supports validation by means of a validator object that
implements the Validator interface. You can write the following validator to check whether the required
form fields are filled and whether the reservation hour is valid on holidays and weekdays:

package com.apress.springrecipes.reactive.court;

import org.springframework.stereotype.Component;
import org.springframework.validation.Errors;
import org.springframework.validation.ValidationUtils;
import org.springframework.validation.Validator;

Chapter 5 ■ Spring MVC: aSynC proCeSSing

255

import java.time.DayOfWeek;
import java.time.LocalDate;

@Component
public class ReservationValidator implements Validator {

 public boolean supports(Class<?> clazz) {
 return Reservation.class.isAssignableFrom(clazz);
 }

 public void validate(Object target, Errors errors) {
 ValidationUtils.rejectIfEmptyOrWhitespace(errors, "courtName",
 "required.courtName", "Court name is required.");
 ValidationUtils.rejectIfEmpty(errors, "date",
 "required.date", "Date is required.");
 ValidationUtils.rejectIfEmpty(errors, "hour",
 "required.hour", "Hour is required.");
 ValidationUtils.rejectIfEmptyOrWhitespace(errors, "player.name",
 "required.playerName", "Player name is required.");
 ValidationUtils.rejectIfEmpty(errors, "sportType",
 "required.sportType", "Sport type is required.");

 Reservation reservation = (Reservation) target;
 LocalDate date = reservation.getDate();
 int hour = reservation.getHour();
 if (date != null) {
 if (date.getDayOfWeek() == DayOfWeek.SUNDAY) {
 if (hour < 8 || hour > 22) {
 errors.reject("invalid.holidayHour", "Invalid holiday hour.");
 }
 } else {
 if (hour < 9 || hour > 21) {
 errors.reject("invalid.weekdayHour", "Invalid weekday hour.");
 }
 }
 }
 }
}

In this validator, you use utility methods such as rejectIfEmptyOrWhitespace() and rejectIfEmpty()
in the ValidationUtils class to validate the required form fields. If any of these form fields is empty, these
methods will create a field error and bind it to the field. The second argument of these methods is the
property name, while the third and fourth are the error code and default error message.

You also check whether the reservation hour is valid on holidays and weekdays. If it’s invalid, you should
use the reject() method to create an object error to be bound to the reservation object, not to a field.

Since the validator class is annotated with the @Component annotation, Spring attempts to instantiate the
class as a bean in accordance with the class name, in this case reservationValidator.

Chapter 5 ■ Spring MVC: aSynC proCeSSing

256

Since validators may create errors during validation, you should define messages for the error codes for
displaying to the user. If you have ResourceBundleMessageSource defined, you can include the following
error messages in your resource bundle for the appropriate locale (e.g., messages.properties for the default
locale); see also recipe 3-5:

required.courtName=Court name is required
required.date=Date is required
required.hour=Hour is required
required.playerName=Player name is required
required.sportType=Sport type is required
invalid.holidayHour=Invalid holiday hour
invalid.weekdayHour=Invalid weekday hour

To apply this validator, you need to perform the following modification to your controller:

package com.apress.springrecipes.court.service;
.....
 private final ReservationService reservationService;
 private final ReservationValidator reservationValidator;

 public ReservationFormController(ReservationService reservationService,
 ReservationValidator reservationValidator) {
 this.reservationService = reservationService;
 this.reservationValidator = reservationValidator;
 }

 @RequestMapping(method = RequestMethod.POST)
 public String submitForm(
 @ModelAttribute("reservation") @Validated Reservation reservation,
 BindingResult result, SessionStatus status) {
 if (result.hasErrors()) {
 return "reservationForm";
 } else {
 reservationService.make(reservation);
 return "redirect:reservationSuccess";
 }
 }

 @InitBinder
 public void initBinder(WebDataBinder binder) {
 binder.setValidator(reservationValidator);
 }

The first addition to the controller is the ReservationValidator field, which gives the controller access
to an instance of the validator bean.

The next modification takes place in the HTTP POST handler method, which is always called when
a user submits a form. Next to the @ModelAttribute annotation, there is now an @Validated annotation,
which triggers validation of the object. After the validation, the result parameter—the BindingResult
object—contains the results for the validation process. So next, a conditional based on the value of result.
hasErrors() is made. If the validation class detects errors, this value is true.

Chapter 5 ■ Spring MVC: aSynC proCeSSing

257

If errors are detected in the validation process, the method handler returns the view reservationForm,
which corresponds to the same form so that a user can resubmit information. If no errors are detected in the
validation process, a call is made to perform the reservation— reservationService.make(reservation);—
followed by a redirection to the success view reservationSuccess.

The registration of the validator is done in the @InitBinder annotated method, and the validator is
set on the WebDataBinder so that it can be used after binding. To register the validator, you need to use the
setValidator method. You can also register multiple validators using the addValidators method; this
method takes a varargs argument for one or more Validator instances.

 ■ Note the WebDataBinder object can also be used to register additional ProperyEditor, Converter, and
Formatter instances for type conversion. this can be used instead of registering global PropertyEditors,
Converters, or Formatters.

 ■ Tip instead of writing a custom Spring Validator instances, you could also utilize JSr-303 validation and
annotate fields to have them validated.

5-7. Publish and Consume JSON with Reactive
REST Services
Problem
You want to publish XML or JSON services in a reactive way.

Solution
Using the same declarations as described in recipes 4-1 and 4-2, you can write a reactive endpoint.

How It Works
To publish JSON you can use the @ResponseBody or a @RestController. By returning a reactive type,
Mono or Flux, you can have a chuncked response. How the result is handled depends on the requested
representation. When consuming JSON you can annotate a reactive method argument, of type Mono or
Flux, with @ResponseBody to have this reactivly consumed.

Publish JSON
By annotating the request-handling method with @ResponseBody, the output will be returned as JSON or
XML (depending on the request return type and available libraries on the classpath). Instead of annotating
the method with @ResponseBody, you could use the @RestController annotation on the class level, which
automatically implies this for all request-handling methods.

Chapter 5 ■ Spring MVC: aSynC proCeSSing

258

Let’s write a REST controller that returns all reservations in the system. You do this by annotating a class
with @RestController and giving it an @GetMapping annotated method, which returns a Flux<Reservation>
object.

package com.apress.springrecipes.reactive.court.web;

import com.apress.springrecipes.reactive.court.Reservation;
import com.apress.springrecipes.reactive.court.ReservationService;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;
import reactor.core.publisher.Flux;

@RestController
@RequestMapping("/reservations")
public class ReservationRestController {

 private final ReservationService reservationService;

 public ReservationRestController(ReservationService reservationService) {
 this.reservationService = reservationService;
 }

 @GetMapping
 public Flux<Reservation> listAll() {
 return reservationService.findAll();
 }
}

When you return a reactive type like this, it will be streamed to the client either as streaming JSON/XML
or as server-sent events (see recipe 5-2). The result depends on the Accept-Header header from the client.
Using httpie and doing http http://localhost:8080/court-rx/reservations --stream will get you
JSON. When adding Accept:text/event-stream, the result will be published as server-sent events.

Consume JSON
In addition to producing JSON, you can also consume it. For this, add a method argument and annotate
it with @RequestBody. The incoming JSON request body will be mapped onto the object. For a reactive
controller, you can wrap it in a Mono or Flux for, respectively, single or multiple results.

First create a simple POJO that takes a courtName so you can query the reservations.

package com.apress.springrecipes.reactive.court.web;

public class ReservationQuery {

 private String courtName;

 public String getCourtName() {
 return courtName;
 }

Chapter 5 ■ Spring MVC: aSynC proCeSSing

259

 public void setCourtName(String courtName) {
 this.courtName = courtName;
 }
}

This is just a basic POJO, which will be filled through JSON. Now it’s time for the controller. Add a
method that takes Mono<ReservationQuery> as its argument.

@PostMapping
public Flux<Reservation> find(@RequestBody Mono<ReservationQuery> query) {
 return query.flatMapMany(q -> reservationService.query(q.getCourtName()));
}

Now when a request with a JSON body comes in, this will be deserialized into the ReservationQuery
object. For this, Spring WebFlux uses (just like Spring MVC) a converter. The conversion is delegated to
an instance of HttpMessageReader, in this case DecoderHttpMessageReader. This class will decode the
reactive stream into the object. This again is delegated to a Decoder object. Because you want to use JSON
(and have the Jackson 2 JSON library on the classpath), it will use Jackson2JsonDecoder for this. The
HttpMessageReader and Decoder implementations are the reactive counterparts of HttpMessageConverter
used by regular Spring MVC.

Using httpie and issuing the request http POST http://localhost:8080/court-rx/reservations
courtName="Tennis #1" --stream, you will get back all the results for the court Tennis #1. This command
will send the following JSON to the server:

{ courtName: "Tennis #1"}

5-8. Use an Asynchronous Web Client
Problem
You want to access a REST service from a third party (e.g., Google, Yahoo, or another business partner) and
use its payload inside a Spring application.

Solution
Accessing a third-party REST service inside a Spring application revolves around the use of the Spring
WebClient class. The WebClient class is designed on the same principles as the many other Spring
*Template classes (e.g., JdbcTemplate, JmsTemplate), providing a simplified approach with default
behaviors for performing lengthy tasks.

This means the processes of invoking a REST service and using its returning payload are streamlined in
Spring applications.

 ■ Note prior to Spring 5, you would use AsyncRestTemplate; however, as of Spring 5, that has been
deprecated in favor of WebClient.

Chapter 5 ■ Spring MVC: aSynC proCeSSing

260

How It Works
Before describing the particularities of the WebClient class, it’s worth exploring the life cycle of a REST
service so you’re aware of the actual work the RestTemplate class performs. Exploring the life cycle of a
REST service can best be done from a browser, so open your favorite browser on your workstation to get
started.

The first thing that’s needed is a REST service endpoint. You are going to reuse the endpoint you created
in recipe 5-7. This endpoint should be available at http://localhost:8080/court-rx/reservations. If
you load this REST service endpoint in your browser, the browser performs a GET request, which is one of
the most popular HTTP requests supported by REST services. Upon loading the REST service, the browser
displays a responding payload, as shown in Figure 5-6.

It’s the task of a REST service consumer (i.e., you) to know the payload structure—sometimes referred to
as the vocabulary—of a REST service to appropriately process its information. Though this last REST service
relies on what can be considered a custom vocabulary, a series of REST services often relies on standardized
vocabularies (e.g., RSS), which makes the processing of REST service payloads uniform. In addition, it’s also
worth noting that some REST services provide Web Application Description Language (WADL) contracts to
facilitate the discovery and consumption of payloads.

Figure 5-6. Resulting JSON

Chapter 5 ■ Spring MVC: aSynC proCeSSing

261

Table 5-6. WebClient Class Methods Based on HTTP’s Request Methods

Method Description

create Creates a WebClient; optionally you can give a default URL

head() Prepares an HTTP HEAD operation

get() Prepares an HTTP GET operation

post() Prepares an HTTP POST operation

put() Prepares an HTTP PUT operation

options() Prepares an HTTP OPTIONS operation

patch() Prepares an HTTP PATCH operation

delete() Prepares an HTTP DELETE operation

Now that you’re familiar with a REST service’s life cycle using your browser, you can take a look at how to
use the Spring WebClient class to incorporate a REST service’s payload into a Spring application. Given that
the WebClient class is designed to call REST services, it should come as no surprise that its main methods
are closely tied to REST’s underpinnings, which are the HTTP protocol’s methods: HEAD, GET, POST, PUT,
DELETE, and OPTIONS. Table 5-6 contains the main methods supported by the RestTemplate class.

As you can observe in Table 5-6, the WebClient class builder methods are modeled after HTTP protocol
methods, which include HEAD, GET, POST, PUT, DELETE, and OPTIONS.

 ■ Note By far the most common http method used in reSt services is get since it represents a safe
operation to obtain information (i.e., it doesn’t modify any data). on the other hand, http methods such as
pUt, poSt, and DeLete are designed to modify a provider’s information, which makes them less likely to be
supported by a reSt service provider. For cases in which data modification needs to take place, many providers
opt for the Soap protocol, which is an alternative mechanism to using reSt services.

Now that you’re aware of the WebClient basic builder methods, you can move on to invoking the
same REST service you did with your browser previously, except this time using Java code from the Spring
Framework. The following code illustrates a class that accesses the REST service and returns its contents to
System.out:

package com.apress.springrecipes.reactive.court;

import org.springframework.http.MediaType;
import org.springframework.web.reactive.function.client.WebClient;

import java.io.IOException;

public class Main {

 public static void main(String[] args) throws IOException {
 final String url = "http://localhost:8080/court-rx";

Chapter 5 ■ Spring MVC: aSynC proCeSSing

262

 WebClient.create(url)
 .get()
 .uri("/reservations")
 .accept(MediaType.APPLICATION_STREAM_JSON)
 .exchange()
 . flatMapMany(cr -> cr.bodyToFlux(String.class)).subscribe(System.out::println);

 System.in.read();
 }
}

 ■ Caution Some reSt service providers restrict access to their data feeds depending on the requesting
party. access is generally denied by relying on data present in a request (e.g., http headers or ip address).
So, depending on the circumstances, a provider can return an access denied response even when a data feed
appears to be working in another medium (e.g., you might be able to access a reSt service in a browser but
get an accessed denied response when attempting to access the same feed from a Spring application). this
depends on the terms of use set forth by a reSt provider.

The first line declares the import statement needed to access the WebClient class within a class’s body.
First you need to create an instance of the WebClient class using WebClient.create. Next, you can find a
call made to the get() method that belongs to the WebClient class, which as described in Table 5-6 is used
to prepare an HTTP GET operation—just like the one performed by a browser to obtain a REST service’s
payload. Next you extend the base URL to call because you want to call http://localhost:8080/court-
rx/reservations and you want to have a stream of JSON, which is the reason for accept(MediaType.
APPLICATION_STREAM_JSON).

Next, the call to exchange() will switch the configuration from setting up the request to define the
response handling. As you probably get zero or more elements, you need to convert the ClientResponse
body to a Flux. For this you can call the bodyToFlux method on ClientResponse (there is also a plain body
method that you could use if you need custom conversion or the bodyToMono method to convert to a single-
element result). You want to write each element to System.out, so you subscribe to that.

When you execute the application, the output will be the same as in the browser except that it is now
printed in the console.

Retrieve Data from a Parameterized URL
The previous section showed how you can call a URI to retrieve data, but what about a URI that requires
parameters? You don’t want to hard-code parameters into the URL. With the WebClient class, you can use a
URL with placeholders; these placeholders will be replaced with actual values upon execution. Placeholders
are defined using { and }, just as with a request mapping (see recipes 4-1 and 4-2).

Chapter 5 ■ Spring MVC: aSynC proCeSSing

263

The URI http://localhost:8080/court-rx/reservations/{courtName} is an example of such a
parameterized URI. To be able to call this method, you need to pass in a value for the placeholder; you can
do this by passing the parameters as arguments to the uri method of the WebClient class.

public class Main {

 public static void main(String[] args) throws Exception {
 WebClient.create(url)
 .get()
 .uri("/reservations/{courtName}", "Tennis")
 .accept(MediaType.APPLICATION_STREAM_JSON)
 .exchange()
 .flatMapMany(cr -> cr.bodyToFlux(String.class))

.subscribe(System.out::println);

 System.in.read();
 }
}

Retrieve Data as a Mapped Object
Instead of returning a String to be used in the application, you can also (re)use your Reservation,
Player, and SportType classes to map the result. Instead of passing in String.class as a parameter to the
bodyToFlux method, pass Reservation.class, and the response will be mapped onto this class.

package com.apress.springrecipes.reactive.court;

import org.springframework.http.MediaType;
import org.springframework.web.reactive.function.client.WebClient;

import java.io.IOException;

public class Main {

 public static void main(String[] args) throws IOException {
 final String url = "http://localhost:8080/court-rx";

 WebClient.create(url)
 .get()
 .uri("/reservations")
 .accept(MediaType.APPLICATION_STREAM_JSON)
 .exchange()
 .flatMapMany(cr -> cr.bodyToFlux(Reservation.class))

.subscribe(System.out::println);

 System.in.read();
 }
}

The WebClient class makes use of the same HttpMessageReader infrastructure as a controller with
@ResponseBody marked methods. As JAXB 2 (as well as Jackson) is automatically detected, mapping to an
object is quite easy.

Chapter 5 ■ Spring MVC: aSynC proCeSSing

264

5-9. Write a Reactive Handler Function
Problem
You want to write functions that react to incoming requests.

Solution
You can write a method that takes a ServerRequest, returns a Mono<ServerResponse>, and maps it as a
router function.

How It Works
Instead of mapping requests to methods using @RequestMapping, you can also write functions that are
essentially honoring the HandlerFunction interface.

package org.springframework.web.reactive.function.server;

import reactor.core.publisher.Mono;

@FunctionalInterface
public interface HandlerFunction<T extends ServerResponse> {

 Mono<T> handle(ServerRequest request);

}

A HandlerFunction, as shown in the previous code, is basically a method that takes a ServerRequest as
an argument and returns a Mono<ServerResponse>. Both the ServerRequest and ServerResponse provide
full reactive access to the underlying request and response; this is by exposing various parts of it as either
Mono or Flux streams.

After a function has been written, it can be mapped to incoming requests using the RouterFunctions
class. The mapping can be done on URLs, headers, methods, or custom-written RequestPredicate classes.
The default available request predicates are accessible through the RequestPredicates class.

Write Handler Functions
Let’s rewrite the ReservationRestController to simple request-handling functions instead of a controller.

To do so, remove all the request-mapping annotations and add a simple @Component to the class. Next
rewrite the methods to adhere to the signature outlined by the HandlerFunction interface.

package com.apress.springrecipes.reactive.court.web;

import com.apress.springrecipes.reactive.court.Reservation;
import com.apress.springrecipes.reactive.court.ReservationService;
import org.springframework.stereotype.Component;
import org.springframework.web.bind.annotation.*;
import org.springframework.web.reactive.function.server.ServerRequest;
import org.springframework.web.reactive.function.server.ServerResponse;

Chapter 5 ■ Spring MVC: aSynC proCeSSing

265

import reactor.core.publisher.Flux;
import reactor.core.publisher.Mono;

@Component
public class ReservationRestController {

 private final ReservationService reservationService;

 public ReservationRestController(ReservationService reservationService) {
 this.reservationService = reservationService;
 }

 public Mono<ServerResponse> listAll(ServerRequest request) {
 return ServerResponse.ok().body(reservationService.findAll(), Reservation.class);
 }

 public Mono<ServerResponse> find(ServerRequest request) {
 return ServerResponse
 .ok()
 .body(
 request.bodyToMono(ReservationQuery.class)
 . flatMapMany(q -> reservationService.query(q.getCourtName())),

Reservation.class);
 }
}

The class still needs ReservationService as a dependency. Notice the change in the listAll and find
methods. They now both return Mono<ServerResposne> and accept a ServerRequest as input. Because
you want to return an HTTP status of OK (200), you can use ServerResponse.ok() to build that response.
You need to add a body, Flux<Reservation> in this case, and you need to specify the type of elements,
Reservation.class. The latter is needed because the reactive and generic nature type of information cannot
be read when composing the function.

In the find method, something similar happens, but first you map the body of the incoming request
to a ReservationQuery using bodyToMono. This result is then used to eventually call the query method on
ReservationService.

Route Requests to Handler Functions
As you now have simple functions instead of annotation-based request-handling methods, routing needs to
be done differently. You can use RouterFunctions to do the mapping instead.

@Bean
public RouterFunction<ServerResponse> reservationsRouter(ReservationRestController handler)
{
 return RouterFunctions
 .route(GET("/*/reservations"), handler::listAll)
 .andRoute(POST("/*/reservations"), handler::find);
}

Chapter 5 ■ Spring MVC: aSynC proCeSSing

266

When an HTTP GET request comes in for /court-rx/reservations, the listAll method will be
invoked for an HTTP POST the find method will be invoked.

Using RequestPredicates.GET is the same as writing RequestPredicates.method(HttpMethod.GET).
and(RequestPredicates.path("/*/reservations")). You can combine as many RequestPredicate
statements as you want. The methods in Table 5-7 are exposed through the RequestPredicates class.

The RequestPredicates helper also provides shorthand methods for GET, POST, PUT, DELETE, HEAD,
PATCH, and OPTIONS. This saves you from combining two expressions.

Summary
In this chapter, you looked at various ways to do async processing. The traditional way is to use the Servlet
3.x asynchronous support and have the controller return a DeferredResult or a Future.

For communication, you looked at server-sent events and WebSocket communication. This allowed you
to communicate in an asynchronous way between the client and the server.

Then you moved on and learned how to write reactive controllers, which wasn’t all that different from
what you learned in Chapters 3 and 4. This also shows the power of Spring’s abstractions; you can use almost
the same programming model for a totally different technology. After writing reactive controllers, you looked
at writing reactive handler functions, which can do much of the same stuff that reactive controllers can do in
a more functional programming kind of way.

In between you also looked at the WebClient class to do asynchronous consumption of a REST API.

Table 5-7. Default Available RequestPredicates

Method Description

method RequestPredicate for the HTTP METHOD

path RequestPredicate for the URL or part of the URL

accept RequestPredicate for the Accept header to match requested media types

queryParam RequestPredicate to check for the existence of query parameters

headers RequestPredicate to check for the existence of request headers

http://dx.doi.org/10.1007/978-1-4842-2790-9_3
http://dx.doi.org/10.1007/978-1-4842-2790-9_4

267© Marten Deinum, Daniel Rubio, and Josh Long 2017
M. Deinum et al., Spring 5 Recipes, DOI 10.1007/978-1-4842-2790-9_6

CHAPTER 6

Spring Social

Social networking is everywhere, and most Internet users have one or more social networking accounts.
People tweet to share what they are doing or how they feel about a subject; they share pictures on Facebook
and Instagram, and they write blogs using Tumblr. More and more social networks are appearing every day.
As the owner of a web site, it can be beneficial to add integration with those social networks, allowing users
to easily post links or to filter and show how people think.

Spring Social tries to have a unified API to connect to those different networks and an extension
model. Spring Social itself provides integration for Facebook, Twitter, and LinkedIn; however, there are
lots of community projects providing support for different social networks (such as Tumblr, Weibo, and
Instagram, to name a few). Spring Social can be split into three parts. First there is the Connect Framework,
which handles the authentication and connection flow with the underlying social network. Next is
ConnectController, which is the controller doing the OAuth exchange between the service provider, the
consumer (the application), and the user of the application. Finally, there is SocialAuthenticationFilter,
which integrates Spring Social with Spring Security (see Chapter 8) to allow users to sign in with their social
network account.

6-1. Set Up Spring Social
Problem
You want to use Spring Social in your application.

Solution
Add Spring Social to your dependencies and enable Spring Social in your configuration.

How It Works
Spring Social consists of several core modules and extension modules for each service provider (such
as Twitter, Facebook, GitHub etc.). To be able to use Spring Social, you will need to add them to your
application’s dependencies. Table 6-1 shows the available modules.

http://dx.doi.org/10.1007/978-1-4842-2790-9_8

Chapter 6 ■ Spring SoCial

268

The dependencies are in the group org.springframework.social. This chapter will cover every
module (core, config, web, and security) in different recipes. After adding the dependencies, you can set
up Spring Social.

package com.apress.springrecipes.social.config;

import com.apress.springrecipes.social.StaticUserIdSource;
import org.springframework.context.annotation.*;
import org.springframework.core.env.Environment;
import org.springframework.social.config.annotation.EnableSocial;
import org.springframework.social.config.annotation.SocialConfigurerAdapter;

@Configuration
@EnableSocial
@PropertySource("classpath:/application.properties")
public class SocialConfig extends SocialConfigurerAdapter {

 @Override
 public StaticUserIdSource getUserIdSource() {
 return new StaticUserIdSource();
 }
}

To enable Spring Social, simply add the @EnableSocial annotation to an @Configuration annotated
class. This annotation will trigger the loading of the configuration of Spring Social. It will detect any instance
of SocialConfigurer beans, which are used for further configuration of Spring Social. Specifically, they are
used to add the configuration for one or more service providers.

SocialConfig extends SocialConfigurerAdapter, which is an implementation of
SocialConfigurer. As you can see, there is an overridden method called getUserIdSource, which
returns a StaticUserIdSource object. Spring Social requires an instance of UserIdSource to
determine the current user. This user is used to look up any connections with service providers. These
connections are stored in a per-user ConnectionRepository. Which ConnectionRepository to use
is determined by UsersConnectionRepository, which uses the current user. The default configured
UsersConnectionRepository is InMemoryUsersConnectionRepository.

Finally, you load a properties file from the classpath. This properties file contains the API keys for your
application to use for service providers. Instead of putting them in a properties file, you could also hard-code
them into your code.

Table 6-1. Overview of Spring Social Modules

Module Description

spring-social-core Core module of Spring Social; contains the main and shared infrastructure
classes

spring-social-config Spring Social configuration module; makes it easier to configure (parts) of
Spring Social

spring-social-web Web integration for Spring Social contains filters and controllers for easy use

spring-social-security Integration with Spring Security (see Chapter 7)

http://dx.doi.org/10.1007/978-1-4842-2790-9_7

Chapter 6 ■ Spring SoCial

269

For the time being, you are going to use StaticUserIdSource to determine the current user.

package com.apress.springrecipes.social;

import org.springframework.social.UserIdSource;

public class StaticUserIdSource implements UserIdSource {

 private static final String DEFAULT_USERID = "anonymous";
 private String userId = DEFAULT_USERID;

 @Override
 public String getUserId() {
 return this.userId;
 }

 public void setUserId(String userId) {
 this.userId = userId;
 }
}

StaticUserIdSource implements UserIdSource and returns a preset userId. Although this works
for now, in a real application, you would want to be able to store the connection information on a per-user
basis.

6-2. Connect to Twitter
Problem
You want your application to have access to Twitter.

Solution
Register your application with Twitter and configure Spring Social to make use of the application credentials
to get access to Twitter.

How It Works
Before you can have your application use Twitter, you need to register your application with Twitter. After
this registration, you will have credentials (the API key and API secret) to identify your application.

Chapter 6 ■ Spring SoCial

270

Register an Application on Twitter
To register an application with Twitter, go to https://dev.twitter.com and look in the top-right corner for
your avatar; from the drop-down menu, select “My apps” (see Figure 6-1).

After selecting “My apps,” the Application Management page will appear. On this page is a button that
allows you to create new apps (see Figure 6-2).

Figure 6-2. Application Management page

Figure 6-1. Selecting “My apps” on Twitter

https://dev.twitter.com/

Chapter 6 ■ Spring SoCial

271

On this page, click the button to open a screen (see Figure 6-3) to register your application.

On this screen, you must enter a name and description of your application and the URL of the web site
on which this application is going to be used. When using Spring Social, it is also important that you fill out
the callback URL field because you will need callbacks; the actual value doesn’t really matter (unless you use
a very old version of OAuth).

After accepting the terms and conditions and clicking the final create button, you will be taken to your
application settings page. That means you have successfully created your application.

Figure 6-3. Registering a new application

Chapter 6 ■ Spring SoCial

272

To be able to connect Spring Social to Twitter, you need to know your API key and API secret. You can
find them on the API Keys tab of your application settings (see Figures 6-4 and 6-5).

Configure Spring Social to Connect with Twitter
Now that you have an API key and API secret, you can configure Spring Social to connect to Twitter. First
create a properties file (for instance, application.properties) to hold your API key and API secret so that
you can easily retrieve it when you need it.

Figure 6-5. API key and API secret needed to connect Spring Social

Figure 6-4. Application settings page

Chapter 6 ■ Spring SoCial

273

twitter.appId=<your-twitter-API-key-here>
twitter.appSecret=<your-twitter-API-secret-here>

To connect to Twitter, you need to add a TwitterConnectionFactory, which will use the application ID
and secret when requested to connect to Twitter.

package com.apress.springrecipes.social.config;

import org.springframework.core.env.Environment;
import org.springframework.social.config.annotation.ConnectionFactoryConfigurer;
import org.springframework.social.connect.Connection;
import org.springframework.social.connect.ConnectionRepository;
import org.springframework.social.twitter.api.Twitter;
import org.springframework.social.twitter.connect.TwitterConnectionFactory;

@Configuration
@EnableSocial
@PropertySource("classpath:/application.properties")
public class SocialConfig extends SocialConfigurerAdapter {
...
 @Configuration
 public static class TwitterConfigurer extends SocialConfigurerAdapter {

 @Override
 public void addConnectionFactories(
 ConnectionFactoryConfigurer connectionFactoryConfigurer,
 Environment env) {

 connectionFactoryConfigurer.addConnectionFactory(
 new TwitterConnectionFactory(
 env.getRequiredProperty("twitter.appId"),
 env.getRequiredProperty("twitter.appSecret")));
 }

 @Bean
 @Scope(value = "request", proxyMode = ScopedProxyMode.INTERFACES)
 public Twitter twitterTemplate(ConnectionRepository connectionRepository) {

 Connection<Twitter> connection = connectionRepository.
findPrimaryConnection(Twitter.class);

 return connection != null ? connection.getApi() : null;
 }
 }
}

The SocialConfigurer interface has the callback method addConnectionFactories, which allows you to
add ConnectionFactory instances to use Spring Social. For Twitter, there is the TwitterConnectionFactory,
which takes two arguments. The first is the API key, and the second is the API secret. Both constructor
arguments come from the properties file that is read. Of course, you could also hard-code the values into
the configuration. The connection to Twitter has been made. Although you could use the raw underlying
connection, it isn’t really recommended to do so. Instead, use the TwitterTemplate, which makes it easier
to work with the Twitter API. The previous configuration adds a TwitterTemplate to the application context.

Chapter 6 ■ Spring SoCial

274

Notice the @Scope annotation. It is important that this bean is request-scoped. For each request, the actual
connection to Twitter might differ because potentially every request is for a different user, which is why you
have the request-scoped bean. The ConnectionRepository that is injected into the method is determined
based on the ID of the current user, which is retrieved using the UserIdSource you configured earlier.

 ■ Note although the sample uses a separate configuration class to configure twitter as a service provider,
you can also add it to the main SocialConfig class. however, it can be desirable to separate the global Spring
Social configuration from the specific service provider setup.

6-3. Connect to Facebook
Problem
You want your application to have access to Facebook.

Solution
Register your application with Facebook and configure Spring Social to make use of the application
credentials to get access to Facebook.

How It Works
Before you can have your application use Facebook, you first need to register your application with Facebook.
After this registration, you will have credentials (API key and API secret) to identify your application. To be
able to register an application on Facebook, you need to have a Facebook account and have to be registered as
a developer. (This recipe assumes you already have been registered as a developer with Facebook. If not, go to
http://developers.facebook.com, click the Register Now button, and fill out the wizard.)

Register an Application on Facebook
Start by going to http://developers.facebook.com; click the Apps menu on top of the page and select Add
a New App (see Figure 6-6).

Figure 6-6. First steps in registering a new app

http://developers.facebook.com/
http://developers.facebook.com/

Chapter 6 ■ Spring SoCial

275

This will open a screen (see Figure 6-7) that allows you to fill in some details about your application.

The name of your application can be anything as long as it doesn’t contain the word face or book. It also
needs an e-mail address so Facebook knows who to contact. After you’ve filled in the form, click the Create App ID
button, which will take you to your application page (see Figure 6-8). On this page, navigate to the Settings tab.

Figure 6-7. Create a New App ID window

Figure 6-8. Facebook Settings page

Chapter 6 ■ Spring SoCial

276

On the Settings page, click the Add Platform button and select Website. Enter the URL of the site your
app is going to be part of. In this exercise, that is http://localhost:8080/social. If this URL isn’t present,
authorization will not be granted, and the connection will be never made.

Configure Spring Social to Connect with Facebook
The Facebook Settings page also contains the application ID and secret needed by the application to
connect to Facebook. Put them in the application.properties file.

facebook.appId=<your app-id here>
facebook.appSecret=<your app-secret here>

Assuming Spring Social is already set up (see recipe 6-1), it is a matter of adding a
FacebookConnectionFactory and FacebookTemplate for easy access.

package com.apress.springrecipes.social.config;

import org.springframework.social.facebook.api.Facebook;
import org.springframework.social.facebook.connect.FacebookConnectionFactory;

@Configuration
@EnableSocial
@PropertySource("classpath:/application.properties")
public class SocialConfig extends SocialConfigurerAdapter {

...

 @Configuration
 public static class FacebookConfiguration extends SocialConfigurerAdapter {

 @Override
 public void addConnectionFactories(
 ConnectionFactoryConfigurer connectionFactoryConfigurer,
 Environment env) {

 connectionFactoryConfigurer.addConnectionFactory(
 new FacebookConnectionFactory(
 env.getRequiredProperty("facebook.appId"),
 env.getRequiredProperty("facebook.appSecret")));
 }

 @Bean
 @Scope(value = "request", proxyMode = ScopedProxyMode.INTERFACES)
 public Facebook facebookTemplate(ConnectionRepository connectionRepository) {
 Connection<Facebook> connection = connectionRepository.

findPrimaryConnection(Facebook.class);
 return connection != null ? connection.getApi() : null;
 }
 }
}

Chapter 6 ■ Spring SoCial

277

The FacebookConnectionFactory needs the application ID and secret. Both properties are added to the
application.properties file and are available through the Environment object.

The previous bean configuration adds a bean named facebookTemplate to the application context.
Notice the @Scope annotation. It is important that this bean is request-scoped. For each request, the
actual connection to Facebook might differ because potentially every request is for a different user, which
is the reason for the request-scoped bean. Which ConnectionRepository is injected into the method is
determined based on the ID of the current user, which is retrieved using the UserIdSource you configured
earlier (see recipe 6-1).

 ■ Note although the sample uses a separate configuration class to configure Facebook as a service provider,
you can also add it to the main SocialConfig class. however, it can be desirable to separate the global Spring
Social configuration from the specific service provider setup.

6-4. Show the Service Provider’s Connection Status
Problem
You want to display the status of the connections of the used service providers.

Solution
Configure ConnectController and use it to show the status to the user.

How It Works
Spring Social comes with ConnectController, which takes care of connecting to and disconnecting from a
service provider, but you can also show the status (connected or not) of the current user for the used service
providers. ConnectController uses several REST URLs to either show, add, or remove the connection for the
given user (see Table 6-2).

Table 6-2. ConnectController URL Mapping

URL Method Description

/connect GET Displays the connection status of all available service provides. Will
return connect/status as the name of the view to render.

POST Starts the connection flow with the given provider.

DELETE Deletes all connections for the current user with the given provider.

Chapter 6 ■ Spring SoCial

278

To be able to use the controller, you first need to configure Spring MVC (see Chapter 4). For this, add the
following configuration:

package com.apress.springrecipes.social.config;

import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.ComponentScan;
import org.springframework.context.annotation.Configuration;
import org.springframework.web.servlet.ViewResolver;
import org.springframework.web.servlet.config.annotation.EnableWebMvc;
import org.springframework.web.servlet.config.annotation.ViewControllerRegistry;
import org.springframework.web.servlet.config.annotation.WebMvcConfigurer;
import org.springframework.web.servlet.view.InternalResourceViewResolver;

@Configuration
@EnableWebMvc
@ComponentScan({"com.apress.springrecipes.social.web"})
public class WebConfig implements WebMvcConfigurer {

 @Bean
 public ViewResolver internalResourceViewResolver() {
 InternalResourceViewResolver viewResolver = new InternalResourceViewResolver();
 viewResolver.setPrefix("/WEB-INF/views/");
 viewResolver.setSuffix(".jsp");
 return viewResolver;
 }

 @Override
 public void addViewControllers(ViewControllerRegistry registry) {
 registry.addViewController("/").setViewName("index");
 registry.addViewController("/signin").setViewName("signin");
 }
}

You need to enable Spring MVC using @EnableWebMvc and add a ViewResolver so the JSP pages
can be picked up. Finally, you want to show the index.jsp page when the application starts up. Next
add ConnectController to the WebConfig class. This controller needs ConnectionFactoryLocator and
ConnectionRepository as constructor arguments. To access them, simply add them as method arguments.

@Bean
public ConnectController connectController(
ConnectionFactoryLocator connectionFactoryLocator,
ConnectionRepository connectionRepository) {

 return new ConnectController(connectionFactoryLocator, connectionRepository);
}

ConnectController will listen to the URLs, as listed in Table 6-2. Now add two views in the /WEB-INF/
views directory. The first is the main index, and the second is the status overview page. First create the
index.jsp file.

http://dx.doi.org/10.1007/978-1-4842-2790-9_4

Chapter 6 ■ Spring SoCial

279

<%@ taglib prefix="spring" uri="http://www.springframework.org/tags" %>
<html>
<head>
 <title>Hello Spring Social</title>
</head>
<body>

<h3>Connections</h3>
 Click <a href="<spring:url value='/connect'/>">here to see your Social Network

Connections.
</body>
</html>

Next create the status.jsp file in the /WEB-INF/views/connect directory.

<%@ taglib prefix="spring" uri="http://www.springframework.org/tags" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<html>
<head>
 <title>Spring Social - Connections</title>
</head>
<body>
<h3>Spring Social - Connections</h3>
<c:forEach items="${providerIds}" var="provider">
 <h4>${provider}</h4>
 <c:if test="${not empty connectionMap[provider]}">
 You are connected to ${provider} as ${connectionMap[provider][0].displayName}
 </c:if>

 <c:if test="${empty connectionMap[provider]}">
 <div>
 You are not yet connected to ${provider}. Click <a href="<spring:url

value="/connect/${provider}"/>">here to connect to ${provider}.
 </div>
 </c:if>
</c:forEach>
</body>
</html>

The status page will iterate over all available providers and will determine whether there is an existing
connection for the current user for that service provider (Twitter, Facebook, etc.). ConnectController will
make the list of providers available under the providerIds attribute, and connectionMap holds the connections
of the current user. Now to bootstrap the application, you will need to create a WebApplicationInitializer
that will register a ContextLoaderListener and DispatcherServlet to handle the requests.

package com.apress.springrecipes.social;

import com.apress.springrecipes.social.config.SocialConfig;
import com.apress.springrecipes.social.config.WebConfig;
import org.springframework.web.filter.DelegatingFilterProxy;

Chapter 6 ■ Spring SoCial

280

import org.springframework.web.servlet.support.
AbstractAnnotationConfigDispatcherServletInitializer;

import javax.servlet.Filter;

public class SocialWebApplicationInitializer extends
AbstractAnnotationConfigDispatcherServletInitializer {

 @Override
 protected Class<?>[] getRootConfigClasses() {

 return new Class<?>[]{SocialConfig.class};
 }

 @Override
 protected Class<?>[] getServletConfigClasses() {

 return new Class<?>[] {WebConfig.class, };
 }

 @Override
 protected String[] getServletMappings() {

 return new String[] {"/"};
 }
}

This will bootstrap the application. The SocialConfig class will be loaded by the
ContextLoaderListener, and the WebConfig class will be loaded by the DispatcherServlet. To be able to
handle requests, there needs to be a servlet mapping. For this, the mapping will be /.

Now that everything is configured, the application can be deployed and accessed by the URL
http://localhost:8080/social. This will show the index page. Clicking the link will show the connection
status page, which initially will show that the current user isn’t connected.

Connect to a Service Provider
When clicking a link to connect to a service provider, the user will be sent to the /connect/{provider} URL.
When there isn’t a connection, the connect/{provider}Connect page will be rendered or the connect/
{provider}Connected page will be shown. To be able to use ConnectController to connect to Twitter,
you need to add the twitterConnect.jsp and twitterConnected.jsp pages. For Facebook, you need to
add the facebookConnect.jsp and facebookConnected.jsp pages. The same pattern applies to all other
service provider connectors for Spring Social (such as GitHub, FourSquare, LinkedIn, and so on). First add
twitterConnect.jsp to the /WEB-INF/views/connect directory.

<%@ taglib prefix="spring" uri="http://www.springframework.org/tags" %>
<html>
<head>
 <title>Spring Social - Connect to Twitter</title>
</head>
<body>
<h3>Connect to Twitter</h3>

Chapter 6 ■ Spring SoCial

281

<form action="<spring:url value='/connect/twitter'/>" method="POST">
 <div class="formInfo">
 <p>You aren't connected to Twitter yet. Click the button to connect this application

with your Twitter account.</p>
 </div>
 <p><button type="submit">Connect to Twitter</button></p>
</form>
</body>
</html>

Notice the form tag that POSTs the form back to the same URL. When clicking the Submit button, you
will be redirected to Twitter, which will ask for your permission to allow this application to access your
Twitter profile. (Replace this with facebook to connect to Facebook.)

Next add twitterConnected.jsp to the /WEB-INF/views/connect directory. This is the page that will be
displayed when you are already connected to Twitter but also when you return from Twitter after authorizing
the application.

<%@ taglib prefix="spring" uri="http://www.springframework.org/tags" %>
<html>
<head>
 <title>Spring Social - Connected to Twitter</title>
</head>

<body>
<h3>Connected to Twitter</h3>
<p>
 You are now connected to your Twitter account.
 Click <a href="<spring:url value='/connect'/>">here to see your Connection Status.
</p>
</body>
</html>

Chapter 6 ■ Spring SoCial

282

When these pages are added, reboot the application and navigate to the status page. Now when clicking
the Connect to Twitter link, you will be sent to the twitterConnect.jsp page. After clicking the Connect to
Twitter button, you will be shown the Twitter authorize application page (see Figure 6-9).

After authorizing the application, you will be returned to the twitterConnect.jsp page telling you
that you have successfully connected to Twitter. When returning to the status page, you will see that you are
connected to Twitter with your nickname.

For Facebook or any other service provider, follow the same steps of adding the {provider}Connect and
{provider}Connected pages, and Spring Social will be able to connect to that provider, given that you also
added the correct service provider connector and configuration.

6-5. Use the Twitter API
Problem
You want to use the Twitter API.

Solution
Use the Twitter object to access the Twitter API.

Figure 6-9. Twitter authorize page

Chapter 6 ■ Spring SoCial

283

How It Works
Each service provider has its own API using Twitter. There is an object implementing the Twitter interface,
which represents the Twitter API in Java; for Facebook, an object implementing the Facebook interface
is available. In recipe 6-2, you already set up the connection to Twitter and the TwitterTemplate. The
TwitterTemplate exposes various parts of the Twitter API (see Table 6-3).

It might be that for certain operations your application requires more access than read-only. If you want
to send tweets or to be able to access direct messages, you need read-write access.

To post a status update, you would use the timelineOperations() method and then the
updateStatus() method. Depending on your needs, the updateStatus method either takes a simple String,
which is the status, or a value object called TweetData holding the status and other information such as
location, whether it is a reply to another tweet, and optionally any resources such as images.

A simple controller could look like the following:

package com.apress.springrecipes.social.web;

import org.springframework.social.twitter.api.Twitter;
import org.springframework.stereotype.Controller;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestMethod;
import org.springframework.web.bind.annotation.RequestParam;

@Controller
@RequestMapping("/twitter")
public class TwitterController {

 private final Twitter twitter;

Table 6-3. Exposed Operations of the Twitter API

Operations Description

blockOperations() Blocking and unblocking users

directMessageOperations() Reading and sending direct messages

friendOperations() Retrieving a user’s list of friends and followers and following/
unfollowing users

geoOperations() Working with locations

listOperations() Maintaining, subscribing to, and unsubscribing from user lists

searchOperations() Searching tweets and viewing search trends

streamingOperations() Receiving tweets as they are created via Twitter’s Streaming API

timelineOperations() Reading timelines and posting tweets

userOperations() Retrieving user profile data

restOperations() The underlying RestTemplate if part of the API hasn’t been exposed
through the other APIs

Chapter 6 ■ Spring SoCial

284

 public TwitterController(Twitter twitter) {
 this.twitter = twitter;
 }

 @RequestMapping(method = RequestMethod.GET)
 public String index() {
 return "twitter";
 }

 @RequestMapping(method = RequestMethod.POST)
 public String tweet(@RequestParam("status") String status) {
 twitter.timelineOperations().updateStatus(status);
 return "redirect:/twitter";
 }
}

The controller needs the Twitter API through the TwitterTemplate. The TwitterTemplate implements
the Twitter interface. As you might recall from recipe 6-2, the API is request-scoped. You get a scoped proxy,
which is the reason for using the Twitter interface. The tweet method receives a parameter and passes that
on to Twitter.

6-6. Use a Persistent UsersConnectionRepository
Problem
You want to persist the users’ connection data to survive server restarts.

Solution
Use the JdbcUsersConnectionRepository instead of the default InMemoryUsersConnectionRepository.

How It Works
By default Spring Social automatically configures an InMemoryUsersConnectionRepository for storing the
connection information for a user. However, this doesn’t work in a cluster nor does it survive server restarts.
To solve this problem, it is possible to use a database to store the connection information. This is enabled by
the JdbcUsersConnectionRepository.

The JdbcUsersConnectionRepository requires a database containing a table named
UserConnection that has a certain number of columns. Luckily, Spring Social contains a DDL script,
JdbcUsersConnectionRepository.sql, which you can use to create the table.

First add a data source to point to the database of your choice. In this case, Postgresql is used, but any
database would do.

 ■ Tip in the bin directory there is a postgres.sh file that will start a Dockerized postgreSQl instance that
you could use.

Chapter 6 ■ Spring SoCial

285

@Bean
public DataSource dataSource() {

 DriverManagerDataSource dataSource = new DriverManagerDataSource();
 dataSource.setUrl(env.getRequiredProperty("datasource.url"));
 dataSource.setUsername(env.getRequiredProperty("datasource.username"));
 dataSource.setPassword(env.getRequiredProperty("datasource.password"));
 dataSource.setDriverClassName(env.getProperty("datasource.driverClassName"));
 return dataSource;
}

Notice the dataSource.* properties, which are used to configure the URL, JDBC driver, and username/
password. Add the properties to the application.properties file.

dataSource.password=app
dataSource.username=app
dataSource.driverClassName=org.apache.derby.jdbc.ClientDriver
dataSource.url=jdbc:derby://localhost:1527/social;create=true

If you want automatic creation of the desired database table, you will need to add a
DataSourceInitializer and have it execute the JdbcUsersConnectionRepository.sql file.

@Bean
public DataSourceInitializer databasePopulator() {

 ResourceDatabasePopulator populator = new ResourceDatabasePopulator();
 populator.addScript(
 new ClassPathResource(
 "org/springframework/social/connect/jdbc/JdbcUsersConnectionRepository.sql"));
 populator.setContinueOnError(true);
 DataSourceInitializer initializer = new DataSourceInitializer();
 initializer.setDatabasePopulator(populator);
 initializer.setDataSource(dataSource());
 return initializer;
}

This DataSourceInitializer is executed at application startup and will execute all the scripts handed
to it. By default it will stop application startup as soon as an error is encountered. To stop this, set the
continueOnError property to true. Now that the data source is set up and configured, the final step is to add
the JdbcUsersConnectionRepository to the SocialConfig class.

package com.apress.springrecipes.social.config;

import org.springframework.social.connect.jdbc.JdbcUsersConnectionRepository;
...

@Configuration
@EnableSocial
@PropertySource("classpath:/application.properties")
public class SocialConfig extends SocialConfigurerAdapter {

Chapter 6 ■ Spring SoCial

286

 @Override
 public UsersConnectionRepository getUsersConnectionRepository(ConnectionFactoryLocator

connectionFactoryLocator) {
 return new JdbcUsersConnectionRepository(dataSource(), connectionFactoryLocator,

Encryptors.noOpText());
 }

...
}

The JdbcUsersConnectionRepository takes three constructor arguments. The first is the data source,
the second is the passed-in ConnectionFactoryLocator, and the last argument is a TextEncryptor. The
TextEncryptor is a class from the Spring Security crypto module and is used to encrypt the access token, the
secret, and (when available) the refresh token. The encryption is needed because when the data is stored as
plain text, the data can be compromised. The tokens can be used to gain access to your profile information.

For testing, however, it can be handy to use the noOpText encryptor, which, as the name implies, does
no encryption. For real production, you want to use a TextEncryptor, which uses a password and salt to
encrypt the values.

When the JdbcUsersConnectionRepository is configured and the database has been started, you can
restart the application. At first glance, nothing has changed; however, as soon as you grant access to, for
instance, Twitter, this access will survive application restarts. You can also query the database and see that
the information is stored in the USERCONNECTION table.

6-7. Integrate Spring Social and Spring Security
Problem
You want to allow users of your web site to connect their social network accounts.

Solution
Use the spring-social-security project to integrate both frameworks.

How It Works
Let’s set up Spring Security. It goes beyond this recipe to discuss Spring Security in detail. For that, check
Chapter 7. The setup for this recipe is as follows:

@Configuration
@EnableWebMvcSecurity
public class SecurityConfig extends WebSecurityConfigurerAdapter {

 @Override
 protected void configure(HttpSecurity http) throws Exception {

 http.authorizeRequests()
 .anyRequest().authenticated()
 .and()
 .formLogin()

http://dx.doi.org/10.1007/978-1-4842-2790-9_7

Chapter 6 ■ Spring SoCial

287

 .loginPage("/signin")
 .failureUrl("/signin?param.error=bad_credentials")
 .loginProcessingUrl("/signin/authenticate").permitAll()
 .defaultSuccessUrl("/connect")
 .and()
 .logout().logoutUrl("/signout").permitAll();
 }

 @Bean
 public UserDetailsManager userDetailsManager(DataSource dataSource) {
 JdbcUserDetailsManager userDetailsManager = new JdbcUserDetailsManager();
 userDetailsManager.setDataSource(dataSource);
 userDetailsManager.setEnableAuthorities(true);
 return userDetailsManager;
 }

 @Override
 protected void configure(AuthenticationManagerBuilder auth) throws Exception {
 auth.userDetailsService(userDetailsManager(null));
 }

}

The @EnableWebMvcSecurity annotation will enable security for Spring MVC applications. It
registers beans needed for Spring Security to operate. To do further configuration, such as setting
up security rules, one or more WebSecurityConfigurers can be added. To make it easier, there is a
WebSecurityConfigurerAdapter that you can extend.

The configure(HttpSecurity http) method takes care of setting up security. This particular
configuration wants a user to be authenticated for every call that is made. If a user isn’t already
authenticated (i.e., has logged in to the application), the user will be prompted with a login form. You will
also notice that the loginPage, loginProcessingUrl, and logoutUrl are modified. This is done so that they
match the default URLs from Spring Social.

 ■ Note if you want to keep the Spring Security defaults, configure the SocialAuthenticationFilter
explicitly and set the signupUrl and defaultFailureUrl properties.

With the configure(AuthenticationManagerBuilder auth), you add a AuthenticationManager,
which is used to determine whether a user exists and whether the correct credentials were entered. The
UserDetailsService used is a JdbcUserDetailsManager, which, next to being a UserDetailsService, can
also add and remove users from the repository. This will be needed when you add a Social sign-in page to
the application.

The JdbcUserDetailsManager uses a DataSource to read and write the data, and the
enableAuthorities properties is set to true so that any roles the user gets from the application are added to
the database as well. To bootstrap the database, add the create_users.sql script to the database populator
configured in the previous recipe.

Chapter 6 ■ Spring SoCial

288

@Bean
public DataSourceInitializer databasePopulator() {
 ResourceDatabasePopulator populator = new ResourceDatabasePopulator();
 populator.addScript(
 new ClassPathResource("org/springframework/social/connect/jdbc/JdbcUsersConnection

Repository.sql"));
 populator.addScript(new ClassPathResource("sql/create_users.sql"));
 populator.setContinueOnError(true);

 DataSourceInitializer initializer = new DataSourceInitializer();
 initializer.setDatabasePopulator(populator);
 initializer.setDataSource(dataSource());
 return initializer;
}

Next, to be able to render the custom login or sign-in page, it needs to be added as a view controller to
the WebConfig class. This tells that a request to /signin should render the signin.jsp page.

package com.apress.springrecipes.social.config;

import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.ComponentScan;
import org.springframework.context.annotation.Configuration;
import org.springframework.web.servlet.config.annotation.ViewControllerRegistry;
import org.springframework.web.servlet.config.annotation.WebMvcConfigurer;
...

@Configuration
@EnableWebMvc
@ComponentScan({"com.apress.springrecipes.social.web"})
public class WebConfig implements WebMvcConfigurer {

 @Override
 public void addViewControllers(ViewControllerRegistry registry) {
 registry.addViewController("/").setViewName("index");
 registry.addViewController("/signin").setViewName("signin");
 }
 ...
}

The signin.jsp page is a simple JSP page rendering a username and password input field and a
Submit button.

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<!DOCTYPE html>
<html>
<body>
 <c:url var="formLogin" value="/signin/authenticate" />
 <c:if test="${param.error eq 'bad_credentials'}">
 <div class="error">
 The login information was incorrect please try again.
 </div>
 </c:if>

Chapter 6 ■ Spring SoCial

289

 <form method="post" action="${formLogin}">
 <input type="hidden" name="_csrf" value="${_csrf.token}" />
 <table>
 <tr>
 <td><label for="username">Username</label></td>
 <td><input type="text" name="username"/></td>
 </tr>
 <tr>
 <td><label for="password">Password</label></td>
 <td><input type="password" name="password"/></td>
 </tr>
 <tr><td colspan="2"><button>Login</button></td> </tr>
 </table>
 </form>
</body>
</html>

Notice the hidden input, which contains a cross-site forgery request (CSFR) token. This is to prevent
malicious web sites or JavaScript code to post to your URL. When using Spring Security, this is enabled by
default. It can be disabled with http.csfr().disable() in the SecurityConfig class.

Two final configuration pieces are left. First, this configuration needs to be loaded, and
second, a filter needs to be registered to apply the security to your request. For this, modify the
SocialWebApplicationInitializer class.

package com.apress.springrecipes.social;

import com.apress.springrecipes.social.config.SecurityConfig;
import com.apress.springrecipes.social.config.SocialConfig;
import com.apress.springrecipes.social.config.WebConfig;
import org.springframework.web.filter.DelegatingFilterProxy;
import org.springframework.web.servlet.support.
AbstractAnnotationConfigDispatcherServletInitializer;

import javax.servlet.Filter;

public class SocialWebApplicationInitializer extends
AbstractAnnotationConfigDispatcherServletInitializer {

 @Override
 protected Class<?>[] getRootConfigClasses() {
 return new Class<?>[]{SecurityConfig.class, SocialConfig.class};
 }

 @Override
 protected Filter[] getServletFilters() {
 DelegatingFilterProxy springSecurityFilterChain = new DelegatingFilterProxy();
 springSecurityFilterChain.setTargetBeanName("springSecurityFilterChain");
 return new Filter[]{springSecurityFilterChain};
 }
...
}

Chapter 6 ■ Spring SoCial

290

First notice that the SecurityConfig class is added to the getRootConfigClasses method. This will take
care of the configuration class being loaded. Next, the getServletFilters method is added. This method is
used to register filters to requests that are going to be handled by the DispatcherServlet. Spring Security,
by default, registers a Filter in the application context named springSecurityFilterChain. To have this
executed, you need to add a DelegatingFilterProxy. The DelegatingFilterProxy will look up a bean of
the type Filter for the specified targetBeanName.

Use Spring Security to Obtain the Username
In the previous recipes, you used a UserIdSource implementation that returned a static
username. If you have an application that is already using Spring Security, you could use the
AuthenticationNameUserIdSource, which uses the SecurityContext (from Spring Security) to obtain the
username of the authenticated current user. That username in turn is used to store and look up the users’
connections with the different service providers.

@Configuration
@EnableSocial
@PropertySource("classpath:/application.properties")
public class SocialConfig extends SocialConfigurerAdapter {

 @Override
 public UserIdSource getUserIdSource() {
 return new AuthenticationNameUserIdSource();
 }
 ...
}

 ■ Tip When using the SpringsocialConfigurer, you could omit this because the
AuthenticationNameUserIdSource would be created and used by default.

Notice the construction of the AuthenticationNameUserIdSource. This is all that is needed to be able
to retrieve the username from Spring Security. It will do a lookup of the Authentication object from the
SecurityContext and return the name property of the Authentication. When restarting the application, you
will be prompted with a login form. Now log in as user1 with the password user1.

Use Spring Social for Signing In
Letting the current user connect to social networks is nice. It would be better if a user could use his or her
social network account (or accounts) to sign in to the application. Spring Social provides tight integration
with Spring Security to enable this. There are a couple of additional parts that need to be set up for this.

First Spring Social needs to be integrated with Spring Security. For this, the SpringSocialConfigurer
can be used and applied to the Spring Security configuration.

Chapter 6 ■ Spring SoCial

291

@Configuration
@EnableWebMvcSecurity
public class SecurityConfig extends WebSecurityConfigurerAdapter {

 @Override
 protected void configure(HttpSecurity http) throws Exception {
 ...
 http.apply(new SpringSocialConfigurer());
 }
 ...
}
package com.apress.springrecipes.social.security;

import org.springframework.dao.DataAccessException;
import org.springframework.security.core.userdetails.UserDetails;
import org.springframework.security.core.userdetails.UserDetailsService;
import org.springframework.security.core.userdetails.UsernameNotFoundException;
import org.springframework.social.security.SocialUser;
import org.springframework.social.security.SocialUserDetails;
import org.springframework.social.security.SocialUserDetailsService;
import org.springframework.util.Assert;

public class SimpleSocialUserDetailsService implements SocialUserDetailsService {

 private final UserDetailsService userDetailsService;

 public SimpleSocialUserDetailsService(UserDetailsService userDetailsService) {
 Assert.notNull(userDetailsService, "UserDetailsService cannot be null.");
 this.userDetailsService = userDetailsService; }

 @Override
 public SocialUserDetails loadUserByUserId(String userId) throws

UsernameNotFoundException, DataAccessException {

 UserDetails user = userDetailsService.loadUserByUsername(userId);
 return new SocialUser(user.getUsername(), user.getPassword(), user.getAuthorities());
 }
}

Next add the links for your configured service providers to the sign-in page.

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<!DOCTYPE html>
<html>
<body>

...

<!-- TWITTER SIGNIN -->

<c:url var="twitterSigin" value="/auth/twitter"/>

<p>Sign in with Twitter</p>

Chapter 6 ■ Spring SoCial

292

<!-- FACEBOOK SIGNIN -->
<c:url var="facebookSigin" value="/auth/facebook"/>
<p>Sign in with Facebook</p>
</body>
</html>

The SimpleSocialUserDetailsService delegates the actual lookup to a UserDetailsService, which is
passed in through the constructor. When a user is retrieved, it uses the retrieved information to construct a
SocialUser instance. Finally, this bean needs to be added to the configuration.

@Configuration
@EnableWebMvcSecurity
public class SecurityConfig extends WebSecurityConfigurerAdapter {

 @Bean
 public SocialUserDetailsService socialUserDetailsService(UserDetailsService

userDetailsService) {
 return new SimpleSocialUserDetailsService(userDetailsService);
 }

 ...
}

This will allow users to sign in with their social networking accounts; however, the application needs to
know which user the account belongs to. If a user cannot be located for the specific social network, a user
needs to be created. Basically, the application needs a way for users to sign up for the application. By default
the SocialAuthenticationFilter redirects the user to the /signup URL. You can create a controller that is
attached to this URL and renders a form, allowing the user to create an account.

package com.apress.springrecipes.social.web;

import org.springframework.security.authentication.UsernamePasswordAuthenticationToken;
import org.springframework.security.core.GrantedAuthority;
import org.springframework.security.core.authority.SimpleGrantedAuthority;
import org.springframework.security.core.context.SecurityContextHolder;
import org.springframework.security.provisioning.UserDetailsManager;
import org.springframework.social.connect.Connection;
import org.springframework.social.connect.web.ProviderSignInUtils;
import org.springframework.social.security.SocialUser;
import org.springframework.stereotype.Controller;
import org.springframework.validation.BindingResult;
import org.springframework.validation.annotation.Validated;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.PostMapping;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.context.request.WebRequest;

import java.util.Collections;
import java.util.List;

Chapter 6 ■ Spring SoCial

293

@Controller
@RequestMapping("/signup")
public class SignupController {

 private static final List<GrantedAuthority> DEFAULT_ROLES = Collections.
singletonList(new SimpleGrantedAuthority("USER"));

 private final ProviderSignInUtils providerSignInUtils;
 private final UserDetailsManager userDetailsManager;

 public SignupController(ProviderSignInUtils providerSignInUtils,
UserDetailsManager userDetailsManager) {

 this.providerSignInUtils = providerSignInUtils;
 this.userDetailsManager = userDetailsManager;
 }

 @GetMapping
 public SignupForm signupForm(WebRequest request) {
 Connection<?> connection = providerSignInUtils.getConnectionFromSession(request);
 if (connection != null) {
 return SignupForm.fromProviderUser(connection.fetchUserProfile());
 } else {
 return new SignupForm();
 }
 }

 @PostMapping
 public String signup(@Validated SignupForm form, BindingResult formBinding,

WebRequest request) {
 if (!formBinding.hasErrors()) {
 SocialUser user = createUser(form);
 SecurityContextHolder.getContext().setAuthentication(new UsernamePassword

AuthenticationToken(user.getUsername(), null, user.getAuthorities()));
 providerSignInUtils.doPostSignUp(user.getUsername(), request);
 return "redirect:/";
 }
 return null;
 }

 private SocialUser createUser(SignupForm form) {
 SocialUser user = new SocialUser(form.getUsername(), form.getPassword(),

DEFAULT_ROLES);
 userDetailsManager.createUser(user);
 return user;
 }
}

First the signupForm method will be called because the initial request will be a GET request to
the /signup URL. The signupForm method checks whether a connection attempt has been done. This
is delegated to the ProviderSignInUtils provided by Spring Social. If that is the case, the retrieved
UserProfile is used to prepopulate a SignupForm.

Chapter 6 ■ Spring SoCial

294

package com.apress.springrecipes.social.web;

import org.springframework.social.connect.UserProfile;

public class SignupForm {

 private String username;
 private String password;

 public String getUsername() {
 return username;
 }

 public void setUsername(String username) {
 this.username = username;
 }

 public String getPassword() {
 return password;
 }

 public void setPassword(String password) {
 this.password = password;
 }

 public static SignupForm fromProviderUser(UserProfile providerUser) {

 SignupForm form = new SignupForm();
 form.setUsername(providerUser.getUsername());
 return form;
 }
}

Here is the HTML form used for filling in the two fields:

<%@ taglib prefix="form" uri="http://www.springframework.org/tags/form" %>
<%@ page contentType="text/html;charset=UTF-8" language="java" %>
<html>
<head>
 <title>Sign Up</title>
</head>

<body>
<h3>Sign Up</h3>

<form:form modelAttribute="signupForm" method="POST">
 <table>
 <tr><td><form:label path="username" /></td><td><form:input path="username"/></td></tr>
 <tr><td><form:label path="password" /></td><td><form:password path="password"/>

</td></tr>

Chapter 6 ■ Spring SoCial

295

 <tr><td colspan="2"><button>Sign Up</button></td></tr>
 </table>
</form:form>
</body>
</html>

 ■ Note there is no hidden input for the CSFr tag here. Spring Security integrates tightly with Spring MVC,
and this field will be added automatically when using the Spring Framework form tags.

After the user fills out the form, the signup method will be called. This will create a user with the given
username and password. After the user is created, a Connection is added for the entered username. Now
that the connection has been made, the user is logged in to the application and on subsequent visits can use
the social network connection to log in to the application.

The controller uses the ProviderSignInUtils to reuse the logic from Spring Social. You can create an
instance in the SocialConfig class.

@Bean
public ProviderSignInUtils providerSignInUtils(ConnectionFactoryLocator
connectionFactoryLocator, UsersConnectionRepository usersConnectionRepository) {
 return new ProviderSignInUtils(connectionFactoryLocator, usersConnectionRepository);
}

The final piece of the configuration is to allow access to the /signup URL for all users. Add the following
to the SecurityConfig class:

@Override
protected void configure(HttpSecurity http) throws Exception {

 http
 .authorizeRequests()
 .antMatchers("/signup").permitAll()
 .anyRequest().authenticated().and()
 ...
}

Summary
In this chapter, you explored Spring Social. The first step taken was to register an application with a service
provider and use the generated API key and secret to connect the application to that service provider.
Next you looked into connecting a user’s account to the application so that it can be used to access user
information; however, this will also allow you to use the service provider’s API. For Twitter, you could query a
timeline or look at someone’s friends.

To make the connections to the service providers more useful, they are stored in JDBC-based storage.
Finally, you looked at how Spring Social can integrate with Spring Security and how it can be used to

allow a service provider to sign in to your application.

297© Marten Deinum, Daniel Rubio, and Josh Long 2017
M. Deinum et al., Spring 5 Recipes, DOI 10.1007/978-1-4842-2790-9_7

CHAPTER 7

Spring Security

In this chapter, you will learn how to secure applications using the Spring Security framework, a subproject
of the Spring Framework. Spring Security was initially known as Acegi Security, but its name was changed
after joining with the Spring portfolio projects. Spring Security can be used to secure any Java application,
but it’s mostly used for web-based applications. Web applications, especially those that can be accessed
through the Internet, are vulnerable to hacker attacks if they are not secured properly.

If you’ve never handled security in an application, there are several terms and concepts that you must
understand first. Authentication is the process of verifying a principal’s identity against what it claims to
be. A principal can be a user, a device, or a system, but most typically, it’s a user. A principal has to provide
evidence of identity to be authenticated. This evidence is called a credential, which is usually a password
when the target principal is a user.

Authorization is the process of granting authority to an authenticated user so that this user is allowed to
access particular resources of the target application. The authorization process must be performed after the
authentication process. Typically, authorities are granted in terms of roles.

Access control means controlling access to an application’s resources. It entails making a decision
on whether a user is allowed to access a resource. This decision is called an access control decision,
and it’s made by comparing the resource’s access attributes with the user’s granted authorities or other
characteristics.

After finishing this chapter, you will understand basic security concepts and know how to secure your
web applications at the URL access level, the method invocation level, the view-rendering level, and the
domain object level.

 ■ Note Before starting this chapter, take a look at the application for recipe_7_1_i. This is the initial
unsecured application you will use in this chapter. It is a basic to-do app in which you can list, create, and mark
to-dos completed. When you deploy the application, you will be greeted with the content, as shown in Figure 7-1.

ChapTer 7 ■ SprIng SeCurITy

298

7-1. Secure URL Access
Problem
Many web applications have some particular URLs that are critically important and private. You must secure
these URLs by preventing unauthorized access to them.

Solution
Spring Security enables you to secure a web application’s URL access in a declarative way through
simple configuration. It handles security by applying servlet filters to HTTP requests. To register
a filter and detect the configuration, Spring Security provides a convenience base class to extend:
AbstractSecurityWebApplicationInitializer.

Spring Security allows you to configure web application security through the various configure
methods on the WebSecurityConfigurerAdapter configuration adapter. If your web application’s security
requirements are straightforward and typical, you can leave the configuration as is and use the default
enabled security settings, including the following:

•	 Form-based login service: This provides a default page that contains a login form for
users to log into this application.

•	 HTTP Basic authentication: This can process the HTTP Basic authentication
credentials presented in HTTP request headers. It can also be used for authenticating
requests made with remoting protocols and web services.

•	 Logout service: This provides a handler mapped with a URL for users to log out of this
application.

•	 Anonymous login: This assigns a principal and grants authorities to an anonymous
user so that you can handle an anonymous user like a normal user.

Figure 7-1. Initial to-do application

ChapTer 7 ■ SprIng SeCurITy

299

•	 Servlet API integration: This allows you to access security information in your web
application via standard Servlet APIs, such as HttpServletRequest.isUserInRole()
and HttpServletRequest.getUserPrincipal().

•	 CSFR: This implements cross-site forgery request protection by creating a token and
putting it in the HttpSession.

•	 Security headers: Like disabling caching for secured packages, this offers XSS
protection, transport security, and X-Frame security.

With these security services registered, you can specify the URL patterns that require particular
authorities to access. Spring Security will perform security checks according to your configurations. A user
must log into an application before accessing the secure URLs, unless these URLs are opened for anonymous
access. Spring Security provides a set of authentication providers for you to choose from. An authentication
provider authenticates a user and returns the authorities granted to this user.

How It Works
First you need to register the filters used by Spring Security. The easiest way to do this is by extending the
aforementioned AbstractSecurityWebApplicationInitializer.

package com.apress.springrecipes.board.security;

import org.springframework.security.web.context.AbstractSecurityWebApplicationInitializer;

public class TodoSecurityInitializer extends AbstractSecurityWebApplicationInitializer {

 public TodoSecurityInitializer() {
 super(TodoSecurityConfig.class);
 }
}

The AbstractSecurityWebApplicationInitializer class has a constructor that takes one or more
configuration classes. These configuration classes are used to bootstrap the security.

 ■ Note If you have a class that extends AbstractAnnotationConfigDispatcherServletInitializer, add
the security configuration to that or you will get an exception during startup.

although you can configure Spring Security in the same configuration class as the web and service layers,
it’s better to separate the security configurations in an isolated class (e.g., TodoSecurityConfig). Inside
WebApplicationInitializer (e.g., TodoWebInitializer), you need to add that configuration class to the list
of classes for the configuration.

ChapTer 7 ■ SprIng SeCurITy

300

First you need the security configuration. For this, you will create the TodoSecurityConfig class, as
shown here:

package com.apress.springrecipes.board.security;

import org.springframework.context.annotation.Configuration;
import org.springframework.security.config.annotation.web.configuration.EnableWebSecurity;
import org.springframework.security.config.annotation.web.configuration.
WebSecurityConfigurerAdapter;

@Configuration
@EnableWebSecurity
public class TodoSecurityConfig extends WebSecurityConfigurerAdapter {}

When building and deploying the application and trying to access http://localhost:8080/todos/
todos, you will now be greeted by the default Spring Security login page (see Figure 7-2).

Secure URL Access
If you look at the configure method of the org.springframework.security.config.annotation.web.
configuration.WebSecurityConfigurerAdapter class, you will see that it includes the anyRequest().
authenticated() call. This tells Spring Security that for every request that comes in, you have to be
authenticated with the system. You will also see that by default HTTP Basic authentication and form-based
login are enabled. Form-based login also includes a default login page creator that will be used if you don’t
explicitly specify a login page.

Figure 7-2. Default Spring Security login page

ChapTer 7 ■ SprIng SeCurITy

301

protected void configure(HttpSecurity http) throws Exception {
 http
 .authorizeRequests()
 .anyRequest().authenticated()
 .and()
 .formLogin().and()
 .httpBasic();
}

Let’s write a couple of security rules. Instead of only needing to be logged in, you can write some
powerful access rules for the URLs.

package com.apress.springrecipes.board.security;

import org.springframework.context.annotation.Configuration;
import org.springframework.http.HttpMethod;
import org.springframework.security.config.annotation.authentication.builders.
AuthenticationManagerBuilder;
import org.springframework.security.config.annotation.web.builders.HttpSecurity;
import org.springframework.security.config.annotation.web.configuration.EnableWebSecurity;
import org.springframework.security.config.annotation.web.configuration.
WebSecurityConfigurerAdapter;

@Configuration
@EnableWebSecurity
public class TodoSecurityConfig extends WebSecurityConfigurerAdapter {

 @Override
 protected void configure(AuthenticationManagerBuilder auth) throws Exception {
 auth.inMemoryAuthentication()
 .withUser("marten@ya2do.io").password("user").authorities("USER")
 .and()
 .withUser("admin@ya2do.io").password("admin").authorities("USER", "ADMIN");
 }

 @Override
 protected void configure(HttpSecurity http) throws Exception {

 http.authorizeRequests()
 .antMatchers("/todos*").hasAuthority("USER")
 .antMatchers(HttpMethod.DELETE, "/todos*").hasAuthority("ADMIN")
 .and()
 .formLogin()
 .and()
 .csrf().disable();
 }
}

You can configure authorization rules and more by overriding the configure(HttpSecurity http)
method (there are other configure methods as well).

ChapTer 7 ■ SprIng SeCurITy

302

With authorizeRequests(), you start securing your URLs. You can then use one of the matchers; in
the previous code, you use antMatchers to define the matching rules and which authorities a user needs to
have. Remember that you must always include a wildcard at the end of a URL pattern. Failing to do so will
make the URL pattern unable to match a URL that has request parameters. As a result, hackers could easily
skip the security check by appending an arbitrary request parameter. You have secured all access to /todos
to users who have the authority USER. To be able to call /todos with a DELETE request, you need to be a user
with the role ADMIN.

 ■ Note Because you are now overriding the default access rules and login configuration, you need to enable
formLogin again. There is also a call disabling CSFr protection for now, because CSFr protection would make
the forms not work; this recipe will explain later how to enable it.

You can configure authentication services in the overridden configure(AuthenticationManagerBuil
der auth) method. Spring Security supports several ways of authenticating users, including authenticating
against a database or an LDAP repository. It also supports defining user details directly for simple security
requirements. You can specify a username, a password, and a set of authorities for each user.

Now, you can redeploy this application to test its security configurations. You must log into this
application with the correct username and password to see the to-dos. Finally, to delete a to-do, you must
log in as an administrator.

Work with CSFR Protection
It is generally a good idea to leave the default for CSFR enabled because this will reduce the risk you
have with a CSFR attack. It is enabled by default in Spring Security, and the line csfr().disable()
can be removed from the configuration. When CSFR protection is enabled, Spring Security adds
CsfrFilter to the list of filters it uses for protection. This filter in turn uses an implementation of
CsrfTokenRepository to generate and store tokens; by default this is the HttpSessionCsrfTokenRepository
class that, as the name implies, stores the generated token in the HttpSession interface. There is also a
CookieCsrfTokenRepository class that stores the token information in a cookie. If you want to switch the
CsfrTokenRepository class, you can use the csrfTokenRepository() configuration method to change it.
You could also use this to configure an explicitly configured HttpSessionCsrfTokenRepository.

@Override
protected void configure(HttpSecurity http) throws Exception {

 HttpSessionCsrfTokenRepository repo = new HttpSessionCsrfTokenRepository();
 repo.setSessionAttributeName("csfr_token");
 repo.setParameterName("csfr_token")

 http.csrf().csrfTokenRepository(repo);
}

When CSFR is enabled, trying to complete or delete a to-do item after you log in will fail
because of the absence of a CSFR token. To fix this, you need to pass the CSFR token back to the
server on requests that modify content. You can easily do this with a hidden input in your form. The
HttpSessionCsrfTokenRepository exposes the token in the session under the attribute _csfr (by default,
unless you configured it explicitly). For a form you can use the parameterName and token properties to create
the appropriate input tag.

ChapTer 7 ■ SprIng SeCurITy

303

Add the following to the two forms that complete and delete a to-do item:

<input type="hidden" name="${_csrf.parameterName}" value="${_csrf.token}"/>

Now when submitting the form, the token will be part of the request, and you will again be able to
complete or delete a to-do item.

There is also a form in the todo-create.jsp page; however, because this is using the Spring MVC form
tags, you don’t need to modify this. When using the Spring MVC form tags, the CSFR token is added to the
form automatically. To make this possible, Spring Security registers a CsrfRequestDataValueProcessor
class, which takes care of adding the token to the form.

7-2. Log In to Web Applications
Problem
A secure application requires its users to log in before they can access certain secure functions. This is
especially important for web applications running on the open Internet because hackers can easily reach
them. Most web applications have to provide a way for users to input their credentials to log in.

Solution
Spring Security supports multiple ways for users to log into a web application. It supports form-based login
by providing a default web page that contains a login form. You can also provide a custom web page as
the login page. In addition, Spring Security supports HTTP Basic authentication by processing the Basic
authentication credentials presented in HTTP request headers. HTTP Basic authentication can also be used
for authenticating requests made with remoting protocols and web services.

Some parts of your application may allow for anonymous access (e.g., access to the welcome page).
Spring Security provides an anonymous login service that can assign a principal and grant authorities to
an anonymous user so that you can handle an anonymous user like a normal user when defining security
policies.

Spring Security also supports “remember-me” login, which is able to remember a user’s identity across
multiple browser sessions so that a user doesn’t need to log in again after logging in for the first time.

How It Works
To help you better understand the various login mechanisms in isolation, let’s first disable the default
security configuration.

 ■ Caution you generally want to stick with the defaults and just disable what you don’t want, such as
httpBasic().disable(), instead of disabling all the security defaults!

ChapTer 7 ■ SprIng SeCurITy

304

@Configuration
@EnableWebSecurity
public class TodoSecurityConfig extends WebSecurityConfigurerAdapter {

 public TodoSecurityConfig() {
 super(true);
 }
}

Note that the login services introduced next will be registered automatically if you enable HTTP
autoconfig. However, if you disable the default configuration or you want to customize these services, you
have to configure the corresponding features explicitly.

Before enabling the authentication features, you will have to enable the basic Spring Security
requirements you need to configure at least exception handling and security context integration.

protected void configure(HttpSecurity http) {

 http.securityContext()
 .and()
 .exceptionHandling();
}

Without these basics, Spring Security wouldn’t store the user after logging in, and it wouldn’t do proper
exception translation for security-related exceptions (they would simply bubble up, which might expose
some of your internals to the outside world). You also might want to enable the Servlet API integration so
that you can use the methods on HttpServletRequest to do checks in your view.

protected void configure(HttpSecurity http) {
 http.servletApi();
}

Use HTTP Basic Authentication
The HTTP Basic authentication support can be configured via the httpBasic() method. When HTTP
Basic authentication is required, a browser will typically display a login dialog or a specific login page for
users to log in.

@Configuration
@EnableWebSecurity
public class TodoSecurityConfig extends WebSecurityConfigurerAdapter {

 @Override
 protected void configure(HttpSecurity http) throws Exception {
 http
 ...
 .httpBasic();
 }
}

ChapTer 7 ■ SprIng SeCurITy

305

 ■ Note When hTTp Basic authentication and form-based login are enabled at the same time, the latter
will be used. So, if you want your web application users to log in with this authentication type, you should not
enable form-based login.

Use Form-Based Login
The form-based login service will render a web page that contains a login form for users to input their login
details and process the login form submission. It’s configured via the formLogin method.

@Configuration
@EnableWebSecurity
public class TodoSecurityConfig extends WebSecurityConfigurerAdapter {

 @Override
 protected void configure(HttpSecurity http) throws Exception {
 http
 ...
 .formLogin();
 }
}

By default, Spring Security automatically creates a login page and maps it to the URL /login. So, you
can add a link to your application (e.g., in todos.jsp) referring to this URL for login.

<a href="<c:url value="/login" />">Login

If you don’t prefer the default login page, you can provide a custom login page of your own. For
example, you can create the following login.jsp file in the root directory of the web application. Note that
you shouldn’t put this file inside WEB-INF, which would prevent users from accessing it directly.

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

<html>
<head>
 <title>Login</title>
 <link type="text/css" rel="stylesheet"
 href="https://cdnjs.cloudflare.com/ajax/libs/semantic-ui/2.2.10/semantic.min.css">
 <style type="text/css">
 body {
 background-color: #DADADA;
 }
 body > .grid {
 height: 100%;
 }
 .column {
 max-width: 450px;
 }
 </style>
</head>

ChapTer 7 ■ SprIng SeCurITy

306

<body>
<div class="ui middle aligned center aligned grid">
 <div class="column">
 <h2 class="ui header">Log-in to your account</h2>
 <form method="POST" action="<c:url value="/login" />" class="ui large form">
 <input type="hidden" name="${_csrf.parameterName}" value="${_csrf.token}"/>
 <div class="ui stacked segment">
 <div class="field">
 <div class="ui left icon input">
 <i class="user icon"></i>
 <input type="text" name="username" placeholder="E-mail address">
 </div>
 </div>
 <div class="field">
 <div class="ui left icon input">
 <i class="lock icon"></i>
 <input type="password" name="password" placeholder="Password">
 </div>
 </div>
 <button class="ui fluid large submit green button">Login</button>
 </div>
 </form>
 </div>
</div>
</body>
</html>

For Spring Security to display your custom login page when a login is requested, you have to specify its
URL in the loginPage configuration method.

@Configuration
@EnableWebSecurity
public class TodoSecurityConfig extends WebSecurityConfigurerAdapter {

 @Override
 protected void configure(HttpSecurity http) throws Exception {
 http
 ...
 .formLogin().loginPage("/login.jsp");
 }
}

If the login page is displayed by Spring Security when a user requests a secure URL, the user will be
redirected to the target URL once the login succeeds. However, if the user requests the login page directly
via its URL, by default the user will be redirected to the context path’s root (i.e., http://localhost:8080/
todos/) after a successful login. If you have not defined a welcome page in your web deployment descriptor,
you may want to redirect the user to a default target URL when the login succeeds.

ChapTer 7 ■ SprIng SeCurITy

307

@Configuration
@EnableWebSecurity
public class TodoSecurityConfig extends WebSecurityConfigurerAdapter {

 @Override
 protected void configure(HttpSecurity http) throws Exception {
 http
 ...
 .formLogin().loginPage("/login.jsp").defaultSuccessUrl("/todos");
 }
}

If you use the default login page created by Spring Security, then when a login fails, Spring Security will
render the login page again with the error message. However, if you specify a custom login page, you will have
to configure the authentication-failure-url value to specify which URL to redirect to on login error. For
example, you can redirect to the custom login page again with the error request parameter, as shown here:

@Configuration
@EnableWebSecurity
public class TodoSecurityConfig extends WebSecurityConfigurerAdapter {

 @Override
 protected void configure(HttpSecurity http) throws Exception {
 http
 ...
 .formLogin()
 .loginPage("/login.jsp")
 .defaultSuccessUrl("/messageList")
 .failureUrl("login.jsp?error=true");
 }
}

Then your login page should test whether the error request parameter is present. If an error has
occurred, you will have to display the error message by accessing the session scope attribute SPRING_
SECURITY_LAST_EXCEPTION, which stores the last exception for the current user.

<form>
 ...
 <c:if test="${not empty param.error}">
 <div class="ui error message" style="display: block;">
 Authentication Failed

 Reason : ${sessionScope["SPRING_SECURITY_LAST_EXCEPTION"].message}

 </div>
 </c:if>
</form>

ChapTer 7 ■ SprIng SeCurITy

308

Use the Logout Service
The logout service provides a handler to handle logout requests. It can be configured via the logout()
configuration method.

@Configuration
@EnableWebSecurity
public class TodoSecurityConfig extends WebSecurityConfigurerAdapter {

 @Override
 protected void configure(HttpSecurity http) throws Exception {
 http
 ...
 .and()
 .logout();
 }
}

By default, it’s mapped to the URL /logout and will react to POST requests only. You can add a small
HTML form to your page to log out.

<form action="<c:url value="/logout"/>" method="post"><button>Logout</button><form>

 ■ Note When using CSrF protection, don’t forget to add the CSrF token to the form (see recipe 7-1) or the
logout will fail.

By default, a user will be redirected to the context path’s root when the logout succeeds, but sometimes
you may want to direct the user to another URL, which you can do by using the logoutSuccessUrl
configuration method.

@Configuration
@EnableWebSecurity
public class TodoSecurityConfig extends WebSecurityConfigurerAdapter {

 @Override
 protected void configure(HttpSecurity http) throws Exception {
 http
 ...
 .and()
 .logout().logoutSuccessUrl("/logout-success.jsp");
 }
}

After logout, you might notice that when using the browser’s back button you will still be able to see
the previous pages, even if your logout was successful. This has to do with the fact that the browser caches
the pages. By enabling the security headers, with the headers() configuration method, the browser will be
instructed to not cache the page.

ChapTer 7 ■ SprIng SeCurITy

309

@Configuration
@EnableWebSecurity
public class TodoSecurityConfig extends WebSecurityConfigurerAdapter {

 @Override
 protected void configure(HttpSecurity http) throws Exception {
 http
 ...
 .and()
 .headers();
 }
}

Next to the no-cache headers, this will also disable content sniffing and enable X-Frame protection
(see recipe 7-1 for more information). With this enabled and using the browser’s back button, you will be
redirected to the login page.

Implement Anonymous Login
The anonymous login service can be configured via the anonymous() method in a Java config, where you can
customize the username and authorities of an anonymous user, whose default values are anonymousUser
and ROLE_ANONYMOUS.

@Configuration
@EnableWebSecurity
public class TodoSecurityConfig extends WebSecurityConfigurerAdapter {

 @Override
 protected void configure(HttpSecurity http) throws Exception {
 http
 ...
 .and()
 .anonymous().principal("guest").authorities("ROLE_GUEST");
 }
}

Implement Remember-Me Support
Remember-me support can be configured via the rememberMe() method in a Java config. By default, it
encodes the username, the password, the remember-me expiration time, and a private key as a token and
stores the token as a cookie in the user’s browser. The next time the user accesses the same web application,
this token will be detected so that the user can log in automatically.

@Configuration
@EnableWebSecurity
public class TodoSecurityConfig extends WebSecurityConfigurerAdapter {

ChapTer 7 ■ SprIng SeCurITy

310

 @Override
 protected void configure(HttpSecurity http) throws Exception {
 http
 ...
 .and()
 .rememberMe();
 }
}

However, static remember-me tokens can cause security issues because they may be captured by
hackers. Spring Security supports rolling tokens for more advanced security needs, but this requires a
database to persist the tokens. For details about rolling remember-me token deployment, please refer to the
Spring Security reference documentation.

7-3. Authenticate Users
Problem
When a user attempts to log into your application to access its secure resources, you have to authenticate the
user’s principal and grant authorities to this user.

Solution
In Spring Security, authentication is performed by one or more AuthenticationProviders, connected
as a chain. If any of these providers authenticates a user successfully, that user will be able to log into the
application. If any provider reports that the user is disabled or locked or that the credential is incorrect or if
no provider can authenticate the user, then the user will be unable to log into this application.

Spring Security supports multiple ways of authenticating users and includes built-in provider
implementations for them. You can easily configure these providers with the built-in XML elements. Most
common authentication providers authenticate users against a user repository storing user details (e.g., in
an application’s memory, a relational database, or an LDAP repository).

When storing user details in a repository, you should avoid storing user passwords in clear text because
that makes them vulnerable to hackers. Instead, you should always store encrypted passwords in your
repository. A typical way of encrypting passwords is to use a one-way hash function to encode the passwords.
When a user enters a password to log in, you apply the same hash function to this password and compare
the result with the one stored in the repository. Spring Security supports several algorithms for encoding
passwords (including MD5 and SHA) and provides built-in password encoders for these algorithms.

If you retrieve a user’s details from a user repository every time a user attempts to log in, your application
may incur a performance impact. This is because a user repository is usually stored remotely, and it has to
perform some kinds of queries in response to a request. For this reason, Spring Security supports caching user
details in local memory and storage to save you the overhead of performing remote queries.

How It Works
Here you will explore different authentication mechanism, first you will look at the in-memory
implemention, followed by the database driven one and finally you will take a look at LDAP. The final section
will cover how to enable caching for the different authentication mechanisms.

ChapTer 7 ■ SprIng SeCurITy

311

Authenticate Users with In-Memory Definitions
If you have only a few users in your application and you seldom modify their details, you can consider
defining the user details in Spring Security’s configuration file so that they will be loaded into your
application’s memory.

@Configuration
@EnableWebSecurity
public class TodoSecurityConfig extends WebSecurityConfigurerAdapter {

...
 @Override
 protected void configure(AuthenticationManagerBuilder auth) throws Exception {
 auth.inMemoryAuthentication()
 .withUser("admin@ya2do.io").password("secret").authorities("ADMIN","USER").and()
 .withUser("marten@@ya2do.io").password("user").authorities("USER").and()
 .withUser("jdoe@does.net").password("unknown").disabled(true).

authorities("USER");
 }
}

You can define user details with the inMemoryAuthentication() method. Using the withUser method,
you can define the users. For each user, you can specify a username, a password, a disabled status, and a set
of granted authorities. A disabled user cannot log into an application.

Authenticate Users Against a Database
More typically, user details should be stored in a database for easy maintenance. Spring Security has
built-in support for querying the user details from a database. By default, it queries user details, including
authorities, with the following SQL statements:

SELECT username, password, enabled
FROM users
WHERE username = ?

SELECT username, authority
FROM authorities
WHERE username = ?

For Spring Security to query user details with these SQL statements, you have to create the
corresponding tables in your database. For example, you can create them in the todo schema with the
following SQL statements:

CREATE TABLE USERS (
 USERNAME VARCHAR(50) NOT NULL,
 PASSWORD VARCHAR(50) NOT NULL,
 ENABLED SMALLINT NOT NULL,
 PRIMARY KEY (USERNAME)
);

ChapTer 7 ■ SprIng SeCurITy

312

CREATE TABLE AUTHORITIES (
 USERNAME VARCHAR(50) NOT NULL,
 AUTHORITY VARCHAR(50) NOT NULL,
 FOREIGN KEY (USERNAME) REFERENCES USERS
);

Next, you can input some user details into these tables for testing purposes. Tables 7-1 and 7-2 show the
data for these two tables.

For Spring Security to access these tables, you have to declare a data source to be able to create
connections to this database.

For a Java config, use the jdbcAuthentication() configuration method and pass it a DataSource.

@Configuration
@EnableWebSecurity
public class TodoSecurityConfig extends WebSecurityConfigurerAdapter {

 @Bean
 public DataSource dataSource() {
 return new EmbeddedDatabaseBuilder()
 .setType(EmbeddedDatabaseType.H2)
 .setName("board")
 .addScript("classpath:/schema.sql")
 .addScript("classpath:/data.sql")
 .build();
 }

 @Override
 protected void configure(AuthenticationManagerBuilder auth) throws Exception {
 auth.jdbcAuthentication().dataSource(dataSource());
 }
}

Table 7-1. Testing User Data for the USERS Table

USERNAME PASSWORD ENABLED

admin@ya2do.io secret 1

marten@ya2do.io user 1

jdoe@does.net unknown 0

Table 7-2. Testing User Data for the AUTHORITIES Table

USERNAME AUTHORITY

admin@ya2do.io ADMIN

admin@ya2do.io USER

marten@ya2do.io USER

jdoe@does.net USER

ChapTer 7 ■ SprIng SeCurITy

313

 ■ Note The @Bean method used for the DataSource has been moved from the TodoWebConfig to the
TodoSecurityConfig.

However, in some cases, you may already have your own user repository defined in a legacy database.
For example, suppose that the tables are created with the following SQL statements and that all users in the
MEMBER table have the enabled status:

CREATE TABLE MEMBER (
 ID BIGINT NOT NULL,
 USERNAME VARCHAR(50) NOT NULL,
 PASSWORD VARCHAR(32) NOT NULL,
 PRIMARY KEY (ID)
);

CREATE TABLE MEMBER_ROLE (
 MEMBER_ID BIGINT NOT NULL,
 ROLE VARCHAR(10) NOT NULL,
 FOREIGN KEY (MEMBER_ID) REFERENCES MEMBER
);

Suppose you have legacy user data stored in these tables, as shown in Tables 7-3 and 7-4.

Fortunately, Spring Security supports using custom SQL statements to query a legacy database for
user details. You can specify the statements for querying a user’s information and authorities using the
usersByUsernameQuery() and authoritiesByUsernameQuery() configuration methods.

Table 7-3. Legacy User Data in the MEMBER Table

ID USERNAME PASSWORD

1 admin@ya2do.io secret

2 marten@ya2do.io user

Table 7-4. Legacy User Data in the MEMBER_ROLE Table

MEMBER_ID ROLE

1 ROLE_ADMIN

1 ROLE_USER

2 ROLE_USER

ChapTer 7 ■ SprIng SeCurITy

314

@Configuration
@EnableWebSecurity
public class TodoSecurityConfig extends WebSecurityConfigurerAdapter {

...

 @Override
 protected void configure(AuthenticationManagerBuilder auth) throws Exception {
 auth.jdbcAuthentication()
 .dataSource(dataSource)
 .usersByUsernameQuery(
 "SELECT username, password, 'true' as enabled FROM member WHERE username = ?")
 .authoritiesByUsernameQuery(
 "SELECT member.username, member_role.role as authorities " +
 "FROM member, member_role " +
 "WHERE member.username = ? AND member.id = member_role.member_id");
 }
}

Encrypt Passwords
Until now, you have been storing user details with clear-text passwords. But this approach is vulnerable to
hacker attacks, so you should encrypt the passwords before storing them. Spring Security supports several
algorithms for encrypting passwords. For example, you can choose BCrypt, a one-way hash algorithm, to
encrypt your passwords.

 ■ Note you may need a helper to calculate BCrypt hashes for your passwords. you can do this online
through, for example, https://www.dailycred.com/article/bcrypt-calculator, or you can simply create a
class with a main method that uses Spring Security’s BCryptPasswordEncoder.

Now, you can store the encrypted passwords in your user repository. For example, if you are using in-
memory user definitions, you can specify the encrypted passwords in the password attributes. Then, you can
specify the password encoder using the passwordEncoder() method on AuthenticationManagerBuilder.

@Configuration
@EnableWebSecurity
public class TodoSecurityConfig extends WebSecurityConfigurerAdapter {

...

 @Bean
 public BCryptPasswordEncoder passwordEncoder() {
 return new BCryptPasswordEncoder();
 }

https://www.dailycred.com/article/bcrypt-calculator

ChapTer 7 ■ SprIng SeCurITy

315

 @Override
 protected void configure(AuthenticationManagerBuilder auth) throws Exception {
 auth
 .jdbcAuthentication()
 .passwordEncoder(passwordEncoder())
 .dataSource(dataSource());
 }
}

Of course, you have to store the encrypted passwords in the database tables, instead of the clear-text
passwords, as shown in Table 7-5. To store BCrypt hashes in the password field, the length of the field has to
be at least 60 characters long (which is the length of the BCrypt hash).

Authenticate Users Against an LDAP Repository
Spring Security also supports accessing an LDAP repository for authenticating users. First, you have to
prepare some user data for populating the LDAP repository. Let’s prepare the user data in the LDAP Data
Interchange Format (LDIF), a standard plain-text data format for importing and exporting LDAP directory
data. For example, create the users.ldif file containing the following contents:

dn: dc=springrecipes,dc=com
objectClass: top
objectClass: domain
dc: springrecipes

dn: ou=groups,dc=springrecipes,dc=com
objectclass: top
objectclass: organizationalUnit
ou: groups

dn: ou=people,dc=springrecipes,dc=com
objectclass: top
objectclass: organizationalUnit
ou: people

Table 7-5. Testing User Data with Encrypted Passwords for the USERS Table

USERNAME PASSWORD ENABLED

admin@ya2do.io $2a$10$E3mPTZb50e7sSW15fDx8Ne7hDZpfDjrmMPTTUp8wVjLTu.
G5oPYCO

1

marten@ya2do.io $2a$10$5VWqjwoMYnFRTTmbWCRZT.iY3WW8ny27kQuUL9yPK1/
WJcPcBLFWO

1

jdoe@does.net $2a$10$cFKh0.XCUOA9L.in5smIiO2QIOT8.6ufQSwIIC.
AVz26WctxhSWC6

0

ChapTer 7 ■ SprIng SeCurITy

316

dn: uid=admin,ou=people,dc=springrecipes,dc=com
objectclass: top
objectclass: uidObject
objectclass: person
uid: admin
cn: admin
sn: admin
userPassword: secret

dn: uid=user1,ou=people,dc=springrecipes,dc=com
objectclass: top
objectclass: uidObject
objectclass: person
uid: user1
cn: user1
sn: user1
userPassword: 1111

dn: cn=admin,ou=groups,dc=springrecipes,dc=com
objectclass: top
objectclass: groupOfNames
cn: admin
member: uid=admin,ou=people,dc=springrecipes,dc=com

dn: cn=user,ou=groups,dc=springrecipes,dc=com
objectclass: top
objectclass: groupOfNames
cn: user
member: uid=admin,ou=people,dc=springrecipes,dc=com
member: uid=user1,ou=people,dc=springrecipes,dc=com

Don’t worry if you don’t understand this LDIF file very well. You probably won’t need to use this file
format to define LDAP data often because most LDAP servers support GUI-based configuration. This users.
ldif file includes the following contents:

•	 The default LDAP domain, dc=springrecipes,dc=com

•	 The groups and people organization units for storing groups and users

•	 The admin and user1 users with the passwords secret and 1111

•	 The admin group (including the admin user) and the user group (including the admin
and user1 users)

For testing purposes, you can install an LDAP server on your local machine to host this user repository.
For the sake of easy installation and configuration, we recommend installing OpenDS (www.opends.org/),
a Java-based open source directory service engine that supports LDAP.

 ■ Tip In the bin directory, there is an ldap.sh script that will start a Dockerized version of OpenDS and that
will import the earlier mentioned users.ldif. note that the root user and password for this LDap server are
cn=Directory Manager and ldap, respectively. Later, you will have to use this user to connect to this server.

http://www.opends.org/

ChapTer 7 ■ SprIng SeCurITy

317

After the LDAP server has started up, you can configure Spring Security to authenticate users against its
repository.

You have to configure the LDAP repository using the ldapAuthentication() configuration method. You
can specify the search filters and search bases for searching users and groups via several callback methods,
whose values must be consistent with the repository’s directory structure. With the preceding attribute
values, Spring Security will search a user from the people organization unit with a particular user ID and
search a user’s groups from the groups organization unit. Spring Security will automatically insert the ROLE_
prefix to each group as an authority.

@Configuration
@EnableWebSecurity
public class TodoSecurityConfig extends WebSecurityConfigurerAdapter {
...
 @Override
 protected void configure(AuthenticationManagerBuilder auth) throws Exception {
 auth
 .ldapAuthentication()
 .contextSource()
 .url("ldap://localhost:1389/dc=springrecipes,dc=com")
 .managerDn("cn=Directory Manager").managerPassword("ldap")
 .and()
 .userSearchFilter("uid={0}").userSearchBase("ou=people")
 .groupSearchFilter("member={0}").groupSearchBase("ou=groups")

 .passwordEncoder(new LdapShaPasswordEncoder())
 .passwordCompare().passwordAttribute("userPassword");
 }
}

As OpenDS uses Salted Secure Hash Algorithm (SSHA) to encode user passwords by default, you have
to specify the LdapShaPasswordEncoder as the password encoder. Note that this value is different from sha
because it’s specific to LDAP password encoding. You also need to specify the passwordAttribute value
because the password encoder needs to know which field in LDAP is the password.

Finally, you have to refer to an LDAP server definition, which defines how to create connections to an
LDAP server. You can specify the root user’s username and password to connect to the LDAP server running
on localhost by configuring the server using the contextSource method.

Cache User Details
Both <jdbc-user-service> and <ldap-user-service> support caching user details, but first you have to
choose a cache implementation that provides a caching service. As Spring and Spring Security have built-in
support for Ehcache (http://ehcache.sourceforge.net/), you can choose it as your cache implementation
and create a configuration file for it (e.g., ehcache.xml in the classpath root) with the following contents:

<ehcache>
 <diskStore path="java.io.tmpdir"/>

 <defaultCache
 maxElementsInMemory="1000"
 eternal="false"

http://ehcache.sourceforge.net/

ChapTer 7 ■ SprIng SeCurITy

318

 timeToIdleSeconds="120"
 timeToLiveSeconds="120"
 overflowToDisk="true"
 />

 <cache name="userCache"
 maxElementsInMemory="100"
 eternal="false"
 timeToIdleSeconds="600"
 timeToLiveSeconds="3600"
 overflowToDisk="true"
 />
</ehcache>

This Ehcache configuration file defines two types of cache configurations. One is for the default, and
the other is for caching user details. If the user cache configuration is used, a cache instance will cache the
details of at most 100 users in memory. The cached users will overflow to disk when this limit is exceeded.
A cached user will expire if it has been idle for 10 minutes or live for 1 hour after its creation.

Spring Security comes with two UserCache implementations: EhCacheBasedUserCache, which has to
refer to an Ehcache instance, and SpringCacheBasedUserCache, which uses Spring’s caching abstraction.

In a Java-based configuration, at the moment of this writing, only the jdbcAuthentication() method
allows for easy configuration of a user cache. For a Spring caching-based cache solution (which still
delegates to Ehcache), you need to configure a CacheManager instance and make this aware of Ehcache.

@Configuration
public class MessageBoardConfiguration {
...
 @Bean
 public EhCacheCacheManager cacheManager() {
 EhCacheCacheManager cacheManager = new EhCacheCacheManager();
 cacheManager.setCacheManager(ehCacheManager().getObject());
 return cacheManager;
 }

 @Bean
 public EhCacheManagerFactoryBean ehCacheManager() {
 return new EhCacheManagerFactoryBean();
 }
}

This is best added to the configuration of the services because the caching can also be used for other
means (see the recipes regarding Spring caching). Now that you have the CacheManager instance set up, you
need to configure a SpringCacheBasedUserCache class.

@Configuration
@EnableWebMvcSecurity
public class TodoSecurityConfig extends WebSecurityConfigurerAdapter {

 @Autowired
 private CacheManager cacheManager;

ChapTer 7 ■ SprIng SeCurITy

319

 @Bean
 public SpringCacheBasedUserCache userCache() throws Exception {
 Cache cache = cacheManager.getCache("userCache");
 return new SpringCacheBasedUserCache(cache);
 }

 @Override
 protected void configure(AuthenticationManagerBuilder auth) throws Exception {
 auth.jdbcAuthentication()
 .userCache(userCache())
 ...
 }
}

Notice the autowiring of CacheManager into the configuration class. You need access to it because you
need to retrieve a Cache instance that you pass into the constructor of SpringCacheBasedUseCache. You are
going to use the cache named userCache (which you configured in the ehcache.xml file). Finally, you pass
the configured UserCache into the jdbcAuthentications.userCache() method.

7-4. Make Access Control Decisions
Problem
In the authentication process, an application will grant a successfully authenticated user a set of authorities.
When this user attempts to access a resource in the application, the application has to decide whether the
resource is accessible with the granted authorities or other characteristics.

Solution
The decision of whether a user is allowed to access a resource in an application is called an access control
decision. It is made based on the user’s authentication status and the resource’s nature and access
attributes. In Spring Security, access control decisions are made by access decision managers, which have to
implement the AccessDecisionManager interface. You are free to create your own access decision managers
by implementing this interface, but Spring Security comes with three convenient access decision managers
based on the voting approach. They are shown in Table 7-6.

Table 7-6. Access Decision Managers That Come with Spring Security

Access Decision Manager Specifies when to grant access.

AffirmativeBased At least one voter votes to grant access.

ConsensusBased A consensus of voters votes to grant access.

UnanimousBased All voters vote to abstain or grant access (no voter votes to deny
access).

ChapTer 7 ■ SprIng SeCurITy

320

All these access decision managers require a group of voters to be configured for voting on access
control decisions. Each voter has to implement the AccessDecisionVoter interface. A voter can vote to
grant, abstain, or deny access to a resource. The voting results are represented by the ACCESS_GRANTED,
ACCESS_DENIED, and ACCESS_ABSTAIN constant fields defined in the AccessDecisionVoter interface.

By default, if no access decision manager is specified explicitly, Spring Security will automatically
configure an AffirmativeBased access decision manager with the following two voters configured:

•	 RoleVoter votes for an access control decision based on a user’s role. It will only
process access attributes that start with the ROLE_ prefix, but this prefix can be
customized. It votes to grant access if the user has the same role as required to
access the resource or to deny access if the user lacks any role required to access the
resource. If the resource does not have an access attribute starting with ROLE_, it will
abstain from voting.

•	 AuthenticatedVoter votes for an access control decision based on a user’s
authentication level. It will only process the access attributes IS_AUTHENTICATED_
FULLY, IS_AUTHENTICATED_REMEMBERED, and IS_AUTHENTICATED_ANONYMOUSLY. It
votes to grant access if the user’s authentication level is higher than the required
attribute. From highest to lowest, authentication levels are fully authenticated,
authentication remembered, and anonymously authenticated.

How It Works
By default, Spring Security will automatically configure an access decision manager if none is specified. This
default access decision manager is equivalent to the one defined with the following configuration:

@Bean
public AffirmativeBased accessDecisionManager() {
 List<AccessDecisionVoter> decisionVoters = Arrays.asList(new RoleVoter(), new

AuthenticatedVoter());
 return new AffirmativeBased(decisionVoters);
}

@Override
protected void configure(HttpSecurity http) throws Exception {

 http.authorizeRequests()
 .accessDecisionManager(accessDecisionManager())
 ...
}

This default access decision manager and its decision voters should satisfy most typical authorization
requirements. However, if they don’t satisfy yours, you can create your own. In most cases, you’ll only need to
create a custom voter. For example, you can create a voter to vote for a decision based on a user’s IP address.

ChapTer 7 ■ SprIng SeCurITy

321

package com.apress.springrecipes.board.security;

import org.springframework.security.access.AccessDecisionVoter;
import org.springframework.security.access.ConfigAttribute;
import org.springframework.security.core.Authentication;
import org.springframework.security.web.authentication.WebAuthenticationDetails;

import java.util.Collection;
import java.util.Objects;

public class IpAddressVoter implements AccessDecisionVoter<Object> {

 private static final String IP_PREFIX = "IP_";
 private static final String IP_LOCAL_HOST = "IP_LOCAL_HOST";

 public boolean supports(ConfigAttribute attribute) {
 return (attribute.getAttribute() != null) && attribute.getAttribute().startsWith

(IP_PREFIX);
 }

 @Override
 public boolean supports(Class<?> clazz) {
 return true;
 }

 public int vote(Authentication authentication, Object object,
Collection<ConfigAttribute> configList) {

 if (!(authentication.getDetails() instanceof WebAuthenticationDetails)) {
 return ACCESS_DENIED;
 }

 WebAuthenticationDetails details = (WebAuthenticationDetails) authentication.
getDetails();

 String address = details.getRemoteAddress();

 int result = ACCESS_ABSTAIN;

 for (ConfigAttribute config : configList) {
 result = ACCESS_DENIED;

 if (Objects.equals(IP_LOCAL_HOST, config.getAttribute())) {
 if (address.equals("127.0.0.1") || address.equals("0:0:0:0:0:0:0:1")) {
 return ACCESS_GRANTED;
 }
 }
 }

 return result;
 }
}

ChapTer 7 ■ SprIng SeCurITy

322

Note that this voter will only process the access attributes that start with the IP_ prefix. At the moment,
it only supports the IP_LOCAL_HOST access attribute. If the user is a web client whose IP address is equal to
127.0.0.1 or 0:0:0:0:0:0:0:1—the last value being returned by networkless Linux workstations—this
voter will vote to grant access. Otherwise, it will vote to deny access. If the resource does not have an access
attribute starting with IP_, it will abstain from voting.

Next, you have to define a custom access decision manager that includes this voter.

@Bean
public AffirmativeBased accessDecisionManager() {
 List<AccessDecisionVoter> decisionVoters = Arrays.asList(new RoleVoter(), new

AuthenticatedVoter(), new IpAddressVoter());
 return new AffirmativeBased(decisionVoters);
}

Now, suppose you would like to allow users of the machine running the web container (i.e., the server
administrators) to delete to-dos without logging in. You have to refer to this access decision manager from
the configuration and add the access attribute IP_LOCAL_HOST to the delete URL mapping.

http.authorizeRequests()
 .accessDecisionManager()
 .antMatchers(HttpMethod.DELETE, "/todos*").access("ADMIN,IP_LOCAL_HOST");

When calling the URL directly, the to-do will be removed. To access it through the web interface, you
still need to be logged in.

Use an Expression to Make Access Control Decisions
Although AccessDecisionVoters allow for a certain degree of flexibility, sometimes you want more complex
access control rules to be more flexible. With Spring Security, it is possible to use Springs Expression
Language (SpEL) to create powerful access control rules. Spring Security supports a couple of expressions
out of the box (see Table 7-7 for a list). By using constructs such as and, or, and not, you can create very
powerful and flexible expressions. Spring Security will automatically configure an access decision manager
with WebExpressionVoter. This access decision manager is equivalent to the one defined with the following
bean configuration:

@Bean
public AffirmativeBased accessDecisionManager() {
 List<AccessDecisionVoter> decisionVoters = Arrays.asList(new WebExpressionVoter());
 return new AffirmativeBased(decisionVoters);
}

ChapTer 7 ■ SprIng SeCurITy

323

 ■ Caution although the role and authority are almost the same, there is a slight, but important, difference in
how they are processed. When using hasRole, the passed-in value for the role will be checked if it starts with
ROLE_ (the default role prefix). If not, this will be added before checking the authority. So, hasRole('ADMIN')
will actually check whether the current user has the authority ROLE_ADMIN. When using hasAuthority, it will
check the value as is.

The previous expression would give access to delete a post if someone had the ADMIN role or
was logged in on the local machine. In the previous section, you needed to create your own custom
AccessDecisionVoter. Now you only have to write an expression. Writing expressions can be done through
the access method instead of one of the has* methods when defining a matcher.

@Configuration
@EnableWebSecurity
public class TodoSecurityConfig extends WebSecurityConfigurerAdapter {

 @Override
 protected void configure(HttpSecurity http) throws Exception {
 http
 .authorizeRequests()
 .antMatchers("/messageList*").hasAnyRole("USER", "GUEST")

Table 7-7. Spring Security Built-in Expressions

Expression Description

hasRole(role) or hasAuthority(authority) Returns true if the current user has the
given role

hasAnyRole(role1,role2) / hasAnyAuthority(auth1,auth2) Returns true if the current user has at
least one of the given roles

hasIpAddress(ip-address) Returns true if the current user has the
given IP address

principal The current user

Authentication Access to the Spring Security
authentication object

permitAll Always evaluates to true

denyAll Always evaluates to false

isAnonymous() Returns true if the current user is
anonymous

isRememberMe() Returns true if the current user logged
in by means of the remember-me
functionality

isAuthenticated() Returns true if this is not an anonymous
user

isFullyAuthenticated() Returns true if the user is not an
anonymous or remember-me user

ChapTer 7 ■ SprIng SeCurITy

324

 .antMatchers("/messagePost*").hasRole("USER")
 .antMatchers("/messageDelete*")
 .access("hasRole('ROLE_ADMIN') or hasIpAddress('127.0.0.1') or

hasIpAddress('0:0:0:0:0:0:0:1')")
 ...
 }
...
}

Although Spring Security has already several built-in functions that can be used when creating
expressions, it is possible to extend the functions with your own. For this, you need to create a class that
implements the SecurityExpressionOperations interface and register it with Spring Security. Although it
would be possible to create a class that implements all the methods on this interface, it is in general easier to
extend the default when you want to add expressions.

package com.apress.springrecipes.board.security;

import org.springframework.security.core.Authentication;
import org.springframework.security.web.FilterInvocation;
import org.springframework.security.web.access.expression.WebSecurityExpressionRoot;

public class ExtendedWebSecurityExpressionRoot extends WebSecurityExpressionRoot {

 public ExtendedWebSecurityExpressionRoot(Authentication a, FilterInvocation fi) {
 super(a, fi);
 }

 public boolean localAccess() {
 return hasIpAddress("127.0.0.1") || hasIpAddress("0:0:0:0:0:0:0:1");

 }
}

Here you extended WebSecurityExpressionRoot, which provides the default implementation, and you
added the method localAccess(). This method checks whether you are logging in from the local machine.
To make this class available for Spring Security, you need to create the SecurityExpressionHandler
interface.

package com.apress.springrecipes.board.security;

import org.springframework.security.access.expression.SecurityExpressionOperations;
import org.springframework.security.authentication.AuthenticationTrustResolver;
import org.springframework.security.authentication.AuthenticationTrustResolverImpl;
import org.springframework.security.core.Authentication;
import org.springframework.security.web.FilterInvocation;
import org.springframework.security.web.access.expression.
DefaultWebSecurityExpressionHandler;
import org.springframework.security.web.access.expression.WebSecurityExpressionRoot;

ChapTer 7 ■ SprIng SeCurITy

325

public class ExtendedWebSecurityExpressionHandler extends
DefaultWebSecurityExpressionHandler {

 private AuthenticationTrustResolver trustResolver = new
AuthenticationTrustResolverImpl();

 @Override
 protected SecurityExpressionOperations
 createSecurityExpressionRoot(Authentication authentication, FilterInvocation fi) {

 ExtendedWebSecurityExpressionRoot root =
 new ExtendedWebSecurityExpressionRoot(authentication, fi);
 root.setPermissionEvaluator(getPermissionEvaluator());
 root.setTrustResolver(trustResolver);
 root.setRoleHierarchy(getRoleHierarchy());
 return root;
 }

 @Override
 public void setTrustResolver(AuthenticationTrustResolver trustResolver) {
 this.trustResolver=trustResolver;
 super.setTrustResolver(trustResolver);
 }
}

You are extending DefaultWebSecurityExpressionHandler, which provides the default
implementation. You override the createSecurityExpressionRoot method and let that create an instance
of the ExtendedWebSecurityExpressionRoot class. As you need to add a couple of collaborators, you call the
get methods of the superclass. As there isn’t a getTrustResolver method, you need to create a new instance
of that yourself and implement the setter method.

@Configuration
@EnableWebSecurity
public class TodoSecurityConfig extends WebSecurityConfigurerAdapter {

 @Override
 protected void configure(HttpSecurity http) throws Exception {
 http
 .authorizeRequests()
 .expressionHandler(new ExtendedWebSecurityExpressionHandler())
 .antMatchers("/todos*").hasAuthority("USER")
 .antMatchers(DELETE, "/todos*").access("hasRole('ROLE_ADMIN) or

localAccess()")
 }
}

You set the custom expression handler with the expressionHandler method. Now you can rewrite your
expression using your localAccess() expression.

ChapTer 7 ■ SprIng SeCurITy

326

Use an Expression to Make Access Control Decisions Using Spring Beans
Although you can extend Spring Security using these methods, it isn’t the recommended approach. Instead,
it is advises you to write a custom class and use that in the expression. Using the @ syntax in the expression,
you can call any bean in the application context. So, you could write an expression like @accessChecker.
hasLocalAccess(authentication) and provide a bean named accessChecker, which has a hasLocalAccess
method that takes an Authentication object.

package com.apress.springrecipes.board.security;

import org.springframework.security.core.Authentication;
import org.springframework.security.web.authentication.WebAuthenticationDetails;

public class AccessChecker {

 public boolean hasLocalAccess(Authentication authentication) {
 boolean access = false;
 if (authentication.getDetails() instanceof WebAuthenticationDetails) {
 WebAuthenticationDetails details = (WebAuthenticationDetails) authentication.

getDetails();
 String address = details.getRemoteAddress();
 access = address.equals("127.0.0.1") || address.equals("0:0:0:0:0:0:0:1");
 }
 return access;
 }
}

The AccessChecker still does the same checks as the earlier IpAddressVoter or custom expression
handler but doesn’t extend the Spring Security classes.

@Bean
public AccessChecker accessChecker() {
 return new AccessChecker();
}

@Override
protected void configure(HttpSecurity http) throws Exception {

 http.authorizeRequests()
 .antMatchers("/todos*").hasAuthority("USER")
 .antMatchers(HttpMethod.DELETE, "/todos*").access("hasAuthority('ADMIN') or

@accessChecker.hasLocalAccess(authentication)")
 ...
}

ChapTer 7 ■ SprIng SeCurITy

327

7-5. Secure Method Invocations
Problem
As an alternative or a complement to securing URL access in the web layer, sometimes you may need to secure
method invocations in the service layer. For example, in the case that a single controller has to invoke multiple
methods in the service layer, you may want to enforce fine-grained security controls on these methods.

Solution
Spring Security enables you to secure method invocations in a declarative way. You annotate methods
declared in a bean interface or an implementation class with the @Secured, @PreAuthorize
/@PostAuthorize, or @PreFilter/@PostFilter annotations and then enable security for them using the
@EnableGlobalMethodSecurity annotation.

How It Works
First you will explore how to secure method invocations using annotations and how to write security
expression. Finally you will also see how you can use annotations and expression to filter input arguments
and output of a method.

Secure Methods with Annotations
The approach to securing methods is by annotating them with @Secured. For example, you can annotate the
methods in MessageBoardServiceImpl with the @Secured annotation and specify the access attributes as its
value, whose type is String[] and which takes one or more authorities that will have access to the method.

package com.apress.springrecipes.board.service;
...
import org.springframework.security.access.annotation.Secured;

public class MessageBoardServiceImpl implements MessageBoardService {
 ...
 @Secured({"ROLE_USER", "ROLE_GUEST"})
 public List<Message> listMessages() {
 ...
 }

 @Secured("ROLE_USER")
 public synchronized void postMessage(Message message) {
 ...
 }

 @Secured({"ROLE_ADMIN", "IP_LOCAL_HOST"})
 public synchronized void deleteMessage(Message message) {
 ...
 }

ChapTer 7 ■ SprIng SeCurITy

328

 @Secured({"ROLE_USER", "ROLE_GUEST"})
 public Message findMessageById(Long messageId) {
 return messages.get(messageId);
 }
}

Finally, you need to enable the method security. To do so, you have to add the
@EnableGlobalMethodSecurity annotation to your configuration class. As you want to use @Secured, you
have to set the securedEnabled attribute to true.

@Configuration
@EnableGlobalMethodSecurity(securedEnabled = true)
public class TodoWebConfiguration { ... }

 ■ Note It is important that you add the @EnableGlobalMethodSecurity annotation to the application
context configuration that contains the beans you want to secure!

Secure Methods with Annotations and Expressions
If you need more elaborate security rules, you can, just like with URL protection, use security expressions
based on SpEL to secure your application. For this, you can use the @PreAuthorize and @PostAuthorize
annotations. With them you can write security-based expressions just like with URL-based security.
To enable the processing of those annotations, you have to set the prePostEnabled attribute on the @
EnableGlobalMethodSecurity annotation to true.

@Configuration
@EnableGlobalMethodSecurity(prePostEnabled = true)
public class TodoWebConfiguration { ... }

Now you can use the @PreAuthorize and @PostAuthorize annotations to secure your application.

package com.apress.springrecipes.board;

import org.springframework.security.access.prepost.PreAuthorize;
import org.springframework.stereotype.Service;

import javax.transaction.Transactional;
import java.util.List;

@Service
@Transactional
class TodoServiceImpl implements TodoService {

 private final TodoRepository todoRepository;

 TodoServiceImpl(TodoRepository todoRepository) {
 this.todoRepository = todoRepository;
 }

ChapTer 7 ■ SprIng SeCurITy

329

 @Override
 @PreAuthorize("hasAuthority('USER')")
 public List<Todo> listTodos() {
 return todoRepository.findAll();
 }

 @Override
 @PreAuthorize("hasAuthority('USER')")
 public void save(Todo todo) {
 this.todoRepository.save(todo);
 }

 @Override
 @PreAuthorize("hasAuthority('USER')")
 public void complete(long id) {
 Todo todo = findById(id);
 todo.setCompleted(true);
 todoRepository.save(todo);
 }

 @Override
 @PreAuthorize("hasAnyAuthority('USER', 'ADMIN')")
 public void remove(long id) {
 todoRepository.remove(id);
 }

 @Override
 @PreAuthorize("hasAuthority('USER')")
 @PostAuthorize("returnObject.owner == authentication.name")
 public Todo findById(long id) {
 return todoRepository.findOne(id);
 }
}

The @PreAuthorize annotation will be triggered before the actual method call, and the @PostAuthorize
annotation will be triggered after the method call. You can also write a security expression and use the result
of the method invocation using the returnObject expression. See the expression on the findById method;
now if someone else as the owner tried to access the Todo object, a security exception would be thrown.

Filter with Annotations and Expressions
In addition to the @PreAuthorize and @PostAuthorize annotations, there are also the @PreFilter
and @PostFilter annotations. The main difference between the two groups of annotations is that the
@*Authorize ones will throw an exception if the security rules don’t apply. The @*Filter annotations will
simply filter the input and output variables of elements you don’t have access to.

Currently, when calling listTodos, everything is returned from the database. You want to restrict the
retrieval of all elements to the user with the authority ADMIN, and others can see only their own list of to-dos.
This can be simply implemented with an @PostFilter annotation. Adding @PostFilter("hasAuthority
('ADMIN') or filterObject.owner == authentication.name") will implement this rule.

ChapTer 7 ■ SprIng SeCurITy

330

@PreAuthorize("hasAuthority('USER')")
@PostFilter("hasAnyAuthority('ADMIN') or filterObject.owner == authentication.name")
public List<Todo> listTodos() {
 return todoRepository.findAll();
}

When you redeploy the application and log in as a user, you will now only see your own to-dos, and
when using a user with the ADMIN authority, you will still see all the available to-dos. See also recipe 7-7 for a
more elaborate use of the @*Filter annotations.

 ■ Caution although @PostFilter and @PreFilter are a simple way of filtering the input/output of a
method, use them with caution. When using them with large results, you can severely impact the performance
of your application.

7-6. Handle Security in Views
Problem
Sometimes you may want to display a user’s authentication information, such as the principal name and the
granted authorities, in the views of your web application. In addition, you want to render the view contents
conditionally according to the user’s authorities.

Solution
Although you can write JSP scriptlets in your JSP files to retrieve authentication and authorization
information through the Spring Security API, it’s not an efficient solution. Spring Security provides a JSP
tag library for you to handle security in JSP views. It includes tags that can display a user’s authentication
information and render the view contents conditionally according to the user’s authorities.

How It Works
You will first learn how to use the Spring Security tags to display information of the currently authenticated
user. Next you will learn how to conditionally hide parts of the page based on the authorities of the current
authenticated user.

Display Authentication Information
Suppose you would like to display a user’s principal name and grant authorities in the header of the to-do’s
listing page (i.e., todos.jsp). First, you have to import Spring Security’s tag library definition.

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<%@ taglib prefix="sec" uri="http://www.springframework.org/security/tags" %>

ChapTer 7 ■ SprIng SeCurITy

331

The <sec:authentication> tag exposes the current user’s Authentication object for you to render its
properties. You can specify a property name or property path in its property attribute. For example, you can
render a user’s principal name through the name property.

<h4>Todos for <sec:authentication property="name" /></h4>

In addition to rendering an authentication property directly, this tag supports storing the property in
a JSP variable, whose name is specified in the var attribute. For example, you can store the authorities
property, which contains the authorities granted to the user, in the JSP variable authorities and render
them one by one with a <c:forEach> tag. You can further specify the variable scope with the scope ascope
attribute.

<sec:authentication property="authorities" var="authorities" />

 <c:forEach items="${authorities}" var="authority">
 ${authority.authority}
 </c:forEach>

Render View Contents Conditionally
If you want to render view contents conditionally according to a user’s authorities, you can use the
<sec:authorize> tag. For example, you can decide whether to render the message authors according to the
user’s authorities.

<td>
 <sec:authorize ifAllGranted="ROLE_ADMIN,ROLE_USER">${todo.owner}</sec:authorize>
</td>

If you want the enclosing content to be rendered only when the user has been granted certain
authorities at the same time, you have to specify them in the ifAllGranted attribute. Otherwise, if the
enclosing content can be rendered with any of the authorities, you have to specify them in the ifAnyGranted
attribute.

<td>
 <sec:authorize ifAnyGranted="ROLE_ADMIN,ROLE_USER">${todo.owner}</sec:authorize>
</td>

You can also render the enclosing content when a user has not been granted any of the authorities
specified in the ifNotGranted attribute.

<td>
 <sec:authorize ifNotGranted="ROLE_ADMIN,ROLE_USER">${todo.owner}</sec:authorize>
</td>

ChapTer 7 ■ SprIng SeCurITy

332

7-7. Handle Domain Object Security
Problem
Sometimes you may have complicated security requirements that require handling security at the domain
object level. That means you have to allow each domain object to have different access attributes for
different principals.

Solution
Spring Security provides a module named ACL that allows each domain object to have its own access control
list (ACL). An ACL contains a domain object’s object identity to associate with the object and also holds
multiple access control entries (ACEs), each of which contains the following two core parts:

•	 Permissions: An ACE’s permissions are represented by a particular bit mask, with
each bit value for a particular type of permission. The BasePermission class
predefines five basic permissions as constant values for you to use: READ (bit 0 or
integer 1), WRITE (bit 1 or integer 2), CREATE (bit 2 or integer 4), DELETE (bit 3 or
integer 8), and ADMINISTRATION (bit 4 or integer 16). You can also define your own
using other unused bits.

•	 Security identity (SID): Each ACE contains permissions for a particular SID.
An SID can be a principal (PrincipalSid) or an authority (GrantedAuthoritySid)
to associate with permissions. In addition to defining the ACL object model, Spring
Security defines APIs for reading and maintaining the model, and it provides high-
performance JDBC implementations for these APIs. To simplify ACL’s usages, Spring
Security also provides facilities, such as access decision voters and JSP tags, for you
to use ACL consistently with other security facilities in your application.

How It Works
First you will see how to setup an ACL service and how to maintain the ACL permissions for your entities. Finally
you will learn how to use security expressions to secure access to your entities using the stored ACL permissions.

Set Up an ACL Service
Spring Security provides built-in support for storing ACL data in a relational database and accessing it with
JDBC. First, you have to create the following tables in your database for storing ACL data:

CREATE TABLE ACL_SID(
 ID BIGINT NOT NULL GENERATED BY DEFAULT AS IDENTITY,
 SID VARCHAR(100) NOT NULL,
 PRINCIPAL SMALLINT NOT NULL,
 PRIMARY KEY (ID),
 UNIQUE (SID, PRINCIPAL)
);

CREATE TABLE ACL_CLASS(
 ID BIGINT NOT NULL GENERATED BY DEFAULT AS IDENTITY,
 CLASS VARCHAR(100) NOT NULL,
 PRIMARY KEY (ID),
 UNIQUE (CLASS)
);

ChapTer 7 ■ SprIng SeCurITy

333

CREATE TABLE ACL_OBJECT_IDENTITY(
 ID BIGINT NOT NULL GENERATED BY DEFAULT AS IDENTITY,
 OBJECT_ID_CLASS BIGINT NOT NULL,
 OBJECT_ID_IDENTITY BIGINT NOT NULL,
 PARENT_OBJECT BIGINT,
 OWNER_SID BIGINT,
 ENTRIES_INHERITING SMALLINT NOT NULL,
 PRIMARY KEY (ID),
 UNIQUE (OBJECT_ID_CLASS, OBJECT_ID_IDENTITY),
 FOREIGN KEY (PARENT_OBJECT) REFERENCES ACL_OBJECT_IDENTITY,
 FOREIGN KEY (OBJECT_ID_CLASS) REFERENCES ACL_CLASS,
 FOREIGN KEY (OWNER_SID) REFERENCES ACL_SID
);

CREATE TABLE ACL_ENTRY(
 ID BIGINT NOT NULL GENERATED BY DEFAULT AS IDENTITY,
 ACL_OBJECT_IDENTITY BIGINT NOT NULL,
 ACE_ORDER INT NOT NULL,
 SID BIGINT NOT NULL,
 MASK INTEGER NOT NULL,
 GRANTING SMALLINT NOT NULL,
 AUDIT_SUCCESS SMALLINT NOT NULL,
 AUDIT_FAILURE SMALLINT NOT NULL,
 PRIMARY KEY (ID),
 UNIQUE (ACL_OBJECT_IDENTITY, ACE_ORDER),
 FOREIGN KEY (ACL_OBJECT_IDENTITY) REFERENCES ACL_OBJECT_IDENTITY,
 FOREIGN KEY (SID) REFERENCES ACL_SID
);

Spring Security defines APIs and provides high-performance JDBC implementations for you to access ACL
data stored in these tables, so you’ll seldom have a need to access ACL data from the database directly. As each
domain object can have its own ACL, there may be a large number of ACLs in your application. Fortunately,
Spring Security supports caching ACL objects. You can continue to use Ehcache as your cache implementation
and create a new configuration for ACL caching in ehcache.xml (located in the classpath root).

<ehcache>
 ...
 <cache name="aclCache"
 maxElementsInMemory="1000"
 eternal="false"
 timeToIdleSeconds="600"
 timeToLiveSeconds="3600"
 overflowToDisk="true"
 />
</ehcache>

Next, you have to set up an ACL service for your application. However, as Spring Security doesn’t support
configuring the ACL module with Java-based configuration yet, you have to configure this module with a group
of normal Spring beans. For this reason, let’s create a separate bean configuration class named TodoAclConfig,
which will store ACL-specific configurations, and add its location in the deployment descriptor.

ChapTer 7 ■ SprIng SeCurITy

334

package com.apress.springrecipes.board.security;

import org.springframework.security.web.context.AbstractSecurityWebApplicationInitializer;

public class TodoSecurityInitializer extends AbstractSecurityWebApplicationInitializer {

 public TodoSecurityInitializer() {
 super(TodoSecurityConfig.class, TodoAclConfig.class);
 }
}

In an ACL configuration file, the core bean is an ACL service. In Spring Security, there are two
interfaces that define operations of an ACL service: AclService and MutableAclService. AclService
defines operations for you to read ACLs. MutableAclService is a subinterface of AclService that defines
operations for you to create, update, and delete ACLs. If your application only needs to read ACLs, you can
simply choose an AclService implementation, such as JdbcAclService. Otherwise, you should choose a
MutableAclService implementation, such as JdbcMutableAclService.

package com.apress.springrecipes.board.security;

import org.springframework.cache.CacheManager;
import org.springframework.cache.ehcache.EhCacheManagerFactoryBean;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.security.acls.AclEntryVoter;
import org.springframework.security.acls.domain.*;
import org.springframework.security.acls.jdbc.BasicLookupStrategy;
import org.springframework.security.acls.jdbc.JdbcMutableAclService;
import org.springframework.security.acls.jdbc.LookupStrategy;
import org.springframework.security.acls.model.AclCache;
import org.springframework.security.acls.model.AclService;
import org.springframework.security.acls.model.Permission;
import org.springframework.security.acls.model.PermissionGrantingStrategy;
import org.springframework.security.core.authority.SimpleGrantedAuthority;

import javax.sql.DataSource;

@Configuration
public class TodoAclConfig {

 private final DataSource dataSource;

 public TodoAclConfig(DataSource dataSource) {
 this.dataSource = dataSource;
 }

 @Bean
 public AclEntryVoter aclEntryVoter(AclService aclService) {
 return new AclEntryVoter(aclService, "ACL_MESSAGE_DELETE", new Permission[]

{BasePermission.ADMINISTRATION, BasePermission.DELETE});
 }

ChapTer 7 ■ SprIng SeCurITy

335

 @Bean
 public EhCacheManagerFactoryBean ehCacheManagerFactoryBean() {
 return new EhCacheManagerFactoryBean();
 }

 @Bean
 public AuditLogger auditLogger() {
 return new ConsoleAuditLogger();
 }

 @Bean
 public PermissionGrantingStrategy permissionGrantingStrategy() {
 return new DefaultPermissionGrantingStrategy(auditLogger());
 }

 @Bean
 public AclAuthorizationStrategy aclAuthorizationStrategy() {
 return new AclAuthorizationStrategyImpl(new SimpleGrantedAuthority("ADMIN"));
 }

 @Bean
 public AclCache aclCache(CacheManager cacheManager) {
 return new SpringCacheBasedAclCache(cacheManager.getCache("aclCache"),

permissionGrantingStrategy(), aclAuthorizationStrategy());
 }

 @Bean
 public LookupStrategy lookupStrategy(AclCache aclCache) {
 return new BasicLookupStrategy(this.dataSource, aclCache,

aclAuthorizationStrategy(), permissionGrantingStrategy());
 }

 @Bean
 public AclService aclService(LookupStrategy lookupStrategy, AclCache aclCache) {
 return new JdbcMutableAclService(this.dataSource, lookupStrategy, aclCache);
 }
}

The core bean definition in this ACL configuration file is the ACL service, which is an instance of
JdbcMutableAclService that allows you to maintain ACLs. This class requires three constructor arguments.
The first is a data source for creating connections to a database that stores ACL data. You should have a data
source defined beforehand so that you can simply refer to it here (assuming that you have created the ACL
tables in the same database). The third constructor argument is a cache instance to use with an ACL, which
you can configure using Ehcache as the back-end cache implementation.

The only implementation that comes with Spring Security is BasicLookupStrategy, which performs
basic lookup using standard and compatible SQL statements. If you want to make use of advanced database
features to increase lookup performance, you can create your own lookup strategy by implementing the
LookupStrategy interface. A BasicLookupStrategy instance also requires a data source and a cache
instance. Besides, it requires a constructor argument whose type is AclAuthorizationStrategy. This object
determines whether a principal is authorized to change certain properties of an ACL, usually by specifying
a required authority for each category of properties. For the preceding configurations, only a user who has

ChapTer 7 ■ SprIng SeCurITy

336

the ADMIN authority can change an ACL’s ownership, an ACE’s auditing details, or other ACL and ACE details,
respectively. Finally, it needs a constructor argument whose type is PermissionGrantingStrategy. This
object’s responsibility is to check whether the ACL grants access to the given Sid with the Permissions value
it has.

Finally, JdbcMutableAclService embeds standard SQL statements for maintaining ACL data in a
relational database. However, those SQL statements may not be compatible with all database products. For
example, you have to customize the identity query statement for Apache Derby.

Maintain ACLs for Domain Objects
In your back-end services and DAOs, you can maintain ACLs for domain objects with the previously defined
ACL service via dependency injection. For your message board, you have to create an ACL for a to-do when
it is posted and delete the ACL when this to-do is deleted.

package com.apress.springrecipes.board;

import org.springframework.security.access.prepost.PostFilter;
import org.springframework.security.access.prepost.PreAuthorize;
import org.springframework.security.acls.domain.*;
import org.springframework.security.acls.model.MutableAcl;
import org.springframework.security.acls.model.MutableAclService;
import org.springframework.security.acls.model.ObjectIdentity;
import org.springframework.stereotype.Service;

import javax.transaction.Transactional;
import java.util.List;

import static org.springframework.security.acls.domain.BasePermission.DELETE;
import static org.springframework.security.acls.domain.BasePermission.READ;
import static org.springframework.security.acls.domain.BasePermission.WRITE;

@Service
@Transactional
class TodoServiceImpl implements TodoService {

 private final TodoRepository todoRepository;
 private final MutableAclService mutableAclService;

 TodoServiceImpl(TodoRepository todoRepository, MutableAclService mutableAclService) {
 this.todoRepository = todoRepository;
 this.mutableAclService = mutableAclService;
 }

 @Override
 @PreAuthorize("hasAuthority('USER')")
 public void save(Todo todo) {

 this.todoRepository.save(todo);

ChapTer 7 ■ SprIng SeCurITy

337

 ObjectIdentity oid = new ObjectIdentityImpl(Todo.class, todo.getId());
 MutableAcl acl = mutableAclService.createAcl(oid);
 acl.insertAce(0, READ, new PrincipalSid(todo.getOwner()), true);
 acl.insertAce(1, WRITE, new PrincipalSid(todo.getOwner()), true);
 acl.insertAce(2, DELETE, new PrincipalSid(todo.getOwner()), true);

 acl.insertAce(3, READ, new GrantedAuthoritySid("ADMIN"), true);
 acl.insertAce(4, WRITE, new GrantedAuthoritySid("ADMIN"), true);
 acl.insertAce(5, DELETE, new GrantedAuthoritySid("ADMIN"), true);

 }

 @Override
 @PreAuthorize("hasAnyAuthority('USER', 'ADMIN')")
 public void remove(long id) {
 todoRepository.remove(id);

 ObjectIdentity oid = new ObjectIdentityImpl(Todo.class, id);
 mutableAclService.deleteAcl(oid, false);
 }

 ...
}

When a user creates a to-do, you create a new ACL for this message at the same time, using the ID as
the ACL’s object identity. When a user deletes a to-do, you delete the corresponding ACL as well. For a new
to-do, you insert the following ACEs into its ACL:

•	 The owner of the to-do can READ, WRITE, and DELETE the to-do.

•	 A user who has the ADMIN authority can also READ, WRITE, and DELETE the to-dos.

JdbcMutableAclService requires that the calling methods have transactions enabled so that
its SQL statements can run within transactions. So, you annotate the two methods involving ACL
maintenance with the @Transactional annotation and then define a transaction manager and @
EnableTransactionManagement on the TodoWebConfig. Also, don’t forget to inject the ACL service into
TodoService for it to maintain ACL.

package com.apress.springrecipes.board.web;

import org.springframework.context.annotation.Configuration;
import org.springframework.jdbc.datasource.DataSourceTransactionManager;
import org.springframework.transaction.annotation.EnableTransactionManagement;
...

import javax.sql.DataSource;

@Configuration
@EnableTransactionManagement
...
public class TodoWebConfig implements WebMvcConfigurer {

 ...

ChapTer 7 ■ SprIng SeCurITy

338

 @Bean
 public DataSourceTransactionManager transactionManager(DataSource dataSource) {
 return new DataSourceTransactionManager(dataSource);
 }
}

Make Access Control Decisions Using Expressions
With an ACL for each domain object, you can use an object’s ACL to make access control decisions on
methods that involve this object. For example, when a user attempts to delete a to-do, you can consult this
message’s ACL about whether the user is permitted to delete this to-do.

Configuring ACL can be a daunting task. Luckily, you can use annotations and expressions to make
your life easier. You can use the @PreAuthorize and @PreFilter annotations to check whether someone is
allowed to execute the method or use certain method arguments. The @PostAuthorize and @PostFilter
annotations can be used to check whether a user is allowed to access the result or to filter results based on
the ACL. To enable the processing of these annotations, you need to set the prePostEnabled attribute of the
@EnableGlobalMethodSecurity annotation to true.

@EnableGlobalMethodSecurity(prePostEnabled=true)

In addition, you need to configure infrastructure components to be able to make decisions. You need
to set up an AclPermissionEvaluator, which is needed to evaluate the permission for an object. This is
done in TodoWebConfig and is needed here because that is the configuration class that enables the global
method security, and as you want to use ACL to secure the methods using an expression, it needs the custom
permission evaluator.

package com.apress.springrecipes.board.web.config;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.cache.Cache;
import org.springframework.cache.CacheManager;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.security.acls.AclPermissionEvaluator;
import org.springframework.security.acls.domain.AclAuthorizationStrategyImpl;
import org.springframework.security.acls.domain.ConsoleAuditLogger;
import org.springframework.security.acls.domain.DefaultPermissionGrantingStrategy;
import org.springframework.security.acls.domain.SpringCacheBasedAclCache;
import org.springframework.security.acls.jdbc.BasicLookupStrategy;
import org.springframework.security.acls.jdbc.JdbcMutableAclService;
import org.springframework.security.core.GrantedAuthority;
import org.springframework.security.core.authority.SimpleGrantedAuthority;

import javax.sql.DataSource;

@Configuration
public class TodoWebConfig {

 ...

ChapTer 7 ■ SprIng SeCurITy

339

 @Bean
 public AclPermissionEvaluator permissionEvaluator() {
 return new AclPermissionEvaluator(jdbcMutableAclService());
 }

}

The AclPermissionEvaluator requires an AclService to obtain the ACL for the objects it needs to
check. When doing a Java-based configuration, this is enough because the PermissionEvaluator will be
automatically detected and wired to the DefaultMethodSecurityExpressionHandler. Now everything is in
place to use the annotations together with expressions to control access.

package com.apress.springrecipes.board;

...

@Service
@Transactional
class TodoServiceImpl implements TodoService {

 @Override
 @PreAuthorize("hasAuthority('USER')")
 @PostFilter("hasAnyAuthority('ADMIN') or hasPermission(filterObject, 'read')")
 public List<Todo> listTodos() { ... }

 @Override
 @PreAuthorize("hasAuthority('USER')")
 public void save(Todo todo) { ... }

 @Override
 @PreAuthorize("hasPermission(#id, 'com.apress.springrecipes.board.Todo', 'write')")
 public void complete(long id) { ... }

 @Override
 @PreAuthorize("hasPermission(#id, 'com.apress.springrecipes.board.Todo', 'delete')")
 public void remove(long id) { ... }

 @Override
 @PostFilter("hasPermission(filterObject, 'read')")
 public Todo findById(long id) { ... }
}

You probably noticed the different annotations and the expressions inside these annotations.
The @PreAuthorize annotation can be used to check whether someone has the correct permissions to
execute the method. The expression uses #message, which refers to the method argument with the name
message. The hasPermission expression is a built-in expression from Spring Security (see Table 7-7).

ChapTer 7 ■ SprIng SeCurITy

340

The @PostFilter annotation allows you to filter the collection and remove the elements someone
isn’t allowed to read. In the expression, the keyword filterObject refers to an element in the collection.
To remain in the collection, the logged-in user needs to have read permission.

@PostAuthorize can be used to check whether a single return value can be used (i.e., if the user has the
right permissions). To use the return value in an expression, use the keyword returnObject.

7-8. Add Security to a WebFlux Application
Problem
You have an application built with Spring WebFlux (see Chapter 5), and you want to add security.

Solution
Enable security by adding @EnableWebFluxSecurity to your configuration and create a
SecurityWebFilterChain containing the security configuration.

How It Works
A Spring WebFlux application is very different in nature than a regular Spring MVC application. Nonetheless,
Spring Security strives to make the configuration as easy as possible, and it tries to be as similar to regular
web configuration as possible.

Secure URL Access
First let’s create a SecurityConfiguration class and put @EnableWebFluxSecurity on that class.

@Configuration
@EnableWebFluxSecurity
public class SecurityConfiguration { ... }

The @EnableWebFluxSecurity annotation registers a WebFluxConfigurer (see recipe 5-5) to add
AuthenticationPrincipalArgumentResolver, which allows you to inject the Authentication object into
a Spring WebFlux handler method. It also registers the WebFluxSecurityConfiguration class from Spring
Security, which detects instances of SecurityWebFilterChain (containing the security configuration), which
is wrapped as a WebFilter (comparable with a regular servlet filter), which in turn is used by WebFlux to add
behavior to incoming requests (just like a normal servlet filter).

Your configuration now only enables security; let’s add some security rules.

@Bean
SecurityWebFilterChain springWebFilterChain(HttpSecurity http) throws Exception {
 return http
 .authorizeExchange()
 .pathMatchers("/welcome", "/welcome/**").permitAll()
 .pathMatchers("/reservation*").hasRole("USER")
 .anyExchange().authenticated()
 .and()
 .build();
}

http://dx.doi.org/10.1007/978-1-4842-2790-9_5

ChapTer 7 ■ SprIng SeCurITy

341

org.springframework.security.config.annotation.web.reactive.HttpSecurity should look
familiar (see recipe 7-1) and is used to add security rules and do further configuration (such as adding/
removing headers and configuring the login method). With the authorizeExchange, it is possible to write
rules. Here you secure URLs; the /welcome URL is permitted for everyone, and the /reservation URLs are
available only for the role USER. For other requests, you have to be authenticated. Finally, you need to call
build() to actually build the SecurityWebFilterChain.

In addition to the authorizeExchange, it is also possible to use the headers() configuration method to
add security headers to requests (see also recipe 7-2) such as cross-site scripting protection, cache headers,
and so on.

Log in to WebFlux Applications
Currently, there is only the httpBasic() authentication mechanism supported by Spring Security WebFlux,
and it is enabled by default. You could override parts of the default configuration by explicitly configuring
them, and you could override the authentication manager used and the repository used to store the security
context. The authentication manager is detected automatically; you just need to register a bean of type
ReactiveAuthenticationManager or of type UserDetailsRepository.

You can also configure the location where the SecurityContext value is stored
by configuring SecurityContextRepository. The default implementation used is the
WebSessionSecurityContextRepository, which stores the context in the WebSession. The other default
implementation the ServerWebExchangeAttributeSecurityContextRepository stores the SecurityContext
as an attribute for the current exchange (i.e., request).

@Bean
SecurityWebFilterChain springWebFilterChain(HttpSecurity http) throws Exception {
 return http.httpBasic().
 .authenticationManager(new CustomReactiveAuthenticationManager())
 .securityContextRepository(new

ServerWebExchangeAttributeSecurityContextRepository()).and().build();
}

This will override the defaults with a CustomReactiveAuthenticationManager and the stateless
ServerWebExchangeAttributeSecurityContextRepository. However, for this application, you are going to
stick with the defaults.

Authenticate Users
Authenticating users in a Spring WebFlux-based application is done through a
ReactiveAuthenticationManager. This is an interface with a single authenticate method. You can
either provide your own implementation or use one of the two provided implementations. The first is the
UserDetailsRepositoryAuthenticationManager, which wraps an instance of UserDetailsRepository.

 ■ Note The UserDetailsRepository has only a single implementation, the MapUserDetailsRepository,
which is an in-memory implementation. you could, of course, provide your own implementation based on a
reactive data store (like MongoDB or Couchbase).

ChapTer 7 ■ SprIng SeCurITy

342

The other implementation, ReactiveAuthenticationManagerAdapter, is actually a wrapper for a
regular AuthenticationManager (see recipe 7-3). It will wrap a regular instance, and because of that, you can
use the blocking implementations in a reactive way. This doesn’t make them reactive; they still block, but
they are reusable in this way. With this, you could use JDBC, LDAP, and so on, for your reactive application.

When configuring Spring Security in a Spring WebFlux application, you can add an instance of either a
ReactiveAuthenticationManager to your Java configuration class or a UserDetailsRepository. When the
latter is detected, it will automatically be wrapped in a UserDetailsRepositoryAuthenticationManager.

@Bean
public MapUserDetailsRepository userDetailsRepository() {
 UserDetails marten = User.withUsername("marten").password("secret").roles("USER").build();
 UserDetails admin = User.withUsername("admin").password("admin").roles("USER","ADMIN").

build();
 return new MapUserDetailsRepository(marten, admin);
}

When you now deploy the application (or run the ReactorNettyBootstrap class), you are free to
access the /welcome page, but when accessing a URL starting with /reservation, you are greeted by a basic
authentication prompt from the browser (Figure 7-3).

Figure 7-3. Basic authentication login screen

ChapTer 7 ■ SprIng SeCurITy

343

Make Access Control Decisions
Table 7-8 shows the Spring Security WebFlux built-in expressions.

 ■ Caution although the role and authority are almost the same, there is a slight, but important, difference
in how they are processed. When using hasRole, the passed-in value for the role will checked if it starts with
ROLE_ (the default role prefix). If not, this will be added before checking the authority. So, hasRole('ADMIN')
will actually check whether the current user has the authority ROLE_ADMIN. When using hasAuthority, it will
check the value as is.

@Bean
SecurityWebFilterChain springWebFilterChain(HttpSecurity http) throws Exception {
 return http
 .authorizeExchange()
 .pathMatchers("/users/{user}/**").access(this::userEditAllowed)
 .anyExchange().authenticated()
 .and()
 .build();
}

private Mono<AuthorizationDecision> userEditAllowed(Mono<Authentication> authentication,
AuthorizationContext context) {
 return authentication
 .map(a -> context.getVariables().get("user").equals(a.getName()) ||

a.getAuthorities().contains(new SimpleGrantedAuthority("ROLE_ADMIN")))
 .map(granted -> new AuthorizationDecision(granted));
}

The access() expression can be used to write powerful expressions. The previous snippet uses a path
parameter in the URL {user}, and access is allowed if the current user is the actual user or if someone
has the ROLE_ADMIN authority. AuthorizationContext contains the parsed variables that you could use to
compare the name from the URI. Authentication contains the collection of GrantedAuthorities, which
you can check for the ROLE_ADMIN authority. Of course, you can write as many complex expressions as you
like; you could check for the IP address, request headers, and so on.

Table 7-8. Spring Security WebFlux Built-in Expressions

Expression Description

hasRole(role) or hasAuthority(authority) Returns true if the current user has the given role

permitAll() Always evaluates to true

denyAll() Always evaluates to false

authenticated() Returns true if the user is authenticated

access() Use a function to determine whether access is granted

ChapTer 7 ■ SprIng SeCurITy

344

Summary
In this chapter, you learned how to secure applications using Spring Security. It can be used to secure any
Java application, but it’s mostly used for web applications. The concepts of authentication, authorization,
and access control are essential in the security area, so you should have a clear understanding of them.

You often have to secure critical URLs by preventing unauthorized access to them. Spring Security can
help you to achieve this in a declarative way. It handles security by applying servlet filters, which can be
configured with a simple Java-based configuration. Spring Security will automatically configure the basic
security services for you and tries to be as secure as possible by default.

Spring Security supports multiple ways for users to log into a web application, such as form-based login
and HTTP Basic authentication. It also provides an anonymous login service that allows you to handle an
anonymous user just like a normal user. Remember-me support allows an application to remember a user’s
identity across multiple browser sessions.

Spring Security supports multiple ways of authenticating users and has built-in provider
implementations for them. For example, it supports authenticating users against in-memory definitions,
a relational database, and an LDAP repository. You should always store encrypted passwords in your user
repository because clear-text passwords are vulnerable to hacker attacks. Spring Security also supports
caching user details locally to save you the overhead of performing remote queries.

Decisions on whether a user is allowed to access a given resource are made by access decision
managers. Spring Security comes with three access decision managers that are based on the voting
approach. All of them require a group of voters to be configured for voting on access control decisions.

Spring Security enables you to secure method invocations in a declarative way, either by embedding a
security interceptor in a bean definition or by matching multiple methods with AspectJ pointcut expressions
or annotations. Spring Security also allows you to display a user’s authentication information in JSP views
and render view contents conditionally according to a user’s authorities.

Spring Security provides an ACL module that allows each domain object to have an ACL for controlling
access. You can read and maintain an ACL for each domain object with Spring Security’s high-performance
APIs, which are implemented with JDBC. Spring Security also provides facilities such as access decision
voters and JSP tags for you to use ACLs consistently with other security facilities.

Spring Security also has support for securing Spring WebFlux-based applications. In the previous
recipe, you explored how you can add security to such an application.

345© Marten Deinum, Daniel Rubio, and Josh Long 2017
M. Deinum et al., Spring 5 Recipes, DOI 10.1007/978-1-4842-2790-9_8

CHAPTER 8

Spring Mobile

Today more mobile devices exist than ever before. Most of these mobile devices can access the Internet
and can access web sites. However, some mobile devices might have a browser that lacks certain HTML or
JavaScript features that you use on your web site; you also might want to show a different web site to your
mobile users or maybe give them a choice of viewing a mobile version. In those cases, you could write all the
device detection routines yourself, but Spring Mobile provides ways to detect the device being used.

8-1. Detect Devices Without Spring Mobile
Problem
You want to detect the type of device that connects to your web site.

Solution
Create a Filter that detects the User-Agent value of the incoming request and sets a request attribute so
that it can be retrieved in a controller.

How It Works
Here is the Filter implementation you need to do device detection based on User-Agent:

package com.apress.springrecipes.mobile.web.filter;

import org.springframework.util.StringUtils;
import org.springframework.web.filter.OncePerRequestFilter;

import javax.servlet.FilterChain;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import java.io.IOException;

Chapter 8 ■ Spring Mobile

346

public class DeviceResolverRequestFilter extends OncePerRequestFilter {

 public static final String CURRENT_DEVICE_ATTRIBUTE = "currentDevice";

 public static final String DEVICE_MOBILE = "MOBILE";
 public static final String DEVICE_TABLET = "TABLET";
 public static final String DEVICE_NORMAL = "NORMAL";

 @Override
 protected void doFilterInternal(HttpServletRequest request, HttpServletResponse

response,
 FilterChain filterChain) throws ServletException,

IOException {
 String userAgent = request.getHeader("User-Agent");
 String device = DEVICE_NORMAL;

 if (StringUtils.hasText(userAgent)) {
 userAgent = userAgent.toLowerCase();
 if (userAgent.contains("android")) {
 device = userAgent.contains("mobile") ? DEVICE_NORMAL : DEVICE_TABLET;
 } else if (userAgent.contains("ipad") || userAgent.contains("playbook") ||

userAgent.contains("kindle")) {
 device = DEVICE_TABLET;
 } else if (userAgent.contains("mobil") || userAgent.contains("ipod") ||

userAgent.contains("nintendo DS")) {
 device = DEVICE_MOBILE;
 }
 }
 request.setAttribute(CURRENT_DEVICE_ATTRIBUTE, device);
 filterChain.doFilter(request, response);
 }
}

This implementation first retrieves the User-Agent header from the incoming request. When there is
a value in there, the filter needs to check what is in the header. There are some if/else constructs in the
header to do basic detection of the type of device. There is a special case for Android because that can be a
tablet or mobile device. When the filter determines what the type of device is, the type is stored as a request
attribute so that it is available to other components. Next, there is a controller and JSP page to display some
information about what is going on. The controller simply directs to a home.jsp page, which is located in the
WEB-INF/views directory. A configured InternalResourceViewResolver takes care of resolving the name to
an actual JSP page (for more information, refer to the recipes in Chapter 4).

package com.apress.springrecipes.mobile.web;

import org.springframework.stereotype.Controller;
import org.springframework.web.bind.annotation.RequestMapping;

import javax.servlet.http.HttpServletRequest;

@Controller
public class HomeController {

http://dx.doi.org/10.1007/978-1-4842-2790-9_4

Chapter 8 ■ Spring Mobile

347

 @RequestMapping("/home")
 public String index(HttpServletRequest request) {
 return "home";
 }

}

Here’s the home.jsp page:

<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>
<!doctype html>
<html>
<body>

<h1>Welcome</h1>
<p>
 Your User-Agent header: <c:out value="${header['User-Agent']}" />
</p>
<p>
 Your type of device: <c:out value="${requestScope.currentDevice}" />
</p>

</body>
</html>

The JSP shows the User-Agent header (if any) and the type of device, which has been determined by
your own DeviceResolverRequestFilter.

Finally, here is the configuration and bootstrapping logic:

package com.apress.springrecipes.mobile.web.config;

import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.ComponentScan;
import org.springframework.context.annotation.Configuration;
import org.springframework.web.servlet.ViewResolver;
import org.springframework.web.servlet.config.annotation.EnableWebMvc;
import org.springframework.web.servlet.view.InternalResourceView;
import org.springframework.web.servlet.view.InternalResourceViewResolver;

@Configuration
@ComponentScan("com.apress.springrecipes.mobile.web")
public class MobileConfiguration {

 @Bean
 public ViewResolver viewResolver() {

 InternalResourceViewResolver viewResolver = new InternalResourceViewResolver();
 viewResolver.setPrefix("/WEB-INF/views/");
 viewResolver.setSuffix(".jsp");
 return viewResolver;
 }
}

Chapter 8 ■ Spring Mobile

348

The controller is picked up by the @ComponentScan annotation. For bootstrapping the application,
there is the MobileApplicationInitializer, which bootstraps DispatcherServlet and optionally
ContextLoaderListener.

package com.apress.springrecipes.mobile.web;

import com.apress.springrecipes.mobile.web.config.MobileConfiguration;
import com.apress.springrecipes.mobile.web.filter.DeviceResolverRequestFilter;
import org.springframework.web.servlet.support.
AbstractAnnotationConfigDispatcherServletInitializer;

import javax.servlet.Filter;

public class MobileApplicationInitializer extends
AbstractAnnotationConfigDispatcherServletInitializer {

 @Override
 protected Class<?>[] getRootConfigClasses() {
 return null;
 }

 @Override
 protected Class<?>[] getServletConfigClasses() {
 return new Class[] { MobileConfiguration.class };
 }

 @Override
 protected Filter[] getServletFilters() {
 return new Filter[] {new DeviceResolverRequestFilter()};
 }

 @Override
 protected String[] getServletMappings() {
 return new String[] {"/"};
 }
}

There are two things to notice here. First, the previously mentioned configuration class is passed to
DispatcherServlet by implementing the getServletConfigClasses method. Second, the implementation
of the getServletFilters method takes care of registering the filter and maps it to DispatcherServlet.
When the application is deployed, using http://localhost:8080/mobile/home will show you the User-
Agent value and what type the filter thinks it is (see Figure 8-1).

Chapter 8 ■ Spring Mobile

349

Using Chrome on an iMac produces the result shown in Figure 8-1. When using an iPhone, it looks
something like Figure 8-2.

 ■ Note For testing different browsers, you can either use a tablet or mobile device on your internal network
or use a browser plug-in such as User-agent Switcher for Chrome or Firefox.

Although the filter does its job, it is far from complete. For instance, some mobile devices don’t
match the rules (the Kindle Fire has a different header than a regular Kindle device). It is also quite hard to
maintain the list of rules and devices or to test with many devices. Using a library like Spring Mobile is much
easier than doing this on your own.

Figure 8-1. Viewing the application in Chrome

Figure 8-2. Viewing the application using an iPhone 4

Chapter 8 ■ Spring Mobile

350

8-2. Detect Devices with Spring Mobile
Problem
You want to detect the type of device that connects to your web site and want to use Spring Mobile to help
you with this.

Solution
Use the Spring Mobile DeviceResolver and helper classes to determine the type of device by configuring
either DeviceResolverRequestFilter or DeviceResolverHandlerInterceptor.

How It Works
Both DeviceResolverRequestFilter and DeviceResolverHandlerInterceptor delegate the detection of
the type of device to a DeviceResolver class. Spring Mobile provides an implementation of that interface
named LiteDeviceResolver. The DeviceResolver class returns a Device object, which indicates the type.
This Device object is stored as a request attribute so that it can be used further down the chain. Spring
Mobile comes with a single default implementation of the Device interface, LiteDevice.

Use DeviceResolverRequestFilter
Using DeviceResolverRequestFilter is a matter of adding it to the web application and mapping it
to the servlet or requests that you want it to handle. For your application, that means adding it to the
getServletFilters method. The advantage of using this filter is that it is possible to use it even outside a
Spring-based application. It could be used in, for instance, a JSF-based application.

package com.apress.springrecipes.mobile.web;
...
import org.springframework.mobile.device.DeviceResolverRequestFilter;

public class MobileApplicationInitializer extends
AbstractAnnotationConfigDispatcherServletInitializer {
...
 @Override
 protected Filter[] getServletFilters() {
 return new Filter[] {new DeviceResolverRequestFilter()};
 }
}

Chapter 8 ■ Spring Mobile

351

This configuration registers DeviceResolverRequestFilter and will automatically attach it to requests
handled by DispatcherServlet. To test this, issue a request to http://localhost:8080/mobile/home, which
should display something like the following:

The output for the device is the text as created for the toString method on the LiteDevice class
provided by Spring Mobile.

Use DeviceResolverHandlerInterceptor
When using Spring Mobile in a Spring MVC–based application, it is easier to work with
DeviceResolverHandlerInterceptor. This needs to be configured in your configuration class and needs to
be registered with the addInterceptors helper method.

package com.apress.springrecipes.mobile.web.config;

import org.springframework.mobile.device.DeviceResolverHandlerInterceptor;
import org.springframework.web.servlet.config.annotation.InterceptorRegistry;
import org.springframework.web.servlet.config.annotation.WebMvcConfigurerAdapter;

@Configuration
@EnableWebMvc
@ComponentScan("com.apress.springrecipes.mobile.web")
public class MobileConfiguration extends WebMvcConfigurerAdapter {
...
 @Override
 public void addInterceptors(InterceptorRegistry registry) {
 registry.addInterceptor(new DeviceResolverHandlerInterceptor());
 }
}

The MobileConfiguration class extends WebMvcConfigurerAdapter from this class, and you can
override the addInterceptors method. All the interceptors added to the registry will be added to the
HandlerMapping beans in the application context. When the application is deployed and a request is made to
http://localhost:8080/mobile/home, the result should be the same as for the filter.

Chapter 8 ■ Spring Mobile

352

8-3. Use Site Preferences
Problem
You want to allow users to choose which type of site they visit with their device and store this for
future reference.

Solution
Use the SitePreference support provided by Spring Mobile.

How It Works
Both SitePreferenceRequestFilter and SitePreferenceHandlerInterceptor delegate retrieval of
the current SitePreference to a SitePreferenceHandler object. The default implementation uses a
SitePreferenceRepository class to store the preferences; by default this is done in a cookie.

Use SitePreferenceRequestFilter
Using SitePreferenceRequestFilter is a matter of adding it to the web application and mapping it
to the servlet or requests that you want it to handle. For your application, that means adding it to the
getServletFilters method. The advantage of using a filter is that it is possible to use it even outside a
Spring-based application. It could also be used in a JSF-based application.

package com.apress.springrecipes.mobile.web;

import org.springframework.mobile.device.site.SitePreferenceRequestFilter;
...

public class MobileApplicationInitializer extends
AbstractAnnotationConfigDispatcherServletInitializer {

 @Override
 protected Filter[] getServletFilters() {
 return new Filter[] {
 new DeviceResolverRequestFilter(),
 new SitePreferenceRequestFilter()};
 }

...
}

Now that SitePreferenceRequestFilter is registered, it will inspect incoming requests. If a request
has a parameter named site_preference, it will use the passed-in value (NORMAL, MOBILE, or TABLET) to set

Chapter 8 ■ Spring Mobile

353

the SitePreference value. The determined value is stored in a cookie and used for future reference; if a new
value is detected, the cookie value will be reset. Modify the home.jsp pages to include the following in order
to display the current SitePreference value:

<p>
 Your site preferences <c:out value="${requestScope.currentSitePreference}" />
</p>

Now opening the page using the URL http://localhost:8080/mobile/home?site_preference=TABLET
will set the SitePreference value to TABLET.

Use SitePreferenceHandlerInterceptor
When using Spring Mobile in a Spring MVC–based application, it is easier to work with
SitePreferenceHandlerInterceptor. This needs to be configured in your configuration class and needs to
be registered with the addInterceptors helper method.

package com.apress.springrecipes.mobile.web.config;

import org.springframework.mobile.device.DeviceResolverHandlerInterceptor;
import org.springframework.mobile.device.site. SitePreferenceHandlerInterceptor;
import org.springframework.web.servlet.config.annotation.InterceptorRegistry;
import org.springframework.web.servlet.config.annotation.WebMvcConfigurerAdapter;

@Configuration
@EnableWebMvc
@ComponentScan("com.apress.springrecipes.mobile.web")
public class MobileConfiguration extends WebMvcConfigurerAdapter {
...
 @Override
 public void addInterceptors(InterceptorRegistry registry) {
 registry.addInterceptor(new DeviceResolverHandlerInterceptor());
 registry.addInterceptor(new SitePreferenceHandlerInterceptor());
 }
}

The MobileConfiguration class extends WebMvcConfigurerAdapter from this class, and you can
override the addInterceptors method. All the interceptors added to the registry will be added to the
HandlerMapping beans in the application context. When the application is deployed and a request is made to
http://localhost:8080/mobile/home?site_preference=TABLET, the result should be the same as for the
filter in the previous section.

Chapter 8 ■ Spring Mobile

354

8-4. Use the Device Information to Render Views
Problem
You want to render a different view based on the device or site preferences.

Solution
Use the current Device and SitePreferences objects to determine which view to render. This can be done
manually or by using LiteDeviceDelegatingViewResolver.

How It Works
Now that the type of device is known, it can be used to your advantage. First let’s create some additional
views for each type of device supported and put them, respectively, in a mobile or tablet directory under
WEB-INF/views. Here’s the source for mobile/home.jsp:

<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>
<!doctype html>
<html>
<body>

<h1>Welcome Mobile User</h1>
<p>
 Your User-Agent header: <c:out value="${header['User-Agent']}" />
</p>
<p>
 Your type of device: <c:out value="${requestScope.currentDevice}" />
</p>
<p>
 Your site preferences <c:out value="${requestScope.currentSitePreference}" />
</p>
</body>
</html>

Here’s the source for tablet/home.jsp:

<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>
<!doctype html>
<html>
<body>

<h1>Welcome Tablet User</h1>
<p>
 Your User-Agent header: <c:out value="${header['User-Agent']}" />
</p>
<p>
 Your type of device: <c:out value="${requestScope.currentDevice}" />
</p>

Chapter 8 ■ Spring Mobile

355

<p>
 Your site preferences <c:out value="${requestScope.currentSitePreference}" />
</p>
</body>
</html>

Now that the different views are in place, you need to find a way to render them based on the device
value that has been detected. One way would be to manually get access to the current device from the
request and use that to determine which view to render.

package com.apress.springrecipes.mobile.web;

import org.springframework.mobile.device.Device;
import org.springframework.mobile.device.DeviceUtils;
import org.springframework.stereotype.Controller;
import org.springframework.web.bind.annotation.RequestMapping;

import javax.servlet.http.HttpServletRequest;

@Controller
public class HomeController {

 @RequestMapping("/home")
 public String index(HttpServletRequest request) {
 Device device = DeviceUtils.getCurrentDevice(request);
 if (device.isMobile()) {
 return "mobile/home";
 } else if (device.isTablet()) {
 return "tablet/home";
 } else {
 return "home";
 }
 }
}

Spring Mobile has a DeviceUtils class that can be used to retrieve the current device. The current
device is retrieved from a request attribute (currentDevice), which has been set by the filter or interceptor.
The device value can be used to determine which view to render.

Getting the device in each method that needs it isn’t very convenient. It would be a lot easier
if it could be passed into the controller method as a method argument. For this, you can use
DeviceHandlerMethodArgumentResolver, which can be registered and will resolve the method
argument to the current device. To retrieve the current SitePreference value, you can add a
SitePreferenceHandlerMethodArgumentResolver class.

package com.apress.springrecipes.mobile.web.config;

import org.springframework.mobile.device.DeviceHandlerMethodArgumentResolver;
...
import java.util.List;

@Configuration
@EnableWebMvc

Chapter 8 ■ Spring Mobile

356

@ComponentScan("com.apress.springrecipes.mobile.web")
public class MobileConfiguration extends WebMvcConfigurerAdapter {

...
 @Override
 public void addArgumentResolvers(List<HandlerMethodArgumentResolver> argumentResolvers)
{
 argumentResolvers.add(new DeviceHandlerMethodArgumentResolver());
 argumentResolvers.add(new SitePreferenceHandlerMethodArgumentResolver());
 }
}

Now that these have been registered, the controller method can be simplified, and the Device value can
be passed in as a method argument.

package com.apress.springrecipes.mobile.web;

import org.springframework.mobile.device.Device;
import org.springframework.stereotype.Controller;
import org.springframework.web.bind.annotation.RequestMapping;

import javax.servlet.http.HttpServletRequest;

@Controller
public class HomeController {

 @RequestMapping("/home")
 public String index(Device device) {
 if (device.isMobile()) {
 return "mobile/home";
 } else if (device.isTablet()) {
 return "tablet/home";
 } else {
 return "home";
 }
 }
}

The method signature changed from having an HttpServletRequest value to a Device value. That takes
care of the lookup and will pass in the current device. However, while this is more convenient than manual
retrieval, it is still quite an antiquated way to determine which view to render. Currently, the preferences
aren’t taken into account, but this could be added to the method signature and could be used to determine
the preference. However, it would complicate the detection algorithm. Imagine this code in multiple
controller methods, which would soon become a maintenance nightmare.

Spring Mobile ships with a LiteDeviceDelegatingViewResolver class, which can be used to add
additional prefixes and/or suffixes to the view name, before it is passed to the actual view resolver. It also
takes into account the optional site preferences of the user.

package com.apress.springrecipes.mobile.web.config;

import org.springframework.mobile.device.view.LiteDeviceDelegatingViewResolver;
...

Chapter 8 ■ Spring Mobile

357

@Configuration
@EnableWebMvc
@ComponentScan("com.apress.springrecipes.mobile.web")
public class MobileConfiguration extends WebMvcConfigurerAdapter {
...
 @Bean
 public ViewResolver viewResolver() {
 InternalResourceViewResolver viewResolver = new InternalResourceViewResolver();
 viewResolver.setPrefix("/WEB-INF/views/");
 viewResolver.setSuffix(".jsp");
 viewResolver.setOrder(2);
 return viewResolver;
 }

 @Bean
 public ViewResolver mobileViewResolver() {
 LiteDeviceDelegatingViewResolver delegatingViewResolver =
 new LiteDeviceDelegatingViewResolver(viewResolver());
 delegatingViewResolver.setOrder(1);
 delegatingViewResolver.setMobilePrefix("mobile/");
 delegatingViewResolver.setTabletPrefix("tablet/");
 return delegatingViewResolver;

 }
}

LiteDeviceDelegatingViewResolver takes a delegate view resolver as a constructor argument; the earlier
configured InternalResourceViewResolver is passed in as the delegate. Also, note the ordering of the view
resolvers; you have to make sure that LiteDeviceDelegatingViewResolver executes before any other view
resolver. This way, it has a chance to determine whether a custom view for a particular device exists. Next, notice
in the configuration that the views for mobile devices are located in the mobile directory, and for the tablet they
are in the tablet directory. To add these directories to the view names, the prefixes for those device types are set
to their respective directories. Now when a controller returns home as the view name to select for a mobile device,
it would be turned into mobile/home. This modified name is passed on to InternalResourceViewResolver,
which turns it into /WEB-INF/views/mobile/home.jsp, the page you actually want to render.

package com.apress.springrecipes.mobile.web;

import org.springframework.stereotype.Controller;
import org.springframework.web.bind.annotation.RequestMapping;

@Controller
public class HomeController {

 @RequestMapping("/home")
 public String index() {
 return "home";
 }
}

Chapter 8 ■ Spring Mobile

358

The controller is quite clean now. Its only concern is to return the name of the view. The determination
of which view to render is left to the configured view resolvers. LiteDeviceDelegatingViewResolver takes
into account any SitePreferences values when found.

8-5. Implement Site Switching
Problem
Your mobile site is hosted on a different URL than your normal web site.

Solution
Use Spring Mobile’s site switching support to redirect to the appropriate part of your web site.

How It Works
Spring Mobile comes with a SiteSwitcherHandlerInterceptor class, which you can use
to switch to a mobile version of your site based on the detected Device value. To configure
SiteSwitcherHandlerInterceptor, there are a couple of factory methods that provide ready-to-use settings
(see Table 8-1).

Table 8-1. Overview of Factory Methods on SiteSwitcherHandlerInterceptor

Factory Method Description

mDot Redirects to a domain starting with m.; for instance, http://www.yourdomain.com would
redirect to http://m.yourdomain.com.

dotMobi Redirects to a domain ending with .mobi. A request to http://www.yourdomain.com
would redirect to http://www.yourdomain.mobi.

urlPath Sets up different context roots for different devices. This will redirect to the configured
URL path for that device. For instance, http://www.yourdomain.com could be
redirected to http://www.yourdomain.com/mobile.

standard This is the most flexible configurable factory method, which allows you to specify a
domain to redirect to for the mobile, tablet, and normal versions of your web site.

SiteSwitcherHandlerInterceptor also provides the ability to use site preferences. When using
SiteSwitcherHandlerInterceptor, you don’t need to register SitePreferencesHandlerInterceptor anymore
because this is already taken care of. Configuration is as simple as adding it to the list of interceptors you want
to apply; the only thing to remember is that you need to place it after DeviceResolverHandlerInterceptor
because the device information is needed to calculate the redirection URL.

http://www.yourdomain.com/
http://m.yourdomain.com/
http://www.yourdomain.com/
http://www.yourdomain.mobi/
http://www.yourdomain.com/
http://www.yourdomain.com/mobile

Chapter 8 ■ Spring Mobile

359

package com.apress.springrecipes.mobile.web.config;

...
import org.springframework.mobile.device.switcher.SiteSwitcherHandlerInterceptor;

@Configuration
@EnableWebMvc
@ComponentScan("com.apress.springrecipes.mobile.web")
public class MobileConfiguration extends WebMvcConfigurerAdapter {

 @Override
 public void addInterceptors(InterceptorRegistry registry) {
 registry.addInterceptor(new DeviceResolverHandlerInterceptor());
 registry.addInterceptor(siteSwitcherHandlerInterceptor());
 }

 @Bean
 public SiteSwitcherHandlerInterceptor siteSwitcherHandlerInterceptor() {
 return SiteSwitcherHandlerInterceptor.mDot("yourdomain.com", true);
 }
...
}

Notice in the bean declaration for SiteSwitcherHandlerInterceptor that the factory method mDot
is used to create an instance. The method takes two arguments. The first is the base domain name to use,
and the second is a boolean indicating whether tablets should be considered mobile devices. The default is
false. This configuration would lead to redirecting a request to the normal web site from mobile devices to
m.yourdomain.com.

@Bean
public SiteSwitcherHandlerInterceptor siteSwitcherHandlerInterceptor() {
 return SiteSwitcherHandlerInterceptor.dotMobi("yourdomain.com", true);
}

The previous configuration uses the dotMobi factory method, which takes two arguments. The first is
the base domain name to use, and the second is a Boolean indicating whether tablets are to be considered
mobile devices; the default is false. This would lead to redirecting requests to your normal web site from
mobile devices to yourdomain.mobi.

@Bean
public SiteSwitcherHandlerInterceptor siteSwitcherHandlerInterceptor() {
 return SiteSwitcherHandlerInterceptor.urlPath("/mobile", "/tablet", "/home");
}

The previous configuration uses the urlPath factory method with three arguments. The first argument
is the context root for mobile devices, and the second is the context root for tablets. The final argument is
the root path or your application. There are two more variations of the urlPath factory method: one that
takes only the path for mobile devices and another that takes a path for mobile devices and a root path. The
previous configuration will lead to requests from mobile devices being redirected to yourdomain.com/home/
mobile and for tablets to yourdomain.com/home/tablet.

Chapter 8 ■ Spring Mobile

360

Finally, there is the standard factory method, which is the most flexible and elaborate to configure.

@Bean
public SiteSwitcherHandlerInterceptor siteSwitcherHandlerInterceptor() {
 return SiteSwitcherHandlerInterceptor
 .standard("yourdomain.com", "mobile.yourdomain.com",
 "tablet.yourdomain.com", "*.yourdomain.com");
}

The previous configuration uses the standard factory method. It specifies a different domain for the
normal, mobile, and tablet versions of the web site. Finally, it specifies the domain name of the cookie to use
for storing the site preferences. This is needed because of the different subdomains specified.

There are several other variations of the standard factory method that allow for a subset of
configuration of what was shown earlier.

Summary
In this chapter, you learned how to use Spring Mobile, which can detect the device that is requesting a page
and can allow the user to select a certain page based on preferences. You learned how you can detect a user’s
device using DeviceResolverRequestFilter or DeviceResolverHandlerInterceptor. You also learned how
you can use SitePreferences to allow the user to override the detected device. Next, you looked at how you
can use the device information and preferences to render a view for that device. Finally, you learned how to
redirect the user to a different part of your web site based on the user’s device or site preferences.

361© Marten Deinum, Daniel Rubio, and Josh Long 2017
M. Deinum et al., Spring 5 Recipes, DOI 10.1007/978-1-4842-2790-9_9

CHAPTER 9

Data Access

In chapter, you will learn how Spring can simplify your database access tasks (Spring can also simplify your
NoSQL and Big Data tasks, which are covered in Chapter 12). Data access is a common requirement for most
enterprise applications, which usually require accessing data stored in relational databases. As an essential
part of Java SE, Java Database Connectivity (JDBC) defines a set of standard APIs for you to access relational
databases in a vendor-independent fashion.

The purpose of JDBC is to provide APIs through which you can execute SQL statements against
a database. However, when using JDBC, you have to manage database-related resources by yourself
and handle database exceptions explicitly. To make JDBC easier to use, Spring provides an abstraction
framework for interfacing with JDBC. As the heart of the Spring JDBC framework, JDBC templates are
designed to provide template methods for different types of JDBC operations. Each template method is
responsible for controlling the overall process and allows you to override particular tasks of the process.

If raw JDBC doesn’t satisfy your requirement or you feel your application would benefit from something
slightly higher level, then Spring’s support for object-relational mapping (ORM) solutions will interest you.
In this chapter, you will also learn how to integrate ORM frameworks into your Spring applications. Spring
supports most of the popular ORM (or data mapper) frameworks, including Hibernate, JDO, iBATIS, and the
Java Persistence API (JPA). Classic TopLink isn’t supported starting from Spring 3.0 (the JPA implementation
is still supported, of course). However, the JPA support is varied with many implementations of JPA,
including the Hibernate and TopLink-based versions. The focus of this chapter will be on Hibernate and JPA.
However, Spring’s support for ORM frameworks is consistent, so you can easily apply the techniques in this
chapter to other ORM frameworks as well.

ORM is a modern technology for persisting objects into a relational database. An ORM framework
persists your objects according to the mapping metadata you provide (XML- or annotation-based), such as the
mappings between classes and tables, properties and columns, and so on. It generates SQL statements for object
persistence at runtime, so you needn’t write database-specific SQL statements unless you want to take advantage
of database-specific features or provide optimized SQL statements of your own. As a result, your application will
be database independent, and it can be easily migrated to another database in the future. Compared to the direct
use of JDBC, an ORM framework can significantly reduce the data access effort of your applications.

Hibernate is a popular open source and high-performance ORM framework in the Java community.
Hibernate supports most JDBC-compliant databases and can use specific dialects to access particular
databases. Beyond the basic ORM features, Hibernate supports more advanced features such as caching,
cascading, and lazy loading. It also defines a querying language called Hibernate Query Language (HQL) for
you to write simple but powerful object queries.

JPA defines a set of standard annotations and APIs for object persistence in both the Java SE and Java
EE platforms. JPA is defined as part of the EJB specification in JSR-220. JPA is just a set of standard APIs that
require a JPA-compliant engine to provide persistence services. You can compare JPA with the JDBC API
and a JPA engine with a JDBC driver. Hibernate can be configured as a JPA-compliant engine through an
extension module called Hibernate EntityManager. This chapter will mainly demonstrate JPA with Hibernate
as the underlying engine.

http://dx.doi.org/10.1007/978-1-4842-2790-9_12

Chapter 9 ■ Data aCCess

362

Problems with Direct JDBC
Suppose you are going to develop an application for vehicle registration, whose major functions are the
basic create, read, update, and delete (CRUD) operations on vehicle records. These records will be stored
in a relational database and accessed with JDBC. First, you design the following Vehicle class, which
represents a vehicle in Java:

package com.apress.springrecipes.vehicle;

public class Vehicle {

 private String vehicleNo;
 private String color;
 private int wheel;
 private int seat;

 // Constructors, Getters and Setters
 ...
}

Setting Up the Application Database
Before developing your vehicle registration application, you have to set up the database for it.
We have chosen PostgreSQL as our database engine. PostgreSQL is an open source relational database
engine (See Table 9-1 for the connection properties).

 ■ Note the sample code for this chapter provides scripts in the bin directory to start and connect to a
Docker-based postgresQL instance. to start the instance and create the database, follow these steps:

 1. execute bin\postgres.sh; this will download and start the postgres Docker container.

 2. execute bin\psql.sh; this will connect to the running postgres container.

 3. execute CREATE DATABASE vehicle to create the database to use for the samples.

 4. Next, you have to create the VEHICLE table for storing vehicle records with the following
sQL statement.

CREATE TABLE VEHICLE (
 VEHICLE_NO VARCHAR(10) NOT NULL,
 COLOR VARCHAR(10),
 WHEEL INT,
 SEAT INT,
 PRIMARY KEY (VEHICLE_NO)
);

Chapter 9 ■ Data aCCess

363

Understanding the Data Access Object Design Pattern
A typical design mistake is to mix different types of logic (e.g., presentation logic, business logic, and data
access logic) in a single large module. This reduces the module’s reusability and maintainability because
of the tight coupling it introduces. The general purpose of the Data Access Object (DAO) pattern is to avoid
these problems by separating data access logic from business logic and presentation logic. This pattern
recommends that data access logic be encapsulated in independent modules called data access objects.

For your vehicle registration application, you can abstract the data access operations to insert, update,
delete, and query a vehicle. These operations should be declared in a DAO interface to allow for different
DAO implementation technologies.

package com.apress.springrecipes.vehicle;

import java.util.List;

public interface VehicleDao {

 void insert(Vehicle vehicle);
 void insert(Iterable<Vehicle> vehicles);
 void update(Vehicle vehicle);
 void delete(Vehicle vehicle);
 Vehicle findByVehicleNo(String vehicleNo);
 List<Vehicle> findAll();
}

Most parts of the JDBC APIs declare throwing java.sql.SQLException. But because this interface aims
to abstract the data access operations only, it should not depend on the implementation technology. So, it’s
unwise for this general interface to declare throwing the JDBC-specific SQLException. A common practice
when implementing a DAO interface is to wrap this kind of exception with a runtime exception (either your
own business Exception subclass or a generic one).

Table 9-1. JDBC Properties for Connecting to the Application Database

Property Value

Driver class org.postgresql.Driver

URL jdbc:postgresql://localhost:5432/vehicle

Username postgres

Password password

Chapter 9 ■ Data aCCess

364

Implementing the DAO with JDBC
To access the database with JDBC, you create an implementation for this DAO interface (e.g., JdbcVehicleDao).
Because your DAO implementation has to connect to the database to execute SQL statements, you may
establish database connections by specifying the driver class name, database URL, username, and password.
However, you can obtain database connections from a preconfigured javax.sql.DataSource object without
knowing about the connection details.

package com.apress.springrecipes.vehicle;

import javax.sql.DataSource;
import java.sql.Connection;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.util.ArrayList;
import java.util.Collection;
import java.util.List;

public class PlainJdbcVehicleDao implements VehicleDao {

 private static final String INSERT_SQL = "INSERT INTO VEHICLE (COLOR, WHEEL,
SEAT, VEHICLE_NO) VALUES (?, ?, ?, ?)";

 private static final String UPDATE_SQL = "UPDATE VEHICLE SET COLOR=?,WHEEL=?,SEAT=?
WHERE VEHICLE_NO=?";

 private static final String SELECT_ALL_SQL = "SELECT * FROM VEHICLE";
 private static final String SELECT_ONE_SQL = "SELECT * FROM VEHICLE WHERE VEHICLE_NO = ?";
 private static final String DELETE_SQL = "DELETE FROM VEHICLE WHERE VEHICLE_NO=?";

 private final DataSource dataSource;

 public PlainJdbcVehicleDao(DataSource dataSource) {
 this.dataSource = dataSource;
 }

 @Override
 public void insert(Vehicle vehicle) {
 try (Connection conn = dataSource.getConnection();
 PreparedStatement ps = conn.prepareStatement(INSERT_SQL)) {
 prepareStatement(ps, vehicle);
 ps.executeUpdate();
 } catch (SQLException e) {
 throw new RuntimeException(e);
 }
 }

 @Override
 public void insert(Collection<Vehicle> vehicles) {
 vehicles.forEach(this::insert);
 }

Chapter 9 ■ Data aCCess

365

 @Override
 public Vehicle findByVehicleNo(String vehicleNo) {
 try (Connection conn = dataSource.getConnection();
 PreparedStatement ps = conn.prepareStatement(SELECT_ONE_SQL)) {
 ps.setString(1, vehicleNo);

 Vehicle vehicle = null;
 try (ResultSet rs = ps.executeQuery()) {
 if (rs.next()) {
 vehicle = toVehicle(rs);
 }
 }
 return vehicle;
 } catch (SQLException e) {
 throw new RuntimeException(e);
 }
 }

 @Override
 public List<Vehicle> findAll() {
 try (Connection conn = dataSource.getConnection();
 PreparedStatement ps = conn.prepareStatement(SELECT_ALL_SQL);
 ResultSet rs = ps.executeQuery()) {

 List<Vehicle> vehicles = new ArrayList<>();
 while (rs.next()) {
 vehicles.add(toVehicle(rs));
 }
 return vehicles;
 } catch (SQLException e) {
 throw new RuntimeException(e);
 }
 }

 private Vehicle toVehicle(ResultSet rs) throws SQLException {
 return new Vehicle(rs.getString("VEHICLE_NO"),
 rs.getString("COLOR"), rs.getInt("WHEEL"),
 rs.getInt("SEAT"));
 }

 private void prepareStatement(PreparedStatement ps, Vehicle vehicle) throws SQLException {
 ps.setString(1, vehicle.getColor());
 ps.setInt(2, vehicle.getWheel());
 ps.setInt(3, vehicle.getSeat());
 ps.setString(4, vehicle.getVehicleNo());
 }

 @Override
 public void update(Vehicle vehicle) { ... }

 @Override
 public void delete(Vehicle vehicle) { ... }
}

Chapter 9 ■ Data aCCess

366

The vehicle insert operation is a typical JDBC update scenario. Each time this method is called, you
obtain a connection from the data source and execute the SQL statement on this connection. Your DAO
interface doesn’t declare throwing any checked exceptions, so if a SQLException occurs, you have to wrap
it with an unchecked RuntimeException. (There is a detailed discussion on handling exceptions in your
DAOs later in this chapter.) The code shown here uses a so-called try-with-resources mechanism that will
automatically close the used resources (i.e., Connection, PreparedStatement, and ResultSet). If you don’t
use a try-with-resources block, you have to remember to correctly close the used resources; failing to do so
will lead to connection leaks.

Here, the update and delete operations will be skipped because they are much the same as the insert
operation from a technical point of view. For the query operation, you have to extract the data from the
returned result set to build a vehicle object in addition to executing the SQL statement. The toVehicle
method is a simple helper method to be able to reuse the mapping logic, as well as a prepareStatement
method to help set the parameters for the insert and update methods.

Configuring a Data Source in Spring
The javax.sql.DataSource interface is a standard interface defined by the JDBC specification that
factories Connection instances. There are many data source implementations provided by different
vendors and projects; HikariCP and Apache Commons DBCP are popular open source options, and most
application servers will provide their own implementation. It is easy to switch between different data
source implementations because they implement the common DataSource interface. As a Java application
framework, Spring also provides several convenient but less powerful data source implementations. The
simplest one is DriverManagerDataSource, which opens a new connection every time one is requested.

package com.apress.springrecipes.vehicle.config;

import com.apress.springrecipes.vehicle.PlainJdbcVehicleDao;
import com.apress.springrecipes.vehicle.VehicleDao;
import org.apache.derby.jdbc.ClientDriver;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.jdbc.datasource.DriverManagerDataSource;

import javax.sql.DataSource;

@Configuration
public class VehicleConfiguration {

 @Bean
 public VehicleDao vehicleDao() {
 return new PlainJdbcVehicleDao(dataSource());
 }

 @Bean
 public DataSource dataSource() {
 DriverManagerDataSource dataSource = new DriverManagerDataSource();
 dataSource.setDriverClassName(ClientDriver.class.getName());
 dataSource.setUrl("jdbc:derby://localhost:1527/vehicle;create=true");

Chapter 9 ■ Data aCCess

367

 dataSource.setUsername("app");
 dataSource.setPassword("app");
 return dataSource;

 }
}

DriverManagerDataSource is not an efficient data source implementation because it opens a new
connection for the client every time it’s requested. Another data source implementation provided by
Spring is SingleConnectionDataSource (a DriverManagerDataSource subclass). As its name indicates, this
maintains only a single connection that’s reused all the time and never closed. Obviously, it is not suitable in
a multithreaded environment.

Spring’s own data source implementations are mainly used for testing purposes. However, many production
data source implementations support connection pooling. For example, HikariCP provides HikariDataSource,
which accepts the same connection properties as DriverManagerDataSource and allows you to specify, among
other information, the minimum pool size and maximum active connections for the connection pool.

@Bean
public DataSource dataSource() {
 HikariDataSource dataSource = new HikariDataSource();
 dataSource.setUsername("postgres");
 dataSource.setPassword("password");
 dataSource.setJdbcUrl("jdbc:postgresql://localhost:5432/vehicle");
 dataSource.setMinimumIdle(2);
 dataSource.setMaximumPoolSize(5);
 return dataSource;
}

 ■ Note to use the data source implementations provided by hikariCp, you have to add them to your
CLASSPATH. If you are using Maven, add the following dependency to your project:

<dependency>
 <groupId>com.zaxxer</groupId>
 <artifactId>HikariCP</artifactId>
 <version>2.6.1</version>
</dependency>

If you’re using Gradle, use the following:

compile 'com.zaxxer:HikariCP:2.6.1'

Many Java EE application servers build in data source implementations that you can configure from
the server console or in configuration files. If you have a data source configured in an application server and
exposed for JNDI lookup, you can use JndiDataSourceLookup to look it up.

@Bean
public DataSource dataSource() {
 return new JndiDataSourceLookup().getDataSource("jdbc/VehicleDS");
}

Chapter 9 ■ Data aCCess

368

Running the DAO
The following Main class tests your DAO by using it to insert a new vehicle to the database. If it succeeds, you
can query the vehicle from the database immediately.

package com.apress.springrecipes.vehicle;

import org.springframework.context.ApplicationContext;
import org.springframework.context.support.ClassPathXmlApplicationContext;

public class Main {

 public static void main(String[] args) {
 ApplicationContext context =
 new AnnotationConfigApplicationContext(VehicleConfiguration.class);

 VehicleDao vehicleDao = context.getBean(VehicleDao.class);
 Vehicle vehicle = new Vehicle("TEM0001", "Red", 4, 4);
 vehicleDao.insert(vehicle);

 vehicle = vehicleDao.findByVehicleNo("TEM0001");
 System.out.println(vehicle);
 }
}

Now you can implement a DAO using JDBC directly. However, as you can see from the preceding DAO
implementation, most of the JDBC code is similar and needs to be repeated for each database operation.
Such redundant code will make your DAO methods much longer and less readable.

Taking It a Step Further
An alternative approach is to use an object-relational mapping (ORM) tool, which lets you code the logic
specifically for mapping an entity in your domain model to a database table. The ORM will, in turn, figure out how
to write the logic to usefully persist your class’s data to the database. This can be very liberating: you are suddenly
beholden only to your business and domain model, not to the whims of your database’s SQL parser. The flip side,
of course, is that you are also divesting yourself from having complete control over the communication between
your client and the database—you have to trust that the ORM layer will do the right thing.

9-1. Use a JDBC Template to Update a Database
Problem
Using JDBC is tedious and fraught with redundant API calls, many of which could be managed for you. To
implement a JDBC update operation, you have to perform the following tasks, most of which are redundant:

 1. Obtain a database connection from the data source.

 2. Create a PreparedStatement object from the connection.

 3. Bind the parameters to the PreparedStatement object.

 4. Execute the PreparedStatement object.

Chapter 9 ■ Data aCCess

369

 5. Handle SQLException.

 6. Clean up the statement object and connection.

JDBC is a very low-level API, but with the JDBC template, the surface area of the API that you need
to work with becomes more expressive (you spend less time in the weeds and more time working on your
application logic) and is simpler to work with safely.

Solution
The org.springframework.jdbc.core.JdbcTemplate class declares a number of overloaded update()
template methods to control the overall update process. Different versions of the update() method allow
you to override different task subsets of the default process. The Spring JDBC framework predefines several
callback interfaces to encapsulate different task subsets. You can implement one of these callback interfaces
and pass its instance to the corresponding update() method to complete the process.

How It Works
You will explore the different ways to update a database using the various options with the JdbcTemplate.
You will look at PreparedStatementCreators, PreparedStatementSetters and finally the update methods
on the JdbcTemplate itself.

Update a Database with a Statement Creator
The first callback interface to introduce is PreparedStatementCreator. You implement this interface to override
the statement creation task (task 2) and the parameter binding task (task 3) of the overall update process. To insert
a vehicle into the database, you implement the PreparedStatementCreator interface as follows:

package com.apress.springrecipes.vehicle;

import java.sql.Connection;
import java.sql.PreparedStatement;
import java.sql.SQLException;

import org.springframework.jdbc.core.PreparedStatementCreator;

public class JdbcVehicleDao implements VehicleDao {

 private class InsertVehicleStatementCreator implements PreparedStatementCreator {

 private final Vehicle vehicle;

 InsertVehicleStatementCreator(Vehicle vehicle) {
 this.vehicle = vehicle;
 }

 public PreparedStatement createPreparedStatement(Connection con) throws SQLException {
 PreparedStatement ps = con.prepareStatement(INSERT_SQL);
 prepareStatement(ps, this.vehicle);
 return ps;
 }
 }
}

Chapter 9 ■ Data aCCess

370

When implementing the PreparedStatementCreator interface, you will get the database connection
as the createPreparedStatement() method’s argument. All you have to do in this method is to create a
PreparedStatement object on this connection and bind your parameters to this object. Finally, you have
to return the PreparedStatement object as the method’s return value. Notice that the method signature
declares throwing SQLException, which means you don’t need to handle this kind of exception yourself.
As you are creating this class as an inner class for the DAO, you can call the prepareStatement helper
method from your implementation.

Now, you can use this statement creator to simplify the vehicle insert operation. First, you have to create
an instance of the JdbcTemplate class and pass in the data source for this template to obtain a connection
from it. Then, you just make a call to the update() method and pass in your statement creator for the
template to complete the update process.

package com.apress.springrecipes.vehicle;
...
import org.springframework.jdbc.core.JdbcTemplate;

public class JdbcVehicleDao implements VehicleDao {
 ...
 public void insert(Vehicle vehicle) {
 JdbcTemplate jdbcTemplate = new JdbcTemplate(dataSource);
 jdbcTemplate.update(new InsertVehicleStatementCreator(vehicle));
 }
}

Typically, it is better to implement the PreparedStatementCreator interface and other callback
interfaces as inner classes if they are used within one method only. This is because you can get access to the
local variables and method arguments directly from the inner class, instead of passing them as constructor
arguments. When using local variables, they have to be marked as final.

package com.apress.springrecipes.vehicle;
...
import org.springframework.jdbc.core.JdbcTemplate;
import org.springframework.jdbc.core.PreparedStatementCreator;

public class JdbcVehicleDao implements VehicleDao {
 ...
 public void insert(Vehicle vehicle) {
 JdbcTemplate jdbcTemplate = new JdbcTemplate(dataSource);

 jdbcTemplate.update(new PreparedStatementCreator() {

 public PreparedStatement createPreparedStatement(Connection conn)
 throws SQLException {
 PreparedStatement ps = conn.prepareStatement(INSERT_SQL);
 prepareStatement(ps, vehicle);
 return ps;
 }
 });
 }
}

Chapter 9 ■ Data aCCess

371

With Java 8 this could also be implemented as a lambda expression.

@Override
public void insert(final Vehicle vehicle) {
 JdbcTemplate jdbcTemplate = new JdbcTemplate(this.dataSource);
 jdbcTemplate.update(con -> {
 PreparedStatement ps = con.prepareStatement(INSERT_SQL);
 prepareStatement(ps, vehicle);
 return ps;
 });
}

Now you can delete the preceding InsertVehicleStatementCreator inner class because it will not be
used anymore.

Update a Database with a Statement Setter
The second callback interface, PreparedStatementSetter, as its name indicates, performs only the
parameter binding task (task 3) of the overall update process.

Another version of the update() template method accepts a SQL statement and a
PreparedStatementSetter object as arguments. This method will create a PreparedStatement object
for you from your SQL statement. All you have to do with this interface is to bind your parameters to the
PreparedStatement object (and for this you can delegate to the prepareStatement method again).

package com.apress.springrecipes.vehicle;
...
import org.springframework.jdbc.core.JdbcTemplate;
import org.springframework.jdbc.core.PreparedStatementSetter;

public class JdbcVehicleDao implements VehicleDao {
 ...
 public void insert(final Vehicle vehicle) {
 JdbcTemplate jdbcTemplate = new JdbcTemplate(dataSource);

 jdbcTemplate.update(INSERT_SQL, new PreparedStatementSetter() {

 public void setValues(PreparedStatement ps)
 throws SQLException {
 prepareStatement(ps, vehicle);
 }
 });
 }
}

It’s even more compact as a Java 8 lambda, shown here:

@Override
public void insert(Vehicle vehicle) {
 JdbcTemplate jdbcTemplate = new JdbcTemplate(this.dataSource);
 jdbcTemplate.update(INSERT_SQL, ps -> prepareStatement(ps, vehicle));
}

Chapter 9 ■ Data aCCess

372

Update a Database with a SQL Statement and Parameter Values
Finally, the simplest version of the update() method accepts a SQL statement and an object array as
statement parameters. It will create a PreparedStatement object from your SQL statement and bind the
parameters for you. Therefore, you don’t have to override any of the tasks in the update process.

package com.apress.springrecipes.vehicle;
...
import org.springframework.jdbc.core.JdbcTemplate;

public class JdbcVehicleDao implements VehicleDao {
 ...
 public void insert(final Vehicle vehicle) {
 JdbcTemplate jdbcTemplate = new JdbcTemplate(dataSource);

 jdbcTemplate.update(INSERT_SQL, vehicle.getColor(),vehicle.getWheel(),
vehicle.getSeat(),vehicle.getVehicleNo());

 }
}

Of the three different versions of the update() method introduced, the last is the simplest because you
don’t have to implement any callback interfaces. Additionally, we’ve managed to remove all setX (setInt,
setString, and so on)–style methods for parameterizing the query. In contrast, the first is the most flexible
because you can do any preprocessing of the PreparedStatement object before its execution. In practice, you
should always choose the simplest version that meets all your needs.

There are also other overloaded update() methods provided by the JdbcTemplate class. Please refer to
the Javadoc for details.

Batch Update a Database
Suppose you want to insert a batch of vehicles into the database. If you call the update() method multiple
times, the update will be very slow as the SQL statement will be compiled repeatedly. So, it would be better
to implement it using batch updates to insert a batch of vehicles.

The JdbcTemplate class also offers a few batchUpdate() template methods for batch update
operations. The one you are going to set takes a SQL statement, a collection of items, a batch size, and a
ParameterizedPreparedStatementSetter.

package com.apress.springrecipes.vehicle;
...
import org.springframework.jdbc.core.BatchPreparedStatementSetter;
import org.springframework.jdbc.core.JdbcTemplate;

public class JdbcVehicleDao implements VehicleDao {
 ...
 @Override
 public void insert(Collection<Vehicle> vehicles) {
 JdbcTemplate jdbcTemplate = new JdbcTemplate(this.dataSource);
 jdbcTemplate.batchUpdate(INSERT_SQL, vehicles, vehicles.size(), new Parameterized

PreparedStatementSetter<Vehicle>() {

Chapter 9 ■ Data aCCess

373

 @Override
 public void setValues(PreparedStatement ps, Vehicle argument) throws

SQLException {
 prepareStatement(ps, argument);
 }
 });
 }

}

Here it is as a Java 8 lambda:

@Override
public void insert(Collection<Vehicle> vehicles) {
 JdbcTemplate jdbcTemplate = new JdbcTemplate(this.dataSource);
 jdbcTemplate.batchUpdate(INSERT_SQL, vehicles, vehicles.size(), this::prepareStatement);
}

You can test your batch insert operation with the following code snippet in the Main class:

package com.apress.springrecipes.vehicle;
...
public class Main {

 public static void main(String[] args) {
 ...
 VehicleDao vehicleDao = (VehicleDao) context.getBean("vehicleDao");
 Vehicle vehicle1 = new Vehicle("TEM0022", "Blue", 4, 4);
 Vehicle vehicle2 = new Vehicle("TEM0023", "Black", 4, 6);
 Vehicle vehicle3 = new Vehicle("TEM0024", "Green", 4, 5);
 vehicleDao.insertBatch(Arrays.asList(vehicle1, vehicle2, vehicle3));
 }
}

9-2. Use a JDBC Template to Query a Database
Problem
To implement a JDBC query operation, you have to perform the following tasks, two of which (tasks 5 and 6)
are extra compared to an update operation:

 1. Obtain a database connection from the data source.

 2. Create a PreparedStatement object from the connection.

 3. Bind the parameters to the PreparedStatement object.

 4. Execute the PreparedStatement object.

 5. Iterate the returned result set.

 6. Extract data from the result set.

Chapter 9 ■ Data aCCess

374

 7. Handle SQLException.

 8. Clean up the statement object and connection.

The only steps relevant to your business logic, however, are the definition of the query and the
extraction of the results from the result set! The rest is better handled by the JDBC template.

Solution
The JdbcTemplate class declares a number of overloaded query() template methods to control the overall
query process. You can override the statement creation (task 2) and the parameter binding (task 3) by
implementing the PreparedStatementCreator and PreparedStatementSetter interfaces, just as you did for
the update operations. Moreover, the Spring JDBC framework supports multiple ways for you to override the
data extraction (task 6).

How It Works
Spring provided the RowCallbackHandler as well as the RowMapper interface to handle results in one of the
query methods. You will first explore both interfaces and discover the different use-cases for both. Next you
will explore how to use different query methods for retrieval of multiple and also single results.

Extract Data with Row Callback Handler
RowCallbackHandler is the primary interface that allows you to process the current row of the result set.
One of the query() methods iterates the result set for you and calls your RowCallbackHandler for each row.
So, the processRow() method will be called once for each row of the returned result set.

package com.apress.springrecipes.vehicle;
...
import org.springframework.jdbc.core.JdbcTemplate;
import org.springframework.jdbc.core.RowCallbackHandler;

public class JdbcVehicleDao implements VehicleDao {
 ...
 @Override
 public Vehicle findByVehicleNo(String vehicleNo) {
 JdbcTemplate jdbcTemplate = new JdbcTemplate(dataSource);

 final Vehicle vehicle = new Vehicle();
 jdbcTemplate.query(SELECT_ONE_SQL,
 new RowCallbackHandler() {
 public void processRow(ResultSet rs) throws SQLException {
 vehicle.setVehicleNo(rs.getString("VEHICLE_NO"));
 vehicle.setColor(rs.getString("COLOR"));
 vehicle.setWheel(rs.getInt("WHEEL"));
 vehicle.setSeat(rs.getInt("SEAT"));
 }
 }, vehicleNo);
 return vehicle;
 }
}

Chapter 9 ■ Data aCCess

375

It’s a bit more compact when using a Java 8 lambda.

@Override
public Vehicle findByVehicleNo(String vehicleNo) {
 JdbcTemplate jdbcTemplate = new JdbcTemplate(dataSource);

 final Vehicle vehicle = new Vehicle();
 jdbcTemplate.query(SELECT_ONE_SQL,
 rs -> {
 vehicle.setVehicleNo(rs.getString("VEHICLE_NO"));
 vehicle.setColor(rs.getString("COLOR"));
 vehicle.setWheel(rs.getInt("WHEEL"));
 vehicle.setSeat(rs.getInt("SEAT"));
 }, vehicleNo);
 return vehicle;
}

As there will be one row returned for the SQL query at maximum, you can create a vehicle object as a
local variable and set its properties by extracting data from the result set. For a result set with more than one
row, you should collect the objects as a list.

Extract Data with a Row Mapper
The RowMapper<T> interface is more general than RowCallbackHandler. Its purpose is to map a single row of
the result set to a customized object so it can be applied to a single-row result set as well as a multiple-row
result set.

From the viewpoint of reuse, it’s better to implement the RowMapper<T> interface as a normal class than
as an inner class. In the mapRow() method of this interface, you have to construct the object that represents a
row and return it as the method’s return value.

package com.apress.springrecipes.vehicle;

import java.sql.ResultSet;
import java.sql.SQLException;

import org.springframework.jdbc.core.RowMapper;

public class JdbcVehicleDao implements VehicleDao {

 private class VehicleRowMapper implements RowMapper<Vehicle> {
 @Override
 public Vehicle mapRow(ResultSet rs, int rowNum) throws SQLException {
 return toVehicle(rs);
 }
 }
}

As mentioned, RowMapper<T> can be used for either a single-row or multiple-row result set. When
querying for a unique object like in findByVehicleNo(), you have to make a call to the queryForObject()
method of JdbcTemplate.

Chapter 9 ■ Data aCCess

376

package com.apress.springrecipes.vehicle;
...
import org.springframework.jdbc.core.JdbcTemplate;

public class JdbcVehicleDao implements VehicleDao {
 ...
 public Vehicle findByVehicleNo(String vehicleNo) {

 JdbcTemplate jdbcTemplate = new JdbcTemplate(dataSource);
 return jdbcTemplate.queryForObject(SELECT_ONE_SQL, new VehicleRowMapper(),

vehicleNo);
 }
}

Spring comes with a convenient RowMapper<T> implementation, BeanPropertyRowMapper<T>, which
can automatically map a row to a new instance of the specified class. Note that the specified class must be
a top-level class and must have a default or no-argument constructor. It first instantiates this class and then
maps each column value to a property by matching their names. It supports matching a property name
(e.g., vehicleNo) to the same column name or the column name with underscores (e.g., VEHICLE_NO).

package com.apress.springrecipes.vehicle;
...
import org.springframework.jdbc.core.BeanPropertyRowMapper;
import org.springframework.jdbc.core.JdbcTemplate;

public class JdbcVehicleDao implements VehicleDao {

 ...

 public Vehicle findByVehicleNo(String vehicleNo) {

 JdbcTemplate jdbcTemplate = new JdbcTemplate(dataSource);
 return jdbcTemplate.queryForObject(SELECT_ONE_SQL, BeanPropertyRowMapper.

newInstance(Vehicle.class), vehicleNo);
 }
}

Query for Multiple Rows
Now, let’s look at how to query for a result set with multiple rows. For example, suppose that you need a
findAll() method in the DAO interface to get all vehicles.

package com.apress.springrecipes.vehicle;
...
public interface VehicleDao {
 ...
 public List<Vehicle> findAll();
}

Chapter 9 ■ Data aCCess

377

Without the help of RowMapper<T>, you can still call the queryForList() method and pass in a SQL
statement. The returned result will be a list of maps. Each map stores a row of the result set with the column
names as the keys.

package com.apress.springrecipes.vehicle;
...
import org.springframework.jdbc.core.JdbcTemplate;

public class JdbcVehicleDao implements VehicleDao {
 ...
 @Override
 public List<Vehicle> findAll() {
 JdbcTemplate jdbcTemplate = new JdbcTemplate(dataSource);

 List<Map<String, Object>> rows = jdbcTemplate.queryForList(SELECT_ALL_SQL);
 return rows.stream().map(row -> {
 Vehicle vehicle = new Vehicle();
 vehicle.setVehicleNo((String) row.get("VEHICLE_NO"));
 vehicle.setColor((String) row.get("COLOR"));
 vehicle.setWheel((Integer) row.get("WHEEL"));
 vehicle.setSeat((Integer) row.get("SEAT"));
 return vehicle;
 }).collect(Collectors.toList());
 }
}

You can test your findAll() method with the following code snippet in the Main class:

package com.apress.springrecipes.vehicle;
...
public class Main {

 public static void main(String[] args) {
 ...
 VehicleDao vehicleDao = (VehicleDao) context.getBean("vehicleDao");
 List<Vehicle> vehicles = vehicleDao.findAll();
 vehicles.forEach(System.out::println);
 }
}

If you use a RowMapper<T> object to map the rows in a result set, you will get a list of mapped objects
from the query() method.

package com.apress.springrecipes.vehicle;
...
import org.springframework.jdbc.core.BeanPropertyRowMapper;
import org.springframework.jdbc.core.JdbcTemplate;

Chapter 9 ■ Data aCCess

378

public class JdbcVehicleDao implements VehicleDao {
 ...
 public List<Vehicle> findAll() {
 JdbcTemplate jdbcTemplate = new JdbcTemplate(dataSource);
 return jdbcTemplate.query (SELECT_ALL_SQL,

BeanPropertyRowMapper.newInstance(Vehicle.class));
 }
}

Query for a Single Value
Finally, let’s consider a query for a single-row and single-column result set. As an example, add the following
operations to the DAO interface:

package com.apress.springrecipes.vehicle;
...
public interface VehicleDao {
 ...
 public String getColor(String vehicleNo);
 public int countAll();
}

To query for a single string value, you can call the overloaded queryForObject() method, which
requires an argument of java.lang.Class type. This method will help you to map the result value to the
type you specified.

package com.apress.springrecipes.vehicle;
...
import org.springframework.jdbc.core.JdbcTemplate;

public class JdbcVehicleDao implements VehicleDao {

 private static final String COUNT_ALL_SQL = "SELECT COUNT(*) FROM VEHICLE";
 private static final String SELECT_COLOR_SQL = "SELECT COLOR FROM VEHICLE WHERE

VEHICLE_NO=?";

 ...
 public String getColor(String vehicleNo) {

 JdbcTemplate jdbcTemplate = new JdbcTemplate(dataSource);
 return jdbcTemplate.queryForObject(SELECT_COLOR_SQL, String.class, vehicleNo);
 }

 public int countAll() {

 JdbcTemplate jdbcTemplate = new JdbcTemplate(dataSource);
 return jdbcTemplate.queryForObject(COUNT_ALL_SQL, Integer.class);
 }
}

Chapter 9 ■ Data aCCess

379

You can test these two methods with the following code snippet in the Main class:

package com.apress.springrecipes.vehicle;
...
public class Main {

 public static void main(String[] args) {
 ...
 VehicleDao vehicleDao = context.getBean(VehicleDao.class);
 int count = vehicleDao.countAll();
 System.out.println("Vehicle Count: " + count);
 String color = vehicleDao.getColor("TEM0001");
 System.out.println("Color for [TEM0001]: " + color);
 }
}

9-3. Simplify JDBC Template Creation
Problem
It’s not efficient to create a new instance of JdbcTemplate every time you need it because you have to repeat
the creation statement and incur the cost of creating a new object.

Solution
The JdbcTemplate class is designed to be thread-safe, so you can declare a single instance of it in the IoC
container and inject this instance into all your DAO instances. Furthermore, the Spring JDBC framework
offers a convenient class, org.springframework.jdbc.core.support.JdbcDaoSupport, to simplify your
DAO implementation. This class declares a jdbcTemplate property, which can be injected from the IoC
container or created automatically from a data source, for example, JdbcTemplate jdbcTemplate = new
JdbcTemplate(dataSource). Your DAO can extend this class to have this property inherited.

How It Works
Instead of creating a new JdbcTemplate when you need you could either create a single instance as a bean
and reuse that instance by injecting it into the DAO’s that need one. Another option is to extend the Spring
JdbcDaoSupport class which provides accessor methods for a JdbcTemplate.

Inject a JDBC Template
Until now, you have created a new instance of JdbcTemplate in each DAO method. Actually, you can have
it injected at the class level and use this injected instance in all DAO methods. For simplicity’s sake, the
following code shows only the change to the insert() method:

package com.apress.springrecipes.vehicle;
...
import org.springframework.jdbc.core.JdbcTemplate;

Chapter 9 ■ Data aCCess

380

public class JdbcVehicleDao implements VehicleDao {

 private final JdbcTemplate jdbcTemplate;

 public JdbcVehicleDao (JdbcTemplate jdbcTemplate) {
 this.jdbcTemplate = jdbcTemplate;
 }

 public void insert(final Vehicle vehicle) {
 jdbcTemplate.update(INSERT_SQL, vehicle.getVehicleNo(), vehicle.getColor(),

vehicle.getWheel(), vehicle.getSeat());
 }
 ...
}

A JDBC template requires a data source to be set. You can inject this property using either a setter
method or a constructor argument. Then, you can inject this JDBC template into your DAO.

@Configuration
public class VehicleConfiguration {

 @Bean
 public VehicleDao vehicleDao(JdbcTemplate jdbcTemplate) {
 return new JdbcVehicleDao(jdbcTemplate);
 }

 @Bean
 public JdbcTemplate jdbcTemplate(DataSource dataSource) {
 return new JdbcTemplate(dataSource);
 }
}

Extend the JdbcDaoSupport Class
The org.springframework.jdbc.core.support.JdbcDaoSupport class has a setDataSource() method and
a setJdbcTemplate() method. Your DAO class can extend this class to have these methods inherited. Then,
you can either inject a JDBC template directly or inject a data source for it to create a JDBC template. The
following code fragment is taken from Spring’s JdbcDaoSupport class:

package org.springframework.jdbc.core.support;
...
public abstract class JdbcDaoSupport extends DaoSupport {

 private JdbcTemplate jdbcTemplate;

 public final void setDataSource(DataSource dataSource) {
 if(this.jdbcTemplate == null || dataSource != this.jdbcTemplate.getDataSource()){
 this.jdbcTemplate = createJdbcTemplate(dataSource);
 initTemplateConfig();
 }
 }
 ...

Chapter 9 ■ Data aCCess

381

 public final void setJdbcTemplate(JdbcTemplate jdbcTemplate) {
 this.jdbcTemplate = jdbcTemplate;
 initTemplateConfig();
 }

 public final JdbcTemplate getJdbcTemplate() {
 return this.jdbcTemplate;
 }
 ...
}

In your DAO methods, you can simply call the getJdbcTemplate() method to retrieve the JDBC
template. You also have to delete the dataSource and jdbcTemplate properties, as well as their setter
methods, from your DAO class, because they have already been inherited. Again, for simplicity’s sake, only
the change to the insert() method is shown here:

package com.apress.springrecipes.vehicle;
...
import org.springframework.jdbc.core.support.JdbcDaoSupport;

public class JdbcVehicleDao extends JdbcDaoSupport implements VehicleDao {

 public void insert(final Vehicle vehicle) {

 getJdbcTemplate().update(INSERT_SQL, vehicle.getVehicleNo(),
 vehicle.getColor(), vehicle.getWheel(), vehicle.getSeat());
 }
 ...
}

By extending JdbcDaoSupport, your DAO class inherits the setDataSource() method. You can inject a
data source into your DAO instance for it to create a JDBC template.

@Configuration
public class VehicleConfiguration {
...
 @Bean
 public VehicleDao vehicleDao(DataSource dataSource) {
 JdbcVehicleDao vehicleDao = new JdbcVehicleDao();
 vehicleDao.setDataSource(dataSource);
 return vehicleDao;
 }
}

Chapter 9 ■ Data aCCess

382

9-4. Use Named Parameters in a JDBC Template
Problem
In classic JDBC usage, SQL parameters are represented by the placeholder ? and are bound by position.
The trouble with positional parameters is that whenever the parameter order is changed, you have to
change the parameter bindings as well. For a SQL statement with many parameters, it is very cumbersome
to match the parameters by position.

Solution
Another option when binding SQL parameters in the Spring JDBC framework is to use named parameters.
As the term implies, named SQL parameters are specified by name (starting with a colon) rather than
by position. Named parameters are easier to maintain and also improve readability. At runtime, the
framework classes replace named parameters with placeholders. Named parameters are supported by the
NamedParameterJdbcTemplate.

How It Works
When using named parameters in your SQL statement, you can provide the parameter values in a map with
the parameter names as the keys.

package com.apress.springrecipes.vehicle;
...
import org.springframework.jdbc.core.namedparam.NamedParameterJdbcDaoSupport;

public class JdbcVehicleDao extends NamedParameterJdbcDaoSupport implements
 VehicleDao {

 private static final String INSERT_SQL = "INSERT INTO VEHICLE (COLOR, WHEEL, SEAT,
VEHICLE_NO) VALUES (:color, :wheel, :seat, :vehicleNo)";

 public void insert(Vehicle vehicle) {

 getNamedParameterJdbcTemplate().update(INSERT_SQL, toParameterMap(vehicle));
 }

 private Map<String, Object> toParameterMap(Vehicle vehicle) {
 Map<String, Object> parameters = new HashMap<>();
 parameters.put("vehicleNo", vehicle.getVehicleNo());
 parameters.put("color", vehicle.getColor());
 parameters.put("wheel", vehicle.getWheel());
 parameters.put("seat", vehicle.getSeat());
 return parameters;
 }

 ...
}

Chapter 9 ■ Data aCCess

383

You can also provide a SQL parameter source, whose responsibility is to offer SQL parameter values for
named SQL parameters. There are three implementations of the SqlParameterSource interface. The basic
one is MapSqlParameterSource, which wraps a map as its parameter source. In this example, this is a net loss
compared to the previous example, as you’ve introduced one extra object—the SqlParameterSource.

package com.apress.springrecipes.vehicle;
...
import org.springframework.jdbc.core.namedparam.MapSqlParameterSource;
import org.springframework.jdbc.core.namedparam.SqlParameterSource;
import org.springframework.jdbc.core.namedparam.NamedParameterJdbcDaoSupport;

public class JdbcVehicleDao extends NamedParameterJdbcDaoSupport implements
 VehicleDao {

 public void insert(Vehicle vehicle) {

 SqlParameterSource parameterSource =
 new MapSqlParameterSource(toParameterMap(vehicle));

 getNamedParameterJdbcTemplate().update(INSERT_SQL, parameterSource);
 }
 ...
}

The power comes when you need an extra level of indirection between the parameters passed into
the update method and the source of their values. For example, what if you want to get properties from a
JavaBean? Here is where the SqlParameterSource intermediary starts to benefit you! SqlParameterSource is
a BeanPropertySqlParameterSource, which wraps a normal Java object as a SQL parameter source. For each
of the named parameters, the property with the same name will be used as the parameter value.

package com.apress.springrecipes.vehicle;

import org.springframework.jdbc.core.namedparam.BeanPropertySqlParameterSource;
import org.springframework.jdbc.core.namedparam.SqlParameterSource;
import org.springframework.jdbc.core.namedparam.NamedParameterJdbcDaoSupport;

public class JdbcVehicleDao extends NamedParameterJdbcDaoSupport implements
 VehicleDao {

 public void insert(Vehicle vehicle) {

 SqlParameterSource parameterSource =
 new BeanPropertySqlParameterSource(vehicle);

 getNamedParameterJdbcTemplate ().update(INSERT_SQL, parameterSource);
 }
}

Chapter 9 ■ Data aCCess

384

Named parameters can also be used in batch update. You can provide either a Map, an array, or a
SqlParameterSource array for the parameter values.

package com.apress.springrecipes.vehicle;
...
import org.springframework.jdbc.core.namedparam.BeanPropertySqlParameterSource;
import org.springframework.jdbc.core.namedparam.SqlParameterSource;
import org.springframework.jdbc.core.namedparam.NamedParameterJdbcDaoSupport;

public class JdbcVehicleDao extends NamedParameterJdbcDaoSupport implements VehicleDao {
 ...
 @Override
 public void insert(Collection<Vehicle> vehicles) {

 SqlParameterSource[] sources = vehicles.stream()
 .map(v -> new BeanPropertySqlParameterSource(v))
 .toArray(size -> new SqlParameterSource[size]);
 getNamedParameterJdbcTemplate().batchUpdate(INSERT_SQL, sources);
 }
}

9-5. Handle Exceptions in the Spring JDBC Framework
Problem
Many of the JDBC APIs declare throwing java.sql.SQLException, a checked exception that must be
caught. It’s very troublesome to handle this kind of exception every time you perform a database operation.
You often have to define your own policy to handle this kind of exception. Failure to do so may lead to
inconsistent exception handling.

Solution
The Spring Framework offers a consistent data access exception-handling mechanism for its data access
module, including the JDBC framework. In general, all exceptions thrown by the Spring JDBC framework are
subclasses of org.springframework.dao.DataAccessException, a type of RuntimeException that you are
not forced to catch. It’s the root exception class for all exceptions in Spring’s data access module.

Figure 9-1 shows only part of the DataAccessException hierarchy in Spring’s data access module. In
total, there are more than 30 exception classes defined for different categories of data access exceptions.

Chapter 9 ■ Data aCCess

385

How It Works
First you will take a look at how the exception handling works in Spring JDBC and following that you will
learn how to utilize it to your benefit by creating custom exceptions and mappings.

Understand Exception Handling in the Spring JDBC Framework
Until now, you haven’t handled JDBC exceptions explicitly when using a JDBC template or when using JDBC
operation objects. To help you understand the Spring JDBC framework’s exception-handling mechanism,
let’s consider the following code fragment in the Main class, which inserts a vehicle. What happens if you
insert a vehicle with a duplicate vehicle number?

package com.apress.springrecipes.vehicle;
...
public class Main {

 public static void main(String[] args) {
 ...
 VehicleDao vehicleDao = context.getBean(VehicleDao.class);
 Vehicle vehicle = new Vehicle("EX0001", "Green", 4, 4);
 vehicleDao.insert(vehicle);
 }
}

Figure 9-1. Common exception classes in the DataAccessException hierarchy

Chapter 9 ■ Data aCCess

386

If you run the method twice or the vehicle has already been inserted into the database, it will
throw a DuplicateKeyException, an indirect subclass of DataAccessException. In your DAO methods,
you neither need to surround the code with a try/catch block nor declare throwing an exception in
the method signature. This is because DataAccessException (and therefore its subclasses, including
DuplicateKeyException) is an unchecked exception that you are not forced to catch. The direct parent class
of DataAccessException is NestedRuntimeException, a core Spring exception class that wraps another
exception in a RuntimeException.

When you use the classes of the Spring JDBC framework, they will catch SQLException for you and wrap
it with one of the subclasses of DataAccessException. As this exception is a RuntimeException, you are not
required to catch it.

But how does the Spring JDBC framework know which concrete exception in the DataAccessException
hierarchy should be thrown? It’s by looking at the errorCode and SQLState properties of the caught
SQLException. As a DataAccessException wraps the underlying SQLException as the root cause, you can
inspect the errorCode and SQLState properties with the following catch block:

package com.apress.springrecipes.vehicle;
...
import java.sql.SQLException;

import org.springframework.dao.DataAccessException;

public class Main {

 public static void main(String[] args) {
 ...
 VehicleDao vehicleDao = context.getBean(VehicleDao.class);
 Vehicle vehicle = new Vehicle("EX0001", "Green", 4, 4);
 try {
 vehicleDao.insert(vehicle);
 } catch (DataAccessException e) {
 SQLException sqle = (SQLException) e.getCause();
 System.out.println("Error code: " + sqle.getErrorCode());
 System.out.println("SQL state: " + sqle.getSQLState());
 }
 }
}

When you insert the duplicate vehicle again, notice that PostgreSQL returns the following error code
and SQL state:

Error code : 0
SQL state : 23505

If you refer to the PostgreSQL reference manual, you will find the error code description shown in
Table 9-2.

Table 9-2. PostgreSQL Error Code Description

SQL State Message Text

23505 unique_violation

Chapter 9 ■ Data aCCess

387

How does the Spring JDBC framework know that state 23505 should be mapped to
DuplicateKeyException? The error code and SQL state are database specific, which means different
database products may return different codes for the same kind of error. Moreover, some database products
will specify the error in the errorCode property, while others (like PostgreSQL) will do so in the SQLState
property.

As an open Java application framework, Spring understands the error codes of most popular database
products. Because of the large number of error codes, however, it can only maintain mappings for the most
frequently encountered errors. The mapping is defined in the sql-error-codes.xml file, located in the org.
springframework.jdbc.support package. The following snippet for PostgreSQL is taken from this file:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN 3.0//EN"
 "http://www.springframework.org/dtd/spring-beans-3.0.dtd">

<beans>
 ...

 <bean id="PostgreSQL" class="org.springframework.jdbc.support.SQLErrorCodes">
 <property name="useSqlStateForTranslation">
 <value>true</value>
 </property>
 <property name="badSqlGrammarCodes">
 <value>03000,42000,42601,42602,42622,42804,42P01</value>
 </property>
 <property name="duplicateKeyCodes">
 <value>23505</value>
 </property>
 <property name="dataIntegrityViolationCodes">
 <value>23000,23502,23503,23514</value>
 </property>
 <property name="dataAccessResourceFailureCodes">
 <value>53000,53100,53200,53300</value>
 </property>
 <property name="cannotAcquireLockCodes">
 <value>55P03</value>
 </property>
 <property name="cannotSerializeTransactionCodes">
 <value>40001</value>
 </property>
 <property name="deadlockLoserCodes">
 <value>40P01</value>
 </property>
 </bean>
 ...
</beans>

The useSqlStateForTranslation property means that the SQLState property, rather than the
errorCode property, should be used to match the error code. Finally, the SQLErrorCodes class defines several
categories for you to map database error codes. The code 23505 lies in the dataIntegrityViolationCodes
cdataIntegrityViolationCodes category.

Chapter 9 ■ Data aCCess

388

Customize Data Access Exception Handling
The Spring JDBC framework only maps well-known error codes. Sometimes you may want to customize
the mapping yourself. For example, you might decide to add more codes to an existing category or define a
custom exception for particular error codes.

In Table 9-2, the error code 23505 indicates a duplicate key error in PostgreSQL. It is mapped by
default to DataIntegrityViolationException. Suppose that you want to create a custom exception type,
MyDuplicateKeyException, for this kind of error. It should extend DataIntegrityViolationException
because it is also a kind of data integrity violation error. Remember that for an exception to be thrown by the
Spring JDBC framework, it must be compatible with the root exception class DataAccessException.

package com.apress.springrecipes.vehicle;

import org.springframework.dao.DataIntegrityViolationException;

public class MyDuplicateKeyException extends DataIntegrityViolationException {

 public MyDuplicateKeyException(String msg) {
 super(msg);
 }

 public MyDuplicateKeyException(String msg, Throwable cause) {
 super(msg, cause);
 }
}

By default, Spring will look up an exception from the sql-error-codes.xml file located in the org.
springframework.jdbc.support package. However, you can override some of the mappings by providing
a file with the same name in the root of the classpath. If Spring can find your custom file, it will look up an
exception from your mapping first. However, if it does not find a suitable exception there, Spring will look up
the default mapping.

For example, suppose you want to map your custom DuplicateKeyException type to error code 23505.
You have to add the binding via a CustomSQLErrorCodesTranslation bean and then add this bean to the
customTranslations category.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN 2.0//EN"
 "http://www.springframework.org/dtd/spring-beans-2.0.dtd">

<beans>
 <bean id="PostgreSQL"
 class="org.springframework.jdbc.support.SQLErrorCodes">
 <property name="useSqlStateForTranslation">
 <value>true</value>
 </property>
 <property name="customTranslations">
 <list>
 <ref bean="myDuplicateKeyTranslation" />
 </list>
 </property>
 </bean>

Chapter 9 ■ Data aCCess

389

 <bean id="myDuplicateKeyTranslation"
 class="org.springframework.jdbc.support.CustomSQLErrorCodesTranslation">
 <property name="errorCodes">
 <value>23505</value>
 </property>
 <property name="exceptionClass">
 <value>
 com.apress.springrecipes.vehicle.MyDuplicateKeyException
 </value>
 </property>
 </bean>
</beans>

Now, if you remove the try/catch block surrounding the vehicle insert operation and insert a duplicate
vehicle, the Spring JDBC framework will throw a MyDuplicateKeyException instead.

However, if you are not satisfied with the basic code-to-exception mapping strategy used by the
SQLErrorCodes class, you may further implement the SQLExceptionTranslator interface and inject its
instance into a JDBC template via the setExceptionTranslator() method.

9-6. Avoid Problems by Using ORM Frameworks Directly
Problem
You’ve decided to go to the next level—you have a sufficiently complex domain model, and manually
writing all the code for each entity is getting tedious, so you begin to investigate a few alternatives, such as
Hibernate. You’re stunned to find that while they’re powerful, they can be anything but simple!

Solution
Let Spring lend a hand; it has facilities for dealing with ORM layers that rival those available for plain ol’
JDBC access.

How It Works
Suppose you are developing a course management system for a training center. The first class you create for
this system is Course. This class is called an entity class or a persistent class because it represents a real-world
entity and its instances will be persisted to a database. Remember that for each entity class to be persisted by
an ORM framework, a default constructor with no argument is required.

package com.apress.springrecipes.course;
...
public class Course {

 private Long id;
 private String title;
 private Date beginDate;
 private Date endDate;
 private int fee;

 // Constructors, Getters and Setters
 ...
}

Chapter 9 ■ Data aCCess

390

For each entity class, you must define an identifier property to uniquely identify an entity. It’s a best
practice to define an autogenerated identifier because this has no business meaning and thus won’t
be changed under any circumstances. Moreover, this identifier will be used by the ORM framework to
determine an entity’s state. If the identifier value is null, this entity will be treated as a new and unsaved
entity. When this entity is persisted, an insert SQL statement will be issued; otherwise, an update statement
will be issued. To allow the identifier to be null, you should choose a primitive wrapper type like java.lang.
Integer and java.lang.Long for the identifier.

In your course management system, you need a DAO interface to encapsulate the data access logic.
Let’s define the following operations in the CourseDao interface:

package com.apress.springrecipes.course;
...
public interface CourseDao {

 Course store(Course course);
 void delete(Long courseId);
 Course findById(Long courseId);
 List<Course> findAll();
}

Usually, when using ORM for persisting objects, the insert and update operations are combined into a
single operation (e.g., store). This is to let the ORM framework (not you) decide whether an object should
be inserted or updated. For an ORM framework to persist your objects to a database, it must know the
mapping metadata for the entity classes. You have to provide mapping metadata to it in its supported format.
Historically, Hibernate used XML to provide the mapping metadata. However, because each ORM framework
may have its own format for defining mapping metadata, JPA defines a set of persistent annotations for you to
define mapping metadata in a standard format that is more likely to be reusable in other ORM frameworks.

Hibernate also supports the use of JPA annotations to define mapping metadata, so there are essentially
three different strategies for mapping and persisting your objects with Hibernate and JPA.

•	 Using the Hibernate API to persist objects with Hibernate XML mappings

•	 Using the Hibernate API to persist objects with JPA annotations

•	 Using JPA to persist objects with JPA annotations

The core programming elements of Hibernate, JPA, and other ORM frameworks resemble those of JDBC.
They are summarized in Table 9-3.

In Hibernate, the core interface for object persistence is Session, whose instances can be obtained
from a SessionFactory instance. In JPA, the corresponding interface is EntityManager, whose instances
can be obtained from an EntityManagerFactory instance. The exceptions thrown by Hibernate are of type
HibernateException, while those thrown by JPA may be of type PersistenceException or other Java SE
exceptions like IllegalArgumentException and IllegalStateException. Note that all these exceptions are
subclasses of RuntimeException, which you are not forced to catch and handle.

Table 9-3. Core Programming Elements for Different Data Access Strategies

Concept JDBC Hibernate JPA

Resource Connection Session EntityManager

Resource factory DataSource SessionFactory EntityManagerFactory

Exception SQLException HibernateException PersistenceException

Chapter 9 ■ Data aCCess

391

Persist Objects Using the Hibernate API with Hibernate XML Mappings
To map entity classes with Hibernate XML mappings, you can provide a single mapping file for each class
or a large file for several classes. Practically, you should define one for each class by joining the class name
with .hbm.xml as the file extension for ease of maintenance. The middle extension hbm stands for “Hibernate
metadata.”

The mapping file for the Course class should be named Course.hbm.xml and put in the same package as
the entity class.

<!DOCTYPE hibernate-mapping
 PUBLIC "-//Hibernate/Hibernate Mapping DTD 3.0//EN"
 "http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">

<hibernate-mapping package="com.apress.springrecipes.course">
 <class name="Course" table="COURSE">
 <id name="id" type="long" column="ID">
 <generator class="identity" />
 </id>
 <property name="title" type="string">
 <column name="TITLE" length="100" not-null="true" />
 </property>
 <property name="beginDate" type="date" column="BEGIN_DATE" />
 <property name="endDate" type="date" column="END_DATE" />
 <property name="fee" type="int" column="FEE" />
 </class>
</hibernate-mapping>

In the mapping file, you can specify a table name for this entity class and a table column for each simple
property. You can also specify the column details such as column length, not-null constraints, and unique
constraints. In addition, each entity must have an identifier defined, which can be generated automatically
or assigned manually. In this example, the identifier will be generated using a table identity column.

Now, let’s implement the DAO interface in the hibernate subpackage using the plain Hibernate API.
Before you call the Hibernate API for object persistence, you have to initialize a Hibernate session factory
(e.g., in the constructor).

package com.apress.springrecipes.course.hibernate;

import com.apress.springrecipes.course.Course;
import com.apress.springrecipes.course.CourseDao;
import org.hibernate.Session;
import org.hibernate.SessionFactory;
import org.hibernate.Transaction;
import org.hibernate.cfg.AvailableSettings;
import org.hibernate.cfg.Configuration;
import org.hibernate.dialect.PostgreSQL95Dialect;

import java.util.List;

Chapter 9 ■ Data aCCess

392

public class HibernateCourseDao implements CourseDao {

 private final SessionFactory sessionFactory;

 public HibernateCourseDao() {

 Configuration configuration = new Configuration()
 .setProperty(AvailableSettings.URL, "jdbc:postgresql://localhost:5432/course")
 .setProperty(AvailableSettings.USER, "postgres")
 .setProperty(AvailableSettings.PASS, "password")
 .setProperty(AvailableSettings.DIALECT, PostgreSQL95Dialect.class.getName())
 .setProperty(AvailableSettings.SHOW_SQL, String.valueOf(true))
 .setProperty(AvailableSettings.HBM2DDL_AUTO, "update")
 .addClass(Course.class);
 sessionFactory = configuration.buildSessionFactory();
 }

 @Override
 public Course store(Course course) {
 Session session = sessionFactory.openSession();
 Transaction tx = session.getTransaction();
 try {
 tx.begin();
 session.saveOrUpdate(course);
 tx.commit();
 return course;
 } catch (RuntimeException e) {
 tx.rollback();
 throw e;
 } finally {
 session.close();
 }

 }

 @Override
 public void delete(Long courseId) {
 Session session = sessionFactory.openSession();
 Transaction tx = session.getTransaction();
 try {
 tx.begin();
 Course course = session.get(Course.class, courseId);
 session.delete(course);
 tx.commit();
 } catch (RuntimeException e) {
 tx.rollback();
 throw e;
 } finally {
 session.close();
 }
 }

Chapter 9 ■ Data aCCess

393

 @Override
 public Course findById(Long courseId) {
 Session session = sessionFactory.openSession();
 try {
 return session.get(Course.class, courseId);
 } finally {
 session.close();
 }
 }

 @Override
 public List<Course> findAll() {
 Session session = sessionFactory.openSession();
 try {
 return session.createQuery("SELECT c FROM Course c", Course.class).list();
 } finally {
 session.close();
 }
 }
}

The first step in using Hibernate is to create a Configuration object and to configure properties
such as the database settings (either JDBC connection properties or a data source’s JNDI name), the
database dialect, the mapping metadata’s locations, and so on. When using XML mapping files to define
mapping metadata, you use the addClass method to tell Hibernate what classes it has to manage; it will
then by convention load the Course.hbm.xml file. Then, you build a Hibernate session factory from this
Configuration object. The purpose of a session factory is to produce sessions for you to persist your objects.

Before you can persist your objects, you have to create tables in a database schema to store the object
data. When using an ORM framework like Hibernate, you usually needn’t design the tables by yourself. If you
set the hibernate.hbm2ddl.auto property to update, Hibernate can help you to update the database schema
and create the tables when necessary.

 ■ Tip Naturally, you shouldn’t enable this in production, but it can be a great speed boost for development.

In the preceding DAO methods, you first open a session from the session factory. For any operation that
involves database update, such as saveOrUpdate() and delete(), you must start a Hibernate transaction on
that session. If the operation completes successfully, you commit the transaction. Otherwise, you roll it back
if any RuntimeException happens. For read-only operations such as get() and HQL queries, there’s no need
to start a transaction. Finally, you must remember to close a session to release the resources held by this
session.

You can create the following Main class to test run all the DAO methods. It also demonstrates an entity’s
typical life cycle.

package com.apress.springrecipes.course;

import com.apress.springrecipes.course.hibernate.HibernateCourseDao;

import java.util.GregorianCalendar;

Chapter 9 ■ Data aCCess

394

public class Main {
 public static void main(String[] args) {

 CourseDao courseDao = new HibernateCourseDao();

 Course course = new Course();
 course.setTitle("Core Spring");
 course.setBeginDate(new GregorianCalendar(2007, 8, 1).getTime());
 course.setEndDate(new GregorianCalendar(2007, 9, 1).getTime());
 course.setFee(1000);

 System.out.println("\nCourse before persisting");
 System.out.println(course);

 courseDao.store(course);

 System.out.println("\nCourse after persisting");
 System.out.println(course);

 Long courseId = course.getId();
 Course courseFromDb = courseDao.findById(courseId);

 System.out.println("\nCourse fresh from database");
 System.out.println(courseFromDb);

 courseDao.delete(courseId);

 System.exit(0);
 }
}

Persist Objects Using the Hibernate API with JPA Annotations
JPA annotations are standardized in the JSR-220 specification, so they’re supported by all JPA-compliant
ORM frameworks, including Hibernate. Moreover, the use of annotations will be more convenient for you to
edit mapping metadata in the same source file.

The following Course class illustrates the use of JPA annotations to define mapping metadata:

package com.apress.springrecipes.course;
...
import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import javax.persistence.Id;
import javax.persistence.Table;

Chapter 9 ■ Data aCCess

395

@Entity
@Table(name = "COURSE")
public class Course {

 @Id
 @GeneratedValue(strategy = GenerationType.IDENTITY)
 @Column(name = "ID")
 private Long id;

 @Column(name = "TITLE", length = 100, nullable = false)
 private String title;

 @Column(name = "BEGIN_DATE")
 private Date beginDate;

 @Column(name = "END_DATE")
 private Date endDate;

 @Column(name = "FEE")
 private int fee;

 // Constructors, Getters and Setters
 ...
}

Each entity class must be annotated with the @Entity annotation. You can assign a table name for an
entity class in this annotation. For each property, you can specify a column name and column details using
the @Column annotation.

Each entity class must have an identifier defined by the @Id annotation. You can choose a strategy for
identifier generation using the @GeneratedValue annotation. Here, the identifier will be generated by a table
identity column.

The DAO is almost the same as the one used in the previous code sample with one minor change in the
configuration.

public HibernateCourseDao() {

 Configuration configuration = new Configuration()
 .setProperty(AvailableSettings.URL, "jdbc:postgresql://localhost:5432/course")
 .setProperty(AvailableSettings.USER, "postgres")
 .setProperty(AvailableSettings.PASS, "password")
 .setProperty(AvailableSettings.DIALECT, PostgreSQL95Dialect.class.getName())
 .setProperty(AvailableSettings.SHOW_SQL, String.valueOf(true))
 .setProperty(AvailableSettings.HBM2DDL_AUTO, "update")
 .addAnnotatedClass(Course.class);
 sessionFactory = configuration.buildSessionFactory();
}

Because you are now using annotations to specify the metadata, you need to use the
addAnnotatedClass method instead of the addClass. This instructs Hibernate to read the mapping metadata
from the class itself instead of trying to locate an hbm.xml file. You can use the same Main class again to run
this sample.

Chapter 9 ■ Data aCCess

396

Persist Objects Using JPA with Hibernate as the Engine
In addition to persistent annotations, JPA defines a set of programming interfaces for object persistence.
However, JPA is not a persistence implementation; you have to pick up a JPA-compliant engine to provide
persistence services. Hibernate can be JPA-compliant through the Hibernate EntityManager module. With
this, Hibernate can work as an underlying JPA engine to persist objects. This lets you both retain the valuable
investment in Hibernate (perhaps it’s faster or handles certain operations more to your satisfaction) and
write code that is JPA-compliant and portable among other JPA engines. This can also be a useful way to
transition a code base to JPA. New code is written strictly against the JPA APIs, and older code is transitioned
to the JPA interfaces.

In a Java EE environment, you can configure the JPA engine in a Java EE container. But in a Java SE
application, you have to set up the engine locally. The configuration of JPA is through the central XML
file persistence.xml, located in the META-INF directory of the classpath root. In this file, you can set any
vendor-specific properties for the underlying engine configuration. When using Spring to configure the
EntityManagerFactory, this isn’t needed, and the configuration can be done through Spring.

Now, let’s create the JPA configuration file persistence.xml in the META-INF directory of the classpath
root. Each JPA configuration file contains one or more <persistence-unit> elements. A persistence unit
defines a set of persistent classes and how they should be persisted. Each persistence unit requires a name
for identification. Here, you assign the name course to this persistence unit.

<persistence xmlns="http://xmlns.jcp.org/xml/ns/persistence"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/persistence
 http://xmlns.jcp.org/xml/ns/persistence/persistence_2_1.xsd"
 version="2.1">

 <persistence-unit name="course" transaction-type="RESOURCE_LOCAL">
 <class>com.apress.springrecipes.course.Course</class>

 <properties>
 <property name="javax.persistence.jdbc.url"

value="jdbc:postgresql://localhost:5432/course" />
 <property name="javax.persistence.jdbc.user" value="postgres" />
 <property name="javax.persistence.jdbc.password" value="password" />

 <property name="hibernate.dialect"
value="org.hibernate.dialect.PostgreSQL95Dialect" />

 <property name="hibernate.show_sql" value="true" />
 <property name="hibernate.hbm2ddl.auto" value="update" />
 </properties>
 </persistence-unit>
</persistence>

In this JPA configuration file, you configure Hibernate as your underlying JPA engine. Notice that there
are a few generic javax.persistence properties to configure the location of the database and username/
password combination to use. Next there are some Hibernate-specific properties to configure the dialect and
again the hibernate.hbm2ddl.auto property. Finally, there is a <class> element to specify which classes to
use for mapping.

In a Java EE environment, a Java EE container is able to manage the entity manager for you and inject
it into your EJB components directly. But when you use JPA outside of a Java EE container (e.g., in a Java SE
application), you have to create and maintain the entity manager by yourself.

Chapter 9 ■ Data aCCess

397

Now, let’s implement the CourseDao interface using JPA in a Java SE application. Before you call JPA for
object persistence, you have to initialize an entity manager factory. The purpose of an entity manager factory
is to produce entity managers for you to persist your objects.

package com.apress.springrecipes.course.jpa;
...
import javax.persistence.EntityManager;
import javax.persistence.EntityManagerFactory;
import javax.persistence.EntityTransaction;
import javax.persistence.Persistence;
import javax.persistence.Query;

public class JpaCourseDao implements CourseDao {

 private EntityManagerFactory entityManagerFactory;

 public JpaCourseDao() {
 entityManagerFactory = Persistence.createEntityManagerFactory("course");
 }

 public void store(Course course) {
 EntityManager manager = entityManagerFactory.createEntityManager();
 EntityTransaction tx = manager.getTransaction();
 try {
 tx.begin();
 manager.merge(course);
 tx.commit();
 } catch (RuntimeException e) {
 tx.rollback();
 throw e;
 } finally {
 manager.close();
 }
 }

 public void delete(Long courseId) {
 EntityManager manager = entityManagerFactory.createEntityManager();
 EntityTransaction tx = manager.getTransaction();
 try {
 tx.begin();
 Course course = manager.find(Course.class, courseId);
 manager.remove(course);
 tx.commit();
 } catch (RuntimeException e) {
 tx.rollback();
 throw e;
 } finally {
 manager.close();
 }
 }

Chapter 9 ■ Data aCCess

398

 public Course findById(Long courseId) {
 EntityManager manager = entityManagerFactory.createEntityManager();
 try {
 return manager.find(Course.class, courseId);
 } finally {
 manager.close();
 }
 }

 public List<Course> findAll() {
 EntityManager manager = entityManagerFactory.createEntityManager();
 try {
 Query query = manager.createQuery("select course from Course course");
 return query.getResultList();
 } finally {
 manager.close();
 }
 }
}

The entity manager factory is built by the static method createEntityManagerFactory() of the javax.
persistence.Persistence class. You have to pass in a persistence unit name defined in persistence.xml
for an entity manager factory.

In the preceding DAO methods, you first create an entity manager from the entity manager factory. For
any operation that involves database update, such as merge() and remove(), you must start a JPA transaction
on the entity manager. For read-only operations such as find() and JPA queries, there’s no need to start a
transaction. Finally, you must close an entity manager to release the resources.

You can test this DAO with the similar Main class, but this time, you instantiate the JPA DAO
implementation instead.

package com.apress.springrecipes.course;
...
public class Main {

 public static void main(String[] args) {
 CourseDao courseDao = new JpaCourseDao();
 ...
 }
}

In the preceding DAO implementations for both Hibernate and JPA, there are only one or two lines that
are different for each DAO method. The rest of the lines are boilerplate routine tasks that you have to repeat.
Moreover, each ORM framework has its own API for local transaction management.

9-7. Configure ORM Resource Factories in Spring
Problem
When using an ORM framework on its own, you have to configure its resource factory with its API. For
Hibernate and JPA, you have to build a session factory and an entity manager factory from the native
Hibernate API and JPA. You have no choice but to manage these objects manually, without Spring’s support.

Chapter 9 ■ Data aCCess

399

Solution
Spring provides several factory beans for you to create a Hibernate session factory or a JPA entity manager
factory as a singleton bean in the IoC container. These factories can be shared between multiple beans via
dependency injection. Moreover, this allows the session factory and the entity manager factory to integrate
with other Spring data access facilities, such as data sources and transaction managers.

How It Works
For Hibernate Spring provides a LocalSessionFactoryBean to create a plain Hibernate SessionFactory,
for JPA Spring has several options for constructing an EntityManagerFactory. You will explore how to
retrieve the EntityManagerFactory from JNDI and how to use the LocalEntityManagerFactoryBean and
LocalContainerEntityManagerFactoryBean and the differences between each option.

Configure a Hibernate Session Factory in Spring
First, let’s modify HibernateCourseDao to accept a session factory via dependency injection, instead of
creating it directly with the native Hibernate API in the constructor.

package com.apress.springrecipes.course.hibernate;
...
import org.hibernate.SessionFactory;

public class HibernateCourseDao implements CourseDao {

 private final SessionFactory sessionFactory;

 public HibernateCourseDao(SessionFactory sessionFactory) {
 this.sessionFactory = sessionFactory;
 }

 ...
}

Then, you create a configuration class for using Hibernate as the ORM framework. You can also declare
a HibernateCourseDao instance under Spring’s management.

package com.apress.springrecipes.course.config;

import com.apress.springrecipes.course.Course;
import com.apress.springrecipes.course.CourseDao;
import com.apress.springrecipes.course.hibernate.HibernateCourseDao;
import org.hibernate.SessionFactory;
import org.hibernate.cfg.AvailableSettings;
import org.hibernate.dialect.PostgreSQL95Dialect;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.orm.hibernate5.LocalSessionFactoryBean;

import java.util.Properties;

Chapter 9 ■ Data aCCess

400

@Configuration
public class CourseConfiguration {

 @Bean
 public CourseDao courseDao(SessionFactory sessionFactory) {
 return new HibernateCourseDao(sessionFactory);
 }

 @Bean
 public LocalSessionFactoryBean sessionFactory() {

 LocalSessionFactoryBean sessionFactoryBean = new LocalSessionFactoryBean();
 sessionFactoryBean.setHibernateProperties(hibernateProperties());
 sessionFactoryBean.setAnnotatedClasses(Course.class);
 return sessionFactoryBean;
 }

 private Properties hibernateProperties() {

 Properties properties = new Properties();
 properties.setProperty(AvailableSettings.URL,

"jdbc:postgresql://localhost:5432/course");
 properties.setProperty(AvailableSettings.USER, "postgres");
 properties.setProperty(AvailableSettings.PASS, "password");
 properties.setProperty(AvailableSettings.DIALECT,

PostgreSQL95Dialect.class.getName());
 properties.setProperty(AvailableSettings.SHOW_SQL, String.valueOf(true));
 properties.setProperty(AvailableSettings.HBM2DDL_AUTO, "update");
 return properties;
 }
}

All the properties that were set earlier on the Configuration object are now translated to a Properties
object and added to the LocalSessionFactoryBean. The annotated class is passed in through the
setAnnotatedClasses method so that eventually Hibernate knowns about the annotated class. The
constructed SessionFactory is passed to the HibernateCourseDao through its constructor.

If you are in a project that still uses Hibernate mapping files, you can use the mappingLocations
property to specify the mapping files. LocalSessionFactoryBean also allows you take advantage of Spring’s
resource-loading support to load mapping files from various types of locations. You can specify the resource
paths of the mapping files in the mappingLocations property, whose type is Resource[].

@Bean
public LocalSessionFactoryBean sessionfactory() {
 LocalSessionFactoryBean sessionFactoryBean = new LocalSessionFactoryBean();
 sessionFactoryBean.setDataSource(dataSource());
 sessionFactoryBean.setMappingLocations(
 new ClassPathResource("com/apress/springrecipes/course/Course.hbm.xml"));
 sessionFactoryBean.setHibernateProperties(hibernateProperties());
 return sessionFactoryBean;
}

Chapter 9 ■ Data aCCess

401

With Spring’s resource-loading support, you can also use wildcards in a resource path to match
multiple mapping files so that you don’t need to configure their locations every time you add a new entity
class. For this to work, you need a ResourcePatternResolver in your configuration class. You can get this by
using ResourcePatternUtils and the ResourceLoaderAware interface. You implement the latter and use the
getResourcePatternResolver method to get a ResourcePatternResolver based on the ResourceLoader.

@Configuration
public class CourseConfiguration implements ResourceLoaderAware {

 private ResourcePatternResolver resourcePatternResolver;
...
 @Override
 public void setResourceLoader(ResourceLoader resourceLoader) {
 this.resourcePatternResolver =
 ResourcePatternUtils.getResourcePatternResolver(resourceLoader);
 }
}

Now you can use the ResourecePatternResolver to resolve resource patterns to resources.

@Bean
public LocalSessionFactoryBean sessionfactory() throws IOException {
 LocalSessionFactoryBean sessionFactoryBean = new LocalSessionFactoryBean();
 Resource[] mappingResources =
 resourcePatternResolver.getResources("classpath:com/apress/springrecipes/course/*.

hbm.xml");
 sessionFactoryBean.setMappingLocations(mappingResources);
 ...
 return sessionFactoryBean;
}

Now, you can modify the Main class to retrieve the HibernateCourseDao instance from the Spring IoC
container.

package com.apress.springrecipes.course;
...
import org.springframework.context.ApplicationContext;
import org.springframework.context.support.ClassPathXmlApplicationContext;

public class Main {

 public static void main(String[] args) {
 ApplicationContext context =
 new AnnotationConfigApplicationContext(CourseConfiguration.class);
 CourseDao courseDao = context.getBean(CourseDao.class);
 ...
 }
}

Chapter 9 ■ Data aCCess

402

The preceding factory bean creates a session factory by loading the Hibernate configuration file, which
includes the database settings (either JDBC connection properties or a data source’s JNDI name). Now,
suppose you have a data source defined in the Spring IoC container. If you want to use this data source
for your session factory, you can inject it into the dataSource property of LocalSessionFactoryBean. The
data source specified in this property will override the database settings of the Hibernate configuration.
If this is set, the Hibernate settings should not define a connection provider to avoid meaningless double
configuration.

@Configuration
public class CourseConfiguration {
 ...
 @Bean
 public DataSource dataSource() {

 HikariDataSource dataSource = new HikariDataSource();
 dataSource.setUsername("postgres");
 dataSource.setPassword("password");
 dataSource.setJdbcUrl("jdbc:postgresql://localhost:5432/course");
 dataSource.setMinimumIdle(2);
 dataSource.setMaximumPoolSize(5);
 return dataSource;
 }

 @Bean
 public LocalSessionFactoryBean sessionFactory(DataSource dataSource) {

 LocalSessionFactoryBean sessionFactoryBean = new LocalSessionFactoryBean();
 sessionFactoryBean.setDataSource(dataSource);
 sessionFactoryBean.setHibernateProperties(hibernateProperties());
 sessionFactoryBean.setAnnotatedClasses(Course.class);
 return sessionFactoryBean;
 }

 private Properties hibernateProperties() {

 Properties properties = new Properties();
 properties.setProperty(AvailableSettings.DIALECT,

PostgreSQL95Dialect.class.getName());
 properties.setProperty(AvailableSettings.SHOW_SQL, String.valueOf(true));
 properties.setProperty(AvailableSettings.HBM2DDL_AUTO, "update");
 return properties;
 }}

Or you can even ignore the Hibernate configuration file by merging all the configurations into
LocalSessionFactoryBean. For example, you can specify the packages containing the JPA annotated
classes in the packagesToScan property and other Hibernate properties such as the database dialect in the
hibernateProperties property.

Chapter 9 ■ Data aCCess

403

@Configuration
public class CourseConfiguration {
...
 @Bean
 public LocalSessionFactoryBean sessionfactory() {
 LocalSessionFactoryBean sessionFactoryBean = new LocalSessionFactoryBean();
 sessionFactoryBean.setDataSource(dataSource());
 sessionFactoryBean.setPackagesToScan("com.apress.springrecipes.course");
 sessionFactoryBean.setHibernateProperties(hibernateProperties());
 return sessionFactoryBean;
 }

 private Properties hibernateProperties() {
 Properties properties = new Properties();
 properties.put(" hibernate.dialect",

org.hibernate.dialect.DerbyTenSevenDialect.class.getName());
 properties.put("hibernate.show_sql", true);
 properties.put("hibernate.hbm2dll.auto", "update");
 return properties;
 }
}

You can now delete the Hibernate configuration file (i.e., hibernate.cfg.xml) because its
configurations have been ported to Spring.

Configure a JPA Entity Manager Factory in Spring
First, let’s modify JpaCourseDao to accept an entity manager factory via dependency injection, instead of
creating it directly in the constructor.

package com.apress.springrecipes.course;
...
import javax.persistence.EntityManagerFactory;
import javax.persistence.Persistence;

public class JpaCourseDao implements CourseDao {

 private final EntityManagerFactory entityManagerFactory;

 public JpaCourseDao (EntityManagerFactory entityManagerFactory) {
 this.entityManagerFactory = entityManagerFactory;
 }
 ...
}

The JPA specification defines how you should obtain an entity manager factory in Java SE and Java
EE environments. In a Java SE environment, an entity manager factory is created manually by calling the
createEntityManagerFactory() static method of the Persistence class.

Chapter 9 ■ Data aCCess

404

Let’s create a bean configuration file for using JPA. Spring provides a factory bean,
LocalEntityManagerFactoryBean, for you to create an entity manager factory in the IoC container. You must
specify the persistence unit name defined in the JPA configuration file. You can also declare a JpaCourseDao
instance under Spring’s management.

package com.apress.springrecipes.course.config;

import com.apress.springrecipes.course.CourseDao;
import com.apress.springrecipes.course.jpa.JpaCourseDao;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.orm.jpa.LocalEntityManagerFactoryBean;

import javax.persistence.EntityManagerFactory;

@Configuration
public class CourseConfiguration {

 @Bean
 public CourseDao courseDao(EntityManagerFactory entityManagerFactory) {
 return new JpaCourseDao(entityManagerFactory);
 }

 @Bean
 public LocalEntityManagerFactoryBean entityManagerFactory() {

 LocalEntityManagerFactoryBean emf = new LocalEntityManagerFactoryBean();
 emf.setPersistenceUnitName("course");
 return emf;
 }
}

Now, you can test this JpaCourseDao instance with the Main class by retrieving it from the Spring IoC
container.

package com.apress.springrecipes.course;
...
import org.springframework.context.ApplicationContext;
import org.springframework.context.support.ClassPathXmlApplicationContext;

public class Main {

 public static void main(String[] args) {
 ApplicationContext context =

 new AnnotationConfigApplicationContext(CourseConfiguration.class);
 CourseDao courseDao = context.getBean(CourseDao.class);
 ...
 }
}

Chapter 9 ■ Data aCCess

405

In a Java EE environment, you can look up an entity manager factory from a Java EE container with
JNDI. In Spring, you can perform a JNDI lookup by using the JndiLocatorDelegate object (which is simpler
than constructing a JndiObjectFactoryBean, which would also work).

@Bean
public EntityManagerFactory entityManagerFactory() throws NamingException {
 return JndiLocatorDelegate.createDefaultResourceRefLocator()
 .lookup("jpa/coursePU", EntityManagerFactory.class);
}

LocalEntityManagerFactoryBean creates an entity manager factory by loading the JPA configuration
file (i.e., persistence.xml). Spring supports a more flexible way to create an entity manager factory by
another factory bean, LocalContainerEntityManagerFactoryBean. It allows you to override some of the
configurations in the JPA configuration file, such as the data source and database dialect. So, you can take
advantage of Spring’s data access facilities to configure the entity manager factory.

@Configuration
public class CourseConfiguration {
 ...
 @Bean
 public LocalContainerEntityManagerFactoryBean entityManagerFactory(DataSource

dataSource) {

 Loca lContainerEntityManagerFactoryBean emf =
new LocalContainerEntityManagerFactoryBean();

 emf.setPersistenceUnitName("course");
 emf.setDataSource(dataSource);
 emf.setJpaVendorAdapter(jpaVendorAdapter());
 return emf;
 }

 private JpaVendorAdapter jpaVendorAdapter() {

 HibernateJpaVendorAdapter jpaVendorAdapter = new HibernateJpaVendorAdapter();
 jpaVendorAdapter.setShowSql(true);
 jpaVendorAdapter.setGenerateDdl(true);
 jpaVendorAdapter.setDatabasePlatform(PostgreSQL95Dialect.class.getName());
 return jpaVendorAdapter;
 }

 @Bean
 public DataSource dataSource() {

 HikariDataSource dataSource = new HikariDataSource();
 dataSource.setUsername("postgres");
 dataSource.setPassword("password");
 dataSource.setJdbcUrl("jdbc:postgresql://localhost:5432/course");
 dataSource.setMinimumIdle(2);
 dataSource.setMaximumPoolSize(5);
 return dataSource;
 }
}

Chapter 9 ■ Data aCCess

406

In the preceding bean configurations, you inject a data source into this entity manager factory.
It will override the database settings in the JPA configuration file. You can set a JPA vendor adapter to
LocalContainerEntityManagerFactoryBean to specify JPA engine–specific properties. With Hibernate as
the underlying JPA engine, you should choose HibernateJpaVendorAdapter. Other properties that are not
supported by this adapter can be specified in the jpaProperties property.

Now your JPA configuration file (i.e., persistence.xml) can be simplified as follows because its
configurations have been ported to Spring:

<persistence xmlns="http://xmlns.jcp.org/xml/ns/persistence"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/persistence
 http://xmlns.jcp.org/xml/ns/persistence/persistence_2_1.xsd"
 version="2.1">

 <persistence-unit name="course" transaction-type="RESOURCE_LOCAL">
 <class>com.apress.springrecipes.course.Course</class>
 </persistence-unit>

</persistence>

Spring also makes it possible to configure the JPA EntityManagerFactory without a persistence.xml
file. If you want, you can fully configure it in a Spring configuration file. Instead of a persistenceUnitName,
you need to specify the packagesToScan property. After this, you can remove the persistence.xml file
completely.

@Bean
public LocalContainerEntityManagerFactoryBean entityManagerFactory() {
 Loca lContainerEntityManagerFactoryBean emf =

new LocalContainerEntityManagerFactoryBean();
 emf.setDataSource(dataSource());
 emf.setPackagesToScan("com.apress.springrecipes.course");
 emf.setJpaVendorAdapter(jpaVendorAdapter());
 return emf;
}

9-8. Persist Objects with Hibernate’s Contextual Sessions
Problem
You want to write a DAO based on the plain Hibernate API but still rely on Spring managed transactions.

Solution
As of Hibernate 3, a session factory can manage contextual sessions for you and allows you to retrieve them
by the getCurrentSession() method on org.hibernate.SessionFactory. Within a single transaction, you
will get the same session for each getCurrentSession() method call. This ensures that there will be only
one Hibernate session per transaction, so it works nicely with Spring’s transaction management support.

Chapter 9 ■ Data aCCess

407

How It Works
To use the contextual session approach, your DAO methods require access to the session factory, which
can be injected via a setter method or a constructor argument. Then, in each DAO method, you get the
contextual session from the session factory and use it for object persistence.

package com.apress.springrecipes.course.hibernate;

import com.apress.springrecipes.course.Course;
import com.apress.springrecipes.course.CourseDao;
import org.hibernate.Query;
import org.hibernate.Session;
import org.hibernate.SessionFactory;
import org.springframework.transaction.annotation.Transactional;

import java.util.List;

public class HibernateCourseDao implements CourseDao {

 private final SessionFactory sessionFactory;

 public HibernateCourseDao(SessionFactory sessionFactory) {
 this.sessionFactory=sessionFactory;
 }

 @Transactional
 public Course store(Course course) {
 Session session = sessionFactory.getCurrentSession();
 session.saveOrUpdate(course);
 return course;
 }

 @Transactional
 public void delete(Long courseId) {
 Session session = sessionFactory.getCurrentSession();
 Course course = session.get(Course.class, courseId);
 session.delete(course);
 }

 @Transactional(readOnly=true)
 public Course findById(Long courseId) {
 Session session = sessionFactory.getCurrentSession();
 return session.get(Course.class, courseId);
 }

 @Transactional(readOnly=true)
 public List<Course> findAll() {
 Session session = sessionFactory.getCurrentSession();
 return session.createQuery("from Course", Course.class).list();
 }
}

Chapter 9 ■ Data aCCess

408

Note that all your DAO methods must be made transactional. This is required because Spring integrates
with Hibernate through Hibernate’s contextual session support. Spring has its own implementation of
the CurrentSessionContext interface from Hibernate. It will attempt to find a transaction and then fail,
complaining that no Hibernate sessions been bound to the thread. You can achieve this by annotating each
method or the entire class with @Transactional. This ensures that the persistence operations within a DAO
method will be executed in the same transaction and hence by the same session. Moreover, if a service layer
component’s method calls multiple DAO methods and it propagates its own transaction to these methods,
then all these DAO methods will run within the same session as well.

 ■ Caution When configuring hibernate with spring, make sure not to set the hibernate.current_session_
context_class property because that will interfere with spring’s ability to properly manage the transactions.
You should set this property only when you are in need of Jta transactions.

In the bean configuration file, you have to declare a HibernateTransactionManager instance for this
application and enable declarative transaction management via @EnableTransactionManagement.

@Configuration
@EnableTransactionManagement
public class CourseConfiguration {

 @Bean
 public CourseDao courseDao(SessionFactory sessionFactory) {
 return new HibernateCourseDao(sessionFactory);
 }
 @Bean
 public HibernateTransactionManager transactionManager(SessionFactory sessionFactory) {
 return new HibernateTransactionManager(sessionFactory);
 }
}

However, when calling the native methods on a Hibernate session, the exceptions thrown will be
of native type HibernateException. If you want the Hibernate exceptions to be translated into Spring’s
DataAccessException for consistent exception handling, you have to apply the @Repository annotation to
your DAO class that requires exception translation.

package com.apress.springrecipes.course.hibernate;
...
import org.springframework.stereotype.Repository;

@Repository
public class HibernateCourseDao implements CourseDao {
 ...
}

A PersistenceExceptionTranslationPostProcessor takes care of translating the native Hibernate
exceptions into data access exceptions in Spring’s DataAccessException hierarchy. This bean post-
processor will only translate exceptions for beans annotated with @Repository. When using Java-based
configuration, this bean is automatically registered in the AnnotationConfigApplicationContext; hence,
there is no need to explicitly declare a bean for it.

Chapter 9 ■ Data aCCess

409

In Spring, @Repository is a stereotype annotation. By annotating it, a component class can be
autodetected through component scanning. You can assign a component name in this annotation and have
the session factory autowired by the Spring IoC container.

package com.apress.springrecipes.course.hibernate;
...
import org.hibernate.SessionFactory;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Repository;

@Repository("courseDao")
public class HibernateCourseDao implements CourseDao {

 private final SessionFactory sessionFactory;

 public HibernateCourseDao (SessionFactory sessionFactory) {
 this.sessionFactory = sessionFactory;
 }
 ...
}

Then, you can simply add the @ComponentScan annotation and delete the original HibernateCourseDao
bean declaration.

@Configuration
@EnableTransactionManagement
@ComponentScan("com.apress.springrecipes.course")
public class CourseConfiguration { ... }

9-9. Persist Objects with JPA’s Context Injection
Problem
In a Java EE environment, a Java EE container can manage entity managers for you and inject them into your
EJB components directly. An EJB component can simply perform persistence operations on an injected
entity manager without caring much about the entity manager creation and transaction management.

Solution
Originally, the @PersistenceContext annotation is used for entity manager injection in EJB components.
Spring can also interpret this annotation by means of a bean post-processor. It will inject an entity manager
into a property with this annotation. Spring ensures that all your persistence operations within a single
transaction will be handled by the same entity manager.

How It Works
To use the context injection approach, you can declare an entity manager field in your DAO and annotate
it with the @PersistenceContext annotation. Spring will inject an entity manager into this field for you to
persist your objects.

Chapter 9 ■ Data aCCess

410

package com.apress.springrecipes.course.jpa;

import com.apress.springrecipes.course.Course;
import com.apress.springrecipes.course.CourseDao;
import org.springframework.transaction.annotation.Transactional;

import javax.persistence.EntityManager;
import javax.persistence.PersistenceContext;
import javax.persistence.TypedQuery;
import java.util.List;

public class JpaCourseDao implements CourseDao {

 @PersistenceContext
 private EntityManager entityManager;

 @Transactional
 public Course store(Course course) {
 return entityManager.merge(course);
 }

 @Transactional
 public void delete(Long courseId) {
 Course course = entityManager.find(Course.class, courseId);
 entityManager.remove(course);
 }

 @Transactional(readOnly = true)
 public Course findById(Long courseId) {
 return entityManager.find(Course.class, courseId);
 }

 @Transactional(readOnly = true)
 public List<Course> findAll() {
 TypedQuery<Course> query =
 entityManager.createQuery("select c from Course c", Course.class);
 return query.getResultList();
 }
}

You can annotate each DAO method or the entire DAO class with @Transactional to make all these
methods transactional. It ensures that the persistence operations within a single method will be executed in
the same transaction and hence by the same entity manager.

In the bean configuration file, you have to declare a JpaTransactionManager instance
and enable declarative transaction management via @EnableTransactionManagement.
A PersistenceAnnotationBeanPostProcessor instance is registered automatically when using a Java-based
config to inject entity managers into properties annotated with @PersistenceContext.

Chapter 9 ■ Data aCCess

411

package com.apress.springrecipes.course.config;

import com.apress.springrecipes.course.CourseDao;
import com.apress.springrecipes.course.JpaCourseDao;
import org.apache.derby.jdbc.ClientDriver;
import org.hibernate.dialect.DerbyTenSevenDialect;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.jdbc.datasource.SimpleDriverDataSource;
import org.springframework.orm.jpa.JpaTransactionManager;
import org.springframework.orm.jpa.JpaVendorAdapter;
import org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean;
import org.springframework.orm.jpa.vendor.HibernateJpaVendorAdapter;
import org.springframework.transaction.PlatformTransactionManager;
import org.springframework.transaction.annotation.EnableTransactionManagement;

import javax.sql.DataSource;

@Configuration
@EnableTransactionManagement
public class CourseConfiguration {

 @Bean
 public CourseDao courseDao() {
 return new JpaCourseDao();
 }

 @Bean
 public LocalContainerEntityManagerFactoryBean entityManagerFactory() {
 LocalContainerEntityManagerFactoryBean emf =
 new LocalContainerEntityManagerFactoryBean();
 emf.setDataSource(dataSource());
 emf.setJpaVendorAdapter(jpaVendorAdapter());
 return emf;
 }

 private JpaVendorAdapter jpaVendorAdapter() {
 HibernateJpaVendorAdapter jpaVendorAdapter = new HibernateJpaVendorAdapter();
 jpaVendorAdapter.setShowSql(true);
 jpaVendorAdapter.setGenerateDdl(true);
 jpaVendorAdapter.setDatabasePlatform(DerbyTenSevenDialect.class.getName());
 return jpaVendorAdapter;
 }

 @Bean
 public JpaTransactionManager transactionManager(EntityManagerFactory

entityManagerFactory) {
 return new JpaTransactionManager(entityManagerFactory);
 }

 @Bean
 public DataSource dataSource() { ... }

}

Chapter 9 ■ Data aCCess

412

The PersistenceAnnotationBeanPostProcessor can also inject the entity manager factory into a
property with the @PersistenceUnit annotation. This allows you to create entity managers and manage
transactions by yourself. It’s no different from injecting the entity manager factory via a setter method.

package com.apress.springrecipes.course;
...
import javax.persistence.EntityManagerFactory;
import javax.persistence.PersistenceUnit;

public class JpaCourseDao implements CourseDao {
 @PersistenceContext
 private EntityManager entityManager;

 @PersistenceUnit
 private EntityManagerFactory entityManagerFactory;
 ...
}

When calling native methods on a JPA entity manager, the exceptions thrown will be of the native
type PersistenceException or other Java SE exceptions such as IllegalArgumentException and
IllegalStateException. If you want JPA exceptions to be translated into Spring’s DataAccessException,
you have to apply the @Repository annotation to your DAO class.

package com.apress.springrecipes.course;
...
import org.springframework.stereotype.Repository;

@Repository("courseDao")
public class JpaCourseDao implements CourseDao {
 ...
}

A PersistenceExceptionTranslationPostProcessor instance will translate the native JPA exceptions
into exceptions in Spring’s DataAccessException hierarchy. When using Java-based configuration, this
bean is automatically registered in the AnnotationConfigApplicationContext; hence, there is no need to
explicitly declare a bean for it.

9-10. Simplify JPA with Spring Data JPA
Problem
Writing data access code, even with JPA, can be a tedious and repetitive task. You often need access to
EntityManager or EntityManagerFactory and have to create queries—not to mention the repetitive
declaration of findById and findAll methods for all different entities when you have lots of DAOs.

Solution
Spring Data JPA allows you, just like Spring itself does, to focus on the parts that are important and not on
the boilerplate needed to accomplish this. It also provides default implementations for the most commonly
used data access methods (i.e., findAll, delete, save, etc.).

Chapter 9 ■ Data aCCess

413

How It Works
To use Spring Data JPA, you have to extend one of its interfaces. These interfaces are detected, and a
default implementation of that repository is generated at runtime. In most cases, it is enough to extend the
CrudRepository<T, ID> interface.

package com.apress.springrecipes.course;

import com.apress.springrecipes.course.Course;
import org.springframework.data.repository.CrudRepository;

public interface CourseRepository extends CrudRepository<Course, Long>{}

This is enough to be able to do all necessary CRUD actions for the Course entity. When extending the
Spring Data interfaces, you have to specify the type, Course, and the type of the primary key, Long. This
information is needed to generate the repository at runtime.

 ■ Note You could also extend JpaRepository, which adds some Jpa-specific methods (flush,
saveAndFlush) and provides query methods with paging/sorting capabilities.

Next you need to enable detection of the Spring Data–enabled repositories. For this you can use the
@EnableJpaRepositories annotation provided by Spring Data JPA.

@Configuration
@EnableTransactionManagement
@EnableJpaRepositories("com.apress.springrecipes.course")
public class CourseConfiguration { ... }

This will bootstrap Spring Data JPA and will construct a usable repository. By default all repository
methods are marked with @Transactional, so no additional annotations are needed.

Now, you can test this CourseRepository instance with the Main class by retrieving it from the Spring
IoC container.

package com.apress.springrecipes.course.datajpa;
...
import org.springframework.context.ApplicationContext;
import org.springframework.context.support.ClassPathXmlApplicationContext;

public class Main {

 public static void main(String[] args) {
 ApplicationContext context =
 new AnnotationConfigApplicationContext(CourseConfiguration.class);

 CourseRepository repository = context.getBean(CourseRepository.class);
 ...
 }
}

Chapter 9 ■ Data aCCess

414

All other things such as exception translation, transaction management, and easy configuration of your
EntityManagerFactory still apply to Spring Data JPA–based repositories. It just makes your life a lot easier
and lets you focus on what is important.

Summary
This chapter discussed how to use Spring’s support for JDBC, Hibernate, and JPA. You learned how
to configure a DataSource object to connect to a database and how to use Spring’s JdbcTemplate and
NamedParameterJdbcTemplate objects to rid your code of tedious boilerplate handling. You saw how to use
the utility base classes to build DAO classes with JDBC and Hibernate, as well as how to use Spring’s support
for stereotype annotations and component scanning to easily build new DAOs and services. The final recipe
showed you how to simplify your data access code even more by using the power of Spring Data JPA. In the
next chapter, you will learn how to use transactions (i.e., for JMS or a database) with Spring to help ensure a
consistent state in your services.

415© Marten Deinum, Daniel Rubio, and Josh Long 2017
M. Deinum et al., Spring 5 Recipes, DOI 10.1007/978-1-4842-2790-9_10

CHAPTER 10

Spring Transaction Management

In this chapter, you will learn about the basic concept of transactions and Spring’s capabilities in the area
of transaction management. Transaction management is an essential technique in enterprise applications
to ensure data integrity and consistency. Spring, as an enterprise application framework, provides an
abstract layer on top of different transaction management APIs. As an application developer, you can use
Spring’s transaction management facilities without having to know much about the underlying transaction
management APIs.

Like the bean-managed transaction (BMT) and container-managed transaction (CMT) approaches in EJB,
Spring supports both programmatic and declarative transaction management. The aim of Spring’s transaction
support is to provide an alternative to EJB transactions by adding transaction capabilities to POJOs.

Programmatic transaction management is achieved by embedding transaction management code in
your business methods to control the commit and rollback of transactions. You usually commit a transaction
if a method completes normally and roll back a transaction if a method throws certain types of exceptions.
With programmatic transaction management, you can define your own rules to commit and roll back
transactions.

However, when managing transactions programmatically, you have to include transaction management
code in each transactional operation. As a result, the boilerplate transaction code is repeated in each of
these operations. Moreover, it’s hard for you to enable and disable transaction management for different
applications. If you have a solid understanding of AOP, you may already have noticed that transaction
management is a kind of crosscutting concern.

Declarative transaction management is preferable to programmatic transaction management in
most cases. It’s achieved by separating transaction management code from your business methods via
declarations. Transaction management, as a kind of crosscutting concern, can be modularized with the AOP
approach. Spring supports declarative transaction management through the Spring AOP framework. This
can help you to enable transactions for your applications more easily and define a consistent transaction
policy. Declarative transaction management is less flexible than programmatic transaction management.

Programmatic transaction management allows you to control transactions through your code—
explicitly starting, committing, and joining them as you see fit. You can specify a set of transaction attributes
to define your transactions at a fine level of granularity. The transaction attributes supported by Spring
include the propagation behavior, isolation level, rollback rules, transaction timeout, and whether or not the
transaction is read-only. These attributes allow you to further customize the behavior of your transactions.

Upon finishing this chapter, you will be able to apply different transaction management strategies in
your application. Moreover, you will be familiar with different transaction attributes to finely define your
transactions.

Programmatic transaction management is a good idea in certain cases where you don’t feel the
addition of Spring proxies is worth the trouble or negligible performance loss. Here, you might access the
native transaction yourself and control the transaction manually. A more convenient option that avoids the
overhead of Spring proxies is the TransactionTemplate class, which provides a template method around
which a transactional boundary is started and then committed.

Chapter 10 ■ Spring tranSaCtion ManageMent

416

10-1. Avoid Problems with Transaction Management
Transaction management is an essential technique in enterprise application development to ensure data
integrity and consistency. Without transaction management, your data and resources may be corrupted
and left in an inconsistent state. Transaction management is particularly important for recovering from
unexpected errors in a concurrent and distributed environment.

In simple words, a transaction is a series of actions treated as a single unit of work. These actions should
either complete entirely or take no effect at all. If all the actions go well, the transaction should be committed
permanently. In contrast, if any of them goes wrong, the transaction should be rolled back to the initial state
as if nothing had happened.

The concept of transactions can be described with four key properties: atomicity, consistency, isolation,
and durability (ACID).

•	 Atomicity: A transaction is an atomic operation that consists of a series of actions.
The atomicity of a transaction ensures that the actions either complete entirely or
take no effect at all.

•	 Consistency: Once all actions of a transaction have completed, the transaction is
committed. Then your data and resources will be in a consistent state that conforms
to business rules.

•	 Isolation: Because there may be many transactions processing with the same data
set at the same time, each transaction should be isolated from others to prevent data
corruption.

•	 Durability: Once a transaction has completed, its result should be durable to survive
any system failure (imagine if the power to your machine was cut right in the middle
of a transaction’s commit). Usually, the result of a transaction is written to persistent
storage.

To understand the importance of transaction management, let’s begin with an example about
purchasing books from an online bookshop. First, you have to create a new schema for this application in
your database. We have chosen to use PostgreSQL as the database to use for these samples. The source
code for this chapter contains a bin directory with two scripts: one (postgres.sh) to download a Docker
container and start a default Postgres instance and a second one (psql.sh) to connect to the running
Postgres instance. See Table 10-1 for the connection properties to use in your Java application.

 ■ Note the sample code for this chapter provides scripts in the bin directory to start and connect to a
Docker-based postgreSQL instance. to start the instance and create the database, follow these steps:

 1. execute bin\postgres.sh, which will download and start the postgres Docker container.

 2. execute bin\psql.sh, which will connect to the running postgres container.

 3. execute CREATE DATABASE bookstore to create the database to use for the samples.

Chapter 10 ■ Spring tranSaCtion ManageMent

417

For your bookshop application, you need a place to store the data. You’ll create a simple database to
manage books and accounts.

The entity relational (ER) diagram for the tables looks like Figure 10-1.

Now, let’s create the SQL for the preceding model. Execute the bin\psql.sh command to connect to the
running container and open the psql tool.

Paste the following SQL into the shell and verify its success:

CREATE TABLE BOOK (
 ISBN VARCHAR(50) NOT NULL,
 BOOK_NAME VARCHAR(100) NOT NULL,
 PRICE INT,
 PRIMARY KEY (ISBN)
);

Figure 10-1. BOOK_STOCK describes how many given BOOKs exist.

Table 10-1. JDBC Properties for Connecting to the Application Database

Property Value

Driver class org.postgresql.Driver

URL jdbc:postgresql://localhost:5432/bookstore

Username postgres

Password password

Chapter 10 ■ Spring tranSaCtion ManageMent

418

CREATE TABLE BOOK_STOCK (
 ISBN VARCHAR(50) NOT NULL,
 STOCK INT NOT NULL,
 PRIMARY KEY (ISBN),
 CONSTRAINT positive_stock CHECK (STOCK >= 0)
);

CREATE TABLE ACCOUNT (
 USERNAME VARCHAR(50) NOT NULL,
 BALANCE INT NOT NULL,
 PRIMARY KEY (USERNAME),
 CONSTRAINT positive_balance CHECK (BALANCE >= 0)
);

A real-world application of this type would probably feature a price field with a decimal type, but using
an int makes the programming simpler to follow, so leave it as an int.

The BOOK table stores basic book information such as the name and price, with the book ISBN as the
primary key. The BOOK_STOCK table keeps track of each book’s stock. The stock value is restricted by a CHECK
constraint to be a positive number. Although the CHECK constraint type is defined in SQL-99, not all database
engines support it. At the time of this writing, this limitation is mainly true of MySQL because Sybase,
Derby, HSQL, Oracle, DB2, SQL Server, Access, PostgreSQL, and FireBird all support it. If your database
engine doesn’t support CHECK constraints, please consult its documentation for similar constraint support.
Finally, the ACCOUNT table stores customer accounts and their balances. Again, the balance is restricted to be
positive.

The operations of your bookshop are defined in the following BookShop interface. For now, there is only
one operation: purchase().

package com.apress.springrecipes.bookshop;

public interface BookShop {

 void purchase(String isbn, String username);
}

Because you will implement this interface with JDBC, you need to create the following JdbcBookShop
class. To better understand the nature of transactions, let’s implement this class without the help of Spring’s
JDBC support.

package com.apress.springrecipes.bookshop;

import java.sql.Connection;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;

import javax.sql.DataSource;

public class JdbcBookShop implements BookShop {

Chapter 10 ■ Spring tranSaCtion ManageMent

419

 private DataSource dataSource;

 public void setDataSource(DataSource dataSource) {
 this.dataSource = dataSource;
 }

 public void purchase(String isbn, String username) {
 Connection conn = null;
 try {
 conn = dataSource.getConnection();

 PreparedStatement stmt1 = conn.prepareStatement(
 "SELECT PRICE FROM BOOK WHERE ISBN = ?");
 stmt1.setString(1, isbn);
 ResultSet rs = stmt1.executeQuery();
 rs.next();
 int price = rs.getInt("PRICE");
 stmt1.close();

 PreparedStatement stmt2 = conn.prepareStatement(
 "UPDATE BOOK_STOCK SET STOCK = STOCK - 1 "+
 "WHERE ISBN = ?");
 stmt2.setString(1, isbn);
 stmt2.executeUpdate();
 stmt2.close();

 PreparedStatement stmt3 = conn.prepareStatement(
 "UPDATE ACCOUNT SET BALANCE = BALANCE - ? "+
 "WHERE USERNAME = ?");
 stmt3.setInt(1, price);
 stmt3.setString(2, username);
 stmt3.executeUpdate();
 stmt3.close();
 } catch (SQLException e) {
 throw new RuntimeException(e);
 } finally {
 if (conn != null) {
 try {
 conn.close();
 } catch (SQLException e) {}
 }
 }
 }
}

For the purchase() operation, you have to execute three SQL statements in total. The first is to query
the book price. The second and third update the book stock and account balance accordingly. Then, you
can declare a bookshop instance in the Spring IoC container to provide purchasing services. For simplicity’s
sake, you can use DriverManagerDataSource, which opens a new connection to the database for every
request.

Chapter 10 ■ Spring tranSaCtion ManageMent

420

 ■ Note to access a postgreSQL database, you have to add the postgres client library to your CLASSPATH.

package com.apress.springrecipes.bookshop.config;

import com.apress.springrecipes.bookshop.BookShop;
import com.apress.springrecipes.bookshop.JdbcBookShop;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.jdbc.datasource.DriverManagerDataSource;

import javax.sql.DataSource;

@Configuration
public class BookstoreConfiguration {

 @Bean
 public DataSource dataSource() {
 DriverManagerDataSource dataSource = new DriverManagerDataSource();
 dataSource.setDriverClassName(org.postgresql.Driver.class.getName());
 dataSource.setUrl("jdbc:postgresql://localhost:5432/bookstore");
 dataSource.setUsername("postgres");
 dataSource.setPassword("password");
 return dataSource;
 }

 @Bean
 public BookShop bookShop() {
 JdbcBookShop bookShop = new JdbcBookShop();
 bookShop.setDataSource(dataSource());
 return bookShop;
 }
}

To demonstrate the problems that can arise without transaction management, suppose you have the
data shown in Tables 10-2, 10-3, and 10-4 entered in your bookshop database.

Table 10-2. Sample Data in the BOOK Table for Testing Transactions

ISBN BOOK_NAME PRICE

0001 The First Book 30

Table 10-3. Sample Data in the BOOK_STOCK Table for Testing Transactions

ISBN STOCK

0001 10

Chapter 10 ■ Spring tranSaCtion ManageMent

421

Then, write the following Main class for purchasing the book with ISBN 0001 by the user user1. Because
that user’s account has only $20, the funds are not sufficient to purchase the book.

package com.apress.springrecipes.bookshop;

import com.apress.springrecipes.bookshop.config.BookstoreConfiguration;
import org.springframework.context.ApplicationContext;
import org.springframework.context.annotation.AnnotationConfigApplicationContext;

public class Main {

 public static void main(String[] args) throws Throwable {

 ApplicationContext context =
 new AnnotationConfigApplicationContext(BookstoreConfiguration.class);

 BookShop bookShop = context.getBean(BookShop.class);
 bookShop.purchase("0001", "user1");

 }
}

When you run this application, you will encounter a SQLException, because the CHECK constraint of the
ACCOUNT table has been violated. This is an expected result because you were trying to debit more than the
account balance.

However, if you check the stock for this book in the BOOK_STOCK table, you will find that it was
accidentally deducted by this unsuccessful operation! The reason is that you executed the second SQL
statement to deduct the stock before you got an exception in the third statement.

As you can see, the lack of transaction management causes your data to be left in an inconsistent state.
To avoid this inconsistency, your three SQL statements for the purchase() operation should be executed
within a single transaction. Once any of the actions in a transaction fail, the entire transaction should be
rolled back to undo all changes made by the executed actions.

Table 10-4. Sample Data in the ACCOUNT Table for Testing Transactions

USERNAME BALANCE

user1 20

Chapter 10 ■ Spring tranSaCtion ManageMent

422

Manage Transactions with JDBC Commit and Rollback
When using JDBC to update a database, by default each SQL statement will be committed immediately after
its execution. This behavior is known as autocommit. However, it does not allow you to manage transactions
for your operations. JDBC supports the primitive transaction management strategy of explicitly calling
the commit() and rollback() methods on a connection. But before you can do that, you must turn off
autocommit, which is turned on by default.

package com.apress.springrecipes.bookshop;
...
public class JdbcBookShop implements BookShop {
 ...
 public void purchase(String isbn, String username) {
 Connection conn = null;
 try {
 conn = dataSource.getConnection();
 conn.setAutoCommit(false);
 ...
 conn.commit();
 } catch (SQLException e) {
 if (conn != null) {
 try {
 conn.rollback();
 } catch (SQLException e1) {}
 }
 throw new RuntimeException(e);
 } finally {
 if (conn != null) {
 try {
 conn.close();
 } catch (SQLException e) {}
 }
 }
 }
}

The autocommit behavior of a database connection can be altered by calling the setAutoCommit()
method. By default, autocommit is turned on to commit each SQL statement immediately after its execution.
To enable transaction management, you must turn off this default behavior and commit the connection only
when all the SQL statements have been executed successfully. If any of the statements go wrong, you must
roll back all changes made by this connection.

Now, if you run your application again, the book stock will not be deducted when the user’s balance is
insufficient to purchase the book.

Although you can manage transactions by explicitly committing and rolling back JDBC connections, the
code required for this purpose is boilerplate code that you have to repeat for different methods. Moreover,
this code is JDBC specific, so once you have chosen another data access technology, it needs to be changed
also. Spring’s transaction support offers a set of technology-independent facilities, including transaction
managers (e.g., org.springframework.transaction.PlatformTransactionManager), a transaction template
(e.g., org.springframework.transaction.support.TransactionTemplate), and transaction declaration
support, to simplify your transaction management tasks.

Chapter 10 ■ Spring tranSaCtion ManageMent

423

10-2. Choose a Transaction Manager Implementation
Problem
Typically, if your application involves only a single data source, you can simply manage transactions by
calling the commit() and rollback() methods on a database connection. However, if your transactions
extend across multiple data sources or you prefer to make use of the transaction management capabilities
provided by your Java EE application server, you may choose the Java Transaction API (JTA). In addition, you
may have to call different proprietary transaction APIs for different object-relational mapping frameworks
such as Hibernate and JPA.

As a result, you have to deal with different transaction APIs for different technologies. It would be hard
for you to switch from one set of APIs to another.

Solution
Spring abstracts a general set of transaction facilities from different transaction management APIs. As an
application developer, you can simply utilize Spring’s transaction facilities without having to know much
about the underlying transaction APIs. With these facilities, your transaction management code will be
independent of any specific transaction technology.

Spring’s core transaction management abstraction is based on the interface
PlatformTransactionManager. It encapsulates a set of technology-independent methods for transaction
management. Remember that a transaction manager is needed no matter which transaction management
strategy (programmatic or declarative) you choose in Spring. The PlatformTransactionManager interface
provides three methods for working with transactions:

•	 TransactionStatus getTransaction(TransactionDefinition definition)
throws TransactionException

•	 void commit(TransactionStatus status) throws TransactionException;

•	 void rollback(TransactionStatus status) throws TransactionException;

How It Works
PlatformTransactionManager is a general interface for all Spring transaction managers. Spring has several
built-in implementations of this interface for use with different transaction management APIs.

•	 If you have to deal with only a single data source in your application and access it
with JDBC, DataSourceTransactionManager should meet your needs.

•	 If you are using JTA for transaction management on a Java EE application server, you
should use JtaTransactionManager to look up a transaction from the application
server. Additionally, JtaTransactionManager is appropriate for distributed
transactions (transactions that span multiple resources). Note that while it’s
common to use a JTA transaction manager to integrate the application server’s
transaction manager, there’s nothing stopping you from using a stand-alone JTA
transaction manager such as Atomikos.

•	 If you are using an object-relational mapping framework to access a database, you
should choose a corresponding transaction manager for this framework, such as
HibernateTransactionManager or JpaTransactionManager.

Chapter 10 ■ Spring tranSaCtion ManageMent

424

Figure 10-2 shows the common implementations of the PlatformTransactionManager interface in Spring.

A transaction manager is declared in the Spring IoC container as a normal bean. For example,
the following bean configuration declares a DataSourceTransactionManager instance. It requires the
dataSource property to be set so that it can manage transactions for connections made by this data source.

@Bean
public DataSourceTransactionManager transactionManager() {
 DataSourceTransactionManager transactionManager = new DataSourceTransactionManager()
 transactionManager.setDataSource(dataSource());
 return transactionManager;
}

10-3. Manage Transactions Programmatically
with the Transaction Manager API
Problem
You need to precisely control when to commit and roll back transactions in your business methods, but you
don’t want to deal with the underlying transaction API directly.

PlatformTransactionManager

AbstractPlatform
TransactionManager

DataSourceTransactionManager

JpaTransactionManager

JtaTransactionManager

JmsTransactionManager

HibernateTransactionManager

Figure 10-2. Common implementations of the PlatformTransactionManager interface

Chapter 10 ■ Spring tranSaCtion ManageMent

425

Solution
Spring’s transaction manager provides a technology-independent API that allows you to start a new
transaction (or obtain the currently active transaction) by calling the getTransaction() method and
manage it by calling the commit() and rollback() methods. Because PlatformTransactionManager is
an abstract unit for transaction management, the methods you called for transaction management are
guaranteed to be technology independent.

How It Works
To demonstrate how to use the transaction manager API, let’s create a new class,
TransactionalJdbcBookShop, which will make use of the Spring JDBC template. Because it has to deal with
a transaction manager, you add a property of type PlatformTransactionManager and allow it to be injected
via a setter method.

package com.apress.springrecipes.bookshop;

import org.springframework.dao.DataAccessException;
import org.springframework.jdbc.core.support.JdbcDaoSupport;
import org.springframework.transaction.PlatformTransactionManager;
import org.springframework.transaction.TransactionDefinition;
import org.springframework.transaction.TransactionStatus;
import org.springframework.transaction.support.DefaultTransactionDefinition;

public class TransactionalJdbcBookShop extends JdbcDaoSupport implements BookShop {

 private PlatformTransactionManager transactionManager;

 public void setTransactionManager(PlatformTransactionManager transactionManager) {
 this.transactionManager = transactionManager;
 }

 public void purchase(String isbn, String username) {
 TransactionDefinition def = new DefaultTransactionDefinition();
 TransactionStatus status = transactionManager.getTransaction(def);

 try {
 int price = getJdbcTemplate().queryForObject(
 "SELECT PRICE FROM BOOK WHERE ISBN = ?", Integer.class, isbn);

 getJdbcTemplate().update(
 "UPDATE BOOK_STOCK SET STOCK = STOCK - 1 WHERE ISBN = ?", isbn);

 getJdbcTemplate().update(
 "UPDATE ACCOUNT SET BALANCE = BALANCE - ? WHERE USERNAME = ?",

price, username);

Chapter 10 ■ Spring tranSaCtion ManageMent

426

 transactionManager.commit(status);
 } catch (DataAccessException e) {
 transactionManager.rollback(status);
 throw e;
 }
 }

}

Before you start a new transaction, you have to specify the transaction attributes in a transaction
definition object of type TransactionDefinition. For this example, you can simply create an instance of
DefaultTransactionDefinition to use the default transaction attributes.

Once you have a transaction definition, you can ask the transaction manager to start a new transaction
with that definition by calling the getTransaction() method. Then, it will return a TransactionStatus
object to keep track of the transaction status. If all the statements execute successfully, you ask the
transaction manager to commit this transaction by passing in the transaction status. Because all exceptions
thrown by the Spring JDBC template are subclasses of DataAccessException, you ask the transaction
manager to roll back the transaction when this kind of exception is caught.

In this class, you have declared the transaction manager property of the general type
PlatformTransactionManager. Now, you have to inject an appropriate transaction manager
implementation. Because you are dealing with only a single data source and accessing it with JDBC, you
should choose DataSourceTransactionManager. Here, you also wire a dataSource object because the class
is a subclass of Spring’s JdbcDaoSupport, which requires it.

@Configuration
public class BookstoreConfiguration {
...
 @Bean
 public DataSourceTransactionManager transactionManager() {
 Data SourceTransactionManager transactionManager =

new DataSourceTransactionManager();
 transactionManager.setDataSource(dataSource());
 return transactionManager;
 }

 @Bean
 public BookShop bookShop() {
 TransactionalJdbcBookShop bookShop = new TransactionalJdbcBookShop();
 bookShop.setDataSource(dataSource());
 bookShop.setTransactionManager(transactionManager());
 return bookShop;
 }
}

Chapter 10 ■ Spring tranSaCtion ManageMent

427

10-4. Manage Transactions Programmatically with a
Transaction Template
Problem
Suppose that you have a code block, but not the entire body, of a business method that has the following
transaction requirements:

•	 Start a new transaction at the beginning of the block.

•	 Commit the transaction after the block completes successfully.

•	 Roll back the transaction if an exception is thrown in the block.

If you call Spring’s transaction manager API directly, the transaction management code can be
generalized in a technology-independent manner. However, you may not want to repeat the boilerplate code
for each similar code block.

Solution
As with the JDBC template, Spring also provides a TransactionTemplate to help you control the overall
transaction management process and transaction exception handling. You just have to encapsulate your
code block in a callback class that implements the TransactionCallback<T> interface and pass it to the
TransactionTemplate’s execute method for execution. In this way, you don’t need to repeat the boilerplate
transaction management code for this block. The template objects that Spring provides are lightweight and
usually can be discarded or re-created with no performance impact. A JDBC template can be re-created
on the fly with a DataSource reference, for example, and so too can a TransactionTemplate be re-created
by providing a reference to a transaction manager. You can, of course, simply create one in your Spring
application context, too.

How It Works
A TransactionTemplate is created on a transaction manager just as a JDBC template is created on a data
source. A transaction template executes a transaction callback object that encapsulates a transactional
code block. You can implement the callback interface either as a separate class or as an inner class. If it’s
implemented as an inner class, you have to make the method arguments final for it to access.

package com.apress.springrecipes.bookshop;

import org.springframework.jdbc.core.support.JdbcDaoSupport;
import org.springframework.transaction.PlatformTransactionManager;
import org.springframework.transaction.TransactionStatus;
import org.springframework.transaction.support.TransactionCallbackWithoutResult;
import org.springframework.transaction.support.TransactionTemplate;

public class TransactionalJdbcBookShop extends JdbcDaoSupport implements BookShop {

 private PlatformTransactionManager transactionManager;

 public void setTransactionManager(PlatformTransactionManager transactionManager) {
 this.transactionManager = transactionManager;
 }

Chapter 10 ■ Spring tranSaCtion ManageMent

428

 public void purchase(final String isbn, final String username) {

 TransactionTemplate transactionTemplate =
 new TransactionTemplate(transactionManager);

 transactionTemplate.execute(new TransactionCallbackWithoutResult() {

 protected void doInTransactionWithoutResult(
 TransactionStatus status) {

 int price = getJdbcTemplate().queryForObject(
 "SELECT PRICE FROM BOOK WHERE ISBN = ?", Integer.class, isbn);

 getJdbcTemplate().update(
 "UPDATE BOOK_STOCK SET STOCK = STOCK - 1 WHERE ISBN = ?", isbn);

 getJdbcTemplate().update(
 "UPDATE ACCOUNT SET BALANCE = BALANCE - ? WHERE USERNAME = ?",

price, username);
 }
 });
 }
}

A TransactionTemplate can accept a transaction callback object that implements either the
TransactionCallback<T> or an instance of the one implementer of that interface provided by the
framework, the TransactionCallbackWithoutResult class. For the code block in the purchase()
method for deducting the book stock and account balance, there’s no result to be returned, so
TransactionCallbackWithoutResult is fine. For any code blocks with return values, you should implement
the TransactionCallback<T> interface instead. The return value of the callback object will finally be
returned by the template’s T execute() method. The main benefit is that the responsibility of starting,
rolling back, or committing the transaction has been removed.

During the execution of the callback object, if it throws an unchecked exception (e.g.,
RuntimeException and DataAccessException fall into this category) or if you explicitly called
setRollbackOnly() on the TransactionStatus argument in the doInTransactionWithoutResult method,
the transaction will be rolled back. Otherwise, it will be committed after the callback object completes.

In the bean configuration file, the bookshop bean still requires a transaction manager to create a
TransactionTemplate.

@Configuration
public class BookstoreConfiguration {
...
 @Bean
 public DataSourceTransactionManager transactionManager() {
 Data SourceTransactionManager transactionManager =

new DataSourceTransactionManager();
 transactionManager.setDataSource(dataSource());
 return transactionManager;
 }

Chapter 10 ■ Spring tranSaCtion ManageMent

429

 @Bean
 public BookShop bookShop() {
 TransactionalJdbcBookShop bookShop = new TransactionalJdbcBookShop();
 bookShop.setDataSource(dataSource());
 bookShop.setTransactionManager(transactionManager());
 return bookShop;
 }
}

You can also have the IoC container inject a transaction template instead of creating it directly. Because
a transaction template handles all transactions, there’s no need for your class to refer to the transaction
manager anymore.

package com.apress.springrecipes.bookshop;
...
import org.springframework.transaction.support.TransactionTemplate;

public class TransactionalJdbcBookShop extends JdbcDaoSupport implements
 BookShop {

 private TransactionTemplate transactionTemplate;

 public void setTransactionTemplate(
 TransactionTemplate transactionTemplate) {
 this.transactionTemplate = transactionTemplate;
 }

 public void purchase(final String isbn, final String username) {
 transactionTemplate.execute(new TransactionCallbackWithoutResult() {
 protected void doInTransactionWithoutResult(TransactionStatus status) {
 ...
 }
 });
 }
}

Then you define a transaction template in the bean configuration file and inject it, instead of the
transaction manager, into your bookshop bean. Notice that the transaction template instance can be used
for more than one transactional bean because it is a thread-safe object. Finally, don’t forget to set the
transaction manager property for your transaction template.

package com.apress.springrecipes.bookshop.config;
...
import org.springframework.transaction.support.TransactionTemplate;

@Configuration
public class BookstoreConfiguration {
...
 @Bean
 public DataSourceTransactionManager transactionManager() { ... }

Chapter 10 ■ Spring tranSaCtion ManageMent

430

 @Bean
 public TransactionTemplate transactionTemplate() {
 TransactionTemplate transactionTemplate = new TransactionTemplate();
 transactionTemplate.setTransactionManager(transactionManager());
 return transactionTemplate;
 }

 @Bean
 public BookShop bookShop() {
 TransactionalJdbcBookShop bookShop = new TransactionalJdbcBookShop();
 bookShop.setDataSource(dataSource());
 bookShop.setTransactionTemplate(transactionTemplate());
 return bookShop;
 }
}

10-5. Manage Transactions Declaratively with the
@Transactional Annotation
Problem
Declaring transactions in the bean configuration file requires knowledge of AOP concepts such as pointcuts,
advices, and advisors. Developers who lack this knowledge might find it hard to enable declarative
transaction management.

Solution
Spring allows you to declare transactions simply by annotating your transactional methods with
@Transactional and adding the @EnableTransactionManegement annotation to your configuration class.

How It Works
To define a method as transactional, you can simply annotate it with @Transactional. Note that you should
only annotate public methods because of the proxy-based limitations of Spring AOP.

package com.apress.springrecipes.bookshop;

import org.springframework.jdbc.core.support.JdbcDaoSupport;
import org.springframework.transaction.annotation.Transactional;

public class JdbcBookShop extends JdbcDaoSupport implements BookShop {

 @Transactional
 public void purchase(final String isbn, final String username) {

 int price = getJdbcTemplate().queryForObject(
 "SELECT PRICE FROM BOOK WHERE ISBN = ?", Integer.class, isbn);

Chapter 10 ■ Spring tranSaCtion ManageMent

431

 getJdbcTemplate().update(
 "UPDATE BOOK_STOCK SET STOCK = STOCK - 1 WHERE ISBN = ?", isbn);

 getJdbcTemplate().update(
 "UPDATE ACCOUNT SET BALANCE = BALANCE - ? WHERE USERNAME = ?", price, username);
 }
}

Note that because you are extending JdbcDaoSupport, you no longer need the setter for the DataSource;
remove it from your DAO class.

You may apply the @Transactional annotation at the method level or the class level. When applying
this annotation to a class, all the public methods within this class will be defined as transactional. Although
you can apply @Transactional to interfaces or method declarations in an interface, it’s not recommended
because it may not work properly with class-based proxies (i.e., CGLIB proxies).

In the Java configuration class, you only have to add the @EnableTransactionManagement annotation.
That’s all you need to make it work. Spring will advise methods with @Transactional, or methods in a class
with @Transactional, from beans declared in the IoC container. As a result, Spring can manage transactions
for these methods.

@Configuration
@EnableTransactionManagement
public class BookstoreConfiguration { ... }

10-6. Set the Propagation Transaction Attribute
Problem
When a transactional method is called by another method, it is necessary to specify how the transaction
should be propagated. For example, the method may continue to run within the existing transaction, or it
may start a new transaction and run within its own transaction.

Solution
A transaction’s propagation behavior can be specified by the propagation transaction attribute. Spring
defines seven propagation behaviors, as shown in Table 10-5. These behaviors are defined in the org.
springframework.transaction.TransactionDefinition interface. Note that not all types of transaction
managers support all of these propagation behaviors. Their behavior is contingent on the underlying
resource. Databases, for example, may support varying isolation levels, which constrains what propagation
behaviors the transaction manager can support.

Chapter 10 ■ Spring tranSaCtion ManageMent

432

How It Works
Transaction propagation happens when a transactional method is called by another method. For example,
suppose a customer would like to check out all books to purchase at the bookshop cashier. To support this
operation, you define the Cashier interface as follows:

package com.apress.springrecipes.bookshop;
...
public interface Cashier {

 public void checkout(List<String> isbns, String username);
}

Table 10-5. Propagation Behaviors Supported by Spring

Propagation Description

REQUIRED If there’s an existing transaction in progress, the current method should run within
this transaction. Otherwise, it should start a new transaction and run within its own
transaction.

REQUIRES_NEW The current method must start a new transaction and run within its own transaction. If
there’s an existing transaction in progress, it should be suspended.

SUPPORTS If there’s an existing transaction in progress, the current method can run within this
transaction. Otherwise, it is not necessary to run within a transaction.

NOT_SUPPORTED The current method should not run within a transaction. If there’s an existing
transaction in progress, it should be suspended.

MANDATORY The current method must run within a transaction. If there’s no existing transaction in
progress, an exception will be thrown.

NEVER The current method should not run within a transaction. If there’s an existing
transaction in progress, an exception will be thrown.

NESTED If there’s an existing transaction in progress, the current method should run within the
nested transaction (supported by the JDBC 3.0 savepoint feature) of this transaction.
Otherwise, it should start a new transaction and run within its own transaction. This
feature is unique to Spring (whereas the previous propagation behaviors have analogs
in Java EE transaction propagation). The behavior is useful for situations such as batch
processing, in which you’ve got a long-running process (imagine processing 1 million
records) and you want to chunk the commits on the batch. So, you commit every 10,000
records. If something goes wrong, you roll back the nested transaction and you’ve lost
only 10,000 records worth of work (as opposed to the entire 1 million).

Chapter 10 ■ Spring tranSaCtion ManageMent

433

You can implement this interface by delegating the purchases to a bookshop bean by calling its
purchase() method multiple times. Note that the checkout() method is made transactional by applying the
@Transactional annotation.

package com.apress.springrecipes.bookshop;
...
import org.springframework.transaction.annotation.Transactional;

public class BookShopCashier implements Cashier {

 private BookShop bookShop;

 public void setBookShop(BookShop bookShop) {
 this.bookShop = bookShop;
 }

 @Transactional
 public void checkout(List<String> isbns, String username) {
 for (String isbn : isbns) {
 bookShop.purchase(isbn, username);
 }
 }
}

Then define a cashier bean in your bean configuration file and refer to the bookshop bean for
purchasing books.

@Configuration
@EnableTransactionManagement()
public class BookstoreConfiguration {
...

 @Bean
 public Cashier cashier() {
 BookShopCashier cashier = new BookShopCashier();
 cashier.setBookShop(bookShop());
 return cashier;
 }
}

To illustrate the propagation behavior of a transaction, enter the data shown in Tables 10-6, 10-7,
and 10-8 in your bookshop database.

Table 10-6. Sample Data in the BOOK Table for Testing Propagation Behaviors

ISBN BOOK_NAME PRICE

0001 The First Book 30

0002 The Second Book 50

Chapter 10 ■ Spring tranSaCtion ManageMent

434

Use the REQUIRED Propagation Behavior
When the user user1 checks out two books from the cashier, the balance is sufficient to purchase the first
book but not the second.

package com.apress.springrecipes.bookshop.spring;
...
public class Main {

 public static void main(String[] args) {
 ...
 Cashier cashier = context.getBean(Cashier.class);
 List<String> isbnList = Arrays.asList(new String[] { "0001", "0002"});
 cashier.checkout(isbnList, "user1");
 }
}

When the bookshop’s purchase() method is called by another transactional method, such as
checkout(), it will run within the existing transaction by default. This default propagation behavior is called
REQUIRED. That means there will be only one transaction whose boundary is the beginning and ending of
the checkout() method. This transaction will be committed only at the end of the checkout() method. As a
result, the user can purchase none of the books.

Figure 10-3 illustrates the REQUIRED propagation behavior.

Table 10-8. Sample Data in the ACCOUNT Table for Testing Propagation Behaviors

USERNAME BALANCE

user1 40

Tx1 begin

purchase() purchase()

checkout()

Tx1 end

Figure 10-3. The REQUIRED transaction propagation behavior

Table 10-7. Sample Data in the BOOK_STOCK Table for Testing Propagation Behaviors

ISBN STOCK

0001 10

0002 10

Chapter 10 ■ Spring tranSaCtion ManageMent

435

However, if the purchase() method is called by a nontransactional method and there’s no existing
transaction in progress, it will start a new transaction and run within its own transaction. The propagation
transaction attribute can be defined in the @Transactional annotation. For example, you can set the
REQUIRED behavior for this attribute as follows. In fact, this is unnecessary, because it’s the default behavior.

package com.apress.springrecipes.bookshop.spring;
...
import org.springframework.transaction.annotation.Propagation;
import org.springframework.transaction.annotation.Transactional;

public class JdbcBookShop extends JdbcDaoSupport implements BookShop {
 @Transactional(propagation = Propagation.REQUIRED)
 public void purchase(String isbn, String username) {
 ...
 }
}
package com.apress.springrecipes.bookshop.spring;
...
import org.springframework.transaction.annotation.Propagation;
import org.springframework.transaction.annotation.Transactional;

public class BookShopCashier implements Cashier {
 ...
 @Transactional(propagation = Propagation.REQUIRED)
 public void checkout(List<String> isbns, String username) {
 ...
 }
}

Use the REQUIRES_NEW Propagation Behavior
Another common propagation behavior is REQUIRES_NEW. This indicates that the method must start a
new transaction and run within its new transaction. If there’s an existing transaction in progress, it should
be suspended first (for example, with the checkout method on BookShopCashier, with a propagation of
REQUIRED).

package com.apress.springrecipes.bookshop.spring;
...
import org.springframework.transaction.annotation.Propagation;
import org.springframework.transaction.annotation.Transactional;

public class JdbcBookShop extends JdbcDaoSupport implements BookShop {
 @Transactional(propagation = Propagation.REQUIRES_NEW)
 public void purchase(String isbn, String username) {
 ...
 }
}

In this case, there will be three transactions started in total. The first transaction is started by the
checkout() method, but when the first purchase() method is called, the first transaction will be suspended,
and a new transaction will be started. At the end of the first purchase() method, the new transaction

Chapter 10 ■ Spring tranSaCtion ManageMent

436

completes and commits. When the second purchase() method is called, another new transaction will
be started. However, this transaction will fail and roll back. As a result, the first book will be purchased
successfully, while the second will not. Figure 10-4 illustrates the REQUIRES_NEW propagation behavior.

10-7. Set the Isolation Transaction Attribute
Problem
When multiple transactions of the same application or different applications are operating concurrently on
the same data set, many unexpected problems may arise. You must specify how you expect your transactions
to be isolated from one another.

Solution
The problems caused by concurrent transactions can be categorized into four types.

•	 Dirty read: For the two transactions T1 and T2, T1 reads a field that has been updated
by T2 but not yet committed. Later, if T2 rolls back, the field read by T1 will be
temporary and invalid.

•	 Nonrepeatable read: For the two transactions T1 and T2, T1 reads a field and then T2
updates the field. Later, if T1 reads the same field again, the value will be different.

•	 Phantom read: For the two transactions T1 and T2, T1 reads some rows from a table,
and then T2 inserts new rows into the table. Later, if T1 reads the same table again,
there will be additional rows.

•	 Lost updates: For the two transactions T1 and T2, they both select a row for update
and, based on the state of that row, make an update to it. Thus, one overwrites the
other when the second transaction to commit should have waited until the first one
committed before performing its selection.

In theory, transactions should be completely isolated from each other (i.e., serializable) to avoid all
the mentioned problems. However, this isolation level will have great impact on performance because
transactions have to run in serial order. In practice, transactions can run in lower isolation levels in order to
improve performance.

Tx1 begin
Tx1 suspend

Tx2 begin
Tx1 suspend

Tx3 begin
Tx1 resume

Tx2 end
Tx1 resume

Tx3 end

purchase() purchase()

checkout()

Tx1 end

Figure 10-4. The REQUIRES_NEW transaction propagation behavior

Chapter 10 ■ Spring tranSaCtion ManageMent

437

Table 10-9. Isolation Levels Supported by Spring

Isolation Description

DEFAULT Uses the default isolation level of the underlying database. For most databases, the
default isolation level is READ_COMMITTED.

READ_UNCOMMITTED Allows a transaction to read uncommitted changes by other transactions. The dirty
read, nonrepeatable read, and phantom read problems may occur.

READ_COMMITTED Allows a transaction to read only those changes that have been committed by other
transactions. The dirty read problem can be avoided, but the nonrepeatable read
and phantom read problems may still occur.

REPEATABLE_READ Ensures that a transaction can read identical values from a field multiple times. For
the duration of this transaction, updates made by other transactions to this field are
prohibited. The dirty read and nonrepeatable read problems can be avoided, but
the phantom read problem may still occur.

SERIALIZABLE Ensures that a transaction can read identical rows from a table multiple times.
For the duration of this transaction, inserts, updates, and deletes made by other
transactions to this table are prohibited. All the concurrency problems can be
avoided, but the performance will be low.

A transaction’s isolation level can be specified by the isolation transaction attribute. Spring supports five
isolation levels, as shown in Table 10-9. These levels are defined in the org.springframework.transaction.
TransactionDefinition interface.

 ■ Note transaction isolation is supported by the underlying database engine but not an application or a
framework. however, not all database engines support all these isolation levels. You can change the isolation
level of a JDBC connection by calling the setTransactionIsolation() method on the java.sql.Connection
interface.

How It Works
To illustrate the problems caused by concurrent transactions, let’s add two new operations to your bookshop
for increasing and checking the book stock.

package com.apress.springrecipes.bookshop;

public interface BookShop {
 ...
 public void increaseStock(String isbn, int stock);
 public int checkStock(String isbn);
}

Chapter 10 ■ Spring tranSaCtion ManageMent

438

Then, you implement these operations as follows. Note that these two operations should also be
declared as transactional.

package com.apress.springrecipes.bookshop;

import org.springframework.jdbc.core.support.JdbcDaoSupport;
import org.springframework.transaction.annotation.Isolation;
import org.springframework.transaction.annotation.Transactional;

public class JdbcBookShop extends JdbcDaoSupport implements BookShop {

 @Transactional
 public void purchase(String isbn, String username) {
 int price = getJdbcTemplate().queryForObject(
 "SELECT PRICE FROM BOOK WHERE ISBN = ?", Integer.class, isbn);

 getJdbcTemplate().update(
 "UPDATE BOOK_STOCK SET STOCK = STOCK - 1 WHERE ISBN = ?", isbn);

 getJdbcTemplate().update(
 "UPDATE ACCOUNT SET BALANCE = BALANCE - ? WHERE USERNAME = ?",

price, username);
 }

 @Transactional
 public void increaseStock(String isbn, int stock) {
 String threadName = Thread.currentThread().getName();
 System.out.println(threadName + " - Prepare to increase book stock");

 getJdbcTemplate().update("UPDATE BOOK_STOCK SET STOCK = STOCK + ?
WHERE ISBN = ?", stock, isbn);

 System.out.println(threadName + " - Book stock increased by " + stock);
 sleep(threadName);

 System.out.println(threadName + " - Book stock rolled back");
 throw new RuntimeException("Increased by mistake");
 }

 @Transactional(isolation = Isolation.READ_UNCOMMITTED)
 public int checkStock(String isbn) {
 String threadName = Thread.currentThread().getName();
 System.out.println(threadName + " - Prepare to check book stock");

 int stock = getJdbcTemplate().queryForObject("SELECT STOCK FROM BOOK_STOCK
WHERE ISBN = ?", Integer.class, isbn);

 System.out.println(threadName + " - Book stock is " + stock);
 sleep(threadName);

 return stock;
 }

Chapter 10 ■ Spring tranSaCtion ManageMent

439

Table 10-10. Sample Data in the BOOK Table for Testing Isolation Levels

ISBN BOOK_NAME PRICE

0001 The First Book 30

 private void sleep(String threadName) {
 System.out.println(threadName + " - Sleeping");

 try {
 Thread.sleep(10000);
 } catch (InterruptedException e) {
 }

 System.out.println(threadName + " - Wake up");
 }
}

To simulate concurrency, your operations need to be executed by multiple threads. You can track the
current status of the operations through the println statements. For each operation, you print a couple of
messages to the console around the SQL statement’s execution. The messages should include the thread
name for you to know which thread is currently executing the operation.

After each operation executes the SQL statement, you ask the thread to sleep for ten seconds. As
you know, the transaction will be committed or rolled back immediately once the operation completes.
Inserting a sleep statement can help to postpone the commit or rollback. For the increase() operation, you
eventually throw a RuntimeException to cause the transaction to roll back. Let’s look at a simple client that
runs these examples.

Before you start with the isolation-level examples, enter the data from Tables 10-10 and 10-11 into your
bookshop database. (Note that the ACCOUNT table isn’t needed in this example.)

Table 10-11. Sample Data in the BOOK_STOCK Table for Testing Isolation Levels

ISBN STOCK

0001 10

Use the READ_UNCOMMITTED and READ_COMMITTED Isolation Levels
READ_UNCOMMITTED is the lowest isolation level that allows a transaction to read uncommitted changes made
by other transactions. You can set this isolation level in the @Transaction annotation of your checkStock()
method.

package com.apress.springrecipes.bookshop.spring;
...
import org.springframework.transaction.annotation.Isolation;
import org.springframework.transaction.annotation.Transactional;

Chapter 10 ■ Spring tranSaCtion ManageMent

440

public class JdbcBookShop extends JdbcDaoSupport implements BookShop {
 ...
 @Transactional(isolation = Isolation.READ_UNCOMMITTED)
 public int checkStock(String isbn) {
 ...
 }
}

You can create some threads to experiment on this transaction isolation level. In the following Main
class, there are two threads you are going to create. Thread 1 increases the book stock, while thread 2 checks
the book stock. Thread 1 starts 5 seconds before thread 2.

package com.apress.springrecipes.bookshop.spring;
...
public class Main {

 public static void main(String[] args) {
 ...
 final BookShop bookShop = context.getBean(BookShop.class);

 Thread thread1 = new Thread(() -> {
 try {
 bookShop.increaseStock("0001", 5);
 } catch (RuntimeException e) {}
 }, "Thread 1");

 Thread thread2 = new Thread(() -> {
 bookShop.checkStock("0001");
 }, "Thread 2");

 thread1.start();
 try {
 Thread.sleep(5000);
 } catch (InterruptedException e) {}
 thread2.start();
 }
}

If you run the application, you will get the following result:

Thread 1―Prepare to increase book stock
Thread 1―Book stock increased by 5
Thread 1―Sleeping
Thread 2―Prepare to check book stock
Thread 2―Book stock is 15
Thread 2―Sleeping
Thread 1―Wake up
Thread 1―Book stock rolled back
Thread 2―Wake up

Chapter 10 ■ Spring tranSaCtion ManageMent

441

First, thread 1 increased the book stock and then went to sleep. At that time, thread 1’s transaction had
not yet been rolled back. While thread 1 was sleeping, thread 2 started and attempted to read the book stock.
With the READ_UNCOMMITTED isolation level, thread 2 would be able to read the stock value that had been
updated by an uncommitted transaction.

However, when thread 1 wakes up, its transaction will be rolled back because of a RuntimeException,
so the value read by thread 2 is temporary and invalid. This problem is known as a dirty read because a
transaction may read values that are “dirty.”

To avoid the dirty read problem, you should raise the isolation level of checkStock() to READ_
COMMITTED.

package com.apress.springrecipes.bookshop.spring;
...
import org.springframework.transaction.annotation.Isolation;
import org.springframework.transaction.annotation.Transactional;

public class JdbcBookShop extends JdbcDaoSupport implements BookShop {
 ...
 @Transactional(isolation = Isolation.READ_COMMITTED)
 public int checkStock(String isbn) {
 ...
 }
}

If you run the application again, thread 2 won’t be able to read the book stock until thread 1 has rolled
back the transaction. In this way, the dirty read problem can be avoided by preventing a transaction from
reading a field that has been updated by another uncommitted transaction.

Thread 1―Prepare to increase book stock
Thread 1―Book stock increased by 5
Thread 1―Sleeping
Thread 2―Prepare to check book stock
Thread 1―Wake up
Thread 1―Book stock rolled back
Thread 2―Book stock is 10
Thread 2―Sleeping
Thread 2―Wake up

For the underlying database to support the READ_COMMITTED isolation level, it may acquire an update
lock on a row that was updated but not yet committed. Then, other transactions must wait to read that row
until the update lock is released, which happens when the locking transaction commits or rolls back.

Chapter 10 ■ Spring tranSaCtion ManageMent

442

Use the REPEATABLE_READ Isolation Level
Now, let’s restructure the threads to demonstrate another concurrency problem. Swap the tasks of the two
threads so that thread 1 checks the book stock before thread 2 increases the book stock.

package com.apress.springrecipes.bookshop.spring;
...
public class Main {

 public static void main(String[] args) {
 ...
 final BookShop bookShop = (BookShop) context.getBean("bookShop");

 Thread thread1 = new Thread(() -> {
 public void run() {
 bookShop.checkStock("0001");
 }
 }, "Thread 1");

 Thread thread2 = new Thread(() -> {
 try {
 bookShop.increaseStock("0001", 5);
 } catch (RuntimeException e) {}
 }, "Thread 2");

 thread1.start();
 try {
 Thread.sleep(5000);
 } catch (InterruptedException e) {}
 thread2.start();
 }
}

If you run the application, you will get the following result:

Thread 1―Prepare to check book stock
Thread 1―Book stock is 10
Thread 1―Sleeping
Thread 2―Prepare to increase book stock
Thread 2―Book stock increased by 5
Thread 2―Sleeping
Thread 1―Wake up
Thread 2―Wake up
Thread 2―Book stock rolled back

First, thread 1 read the book stock and then went to sleep. At that time, thread 1’s transaction had not
yet been committed. While thread 1 was sleeping, thread 2 started and attempted to increase the book stock.
With the READ_COMMITTED isolation level, thread 2 would be able to update the stock value that was read by
an uncommitted transaction.

However, if thread 1 reads the book stock again, the value will be different from its first read. This
problem is known as a nonrepeatable read because a transaction may read different values for the same field.

Chapter 10 ■ Spring tranSaCtion ManageMent

443

To avoid the nonrepeatable read problem, you should raise the isolation level of checkStock() to
REPEATABLE_READ.

package com.apress.springrecipes.bookshop.spring;
...
import org.springframework.transaction.annotation.Isolation;
import org.springframework.transaction.annotation.Transactional;

public class JdbcBookShop extends JdbcDaoSupport implements BookShop {
 ...
 @Transactional(isolation = Isolation.REPEATABLE_READ)
 public int checkStock(String isbn) {
 ...
 }
}

If you run the application again, thread 2 won’t be able to update the book stock until thread 1 has
committed the transaction. In this way, the nonrepeatable read problem can be avoided by preventing a
transaction from updating a value that has been read by another uncommitted transaction.

Thread 1―Prepare to check book stock
Thread 1―Book stock is 10
Thread 1―Sleeping
Thread 2―Prepare to increase book stock
Thread 1―Wake up
Thread 2―Book stock increased by 5
Thread 2―Sleeping
Thread 2―Wake up
Thread 2―Book stock rolled back

For the underlying database to support the REPEATABLE_READ isolation level, it may acquire a read lock
on a row that was read but not yet committed. Then, other transactions must wait to update the row until the
read lock is released, which happens when the locking transaction commits or rolls back.

Use the SERIALIZABLE Isolation Level
After a transaction has read several rows from a table, another transaction inserts new rows into the same
table. If the first transaction reads the same table again, it will find additional rows that are different from
the first read. This problem is known as a phantom read. Actually, a phantom read is very similar to a
nonrepeatable read but involves multiple rows.

To avoid the phantom read problem, you should raise the isolation level to the highest: SERIALIZABLE.
Notice that this isolation level is the slowest because it may acquire a read lock on the full table. In practice,
you should always choose the lowest isolation level that can satisfy your requirements.

Chapter 10 ■ Spring tranSaCtion ManageMent

444

10-8. Set the Rollback Transaction Attribute
Problem
By default, only unchecked exceptions (i.e., of type RuntimeException and Error) will cause a transaction to
roll back, while checked exceptions will not. Sometimes, you may want to break this rule and set your own
exceptions for rolling back.

Solution
The exceptions that cause a transaction to roll back or not can be specified by the rollback transaction
attribute. Any exceptions not explicitly specified in this attribute will be handled by the default rollback rule
(i.e., rolling back for unchecked exceptions and not rolling back for checked exceptions).

How It Works
A transaction’s rollback rule can be defined in the @Transactional annotation via the rollbackFor and
noRollbackFor attributes. These two attributes are declared as Class[], so you can specify more than one
exception for each attribute.

package com.apress.springrecipes.bookshop.spring;
...
import org.springframework.transaction.annotation.Propagation;
import org.springframework.transaction.annotation.Transactional;
import java.io.IOException;

public class JdbcBookShop extends JdbcDaoSupport implements BookShop {
 ...
 @Transactional(
 propagation = Propagation.REQUIRES_NEW,
 rollbackFor = IOException.class,
 noRollbackFor = ArithmeticException.class)
 public void purchase(String isbn, String username) throws Exception {
 throw new ArithmeticException();
 }
}

10-9. Set the Timeout and Read-Only Transaction Attributes
Problem
Because a transaction may acquire locks on rows and tables, a long transaction will tie up resources and
have an impact on overall performance. Besides, if a transaction only reads but does not update data,
the database engine could optimize this transaction. You can specify these attributes to increase the
performance of your application.

Chapter 10 ■ Spring tranSaCtion ManageMent

445

Solution
The timeout transaction attribute (an integer that describes seconds) indicates how long your transaction
can survive before it is forced to roll back. This can prevent a long transaction from tying up resources. The
read-only attribute indicates that this transaction will only read but not update data. The read-only
flag is just a hint to enable a resource to optimize the transaction, and a resource might not necessarily
cause a failure if a write is attempted.

How It Works
The timeout and read-only transaction attributes can be defined in the @Transactional annotation. Note
that the timeout is measured in seconds.

package com.apress.springrecipes.bookshop.spring;
...
import org.springframework.transaction.annotation.Isolation;
import org.springframework.transaction.annotation.Transactional;

public class JdbcBookShop extends JdbcDaoSupport implements BookShop {
 ...
 @Transactional(
 isolation = Isolation.REPEATABLE_READ,
 timeout = 30,
 readOnly = true)
 public int checkStock(String isbn) {
 ...
 }
}

10-10. Manage Transactions with Load-Time Weaving
Problem
By default, Spring’s declarative transaction management is enabled via its AOP framework. However, as
Spring AOP can only advise public methods of beans declared in the IoC container, you are restricted
to managing transactions within this scope using Spring AOP. Sometimes you may want to manage
transactions for nonpublic methods, or methods of objects created outside the Spring IoC container (e.g.,
domain objects).

Solution
Spring provides an AspectJ aspect named AnnotationTransactionAspect that can manage transactions for
any methods of any objects, even if the methods are nonpublic or the objects are created outside the Spring
IoC container. This aspect will manage transactions for any methods with the @Transactional annotation.
You can choose either AspectJ’s compile-time weaving or load-time weaving to enable this aspect.

Chapter 10 ■ Spring tranSaCtion ManageMent

446

How It Works
To weave this aspect into your domain classes at load time, you have to put the @EnableLoadTimeWeaving
annotation on your configuration class. To enable Spring’s AnnotationTransactionAspect for transaction
management, you just define the @EnableTransactionManagement annotation and set its mode attribute
to ASPECTJ. The @EnableTransactionManagement annotation takes two values for the mode attribute:
ASPECTJ and PROXY. ASPECTJ stipulates that the container should use load-time or compile-time weaving to
enable the transaction advice. This requires the spring-instrument JAR to be on the classpath, as well as the
appropriate configuration at load time or compile time.

Alternatively, PROXY stipulates that the container should use the Spring AOP mechanisms. It’s important
to note that the ASPECTJ mode doesn’t support the configuration of the @Transactional annotation
on interfaces. Then the transaction aspect will automatically get enabled. You also have to provide a
transaction manager for this aspect. By default, it will look for a transaction manager whose name is
transactionManager.

package com.apress.springrecipes.bookshop;

Configuration
@EnableTransactionManagement(mode = AdviceMode.ASPECTJ)
@EnableLoadTimeWeaving
public class BookstoreConfiguration { ... }

 ■ Note to use the Spring aspect library for aspectJ, you have to include the spring-aspects module on
your CLASSPATH. to enable load-time weaving, you also have to include a Java agent, which is available in the
spring-instrument module.

For a simple Java application, you can weave this aspect into your classes at load time with the Spring
agent specified as a VM argument.

java -javaagent:lib/spring-instrument-5.0.0.RELEASE.jar -jar recipe_10_10_i.jar

Summary
This chapter discussed transactions and why you should use them. You explored the approach taken for
transaction management historically in Java EE and then learned how the approach the Spring framework
offers differs. You explored the explicit use of transactions in your code as well as the implicit use with
annotation-driven aspects. You set up a database and used transactions to enforce valid state in the
database.

In the next chapter, you will explore Spring Batch. Spring Batch provides infrastructure and components
that can be used as the foundation for batch processing jobs.

447© Marten Deinum, Daniel Rubio, and Josh Long 2017
M. Deinum et al., Spring 5 Recipes, DOI 10.1007/978-1-4842-2790-9_11

CHAPTER 11

Spring Batch

Batch processing has been around for decades. The earliest widespread applications of technology for
managing information (information technology) were applications of batch processing. These environments
didn’t have interactive sessions and usually didn’t have the capability to load multiple applications in
memory. Computers were expensive and bore no resemblance to today’s servers. Typically, machines
were multiuser and in use during the day (time-shared). During the evening, however, the machines would
sit idle, which was a tremendous waste. Businesses invested in ways to utilize the offline time to do work
aggregated through the course of the day. Out of this practice emerged batch processing.

Batch processing solutions typically run offline, unaware of events in the system. In the past, batch
processes ran offline out of necessity. Today, however, most batch processes are run offline because having
work done at a predictable time and having chunks of work done are requirements for lots of architectures.
A batch processing solution doesn’t usually respond to requests, although there’s no reason it couldn’t be
started as a consequence of a message or request. Batch processing solutions tend to be used on large data
sets where the duration of the processing is a critical factor in its architecture and implementation.
A process might run for minutes, hours, or days! Jobs may have unbounded durations (i.e., run until all work
is finished, even if this means running for a few days), or they may be strictly bounded (jobs must proceed
in constant time, with each row taking the same amount of time regardless of bound, which lets you, say,
predict that a given job will finish in a certain time window).

Batch processing has had a long history that informs even modern batch processing solutions.
Mainframe applications used batch processing, and one of the largest modern-day environments for

batch processing, CICS on z/OS, is still fundamentally a mainframe operating system. Customer Information
Control System (CICS) is very well suited to a particular type of task: take input, process it, and write it to
output. CICS is a transaction server used most in financial institutions and government that runs programs
in a number of languages (COBOL, C, PLI, and so on). It can easily support thousands of transactions per
second. CICS was one of the first containers, a concept familiar to Spring and Java EE users, even though
CICS itself debuted in 1969! A CICS installation is very expensive, and although IBM still sells and installs
CICS, many other solutions have come along since then. These solutions are usually specific to a particular
environment: COBOL/CICS on mainframes, C on Unix, and, today, Java on any number of environments.
The problem is that there’s very little standardized infrastructure for dealing with these types of batch
processing solutions. Few people are even aware of what they’re missing because there’s very little native
support on the Java platform for batch processing. Businesses that need a solution typically end up writing it
in-house, resulting in fragile, domain-specific code.

The pieces are there, however: transaction support, fast I/O, schedulers such as Quartz, and solid
threading support, as well as a very powerful concept of an application container in Java EE and Spring. It
was only natural that Dave Syer and his team would come along and build Spring Batch, a batch processing
solution for the Spring platform.

It’s important to think about the kinds of problems this framework solves before diving into the details.
A technology is defined by its solution space. A typical Spring Batch application typically reads in a lot
of data and then writes it back out in a modified form. Decisions about transactional barriers, input size,
concurrency, and order of steps in processing are all dimensions of a typical integration.

Chapter 11 ■ Spring BatCh

448

A common requirement is loading data from a comma-separated value (CSV) file, perhaps as a
business-to-business (B2B) transaction or perhaps as an integration technique with an older legacy
application. Another common application is nontrivial processing on records in a database. Perhaps the
output is an update of the database record itself. An example might be resizing images on the file system
whose metadata is stored in a database or needing to trigger another process based on some condition.

 ■ Note Fixed-width data is a format of rows and cells, quite like a CSV file. CSV file cells are separated by
commas or tabs, however, and fixed-width data works by presuming certain lengths for each value. the first
value might be the first nine characters, the second value the next four characters after that, and so on.

Fixed-width data that is often used with legacy or embedded systems is a fine candidate for batch
processing. Processing that deals with a resource that’s fundamentally nontransactional (e.g., a web service
or a file) begs for batch processing because batch processing provides retry/skip/fail functionality that most
web services will not.

It’s also important to understand what Spring Batch doesn’t do. Spring Batch is a flexible but not
all-encompassing solution. Just as Spring doesn’t reinvent the wheel when it can be avoided, Spring Batch
leaves a few important pieces to the discretion of the implementer. Case in point: Spring Batch provides a
generic mechanism by which to launch a job, be it by the command line, a Unix cron, an operating system
service, Quartz (discussed in Chapter 13), or in response to an event on an enterprise service bus
(for example, the Mule ESB or Spring’s own ESB-like solution, Spring Integration, which is discussed in
Chapter 15). Another example is the way Spring Batch manages the state of batch processes. Spring Batch
requires a durable store. The only useful implementation of a JobRepository (an interface provided by
Spring Batch for storing batch metadata entities) requires a database because a database is transactional
and there’s no need to reinvent it. To which database you should deploy, however, is largely unspecified,
although there are useful defaults provided for you, of course.

 ■ Note the Jee7 specification includes JSr-352 (Batch applications for the Java platform). Spring Batch is
the reference implementation of this specification.

Runtime Metadata Model
Spring Batch works with a JobRepository, which is the keeper of all the knowledge and metadata for each
job (including component parts such as JobInstances, JobExecution, and StepExecution). Each job
is composed of one or more steps, one after another. With Spring Batch, a step can conditionally follow
another step, allowing for primitive workflows.

These steps can also be concurrent; two steps can run at the same time.
When a job is run, it’s often coupled with JobParameter to parameterize the runtime behavior of the Job

itself. For example, a job might take a date parameter to determine which records to process. To identify a
job run, a JobInstance is created. A JobInstance is unique because of the JobParameters associated with it.
Each time the same JobInstance (i.e., the same Job and JobParameters) is run, it’s called a JobExecution.
This is a runtime context for a version of the Job. Ideally, for every JobInstance there’d be only one
JobExecution: the JobExecution that was created the first time the JobInstance ran. However, if there were
any errors, the JobInstance should be restarted; the subsequent run would create another JobExecution.
For every step in the original job, there is a StepExecution in the JobExecution.

Thus, you can see that Spring Batch has a mirrored object graph—one reflecting the design/build time
view of a job and another reflecting the runtime view of a job. This split between the prototype and the
instance is similar to the way many workflow engines, including jBPM, work.

http://dx.doi.org/10.1007/978-1-4842-2790-9_13
http://dx.doi.org/10.1007/978-1-4842-2790-9_15

Chapter 11 ■ Spring BatCh

449

For example, suppose that a daily report is generated at 2 a.m. The parameter to the job would be the
date (most likely the previous day’s date). The job, in this case, would model a loading step, a summary step,
and an output step. Each day the job is run, a new JobInstance and JobExecution would be created. If there
are any retries of the same JobInstance, conceivably many JobExecutions would be created.

11-1. Set Up Spring Batch’s Infrastructure
Problem
Spring Batch provides a lot of flexibility and guarantees to your application, but it cannot work in a vacuum.
To do its work, the JobRepository requires data storage (could be a SQL database or other means of
storing data). Additionally, there are several collaborators required for Spring Batch to do its work. This
configuration is mostly boilerplate.

Solution
In this recipe, you’ll set up the Spring Batch database and also create a Spring application configuration that
can be imported by subsequent solutions. This configuration is repetitive and largely uninteresting. It will
also tell Spring Batch what database to use for the metadata it stores.

How It Works
The JobRepository interface is the first thing that you’ll have to deal with when setting up a Spring
Batch process. You usually don’t deal with it in code, but in a Spring configuration, it is key to getting
everything else working. There’s only one really useful implementation of the JobRepository interface
called SimpleJobRepository, which stores information about the state of the batch processes in
a data store. Creation is done through a JobRepositoryFactoryBean. Another standard factory,
MapJobRepositoryFactoryBean, is useful mainly for testing because its state is not durable—it’s an
in-memory implementation. Both factories create an instance of SimpleJobRepository.

Because this JobRepository instance works on your database, you need to set up the schema for Spring
Batch to work with. The schemas for different databases are in the Spring Batch distribution. The simplest
way to initialize your database is to use a DataSourceInitializer in a Java config. The files can be found
in the org/springframework/batch/core directory; there are several .sql files, each containing the data
definition language (DDL, the subset of SQL used for defining and examining the structure of a database) for
the required schema for the database of your choice. These examples will use H2 (an in-memory database),
so you will use the DDL for H2: schema-h2.sql. Make sure you configure it and tell Spring Batch about it, as
in the following configurations:

@Configuration
@ComponentScan("com.apress.springrecipes.springbatch")
@PropertySource("classpath:batch.properties")
public class BatchConfiguration {

 @Autowired
 private Environment env;

 @Bean
 public DataSource dataSource() {
 DriverManagerDataSource dataSource = new DriverManagerDataSource();

Chapter 11 ■ Spring BatCh

450

 dataSource.setUrl(env.getRequiredProperty("dataSource.url"));
 dataSource.setUsername(env.getRequiredProperty("dataSource.username"));
 dataSource.setPassword(env.getRequiredProperty("dataSource.password"));
 return dataSource;
 }

 @Bean
 public DataSourceInitializer dataSourceInitializer() {
 DataSourceInitializer initializer = new DataSourceInitializer();
 initializer.setDataSource(dataSource());
 initializer.setDatabasePopulator(databasePopulator());
 return initializer;
 }

 private DatabasePopulator databasePopulator() {
 ResourceDatabasePopulator databasePopulator = new ResourceDatabasePopulator();
 databasePopulator.setContinueOnError(true);
 databasePopulator.addScript(
 new ClassPathResource("org/springframework/batch/core/schema-h2.sql"));
 databasePopulator.addScript(
 new ClassPathResource("sql/reset_user_registration.sql"));
 return databasePopulator;
 }

 @Bean
 public DataSourceTransactionManager transactionManager() {
 return new DataSourceTransactionManager(dataSource());
 }

 @Bean
 public JobRepositoryFactoryBean jobRepository() {
 JobRepositoryFactoryBean jobRepositoryFactoryBean = new JobRepositoryFactoryBean();
 jobRepositoryFactoryBean.setDataSource(dataSource());
 jobRepositoryFactoryBean.setTransactionManager(transactionManager());
 return jobRepositoryFactoryBean;
 }

 @Bean
 public JobLauncher jobLauncher() throws Exception {
 SimpleJobLauncher jobLauncher = new SimpleJobLauncher();
 jobLauncher.setJobRepository(jobRepository().getObject());
 return jobLauncher;
 }

 @Bean
 public JobRegistryBeanPostProcessor jobRegistryBeanPostProcessor() {
 JobR egistryBeanPostProcessor jobRegistryBeanPostProcessor =

new JobRegistryBeanPostProcessor();
 jobRegistryBeanPostProcessor.setJobRegistry(jobRegistry());
 return jobRegistryBeanPostProcessor;
 }

Chapter 11 ■ Spring BatCh

451

 @Bean
 public JobRegistry jobRegistry() {
 return new MapJobRegistry();
 }
}

The first few beans are related strictly to configuration. There’s nothing particularly novel or peculiar to
Spring Batch: a data source, a transaction manager, and a data source initializer.

Eventually, you get to the declaration of a MapJobRegistry instance. This is critical—it is the central
store for information regarding a given job, and it controls the “big picture” about all jobs in the system.
Everything else works with this instance.

Next, you have a SimpleJobLauncher, whose sole purpose is to give you a mechanism to launch batch
jobs, where a “job” in this case is your batch solution. The jobLauncher is used to specify the name of the
batch solution to run as well as any parameters required. I’ll follow up more on that in the next recipe.

Next, you define a JobRegistryBeanPostProcessor. This bean scans your Spring context file and
associates any configured jobs with the MapJobRegistry.

Finally, you get to the SimpleJobRepository (that is, in turn, factoried by the
JobRepositoryFactoryBean). The JobRepository is an implementation of a “repository” (in the Patterns of
Enterprise Application Architecture sense of the word): it handles persistence and retrieval for the domain
models surrounding steps and jobs.

The @PropertySource annotation will instruct Spring to load your batch.properties file (located in
src/main/resource). You are going to retrieve the properties you need using the Environment class.

 ■ Tip You could have also used an @Value annotation to inject all individual properties, but when needing
multiple properties in a configuration class, it is easier to use the Environment object.

The batch.properties file contains the following:

dataSource.password=sa
dataSource.username=
dataSource.url= jdbc:h2:~/batch

Although this works, Spring Batch also has support to configure these defaults out of the box using the
@EnableBatchProcessing annotation. This makes things a little easier.

package com.apress.springrecipes.springbatch.config;

import org.apache.commons.dbcp2.BasicDataSource;
import org.springframework.batch.core.configuration.annotation.EnableBatchProcessing;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.ComponentScan;
import org.springframework.context.annotation.Configuration;
import org.springframework.context.annotation.PropertySource;
import org.springframework.core.env.Environment;
import org.springframework.core.io.ClassPathResource;
import org.springframework.jdbc.datasource.init.DataSourceInitializer;
import org.springframework.jdbc.datasource.init.ResourceDatabasePopulator;

Chapter 11 ■ Spring BatCh

452

import javax.sql.DataSource;

@Configuration
@EnableBatchProcessing
@ComponentScan("com.apress.springrecipes.springbatch")
@PropertySource("classpath:/batch.properties")
public class BatchConfiguration {

 @Autowired
 private Environment env;

 @Bean
 public DataSource dataSource() {
 BasicDataSource dataSource = new BasicDataSource();
 dataSource.setUrl(env.getRequiredProperty("dataSource.url"));
 dataSource.setDriverClassName(
 env.getRequiredProperty("dataSource.driverClassName"));
 dataSource.setUsername(env.getProperty("dataSource.username"));
 dataSource.setPassword(env.getProperty("dataSource.password"));
 return dataSource;
 }

 @Bean
 public DataSourceInitializer databasePopulator() {
 ResourceDatabasePopulator populator = new ResourceDatabasePopulator();
 popu lator.addScript(

new ClassPathResource("org/springframework/batch/core/schema-derby.sql"));
 populator.addScript(new ClassPathResource("sql/reset_user_registration.sql"));
 populator.setContinueOnError(true);
 populator.setIgnoreFailedDrops(true);

 DataSourceInitializer initializer = new DataSourceInitializer();
 initializer.setDatabasePopulator(populator);
 initializer.setDataSource(dataSource());
 return initializer;
 }
}

This class contains only two bean definitions: one for the data source and one for initializing the
database; everything else has been taken care of because of the @EnableBatchProcessing annotation. The
previous configuration class will bootstrap Spring Batch with some sensible defaults.

The default configuration will configure a JobRepository, JobRegistry, and JobLauncher.
If there are multiple data sources in your application, you need to add an explicit BatchConfigurer to

select the data source to use for the batch part of your application.
The following Main class will use the Java-based configuration for running the batch application:

package com.apress.springrecipes.springbatch;

import com.apress.springrecipes.springbatch.config.BatchConfiguration;
import org.springframework.batch.core.configuration.JobRegistry;
import org.springframework.batch.core.launch.JobLauncher;
import org.springframework.batch.core.repository.JobRepository;

Chapter 11 ■ Spring BatCh

453

import org.springframework.context.ApplicationContext;
import org.springframework.context.annotation.AnnotationConfigApplicationContext;

public class Main {
 public static void main(String[] args) throws Throwable {
 Appl icationContext context =

new AnnotationConfigApplicationContext(BatchConfiguration.class);

 JobRegistry jobRegistry = context.getBean("jobRegistry", JobRegistry.class);
 JobLauncher jobLauncher = context.getBean("jobLauncher", JobLauncher.class);
 JobRepository jobRepository = context.getBean("jobRepository", JobRepository.class);

 System.out.println("JobRegistry: " + jobRegistry);
 System.out.println("JobLauncher: " + jobLauncher);
 System.out.println("JobRepository: " + jobRepository);

 }
}

11-2. Read and Write Data
Problem
You want to insert data from a CSV file into a database. This solution will be one of the simplest solutions
and will give you a chance to explore the moving pieces of a typical solution.

Solution
You’ll build a solution that does a minimal amount of work, while being a viable application of the
technology. The solution will read in a file of arbitrary length and write out the data into a database. The end
result will be almost 100 percent code free. You will rely on an existing model class and write one class (a class
containing the public static void main(String [] args) method) to round out the example. There’s no
reason why the model class couldn’t be a Hibernate class or something from your DAO layer; however, in this
case it’s a brainless POJO. This solution will use the components you configured in recipe 11-1.

How It Works
This example demonstrates the simplest possible use of Spring Batch: to provide scalability. This program
will do nothing but read data from a CSV file, with fields delimited by commas and rows delimited by
newlines. It then inserts the records into a table. You are exploiting the intelligent infrastructure that Spring
Batch provides to avoid worrying about scaling. This application could easily be done manually. You will not
exploit any of the smart transactional functionality made available to you, nor will you worry about retries
for the time being.

This solution is as simple as Spring Batch solutions get. Spring Batch models solutions using XML
schema. The abstractions and terms are in the spirit of classical batch processing solutions so will be portable
from previous technologies and perhaps to subsequent technologies. Spring Batch provides useful default
classes that you can override or selectively adjust. In the following example, you’ll use a lot of the utility
implementations provided by Spring Batch. Fundamentally, most solutions look about the same and feature a
combination of the same set of interfaces. It’s usually just a matter of picking and choosing the right ones.

Chapter 11 ■ Spring BatCh

454

When I ran this program, it worked on files with 20,000 rows, and it worked on files with 1 million rows.
I experienced no increase in memory, which indicates there were no memory leaks. Naturally, it took a lot
longer! (The application ran for several hours with the 1-million-row insert.)

 ■ Tip Of course, it would be catastrophic if you worked with a million rows and it failed on the penultimate
record. You’d lose all your work when the transaction rolled back! read on for examples on chunking.
additionally, you might want to read Chapter 10 to brush up on transactions.

create table USER_REGISTRATION (
 ID BIGINT NOT NULL PRIMARY KEY GENERATED ALWAYS AS IDENTITY (START WITH 1, INCREMENT BY 1),
 FIRST_NAME VARCHAR(255) not null,
 LAST_NAME VARCHAR(255) not null,
 COMPANY VARCHAR(255) not null,
 ADDRESS VARCHAR(255) not null,
 CITY VARCHAR(255) not null,
 STATE VARCHAR(255) not null,
 ZIP VARCHAR(255) not null,
 COUNTY VARCHAR(255) not null,
 URL VARCHAR(255) not null,
 PHONE_NUMBER VARCHAR(255) not null,
 FAX VARCHAR(255) not null
) ;

I didn’t tune the table at all. For example, there are no indexes on any of the columns besides the
primary key. This is to avoid complicating the example. Great care should be taken with a table like this one
in a nontrivial, production-bound application.

Spring Batch applications are workhorse applications and have the potential to reveal bottlenecks in
your application you didn’t know you had. Imagine suddenly being able to achieve 1 million new database
insertions every 10 minutes. Would your database grind to a halt? Insert speed can be a critical factor in the
speed of your application. Software developers will (ideally) think about their database schema in terms of
how well it enforces the constraints of the business logic and how well it serves the overall business model.
However, it’s important to wear another hat, that of a DBA, when writing applications such as this one. A
common solution is to create a denormalized table whose contents can be coerced into valid data once
inside the database, perhaps by a trigger on inserts. This is typical in data warehousing. Later, you’ll explore
using Spring Batch to do processing on a record before insertion. This lets the developer verify or override
the input into the database. This processing, in tandem with a conservative application of constraints that
are best expressed in the database, can make for applications that are very robust and quick.

The Job Configuration
The configuration for the job is as follows:

package com.apress.springrecipes.springbatch.config;

import com.apress.springrecipes.springbatch.UserRegistration;
import org.springframework.batch.core.Job;
import org.springframework.batch.core.Step;

http://dx.doi.org/10.1007/978-1-4842-2790-9_10

Chapter 11 ■ Spring BatCh

455

import org.springframework.batch.core.configuration.annotation.JobBuilderFactory;
import org.springframework.batch.core.configuration.annotation.StepBuilderFactory;
import org.springframework.batch.item.ItemReader;
import org.springframework.batch.item.ItemWriter;
import org.springframework.batch.item.database.BeanPropertyItemSqlParameterSourceProvider;
import org.springframework.batch.item.database.JdbcBatchItemWriter;
import org.springframework.batch.item.file.FlatFileItemReader;
import org.springframework.batch.item.file.LineMapper;
import org.springframework.batch.item.file.mapping.BeanWrapperFieldSetMapper;
import org.springframework.batch.item.file.mapping.DefaultLineMapper;
import org.springframework.batch.item.file.transform.DelimitedLineTokenizer;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.core.io.Resource;

import javax.sql.DataSource;

@Configuration
public class UserJob {

 private static final String INSERT_REGISTRATION_QUERY =
 "insert into USER_REGISTRATION (FIRST_NAME, LAST_NAME, COMPANY, ADDRESS,CITY,

STATE,ZIP,COUNTY,URL,PHONE_NUMBER,FAX)" +
 " values " +
 "(:firstName,:lastName,:company,:address,:city,:state,:zip,:county,:url,:

phoneNumber,:fax)";

 @Autowired
 private JobBuilderFactory jobs;

 @Autowired
 private StepBuilderFactory steps;

 @Autowired
 private DataSource dataSource;

 @Value("file:${user.home}/batches/registrations.csv")
 private Resource input;

 @Bean
 public Job insertIntoDbFromCsvJob() {
 return jobs.get("User Registration Import Job")
 .start(step1())
 .build();
 }

 @Bean
 public Step step1() {
 return steps.get("User Registration CSV To DB Step")
 .<UserRegistration,UserRegistration>chunk(5)

Chapter 11 ■ Spring BatCh

456

 .reader(csvFileReader())
 .writer(jdbcItemWriter())
 .build();
 }

 @Bean
 public FlatFileItemReader<UserRegistration> csvFileReader() {
 FlatFileItemReader<UserRegistration> itemReader = new FlatFileItemReader<>();
 itemReader.setLineMapper(lineMapper());
 itemReader.setResource(input);
 return itemReader;
 }

 @Bean
 public JdbcBatchItemWriter<UserRegistration> jdbcItemWriter() {
 JdbcBatchItemWriter<UserRegistration> itemWriter = new JdbcBatchItemWriter<>();
 itemWriter.setDataSource(dataSource);
 itemWriter.setSql(INSERT_REGISTRATION_QUERY);
 itemWriter.setItemSqlParameterSourceProvider(new BeanPropertyItemSql

ParameterSourceProvider<>());
 return itemWriter;
 }

 @Bean
 public DefaultLineMapper<UserRegistration> lineMapper() {
 DefaultLineMapper<UserRegistration> lineMapper = new DefaultLineMapper<>();
 lineMapper.setLineTokenizer(tokenizer());
 lineMapper.setFieldSetMapper(fieldSetMapper());
 return lineMapper;
 }

 @Bean
 public BeanWrapperFieldSetMapper<UserRegistration> fieldSetMapper() {
 BeanWrapperFieldSetMapper<UserRegistration> fieldSetMapper = new

BeanWrapperFieldSetMapper<>();
 fieldSetMapper.setTargetType(UserRegistration.class);
 return fieldSetMapper;
 }

 @Bean
 public DelimitedLineTokenizer tokenizer() {
 DelimitedLineTokenizer tokenizer = new DelimitedLineTokenizer();
 tokenizer.setDelimiter(",");
 tokenizer.setNames(new String[]{"firstName","lastName","company","address",

"city","state","zip","county","url","phoneNumber","fax"});
 return tokenizer;
 }
}

Chapter 11 ■ Spring BatCh

457

As described earlier, a job consists of steps, which are the real workhorse of a given job. The steps can
be as complex or as simple as you like. Indeed, a step could be considered the smallest unit of work for
a job. Input (what’s read) is passed to the step and potentially processed; then output (what’s written) is
created from the step. This processing is spelled out using a Tasklet (which is another interface provided by
Spring Batch). You can provide your own Tasklet implementation or simply use some of the preconfigured
configurations for different processing scenarios. These implementations are made available in terms
of configuration methods. One of the most important aspects of batch processing is chunk-oriented
processing, which is employed here using the chunk() configuration method.

In chunk-oriented processing, input is read from a reader, optionally processed, and then aggregated.
Finally, at a configurable interval—as specified by the commit-interval attribute to configure how many
items will be processed before the transaction is committed—all the input is sent to the writer. If there is a
transaction manager in play, the transaction is also committed. Right before a commit, the metadata in the
database is updated to mark the progress of the job.

There are some nuances surrounding the aggregation of the input (read) values when a transaction-
aware writer (or processor) rolls back. Spring Batch caches the values it reads and writes them to the writer.
If the writer component is transactional, like a database, and the reader is not, there’s nothing inherently
wrong with caching the read values and perhaps retrying or taking some alternative approach. If the reader
itself is also transactional, then the values read from the resource will be rolled back and could conceivably
change, rendering the in-memory cached values stale. If this happens, you can configure the chunk to not
cache the values using reader-transactional-queue="true" on the chunk element.

Input
The first responsibility is reading a file from the file system. You use a provided implementation for the
example. Reading CSV files is a common scenario, and Spring Batch’s support does not disappoint. The
org.springframework.batch.item.file.FlatFileItemReader<T> class delegates the task of delimiting
fields and records within a file to a LineMapper<T>, which in turn delegates the task of identifying the fields
within that record to LineTokenizer. You use an org.springframework.batch.item.file.transform.
DelimitedLineTokenizer, which is configured to delineate fields separated by a comma (,) character.

The DefaultLineMapper also declares a fieldSetMapper attribute that requires an implementation of
FieldSetMapper. This bean is responsible for taking the input name-value pairs and producing a type that
will be given to the writer component.

In this case, you use a BeanWrapperFieldSetMapper that will create a JavaBean POJO of type
UserRegistration. You name the fields so that you can reference them later in the configuration. These
names don’t have to be the values of some header row in the input file; they just have to correspond to the
order in which the fields are found in the input file. These names are also used by the FieldSetMapper to
match properties on a POJO. As each record is read, the values are applied to an instance of a POJO, and that
POJO is returned.

@Bean
public FlatFileItemReader<UserRegistration> csvFileReader() {
 FlatFileItemReader<UserRegistration> itemReader = new FlatFileItemReader<>();
 itemReader.setLineMapper(lineMapper());
 itemReader.setResource(input);
 return itemReader;
}

@Bean
public DefaultLineMapper<UserRegistration> lineMapper() {
 DefaultLineMapper<UserRegistration> lineMapper = new DefaultLineMapper<>();
 lineMapper.setLineTokenizer(tokenizer());

Chapter 11 ■ Spring BatCh

458

 lineMapper.setFieldSetMapper(fieldSetMapper());
 return lineMapper;
}

@Bean
public BeanWrapperFieldSetMapper<UserRegistration> fieldSetMapper() {
 Bean WrapperFieldSetMapper<UserRegistration> fieldSetMapper =

new BeanWrapperFieldSetMapper<>();
 fieldSetMapper.setTargetType(UserRegistration.class);
 return fieldSetMapper;
}

@Bean
public DelimitedLineTokenizer tokenizer() {
 DelimitedLineTokenizer tokenizer = new DelimitedLineTokenizer();
 tokenizer.setDelimiter(",");
 tokenizer.setNames(new String[]{"firstName","lastName","company","address","city",

"state","zip","county","url","phoneNumber","fax"});
 return tokenizer;
}

The class returned from the reader, UserRegistration, is a rather plain JavaBean.

package com.apress.springrecipes.springbatch;

public class UserRegistration implements Serializable {

 private String firstName;
 private String lastName;
 private String company;
 private String address;
 private String city;
 private String state;
 private String zip;
 private String county;
 private String url;
 private String phoneNumber;
 private String fax;

 //... accessor / mutators omitted for brevity ...

}

Output
The next component to do work is the writer, which is responsible for taking the aggregated collection
of items read from the reader. In this case, you might imagine that a new collection (java.util.
List<UserRegistration>) is created, then written, and then reset each time the collection exceeds the
commit-interval attribute on the chunk element. Because you’re trying to write to a database, you use Spring
Batch’s org.springframework.batch.item.database.JdbcBatchItemWriter. This class contains support
for taking input and writing it to a database. It is up to the developer to provide the input and to specify

Chapter 11 ■ Spring BatCh

459

what SQL should be run for the input. It will run the SQL specified by the sql property, in essence reading
from the database, as many times as specified by the chunk element’s commit-interval and then commit
the whole transaction. Here, you’re doing a simple insert. The names and values for the named parameters
are being created by the bean configured for the itemSqlParameterSourceProvider property, which is an
instance of BeanPropertyItemSqlParameterSourceProvider, whose sole job it is to take JavaBean properties
and make them available as named parameters corresponding to the property name on the JavaBean.

@Bean
public JdbcBatchItemWriter<UserRegistration> jdbcItemWriter() {
 JdbcBatchItemWriter<UserRegistration> itemWriter = new JdbcBatchItemWriter<>();
 itemWriter.setDataSource(dataSource);
 itemWriter.setSql(INSERT_REGISTRATION_QUERY);
 item Writer.setItemSqlParameterSourceProvider(

new BeanPropertyItemSqlParameterSourceProvider<>());
 return itemWriter;
}

That’s it! A working solution. With little configuration and no custom code, you’ve built a solution for
taking large CSV files and reading them into a database. This solution is bare-bones and leaves a lot of edge
cases uncared for. You might want to do processing on the item as it’s read (before it’s inserted), for example.

This exemplifies a simple job. It’s important to remember that there are similar classes for doing the
exact opposite transformation: reading from a database and writing to a CSV file.

@Bean
public Job insertIntoDbFromCsvJob() {
 return jobs.get("User Registration Import Job")
 .start(step1())
 .build();
}

@Bean
public Step step1() {
 return steps.get("User Registration CSV To DB Step")
 .<UserRegistration,UserRegistration>chunk(5)
 .reader(csvFileReader())
 .writer(jdbcItemWriter())
 .build();
}

To configure the step, you give it the name User Registration CSV To DB Step. You are using chunk-
based processing, and you need to tell it that you want a chunk size of 5. Next you supply it with a reader and
writer, and finally you tell the factory to build to the step. The configured step is finally wired as a starting
point to your job, named User Registration Import Job, which consists only of this step.

Simplify the ItemReader and ItemWriter Configuration
Configuring the ItemReader and ItemWriter can be a daunting task. You need to know a quite a lot of the
internals of Spring Batch (which classes to use, etc.). As of Spring Batch 4, configuring the readers and
writers has become easier as there are now specific builders for the different readers and writers.

To configure the FlatFileItemReader, you could use the FlatFileItemReaderBuilder and instead of
configuring four individual beans, it is now six lines of code (mainly because the formatting in the sample).

Chapter 11 ■ Spring BatCh

460

@Bean
public FlatFileItemReader<UserRegistration> csvFileReader() throws Exception {

 return new FlatFileItemReaderBuilder<UserRegistration>()
 .name(ClassUtils.getShortName(FlatFileItemReader.class))
 .resource(input)
 .targetType(UserRegistration.class)
 .delimited()
 .names(new String[]{"firstName","lastName","company","address","city","state",

"zip","county","url","phoneNumber","fax"})
 .build();
}

This builder will automatically create the DefaultLineMapper, BeanWrapperFieldSetMapper, and
DelimitedLineTokenizer, and you don’t have to know that they are used internally. You can now basically
describe your configuration rather than explicitly configuring all the different items.

The same can be applied to the JdbcBatchItemWriter using the JdbcBatchItemWriterBuilder.

@Bean
public JdbcBatchItemWriter<UserRegistration> jdbcItemWriter() {
 return new JdbcBatchItemWriterBuilder<UserRegistration>()
 .dataSource(dataSource)
 .sql(INSERT_REGISTRATION_QUERY)
 .beanMapped()
 .build();
}

11-3. Write a Custom ItemWriter and ItemReader
Problem
You want to talk to a resource (you might imagine an RSS feed or any other custom data format) that Spring
Batch doesn’t know how to connect to.

Solution
You can easily write your own ItemWriter or ItemReader. The interfaces are drop-dead simple, and there’s
not a lot of responsibility placed on the implementations.

How It Works
As easy and trivial as this process is to do, it’s still not better than just reusing any of the numerous provided
options. If you look, you’ll likely find something. There’s support for writing JMS (JmsItemWriter<T>),
JPA (JpaItemWriter<T>), JDBC (JdbcBatchItemWriter<T>), files (FlatFileItemWriter<T>), Hibernate
(HibernateItemWriter<T>), and more. There’s even support for writing by invoking a method on a bean
(PropertyExtractingDelegatingItemWriter<T>) and passing to it as arguments the properties on
the Item to be written! One of the more useful writers lets you write to a set of files that are numbered.
This implementation—MultiResourceItemWriter<T>—delegates to the other proper ItemWriter<T>
implementation for the work but lets you write to multiple files, not just one very large one. There’s a slightly
smaller but impressive set of implementations for ItemReader implementations. If it doesn’t exist, look
again. If you still can’t find one, consider writing your own. In this recipe, you will do just that.

Chapter 11 ■ Spring BatCh

461

Write a Custom ItemReader
The ItemReader example is trivial. Here, an ItemReader is created that knows how to retrieve
UserRegistration objects from a remote procedure call (RPC) endpoint:

package com.apress.springrecipes.springbatch;

import org.springframework.batch.item.ItemReader;

import java.util.Collection;
import java.util.Date;

public class UserRegistrationItemReader implements ItemReader<UserRegistration> {

 private final UserRegistrationService userRegistrationService;

 public UserRegistrationItemReader(UserRegistrationService userRegistrationService) {
 this.userRegistrationService = userRegistrationService;
 }

 public UserRegistration read() throws Exception {
 final Date today = new Date();
 Coll ection<UserRegistration> registrations =

userRegistrationService.getOutstandingUserRegistrationBatchForDate(1, today);
 return registrations.stream().findFirst().orElse(null);
 }
}

As you can see, the interface is trivial. In this case, you defer most work to a remote service to provide you
with the input. The interface requires that you return one record. The interface is parameterized to the type of
object (the “item”) to be returned. All the read items will be aggregated and then passed to the ItemWriter.

Write a Custom ItemWriter
The ItemWriter example is also trivial. Imagine wanting to write by invoking a remote service using any
of the numerous options for remoting that Spring provides. The ItemWriter<T> interface is parameterized
by the type of item you’re expecting to write. Here, you expect a UserRegistration object from the
ItemReader<T>. The interface consists of one method, which expects a List of the class’s parameterized
type. These are the objects read from ItemReader<T> and aggregated. If your commit-interval were ten, you
might expect ten or fewer items in the List.

package com.apress.springrecipes.springbatch;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.batch.item.ItemWriter;

import java.util.List;

Chapter 11 ■ Spring BatCh

462

public class UserRegistrationServiceItemWriter implements ItemWriter<UserRegistration> {

 private static final Logger logger = LoggerFactory.getLogger(UserRegistrationService
ItemWriter.class);

 private final UserRegistrationService userRegistrationService;

 public UserRegistrationServiceItemWriter(UserRegistrationService userRegistrationService) {
 this.userRegistrationService = userRegistrationService;
 }

 public void write(List<?extends UserRegistration> items) throws Exception {
 items.forEach(this::write);
 }

 private void write(UserRegistration userRegistration) {
 User Registration registeredUserRegistration =

userRegistrationService.registerUser(userRegistration);
 logger.debug("Registered: {}", registeredUserRegistration);

 }
}

Here, you’ve wired in the service’s client interface. You simply loop through the UserRegistration
objects and invoke the service, which in turn hands you back an identical instance of UserRegistration. If
you remove the gratuitous spacing, curly brackets, and logging output, it becomes two lines of code to satisfy
the requirement.

The interface for UserRegistrationService follows:

package com.apress.springrecipes.springbatch;

import java.util.Collection;
import java.util.Date;

public interface UserRegistrationService {

 Collection<UserRegistration> getOutstandingUserRegistrationBatchForDate(
 int quantity, Date date);

 UserRegistration registerUser(UserRegistration userRegistrationRegistration);

}

In this example, you have no particular implementation for the interface, as it is irrelevant: it could be
any interface that Spring Batch doesn’t know about already.

Chapter 11 ■ Spring BatCh

463

11-4. Process Input Before Writing
Problem
While transferring data directly from a spreadsheet or CSV dump might be useful, you can imagine having
to do some sort of processing on the data before it’s written. Data in a CSV file, and more generally from any
source, is not usually exactly the way you expect it to be or immediately suitable for writing. Just because Spring
Batch can coerce it into a POJO on your behalf, that doesn’t mean the state of the data is correct. There may be
additional data that you need to infer or fill in from other services before the data is suitable for writing.

Solution
Spring Batch will let you do processing on reader output. This processing can do virtually anything to the
output before it gets passed to the writer, including changing the type of the data.

How It Works
Spring Batch gives the implementer a chance to perform any custom logic on the data read from the reader.
The processor attribute on the chunk configuration expects a reference to a bean of the interface org.
springframework.batch.item.ItemProcessor<I,O>. Thus, the revised definition for the job from the
previous recipe looks like this:

@Bean
public Step step1() {
 return steps.get("User Registration CSV To DB Step")
 .<UserRegistration,UserRegistration>chunk(5)
 .reader(csvFileReader())
 .processor(userRegistrationValidationItemProcessor())
 .writer(jdbcItemWriter())
 .build();
}

The goal is to do certain validations on the data before you authorize it to be written to the database.
If you determine the record is invalid, you can stop further processing by returning null from the
ItemProcessor<I,O>. This is crucial and provides a necessary safeguard. One thing that you want to do is
ensure that the data is the right format (for example, the schema may require a valid two-letter state name
instead of the longer full state name). Telephone numbers are expected to follow a certain format, and you
can use this processor to strip the telephone number of any extraneous characters, leaving only a valid
(in the United States) ten-digit phone number. The same applies for U.S. zip codes, which consist of five
characters and optionally a hyphen followed by a four-digit code. Finally, while a constraint guarding against
duplicates is best implemented in the database, there may very well be some other eligibility criteria for a
record that can be met only by querying the system before insertion.

Here’s the configuration for the ItemProcessor:

@Bean
public ItemProcessor<UserRegistration, UserRegistration>
userRegistrationValidationItemProcessor() {
 return new UserRegistrationValidationItemProcessor();
}

Chapter 11 ■ Spring BatCh

464

In the interest of keeping this class short, I won’t reprint it in its entirety, but the salient bits should be
obvious.

package com.apress.springrecipes.springbatch;
import java.util.Arrays;
import java.util.Collection;

import org.apache.commons.lang3.StringUtils;
import org.springframework.batch.core.StepExecution;
import org.springframework.batch.item.ItemProcessor;
import com.apress.springrecipes.springbatch.UserRegistration;

public class UserRegistrationValidationItemProcessor
 implements ItemProcessor<UserRegistration, UserRegistration> {

 private String stripNonNumbers(String input) { /* ... */ }

 private boolean isTelephoneValid(String telephone) { /* ... */ }

 private boolean isZipCodeValid(String zip) { /* ... */ }

 private boolean isValidState(String state) { /* ... */ }

 public UserRegistration process(UserRegistration input) throws Exception {
 String zipCode = stripNonNumbers(input.getZip());
 String telephone = stripNonNumbers(input.getPhoneNumber());
 String state = StringUtils.defaultString(input.getState());
 if (isTelephoneValid(telephone) && isZipCodeValid(zipCode) &&

isValidState(state)) {
 input.setZip(zipCode);
 input.setPhoneNumber(telephone);
 return input;
 }
 return null;
 }
}

The class is a parameterized type. The type information is the type of the input, as well as the type of the
output. The input is what’s given to the method for processing, and the output is the returned data from
the method. Because you’re not transforming anything in this example, the two parameterized types are
the same. Once this process has completed, there’s a lot of useful information to be had in the Spring Batch
metadata tables. Issue the following query on your database:

select * from BATCH_STEP_EXECUTION;

Among other things, you’ll get back the exit status of the job, how many commits occurred, how many
items were read, and how many items were filtered. So if the preceding job was run on a batch with 100 rows,
each item was read and passed through the processor, and it found 10 items invalid (it returned null 10
times), the value for the filter_count column would be 10. You could see that a 100 items were read from
the read_count. The write_count column would reflect that 10 items didn’t make it and would show 90.

Chapter 11 ■ Spring BatCh

465

Chain Processors Together
Sometimes you might want to add extra processing that isn’t congruous with the goals of the processor
you’ve already set up. Spring Batch provides a convenience class, CompositeItemProcessor<I,O>, that
forwards the output of the filter to the input of the successive filter. In this way, you can write many, singly
focused ItemProcessor<I,O> s and then reuse them and chain them as necessary.

@Bean
public CompositeItemProcessor<Customer, Customer> compositeBankCustomerProcessor() {
 List<ItemProcessor<Customer, Customer>> delegates = Arrays.asList(creditScoreValidation

Processor(), salaryValidationProcessor(), customerEligibilityProcessor());
 CompositeItemProcessor<Customer, Customer> processor = new CompositeItemProcessor<>();
 processor.setDelegates(delegates);
 return processor;
}

The example created a simple workflow. The first ItemProcessor<T> will take an input of whatever’s
coming from the ItemReader<T> configured for this job, presumably a Customer object. It will check the
credit score of the Customer and, if approved, forward the Customer to the salary and income validation
processor. If everything checks out there, the Customer will be forwarded to the eligibility processor, where
the system is checked for duplicates or any other invalid data. It will finally be forwarded to the writer to
be added to the output. If at any point in the three processors the Customer fails a check, the executing
ItemProcessor can simply return null and arrest processing.

11-5. Achieve Better Living Through Transactions
Problem
You want your reads and writes to be robust. Ideally, they’ll use transactions where appropriate and correctly
react to exceptions.

Solution
Transaction capabilities are built on top of the first-class support already provided by the core Spring
framework. Where relevant, Spring Batch surfaces the configuration so that you can control it. Within the
context of chunk-oriented processing, it also exposes a lot of control over the frequency of commits, rollback
semantics, and so on.

How It Works
First you explore how to make a step (or chunk) transactional followed by the configuration of retry logic on
a step.

Transactions
Spring’s core framework provides first-class support for transactions. You simply wire up a
PlatformTransactionManager and give Spring Batch a reference, just as you would in any regular
JdbcTemplate or HibernateTemplate solution. As you build your Spring Batch solutions, you’ll be given
opportunities to control how steps behave in a transaction. You’ve already seen some of the support for
transactions baked right in.

Chapter 11 ■ Spring BatCh

466

The configuration used in all these examples established a DriverManagerDataSource and a
DataSourceTransactionManager bean. The PlatformTransactionManager and DataSource were then wired
to the JobRepository, which was in turn wired to the JobLauncher, which you used to launch all jobs thus
far. This enabled all the metadata your jobs created to be written to the database in a transactional way.

You might wonder why there is no explicit mention of the transaction manager when you configured
the JdbcItemWriter with a reference to dataSource. The transaction manager reference can be
specified, but in your solutions, it wasn’t required because Spring Batch will, by default, try to pluck the
PlatformTransactionManager named transactionManager from the context and use it. If you want to
explicitly configure this, you can specify the transactionManager property on the tasklet configuration
method. A simple transaction manager for JDBC work might look like this:

@Bean
protected Step step1() {
 return steps.get("step1")
 .<UserRegistration,UserRegistration>chunk(5)
 .reader(csvFileReader())
 .processor(userRegistrationValidationItemProcessor())
 .writer(jdbcItemWriter())
 .transactionManager(new DataSourceTransactionManager(dataSource))
 .build();
}

Items read from an ItemReader<T> are normally aggregated. If a commit on the ItemWriter<T> fails,
the aggregated items are kept and then resubmitted. This process is efficient and works most of the time.
One place where it breaks semantics is when reading from a transactional resource (like a JMS queue or
database). Reads from a message queue can and should be rolled back if the transaction they participate in
(in this case, the transaction for the writer) fails.

@Bean
protected Step step1() {
 return steps.get("step1")
 .<UserRegistration,UserRegistration>chunk(5)
 .reader(csvFileReader()).readerIsTransactionalQueue()
 .processor(userRegistrationValidationItemProcessor())
 .writer(jdbcItemWriter())
 .transactionManager(new DataSourceTransactionManager(dataSource))
 .build();
}

Rollbacks
Handling the simple case (“read X items, and every Y items, commit a database transaction every Y items”)
is easy. Spring Batch excels in the robustness it surfaces as simple configuration options for the edge and
failure cases.

If a write fails on an ItemWriter, or some other exception occurs in processing, Spring Batch will roll
back the transaction. This is valid handling for a majority of the cases. There may be some scenarios when
you want to control which exceptional cases cause the transaction to roll back.

Chapter 11 ■ Spring BatCh

467

When using Java-based configuration to enable rollbacks, the first step needs to be a fault-tolerant
step, which in turn can be used to specify the no-rollback exceptions. First use faultTolerant() to obtain
a fault-tolerant step, next the skipLimit() method can be used to specify the number of ignored rollbacks
before actually stopping the job execution, and finally the noRollback() method can be used to specify the
exceptions that don’t trigger a rollback. To specify multiple exceptions, you can simply chain calls to the
noRollback() method.

@Bean
protected Step step1() {
 return steps.get("step1")
 .<UserRegistration,UserRegistration>chunk(10)
 .faultTolerant()
 .noRollback(com.yourdomain.exceptions.YourBusinessException.class)
 .reader(csvFileReader())
 .processor(userRegistrationValidationItemProcessor())
 .writer(jdbcItemWriter())
 .build();
}

11-6. Retry
Problem
You are dealing with a requirement for functionality that may fail but is not transactional. Perhaps it is
transactional but unreliable. You want to work with a resource that may fail when you try to read from or
write to it. It may fail because of networking connectivity because an endpoint is down or for any other
number of reasons. You know that it will likely be back up soon, though, and that it should be retried.

Solution
Use Spring Batch’s retry capabilities to systematically retry the read or write.

How It Works
As you saw in the previous recipe, it’s easy to handle transactional resources with Spring Batch. When
it comes to transient or unreliable resources, a different tack is required. Such resources tend to be
distributed or manifest problems that eventually resolve themselves. Some (such as web services) cannot
inherently participate in a transaction because of their distributed nature. There are products that can start
a transaction on one server and propagate the transactional context to a distributed server and complete it
there, although this tends to be very rare and inefficient. Alternatively, there’s good support for distributed
(“global” or XA) transactions if you can use it. Sometimes, however, you may be dealing with a resource
that isn’t either of those. A common example might be a call made to a remote service, such as an RMI
service or a REST endpoint. Some invocations will fail but may be retried with some likelihood of success in
a transactional scenario. For example, an update to the database resulting in org.springframework.dao.
DeadlockLoserDataAccessException might be usefully retried.

Chapter 11 ■ Spring BatCh

468

Configure a Step
When using Java-based configuration to enable retrying, the first step needs to be a fault-tolerant step, which
in turn can be used to specify the retry limit and retryable exceptions. First use faultTolerant() to obtain
a fault-tolerant step, next the retryLimit() method can be used to specify the number of retry attempts,
and finally the retry() method can be used to specify the exceptions that trigger a retry. To specify multiple
exceptions, you can simply chain calls to the retry() method.

@Bean
public Step step1() {
 return steps.get("User Registration CSV To DB Step")
 .<UserRegistration,UserRegistration>chunk(10)
 .faultTolerant()
 .retryLimit(3).retry(DeadlockLoserDataAccessException.class)
 .reader(csvFileReader())
 .writer(jdbcItemWriter())
 .transactionManager(transactionManager)
 .build();
}

Retry Template
Alternatively, you can leverage Spring Retry support for retries and recovery in your own code. For example,
you can have a custom ItemWriter<T> in which retry functionality is desired or even an entire service
interface for which retry support is desired.

Spring Batch supports these scenarios through the RetryTemplate that (much like its various other
Template cousins) isolates your logic from the nuances of retries and instead enables you to write the
code as though you were going to attempt it only once. Let Spring Batch handle everything else through
declarative configuration.

The RetryTemplate supports many use cases, with convenient APIs to wrap otherwise tedious retry/
fail/recover cycles in concise, single-method invocations.

Let’s take a look at the modified version of a simple ItemWriter<T> from recipe 11-4 on how to write
a custom ItemWriter<T>. The solution was simple enough and would ideally work all the time. It fails to
handle the error cases for the service, however. When dealing with RPC, always proceed as if it’s almost
impossible for things to go right; the service itself may surface a semantic or system violation. An example
might be a duplicate database key, invalid credit card number, and so on. This is true whether the service is
distributed or in-VM, of course.

Next, the RPC layer below the system may also fault. Here’s the rewritten code, this time allowing for retries:

ppackage com.apress.springrecipes.springbatch;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.batch.item.ItemWriter;
import org.springframework.retry.RetryCallback;
import org.springframework.retry.support.RetryTemplate;

Chapter 11 ■ Spring BatCh

469

import java.util.List;

public class RetryableUserRegistrationServiceItemWriter implements
ItemWriter<UserRegistration> {

 private static final Logger logger = LoggerFactory.getLogger(RetryableUserRegistration
ServiceItemWriter.class);

 private final UserRegistrationService userRegistrationService;
 private final RetryTemplate retryTemplate;

 public RetryableUserRegistrationServiceItemWriter(UserRegistrationService
userRegistrationService, RetryTemplate retryTemplate) {

 this.userRegistrationService = userRegistrationService;
 this.retryTemplate = retryTemplate;
 }

 public void write(List<?extends UserRegistration> items)
 throws Exception {
 for (final UserRegistration userRegistration : items) {
 UserRegistration registeredUserRegistration = retryTemplate.execute(
 (RetryCallback<UserRegistration, Exception>) context ->

userRegistrationService.registerUser(userRegistration));

 logger.debug("Registered: {}", registeredUserRegistration);
 }
 }
}

As you can see, the code hasn’t changed much, and the result is much more robust. The RetryTemplate
itself is configured in the Spring context, although it’s trivial to create in code. I declare it in the Spring
context only because there is some surface area for configuration when creating the object, and I try to let
Spring handle the configuration.

One of the more useful settings for the RetryTemplate is the BackOffPolicy in use. The BackOffPolicy
dictates how long the RetryTemplate should back off between retries. Indeed, there’s even support for
growing the delay between retries after each failed attempt to avoid lock stepping with other clients
attempting the same invocation. This is great for situations in which there are potentially many concurrent
attempts on the same resource and a race condition may ensue. There are other BackOffPolicy settings,
including one that delays retries by a fixed amount called FixedBackOffPolicy.

@Bean
public RetryTemplate retryTemplate() {
 RetryTemplate retryTemplate = new RetryTemplate();
 retryTemplate.setBackOffPolicy(backOffPolicy());
 return retryTemplate;
}

@Bean
public ExponentialBackOffPolicy backOffPolicy() {
 ExponentialBackOffPolicy backOffPolicy = new ExponentialBackOffPolicy();
 backOffPolicy.setInitialInterval(1000);

Chapter 11 ■ Spring BatCh

470

 backOffPolicy.setMaxInterval(10000);
 backOffPolicy.setMultiplier(2);
 return backOffPolicy;
}

You have configured a RetryTemplate’s backOffPolicy so that backOffPolicy will wait 1 second (1,000
milliseconds) before the initial retry. Subsequent attempts will double that value (the growth is influenced
by the multiplier). It’ll continue until the maxInterval is met, at which point all subsequent retry intervals
will level off, retrying at a consistent interval.

AOP-Based Retries
An alternative is an AOP adviser provided by Spring Batch that will wrap invocations of methods whose
success is not guaranteed in retries, as you did with the RetryTemplate. In the previous example, you
rewrote an ItemWriter<T> to make use of the template. Another approach might be to merely advise the
entire userRegistrationService proxy with this retry logic. In this case, the code could go back to the way it
was in the original example, with no RetryTemplate!

To do so, you would annotate the method (or methods) to be retryable with the @Retryable annotation.
To achieve the same as in the code with an explicit RetryTemplate, you would need to add the following.

@Retryable(backoff = @Backoff(delay = 1000, maxDelay = 10000, multiplier = 2))
public UserRegistration registerUser(UserRegistration userRegistrationRegistration) { ... }

Only adding this annotation isn’t enough; you would also need to enable annotation processing for this
with the @EnableRetry annotation on your configuration.

@Configuration
@EnableBatchProcessing
@EnableRetry
@ComponentScan("com.apress.springrecipes.springbatch")
@PropertySource("classpath:/batch.properties")
public class BatchConfiguration { ... }

11-7. Control Step Execution
Problem
You want to control how steps are executed, perhaps to eliminate a needless waste of time by introducing
concurrency or by executing steps only if a condition is true.

Solution
There are different ways to change the runtime profile of your jobs, mainly by exerting control over the way
steps are executed: concurrent steps, decisions, and sequential steps.

Chapter 11 ■ Spring BatCh

471

How It Works
Thus far, you have explored running one step in a job. Typical jobs of almost any complexity will have
multiple steps, however. A step provides a boundary (transactional or not) to the beans and logic it encloses.
A step can have its own reader, writer, and processor. Each step helps decide what the next step will be.
A step is isolated and provides focused functionality that can be assembled using the updated schema and
configuration options in Spring Batch in sophisticated workflows. In fact, some of the concepts and patterns
you’re about to see will be familiar if you have an interest in business process management (BPM) systems
and workflows. BPM provides many constructs for process or job control that are similar to what you’re
seeing here. A step often corresponds to a bullet point when you outline the definition of a job on paper. For
example, a batch job to load the daily sales and produce a report might be proposed as follows:

 1. Load customers from the CSV file into the database.

 2. Calculate daily statistics and write to a report file.

 3. Send messages to the message queue to notify an external system of the
successful registration for each of the newly loaded customers.

Sequential Steps
In the previous example, there’s an implied sequence between the first two steps; the audit file can’t be
written until all the registrations have completed. This sort of relationship is the default relationship between
two steps. One occurs after the other. Each step executes with its own execution context and shares only a
parent job execution context and an order.

@Bean
public Job nightlyRegistrationsJob () {
 return jobs.get("nightlyRegistrationsJob ")
 .start(loadRegistrations())
 .next(reportStatistics())
 .next(...)
 .build();
 }
}

Concurrency
The first version of Spring Batch was oriented toward batch processing inside the same thread and, with
some alteration, perhaps inside the virtual machine. There were workarounds, of course, but the situation
was less than ideal.

In the outline for this example job, the first step had to come before the second two because the second
two are dependent on the first. The second two, however, do not share any such dependencies. There’s no
reason why the audit log couldn’t be written at the same time as the JMS messages are being delivered.
Spring Batch provides the capability to fork processing to enable just this sort of arrangement.

@Bean
public Job insertIntoDbFromCsvJob() {
 JobBuilder builder = jobs.get("insertIntoDbFromCsvJob");
 return builder
 .start(loadRegistrations())
 .split(taskExecutor())

Chapter 11 ■ Spring BatCh

472

 .add(
 builder.flow(reportStatistics()),
 builder.flow(sendJmsNotifications()))
 .build();
}

You can use the split() method on the job builder. To make a step into a flow, the flow() method of
the job builder can be used; then, to add more steps to the flow, these can be added with the next() method.
The split() method requires a TaskExecutor to be set; see recipe 2-23 for more information on scheduling
and concurrency.

In this example, there’s nothing to prevent you from having many steps within the flow elements, nor
was there anything preventing you from having more steps after the split element. The split element, like the
step elements, takes a next attribute as well.

Spring Batch provides a mechanism to offload processing to another process. This distribution requires
some sort of durable, reliable connection. This is a perfect use of JMS because it’s rock-solid and transactional,
fast, and reliable. Spring Batch support is modeled at a slightly higher level, on top of the Spring Integration
abstractions for Spring Integration channels. This support is not in the main Spring Batch code; it can be found
in the spring-batch-integration project. Remote chunking lets individual steps read and aggregate items as
usual in the main thread. This step is called the master. Items read are sent to the ItemProcessor<I,O>/ItemW
riter<T> running in another process (this is called the slave). If the slave is an aggressive consumer, you have
a simple, generic mechanism to scale: work is instantly farmed out over as many JMS clients as you can throw
at it. The aggressive-consumer pattern refers to the arrangement of multiple JMS clients all consuming the
same queue’s messages. If one client consumes a message and is busy processing, other idle queues will get the
message instead. As long as there’s a client that’s idle, the message will be processed instantly.

Additionally, Spring Batch supports implicitly scaling out using a feature called partitioning. This
feature is interesting because it’s built in and generally very flexible. You replace your instance of a step
with a subclass, PartitionStep, which knows how to coordinate distributed executors and maintains the
metadata for the execution of the step, thus eliminating the need for a durable medium of communication as
in the “remote chunking” technology.

The functionality here is also very generic. It could, conceivably, be used with any sort of grid fabric
technology such as GridGain or Hadoop. Spring Batch ships with only a TaskExecutorPartitionHandler,
which executes steps in multiple threads using a TaskExecutor strategy. This simple improvement might be
enough of a justification for this feature! If you’re really hurting, however, you can extend it.

Conditional Steps with Statuses
Using the ExitStatus of a given job or step to determine the next step is the simplest example of a
conditional flow. Spring Batch facilitates this through the use of the stop, next, fail, and end elements. By
default, assuming no intervention, a step will have an ExitStatus that matches its BatchStatus, which is
a property whose values are defined in an enum and may be any of the following: COMPLETED, STARTING,
STARTED, STOPPING, STOPPED, FAILED, ABANDONED, or UNKNOWN.

Let’s look at an example that executes one of two steps based on the success of a preceding step:

@Bean
public Job insertIntoDbFromCsvJob() {
 return jobs.get("User Registration Import Job")
 .start(step1())
 .on("COMPLETED").to(step2())
 .on("FAILED").to(failureStep())
 .build();
}

Chapter 11 ■ Spring BatCh

473

It’s also possible to provide a wildcard. This is useful if you want to ensure a certain behavior for any
number of BatchStatus values, perhaps in tandem with a more specific next element that matches only one
BatchStatus.

@Bean
public Job insertIntoDbFromCsvJob() {
 return jobs.get("User Registration Import Job")
 .start(step1())
 .on("COMPLETED").to(step2())
 .on("*").to(failureStep())
 .build();
}

In this example, you are instructing Spring Batch to perform some step based on any unaccounted-for
ExitStatus. Another option is to just stop processing altogether with a BatchStatus of FAILED. You can do
this using the fail element. A less aggressive rewrite of the preceding example might be the following:

@Bean
public Job insertIntoDbFromCsvJob() {
 return jobs.get("User Registration Import Job")
 .start(step1())
 .on("COMPLETED").to(step2())
 .on("FAILED").fail()
 .build();
}

In all these examples, you’re reacting to the standard BatchStatus values that the Spring Batch
framework provides. But it’s also possible to raise your own ExitStatus. If, for example, you wanted the
whole job to fail with a custom ExitStatus of MAN DOWN, you might do something like this:

@Bean
public Job insertIntoDbFromCsvJob() {
 return jobs.get("User Registration Import Job")
 .start(step1())
 .on("COMPLETED").to(step2())
 .on("FAILED").end("MAN DOWN")
 .build();
}

Finally, if all you want to do is end processing with a BatchStatus of COMPLETED, you can use the end()
method. This is an explicit way of ending a flow as if it had run out of steps and incurred no errors.

@Bean
public Job insertIntoDbFromCsvJob() {
 return jobs.get("User Registration Import Job")
 .start(step1())
 .on("COMPLETED").end()
 .on("FAILED").to(errorStep())
 .build();
}

Chapter 11 ■ Spring BatCh

474

Conditional Steps with Decisions
If you want to vary the execution flow based on some logic more complex than a job’s ExitStatus
values, you may give Spring Batch a helping hand by using a decision element and providing it with an
implementation of a JobExecutionDecider.

package com.apress.springrecipes.springbatch;

import org.springframework.batch.core.JobExecution;
import org.springframework.batch.core.StepExecution;
import org.springframework.batch.core.job.flow.FlowExecutionStatus;
import org.springframework.batch.core.job.flow.JobExecutionDecider;

public class HoroscopeDecider implements JobExecutionDecider {

 private boolean isMercuryIsInRetrograde () { return Math.random() > .9 ; }

 public FlowExecutionStatus decide(JobExecution jobExecution,
 StepExecution stepExecution) {
 if (isMercuryIsInRetrograde()) {
 return new FlowExecutionStatus("MERCURY_IN_RETROGRADE");
 }
 return FlowExecutionStatus.COMPLETED;
 }
}

All that remains is the configuration, shown here:

@Bean
public Job insertIntoDbFromCsvJob() {
 JobBuilder builder = jobs.get("insertIntoDbFromCsvJob");
 return builder
 .start(step1())
 .next((horoscopeDecider())
 .on("MERCURY_IN_RETROGRADE").to(step2())
 .on(("COMPLETED ").to(step3())
 .build();
}

11-8. Launch a Job
Problem
What deployment scenarios does Spring Batch support? How does Spring Batch launch? How does Spring
Batch work with a system scheduler, such as cron or autosys, or from a web application? You want to
understand all this.

Chapter 11 ■ Spring BatCh

475

Solution
Spring Batch works well in all environments that Spring runs: your public static void main, OSGi, a web
application—anywhere! Some use cases are uniquely challenging, though: it is rarely practical to run
Spring Batch in the same thread as an HTTP response because it might end up stalling execution, for
example. Spring Batch supports asynchronous execution for just this scenario. Spring Batch also provides
a convenience class that can be readily used with cron or autosys to support launching jobs. Additionally,
Spring’s excellent scheduler namespace provides a great mechanism to schedule jobs.

How It Works
Before you get into creating a solution, it’s important to know what options are available for deploying and
running these solutions. All solutions require, at minimum, a job and a JobLauncher. You already configured
these components in the previous recipe. The job is configured in your Spring application context, as you’ll
see later. The simplest example of launching a Spring Batch solution from Java code is about five lines of Java
code (three if you’ve already got a handle to the ApplicationContext)!

package com.apress.springrecipes.springbatch;

import org.springframework.batch.core.Job;
import org.springframework.batch.core.JobParameters;
import org.springframework.batch.core.JobParametersBuilder;
import org.springframework.batch.core.launch.JobLauncher;
import org.springframework.context.support.ClassPathXmlApplicationContext;

import java.util.Date;

public class Main {
 public static void main(String[] args) throws Throwable {
 ClassPathXmlApplicationContext ctx = new ClassPathXmlApplicationContext("solution2.xml");

 JobLauncher jobLauncher = ctx.getBean("jobLauncher", JobLauncher.class);
 Job job = ctx.getBean("myJobName", Job.class);
 JobExecution jobExecution = jobLauncher.run(job, new JobParameters());
 }
}

As you can see, the JobLauncher reference you configured previously is obtained and used to then
launch an instance of a Job. The result is a JobExecution. You can interrogate the JobExecution for
information on the state of the Job, including its exit status and runtime status.

JobExecution jobExecution = jobLauncher.run(job, jobParameters);
BatchStatus batchStatus = jobExecution.getStatus();
while(batchStatus.isRunning()) {
 System.out.println("Still running...");
 Thread.sleep(10 * 1000); // 10 seconds
}

Chapter 11 ■ Spring BatCh

476

You can also get the ExitStatus.

System.out.println("Exit code: "+ jobExecution.getExitStatus().getExitCode());

The JobExecution also provides a lot of other useful information such as the create time of the Job, the
start time, the last updated date, and the end time—all as java.util.Date instances. If you want to correlate
the job back to the database, you’ll need the job instance and the ID.

JobInstance jobInstance = jobExecution.getJobInstance();
System.out.println("job instance Id: "+ jobInstance.getId());

In this simple example, you use an empty JobParameters instance. In practice, this will work only once.
Spring Batch builds a unique key based on the parameters and will use that to keep uniquely identifying one
run of a given Job from another. You’ll learn about parameterizing a Job in detail in the next recipe.

Launch from a Web Application
Launching a job from a web application requires a slightly different approach because the client thread
(presumably an HTTP request) can’t usually wait for a batch job to finish. The ideal solution is to have the job
execute asynchronously when launched from a controller or action in the web tier, unattended by the client
thread. Spring Batch supports this scenario through the use of a Spring TaskExecutor. This requires a simple
change to the configuration for the JobLauncher, although the Java code can stay the same. Here, you will use
a SimpleAsyncTaskExecutor that will spawn a thread of execution and manage that thread without blocking:

package com.apress.springrecipes.springbatch.config;

@Configuration
@EnableBatchProcessing
@ComponentScan("com.apress.springrecipes.springbatch")
@PropertySource("classpath:/batch.properties")
public class BatchConfiguration {

 @Bean
 public SimpleAsyncTaskExecutor taskExecutor() {
 return new SimpleAsyncTaskExecutor();
 }
}

As you cannot use the default settings anymore, you need to add your own implementation
of a BatchConfigurer to configure the TaskExecutor and add it to the SimpleJobLauncher. For
this implementation, you used the DefaultBatchConfigurer as a reference; you only override the
createJobLauncher method to add the TaskExecutor.

package com.apress.springrecipes.springbatch.config;

import org.springframework.batch.core.configuration.annotation.DefaultBatchConfigurer;
import org.springframework.batch.core.launch.JobLauncher;
import org.springframework.batch.core.launch.support.SimpleJobLauncher;
import org.springframework.core.task.TaskExecutor;
import org.springframework.stereotype.Component;

Chapter 11 ■ Spring BatCh

477

@Component
public class CustomBatchConfigurer extends DefaultBatchConfigurer {

 private final TaskExecutor taskExecutor;

 public CustomBatchConfigurer(TaskExecutor taskExecutor) {
 this.taskExecutor = taskExecutor;
 }

 @Override
 protected JobLauncher createJobLauncher() throws Exception {
 SimpleJobLauncher jobLauncher = new SimpleJobLauncher();
 jobLauncher.setJobRepository(getJobRepository());
 jobLauncher.setTaskExecutor(this.taskExecutor);
 jobLauncher.afterPropertiesSet();
 return jobLauncher;
 }
}

Run from the Command Line
Another common use case is deployment of a batch process from a system scheduler such as cron or
autosys, or even Window’s event scheduler. Spring Batch provides a convenience class that takes as its
parameters the name of the XML application context (that contains everything required to run a job) as well
as the name of the job bean itself. Additional parameters may be provided and used to parameterize the job.
These parameters must be in the form name=value. An example invocation of this class on the command
line (on a Linux/Unix system), assuming that you set up the classpath, might look like this:

java CommandLineJobRunner jobs.xml hourlyReport date=`date +%m/%d/%Y time=date +%H`

The CommandLineJobRunner will even return system error codes (0 for success, 1 for failure, and 2 for
an issue with loading the batch job) so that a shell (such as used by most system schedulers) can react or
do something about the failure. More complicated return codes can be returned by creating and declaring
a top-level bean that implements the interface ExitCodeMapper, in which you can specify a more useful
translation of exit status messages to integer-based error codes that the shell will see on process exit.

Run on a Schedule
Spring has support for a scheduling framework (see also recipe 3-22). This framework lends itself perfectly to
running Spring Batch. First, let’s modify the existing application context configuration to enable scheduling
by using the @EnableScheduling annotation and by adding a ThreadPoolTaskScheduler.

package com.apress.springrecipes.springbatch.config;

@Configuration
@EnableBatchProcessing
@ComponentScan("com.apress.springrecipes.springbatch")
@PropertySource("classpath:/batch.properties")

Chapter 11 ■ Spring BatCh

478

@EnableScheduling
@EnableAsync
public class BatchConfiguration {

 @Bean
 public ThreadPoolTaskScheduler taskScheduler() {
 ThreadPoolTaskScheduler taskScheduler = new ThreadPoolTaskScheduler();
 taskScheduler.setThreadGroupName("batch-scheduler");
 taskScheduler.setPoolSize(10);
 return taskScheduler;
 }

}

These imports enable the simplest possible support for scheduling. The preceding annotations
ensure that any bean under the package com.apress.springrecipes.springbatch will be configured and
scheduled as required. The scheduler bean is as follows:

package com.apress.springrecipes.springbatch.scheduler;

import org.springframework.batch.core.Job;
import org.springframework.batch.core.JobExecution;
import org.springframework.batch.core.JobParameters;
import org.springframework.batch.core.JobParametersBuilder;
import org.springframework.batch.core.launch.JobLauncher;
import org.springframework.scheduling.annotation.Scheduled;
import org.springframework.stereotype.Component;

import java.util.Date;

@Component
public class JobScheduler {

 private final JobLauncher jobLauncher;
 private final Job job;

 public JobScheduler(JobLauncher jobLauncher, Job job) {
 this.jobLauncher = jobLauncher;
 this.job = job;
 }

 public void runRegistrationsJob(Date date) throws Throwable {
 System.out.println("Starting job at " + date.toString());

 JobParametersBuilder jobParametersBuilder = new JobParametersBuilder();
 jobParametersBuilder.addDate("date", date);
 jobParametersBuilder.addString("input.file", "registrations");

Chapter 11 ■ Spring BatCh

479

 JobParameters jobParameters = jobParametersBuilder.toJobParameters();

 JobExecution jobExecution = jobLauncher.run(job, jobParameters);

 System.out.println("jobExecution finished, exit code: " + jobExecution.
getExitStatus().getExitCode());

 }

 @Scheduled(fixedDelay = 1000 * 10)
 public void runRegistrationsJobOnASchedule() throws Throwable {
 runRegistrationsJob(new Date());
 }
}

There is nothing particularly novel here; it’s a good study of how the different components of the
Spring Framework work well together. The bean is recognized and becomes part of the application
context because of the @Component annotation, which you enabled with the @ComponentScan annotation
in your configuration class. There’s only one Job in the UserJob class and only one JobLauncher, so you
simply have those autowired into your bean. Finally, the logic for kicking off a batch run is inside the
runRegistrationsJob(java.util.Date date) method. This method could be called from anywhere.
Your only client for this functionality is the scheduled method runRegistrationsJobOnASchedule. The
framework will invoke this method for you, according to the timeline dictated by the @Scheduled annotation.

There are other options for this sort of thing; traditionally in the Java and Spring world, this sort of
problem would be a good fit for Quartz. It might still be, as the Spring scheduling support isn’t designed to
be as extensible as Quartz. If you are in an environment requiring more traditional, ops-friendly scheduling
tools, there are of course old standbys like cron, autosys, and BMC, too.

11-9. Parameterize a Job
Problem
The previous examples work well enough, but they leave something to be desired in terms of flexibility. To
apply the batch code to some other file, you’d have to edit the configuration and hard-code the name in
there. The ability to parameterize the batch solution would be very helpful.

Solution
Use JobParameters to parameterize a job, which is then available to your steps through Spring Batch’s
expression language or via API calls.

How It Works
First you will see how to launch a job using JobParameters and after that you will learn how to use and
access the JobParameters in a Job and the configuration.

Chapter 11 ■ Spring BatCh

480

Launch a Job with Parameters
A job is a prototype of a JobInstance. JobParameters are used to provide a way of identifying a unique run
of a job (a JobInstance). These JobParameters allow you to give input to your batch process, just as you
would with a method definition in Java. You’ve seen the JobParameters in previous examples but not in
detail. The JobParameters object is created as you launch the job using the JobLauncher. To launch a job
called dailySalesFigures, with the date for the job to work with, you would write something like this:

package com.apress.springrecipes.springbatch;

import com.apress.springrecipes.springbatch.config.BatchConfiguration;
import org.springframework.batch.core.*;
import org.springframework.batch.core.launch.JobLauncher;
import org.springframework.context.ApplicationContext;
import org.springframework.context.annotation.AnnotationConfigApplicationContext;

import java.util.Date;

public class Main {
 public static void main(String[] args) throws Throwable {

 ApplicationContext context =
 new AnnotationConfigApplicationContext(BatchConfiguration.class);

 JobLauncher jobLauncher = context.getBean(JobLauncher.class);
 Job job = context.getBean("dailySalesFigures", Job.class);

 jobLauncher.run(job, new JobParametersBuilder()
 .addDate("date", new Date()).toJobParameters());
 }
}

Access JobParameters
Technically, you can get at JobParameters via any of the ExecutionContexts (step and job). Once you have
it, you can access the parameters in a type-safe way by calling getLong(), getString(), and so on. A simple
way to do this is to bind to the @BeforeStep event, save the StepExecution, and iterate over the parameters
this way. From here, you can inspect the parameters and do anything you want with them. Let’s look at that
in terms of the ItemProcessor<I,O> you wrote earlier.

// ...
private StepExecution stepExecution;

@BeforeStep
public void saveStepExecution(StepExecution stepExecution) {
 this.stepExecution = stepExecution;
}

public UserRegistration process(UserRegistration input) throws Exception {

 Map<String, JobParameter> params = stepExecution.getJobParameters().getParameters();

Chapter 11 ■ Spring BatCh

481

 for (String jobParameterKey : params.keySet()) {
 System.out.println(String.format("%s=%s", jobParameterKey,
 params.get(jobParameterKey).getValue().toString()));
 }

 Date date = stepExecution.getJobParameters().getDate("date");
 // etc ...
}

This turns out to be of limited value. The 80 percent case is that you’ll need to bind parameters from the
job’s launch to the Spring beans in the application context. These parameters are available only at runtime,
whereas the steps in the XML application context are configured at design time. This happens in many
places. Previous examples demonstrated ItemWriters<T> and ItemReaders<T> with hard-coded paths. That
works fine unless you want to parameterize the file name. This is hardly acceptable unless you plan on using
a job just once!

The core Spring Framework features an enhanced expression language that Spring Batch uses to defer
binding of the parameter until the correct time (or, in this case, until the bean is in the correct scope). Spring
Batch has the “step” scope for just this purpose. Let’s take a look at how you’d rework the previous example
to use a parameterized file name for the ItemReader’s resource:

@Bean
@StepScope
public ItemReader<UserRegistration> csvFileReader(@Value("file:${user.home}/
batches/#{jobParameters['input.fileName']}.csv") Resource input) { ... }

All you did is scope the bean (the FlatFileItemReader<T>) to the life cycle of a step (at which point those
JobParameters will resolve correctly) and then used the EL syntax to parameterize the path to work off of.

Summary
This chapter introduced you to the concepts of batch processing, some of its history, and why it fits in a
modern-day architecture. You learned about Spring Batch, the batch processing from SpringSource, and
how to do reading and writing with ItemReader<T> and ItemWriter<T> implementations in your batch
jobs. You wrote your own ItemReader<T> and ItemWriter <T> implementations as needed and saw how to
control the execution of steps inside a job.

483© Marten Deinum, Daniel Rubio, and Josh Long 2017
M. Deinum et al., Spring 5 Recipes, DOI 10.1007/978-1-4842-2790-9_12

CHAPTER 12

Spring with NoSQL

Most applications use a relational database such as Oracle, MySQL, or PostgreSQL; however, there is more to
data storage than just SQL databases. There are

•	 Relational databases (Oracle, MySQL, PostgreSQL, etc.)

•	 Document stores (MongoDB, Couchbase)

•	 Key-value stores (Redis, Volgemort)

•	 Column stores (Cassandra)

•	 Graph stores (Neo4j, Giraph)

Each of these technologies (and all of the implementations) works in a different way, so you have to
spend time learning each one you want to use. Additionally, it might feel that you have to write a lot of
duplicated plumbing code for handling transactions and error translation.

The Spring Data project can help make life easier; it can help configure the different technologies with
the plumbing code. Each of the integration modules will have support for exception translation to Spring’s
consistent DataAccessException hierarchy and the use of Spring’s templating approach. Spring Data also
provides a cross-storage solution for some technologies, which means part of your model can be stored in a
relational database with JPA and the other part can be stored in a graph or document store.

 ■ Tip Each section in this chapter describes how to download and install the needed persistence store.
However, the bin directory contains scripts that set up Docker containers for each persistence store.

12-1. Use MongoDB
Problem
You want to use MongoDB to store and retrieve documents.

Solution
Download and configure MongoDB.

CHaptEr 12 ■ Spring witH noSQL

484

How It Works
Before you can start using MongoDB you need to have an instance installed and up and running. When you
have it running you will need to connect to it to be able to use the datastore for actual storage. You will start
with plain MongoDB how to store and retrieve documents and graduatly move to Spring Data MongoDB to
close with a reactive version of the repository.

Download and Start MongoDB
Download MongoDB from www.mongodb.org. Select the version that is applicable for the system in use and
follow the installation instructions in the manual (http://docs.mongodb.org/manual/installation/).
When the installation is complete, MongoDB can be started. To start MongoDB, execute the mongodb
command on the command line (see Figure 12-1). This will start a MongoDB server on port 27017. If a
different port is required, this can be done by specifying the --port option on the command line when
starting the server.

The default location for storing data is \data\db (for Windows users, this is from the root of the disk
where MongoDB was installed!). To change the path, use the --dbpath option on the command line. Make
sure that the directory exists and is writable for MongoDB.

Connect to MongoDB
For a connection to MongoDB, you need an instance of Mongo. You can use this instance to get the database
to use and the actual underlying collection (or collections). Let’s create a small system that uses MongoDB to
create an object to use for storage.

package com.apress.springrecipes.nosql;

public class Vehicle {

 private String vehicleNo;
 private String color;
 private int wheel;
 private int seat;

 public Vehicle() {
 }

Figure 12-1. Output after initial start of MongoDB

http://www.mongodb.org/
http://docs.mongodb.org/manual/installation/

CHaptEr 12 ■ Spring witH noSQL

485

 public Vehicle(String vehicleNo, String color, int wheel, int seat) {
 this.vehicleNo = vehicleNo;
 this.color = color;
 this.wheel = wheel;
 this.seat = seat;
 }
 /// Getters and Setters have been omitted for brevity.
}

To work with this object, create a repository interface.

package com.apress.springrecipes.nosql;

public interface VehicleRepository {

 long count();
 void save(Vehicle vehicle);
 void delete(Vehicle vehicle);
 List<Vehicle> findAll()
 Vehicle findByVehicleNo(String vehicleNo);
}

For MongoDB, create the MongoDBVehicleRepository implementation of the VehicleRepository.

package com.apress.springrecipes.nosql;

import com.mongodb.*;

import java.util.ArrayList;
import java.util.List;

public class MongoDBVehicleRepository implements VehicleRepository {

 private final Mongo mongo;
 private final String collectionName;
 private final String databaseName;

 public MongoDBVehicleRepository(Mongo mongo, String databaseName, String collectionName) {
 this.mongo = mongo;
 this.databaseName=databaseName;
 this.collectionName = collectionName;
 }

 @Override
 public long count() {
 return getCollection().count();
 }

 @Override
 public void save(Vehicle vehicle) {
 BasicDBObject query = new BasicDBObject("vehicleNo", vehicle.getVehicleNo());
 DBObject dbVehicle = transform(vehicle);

CHaptEr 12 ■ Spring witH noSQL

486

 DBObject fromDB = getCollection().findAndModify(query, dbVehicle);
 if (fromDB == null) {
 getCollection().insert(dbVehicle);
 }
 }

 @Override
 public void delete(Vehicle vehicle) {
 BasicDBObject query = new BasicDBObject("vehicleNo", vehicle.getVehicleNo());
 getCollection().remove(query);
 }

 @Override
 public List<Vehicle> findAll() {
 DBCursor cursor = getCollection().find(null);
 List<Vehicle> vehicles = new ArrayList<>(cursor.size());
 for (DBObject dbObject : cursor) {
 vehicles.add(transform(dbObject));
 }
 return vehicles;
 }

 @Override
 public Vehicle findByVehicleNo(String vehicleNo) {
 BasicDBObject query = new BasicDBObject("vehicleNo", vehicleNo);
 DBObject dbVehicle = getCollection().findOne(query);
 return transform(dbVehicle);
 }

 private DBCollection getCollection() {
 return mongo.getDB(databaseName).getCollection(collectionName);
 }

 private Vehicle transform(DBObject dbVehicle) {
 return new Vehicle(
 (String) dbVehicle.get("vehicleNo"),
 (String) dbVehicle.get("color"),
 (int) dbVehicle.get("wheel"),
 (int) dbVehicle.get("seat"));
 }

 private DBObject transform(Vehicle vehicle) {
 BasicDBObject dbVehicle = new BasicDBObject("vehicleNo", vehicle.getVehicleNo())
 .append("color", vehicle.getColor())
 .append("wheel", vehicle.getWheel())
 .append("seat", vehicle.getSeat());
 return dbVehicle;
 }
}

CHaptEr 12 ■ Spring witH noSQL

487

First notice the constructor takes three arguments. The first is the actual MongoDB client, the second
is the name of the database that is going to be used, and the last is the name of the collection in which the
objects are stored. Documents in MongoDB are stored in collections, and a collection belongs to a database.

For easy access to the DBCollection used, there is the getCollection method that gets a connection
to the database and returns the configured DBCollection. This DBCollection can then be used to execute
operations such as storing, deleting, or updating documents.

The save method will first try to update an existing document. If this fails, a new document for the given
Vehicle will be created. To store objects, start by transforming the domain object Vehicle into a DBObject,
in this case a BasicDBObject. The BasicDBObject takes key-value pairs of the different properties of your
Vehicle object. When querying for a document, the same DBObject is used, and the key-value pairs that are
present on the given object are used to look up documents; you can find an example in the findByVehicleNo
method in the repository. Conversion from and to Vehicle objects is done through the two transform
methods.

To use this class, create the following Main class:

package com.apress.springrecipes.nosql;

import com.mongodb.MongoClient;

import java.util.List;

public class Main {

 public static final String DB_NAME = "vehicledb";

 public static void main(String[] args) throws Exception {
 // Default monogclient for localhost and port 27017
 MongoClient mongo = new MongoClient();

 VehicleRepository repository = new MongoDBVehicleRepository(mongo, DB_NAME,
"vehicles");

 System.out.println("Number of Vehicles: " + repository.count());

 repository.save(new Vehicle("TEM0001", "RED", 4, 4));
 repository.save(new Vehicle("TEM0002", "RED", 4, 4));

 System.out.println("Number of Vehicles: " + repository.count());

 Vehicle v = repository.findByVehicleNo("TEM0001");

 System.out.println(v);

 List<Vehicle> vehicleList = repository.findAll();

 System.out.println("Number of Vehicles: " + vehicleList.size());
 vehicleList.forEach(System.out::println);
 System.out.println("Number of Vehicles: " + repository.count());

CHaptEr 12 ■ Spring witH noSQL

488

 // Cleanup and close
 mongo.dropDatabase(DB_NAME);
 mongo.close();
 }
}

The main class constructs an instance of the MongoClient that will try to connect to port 27017 on
localhost for a MongoDB instance. If another port or host is needed, there is also a constructor that takes a
host and port as parameters: new MongoClient("mongodb-server.local", 28018). Next an instance of the
MongoDBVehicleRepository class is constructed; the earlier constructed MongoClient is passed as well as
the name of the database, which is vehicledb, and the name of the collection, which is vehicles.

The next lines of code will insert two vehicles into the database, try to find them, and finally delete
them. The last lines in the Main class will close the MongoClient and before doing so will drop the database.
The latter is something you don’t want to do when using a production database.

Use Spring for Configuration
The setup and configuration of the MongoClient and MongoDBVehicleRepository can easily be moved to the
Spring configuration.

package com.apress.springrecipes.nosql.config;

import com.apress.springrecipes.nosql.MongoDBVehicleRepository;
import com.apress.springrecipes.nosql.VehicleRepository;
import com.mongodb.Mongo;
import com.mongodb.MongoClient;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;

import java.net.UnknownHostException;

@Configuration
public class MongoConfiguration {

 public static final String DB_NAME = "vehicledb";

 @Bean
 public Mongo mongo() throws UnknownHostException {
 return new MongoClient();
 }

 @Bean
 public VehicleRepository vehicleRepository(Mongo mongo) {
 return new MongoDBVehicleRepository(mongo, DB_NAME, " vehicles");
 }
}

CHaptEr 12 ■ Spring witH noSQL

489

The following @PreDestroy annotated method has been added to the MongoDBVehicleRepository to
take care of the cleanup of the database.

@PreDestroy
public void cleanUp() {
 mongo.dropDatabase(databaseName);
}

Finally, the Main program needs to be updated to reflect the changes.

package com.apress.springrecipes.nosql;

...
import org.springframework.context.ApplicationContext;
import org.springframework.context.annotation.AnnotationConfigApplicationContext;
import org.springframework.context.support.AbstractApplicationContext;

import java.util.List;

public class Main {

 public static final String DB_NAME = "vehicledb";

 public static void main(String[] args) throws Exception {
 Appl icationContext ctx =
 new AnnotationConfigApplicationContext(MongoConfiguration.class);
 VehicleRepository repository = ctx.getBean(VehicleRepository.class);

 ...

 ((AbstractApplicationContext) ctx).close();

 }
}

The configuration is loaded by an AnnotationConfigApplicationContext. From this context, the
VehicleRepository bean is retrieved and used to execute the operations. When the code that has run the
context is closed, it triggers the cleanUp method in the MongoDBVehicleRepository.

Use a MongoTemplate to Simplify MongoDB Code
At the moment, the MongoDBVehicleRepository class uses the plain MongoDB API. Although it’s not very
complex, it still requires knowledge about the API. In addition, there are some repetitive tasks like mapping
from and to a Vehicle object. Using a MongoTemplate can simplify the repository considerably.

CHaptEr 12 ■ Spring witH noSQL

490

 ■ Note Before using Spring Data Mongo, the relevant Jars need to be added to the classpath. when using
Maven, add the following dependency:

<dependency>
 <groupId>org.springframework.data</groupId>
 <artifactId>spring-data-mongodb</artifactId>
 <version>1.10.1.RELEASE</version>
</dependency>

when using gradle, use the following:

compile 'org.springframework.data:spring-data-mongodb:1.10.1.RELEASE'

package com.apress.springrecipes.nosql;

import org.springframework.data.mongodb.core.MongoTemplate;
import org.springframework.data.mongodb.core.query.Query;

import javax.annotation.PreDestroy;
import java.util.List;

import static org.springframework.data.mongodb.core.query.Criteria.where;

public class MongoDBVehicleRepository implements VehicleRepository {

 private final MongoTemplate mongo;
 private final String collectionName;

 public MongoDBVehicleRepository(MongoTemplate mongo, String collectionName) {
 this.mongo = mongo;
 this.collectionName = collectionName;
 }

 @Override
 public long count() {
 return mongo.count(null, collectionName);
 }

 @Override
 public void save(Vehicle vehicle) {
 mongo.save(vehicle, collectionName);
 }

 @Override
 public void delete(Vehicle vehicle) {
 mongo.remove(vehicle, collectionName);
 }

CHaptEr 12 ■ Spring witH noSQL

491

 @Override
 public List<Vehicle> findAll() {
 return mongo.findAll(Vehicle.class, collectionName);
 }

 @Override
 public Vehicle findByVehicleNo(String vehicleNo) {
 return mongo.findOne(new Query(where("vehicleNo").is(vehicleNo)), Vehicle.class,

collectionName);
 }

 @PreDestroy
 public void cleanUp() {
 mongo.execute(db -> {
 db.drop();
 return null;
 });
 }
}

The code looks a lot cleaner when using a MongoTemplate. It has convenience methods for almost
every operation: save, update, and delete. Additionally, it has a nice query builder approach (see the
findByVehicleNo method). There are no more mappings to and from the MongoDB classes, so there is
no need to create a DBObject anymore. That burden is now handled by the MongoTemplate. To convert the
Vehicle object to the MongoDB classes, a MongoConverter is used. By default a MappingMongoConverter
is used. This mapper maps properties to attribute names, and vice versa, and while doing so, also tries to
convert from and to the correct data type. If a specific mapping is needed, it is possible to write your own
implementation of a MongoConverter and register it with the MongoTemplate.

Because of the use of the MongoTemplate, the configuration needs to be modified.

package com.apress.springrecipes.nosql.config;

import com.apress.springrecipes.nosql.MongoDBVehicleRepository;
import com.apress.springrecipes.nosql.VehicleRepository;
import com.mongodb.Mongo;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.data.mongodb.core.MongoClientFactoryBean;
import org.springframework.data.mongodb.core.MongoTemplate;

@Configuration
public class MongoConfiguration {

 public static final String DB_NAME = "vehicledb";

 @Bean
 public MongoTemplate mongo(Mongo mongo) throws Exception {
 return new MongoTemplate(mongo, DB_NAME);
 }

CHaptEr 12 ■ Spring witH noSQL

492

 @Bean
 public MongoClientFactoryBean mongoFactoryBean() {
 return new MongoClientFactoryBean();
 }

 @Bean
 public VehicleRepository vehicleRepository(MongoTemplate mongo) {
 return new MongoDBVehicleRepository(mongo, "vehicles");
 }
}

Notice the use of the MongoClientFactoryBean. It allows for easy setup of the MongoClient. It isn’t a
requirement for using the MongoTemplate, but it makes it easier to configure the client. Another benefit
is that there is no more java.net.UnknownHostException thrown that is handled internally by the
MongoClientFactoryBean.

The MongoTemplate has various constructors. The one used here takes a Mongo instance and the name
of the database to use. To resolve the database, an instance of a MongoDbFactory is used; by default, it’s
the SimpleMongoDbFactory. In most cases, this is sufficient, but if some special case arises, like encrypted
connections, it is quite easy to extend the default implementation. Finally, the MongoTemplate is injected,
together with the name of the collection, into the MongoDBVehicleRepository.

A final addition needs to be made to the Vehicle object. It is required that a field is available for storing
the generated ID. This can be either a field with the name id or a field with the @Id annotation.

public class Vehicle {

 private String id;

...
}

Use Annotations to Specify Mapping Information
Currently the MongoDBVehicleRepository needs to know the name of the collection you want to access.
It would be easier and more flexible if this could be specified on the Vehicle object, just as with a JPA @Table
annotation. With Spring Data Mongo, this is possible using the @Document annotation.

package com.apress.springrecipes.nosql;

import org.springframework.data.mongodb.core.mapping.Document;

@Document(collection = "vehicles")
public class Vehicle { ... }

The @Document annotation can take two attributes: collection and language. The collection property
is for specifying the name of the collection to use, and the language property is for specifying the language
for this object. Now that the mapping information is on the Vehicle class, the collection name can be
removed from the MongoDBVehicleRepository.

CHaptEr 12 ■ Spring witH noSQL

493

public class MongoDBVehicleRepository implements VehicleRepository {

 private final MongoTemplate mongo;

 public MongoDBVehicleRepository(MongoTemplate mongo) {
 this.mongo = mongo;
 }

 @Override
 public long count() {
 return mongo.count(null, Vehicle.class);
 }

 @Override
 public void save(Vehicle vehicle) {
 mongo.save(vehicle);
 }

 @Override
 public void delete(Vehicle vehicle) {
 mongo.remove(vehicle);
 }

 @Override
 public List<Vehicle> findAll() {
 return mongo.findAll(Vehicle.class);
 }

 @Override
 public Vehicle findByVehicleNo(String vehicleNo) {
 return mongo.findOne(new Query(where("vehicleNo").is(vehicleNo)), Vehicle.class);
 }
}

Of course, the collection name can be removed from the configuration of the
MongoDBVehicleRepository as well.

@Configuration
public class MongoConfiguration {
...
 @Bean
 public VehicleRepository vehicleRepository(MongoTemplate mongo) {
 return new MongoDBVehicleRepository(mongo);
 }
}

When running the Main class, the result should still be the same as it was before.

CHaptEr 12 ■ Spring witH noSQL

494

Create a Spring Data MongoDB Repository
Although the code has been reduced a lot in that there is no more mapping from and to MongoDB classes
and no more collection names passing around, it can still be reduced even further. Leveraging another
feature of Spring Data Mongo, the complete implementation of the MongoDBVehicleRepository could be
removed.

First the configuration needs to be modified.

package com.apress.springrecipes.nosql.config;

import com.mongodb.Mongo;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.data.mongodb.core.MongoClientFactoryBean;
import org.springframework.data.mongodb.core.MongoTemplate;
import org.springframework.data.mongodb.repository.config.EnableMongoRepositories;

@Configuration
@EnableMongoRepositories(basePackages = "com.apress.springrecipes.nosql")
public class MongoConfiguration {

 public static final String DB_NAME = "vehicledb";

 @Bean
 public MongoTemplate mongoTemplate(Mongo mongo) throws Exception {
 return new MongoTemplate(mongo, DB_NAME);
 }

 @Bean
 public MongoClientFactoryBean mongoFactoryBean() {
 return new MongoClientFactoryBean();
 }
}

First, notice the removal of the @Bean method that constructed the MongoDBVehicleRepository. Second,
notice the addition of the @EnableMongoRepositories annotation. This enables detection of interfaces that
extend the Spring Data CrudRepository and are used for domain objects annotated with @Document.

To have your VehicleRepository detected by Spring Data, you need to let it extend CrudRepository or
one of its subinterfaces like MongoRepository.

package com.apress.springrecipes.nosql;

import org.springframework.data.mongodb.repository.MongoRepository;

public interface VehicleRepository extends MongoRepository<Vehicle, String> {

 public Vehicle findByVehicleNo(String vehicleNo);

}

CHaptEr 12 ■ Spring witH noSQL

495

You might wonder where all the methods have gone. They are already defined in the super interfaces
and as such can be removed from this interface. The findByVehicleNo method is still there. This method
will still be used to look up a Vehicle by its vehicleNo property. All the findBy methods are converted into a
MongoDB query. The part after the findBy is interpreted as a property name. It is also possible to write more
complex queries using different operators such as and, or, and between.

Now running the Main class again should still result in the same output; however, the actual code
written to work with MongoDB has been minimized.

Create a Reactive Spring Data MongoDB Repository
Instead of creating a traditional MongoDB repository, it is possible to create a reactive repository, which is
done by extending the ReactiveMongoRepository class (or one of the other reactive repository interfaces).
This will change the return types for methods that return a single value into Mono<T> (or Mono<Void> for
nonreturning methods) and Flux<T> for zero or more elements.

 ■ Note if you want to use rxJava instead project reactor, extend one of the RxJava2*Repository interfaces
and use a Single or Observable instead of Mono and Flux.

To be able to use a reactive repository implementation, you first have to use a reactive implementation
of the MongoDB driver and configure Spring Data to use that driver. To make it easier, you can extend
AbstractReactiveMongoConfiguration and implement the two required methods getDatabaseName and
mongoClient.

@Configuration
@EnableReactiveMongoRepositories(basePackages = "com.apress.springrecipes.nosql")
public class MongoConfiguration extends AbstractReactiveMongoConfiguration {

 public static final String DB_NAME = "vehicledb";

 @Bean
 @Override
 public MongoClient reactiveMongoClient() {
 return MongoClients.create();
 }

 @Override
 protected String getDatabaseName() {
 return DB_NAME;
 }
}

Another thing that has changed is the use of @EnableReactiveMongoRepositories instead of
@EnableMongoRepositories. The database name is still needed, and you need to connect with a reactive
driver to the MongoDB instance. For this you can use one of the MongoClients.create methods; here you
can simply use the default.

Next change VehicleRepository to extend ReactiveMongoRepository so it will become reactive; you
also need to change the return type of the findByVehicleNo method to Mono<Vehicle> instead of a plain
Vehicle.

CHaptEr 12 ■ Spring witH noSQL

496

package com.apress.springrecipes.nosql;

import org.springframework.data.mongodb.repository.ReactiveMongoRepository;
import reactor.core.publisher.Mono;

public interface VehicleRepository extends ReactiveMongoRepository<Vehicle, String> {

 Mono<Vehicle> findByVehicleNo(String vehicleNo);

}

The final piece that would need to change is the Main class to test all this. Instead of blocking calls, you
want to use a stream of methods to be called.

package com.apress.springrecipes.nosql;

import com.apress.springrecipes.nosql.config.MongoConfiguration;
import org.springframework.context.ApplicationContext;
import org.springframework.context.annotation.AnnotationConfigApplicationContext;
import org.springframework.context.support.AbstractApplicationContext;
import reactor.core.publisher.Flux;

import java.util.concurrent.CountDownLatch;

public class Main {

 public static void main(String[] args) throws Exception {
 Appl icationContext ctx =
 new AnnotationConfigApplicationContext(MongoConfiguration.class);
 VehicleRepository repository = ctx.getBean(VehicleRepository.class);

 CountDownLatch countDownLatch = new CountDownLatch(1);

 repository.count().doOnSuccess(cnt -> System.out.println("Number of Vehicles: " + cnt))
 .thenMany(repository.saveAll(
 Flux.just(
 new Vehicle("TEM0001", "RED", 4, 4),
 new Vehicle("TEM0002", "RED", 4, 4)))).last()
 . then(repository.count()).doOnSuccess(cnt -> System.out.println("Number of

Vehicles: " + cnt))
 .then(repository.findByVehicleNo("TEM0001")).doOnSuccess(System.out::println)
 .then(repository.deleteAll())
 .doOnSuccess(x -> countDownLatch.countDown())
 .doOnError(t -> countDownLatch.countDown())
 .then(repository.count()).subscribe(cnt -> System.out.println

("Number of Vehicles: " + cnt.longValue()));

 countDownLatch.await();
 ((AbstractApplicationContext) ctx).close();

 }
}

CHaptEr 12 ■ Spring witH noSQL

497

The flow starts with a count, and when that succeeds, the Vehicle instances are put into MongoDB.
When the last() vehicle has been added, a count is done again, followed by a query that in turn is followed
by a deleteAll. All these methods are called in a reactive fashion one after the other, triggered by an
event. Because you don’t want to block using the block() method, you wait for the code to execute using a
CountDownLatch, and the counter is decremented after the deletion of all records, after which the program
will continue execution. Granted, this is still blocking. When using this in a full reactive stack, you would
probably return the Mono from the last then and do further composition or give the output a Spring WebFlux
controller (see Chapter 5).

12-2. Use Redis
Problem
You want to utilize Redis to store data.

Solution
Download and install Redis and use Spring and Spring Data to access the Redis instance.

How It Works
Redis is a key-value cache or store, and it will hold only simple data types such as strings and hashes. When
storing more complex data structures, conversion from and to that data structure is needed.

Download and Start Redis
You can download Redis sources from http://redis.io/download. At the time of writing, version 3.2.8 is
the most recently released stable version. You can find a compiled version for Windows at https://github.
com/MSOpenTech/redis/releases. The official download site only provides Unix binaries. Mac users can use
Homebrew (http://brew.sh) to install Redis.

After downloading and installing Redis, start it using the redis-server command from the command
line. When started, the output should be similar to that in Figure 12-2. It will output the process ID (PID) and
the port number (default 6379) it listens on.

Figure 12-2. Output after starting Redis

http://dx.doi.org/10.1007/978-1-4842-2790-9_5
http://redis.io/download
https://github.com/MSOpenTech/redis/releases
https://github.com/MSOpenTech/redis/releases
http://brew.sh/

CHaptEr 12 ■ Spring witH noSQL

498

Connect to Redis
To be able to connect to Redis, a client is needed, much like a JDBC driver to connect to a database. Several
clients are available. You can find a full list on the Redis web site (http://redis.io/clients). For this
recipe, the Jedis client will be used because it is quite active and recommended by the Redis team.

Let’s start with a simple Hello World sample to see whether a connection to Redis can be made.

package com.apress.springrecipes.nosql;

import redis.clients.jedis.Jedis;

public class Main {

 public static void main(String[] args) {
 Jedis jedis = new Jedis("localhost");
 jedis.set("msg", "Hello World, from Redis!");
 System.out.println(jedis.get("msg"));
 }
}

A Jedis client is created and passed the name of the host to connect to, in this case simply localhost.
The set method on the Jedis client will put a message in the store, and with get the message is retrieved
again. Instead of a simple object, you could also have Redis mimic a List or a Map.

package com.apress.springrecipes.nosql;

import redis.clients.jedis.Jedis;

public class Main {

 public static void main(String[] args) {
 Jedis jedis = new Jedis("localhost");
 jedis.rpush("authors", "Marten Deinum", "Josh Long", "Daniel Rubio", "Gary Mak");
 System.out.println("Authors: " + jedis.lrange("authors",0,-1));

 jedis.hset("sr_3", "authors", "Gary Mak, Danial Rubio, Josh Long, Marten Deinum");
 jedis.hset("sr_3", "published", "2014");

 jedis.hset("sr_4", "authors", "Josh Long, Marten Deinum");
 jedis.hset("sr_4", "published", "2017");

 System.out.println("Spring Recipes 3rd: " + jedis.hgetAll("sr_3"));
 System.out.println("Spring Recipes 4th: " + jedis.hgetAll("sr_4"));
 }
}

With rpush and lpush, you can add elements to a List. rpush adds the elements to the end of the list,
and lpush adds them to the start of the list. To retrieve them, the lrange or rrange method can be used. The
lrange starts from the left and takes a start and end index. The sample uses -1, which indicates everything.

To add elements to a Map, use hset. This takes a key and a field and a value. Another option is to use
hmset (multiset), which takes a Map<String, String> or Map<byte[], byte[]> as an argument.

http://redis.io/clients

CHaptEr 12 ■ Spring witH noSQL

499

Store Objects with Redis
Redis is a key-value store and can handle only String or byte[]. The same goes for the keys. So, storing an
object in Redis isn’t as straightforward as with other technologies. The object needs to be serialized to a
String or a byte[] before storing.

Let’s reuse the Vehicle class from recipe 12-1 and store and retrieve that using a Jedis client.

package com.apress.springrecipes.nosql;

import java.io.Serializable;

public class Vehicle implements Serializable{

 private String vehicleNo;
 private String color;
 private int wheel;
 private int seat;

 public Vehicle() {
 }

 public Vehicle(String vehicleNo, String color, int wheel, int seat) {
 this.vehicleNo = vehicleNo;
 this.color = color;
 this.wheel = wheel;
 this.seat = seat;
 }
 // getters/setters omitted
}

Notice the implements Serializable for the Vehicle class. This is needed to make the object
serializable for Java. Before storing the object, it needs to be converted into a byte[] in Java. The
ObjectOutputStream can write objects, and the ByteArrayOutputStream can write to a byte[]. To transform
a byte[] into an object again, ObjectInputStream and ByteArrayInputStream are of help. Spring has a
helper class for this called org.springframework.util.SerializationUtils, which provides serialize
and deserialize methods.

Now in the Main class, let’s create a Vehicle and store it using Jedis.

package com.apress.springrecipes.nosql;

import org.springframework.util.SerializationUtils;
import redis.clients.jedis.Jedis;

public class Main {

 public static void main(String[] args) throws Exception {
 Jedis jedis = new Jedis("localhost");

 final String vehicleNo = "TEM0001";
 Vehicle vehicle = new Vehicle(vehicleNo, "RED", 4,4);

CHaptEr 12 ■ Spring witH noSQL

500

 jedis.set(vehicleNo.getBytes(), SerializationUtils.serialize(vehicle));

 byte[] vehicleArray = jedis.get(vehicleNo.getBytes());

 System.out.println("Vehicle: " + SerializationUtils.deserialize(vehicleArray));
 }
}

First, an instance of the Vehicle is created. Next, the earlier mentioned SerializationUtils is used
to convert the object into a byte[]. When storing a byte[], the key also needs to be a byte[]; hence, the
key, here vehicleNo, is converted too. Finally, the same key is used to read the serialized object from the
store again and convert it back into an object again. The drawback of this approach is that every object that
is stored needs to implement the Serializable interface. If this isn’t the case, the object might be lost, or
an error during serialization might occur. In addition, the byte[] is a representation of the class. Now if this
class is changed, there is a great chance that converting it back into an object will fail.

Another option is to use a String representation of the object. Convert the Vehicle object into XML or
JSON, which would be more flexible than a byte[]. Let’s take a look at converting the object into JSON using
the excellent Jackson JSON library:

package com.apress.springrecipes.nosql;

import com.fasterxml.jackson.databind.ObjectMapper;
import redis.clients.jedis.Jedis;

public class Main {

 public static void main(String[] args) throws Exception {
 Jedis jedis = new Jedis("localhost");
 ObjectMapper mapper = new ObjectMapper();
 final String vehicleNo = "TEM0001";
 Vehicle vehicle = new Vehicle(vehicleNo, "RED", 4,4);

 jedis.set(vehicleNo, mapper.writeValueAsString(vehicle));

 String vehicleString = jedis.get(vehicleNo);

 System.out.println("Vehicle: " + mapper.readValue(vehicleString, Vehicle.class));
 }
}

First, an instance of the ObjectMapper is needed. This object is used to convert from and to JSON. When
writing, the writeValueAsString method is used as it will transform the object into a JSON String. This
String is then stored in Redis. Next, the String is read again and passed to the readValue method of the
ObjectMapper. Based on the type argument, Vehicle.class here, an object is constructed, and the JSON is
mapped to an instance of the given class.

Storing objects when using Redis isn’t straightforward, and some argue that this isn’t how Redis was
intended to be used (storing complex object structures).

CHaptEr 12 ■ Spring witH noSQL

501

Configure and Use the RedisTemplate
Depending on the client library used to connect to Redis, it might be harder to use the Redis API. To unify
this, there is the RedisTemplate. It can work with most Redis Java clients out there. Next to providing a
unified approach, it also takes care of translating any exceptions into the Spring’s DataAccessException
hierarchy. This lets it integrate nicely with any already existing data access and allows it to use Spring’s
transactions support.

The RedisTemplate requires a RedisConnectionFactory to be able to get a connection. The
RedisConnectionFactory is an interface, and several implementations are available. In this case, the
JedisConnectionFactory is needed.

package com.apress.springrecipes.nosql.config;

import com.apress.springrecipes.nosql.Vehicle;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.data.redis.connection.RedisConnectionFactory;
import org.springframework.data.redis.connection.jedis.JedisConnectionFactory;
import org.springframework.data.redis.core.RedisTemplate;

@Configuration
public class RedisConfig {

 @Bean
 public RedisTemplate<String, Vehicle> redisTemplate(RedisConnectionFactory

connectionFactory) {
 RedisTemplate template = new RedisTemplate();
 template.setConnectionFactory(connectionFactory);
 return template;
 }

 @Bean
 public RedisConnectionFactory redisConnectionFactory() {
 return new JedisConnectionFactory();
 }
}

Notice the return type of the redisTemplate bean method. RedisTemplate is a generic class and
requires a key and value type to be specified. In this case, String is the type of key, and Vehicle is the type
of value. When storing and retrieving objects, RedisTemplate will take care of the conversion. Conversion
is done using a RedisSerializer interface, which is an interface for which several implementations exist
(see Table 12-1). The default RedisSerializer, JdkSerializationRedisSerializer, uses standard Java
serialization to convert objects to byte[] and back.

CHaptEr 12 ■ Spring witH noSQL

502

To be able to use the RedisTemplate, the Main class needs to be modified. The configuration needs to be
loaded and the RedisTemplate retrieved from it.

package com.apress.springrecipes.nosql;

import com.apress.springrecipes.nosql.config.RedisConfig;
import org.springframework.context.ApplicationContext;
import org.springframework.context.annotation.AnnotationConfigApplicationContext;
import org.springframework.data.redis.core.RedisTemplate;

public class Main {

 public static void main(String[] args) throws Exception {
 ApplicationContext context = new AnnotationConfigApplicationContext(RedisConfig.class);
 RedisTemplate<String, Vehicle> template = context.getBean(RedisTemplate.class);

 final String vehicleNo = "TEM0001";
 Vehicle vehicle = new Vehicle(vehicleNo, "RED", 4,4);
 template.opsForValue().set(vehicleNo, vehicle);
 System.out.println("Vehicle: " + template.opsForValue().get(vehicleNo));
 }
}

When the RedisTemplate template has been retrieved from ApplicationContext, it can be used. The
biggest advantage here is that you can use objects, and the template handles the hard work of converting
from and to objects. Notice how the set method takes a String and Vehicle as arguments instead of only
String or byte[]. This makes code more readable and easier to maintain. By default JDK serialization is
used. To use Jackson, a different RedisSerializer needs to be configured.

package com.apress.springrecipes.nosql.config;
...
import org.springframework.data.redis.serializer.Jackson2JsonRedisSerializer;

@Configuration
public class RedisConfig {

Table 12-1. Default RedisSerializer Implementations

Name Description

GenericToStringSerializer String to byte[] serializer; uses the Spring ConversionService
to convert objects to String before converting to byte[]

Jackson2JsonRedisRedisSerializer Reads and writes JSON using a Jackson 2 ObjectMapper

JacksonJsonRedisRedisSerializer Reads and writes JSON using a Jackson ObjectMapper

JdkSerializationRedisSerializer Uses default Java serialization and deserialization and is the
default implementation used

OxmSerializer Reads and writes XML using Spring’s Marshaller and Unmarshaller

StringRedisSerializer Simple String to byte[] converter

CHaptEr 12 ■ Spring witH noSQL

503

 @Bean
 public RedisTemplate<String, Vehicle> redisTemplate() {
 RedisTemplate template = new RedisTemplate();
 template.setConnectionFactory(redisConnectionFactory());
 template.setDefaultSerializer(new Jackson2JsonRedisSerializer(Vehicle.class));
 return template;
 }
...
}

The RedisTemplate template will now use a Jackson ObjectMapper object to perform the serialization
and deserialization. The remainder of the code can remain the same. When running the main program
again, it still works, and the object will be stored using JSON. When Redis is used inside a transaction, it
can also participate in that same transaction. For this, set the enableTransactionSupport property on the
RedisTemplate template to true. This will take care of executing the Redis operation inside the transaction
when the transaction commits.

12-3. Use Neo4j
Problem
You want to use Neo4j in your application.

Solution
Use the Spring Data Neo4j library to access Neo4j.

How It Works
Before you can start using Neo4J you need to have an instance installed and up and running. When you have
it running you will need to connect to it to be able to use the datastore for actual storage. You will start with
a plain Neo4J based repository to show how to store and retrieve objects and graduatly move to Spring Data
Neo4J based repositories.

Download and Run Neo4J
You can download Neo4J from the Neo4j web site (http://neo4j.com/download/). For this recipe, it is
enough to download the community edition; however, it should also work with the commercial version of
Neo4j. Windows users can run the installer to install Neo4j. Mac and Linux users can extract the archive and,
from inside the directory created, start with bin/neo4j. Mac users can also use Homebrew (http://brew.sh)
to install Neo4j with brew install neo4j. Starting can then be done with neo4j start on the command line.

After starting on the command line, the output should be similar to that of Figure 12-3.

http://neo4j.com/download/
http://brew.sh/

CHaptEr 12 ■ Spring witH noSQL

504

Start Neo4j
Let’s start by creating a simple Hello World program with an embedded Neo4j server. Create a Main class that
starts an embedded server, adds some data to Neo4j, and retrieves it again.

package com.apress.springrecipes.nosql;

import org.neo4j.graphdb.GraphDatabaseService;
import org.neo4j.graphdb.Node;
import org.neo4j.graphdb.Transaction;
import org.neo4j.graphdb.factory.GraphDatabaseFactory;

import java.nio.file.Paths;

public class Main {

 public static void main(String[] args) {
 final String DB_PATH = System.getProperty("user.home") + "/friends";

 Grap hDatabaseService db = new GraphDatabaseFactory()
 .newEmbeddedDatabase(Paths.get(DB_PATH).toFile());

 Transaction tx1 = db.beginTx();

 Node hello = db.createNode();
 hello.setProperty("msg", "Hello");

 Node world = db.createNode();
 world.setProperty("msg", "World");
 tx1.success();

 db.getAllNodes().stream()
 .map(n -> n.getProperty("msg"))
 .forEach(m -> System.out.println("Msg: " + m));

 db.shutdown();
 }
}

Figure 12-3. Output after initial start of Neo4j

CHaptEr 12 ■ Spring witH noSQL

505

This Main class will start an embedded Neo4j server. Next it will start a transaction and create two
nodes. Next all nodes are retrieved, and the value of the msg property is printed to the console. Neo4j is good
at traversing relations between nodes. It is especially optimized for that (just like other Graph data stores).

Let’s create some nodes that have a relationship between them.

package com.apress.springrecipes.nosql;

import org.neo4j.graphdb.*;
import org.neo4j.graphdb.factory.GraphDatabaseFactory;

import java.nio.file.Paths;

import static com.apress.springrecipes.nosql.Main.RelationshipTypes.*;

public class Main {

 enum RelationshipTypes implements RelationshipType {FRIENDS_WITH, MASTER_OF, SIBLING,
LOCATION}

 public static void main(String[] args) {
 final String DB_PATH = System.getProperty("user.home") + "/friends";
 final GraphDatabaseService db = new GraphDatabaseFactory()

 .newEmbeddedDatabase(Paths.get(DB_PATH).toFile());
 final Label character = Label.label("character");
 final Label planet = Label.label("planet");

 try (Transaction tx1 = db.beginTx()) {

 // Planets
 Node dagobah = db.createNode(planet);
 dagobah.setProperty("name", "Dagobah");

 Node tatooine = db.createNode(planet);
 tatooine.setProperty("name", "Tatooine");

 Node alderaan = db.createNode(planet);
 alderaan.setProperty("name", "Alderaan");

 // Characters
 Node yoda = db.createNode(character);
 yoda.setProperty("name", "Yoda");

 Node luke = db.createNode(character);
 luke.setProperty("name", "Luke Skywalker");

 Node leia = db.createNode(character);
 leia.setProperty("name", "Leia Organa");

 Node han = db.createNode(character);
 han.setProperty("name", "Han Solo");

CHaptEr 12 ■ Spring witH noSQL

506

 // Relations
 yoda.createRelationshipTo(luke, MASTER_OF);
 yoda.createRelationshipTo(dagobah, LOCATION);
 luke.createRelationshipTo(leia, SIBLING);
 luke.createRelationshipTo(tatooine, LOCATION);
 luke.createRelationshipTo(han, FRIENDS_WITH);
 leia.createRelationshipTo(han, FRIENDS_WITH);
 leia.createRelationshipTo(alderaan, LOCATION);

 tx1.success();
 }

 Result result = db.execute("MATCH (n) RETURN n.name as name");
 result.stream()
 .flatMap(m -> m.entrySet().stream())
 .map(row -> row.getKey() + " : " + row.getValue() + ";")
 .forEach(System.out::println);

 db.shutdown();
 }
}

The code reflects a tiny part of the Star Wars universe. It has characters and their locations, which are
actually planets. There are also relations between people (see Figure 12-4 for the relationship diagram).

LOCATION

type: Planet
name: Dagobah

type: Planet
name: Tatooine

type: Character
name: Luke Skywalker

type: Character
name: Yoda

type: Planet
name: Alderaan

type: Character
name: Leia Organa

type: Character
name: Han Solo

LOCATION LOCATION

MASTER_OF

FRIENDS_WITH

FRIENDS_WITH

SIBLING

Figure 12-4. Relationship sample

CHaptEr 12 ■ Spring witH noSQL

507

The relationships in the code are enabled by using an enum that implements a Neo4j interface called
RelationshipType. This is, as the name suggests, needed to differentiate between the different types of
relationships. The type of node is differentiated by putting a label on the node. The name is set as a basic
property on the node. When running the code, it will execute the cypher query MATCH (n) RETURN n.name
as name. This selects all nodes and returns the name property of all the nodes.

Map Objects with Neo4j
The code until now is quite low level and bound to plain Neo4j. Creating and manipulating nodes is
cumbersome. Ideally, you would use a Planet class and a Character class and have them stored/retrieved
from Neo4j. First create the Planet and Character classes.

package com.apress.springrecipes.nosql;

public class Planet {

 private long id = -1;
 private String name;
 // Getters and Setters omitted
}
package com.apress.springrecipes.nosql;

import java.util.ArrayList;
import java.util.Collections;
import java.util.List;

public class Character {

 private long id = -1;
 private String name;

 private Planet location;
 private final List<Character> friends = new ArrayList<>();
 private Character apprentice;

 public void addFriend(Character friend) {
 friends.add(friend);
 }

 // Getters and Setters omitted
}

The Planet class is quite straightforward. It has id and name properties. The Character class is a bit
more complicated. It also has the id and name properties along with some additional properties for the
relationships. There is the location value for the LOCATION relationship, a collection of Characters for the
FRIENDS_WITH relationship, and also an apprentice for the MASTER_OF relationship.

CHaptEr 12 ■ Spring witH noSQL

508

To be able to store these classes, let’s create a StarwarsRepository interface to hold the save operations.

package com.apress.springrecipes.nosql;

public interface StarwarsRepository {

 Planet save(Planet planet);
 Character save(Character character);

}

Here’s the implementation for Neo4j:

package com.apress.springrecipes.nosql;

import org.neo4j.graphdb.GraphDatabaseService;
import org.neo4j.graphdb.Label;
import org.neo4j.graphdb.Node;
import org.neo4j.graphdb.Transaction;

import static com.apress.springrecipes.nosql.RelationshipTypes.*;

public class Neo4jStarwarsRepository implements StarwarsRepository {

 private final GraphDatabaseService db;

 public Neo4jStarwarsRepository(GraphDatabaseService db) {
 this.db = db;
 }

 @Override
 public Planet save(Planet planet) {
 if (planet.getId() != null) {
 return planet;
 }
 try (Transaction tx = db.beginTx()) {
 Label label = Label.label("planet");
 Node node = db.createNode(label);
 node.setProperty("name", planet.getName());
 tx.success();
 planet.setId(node.getId());
 return planet;
 }
 }

 @Override
 public Character save(Character character) {
 if (character.getId() != null) {
 return character;
 }

CHaptEr 12 ■ Spring witH noSQL

509

 try (Transaction tx = db.beginTx()) {
 Label label = Label.label("character");
 Node node = db.createNode(label);
 node.setProperty("name", character.getName());

 if (character.getLocation() != null) {
 Planet planet = character.getLocation();
 planet = save(planet);
 node.createRelationshipTo(db.getNodeById(planet.getId()), LOCATION);
 }

 for (Character friend : character.getFriends()) {
 friend = save(friend);
 node.createRelationshipTo(db.getNodeById(friend.getId()), FRIENDS_WITH);
 }

 if (character.getApprentice() != null) {
 save(character.getApprentice());
 node.createRelationshipTo(db.getNodeById(character.getApprentice().getId()),

MASTER_OF);
 }

 tx.success();
 character.setId(node.getId());
 return character;
 }
 }

}

There is a whole lot going on here to convert the objects into a Node object. For the Planet object, it is
pretty easy. First check whether it has already been persisted (the ID is greater than -1 in that case); if not, start
a transaction, create a node, set the name property, and transfer the id value to the Planet object. However, for
the Character class, it is a bit more complicated as all the relationships need to be taken into account.

The Main class needs to be modified to reflect the changes to the classes.

package com.apress.springrecipes.nosql;

import org.neo4j.graphdb.GraphDatabaseService;
import org.neo4j.graphdb.Result;
import org.neo4j.graphdb.Transaction;
import org.neo4j.graphdb.factory.GraphDatabaseFactory;

import java.nio.file.Paths;

public class Main {

 public static void main(String[] args) {
 final String DB_PATH = System.getProperty("user.home") + "/starwars";
 final GraphDatabaseService db = new GraphDatabaseFactory().

newEmbeddedDatabase(Paths.get(DB_PATH).toFile());

CHaptEr 12 ■ Spring witH noSQL

510

 StarwarsRepository repository = new Neo4jStarwarsRepository(db);

 try (Transaction tx = db.beginTx()) {

 // Planets
 Planet dagobah = new Planet();
 dagobah.setName("Dagobah");

 Planet alderaan = new Planet();
 alderaan.setName("Alderaan");

 Planet tatooine = new Planet();
 tatooine.setName("Tatooine");

 dagobah = repository.save(dagobah);
 repository.save(alderaan);
 repository.save(tatooine);

 // Characters
 Character han = new Character();
 han.setName("Han Solo");

 Character leia = new Character();
 leia.setName("Leia Organa");
 leia.setLocation(alderaan);
 leia.addFriend(han);

 Character luke = new Character();
 luke.setName("Luke Skywalker");
 luke.setLocation(tatooine);
 luke.addFriend(han);
 luke.addFriend(leia);

 Character yoda = new Character();
 yoda.setName("Yoda");
 yoda.setLocation(dagobah);
 yoda.setApprentice(luke);

 repository.save(han);
 repository.save(luke);
 repository.save(leia);
 repository.save(yoda);

 tx.success();
 }

 Result result = db.execute("MATCH (n) RETURN n.name as name");
 result.stream()
 .flatMap(m -> m.entrySet().stream())

CHaptEr 12 ■ Spring witH noSQL

511

 .map(row -> row.getKey() + " : " + row.getValue() + ";")
 .forEach(System.out::println);

 db.shutdown();

 }
}

When executing, the result should still be the same as before. However, the main difference is now that
the code is using domain objects instead of working directly with nodes. Storing the objects as nodes in
Neo4j is quite cumbersome. Luckily, Spring Data Neo4j can help to make it a lot easier.

Map Objects Using Neo4j OGM
In the conversion to nodes and relationships, properties can be quite cumbersome. Wouldn’t it be nice if
you could simply specify what to store where using annotations, just as is done using JPA? Neo4j OGM offers
those annotations. To make an object a Neo4j mapped entity, use the @NodeEntity annotation on the type.
Relationships can be modeled with the @Relationship annotation. To identify the field used for the ID, add
the @GraphId annotation. Applying these to the Planet and Character classes would make them look like
the following:

package com.apress.springrecipes.nosql;

import org.neo4j.ogm.annotation.GraphId;
import org.neo4j.ogm.annotation.NodeEntity;

@NodeEntity
public class Planet {

 @GraphId
 private Long id;
 private String name;

 // Getters/setters omitted
}

Here’s the Character class:

package com.apress.springrecipes.nosql;

import org.neo4j.ogm.annotation.GraphId;
import org.neo4j.ogm.annotation.NodeEntity;
import org.neo4j.ogm.annotation.Relationship;

import java.util.Collections;
import java.util.HashSet;
import java.util.Objects;
import java.util.Set;

CHaptEr 12 ■ Spring witH noSQL

512

@NodeEntity
public class Character {

 @GraphId
 private Long id;
 private String name;

 @Relationship(type = "LOCATION")
 private Planet location;
 @Relationship(type="FRIENDS_WITH")
 private final Set<Character> friends = new HashSet<>();
 @Relationship(type="MASTER_OF")
 private Character apprentice;

 // Getters / Setters omitted

}

Now that the entities are annotated, the repository can be rewritten to use SessionFactory and Session
for easier access.

package com.apress.springrecipes.nosql;

import org.neo4j.ogm.model.Result;
import org.neo4j.ogm.session.Session;
import org.neo4j.ogm.session.SessionFactory;
import org.neo4j.ogm.transaction.Transaction;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Repository;

import javax.annotation.PreDestroy;
import java.util.Collections;

@Repository
public class Neo4jStarwarsRepository implements StarwarsRepository {

 private final SessionFactory sessionFactory;

 @Autowired
 public Neo4jStarwarsRepository(SessionFactory sessionFactory) {
 this.sessionFactory = sessionFactory;
 }

 @Override
 public Planet save(Planet planet) {

 Session session = sessionFactory.openSession();
 try (Transaction tx = session.beginTransaction()) {
 session.save(planet);
 return planet;
 }
 }

CHaptEr 12 ■ Spring witH noSQL

513

 @Override
 public Character save(Character character) {

 Session session = sessionFactory.openSession();
 try (Transaction tx = session.beginTransaction()) {
 session.save(character);
 return character;
 }
 }

 @Override
 public void printAll() {

 Session session = sessionFactory.openSession();
 Resu lt result = session.query("MATCH (n) RETURN n.name as name",

Collections.emptyMap(), true);
 result.forEach(m -> m.entrySet().stream()
 .map(row -> row.getKey() + " : " + row.getValue() + ";")
 .forEach(System.out::println));
 }

}

There are a couple of things to notice: the code is a lot cleaner when using SessionFactory and Session
as a lot of the plumping is done for you, especially mapping from and to nodes. The final thing to note is the
addition of the printAll method. It has been added to move the code from the Main class to the repository.

The next class to modify is the Main class as it now needs to construct a SessionFactory. To construct a
SessionFactory, you need to specify which packages it needs to scan for @NodeEntity annotated classes.

package com.apress.springrecipes.nosql;

import org.neo4j.ogm.session.SessionFactory;

public class Main {

 public static void main(String[] args) {
 SessionFactory sessionFactory = new SessionFactory("com.apress.springrecipes.nosql");

 StarwarsRepository repository = new Neo4jStarwarsRepository(sessionFactory);

 // Planets
 Planet dagobah = new Planet();
 dagobah.setName("Dagobah");

 Planet alderaan = new Planet();
 alderaan.setName("Alderaan");

 Planet tatooine = new Planet();
 tatooine.setName("Tatooine");

 dagobah = repository.save(dagobah);
 repository.save(alderaan);
 repository.save(tatooine);

CHaptEr 12 ■ Spring witH noSQL

514

 // Characters
 Character han = new Character();
 han.setName("Han Solo");

 Character leia = new Character();
 leia.setName("Leia Organa");
 leia.setLocation(alderaan);
 leia.addFriend(han);

 Character luke = new Character();
 luke.setName("Luke Skywalker");
 luke.setLocation(tatooine);
 luke.addFriend(han);
 luke.addFriend(leia);

 Character yoda = new Character();
 yoda.setName("Yoda");
 yoda.setLocation(dagobah);
 yoda.setApprentice(luke);

 repository.save(han);
 repository.save(luke);
 repository.save(leia);
 repository.save(yoda);

 repository.printAll();

 sessionFactory.close();
 }
}

A SessionFactory is created and used to construct a Neo4jStarwarsRepository. Next the data is being
set up, and the printAll method is called. The code that was there initially is now in that method. The end
result should still be similar to what you got until now.

Use Spring for Configuration
Up until now everything was manually configured and wired. Let’s create a Spring configuration class.

package com.apress.springrecipes.nosql;

import org.neo4j.ogm.session.SessionFactory;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;

@Configuration
public class StarwarsConfig {

 @Bean
 public SessionFactory sessionFactory() {
 return new SessionFactory("com.apress.springrecipes.nosql");
 }

CHaptEr 12 ■ Spring witH noSQL

515

 @Bean
 public Neo4jStarwarsRepository starwarsRepository(SessionFactory sessionFactory) {
 return new Neo4jStarwarsRepository(sessionFactory);
 }
}

Both SessionFactory and Neo4jStarwarsRepository are Spring managed beans now. You can
now let the Main class use this configuration to bootstrap an ApplicationContext and retrieve the
StarwarsRepository from it.

package com.apress.springrecipes.nosql;

import org.springframework.context.annotation.AnnotationConfigApplicationContext;

public class Main {

 public static void main(String[] args) {
 Anno tationConfigApplicationContext context =

new AnnotationConfigApplicationContext(StarwarsConfig.class);

 StarwarsRepository repository = context.getBean(StarwarsRepository.class);

 // Planets
 Planet dagobah = new Planet();
 dagobah.setName("Dagobah");

 Planet alderaan = new Planet();
 alderaan.setName("Alderaan");

 Planet tatooine = new Planet();
 tatooine.setName("Tatooine");

 dagobah = repository.save(dagobah);
 repository.save(alderaan);
 repository.save(tatooine);

 // Characters
 Character han = new Character();
 han.setName("Han Solo");

 Character leia = new Character();
 leia.setName("Leia Organa");
 leia.setLocation(alderaan);
 leia.addFriend(han);

 Character luke = new Character();
 luke.setName("Luke Skywalker");
 luke.setLocation(tatooine);
 luke.addFriend(han);
 luke.addFriend(leia);

CHaptEr 12 ■ Spring witH noSQL

516

 Character yoda = new Character();
 yoda.setName("Yoda");
 yoda.setLocation(dagobah);
 yoda.setApprentice(luke);

 repository.save(han);
 repository.save(luke);
 repository.save(leia);
 repository.save(yoda);

 repository.printAll();

 context.close();
 }
}

It is still largely the same. The main difference is that now Spring is in control of the life cycle of the beans.
Spring Data Neo4j also provides a Neo4jTransactionManager implementation, which takes care of

starting and stopping a transaction for you, just like the other PlatformTransactionManager implementations
do. First let’s modify the configuration to include it and to add @EnableTransactionManagement.

package com.apress.springrecipes.nosql;

import org.neo4j.ogm.session.SessionFactory;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.data.neo4j.transaction.Neo4jTransactionManager;
import org.springframework.transaction.annotation.EnableTransactionManagement;

@Configuration
@EnableTransactionManagement
public class StarwarsConfig {

 @Bean
 public SessionFactory sessionFactory() {
 return new SessionFactory("com.apress.springrecipes.nosql");
 }

 @Bean
 public Neo4jStarwarsRepository starwarsRepository(SessionFactory sessionFactory) {
 return new Neo4jStarwarsRepository(sessionFactory);
 }

 @Bean
 public Neo4jTransactionManager transactionManager(SessionFactory sessionFactory) {
 return new Neo4jTransactionManager(sessionFactory);
 }
}

CHaptEr 12 ■ Spring witH noSQL

517

With this in place, you can now further clean up the Neo4jStarwarsRepository class.

package com.apress.springrecipes.nosql;

import org.neo4j.ogm.model.Result;
import org.neo4j.ogm.session.Session;
import org.neo4j.ogm.session.SessionFactory;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Repository;
import org.springframework.transaction.annotation.Transactional;

import javax.annotation.PreDestroy;
import java.util.Collections;

@Repository
@Transactional
public class Neo4jStarwarsRepository implements StarwarsRepository {

 private final SessionFactory sessionFactory;

 @Autowired
 public Neo4jStarwarsRepository(SessionFactory sessionFactory) {
 this.sessionFactory = sessionFactory;
 }

 @Override
 public Planet save(Planet planet) {
 Session session = sessionFactory.openSession();
 session.save(planet);
 return planet;
 }

 @Override
 public Character save(Character character) {
 Session session = sessionFactory.openSession();
 session.save(character);
 return character;
 }

 @Override
 public void printAll() {

 Session session = sessionFactory.openSession();
 Resu lt result = session.query("MATCH (n) RETURN n.name as name",

Collections.emptyMap(), true);
 result.forEach(m -> m.entrySet().stream()
 .map(row -> row.getKey() + " : " + row.getValue() + ";")
 .forEach(System.out::println));
 }

CHaptEr 12 ■ Spring witH noSQL

518

 @PreDestroy
 public void cleanUp() {
 Session session = sessionFactory.openSession();
 session.query("MATCH (n) OPTIONAL MATCH (n)-[r]-() DELETE n,r", null);
 }
}

The Main class can remain as is, and storing and querying should still work as before.

Use Spring Data Neo4j Repositories
The code has been simplified considerably. The usage of the SessionFactory and Session made it a lot
easier to work with entities with Neo4j. It can be even easier. As with the JPA or Mongo version of Spring
Data, it can generate repositories for you. The only thing you need to do is write an interface. Let’s create
PlanetRepository and CharacterRepository classes to operate on the entities.

package com.apress.springrecipes.nosql;

import org.springframework.data.repository.CrudRepository;

public interface CharacterRepository extends CrudRepository<Character, Long> {}

Here’s PlanetRepository:

package com.apress.springrecipes.nosql;

import org.springframework.data.repository.CrudRepository;

public interface PlanetRepository extends CrudRepository<Planet, Long> {}

The repositories all extend CrudRepository, but it could also have been PagingAndSortingRepository
or the special Neo4jRepository interface. For the recipe, CrudRepository is sufficient.

Next, rename StarwarsRepository and its implementation to StarwarsService because it isn’t really a
repository anymore; the implementation also needs to change to operate on the repositories instead of the
SessionFactory.

package com.apress.springrecipes.nosql;

import org.springframework.stereotype.Service;
import org.springframework.transaction.annotation.Transactional;

import javax.annotation.PreDestroy;

@Service
@Transactional
public class Neo4jStarwarsService implements StarwarsService {

CHaptEr 12 ■ Spring witH noSQL

519

 private final PlanetRepository planetRepository;
 private final CharacterRepository characterRepository;

 Neo4jStarwarsService(PlanetRepository planetRepository,
CharacterRepository characterRepository) {

 this.planetRepository=planetRepository;
 this.characterRepository=characterRepository;
 }

 @Override
 public Planet save(Planet planet) {
 return planetRepository.save(planet);
 }

 @Override
 public Character save(Character character) {
 return characterRepository.save(character);
 }

 @Override
 public void printAll() {
 planetRepository.findAll().forEach(System.out::println);
 characterRepository.findAll().forEach(System.out::println);
 }

 @PreDestroy
 public void cleanUp() {
 characterRepository.deleteAll();
 planetRepository.deleteAll();
 }
}

Now all operations are done on the specific repository interfaces. Those interfaces don’t create
instances themselves. To enable the creation, the @EnableNeo4jRepositories annotations need to be added
to the configuration class. Also, add an @ComponentScan to have StarwarsService detected and autowired.

@Configuration
@EnableTransactionManagement
@EnableNeo4jRepositories
@ComponentScan
public class StarwarsConfig { ... }

Notice the @EnableNeo4jRepositories annotation. This annotation will scan the configured
base packages for repositories. When one is found, a dynamic implementation is created, and this
implementation eventually delegates to SessionFactory.

CHaptEr 12 ■ Spring witH noSQL

520

Finally, modify the Main class to use the refactored StarwarsService.

package com.apress.springrecipes.nosql;

import com.apress.springrecipes.nosql.config.StarwarsConfig;
import org.springframework.context.annotation.AnnotationConfigApplicationContext;

public class Main {

 public static void main(String[] args) {
 AnnotationConfigApplicationContext context =
 new AnnotationConfigApplicationContext(StarwarsConfig.class);

 StarwarsService service = context.getBean(StarwarsService.class);
 ...
 }
}

Now all the components have been changed to use the dynamically created Spring Data Neo4j repositories.

Connect to a Remote Neo4j Database
Until now all the coding for Neo4j has been done to an embedded Neo4j instance; however, at the
beginning, you downloaded and installed Neo4j. Let’s change the configuration to connect to that remote
Neo4j instance.

package com.apress.springrecipes.nosql;

import org.neo4j.ogm.session.SessionFactory;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.ComponentScan;
import org.springframework.context.annotation.Configuration;
import org.springframework.data.neo4j.repository.config.EnableNeo4jRepositories;
import org.springframework.data.neo4j.transaction.Neo4jTransactionManager;
import org.springframework.transaction.annotation.EnableTransactionManagement;

@Configuration
@EnableTransactionManagement
@EnableNeo4jRepositories
@ComponentScan
public class StarwarsConfig {

 @Bean
 public org.neo4j.ogm.config.Configuration configuration() {
 return new org.neo4j.ogm.config.Configuration.Builder().uri("bolt://localhost").

build();
 }

CHaptEr 12 ■ Spring witH noSQL

521

 @Bean
 public SessionFactory sessionFactory() {
 return new SessionFactory(configuration(),"com.apress.springrecipes.nosql");
 }

 @Bean
 public Neo4jTransactionManager transactionManager(SessionFactory sessionFactory) {
 return new Neo4jTransactionManager(sessionFactory);
 }
}

There is now a Configuration object that is used by SessionFactory; you can either use new
Configuration or use a Builder to construct the Configuration object. You need to specify the URI of the
Neo4j server. In this case, that is localhost. The default driver is the Bolt driver, which uses a binary protocol
to transfer data. HTTP(S) could also be used, but another dependency is needed for that. The created
Configuration object is used by SessionFactory to configure itself.

12-4. Use Couchbase
Problem
You want to use Couchbase in your application to store documents.

Solution
First download, install, and set up Couchbase; then use the Spring Data Couchbase project to store and
retrieve documents from the data store.

How It Works
Before you can start using Couchbase you need to have an instance installed and up and running. When you
have it running you will need to connect to it to be able to use the datastore for actual storage. You will start
with a plain Couchbase based repository to show how to store and retrieve documents and graduatly move
to Spring Data Couchbase and to close with a reactive version of the repository.

Download, Install, and Set Up Couchbase
After downloading and starting Couchbase, open your browser and go to http://localhost:8091. You
should be greeted with a page similar to Figure 12-5. On that page, simply click the Setup button.

CHaptEr 12 ■ Spring witH noSQL

522

On the next screen (see Figure 12-6), you can configure the cluster. You can either start a new one or
join an existing cluster. For this recipe you will start a new cluster. Specify the memory limits and optionally
the paths for the disk storage. For this recipe, it is enough to leave them to the defaults. Then click Next.

Figure 12-5. Installing Couchbase

CHaptEr 12 ■ Spring witH noSQL

523

Figure 12-6. Installing Couchbase, cluster settings

CHaptEr 12 ■ Spring witH noSQL

524

 ■ Note if you are running the Dockerized Couchbase, you need to reduce the data raM quota as that is
limited.

The next screen (Figure 12-7) allows you to select sample data to work with the default samples from
Couchbase. As you aren’t needing it for this recipe, leave all unselected and click Next.

The screen shown in Figure 12-8 allows you to create the default bucket. For this recipe just leave the
settings as is and click Next.

Figure 12-7. Installing Couchbase, sample buckets

CHaptEr 12 ■ Spring witH noSQL

525

Figure 12-8. Installing Couchbase, creating a default bucket

CHaptEr 12 ■ Spring witH noSQL

526

If you want to register the product, fill out the form and decide whether you want to be notified of
software updates. You need to at least select the box to agree with the terms and conditions (Figure 12-9).
Then for almost the last time, click Next.

Finally, you need to pick a username and password for the administrator account for the server. This
recipe is using admin with a password of sr4-admin, but feel free to choose your own. See Figure 12-10.

Figure 12-9. Installing Couchbase, notifications and registration

CHaptEr 12 ■ Spring witH noSQL

527

Store and Retrieve Documents with Couchbase
To store an object in Couchbase, you need to create a Document that can hold various types of content, like
serializable objects, JSON, strings, dates, or binary data in the form of a Netty ByteBuf. However, the
primary type of content is JSON. This way you can use it with other technologies as well. When using a
SerializableDocument, you are restricting yourself to the usage of Java-based solutions.

However, before storing an object in Couchbase, you need to make a connection to the cluster. To
connect to Couchbase, you need a Cluster to be able to access the Bucket you created while doing the setup
for Couchbase. You can use the CouchbaseCluster class to create a connection to the earlier setup cluster.
The resulting Cluster can be used to open a Bucket with the openBucket() method. For this recipe, you are
going to use the default bucket and simplest cluster setup.

First, create a Vehicle class (or reuse the one from recipe 12-1), which you are going to store in
Couchbase.

package com.apress.springrecipes.nosql;

import java.io.Serializable;

public class Vehicle implements Serializable {

 private String vehicleNo;
 private String color;
 private int wheel;
 private int seat;

 public Vehicle() {
 }

Figure 12-10. Installing Couchbase, setting up an admin user

CHaptEr 12 ■ Spring witH noSQL

528

 public Vehicle(String vehicleNo, String color, int wheel, int seat) {
 this.vehicleNo = vehicleNo;
 this.color = color;
 this.wheel = wheel;
 this.seat = seat;
 }

 public String getColor() {
 return color;
 }

 public int getSeat() {
 return seat;
 }

 public String getVehicleNo() {
 return vehicleNo;
 }

 public int getWheel() {
 return wheel;
 }

 public void setColor(String color) {
 this.color = color;
 }

 public void setSeat(int seat) {
 this.seat = seat;
 }

 public void setVehicleNo(String vehicleNo) {
 this.vehicleNo = vehicleNo;
 }

 public void setWheel(int wheel) {
 this.wheel = wheel;
 }

 @Override
 public String toString() {
 return "Vehicle [" +
 "vehicleNo='" + vehicleNo + '\'' +
 ", color='" + color + '\'' +
 ", wheel=" + wheel +
 ", seat=" + seat +
 ']';
 }
}

CHaptEr 12 ■ Spring witH noSQL

529

Notice this part: implements Serializable. This is needed because you will use, at first, the
SerializableDocument class from Couchbase to store the object.

To communicate with Couchbase, you will create a repository. First define the interface.

package com.apress.springrecipes.nosql;

public interface VehicleRepository {

 void save(Vehicle vehicle);

 void delete(Vehicle vehicle);

 Vehicle findByVehicleNo(String vehicleNo);

}

Here’s the implementation, which will store the Vehicle value using SerializableDocument:

package com.apress.springrecipes.nosql;

import com.couchbase.client.java.Bucket;
import com.couchbase.client.java.document.SerializableDocument;

class CouchBaseVehicleRepository implements VehicleRepository {

 private final Bucket bucket;

 public CouchBaseVehicleRepository(Bucket bucket) {
 this.bucket=bucket;
 }

 @Override
 public void save(Vehicle vehicle) {
 SerializableDocument vehicleDoc = SerializableDocument

 .create(vehicle.getVehicleNo(), vehicle);
 bucket.upsert(vehicleDoc);
 }

 @Override
 public void delete(Vehicle vehicle) {
 bucket.remove(vehicle.getVehicleNo());
 }

 @Override
 public Vehicle findByVehicleNo(String vehicleNo) {
 SerializableDocument doc = bucket.get(vehicleNo, SerializableDocument.class);
 if (doc != null) {
 return (Vehicle) doc.content();
 }
 return null;
 }
}

CHaptEr 12 ■ Spring witH noSQL

530

The repository needs a Bucket for storing the documents; it is like the table of a database (a Bucket is
like the table, and the Cluster more like the whole database). When storing the Vehicle, it is wrapped in a
SerializableDocument, and the vehicleNo value is used as the ID; after that, the upsert method is called.
This will either update or insert the document depending on whether it already exists.

Let’s create a Main class that stores and retrieves the data for a Vehicle in the bucket.

package com.apress.springrecipes.nosql;

import com.couchbase.client.java.Bucket;
import com.couchbase.client.java.Cluster;
import com.couchbase.client.java.CouchbaseCluster;

public class Main {

 public static void main(String[] args) {

 Cluster cluster = CouchbaseCluster.create();
 Bucket bucket = cluster.openBucket();

 CouchBaseVehicleRepository vehicleRepository = new CouchBaseVehicleRepository(bucket);
 vehicleRepository.save(new Vehicle("TEM0001", "GREEN", 3, 1));
 vehicleRepository.save(new Vehicle("TEM0004", "RED", 4, 2));

 System.out.println("Vehicle: " + vehicleRepository.findByVehicleNo("TEM0001"));
 System.out.println("Vehicle: " + vehicleRepository.findByVehicleNo("TEM0004"));

 bucket.remove("TEM0001");
 bucket.remove("TEM0004");

 bucket.close();
 cluster.disconnect();
 }
}

First, a connection is made to the Cluster using the CouchbaseCluster.create() method. This will,
by default, connect to the cluster on localhost. When using Couchbase in a production environment, you
probably want to use one of the other create methods and pass in a list of hosts to connect to or to set even
more properties using a CouchbaseEnvironment (to set things like queryTimeout, searchTimeout, etc.). For
this recipe, it is enough to use the default Cluster. Next you need to specify the Bucket to use for storing and
retrieving documents. As you will use the defaults, using cluster.openBucket() is enough. There are several
other overloaded methods to specify a specific Bucket to use and to specify properties for the connection to
the bucket (such as timeout settings, username/password, etc.).

The Bucket is used to create an instance of CouchbaseVehicleRepository. After that, two Vehicles are
stored, retrieved, and removed again (as to leave no clutter from this recipe). Finally, the connections are
closed.

Although you are now storing documents in CouchBase, there is one drawback: you are doing that
using SerializableDocument, which is something CouchBase cannot use for indexing. In addition, it will
only be readable from other Java-based clients and not using different languages (like JavaScript). Instead, it
is recommended to use JsonDocument instead. Let’s rewrite CouchbaseVehicleRepository to reflect this.

CHaptEr 12 ■ Spring witH noSQL

531

package com.apress.springrecipes.nosql;

import com.couchbase.client.java.Bucket;
import com.couchbase.client.java.document.JsonDocument;
import com.couchbase.client.java.document.json.JsonObject;

class CouchbaseVehicleRepository implements VehicleRepository {

 private final Bucket bucket;

 public CouchbaseVehicleRepository(Bucket bucket) {
 this.bucket=bucket;
 }

 @Override
 public void save(Vehicle vehicle) {

 JsonObject vehicleJson = JsonObject.empty()
 .put("vehicleNo", vehicle.getVehicleNo())
 .put("color", vehicle.getColor())
 .put("wheels", vehicle.getWheel())
 .put("seat", vehicle.getSeat());

 JsonDocument vehicleDoc = JsonDocument.create(vehicle.getVehicleNo(), vehicleJson);
 bucket.upsert(vehicleDoc);
 }

 @Override
 public void delete(Vehicle vehicle) {
 bucket.remove(vehicle.getVehicleNo());
 }

 @Override
 public Vehicle findByVehicleNo(String vehicleNo) {

 JsonDocument doc = bucket.get(vehicleNo, JsonDocument.class);
 if (doc != null) {
 JsonObject result = doc.content();
 return new Vehicle(result.getString("vehicleNo"), result.getString("color"),

result.getInt("wheels"), result.getInt("seat"));
 }
 return null;
 }
}

Notice this code uses a JsonObject object and converts Vehicle to a JsonObject object, and vice versa.
Running the Main class again should store, retrieve, and remove two documents from Couchbase again.

Converting to/from JSON can become quite cumbersome for larger object graphs, so instead of doing
things manually, you could use a JSON library, like Jackson, to convert to/from JSON.

CHaptEr 12 ■ Spring witH noSQL

532

package com.apress.springrecipes.nosql;

import com.couchbase.client.java.Bucket;
import com.couchbase.client.java.document.JsonDocument;
import com.couchbase.client.java.document.json.JsonObject;
import com.fasterxml.jackson.core.JsonProcessingException;
import com.fasterxml.jackson.databind.ObjectMapper;

import java.io.IOException;

class CouchbaseVehicleRepository implements VehicleRepository {

 private final Bucket bucket;
 private final ObjectMapper mapper;

 public CouchbaseVehicleRepository(Bucket bucket, ObjectMapper mapper) {
 this.bucket=bucket;
 this.mapper=mapper;
 }

 @Override
 public void save(Vehicle vehicle) {

 String json = null;
 try {
 json = mapper.writeValueAsString(vehicle);
 } catch (JsonProcessingException e) {
 throw new RuntimeException("Error encoding JSON.", e);
 }
 JsonObject vehicleJson = JsonObject.fromJson(json);
 JsonDocument vehicleDoc = JsonDocument.create(vehicle.getVehicleNo(), vehicleJson);
 bucket.upsert(vehicleDoc);
 }

 @Override
 public void delete(Vehicle vehicle) {
 bucket.remove(vehicle.getVehicleNo());
 }

 @Override
 public Vehicle findByVehicleNo(String vehicleNo) {
 JsonDocument doc = bucket.get(vehicleNo, JsonDocument.class);
 if (doc != null) {
 JsonObject result = doc.content();
 try {
 return mapper.readValue(result.toString(), Vehicle.class);
 } catch (IOException e) {
 throw new RuntimeException("Error decoding JSON.", e);
 }
 }
 return null;
 }
}

CHaptEr 12 ■ Spring witH noSQL

533

Now you use the powerful Jackson library for converting from/to JSON.

Use Spring
At the moment, everything is configured in the Main class. Let’s move the configuration parts to a
CouchbaseConfiguration class and use it to bootstrap an application.

package com.apress.springrecipes.nosql;

import com.couchbase.client.java.Bucket;
import com.couchbase.client.java.Cluster;
import com.couchbase.client.java.CouchbaseCluster;
import com.fasterxml.jackson.databind.ObjectMapper;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;

@Configuration
public class CouchbaseConfiguration {

 @Bean(destroyMethod = "disconnect")
 public Cluster cluster() {
 return CouchbaseCluster.create();
 }

 @Bean
 public Bucket bucket(Cluster cluster) {
 return cluster.openBucket();
 }

 @Bean
 public ObjectMapper mapper() {
 return new ObjectMapper();
 }

 @Bean
 public CouchbaseVehicleRepository vehicleRepository(Bucket bucket, ObjectMapper mapper) {
 return new CouchbaseVehicleRepository(bucket, mapper);
 }
}

Notice the destroyMethod method on the Cluster bean. This method will be invoked when the
application shuts down. The close method on the Bucket will be called automatically as that is one of the
predefined methods that is automatically detected. The construction of the CouchbaseVehicleRepository is
still the same, but you now pass two Spring managed beans to it.

CHaptEr 12 ■ Spring witH noSQL

534

Modify the Main class to use CouchbaseConfiguration.

package com.apress.springrecipes.nosql;

import org.springframework.context.ApplicationContext;
import org.springframework.context.annotation.AnnotationConfigApplicationContext;

public class Main {

 public static void main(String[] args) {

 Appl icationContext context =
new AnnotationConfigApplicationContext(CouchbaseConfiguration.class);

 VehicleRepository vehicleRepository =context.getBean(VehicleRepository.class);

 vehicleRepository.save(new Vehicle("TEM0001", "GREEN", 3, 1));
 vehicleRepository.save(new Vehicle("TEM0004", "RED", 4, 2));

 System.out.println("Vehicle: " + vehicleRepository.findByVehicleNo("TEM0001"));
 System.out.println("Vehicle: " + vehicleRepository.findByVehicleNo("TEM0004"));

 vehicleRepository.delete(vehicleRepository.findByVehicleNo("TEM0001"));
 vehicleRepository.delete(vehicleRepository.findByVehicleNo("TEM0004"));
 }
}

VehicleRepository is retrieved from the constructed ApplicationContext, and still there are Vehicle
instances stored, retrieved, and removed from the Couchbase cluster.

Use Spring Data’s CouchbaseTemplate
Although using Couchbase from Java with Jackson for mapping JSON is pretty straightforward, it can
become quite cumbersome with larger repositories or when using specific indexes and N1QL queries, not
to mention if you want to integrate this in an application that has other means of storing data. The Spring
Data Couchbase project contains a CouchbaseTemplate template, which takes away part of the plumping
you are now doing in the repository, such as mapping to/from JSON but also converting exceptions into
a DataAccessException. This makes it easier to integrate it with other data access technologies that are
utilized with Spring.

First rewrite the repository to use CouchbaseTemplate.

package com.apress.springrecipes.nosql;

import org.springframework.data.couchbase.core.CouchbaseTemplate;

public class CouchbaseVehicleRepository implements VehicleRepository {

 private final CouchbaseTemplate couchbase;

 public CouchbaseVehicleRepository(CouchbaseTemplate couchbase) {
 this.couchbase = couchbase;
 }

CHaptEr 12 ■ Spring witH noSQL

535

 @Override
 public void save(Vehicle vehicle) {
 couchbase.save(vehicle);
 }

 @Override
 public void delete(Vehicle vehicle) {
 couchbase.remove(vehicle);
 }

 @Override
 public Vehicle findByVehicleNo(String vehicleNo) {
 return couchbase.findById(vehicleNo, Vehicle.class);
 }
}

Now the repository is reduced to just a couple of lines of code. To be able to store the Vehicle object,
you need to annotate Vehicle; it needs to know which field to use for the ID.

package com.apress.springrecipes.nosql;

import com.couchbase.client.java.repository.annotation.Field;
import com.couchbase.client.java.repository.annotation.Id;

import java.io.Serializable;

public class Vehicle implements Serializable{

 @Id
 private String vehicleNo;
 @Field
 private String color;
 @Field
 private int wheel;
 @Field
 private int seat;

 // getters/setters omitted.
}

The field vehicleNo has been annotated with the @Id annotation and the other fields with @Field.
Although the latter isn’t required to do, it is recommended to specify it. You can also use the @Field
annotation to specify a different name for the name of the JSON property, which can be nice if you need to
map existing documents to Java objects.

Finally, you need to configure a CouchbaseTemplate template in the configuration class.

package com.apress.springrecipes.nosql;

import com.couchbase.client.java.Bucket;
import com.couchbase.client.java.Cluster;
import com.couchbase.client.java.CouchbaseCluster;

CHaptEr 12 ■ Spring witH noSQL

536

import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.data.couchbase.core.CouchbaseTemplate;

@Configuration
public class CouchbaseConfiguration {

 @Bean(destroyMethod = "disconnect")
 public Cluster cluster() {
 return CouchbaseCluster.create();
 }

 @Bean
 public Bucket bucket(Cluster cluster) {
 return cluster.openBucket();
 }

 @Bean
 public CouchbaseVehicleRepository vehicleRepository(CouchbaseTemplate couchbaseTemplate) {
 return new CouchbaseVehicleRepository(couchbaseTemplate);
 }

 @Bean
 public CouchbaseTemplate couchbaseTemplate(Cluster cluster, Bucket bucket) {
 return new CouchbaseTemplate(cluster.clusterManager("default","").info(), bucket);
 }
}

A CouchbaseTemplate object needs a Bucket, and it needs access to ClusterInfo, which can be
obtained through ClusterManager; here you pass the name of the Bucket, which is default, and no
password. Instead, you could have passed admin/sr4-admin as the username/password combination.
Finally, the configured CouchbaseVehicleRepository instance is created with this configured template.

When running the Main class, access is still provided, and storing, retrieving, and removing still work.
To make configuration a little easier, Spring Data Couchbase provides a base configuration class,

AbstractCouchbaseConfiguration, which you can extend so you don’t need to configure the Cluster,
Bucket, or CouchbaseTemplate objects anymore.

package com.apress.springrecipes.nosql;

import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.data.couchbase.config.AbstractCouchbaseConfiguration;
import org.springframework.data.couchbase.core.CouchbaseTemplate;

import java.util.Collections;
import java.util.List;

CHaptEr 12 ■ Spring witH noSQL

537

@Configuration
public class CouchbaseConfiguration extends AbstractCouchbaseConfiguration {

 @Override
 protected List<String> getBootstrapHosts() {
 return Collections.singletonList("localhost");
 }

 @Override
 protected String getBucketName() {
 return "default";
 }

 @Override
 protected String getBucketPassword() {
 return "";
 }

 @Bean
 public CouchbaseVehicleRepository vehicleRepository(CouchbaseTemplate couchbaseTemplate) {
 return new CouchbaseVehicleRepository(couchbaseTemplate);
 }
}

The configuration now extends the AbstractCouchbaseConfiguration base class, and you only need
to provide the name of the bucket, an optional password, and the list of hosts. The base configuration class
provides CouchbaseTemplate and all the objects it needs.

Use Spring Data’s Couchbase Repositories
As with other technologies, Spring Data Couchbase provides the option to specify an interface and have an
actual repository implementation available at runtime. This way, you only need to create an interface and not
the concrete implementation. For this, like with other Spring Data projects, you need to extend CrudRepository.
Note you could also extend CouchbaseRepository or CouchbasePagingAndSortingRepository if you need that
functionality. For this recipe, you are going to use CrudRepository.

package com.apress.springrecipes.nosql;

import org.springframework.data.repository.CrudRepository;

public interface VehicleRepository extends CrudRepository<Vehicle, String> {}

As you can see, the interface has no more methods, as all the CRUD methods are provided already.
Next, an @EnableCouchbaseRepositories annotation is needed on the configuration class.

package com.apress.springrecipes.nosql;

import org.springframework.context.annotation.Configuration;
import org.springframework.data.couchbase.config.AbstractCouchbaseConfiguration;
import org.springframework.data.couchbase.repository.config.EnableCouchbaseRepositories;

CHaptEr 12 ■ Spring witH noSQL

538

import java.util.Collections;
import java.util.List;

@Configuration
@EnableCouchbaseRepositories(
public class CouchbaseConfiguration extends AbstractCouchbaseConfiguration { ... }

Finally, the Main class needs a minor modification because instead of findByVehicleNo, you need to
use the findById method.

package com.apress.springrecipes.nosql;

import org.springframework.context.ApplicationContext;
import org.springframework.context.annotation.AnnotationConfigApplicationContext;

public class Main {

 public static void main(String[] args) {

 Appl icationContext context =
new AnnotationConfigApplicationContext(CouchbaseConfiguration.class);

 VehicleRepository vehicleRepository =context.getBean(VehicleRepository.class);

 vehicleRepository.save(new Vehicle("TEM0001", "GREEN", 3, 1));
 vehicleRepository.save(new Vehicle("TEM0004", "RED", 4, 2));

 vehicleRepository.findById("TEM0001").ifPresent(System.out::println);
 vehicleRepository.findById("TEM0004").ifPresent(System.out::println);

 vehicleRepository.deleteById("TEM0001");
 vehicleRepository.deleteById("TEM0004");
 }
}

The findById method returns a java.util.Optional object, and as such you can use the ifPresent
method to print it to the console.

Use Spring Data’s Reactive Couchbase Repositories
In addition to the blocking repositories, it is possible to utilize ReactiveCouchbaseRepository to get a
reactive repository. It will now return a Mono for zero or one returning methods such as findById, and it will
return a Flux for methods returning zero or more elements, such as findAll. The default Couchbase driver
already has reactive support built in. To be able to use this, you need to have the RxJava and RxJava reactive
streams on your classpath. To be able to use the reactive types from ReactiveCouchbaseRepository, you
also need Pivotal Reactor on your classpath.

To configure reactive repositories for Couchbase, modify CouchbaseConfiguration. Let it extend
AbstractReactiveCouchbaseConfiguration, and instead of @EnableCouchbaseRepositories, use
@EnableReactiveCouchbaseRepositories.

CHaptEr 12 ■ Spring witH noSQL

539

package com.apress.springrecipes.nosql;

import org.springframework.context.annotation.Configuration;
import org.springframework.data.couchbase.config.AbstractReactiveCouchbaseConfiguration;
import org.springframework.data.couchbase.repository.config.
EnableReactiveCouchbaseRepositories;

import java.util.Collections;
import java.util.List;

@Configuration
@EnableReactiveCouchbaseRepositories
public class CouchbaseConfiguration extends AbstractReactiveCouchbaseConfiguration {

 @Override
 protected List<String> getBootstrapHosts() {
 return Collections.singletonList("localhost");
 }

 @Override
 protected String getBucketName() {
 return "default";
 }

 @Override
 protected String getBucketPassword() {
 return "";
 }
}

The remainder of the configuration remains the same as compared to the regular Couchbase
configuration; you still need to connect to the same Couchbase server and use the same Bucket.

Next, the VehicleRepository should extend ReactiveCrudRepository instead of CrudRepository.

package com.apress.springrecipes.nosql;

import org.springframework.data.repository.reactive.ReactiveCrudRepository;

public interface VehicleRepository extends ReactiveCrudRepository<Vehicle, String> {}

This is basically all that is needed to get a reactive repository. To be able to test this, you also need to
modify the Main class.

package com.apress.springrecipes.nosql;

import org.springframework.context.ApplicationContext;
import org.springframework.context.annotation.AnnotationConfigApplicationContext;
import reactor.core.publisher.Flux;
import reactor.core.publisher.Mono;

CHaptEr 12 ■ Spring witH noSQL

540

import java.util.Arrays;
import java.util.concurrent.CountDownLatch;

public class Main {

 public static void main(String[] args) throws InterruptedException {

 Appl icationContext context =
new AnnotationConfigApplicationContext(CouchbaseConfiguration.class);

 VehicleRepository repository =context.getBean(VehicleRepository.class);

 CountDownLatch countDownLatch = new CountDownLatch(1);

 repository.saveAll(Flux.just(new Vehicle("TEM0001", "GREEN", 3, 1), //
 new Vehicle("TEM0004", "RED", 4, 2)))
 .last().log()
 .then(repository.findById("TEM0001")).doOnSuccess(System.out::println)
 .then(repository.findById("TEM0004")).doOnSuccess(System.out::println)
 .then(repository.deleteById(Flux.just("TEM0001", "TEM00004")))
 .doOnSuccess(x -> countDownLatch.countDown())
 .doOnError(t -> countDownLatch.countDown())
 .subscribe();

 countDownLatch.await();
 }
}

Creating the ApplicationContext and obtaining the VehicleRepository isn’t any different. However,
after that, you have a chain of method calls, one following the other. First you add two Vehicle instances
to the data store. When the last one has been saved, you will query the repository for each instance. When
that is done, everything is deleted again. For everything to be able to complete, you could either block with
block() or wait yourself. Generally, using block() in a reactive system is something you want to avoid. That
is why you are using CountDownLatch; when the deleteById method completes, the CountDownLatch value is
decremented. The countDownLatch.await() method waits until the counter reaches zero and then finishes
the program.

Summary
In this recipe, you took an introductory journey into different types of data stores, including how to use
them and how to make using them easier with different modules of the Spring Data family. You started out
by looking at document-driven stores in the form of MongoDB and the usage of the Spring Data MongoDB
module. Next the journey took you to key-value stores; you used Redis as an implementation and used the
Spring Data Redis module. The final data store was a graph-based one called Neo4j, for which you explored
the embedded Neo4j, how to use it, and how to build a repository for storing entities.

For two of the data stores, you also explored the reactive features by extending the reactive version of
the interface as well as configuring the reactive drivers for those data stores.

541© Marten Deinum, Daniel Rubio, and Josh Long 2017
M. Deinum et al., Spring 5 Recipes, DOI 10.1007/978-1-4842-2790-9_13

CHAPTER 13

Spring Java Enterprise Services
and Remoting Technologies

In this chapter, you will learn about Spring’s support for the most common Java enterprise services: using
Java Management Extensions (JMX), sending e-mail with JavaMail, and scheduling tasks with Quartz. In
addition, you’ll learn about Spring’s support for various remoting technologies, such as RMI, Hessian, HTTP
Invoker, and SOAP web services.

JMX is part of Java SE and is a technology for managing and monitoring system resources such
as devices, applications, objects, and service-driven networks. These resources are represented as
managed beans (MBeans). Spring supports JMX by exporting any Spring beans as model MBeans without
programming against the JMX API. In addition, Spring can easily access remote MBeans.

JavaMail is the standard API and implementation for sending e-mail in Java. Spring further provides an
abstract layer to send e-mail in an implementation-independent fashion.

There are two main options for scheduling tasks on the Java platform: JDK Timer and Quartz Scheduler
(http://quartz-scheduler.org/). JDK Timer offers simple task scheduling features that are bundled with
the JDK. Compared with JDK Timer, Quartz offers more powerful job scheduling features. For both options,
Spring supplies utility classes to configure scheduling tasks in a bean configuration file, without using either
API directly.

Remoting is a key technology to develop distributed applications, especially multitier enterprise
applications. It allows different applications or components, running in different JVMs or on different
machines, to communicate with each other using a specific protocol. Spring’s remoting support is consistent
across different remoting technologies. On the server side, Spring allows you to expose an arbitrary bean as
a remote service through a service exporter. On the client side, Spring provides various proxy factory beans
for you to create a local proxy for a remote service so that you can use the remote service like you would local
beans.

You’ll learn how to use a series of remoting technologies that include RMI, Hessian, HTTP Invoker, and
SOAP web services using Spring Web Services (Spring-WS).

13-1. Register Spring POJOs as JMX MBeans
Problem
You want to register an object in your Java application as a JMX MBean to get the ability to look at services
that are running and manipulate their state at runtime. This will allow you to run tasks such as rerun batch
jobs, invoke methods, and change configuration metadata.

http://quartz-scheduler.org/

Chapter 13 ■ Spring Java enterpriSe ServiCeS and remoting teChnologieS

542

Solution
Spring supports JMX by allowing you to export any beans in its IoC container as model MBeans. This can
be done simply by declaring an MBeanExporter instance. With Spring’s JMX support, you don’t need to deal
with the JMX API directly. In addition, Spring enables you to declare JSR-160 (Java Management Extensions
Remote API) connectors to expose MBeans for remote access over a specific protocol by using a factory
bean. Spring provides factory beans for both servers and clients.

Spring’s JMX support comes with other mechanisms by which you can assemble an MBean’s
management interface. These options include using exporting beans by method names, interfaces, and
annotations. Spring can also detect and export MBeans automatically from beans declared in the IoC
container and annotated with JMX-specific annotations defined by Spring.

How It Works
Suppose you’re developing a utility for replicating files from one directory to another. Let’s design the
interface for this utility:

package com.apress.springrecipes.replicator;
...
public interface FileReplicator {

 public String getSrcDir();
 public void setSrcDir(String srcDir);

 public String getDestDir();
 public void setDestDir(String destDir);

 public FileCopier getFileCopier();
 public void setFileCopier(FileCopier fileCopier);

 public void replicate() throws IOException;
}

The source and destination directories are designed as properties of a replicator object, not method
arguments. That means each file replicator instance replicates files only for a particular source and
destination directory. You can create multiple replicator instances in your application.

But before you implement this replicator, let’s create another interface that copies a file from one
directory to another, given its name.

package com.apress.springrecipes.replicator;
...
public interface FileCopier {

 public void copyFile(String srcDir, String destDir, String filename)
 throws IOException;
}

Chapter 13 ■ Spring Java enterpriSe ServiCeS and remoting teChnologieS

543

There are many strategies for implementing this file copier. For instance, you can make use of the
FileCopyUtils class provided by Spring.

package com.apress.springrecipes.replicator;
...
import org.springframework.util.FileCopyUtils;

public class FileCopierJMXImpl implements FileCopier {

 public void copyFile(String srcDir, String destDir, String filename)
 throws IOException {
 File srcFile = new File(srcDir, filename);
 File destFile = new File(destDir, filename);
 FileCopyUtils.copy(srcFile, destFile);
 }
}

With the help of a file copier, you can implement the file replicator, as shown in the following code:

package com.apress.springrecipes.replicator;

import java.io.File;
import java.io.IOException;

public class FileReplicatorJMXImpl implements FileReplicator {

 private String srcDir;
 private String destDir;
 private FileCopier fileCopier;

 // getters ommited for brevity

 public void setSrcDir(String srcDir) {
 this.srcDir = srcDir;
 }

 public void setDestDir(String destDir) {
 this.destDir = destDir;
 }

 public void setFileCopier(FileCopier fileCopier) {
 this.fileCopier = fileCopier;
 }

 public synchronized void replicate() throws IOException {
 File[] files = new File(srcDir).listFiles();
 for (File file : files) {
 if (file.isFile()) {
 fileCopier.copyFile(srcDir, destDir, file.getName());
 }
 }
 }
}

Chapter 13 ■ Spring Java enterpriSe ServiCeS and remoting teChnologieS

544

Each time you call the replicate() method, all files in the source directory are replicated to the
destination directory. To avoid unexpected problems caused by concurrent replication, you declare this
method as synchronized.

Now, you can configure one or more file replicator instances in a Java config class. The
documentReplicator instance needs references to two directories: a source directory from which files are
read and a target directory to which files are backed up. The code in this example attempts to read from a
directory called docs in your operating system user’s home directory and then copy to a folder called
docs_backup in your operating system user’s home directory.

When this bean starts up, it creates the two directories if they don’t already exist there.

 ■ Tip the “home directory” is different for each operating system, but typically on Unix it’s the directory that
~ resolves to. on a linux box, the folder might be /home/user. on macoS, the folder might be /Users/user,
and on Windows it might be similar to C:\Documents and Settings\user.

package com.apress.springrecipes.replicator.config;
...

@Configuration
public class FileReplicatorConfig {

 @Value("#{systemProperties['user.home']}/docs")
 private String srcDir;
 @Value("#{systemProperties['user.home']}/docs_backup")
 private String destDir;

 @Bean
 public FileCopier fileCopier() {
 FileCopier fCop = new FileCopierJMXImpl();
 return fCop;
 }

 @Bean
 public FileReplicator documentReplicator() {
 FileReplicator fRep = new FileReplicatorJMXImpl();
 fRep.setSrcDir(srcDir);
 fRep.setDestDir(destDir);
 fRep.setFileCopier(fileCopier());
 return fRep;
 }

 @PostConstruct
 public void verifyDirectoriesExist() {
 File src = new File(srcDir);
 File dest = new File(destDir);
 if (!src.exists())
 src.mkdirs();
 if (!dest.exists())
 dest.mkdirs();
 }
}

Chapter 13 ■ Spring Java enterpriSe ServiCeS and remoting teChnologieS

545

Initially two fields are declared using the @Value annotations to gain access to the user’s home directory
and define the source and destination directories. Next, two bean instances are created using the @Bean
annotation. Notice the @PostConstuct annotation on the verifyDirectoriesExist() method, which
ensures the source and destination directories exist.

Now that you have the application’s core beans, let’s take look at how to register and access the beans as
an MBean.

Register MBeans Without Spring’s Support
First, let’s see how to register a model MBean using the JMX API directly. In the following Main class, you
get the FileReplicator bean from the IoC container and register it as an MBean for management and
monitoring. All properties and methods are included in the MBean’s management interface.

package com.apress.springrecipes.replicator;
...
import java.lang.management.ManagementFactory;

import javax.management.Descriptor;
import javax.management.JMException;
import javax.management.MBeanServer;
import javax.management.ObjectName;
import javax.management.modelmbean.DescriptorSupport;
import javax.management.modelmbean.InvalidTargetObjectTypeException;
import javax.management.modelmbean.ModelMBeanAttributeInfo;
import javax.management.modelmbean.ModelMBeanInfo;
import javax.management.modelmbean.ModelMBeanInfoSupport;
import javax.management.modelmbean.ModelMBeanOperationInfo;
import javax.management.modelmbean.RequiredModelMBean;

import org.springframework.context.ApplicationContext;
import org.springframework.context.support.GenericXmlApplicationContext;

public class Main {

 public static void main(String[] args) throws IOException {
 ApplicationContext context =
 new AnnotationConfigApplicationContext("com.apress.

springrecipes.replicator.config");

 FileReplicator documentReplicator = context.getBean(FileReplicator.class);
 try {
 MBeanServer mbeanServer = ManagementFactory.getPlatformMBeanServer();
 ObjectName objectName = new ObjectName("bean:name=documentReplicator");

 RequiredModelMBean mbean = new RequiredModelMBean();
 mbean.setManagedResource(documentReplicator, "objectReference");

 Descriptor srcDirDescriptor = new DescriptorSupport(new String[] {
 "name=SrcDir", "descriptorType=attribute",
 "getMethod=getSrcDir", "setMethod=setSrcDir" });
 ModelMBeanAttributeInfo srcDirInfo = new ModelMBeanAttributeInfo(
 "SrcDir", "java.lang.String", "Source directory",
 true, true, false, srcDirDescriptor);

Chapter 13 ■ Spring Java enterpriSe ServiCeS and remoting teChnologieS

546

 Descriptor destDirDescriptor = new DescriptorSupport(new String[] {
 "name=DestDir", "descriptorType=attribute",
 "getMethod=getDestDir", "setMethod=setDestDir" });
 ModelMBeanAttributeInfo destDirInfo = new ModelMBeanAttributeInfo(
 "DestDir", "java.lang.String", "Destination directory",
 true, true, false, destDirDescriptor);

 ModelMBeanOperationInfo getSrcDirInfo = new ModelMBeanOperationInfo(
 "Get source directory",
 FileReplicator.class.getMethod("getSrcDir"));
 ModelMBeanOperationInfo setSrcDirInfo = new ModelMBeanOperationInfo(
 "Set source directory",
 FileReplicator.class.getMethod("setSrcDir", String.class));
 ModelMBeanOperationInfo getDestDirInfo = new ModelMBeanOperationInfo(
 "Get destination directory",
 FileReplicator.class.getMethod("getDestDir"));
 ModelMBeanOperationInfo setDestDirInfo = new ModelMBeanOperationInfo(
 "Set destination directory",
 FileReplicator.class.getMethod("setDestDir", String.class));
 ModelMBeanOperationInfo replicateInfo = new ModelMBeanOperationInfo(
 "Replicate files",
 FileReplicator.class.getMethod("replicate"));

 ModelMBeanInfo mbeanInfo = new ModelMBeanInfoSupport(
 "FileReplicator", "File replicator",
 new ModelMBeanAttributeInfo[] { srcDirInfo, destDirInfo },
 null,
 new ModelMBeanOperationInfo[] { getSrcDirInfo, setSrcDirInfo,
 getDestDirInfo, setDestDirInfo, replicateInfo },
 null);
 mbean.setModelMBeanInfo(mbeanInfo);

 mbeanServer.registerMBean(mbean, objectName);
 } catch (JMException e) {
 ...
 } catch (InvalidTargetObjectTypeException e) {
 ...
 } catch (NoSuchMethodException e) {
 ...
 }

 System.in.read();
 }
}

To register an MBean, you need an instance of the interface javax.managment.MBeanServer. You can
call the static method ManagementFactory.getPlatformMBeanServer() to locate a platform MBean server. It
will create an MBean server if none exists and then register this server instance for future use. Each MBean
requires an MBean object name that includes a domain. The preceding MBean is registered under the
domain bean with the name documentReplicator.

Chapter 13 ■ Spring Java enterpriSe ServiCeS and remoting teChnologieS

547

From the preceding code, you can see that for each MBean attribute and MBean operation, you need to
create a ModelMBeanAttributeInfo object and a ModelMBeanOperationInfo object for describing it. After those,
you have to create a ModelMBeanInfo object for describing the MBean’s management interface by assembling
the preceding information. For details about using these classes, you can consult their Javadocs. Moreover, you
have to handle the JMX-specific exceptions when calling the JMX API. These exceptions are checked exceptions
that you must handle. Note that you must prevent your application from terminating before you look inside it
with a JMX client tool. Requesting a key from the console using System.in.read() is a good choice.

Finally, you have to add the VM argument -Dcom.sun.management.jmxremote to enable local
monitoring of this application. If you’re using the book’s source code, you can use the following:

java -Dcom.sun.management.jmxremote -jar Recipe_13_1_i-4.0.0.jar

Now, you can use any JMX client tools to monitor your MBeans locally. The simplest one is JConsole,
which comes with JDK. To start JConsole, just execute the jconsole executable file located in the bin
directory of the JDK installation.

When JConsole starts, you can see a list of JMX-enabled applications on the Local tab of the connection
window. Select the process that corresponds to the running Spring app (i.e., Recipe_13_1_i-1.0-SNAPSHOT.jar).
This is illustrated in Figure 13-1.

Figure 13-1. JConsole startup window

Chapter 13 ■ Spring Java enterpriSe ServiCeS and remoting teChnologieS

548

 ■ Caution if you’re on Windows, you may not see any processes in JConsole. this is a known bug where
JConsole isn’t able to detect running Java processes. to solve this issue, you’ll need to ensure the user has
the hsperfdata folder in the temp folder. this folder is used by Java and JConsole to keep track of running
processes, and it may not exist. For example, if you’re running the application as user John.doe, ensure the
following path exists: C:\Users\John.Doe\AppData\Local\Temp\hsperfdata_John.Doe\.

After connecting to the replicator application, go to the MBeans tab. Next, click the Bean folder in the
tree on the left, followed by the operations section. In the main screen you’ll see a series of buttons to invoke
the bean’s operations. To invoke replicate(), simply click the replicate button. This screen is illustrated in
Figure 13-2.

You’ll see a “Method successfully invoked” pop-up window. With this action all the filters in the source
folder are copied/synchronized with those in the destination folder.

Figure 13-2. JConsole simulate Spring bean operation

Chapter 13 ■ Spring Java enterpriSe ServiCeS and remoting teChnologieS

549

Register MBean with Spring Support
The prior application relied on the use of the JMX API directly. As you saw in the Main application class,
there’s a lot of code that can be difficult to write, manage, and sometimes understand. To export beans
configured in the Spring IoC container as MBeans, you simply create an MBeanExporter instance and specify
the beans to export, with their MBean object names as the keys. This can be done by adding the following
configuration class. Note that the key entry in the beansToExport map is used as the ObjectName for the bean
referenced by the corresponding entry value.

package com.apress.springrecipes.replicator.config;

import com.apress.springrecipes.replicator.FileReplicator;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.jmx.export.MBeanExporter;

import java.util.HashMap;
import java.util.Map;

@Configuration
public class JmxConfig {

 @Autowired
 private FileReplicator fileReplicator;

 @Bean
 public MBeanExporter mbeanExporter() {
 MBeanExporter mbeanExporter = new MBeanExporter();
 mbeanExporter.setBeans(beansToExport());
 return mbeanExporter;
 }

 private Map<String, Object> beansToExport() {
 Map<String, Object> beansToExport = new HashMap<>();
 beansToExport.put("bean:name=documentReplicator", fileReplicator);
 return beansToExport;
 }
}

The preceding configuration exports the FileReplicator bean as an MBean, under the domain bean
and with the name documentReplicator. By default, all public properties are included as attributes, and
all public methods (with the exception of those from java.lang.Object) are included as operations in the
MBean’s management interface. With the help of this, Spring JMX MBeanExporter the main class in the
application can be cut down to the following lines:

Chapter 13 ■ Spring Java enterpriSe ServiCeS and remoting teChnologieS

550

package com.apress.springrecipes.replicator;
...
import org.springframework.context.annotation.AnnotationConfigApplicationContext;

public class Main {

 public static void main(String[] args) throws IOException {
 new AnnotationConfigApplicationContext("com.apress.springrecipes.replicator.config");
 System.in.read();
 }
}

Work with Multiple MBean Server Instances
The Spring MBeanExporter approach can locate an MBean server instance and register MBeans with it
implicitly. The JDK creates an MBean server the first time when you locate it, so there’s no need to create an
MBean server explicitly. The same case applies if an application is running in an environment that provides
an MBean server (e.g., a Java application server).

However, if you have multiple MBean servers running, you need to tell the mbeanServer bean to which
server it should bind. You do this by specifying the agentId value of the server. To figure out the agentId
value of a given server in JConsole, go to the MBeans tab and in the left tree and go to JMImplementation/
MBeanServerDelegate/Attributes/MBeanServerId. There, you’ll see the string value. On our local machine,
the value is workstation_1253860476443. To enable it, configure the agentId property of the MBeanServer.

@Bean
public MBeanServerFactoryBean mbeanServer() {
 MBeanServerFactoryBean mbeanServer = new MBeanServerFactoryBean();
 mbeanServer.setLocateExistingServerIfPossible(true);
 mbeanServer.setAgentId("workstation_1253860476443");
 return mbeanServer;
}

If you have multiple MBean server instances in your context, you can explicitly specify a specific MBean
server for MBeanExporter to export your MBeans to. In this case, MBeanExporter will not locate an MBean
server; it will use the specified MBean server instance. This property is for you to specify a particular MBean
server when more than one is available.

@Bean
public MBeanExporter mbeanExporter() {
 MBeanExporter mbeanExporter = new MBeanExporter();
 mbeanExporter.setBeans(beansToExport());
 mbeanExporter.setServer(mbeanServer().getObject());
 return mbeanExporter;
}

Chapter 13 ■ Spring Java enterpriSe ServiCeS and remoting teChnologieS

551

@Bean
public MBeanServerFactoryBean mbeanServer() {
 MBeanServerFactoryBean mbeanServer = new MBeanServerFactoryBean();
 mbeanServer.setLocateExistingServerIfPossible(true);
 return mbeanServer;
}

Register MBeans for Remote Access with RMI
If you want your MBeans to be accessed remotely, you need to enable a remoting protocol for JMX. JSR-160
defines a standard for JMX remoting through a JMX connector. Spring allows you to create a JMX connector
server through ConnectorServerFactoryBean. By default, ConnectorServerFactoryBean creates and starts
a JMX connector server bound to the service URL service:jmx:jmxmp://localhost:9875, which exposes
the JMX connector through the JMX Messaging Protocol (JMXMP). However, most JMX implementations
don’t support JMXMP. Therefore, you should choose a widely supported remoting protocol for your JMX
connector, such as RMI. To expose your JMX connector through a specific protocol, you just provide the
service URL for it.

@Bean
public FactoryBean<Registry> rmiRegistry() {
 return new RmiRegistryFactoryBean();
}

@Bean
@DependsOn("rmiRegistry")
public FactoryBean<JMXConnectorServer> connectorServer() {
 Conn ectorServerFactoryBean connectorServerFactoryBean =

new ConnectorServerFactoryBean();
 connectorServerFactoryBean
.setServiceUrl("service:jmx:rmi://localhost/jndi/rmi://localhost:1099/replicator");
 return connectorServerFactoryBean;
}

You specify the preceding URL to bind your JMX connector to an RMI registry listening on port
1099 of localhost. If no RMI registry has been created externally, you should create one by using
RmiRegistryFactoryBean. The default port for this registry is 1099, but you can specify another one in its
port property. Note that ConnectorServerFactoryBean must create the connector server after the RMI
registry is created and ready. You can set the depends-on attribute for this purpose.

Chapter 13 ■ Spring Java enterpriSe ServiCeS and remoting teChnologieS

552

Now, your MBeans can be accessed remotely via RMI. Note there’s no need to start an RMI-enabled app
with the JMX -Dcom.sun.management.jmxremote flag, as you did in previous apps. When JConsole starts, you
can enter service:jmx:rmi://localhost/jndi/rmi://localhost:1099/replicator in the service URL in
the Remote Processes section of the connection window. This is illustrated in Figure 13-3.

Once the connection is established, you can invoke bean methods just as you did with previous
examples.

Assemble the Management Interface of MBeans
By default, the Spring MBeanExporter exports all public properties of a bean as MBean attributes and all
public methods as MBean operations. But you can assemble the management interface of MBeans using
an MBean assembler. The simplest MBean assembler in Spring is MethodNameBasedMBeanInfoAssembler,
which allows you to specify the names of the methods to export.

Figure 13-3. JConsole connection to MBean through RMI

Chapter 13 ■ Spring Java enterpriSe ServiCeS and remoting teChnologieS

553

@Configuration
public class JmxConfig {
 ...
 @Bean
 public MBeanExporter mbeanExporter() {
 MBeanExporter mbeanExporter = new MBeanExporter();
 mbeanExporter.setBeans(beansToExport());
 mbeanExporter.setAssembler(assembler());
 return mbeanExporter;
 }

 @Bean
 public MBeanInfoAssembler assembler() {
 MethodNameBasedMBeanInfoAssembler assembler;
 assembler = new MethodNameBasedMBeanInfoAssembler();
 assembler.setManagedMethods(new String[] {"getSrcDir","setSrcDir","getDestDir",

"setDestDir","replicate"});
 return assembler;
 }
}

Another MBean assembler is InterfaceBasedMBeanInfoAssembler, which exports all methods defined
in the interfaces you specified.

@Bean
public MBeanInfoAssembler assembler() {
 InterfaceBasedMBeanInfoAssembler assembler = new InterfaceBasedMBeanInfoAssembler();
 assembler.setManagedInterfaces(new Class[] {FileReplicator.class});
 return assembler;
}

Spring also provides MetadataMBeanInfoAssembler to assemble an MBean’s management
interface based on the metadata in the bean class. It supports two types of metadata: JDK annotations
and Apache Commons attributes (behind the scenes, this is accomplished using a strategy interface
called JmxAttributeSource). For a bean class annotated with JDK annotations, you specify an
AnnotationJmxAttributeSource instance as the attribute source of MetadataMBeanInfoAssembler.

@Bean
public MBeanInfoAssembler assembler() {
 MetadataMBeanInfoAssembler assembler = new MetadataMBeanInfoAssembler();
 assembler.setAttributeSource(new AnnotationJmxAttributeSource());
 return assembler;
}

Then, you annotate your bean class and methods with the annotations @ManagedResource,
@ManagedAttribute, and @ManagedOperation for MetadataMBeanInfoAssembler to assemble the
management interface for this bean. The annotations are easily interpreted. They expose the element

Chapter 13 ■ Spring Java enterpriSe ServiCeS and remoting teChnologieS

554

that they annotate. If you have a JavaBeans-compliant property, JMX will use the term attribute. Classes
themselves are referred to as resources. In JMX, methods will be called operations. Knowing that, it’s easy to
see what the following code does:

package com.apress.springrecipes.replicator;
...
import org.springframework.jmx.export.annotation.ManagedAttribute;
import org.springframework.jmx.export.annotation.ManagedOperation;
import org.springframework.jmx.export.annotation.ManagedResource;

@ManagedResource(description = "File replicator")
public class FileReplicatorJMXImpl implements FileReplicator {
 ...
 @ManagedAttribute(description = "Get source directory")
 public String getSrcDir() {
 ...
 }

 @ManagedAttribute(description = "Set source directory")
 public void setSrcDir(String srcDir) {
 ...
 }

 @ManagedAttribute(description = "Get destination directory")
 public String getDestDir() {
 ...
 }

 @ManagedAttribute(description = "Set destination directory")
 public void setDestDir(String destDir) {
 ...
 }

 ...

 @ManagedOperation(description = "Replicate files")
 public synchronized void replicate() throws IOException {
 ...
 }
}

Chapter 13 ■ Spring Java enterpriSe ServiCeS and remoting teChnologieS

555

Register MBeans with Annotations
In addition to exporting a bean explicitly with MBeanExporter, you can simply configure its subclass
AnnotationMBeanExporter to autodetect MBeans from beans declared in the IoC container. You don’t need
to configure an MBean assembler for this exporter because it uses MetadataMBeanInfoAssembler with
AnnotationJmxAttributeSource by default. You can delete the previous beans and assembler properties for
this registration and simply leave the following:

@Configuration
public class JmxConfig {

 @Bean
 public MBeanExporter mbeanExporter() {
 AnnotationMBeanExporter mbeanExporter = new AnnotationMBeanExporter();
 return mbeanExporter;
 }
}

AnnotationMBeanExporter detects any beans configured in the IoC container with the @ManagedResource
annotation and exports them as MBeans. By default, this exporter exports a bean to the domain whose
name is the same as its package name. Also, it uses the bean’s name in the IoC container as its MBean name
and uses the bean’s short class name as its type. So, the documentReplicator bean will be exported under
the following MBean object name: com.apress.springrecipes.replicator:name=documentReplicator,
type=FileReplicatorJMXImpl.

If you don’t want to use the package name as the domain name, you can set the default domain for the
exporter by adding the defaultDomain property:

@Bean
public MBeanExporter mbeanExporter() {
 AnnotationMBeanExporter mbeanExporter = new AnnotationMBeanExporter();
 mbeanExporter.setDefaultDomain("bean");
 return mbeanExporter;
}

After setting the default domain to bean, the documentReplicator bean is exported under the following
MBean object name:

bean:name=documentReplicator,type=FileReplicatorJMXImpl

In addition, you can specify a bean’s MBean object name in the objectName attribute of the @ManagedResource
annotation. For example, you can export the file copier as an MBean by annotating it with the following
annotations:

package com.apress.springrecipes.replicator;
...
import org.springframework.jmx.export.annotation.ManagedOperation;
import org.springframework.jmx.export.annotation.ManagedOperationParameter;
import org.springframework.jmx.export.annotation.ManagedOperationParameters;
import org.springframework.jmx.export.annotation.ManagedResource;

Chapter 13 ■ Spring Java enterpriSe ServiCeS and remoting teChnologieS

556

@ManagedResource(
 objectName = "bean:name=fileCopier,type=FileCopierJMXImpl",
 description = "File Copier")
public class FileCopierImpl implements FileCopier {

 @ManagedOperation(
 description = "Copy file from source directory to destination directory")
 @ManagedOperationParameters({
 @ManagedOperationParameter(
 name = "srcDir", description = "Source directory"),
 @ManagedOperationParameter(
 name = "destDir", description = "Destination directory"),
 @ManagedOperationParameter(
 name = "filename", description = "File to copy") })
 public void copyFile(String srcDir, String destDir, String filename)
 throws IOException {
 ...
 }
}

However, specifying the object name in this way works only for classes that you’re going to create
a single instance of in the IoC container (e.g., file copier), not for classes that you may create multiple
instances of (e.g., file replicator). This is because you can only specify a single object name for a class.
As a result, you shouldn’t try to run the same server multiple times without changing the names.

Finally, another possibility is to rely on Spring class scanning to export MBeans decorated with
@ManagedResource. If the beans are initialized in a Java config class, you can decorate the configuration
class with the @EnableMBeanExport annotation. This tells Spring to export any beans created with the @Bean
annotation that are decorated with the @EnableMBeanSupport annotation.

package com.apress.springrecipes.replicator.config;

...
import org.springframework.context.annotation.EnableMBeanExport;

@Configuration
@EnableMBeanExport
public class FileReplicatorConfig {

 @Bean
 public FileReplicatorJMXImpl documentReplicator() {
 FileReplicatorJMXImpl fRep = new FileReplicatorJMXImpl();
 fRep.setSrcDir(srcDir);
 fRep.setDestDir(destDir);
 fRep.setFileCopier(fileCopier());
 return fRep;
 }
 ...
}

Chapter 13 ■ Spring Java enterpriSe ServiCeS and remoting teChnologieS

557

Because of the presence of the @EnableMBeanExport annotation, the bean documentReplicatior of
the type FileReplicatorJMXImpl gets exported as an MBean because its source is decorated with the
@ManagedResource annotation.

 ■ Caution the use of the @EnableMBeanExport annotation is done on @Bean instances with concrete
classes, not interfaces like previous examples. interface-based beans hide the target class, as well as the JmX
managed resource annotations, and the mBean is not exported.

13-2. Publish and Listen to JMX Notifications
Problem
You want to publish JMX notifications from your MBeans and listen to them with JMX notification listeners.

Solution
Spring allows your beans to publish JMX notifications through the NotificationPublisher interface. You
can also register standard JMX notification listeners in the IoC container to listen to JMX notifications.

How It Works
To publish event you need access to the NotificationPublisher you can get access through Spring by
implementing the NotificationPublisherAware interface. To listen to events you can use the default JMX
constructs of implementing the NotificationListener interface and register this implementation with JMX.

Publish JMX Notifications
The Spring IoC container supports the beans that are going to be exported as MBeans to publish JMX
notifications. These beans must implement the NotificationPublisherAware interface to get access to
NotificationPublisher so that they can publish notifications.

package com.apress.springrecipes.replicator;
...
import javax.management.Notification;

import org.springframework.jmx.export.notification.NotificationPublisher;
import org.springframework.jmx.export.notification.NotificationPublisherAware;

@ManagedResource(description = "File replicator")
public class FileReplicatorImpl implements FileReplicator,
 NotificationPublisherAware {
 ...
 private int sequenceNumber;
 private NotificationPublisher notificationPublisher;

Chapter 13 ■ Spring Java enterpriSe ServiCeS and remoting teChnologieS

558

 public void setNotificationPublisher(
 NotificationPublisher notificationPublisher) {
 this.notificationPublisher = notificationPublisher;
 }

 @ManagedOperation(description = "Replicate files")
 public void replicate() throws IOException {
 notificationPublisher.sendNotification(
 new Notification("replication.start", this, sequenceNumber));
 ...
 notificationPublisher.sendNotification(
 new Notification("replication.complete", this, sequenceNumber));
 sequenceNumber++;
 }
}

In this file replicator, you send a JMX notification whenever a replication starts or completes. The
notification is visible both in the standard output in the console and in the JConsole Notifications menu on
the MBeans tab, as illustrated in Figure 13-4.

To see notifications in Jconsole, you must first click the Subscribe button that appears toward the
bottom, as illustrated in Figure 13-4. Then, when you invoke the replicate() method using the JConsole
button in the MBean operations section, you’ll see two new notifications arrive. The first argument in the
Notification constructor is the notification type, while the second is the notification source.

Listen to JMX Notifications
Now, let’s create a notification listener to listen to JMX notifications. Because a listener will be notified of
many different types of notifications, such as javax.management.AttributeChangeNotification when an
MBean’s attribute has changed, you have to filter those notifications that you are interested in handling.

Figure 13-4. MBean events reported in JConsole

Chapter 13 ■ Spring Java enterpriSe ServiCeS and remoting teChnologieS

559

package com.apress.springrecipes.replicator;

import javax.management.Notification;
import javax.management.NotificationListener;

public class ReplicationNotificationListener implements NotificationListener {

 public void handleNotification(Notification notification, Object handback) {
 if (notification.getType().startsWith("replication")) {
 System.out.println(
 notification.getSource() + " " +
 notification.getType() + " #" +
 notification.getSequenceNumber());
 }
 }
}

Then, you can register this notification listener with your MBean exporter to listen to notifications
emitted from certain MBeans.

@Bean
public AnnotationMBeanExporter mbeanExporter() {
 AnnotationMBeanExporter mbeanExporter = new AnnotationMBeanExporter();
 mbeanExporter.setDefaultDomain("bean");
 mbeanExporter.setNotificationListenerMappings(notificationMappings());
 return mbeanExporter;
}

public Map<String, NotificationListener> notificationMappings() {
 Map<String, NotificationListener> mappings = new HashMap<>();
 mappings.put("bean:name=documentReplicator,type=FileReplicatorJMXImpl",
 new ReplicationNotificationListener());
 return mappings;
}

13-3. Access Remote JMX MBeans in Spring
Problem
You want to access JMX MBeans running on a remote MBean server exposed by a JMX connector. When
accessing remote MBeans directly with the JMX API, you have to write complex JMX-specific code.

Solution
Spring offers two approaches to simplify remote MBean access. First, it provides a factory bean to create
an MBean server connection declaratively. With this server connection, you can query and update an
MBean’s attributes, as well as invoke its operations. Second, Spring provides another factory bean that
allows you to create a proxy for a remote MBean. With this proxy, you can operate a remote MBean as if it
were a local bean.

Chapter 13 ■ Spring Java enterpriSe ServiCeS and remoting teChnologieS

560

How It Works
To make it easier to work with JMX Spring provides two approaches one is to make it easier to work with
plain JMX by helping configuring the connection to the MBean server. Another is more like the other
remoting technologies from Spring by providing a proxy to a remote MBean.

Access Remote MBeans Through an MBean Server Connection
A JMX client requires an MBean server connection to access MBeans running on a remote MBean server.
Spring provides org.springframework.jmx.support.MBeanServerConnectionFactoryBean for you to
create a connection to a remote JSR-160–enabled MBean server declaratively. You only have to provide
the service URL for it to locate the MBean server. Now let’s declare this factory bean in your client bean
configuration class.

package com.apress.springrecipes.replicator.config;

import org.springframework.beans.factory.FactoryBean;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.jmx.support.MBeanServerConnectionFactoryBean;

import javax.management.MBeanServerConnection;
import java.net.MalformedURLException;

@Configuration
public class JmxClientConfiguration {

 @Bean
 public FactoryBean<MBeanServerConnection> mbeanServerConnection()
 throws MalformedURLException {
 MBeanServerConnectionFactoryBean mBeanServerConnectionFactoryBean =
 new MBeanServerConnectionFactoryBean();
 mBeanServerConnectionFactoryBean
 .setServiceUrl("service:jmx:rmi://localhost/jndi/rmi://localhost:1099/

replicator");
 return mBeanServerConnectionFactoryBean;
 }
}

With the MBean server connection created by this factory bean, you can access and operate the MBeans
running on the RMI server that’s running on port 1099.

 ■ Tip You can use the rmi server presented in recipe 13-1, which exposes mBeans. if you’re using the
book’s source code, after you build the application with gradle, you can start the server with the following
command: java -jar Recipe_14_1_iii-1.0-SNAPSHOT.jar.

Chapter 13 ■ Spring Java enterpriSe ServiCeS and remoting teChnologieS

561

With the connection established between both points, you can query and update an MBean’s attributes
through the getAttribute() and setAttribute() methods, giving the MBean’s object name and attribute
name. You can also invoke an MBean’s operations by using the invoke() method.

package com.apress.springrecipes.replicator;

import javax.management.Attribute;
import javax.management.MBeanServerConnection;
import javax.management.ObjectName;

import org.springframework.context.ApplicationContext;
import org.springframework.context.support.Generic XmlApplicationContext;

public class Client {

 public static void main(String[] args) throws Exception {
 ApplicationContext context =
 new AnnotationConfigApplicationContext("com.apress.springrecipes.

replicator.config");

 MBeanServerConnection mbeanServerConnection =
 context.getBean(MBeanServerConnection.class);

 ObjectName mbeanName = new ObjectName("bean:name=documentReplicator");

 String srcDir = (String) mbeanServerConnection.getAttribute(mbeanName, "SrcDir");

 mbeanServerConnection.setAttribute(mbeanName,
 new Attribute("DestDir", srcDir + "_backup"));

 mbeanServerConnection.invoke(mbeanName, "replicate", new Object[] {}, new String[] {});
 }
}

In addition, let’s create a JMX notification listener so you can listen in on file replication notifications.

package com.apress.springrecipes.replicator;

import javax.management.Notification;
import javax.management.NotificationListener;

public class ReplicationNotificationListener implements NotificationListener {

 public void handleNotification(Notification notification, Object handback) {
 if (notification.getType().startsWith("replication")) {
 System.out.println(
 notification.getSource() + " " +
 notification.getType() + " #" +
 notification.getSequenceNumber());
 }
 }
}

Chapter 13 ■ Spring Java enterpriSe ServiCeS and remoting teChnologieS

562

You can register this notification listener to the MBean server connection to listen to notifications
emitted from this MBean server.

package com.apress.springrecipes.replicator;
...
import javax.management.MBeanServerConnection;
import javax.management.ObjectName;

public class Client {

 public static void main(String[] args) throws Exception {
 ...
 MBeanServerConnection mbeanServerConnection =
 (MBeanServerConnection) context.getBean("mbeanServerConnection");

 ObjectName mbeanName = new ObjectName(
 "bean:name=documentReplicator");

 mbeanServerConnection.addNotificationListener(
 mbeanName, new ReplicationNotificationListener(), null, null);
 ...
 }
}

After you run this application client, check JConsole for the RMI server application—using a Remote
Process setting of service:jmx:rmi://localhost/jndi/rmi://localhost:1099/replicator. Under
the Notifications menu of the MBeans tab, you’ll see new notification of type jmx.attribute.change, as
illustrated in Figure 13-5.

Figure 13-5. JConsole notification event invoked through RMI

Chapter 13 ■ Spring Java enterpriSe ServiCeS and remoting teChnologieS

563

Access Remote MBeans Through an MBean Proxy
Another approach that Spring offers for remote MBean access is through MBeanProxy, which can be created
by MBeanProxyFactoryBean.

package com.apress.springrecipes.replicator.config;

...
import org.springframework.beans.factory.FactoryBean;
import org.springframework.jmx.access.MBeanProxyFactoryBean;
import org.springframework.jmx.support.MBeanServerConnectionFactoryBean;

import javax.management.MBeanServerConnection;
import java.net.MalformedURLException;

@Configuration
public class JmxClientConfiguration {

...

 @Bean
 public MBeanProxyFactoryBean fileReplicatorProxy() throws Exception {
 MBeanProxyFactoryBean fileReplicatorProxy = new MBeanProxyFactoryBean();
 fileReplicatorProxy.setServer(mbeanServerConnection().getObject());
 fileReplicatorProxy.setObjectName("bean:name=documentReplicator");
 fileReplicatorProxy.setProxyInterface(FileReplicator.class);
 return fileReplicatorProxy;
 }
}

You need to specify the object name and the server connection for the MBean you are going to proxy.
The most important is the proxy interface, whose local method calls will be translated into remote MBean
calls behind the scenes. Now, you can operate the remote MBean through this proxy as if it were a local
bean. The preceding MBean operations invoked on the MBean server connection directly can be simplified
as follows:

package com.apress.springrecipes.replicator;
...
public class Client {

 public static void main(String[] args) throws Exception {
 ...
 FileReplicator fileReplicatorProxy = context.getBean(FileReplicator.class);
 String srcDir = fileReplicatorProxy.getSrcDir();
 fileReplicatorProxy.setDestDir(srcDir + "_backup");
 fileReplicatorProxy.replicate();
 }
}

Chapter 13 ■ Spring Java enterpriSe ServiCeS and remoting teChnologieS

564

13-4. Send E-mail with Spring’s E-mail Support
Problem
Many applications need to send e-mail. In a Java application, you can send e-mail with the JavaMail API.
However, when using JavaMail, you have to handle JavaMail-specific mail sessions and exceptions. As a
result, an application becomes JavaMail dependent and hard to switch to another e-mail API.

Solution
Spring’s e-mail support makes it easier to send e-mail by providing an abstract and implementation-
independent API for sending e-mail. The core interface of Spring’s e-mail support is MailSender. The
JavaMailSender interface is a subinterface of MailSender that includes specialized JavaMail features such
as Multipurpose Internet Mail Extensions (MIME) message support. To send an e-mail message with HTML
content, inline images, or attachments, you have to send it as a MIME message.

How It Works
Suppose you want the file replicator application from the previous recipes to notify the administrator of any
error. First, you create the following ErrorNotifier interface, which includes a method for notifying of a file
copy error:

package com.apress.springrecipes.replicator;

public interface ErrorNotifier {

 public void notifyCopyError(String srcDir, String destDir, String filename);
}

 ■ Note invoking this notifier in case of error is left for you to accomplish. Because you can consider error
handling a crosscutting concern, aop would be an ideal solution to this problem. You can write an after throwing
advice to invoke this notifier.

Next, you can implement this interface to send a notification in a way of your choice. The most common
way is to send e-mail. Before you implement the interface in this way, you may need a local e-mail server
that supports the Simple Mail Transfer Protocol (SMTP) for testing purposes. We recommend installing
Apache James Server (http://james.apache.org/server/index.html), which is easy to install and
configure.

 ■ Note You can download apache James Server (e.g., version 2.3.2) from the apache James web site and
extract it to a directory of your choice to complete the installation. to start it, just execute the run script (located
in the bin directory).

http://james.apache.org/server/index.html

Chapter 13 ■ Spring Java enterpriSe ServiCeS and remoting teChnologieS

565

Let’s create two user accounts for sending and receiving e-mail with this server. By default, the remote
manager service of James listens on port 4555. You can telnet, using a console, to this port and run the
following commands to add the users system and admin, whose passwords are 12345:

> telnet 127.0.0.1 4555
JAMES Remote Administration Tool 2.3.2
Please enter your login and password
Login id:
root
Password:
itroot
Welcome root. HELP for a list of commands
adduser system 12345
User system added
adduser admin 12345
User admin added
listusers
Existing accounts 2
user: admin
user: system
quit
Bye

Send E-mail Using the JavaMail API
Now, let’s take a look at how to send e-mail using the JavaMail API. You can implement the ErrorNotifier
interface to send e-mail notifications in case of errors.

package com.apress.springrecipes.replicator;

import java.util.Properties;

import javax.mail.Message;
import javax.mail.MessagingException;
import javax.mail.Session;
import javax.mail.Transport;
import javax.mail.internet.InternetAddress;
import javax.mail.internet.MimeMessage;

public class EmailErrorNotifier implements ErrorNotifier {

 public void notifyCopyError(String srcDir, String destDir, String filename) {
 Properties props = new Properties();
 props.put("mail.smtp.host", "localhost");
 props.put("mail.smtp.port", "25");
 props.put("mail.smtp.username", "system");
 props.put("mail.smtp.password", "12345");
 Session session = Session.getDefaultInstance(props, null);
 try {

Chapter 13 ■ Spring Java enterpriSe ServiCeS and remoting teChnologieS

566

 Message message = new MimeMessage(session);
 message.setFrom(new InternetAddress("system@localhost"));
 message.setRecipients(Message.RecipientType.TO,
 InternetAddress.parse("admin@localhost"));
 message.setSubject("File Copy Error");
 message.setText(
 "Dear Administrator,\n\n" +
 "An error occurred when copying the following file :\n" +
 "Source directory : " + srcDir + "\n" +
 "Destination directory : " + destDir + "\n" +
 "Filename : " + filename);
 Transport.send(message);
 } catch (MessagingException e) {
 throw new RuntimeException(e);
 }
 }
}

You first open a mail session connecting to an SMTP server by defining the properties. Then, you
create a message from this session for constructing your e-mail. After that, you send the e-mail by making a
call to Transport.send(). When dealing with the JavaMail API, you have to handle the checked exception
MessagingException. Note that all of these classes, interfaces, and exceptions are defined by JavaMail.

Next, declare an instance of EmailErrorNotifier in the Spring IoC container for sending e-mail
notifications in case of file replication errors.

package com.apress.springrecipes.replicator.config;

import com.apress.springrecipes.replicator.EmailErrorNotifier;
import com.apress.springrecipes.replicator.ErrorNotifier;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;

@Configuration
public class MailConfiguration {

 @Bean
 public ErrorNotifier errorNotifier() {
 return new EmailErrorNotifier();
 }
}

You can write the following Main class to test EmailErrorNotifier. After running it, you can configure
your e-mail application to receive the e-mail from your James server via POP3.

package com.apress.springrecipes.replicator;

import org.springframework.context.ApplicationContext;
import org.springframework.context.support.GenericXmlApplicationContext;

public class Main {

Chapter 13 ■ Spring Java enterpriSe ServiCeS and remoting teChnologieS

567

 public static void main(String[] args) {
 ApplicationContext context =
 new AnnotationConfigApplicationContext("com.apress.springrecipes.replicator.

config");

 ErrorNotifier errorNotifier = context.getBean(ErrorNotifier.class);
 errorNotifier.notifyCopyError("c:/documents", "d:/documents", "spring.doc");
 }
}

To verify the e-mail was sent, you can log in to the POP server included with Apache James. You can
telnet, using a console, to port 110 and run the following commands to view the e-mail for user admin,
whose password is the same as you set on creation:

> telnet 127.0.0.1 110
OK workstation POP3 server <JAMES POP3 Server 2.3.2> ready
USER admin
+OK
PASS 12345
+OK Welcome admin
LIST
+ OK 1 698
RETR 1
+OK Message follows
...

Send E-mail with Spring’s MailSender
Now, let’s look at how to send e-mail with the help of Spring’s MailSender interface, which can send
SimpleMailMessage in its send() method. With this interface, your code is no longer JavaMail specific, and
now it’s easier to test.

package com.apress.springrecipes.replicator;

import org.springframework.mail.MailSender;
import org.springframework.mail.SimpleMailMessage;

public class EmailErrorNotifier implements ErrorNotifier {

 private MailSender mailSender;

 public void setMailSender(MailSender mailSender) {
 this.mailSender = mailSender;
 }

 public void notifyCopyError(String srcDir, String destDir, String filename) {
 SimpleMailMessage message = new SimpleMailMessage();
 message.setFrom("system@localhost");
 message.setTo("admin@localhost");
 message.setSubject("File Copy Error");

Chapter 13 ■ Spring Java enterpriSe ServiCeS and remoting teChnologieS

568

 message.setText(
 "Dear Administrator,\n\n" +
 "An error occurred when copying the following file :\n" +
 "Source directory : " + srcDir + "\n" +
 "Destination directory : " + destDir + "\n" +
 "Filename : " + filename);
 mailSender.send(message);
 }
}

Next, you have to configure a MailSender implementation in the bean configuration file and inject it
into EmailErrorNotifier. In Spring, the unique implementation of this interface is JavaMailSenderImpl,
which uses JavaMail to send e-mail.

@Configuration
public class MailConfiguration {

 @Bean
 public ErrorNotifier errorNotifier() {
 EmailErrorNotifier errorNotifier = new EmailErrorNotifier();
 errorNotifier.setMailSender(mailSender());
 return errorNotifier;
 }

 @Bean
 public JavaMailSenderImpl mailSender() {
 JavaMailSenderImpl mailSender = new JavaMailSenderImpl();
 mailSender.setHost("localhost");
 mailSender.setPort(25);
 mailSender.setUsername("system");
 mailSender.setPassword("12345");
 return mailSender;
 }
}

The default port used by JavaMailSenderImpl is the standard SMTP port 25, so if your e-mail server
listens on this port for SMTP, you can simply omit this property. Also, if your SMTP server doesn’t require
user authentication, you needn’t set the username and password.

If you have a JavaMail session configured in your Java app server, you can first look it up with the help of
JndiLocatorDelegate.

@Bean
public Session mailSession() throws NamingException {
 return JndiLocatorDelegate
 .createDefaultResourceRefLocator()
 .lookup("mail/Session", Session.class);
}

Chapter 13 ■ Spring Java enterpriSe ServiCeS and remoting teChnologieS

569

You can inject the JavaMail session into JavaMailSenderImpl for its use. In this case, you no longer need
to set the host, port, username, or password.

@Bean
public JavaMailSenderImpl mailSender() {
 JavaMailSenderImpl mailSender = new JavaMailSenderImpl();
 mailSender.setSession(mailSession());
 return mailSender;
}

Define an E-mail Template
Constructing an e-mail message from scratch in the method body is not efficient because you have to hard-
code the e-mail properties. Also, you may have difficulty in writing the e-mail text in terms of Java strings.
You can consider defining an e-mail message template in the bean configuration file and constructing a new
e-mail message from it.

@Configuration
public class MailConfiguration {
...
 @Bean
 public ErrorNotifier errorNotifier() {
 EmailErrorNotifier errorNotifier = new EmailErrorNotifier();
 errorNotifier.setMailSender(mailSender());
 errorNotifier.setCopyErrorMailMessage(copyErrorMailMessage());
 return errorNotifier;
 }

 @Bean
 public SimpleMailMessage copyErrorMailMessage() {
 SimpleMailMessage message = new SimpleMailMessage();
 message.setFrom("system@localhost");
 message.setTo("admin@localhost");
 message.setSubject("File Copy Error");
 message.setText("Dear Administrator,\n" +
 "\n" +
 " An error occurred when copying the following file :\n" +
 "\t\t Source directory : %s\n" +
 "\t\t Destination directory : %s\n" +
 "\t\t Filename : %s");
 return message;
 }
}

Note that in the preceding message text, you include the placeholders %s, which will be replaced by
message parameters through String.format(). Of course, you can also use a powerful templating language
such as Velocity or FreeMarker to generate the message text according to a template. It’s also a good practice
to separate mail message templates from bean configuration files.

Chapter 13 ■ Spring Java enterpriSe ServiCeS and remoting teChnologieS

570

Each time you send e-mail, you can construct a new SimpleMailMessage instance from this injected
template. Then you can generate the message text using String.format() to replace the %s placeholders
with your message parameters.

package com.apress.springrecipes.replicator;
...
import org.springframework.mail.SimpleMailMessage;

public class EmailErrorNotifier implements ErrorNotifier {
 ...
 private SimpleMailMessage copyErrorMailMessage;

 public void setCopyErrorMailMessage(SimpleMailMessage copyErrorMailMessage) {
 this.copyErrorMailMessage = copyErrorMailMessage;
 }

 public void notifyCopyError(String srcDir, String destDir, String filename) {
 SimpleMailMessage message = new SimpleMailMessage(copyErrorMailMessage);
 message.setText(String.format(
 copyErrorMailMessage.getText(), srcDir, destDir, filename));
 mailSender.send(message);
 }
}

Send E-mail with Attachments (MIME Messages)
So far, the SimpleMailMessage class you used can send only a simple plain-text e-mail message. To send
e-mail that contains HTML content, inline images, or attachments, you have to construct and send a MIME
message instead. MIME is supported by JavaMail through the Javax.mail.internet.MimeMessage class.

First, you have to use the JavaMailSender interface instead of its parent interface MailSender. The
JavaMailSenderImpl instance you injected does implement this interface, so you needn’t modify your bean
configurations. The following notifier sends Spring’s bean configuration file as an e-mail attachment to the
administrator:

package com.apress.springrecipes.replicator;

import javax.mail.MessagingException;
import javax.mail.internet.MimeMessage;

import org.springframework.core.io.ClassPathResource;
import org.springframework.mail.MailParseException;
import org.springframework.mail.SimpleMailMessage;
import org.springframework.mail.javamail.JavaMailSender;
import org.springframework.mail.javamail.MimeMessageHelper;

public class EmailErrorNotifier implements ErrorNotifier {

 private JavaMailSender mailSender;
 private SimpleMailMessage copyErrorMailMessage;

Chapter 13 ■ Spring Java enterpriSe ServiCeS and remoting teChnologieS

571

 public void setMailSender(JavaMailSender mailSender) {
 this.mailSender = mailSender;
 }

 public void setCopyErrorMailMessage(SimpleMailMessage copyErrorMailMessage) {
 this.copyErrorMailMessage = copyErrorMailMessage;
 }

 public void notifyCopyError(String srcDir, String destDir, String filename) {
 MimeMessage message = mailSender.createMimeMessage();
 try {
 MimeMessageHelper helper = new MimeMessageHelper(message, true);
 helper.setFrom(copyErrorMailMessage.getFrom());
 helper.setTo(copyErrorMailMessage.getTo());

 helper.setSubject(copyErrorMailMessage.getSubject());
 helper.setText(String.format(
 copyErrorMailMessage.getText(), srcDir, destDir, filename));

 ClassPathResource config = new ClassPathResource("beans.xml");
 helper.addAttachment("beans.xml", config);
 } catch (MessagingException e) {
 throw new MailParseException(e);
 }
 mailSender.send(message);
 }
}

Unlike SimpleMailMessage, the MimeMessage class is defined by JavaMail, so you can only instantiate
it by calling mailSender.createMimeMessage(). Spring provides the helper class MimeMessageHelper
to simplify the operations of MimeMessage. It allows you to add an attachment from a Spring Resource
object. However, the operations of this helper class can still throw JavaMail’s MessagingException. You
have to convert this exception into Spring’s mail runtime exception for consistency. Spring offers another
method for you to construct a MIME message, which is through implementing the MimeMessagePreparator
interface.

package com.apress.springrecipes.replicator;
...
import javax.mail.internet.MimeMessage;

import org.springframework.mail.javamail.MimeMessagePreparator;

public class EmailErrorNotifier implements ErrorNotifier {
 ...
 public void notifyCopyError(
 final String srcDir, final String destDir, final String filename) {
 MimeMessagePreparator preparator = new MimeMessagePreparator() {

 public void prepare(MimeMessage mimeMessage) throws Exception {
 MimeMessageHelper helper =
 new MimeMessageHelper(mimeMessage, true);
 helper.setFrom(copyErrorMailMessage.getFrom());

Chapter 13 ■ Spring Java enterpriSe ServiCeS and remoting teChnologieS

572

 helper.setTo(copyErrorMailMessage.getTo());
 helper.setSubject(copyErrorMailMessage.getSubject());
 helper.setText(String.format(
 copyErrorMailMessage.getText(), srcDir, destDir, filename));

 ClassPathResource config = new ClassPathResource("beans.xml");
 helper.addAttachment("beans.xml", config);
 }
 };
 mailSender.send(preparator);
 }
}

In the prepare() method, you can prepare the MimeMessage object, which is precreated for
JavaMailSender. If there is any exception thrown, it will be converted into Spring’s mail runtime exception
automatically.

13-5. Schedule Tasks with Spring’s Quartz Support
Problem
Your application has an advanced scheduling requirement that you want to fulfill using Quartz Scheduler.
Such a requirement might be something seemingly complex like the ability to run at arbitrary times or at
strange intervals (“every other Thursday, but only after 10 a.m. and before 2 p.m.”). Moreover, you want to
configure scheduling jobs in a declarative way.

Solution
Spring provides utility classes for Quartz to enable scheduling jobs without programming against the
Quartz API.

How It Works
First you will take a look at how to use Quartz with Spring without the Spring utility classes followed by the
approach which does use the Spring utility classes for Quartz.

Use Quartz Without Spring’s Support
To use Quartz for scheduling, you first need to create a job by implementing the Job interface. For example,
the following job executes the replicate() method of the file replicator designed in the previous recipes.
It retrieves a job data map—which is a Quartz concept to define jobs—through the JobExecutionContext
object.

package com.apress.springrecipes.replicator;
...
import org.quartz.Job;
import org.quartz.JobExecutionContext;
import org.quartz.JobExecutionException;

Chapter 13 ■ Spring Java enterpriSe ServiCeS and remoting teChnologieS

573

public class FileReplicationJob implements Job {

 public void execute(JobExecutionContext context)
 throws JobExecutionException {
 Map dataMap = context.getJobDetail().getJobDataMap();
 FileReplicator fileReplicator =
 (FileReplicator) dataMap.get("fileReplicator");
 try {
 fileReplicator.replicate();
 } catch (IOException e) {
 throw new JobExecutionException(e);
 }
 }
}

After creating the job, you configure and schedule it with the Quartz API. For instance, the following
scheduler runs your file replication job every 60 seconds with a 5-second delay for the first time of execution:

package com.apress.springrecipes.replicator;
...
import org.quartz.JobDetail;
import org.quartz.JobDataMap;
import org.quartz.JobBuilder;
import org.quartz.Trigger;
import org.quartz.TriggerBuilder;
import org.quartz.SimpleScheduleBuilder;
import org.quartz.DateBuilder.IntervalUnit.*;
import org.quartz.Scheduler;
import org.quartz.impl.StdSchedulerFactory;

import org.springframework.context.ApplicationContext;
import org.springframework.context.support.GenericXmlApplicationContext;

public class Main {

 public static void main(String[] args) throws Exception {
 ApplicationContext context =
 new AnnotationConfigApplicationContext("com.apress.springrecipes.

replicator.config");

 FileReplicator documentReplicator = context.getBean(FileReplicator.class);

 JobDataMap jobDataMap = new JobDataMap();
 jobDataMap.put("fileReplicator", documentReplicator);

 JobDetail job = JobBuilder.newJob(FileReplicationJob.class)
 .withIdentity("documentReplicationJob")
 .storeDurably()
 .usingJobData(jobDataMap)
 .build();

Chapter 13 ■ Spring Java enterpriSe ServiCeS and remoting teChnologieS

574

 Trigger trigger = TriggerBuilder.newTrigger()
 .withIdentity("documentReplicationTrigger")
 .startAt(new Date(System.currentTimeMillis() + 5000))
 .forJob(job)
 .withSchedule(SimpleScheduleBuilder.simpleSchedule()
 .withIntervalInSeconds(60)
 .repeatForever())
 .build();

 Scheduler scheduler = new StdSchedulerFactory().getScheduler();
 scheduler.start();
 scheduler.scheduleJob(job, trigger);
 }
}

In the Main class, you first create a job map. In this case it’s a single job, where the key is a descriptive
name and the value is an object reference for the job. Next, you define the job details for the file
replication job in a JobDetail object and prepare job data in its jobDataMap property. Next, you create a
SimpleTrigger object to configure the scheduling properties. Finally, you create a scheduler to run your
job using this trigger.

Quartz supports various types of schedules to run jobs at different intervals. Schedules are
defined as part of triggers. In the most recent release, Quartz schedules are SimpleScheduleBuilder,
CronScheduleBuilder, CalendarIntervalScheduleBuilder, and DailyTimeIntervalScheduleBuilder.
SimpleScheduleBuilder allows you to schedule jobs setting properties such as start time, end time,
repeat interval, and repeat count. CronScheduleBuilder accepts a Unix cron expression for you to specify
the times to run your job. For example, you can replace the preceding SimpleScheduleBuilder with the
following CronScheduleBuilder to run a job at 17:30 every day: .withSchedule(CronScheduleBuilder.
cronSchedule(" 0 30 17 * * ?")). A cron expression consists of seven fields (the last field is optional),
separated by spaces. Table 13-1 shows the field description for a cron expression.

Table 13-1. Field Description for a cron Expression

Position Field Name Range

1 Second 0–59

2 Minute 0–59

3 Hour 0–23

4 Day of month 1–31

5 Month 1–12 or JAN–DEC

6 Day of week 1–7 or SUN–SAT

7 Year (optional) 1970–2099

Chapter 13 ■ Spring Java enterpriSe ServiCeS and remoting teChnologieS

575

Each part of a cron expression can be assigned a specific value (e.g., 3), a range (e.g., 1–5), a list (e.g.,
1,3,5), a wildcard (* matches all values), or a question mark (? is used in either of the “Day of month” and
“Day of week” fields for matching one of these fields but not both). CalendarIntervalScheduleBuilder
allows you to schedule jobs based on calendar times (day, week, month, year), whereas
DailyTimeIntervalScheduleBuilder provides convenience utilities to set a job’s end time (e.g., methods
like endingDailyAt() and endingDailyAfterCount()).

Use Quartz with Spring’s Support
When using Quartz, you can create a job by implementing the Job interface and retrieve job data from
the job data map through JobExecutionContext. To decouple your job class from the Quartz API, Spring
provides QuartzJobBean, which you can extend to retrieve job data through setter methods. QuartzJobBean
converts the job data map into properties and injects them via the setter methods.

package com.apress.springrecipes.replicator;
...
import org.quartz.JobExecutionContext;
import org.quartz.JobExecutionException;
import org.springframework.scheduling.quartz.QuartzJobBean;

public class FileReplicationJob extends QuartzJobBean {

 private FileReplicator fileReplicator;

 public void setFileReplicator(FileReplicator fileReplicator) {
 this.fileReplicator = fileReplicator;
 }

 protected void executeInternal(JobExecutionContext context)
 throws JobExecutionException {
 try {
 fileReplicator.replicate();
 } catch (IOException e) {
 throw new JobExecutionException(e);
 }
 }
}

Then, you can configure a Quartz JobDetail object in Spring’s bean configuration file through
JobDetailBean. By default, Spring uses this bean’s name as the job name. You can modify it by setting the
name property.

@Bean
@Autowired
public JobDetailFactoryBean documentReplicationJob(FileReplicator fileReplicator) {
 JobDetailFactoryBean documentReplicationJob = new JobDetailFactoryBean();
 documentReplicationJob.setJobClass(FileReplicationJob.class);
 documentReplicationJob.setDurability(true);
 documentReplicationJob.setJobDataAsMap(
 Collections.singletonMap("fileReplicator", fileReplicator));
 return documentReplicationJob;
}

Chapter 13 ■ Spring Java enterpriSe ServiCeS and remoting teChnologieS

576

Spring also offers MethodInvokingJobDetailFactoryBean for you to define a job that executes a single
method of a particular object. This saves you the trouble of creating a job class. You can use the following job
detail to replace the previous:

@Bean
@Autowired
public MethodInvokingJobDetailFactoryBean documentReplicationJob(FileReplicator
fileReplicator) {
 MethodInvokingJobDetailFactoryBean documentReplicationJob =
 new MethodInvokingJobDetailFactoryBean();
 documentReplicationJob.setTargetObject(fileReplicator);
 documentReplicationJob.setTargetMethod("replicatie");
 return documentReplicationJob;
}

Once you define a job, you can configure a Quartz trigger. Spring supports SimpleTriggerFactoryBean
and CronTriggerFactoryBean. SimpleTriggerFactoryBean requires a reference to a JobDetail object and
provides common values for schedule properties, such as start time and repeat count.

@Bean
@Autowired
public SimpleTriggerFactoryBean documentReplicationTrigger(JobDetail documentReplicationJob)
{
 SimpleTriggerFactoryBean documentReplicationTrigger = new SimpleTriggerFactoryBean();
 documentReplicationTrigger.setJobDetail(documentReplicationJob);
 documentReplicationTrigger.setStartDelay(5000);
 documentReplicationTrigger.setRepeatInterval(60000);
 return documentReplicationTrigger;
}

You can also use the CronTriggerFactoryBean bean to configure a cron-like schedule.

@Bean
@Autowired
public CronTriggerFactoryBean documentReplicationTrigger(JobDetail documentReplicationJob) {
 CronTriggerFactoryBean documentReplicationTrigger = new CronTriggerFactoryBean();
 documentReplicationTrigger.setJobDetail(documentReplicationJob);
 documentReplicationTrigger.setStartDelay(5000);
 documentReplicationTrigger.setCronExpression("0/60 * * * * ?");
 return documentReplicationTrigger;
}

Finally, once you have the Quartz job and trigger, you can configure a SchedulerFactoryBean instance
to create a Scheduler object for running your trigger. You can specify multiple triggers in this factory bean.

@Bean
@Autowired
public SchedulerFactoryBean scheduler(Trigger[] triggers) {
 SchedulerFactoryBean scheduler = new SchedulerFactoryBean();
 scheduler.setTriggers(triggers);
 return scheduler;
}

Chapter 13 ■ Spring Java enterpriSe ServiCeS and remoting teChnologieS

577

Now, you can simply start your scheduler with the following Main class. In this way, you don’t require a
single line of code for scheduling jobs.

package com.apress.springrecipes.replicator;

import org.springframework.context.annotation.AnnotationConfigApplicationContext;

public class Main {

 public static void main(String[] args) throws Exception {
 new AnnotationConfigApplicationContext("com.apress.springrecipes.replicator.config");
 }
}

13-6. Schedule Tasks with Spring’s Scheduling
Problem
You want to schedule a method invocation in a consistent manner, using either a cron expression, an
interval, or a rate, and you don’t want to have to go through Quartz just to do it.

Solution
Spring has support to configure TaskExecutors and TaskSchedulers. This capability, coupled with the
ability to schedule method execution using the @Scheduled annotation, makes Spring scheduling support
work with a minimum of fuss: all you need are a method and an annotation and to have switched on the
scanner for annotations.

How It Works
Let’s revisit the example in the previous recipe: you want to schedule a call to the replication method on the
bean using a cron expression. The configuration class looks like the following:

package com.apress.springrecipes.replicator.config;

import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.scheduling.annotation.EnableScheduling;
import org.springframework.scheduling.annotation.SchedulingConfigurer;
import org.springframework.scheduling.config.ScheduledTaskRegistrar;

import java.util.concurrent.Executor;
import java.util.concurrent.Executors;

@Configuration
@EnableScheduling
public class SchedulingConfiguration implements SchedulingConfigurer {

Chapter 13 ■ Spring Java enterpriSe ServiCeS and remoting teChnologieS

578

 @Override
 public void configureTasks(ScheduledTaskRegistrar taskRegistrar) {
 taskRegistrar.setScheduler(scheduler());
 }

 @Bean
 public Executor scheduler() {
 return Executors.newScheduledThreadPool(10);
 }

}

You enable the annotation-driven scheduling support by specifying @EnableScheduling. This will
register a bean that scans the beans in the application context for the @Scheduled annotation. You also
implemented the interface SchedulingConfigurer because you wanted to do some additional configuration
of your scheduler. You want to give it a pool of ten threads to execute your scheduled tasks.

package com.apress.springrecipes.replicator;

import org.springframework.scheduling.annotation.Scheduled;

import java.io.File;
import java.io.IOException;

public class FileReplicatorImpl implements FileReplicator {

 @Scheduled(fixedDelay = 60 * 1000)
 public synchronized void replicate() throws IOException {
 File[] files = new File(srcDir).listFiles();

 for (File file : files) {
 if (file.isFile()) {
 fileCopier.copyFile(srcDir, destDir, file.getName());
 }
 }
 }
}

Note that you’ve annotated the replicate() method with the @Scheduled annotation. Here, you’ve told the
scheduler to execute the method every 60 seconds. Alternatively, you might specify a fixedRate value for the
@Scheduled annotation, which would measure the time between successive starts and then trigger another run.

Chapter 13 ■ Spring Java enterpriSe ServiCeS and remoting teChnologieS

579

@Scheduled(fixedRate = 60 * 1000)
public synchronized void replicate() throws IOException {
 File[] files = new File(srcDir).listFiles();

 for (File file : files) {
 if (file.isFile()) {
 fileCopier.copyFile(srcDir, destDir, file.getName());
 }
 }
}

Finally, you might want more complex control over the execution of the method. In this case, you can
use a cron expression, just as you did in the Quartz example.

@Scheduled(cron = "0/60 * * * * ? ")
public synchronized void replicate() throws IOException {
 File[] files = new File(srcDir).listFiles();

 for (File file : files) {
 if (file.isFile()) {
 fileCopier.copyFile(srcDir, destDir, file.getName());
 }
 }
}

There is support for configuring all of this in Java too. This might be useful if you didn’t want to, or
couldn’t, add an annotation to an existing bean method. Here’s a look at how you might re-create the
preceding annotation-centric examples using the Spring ScheduledTaskRegistrar:

package com.apress.springrecipes.replicator.config;

import com.apress.springrecipes.replicator.FileReplicator;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.scheduling.annotation.EnableScheduling;
import org.springframework.scheduling.annotation.SchedulingConfigurer;
import org.springframework.scheduling.config.ScheduledTaskRegistrar;

import java.io.IOException;
import java.util.concurrent.Executor;
import java.util.concurrent.Executors;

@Configuration
@EnableScheduling
public class SchedulingConfiguration implements SchedulingConfigurer {

 @Autowired
 private FileReplicator fileReplicator;

Chapter 13 ■ Spring Java enterpriSe ServiCeS and remoting teChnologieS

580

 @Override
 public void configureTasks(ScheduledTaskRegistrar taskRegistrar) {
 taskRegistrar.setScheduler(scheduler());
 taskRegistrar.addFixedDelayTask(() -> {
 try {
 fileReplicator.replicate();
 } catch (IOException e) {
 e.printStackTrace();
 }
 }, 60000);
 }

 @Bean
 public Executor scheduler() {
 return Executors.newScheduledThreadPool(10);
 }

}

13-7. Expose and Invoke Services Through RMI
Problem
You want to expose a service from your Java application for other Java-based clients to invoke remotely.
Because both parties are running on the Java platform, you can choose a pure Java-based solution without
considering cross-platform portability.

Solution
Remote Method Invocation (RMI) is a Java-based remoting technology that allows two Java applications
running in different JVMs to communicate with each other. With RMI, an object can invoke the methods of
a remote object. RMI relies on object serialization to marshal and unmarshal method arguments and return
values.

To expose a service through RMI, you have to create the service interface that extends java.rmi.
Remote and whose methods declare throwing java.rmi.RemoteException. Then, you create the service
implementation for this interface. After that, you start an RMI registry and register your service to it. So, there
are quite a lot of steps required for exposing a simple service.

To invoke a service through RMI, you first look up the remote service reference in an RMI registry, and
then you can call the methods on it. However, to call the methods on a remote service, you must handle
java.rmi.RemoteException in case any exception is thrown by the remote service.

Spring’s remoting facilities can significantly simplify the RMI usage on both the server and client
sides. On the server side, you can use RmiServiceExporter to export a Spring POJO as an RMI service
whose methods can be invoked remotely. It’s just several lines of bean configuration without any
programming. Beans exported in this way don’t need to implement java.rmi.Remote or throw java.
rmi.RemoteException. On the client side, you can simply use RmiProxyFactoryBean to create a proxy for
the remote service. It allows you to use the remote service as if it were a local bean. Again, it requires no
additional programming at all.

Chapter 13 ■ Spring Java enterpriSe ServiCeS and remoting teChnologieS

581

How It Works
Suppose you’re going to build a weather web service for clients running on different platforms. This
service includes an operation for querying a city’s temperatures on multiple dates. First, let’s create the
TemperatureInfo class representing the minimum, maximum, and average temperatures of a particular city
and date.

package com.apress.springrecipes.weather;
...
public class TemperatureInfo implements Serializable {

 private String city;
 private Date date;
 private double min;
 private double max;
 private double average;

 // Constructors, Getters and Setters
 ...
}

Next, let’s define the service interface that includes the getTemperatures() operation, which returns a
city’s temperatures on multiple dates.

package com.apress.springrecipes.weather;
...
public interface WeatherService {

 List<TemperatureInfo> getTemperatures(String city, List<Date> dates);
}

You have to provide an implementation for this interface. In a production application, you would
implement this service interface by querying the database. Here, you’ll hard-code the temperatures for
testing purposes.

package com.apress.springrecipes.weather;
...
public class WeatherServiceImpl implements WeatherService {

 public List<TemperatureInfo> getTemperatures(String city, List<Date> dates) {
 List<TemperatureInfo> temperatures = new ArrayList<TemperatureInfo>();
 for (Date date : dates) {
 temperatures.add(new TemperatureInfo(city, date, 5.0, 10.0, 8.0));
 }
 return temperatures;
 }
}

Chapter 13 ■ Spring Java enterpriSe ServiCeS and remoting teChnologieS

582

Expose an RMI Service
Next, let’s expose the weather service as an RMI service. To use Spring’s remoting facilities, you’ll create a
Java config class to create the necessary beans and export the weather service as an RMI service by using
RmiServiceExporter.

package com.apress.springrecipes.weather.config;

...
import com.apress.springrecipes.weather.WeatherService;
import com.apress.springrecipes.weather.WeatherServiceImpl;

import org.springframework.remoting.rmi.RmiServiceExporter;

@Configuration
public class WeatherConfig {

 @Bean
 public WeatherService weatherService() {
 return new WeatherServiceImpl();
 }

 @Bean
 public RmiServiceExporter rmiService() {
 RmiServiceExporter rmiService = new RmiServiceExporter();
 rmiService.setServiceName("WeatherService");
 rmiService.setServiceInterface(com.apress.springrecipes.weather.

WeatherService.class);
 rmiService.setService(weatherService());
 return rmiService;
 }
}

There are several properties you must configure for an RmiServiceExporter instance, including the
service name, the service interface, and the service object to export. You can export any bean configured
in the IoC container as an RMI service. RmiServiceExporter will create an RMI proxy to wrap this bean
and bind it to the RMI registry. When the proxy receives an invocation request from the RMI registry, it
will invoke the corresponding method on the bean. By default, RmiServiceExporter attempts to look up
an RMI registry at localhost port 1099. If it can’t find the RMI registry, it will start a new one. However, if
you want to bind your service to another running RMI registry, you can specify the host and port of that
registry in the registryHost and registryPort properties. Note that once you specify the registry host,
RmiServiceExporter will not start a new registry, even if the specified registry doesn’t exist. Run the
following RmiServer class to create an application context:

package com.apress.springrecipes.weather;

import com.apress.springrecipes.weather.config.WeatherConfigServer;
import org.springframework.context.annotation.AnnotationConfigApplicationContext;

Chapter 13 ■ Spring Java enterpriSe ServiCeS and remoting teChnologieS

583

public class RmiServer {

 public static void main(String[] args) {
 new AnnotationConfigApplicationContext(WeatherConfigServer.class);
 }
}

In this configuration, the server will launch; in the output, you should see a message indicating that an
existing RMI registry could not be found.

Invoke an RMI Service
By using Spring’s remoting facilities, you can invoke a remote service just like a local bean. For example, you
can create a client that refers to the weather service by its interface.

package com.apress.springrecipes.weather;

import java.util.Arrays;
import java.util.Date;
import java.util.List;

public class WeatherServiceClient {

 private final WeatherService weatherService;

 public WeatherServiceClient(WeatherService weatherService) {
 this.weatherService = weatherService;
 }

 public TemperatureInfo getTodayTemperature(String city) {
 List<Date> dates = Arrays.asList(new Date());
 List<TemperatureInfo> temperatures =
 weatherService.getTemperatures(city, dates);
 return temperatures.get(0);
 }
}

Notice the weatherService field is being wired through the constructor, so you’ll need to create an
instance of this bean. The weatherService will use RmiProxyFactoryBean to create a proxy for the remote
service. Then, you can use this service as if it were a local bean. The following Java config class illustrates the
necessary beans for the RMI client:

package com.apress.springrecipes.weather.config;

import com.apress.springrecipes.weather.WeatherService;
import com.apress.springrecipes.weather.WeatherServiceClient;

import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.remoting.rmi.RmiProxyFactoryBean;

Chapter 13 ■ Spring Java enterpriSe ServiCeS and remoting teChnologieS

584

@Configuration
public class WeatherConfigClient {

 @Bean
 public RmiProxyFactoryBean weatherService() {
 RmiProxyFactoryBean rmiProxy = new RmiProxyFactoryBean();
 rmiProxy.setServiceUrl("rmi://localhost:1099/WeatherService");
 rmiProxy.setServiceInterface(WeatherService.class);
 return rmiProxy;
 }

 @Bean
 public WeatherServiceClient weatherClient(WeatherService weatherService) {
 return new WeatherServiceClient(weatherService);
 }
}

There are two properties you must configure for an RmiProxyFactoryBean instance. The service
URL property specifies the host and port of the RMI registry, as well as the service name. The service
interface allows this factory bean to create a proxy for the remote service against a known, shared Java
interface. The proxy will transfer the invocation requests to the remote service transparently. In addition
to the RmiProxyFactoryBean instance, you also create an instance of the WeatherServiceClient called
weatherClient.

Next, run the following RmiClient main class:

package com.apress.springrecipes.weather;

import com.apress.springrecipes.weather.config.WeatherConfigClient;
import org.springframework.context.ApplicationContext;
import org.springframework.context.annotation.AnnotationConfigApplicationContext;

public class RmiClient {

 public static void main(String[] args) {
 ApplicationContext context =
 new AnnotationConfigApplicationContext(WeatherConfigClient.class);

 WeatherServiceClient client = context.getBean(WeatherServiceClient.class);

 TemperatureInfo temperature = client.getTodayTemperature("Houston");
 System.out.println("Min temperature : " + temperature.getMin());
 System.out.println("Max temperature : " + temperature.getMax());
 System.out.println("Average temperature : " + temperature.getAverage());
 }
}

13-8. Expose and Invoke Services Through HTTP
Problem
RMI communicates through its own protocol, which may not pass through firewalls. Ideally, you’d like to
communicate over HTTP.

Chapter 13 ■ Spring Java enterpriSe ServiCeS and remoting teChnologieS

585

Solution
Hessian is a simple lightweight remoting technology developed by Caucho Technology (www.caucho.com/).
It communicates using proprietary messages over HTTP and has its own serialization mechanism, but it is
much simpler than RMI. The message format of Hessian is also supported on other platforms besides Java,
such as PHP, Python, C#, and Ruby. This allows your Java applications to communicate with applications
running on the other platforms.

In addition to the preceding technology, the Spring Framework offers a remoting technology called
HTTP Invoker. It also communicates over HTTP but uses Java’s object serialization mechanism to serialize
objects. Unlike Hessian, HTTP Invoker requires both sides of a service to be running on the Java platform
and using the Spring Framework. However, it can serialize all kinds of Java objects, some of which may not
be serialized by Hessian’s proprietary mechanism.

Spring’s remoting facilities are consistent in exposing and invoking remote services with these
technologies. On the server side, you can create a service exporter such as HessianServiceExporter or
HttpInvokerServiceExporter to export a Spring bean as a remote service whose methods can be invoked
remotely. It’s just a few lines of bean configurations without any programming. On the client side, you can
also configure a proxy factory bean such as HessianProxyFactoryBean or HttpInvokerProxyFactoryBean to
create a proxy for a remote service. It allows you to use the remote service as if it were a local bean. Again, it
requires no additional programming at all.

How It Works
To export a service you need a service exported here you will learn about the HessianServiceExporter
and the HttpInvokerServiceExporter. To consume the exposed services there are some helper classes
respectivly the HessianProxyFactoryBean and the HttpInvokerProxyFactorybean. Both the solutions for
Hessian and HTTP will be explored here.

Expose a Hessian Service
You’ll use the same weather service from the previous RMI recipe and expose it as a Hessian service with
Spring. You’ll create a simple web application using Spring MVC to deploy the service. First, let’s create a
WeatherServiceInitializer class to bootstrap the web application and Spring application context.

package com.apress.springrecipes.weather.config;

import org.springframework.web.servlet.support.
AbstractAnnotationConfigDispatcherServletInitializer;

public class WeatherServiceInitializer extends
AbstractAnnotationConfigDispatcherServletInitializer {

 @Override
 protected String[] getServletMappings() {
 return new String[] {"/*"};
 }

 @Override
 protected Class<?>[] getRootConfigClasses() {
 return null;
 }

http://www.caucho.com/

Chapter 13 ■ Spring Java enterpriSe ServiCeS and remoting teChnologieS

586

 @Override
 protected Class<?>[] getServletConfigClasses() {
 return new Class[] {WeatherConfigHessianServer.class};
 }
}

The WeatherServiceInitializer class creates a DispatcherServlet servlet to map all URLs under the
root path (/*) and will use the WeatherConfigHessianServer class for the configuration.

package com.apress.springrecipes.weather.config;

import com.apress.springrecipes.weather.WeatherService;
import com.apress.springrecipes.weather.WeatherServiceImpl;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.remoting.caucho.HessianServiceExporter;

@Configuration
public class WeatherConfigHessianServer {

 @Bean
 public WeatherService weatherService() {
 WeatherService wService = new WeatherServiceImpl();
 return wService;
 }

 @Bean(name = "/weather")
 public HessianServiceExporter exporter() {
 HessianServiceExporter exporter = new HessianServiceExporter();
 exporter.setService(weatherService());
 exporter.setServiceInterface(WeatherService.class);
 return exporter;
 }
}

The scanning component allows Spring to inspect a Java config class that instantiates
the weatherService bean, which contains the operations that are to be exposed by the
HessianServiceExporter instance. The weatherService bean in this case is identical to the one used in the
previous RMI recipe. You can also consult the book’s source code to get the prebuilt application.

For a HessianServiceExporter instance, you have to configure a service object to export and its service
interface. You can export any Spring bean as a Hessian service. The HessianServiceExporter creates a
proxy to wrap this bean.

When the proxy receives an invocation request, it invokes the corresponding method on that bean. By
default, BeanNameUrlHandlerMapping is preconfigured for Spring MVC applications, so this means beans
are mapped to URL patterns specified as bean names. The preceding configuration maps the URL pattern
/weather to this exporter. Next, you can deploy this web application to a web container (e.g., Apache Tomcat).
By default, Tomcat listens on port 8080, so if you deploy your application to the Hessian context path, you
can access this service with the following URL: http://localhost:8080/hessian/weather.

Chapter 13 ■ Spring Java enterpriSe ServiCeS and remoting teChnologieS

587

Invoke a Hessian Service
By using Spring’s remoting facilities, you can invoke a remote service just like a local bean. In a client
application, you can create a HessianProxyFactoryBean instance in a Java config class to create a proxy for
the remote Hessian service. Then you can use this service as if it were a local bean.

@Bean
public HessianProxyFactoryBean weatherService() {
 HessianProxyFactoryBean factory = new HessianProxyFactoryBean();
 factory.setServiceUrl("http://localhost:8080/hessian/weather");
 factory.setServiceInterface(WeatherService.class);
 return factory;
}

For a HessianProxyFactoryBean instance, you have to configure two properties. The service URL property
specifies the URL for the target service. The service interface property is for this factory bean to create a local
proxy for the remote service. The proxy will send the invocation requests to the remote service transparently.

Expose an HTTP Invoker Service
Similarly, the configuration for exposing a service using HTTP Invoker is similar to that of Hessian, except
you have to use HttpInvokerServiceExporter instead.

@Bean(name = "/weather")
public HttpInvokerServiceExporter exporter() {
 HttpInvokerServiceExporter exporter = new HttpInvokerServiceExporter();
 exporter.setService(weatherService());
 exporter.setServiceInterface(WeatherService.class);
 return exporter;
}

Invoke an HTTP Invoker Service
Invoking a service exposed by HTTP Invoker is also similar to Hessian and Burlap. This time, you have to use
HttpInvokerProxyFactoryBean.

@Bean
public HttpInvokerProxyFactoryBean weatherService() {
 HttpInvokerProxyFactoryBean factory = new HttpInvokerProxyFactoryBean();
 factory.setServiceUrl("http://localhost:8080/httpinvoker/weather");
 factory.setServiceInterface(WeatherService.class);
 return factory;
}

Chapter 13 ■ Spring Java enterpriSe ServiCeS and remoting teChnologieS

588

13-9. Expose and Invoke SOAP Web Services with JAX-WS
Problem
SOAP is an enterprise standard and cross-platform application communication technology. Most modern
and mission-critical software remoting tasks (e.g., banking services, inventory applications) typically use
this standard. You want to be able to invoke third-party SOAP web services from your Java applications, as
well as expose web services from your Java applications so third parties on different platforms can invoke
them via SOAP.

Solution
Use the JAX-WS @WebService and @WebMethod annotations, as well as Spring’s SimpleJaxWsServiceExporter
to allow access to bean business logic via SOAP. You can also leverage Apache CXF with Spring to expose
SOAP services in a Java server like Tomcat. To access SOAP services, you can use Apache CXF with Spring or
leverage Spring’s JaxWsPortProxyFactoryBean.

How It Works
JAX-WS 2.0 is the successor of JAX-RPC 1.1—the Java API for XML-based web services. So, if you’re going to
use SOAP in the context of Java, JAX-WS is the most recent standard that enjoys support in both Java EE and
the standard JDK.

Expose a Web Service Using the JAX-WS Endpoint Support in the JDK
You can rely on Java’s JDK JAX-WS runtime support to expose JAX-WS services. This means you don’t
necessarily need to deploy JAX-WS services as part of a Java web application. By default, the JAX-WS support
in the JDK is used if you have no other runtime. Let’s implement the weather service application from
previous recipes with JAX-WS using the JDK. You need to annotate the weather service to indicate that it
should be exposed to clients. The revised WeatherServiceImpl implementation needs to be decorated
with the @WebService and @WebMethod annotations. The Main class is decorated with @WebService, and the
method that will be exposed by the service is decorated with @WebMethod.

package com.apress.springrecipes.weather;

import javax.jws.WebMethod;
import javax.jws.WebService;
import java.util.ArrayList;
import java.util.Date;
import java.util.List;

@WebService(serviceName = "weather", endpointInterface = " com.apress.springrecipes.weather.
WeatherService ")
public class WeatherServiceImpl implements WeatherService {

 @WebMethod(operationName = "getTemperatures")
 public List<TemperatureInfo> getTemperatures(String city, List<Date> dates) {
 List<TemperatureInfo> temperatures = new ArrayList<TemperatureInfo>();

Chapter 13 ■ Spring Java enterpriSe ServiCeS and remoting teChnologieS

589

 for (Date date : dates) {
 temperatures.add(new TemperatureInfo(city, date, 5.0, 10.0, 8.0));
 }

 return temperatures;
 }
}

Note you don’t need to provide any parameters to the annotations, like endpointInterface or
serviceName, but you are here to make the resulting SOAP contract more readable. Similarly, you don’t
need to provide an operationName on the @WebMethod annotation. This is generally good practice,
though, because it insulates clients of the SOAP endpoint from any refactoring you may do on the Java
implementation.

Next, so that Spring is able to detect beans with @WebService annotations, you rely on Spring’s
SimpleHttpServerJaxWsServiceExporter. This is the @Bean definition of this class in a Java config class:

@Bean
public SimpleHttpServerJaxWsServiceExporter jaxWsService() {
 SimpleHttpServerJaxWsServiceExporter simpleJaxWs =
 new SimpleHttpServerJaxWsServiceExporter();
 simpleJaxWs.setPort(8888);
 simpleJaxWs.setBasePath("/jaxws/");
 return simpleJaxWs;
}

Notice the bean definition calls setPort and setBasePath and sets them to 8888 and /jaxws/. This is
the endpoint for the application’s JAX-WS service. Under this address—which is a stand-alone server spun
by the JDK—is where all the beans defined with @WebService annotations will reside. So, if there’s an
@Webservice name called weather, it will become accessible under http://localhost:8888/jaxws/weather.

 ■ Note if you are using this as part of a web deployment, use SimpleJaxWsServiceExporter instead
because SimpleHttpServerJaxWsServiceExporter will start an embedded http server, which generally isn’t
doable in a web deployment.

If you launch a browser and inspect the results at http://localhost:8888/jaxws/weather?wsdl, you’ll
see the generated SOAP WSDL contract, as follows:

<?xml version="1.0" encoding="UTF-8"?>
<!--
 Published by JAX-WS RI (http://jax-ws.java.net). RI's version is JAX-WS RI 2.2.9-
b130926.1035 svn-revision#5f6196f2b90e9460065a4c2f4e30e065b245e51e.
-->
<!--
 Generated by JAX-WS RI (http://jax-ws.java.net). RI's version is JAX-WS RI 2.2.9-
b130926.1035 svn-revision#5f6196f2b90e9460065a4c2f4e30e065b245e51e.
-->
<definitions xmlns="http://schemas.xmlsoap.org/wsdl/" xmlns:soap="http://schemas.xmlsoap.
org/wsdl/soap/" xmlns:tns="http://weather.springrecipes.apress.com/" xmlns:wsam="http://
www.w3.org/2007/05/addressing/metadata" xmlns:wsp="http://www.w3.org/ns/ws-policy"

Chapter 13 ■ Spring Java enterpriSe ServiCeS and remoting teChnologieS

590

xmlns:wsp1_2="http://schemas.xmlsoap.org/ws/2004/09/policy" xmlns:wsu="http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd" xmlns:xsd="http://
www.w3.org/2001/XMLSchema" targetNamespace="http://weather.springrecipes.apress.com/"
name="weather">
 <types>
 <xsd:schema>
 <xsd:import namespace="http://weather.springrecipes.apress.com/"

schemaLocation="http://localhost:8888/jaxws/weather?xsd=1" />
 </xsd:schema>
 </types>
 <message name="getTemperatures">
 <part name="parameters" element="tns:getTemperatures" />
 </message>
 <message name="getTemperaturesResponse">
 <part name="parameters" element="tns:getTemperaturesResponse" />
 </message>
 <portType name="WeatherService">
 <operation name="getTemperatures">
 <input wsam:Action="http://weather.springrecipes.apress.com/WeatherService/

getTemperaturesRequest" message="tns:getTemperatures" />
 <output wsam:Action="http://weather.springrecipes.apress.com/WeatherService/

getTemperaturesResponse" message="tns:getTemperaturesResponse" />
 </operation>
 </portType>
 <binding name="WeatherServiceImplPortBinding" type="tns:WeatherService">
 <soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="document" />
 <operation name="getTemperatures">
 <soap:operation soapAction="" />
 <input>
 <soap:body use="literal" />
 </input>
 <output>
 <soap:body use="literal" />
 </output>
 </operation>
 </binding>
 <service name="weather">
 <port name="WeatherServiceImplPort" binding="tns:WeatherServiceImplPortBinding">
 <soap:address location="http://localhost:8888/jaxws/weather" />
 </port>
 </service>
</definitions>

The SOAP WSDL contract is used by clients to access the service. If you inspect the generated WSDL,
you’ll see it’s pretty basic—describing the weather service method—but more importantly it’s programming
language neutral. This neutrality is the whole purpose of SOAP: to be able to access services across diverse
platforms that can interpret SOAP.

Chapter 13 ■ Spring Java enterpriSe ServiCeS and remoting teChnologieS

591

Expose a Web Service Using CXF
Exposing a stand-alone SOAP endpoint using the JAX-WS service exporter and the JAX-WS JDK support
is simple. However, this solution ignores the fact that most Java applications in real-world environments
operate on Java app runtimes, such as Tomcat. Tomcat by itself doesn’t support JAX-WS, so you’ll need to
equip the application with a JAX-WS runtime.

There are many choices, and you’re free to take your pick. A popular choice is CXF, which is an Apache
project. For this example, you’ll embed CXF since it’s robust, is fairly well tested, and provides support for
other important standards such as JAX-RS, which is the API for RESTful endpoints.

First let’s take a look at the Initializer class to bootstrap an application under a Servlet 3.1–compliant
server like Apache Tomcat 8.5.

package com.apress.springrecipes.weather.config;

import org.springframework.web.WebApplicationInitializer;
import org.springframework.web.servlet.DispatcherServlet;
import org.springframework.web.context.ContextLoaderListener;

import org.springframework.web.context.support.XmlWebApplicationContext;

import org.apache.cxf.transport.servlet.CXFServlet;

import javax.servlet.ServletRegistration;

import javax.servlet.ServletContext;
import javax.servlet.ServletException;

public class Initializer implements WebApplicationInitializer {
 public void onStartup(ServletContext container) throws ServletException {
 XmlWebApplicationContext context = new XmlWebApplicationContext();
 context.setConfigLocation("/WEB-INF/appContext.xml");

 container.addListener(new ContextLoaderListener(context));

 ServletRegistration.Dynamic cxf = container.addServlet("cxf", new CXFServlet());
 cxf.setLoadOnStartup(1);
 cxf.addMapping("/*");
 }
}

This Initializer class will look pretty much like all Spring MVC applications do. The only exception
here is that you’ve configured a CXFServlet, which handles a lot of the heavy lifting required to expose
your service. In the Spring MVC configuration file, you’ll be using the Spring namespace support that CXF
provides for configuring services. The Spring context file is simple; most of it is boilerplate XML namespace
and Spring context file imports. The only two salient stanzas are shown here, where you first configure the
service itself as usual. Finally, you use the CXF jaxws:endpoint namespace to configure the endpoint.

Chapter 13 ■ Spring Java enterpriSe ServiCeS and remoting teChnologieS

592

package com.apress.springrecipes.weather.config;

import com.apress.springrecipes.weather.WeatherService;
import com.apress.springrecipes.weather.WeatherServiceImpl;
import org.apache.cxf.Bus;
import org.apache.cxf.jaxws.EndpointImpl;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.context.annotation.ImportResource;

@Configuration
@ImportResource("classpath:META-INF/cxf/cxf.xml")
public class WeatherConfig {

 @Bean
 public WeatherService weatherService() {
 return new WeatherServiceImpl();
 }

 @Bean(initMethod = "publish")
 public EndpointImpl endpoint(Bus bus) {
 EndpointImpl endpoint = new EndpointImpl(bus, weatherService());
 endpoint.setAddress("/weather");
 return endpoint;
 }
}

You register an endpoint using the EndpointImp class. It requires the CXF Bus, which is configured
in the imported cxf.xml file (which is provided by Apache CXF), and it uses the weatherService Spring
bean as the implementation. You tell it at what address to publish the service using the address property.
In this case, because the Initializer mounts the CXF servlet under the root directory (/), the CXF
weatherService endpoint becomes accessible under /cxf/weather (as the application is deployed on /cxf).

Notice that the publish method is used as an initMethod. Instead of this and setAddress, you could
use endpoint.publish("/weather"). However, using an initMethod allows for callbacks to be able to
enhance/configure the actual EndpointImpl before the endpoint is being published. This can be handy if, for
instance, you have multiple endpoints that need to be configured with SSL, and so on.

Note the Java code in weatherServiceImpl stays the same as before, with the @WebService and
@WebMethod annotations in place. Launch the application and your web container and then bring up the
application in your browser. In the book’s source code, the application is built in a WAR called cxf.war, and
given that CXF is deployed at /cxf, the SOAP WSDL contract is available at http://localhost:8080/cxf/
weather. If you bring up the page at http://localhost:8080/cxf, you’ll see a directory of the available
services and their operations. Click the link for the service’s WSDL—or simply append ?wsdl to the service
endpoint—to see the WSDL for the service. The WSDL contract is pretty similar to the ones described in the
previous section using JAX-WS JDK support. The only difference is the WSDL contract is generated with the
help of CXF.

Chapter 13 ■ Spring Java enterpriSe ServiCeS and remoting teChnologieS

593

Invoke a Web Service Using Spring’s JaxWsPortProxyFactoryBean
Spring provides the functionality to access a SOAP WSDL contract and communicate with
the underlying services as if it were a regular Spring bean. This functionality is provided by
JaxWsPortProxyFactoryBean. The following is a sample bean definition to access the SOAP weather service
with JaxWsPortProxyFactoryBean:

@Bean
public JaxWsPortProxyFactoryBean weatherService() throws MalformedURLException {
 JaxWsPortProxyFactoryBean weatherService = new JaxWsPortProxyFactoryBean();
 weatherService.setServiceInterface(WeatherService.class);
 weatherService.setWsdlDocumentUrl(new URL("http://localhost:8080/cxf/weather?WSDL"));
 weatherService.setNamespaceUri("http://weather.springrecipes.apress.com/");
 weatherService.setServiceName("weather");
 weatherService.setPortName("WeatherServiceImplPort");
 return weatherService;
}

The bean instance is given the weatherService name. It’s through this reference that you’ll be able
to invoke the underlying SOAP service methods, as if they were running locally (e.g., weatherService.
getTemperatures(city, dates)). The JaxWsPortProxyFactoryBean requires several properties that are
described next.

The serviceInterface property defines the service interface for the SOAP call. In the case of the
weather service, you can use the server-side implementation code, which is the same. In case you’re
accessing a SOAP service for which you don’t have the server-side code, you can always create this Java
interface from the WSDL contract with a tool like java2wsdl. Note that serviceInterface used by the client
side needs to use the same JAX-WS annotation used by the server-side implementation
(i.e., @WebService).

The wsdlDocumentUrl property represents the location of the WSDL contract. In this case, it’s pointing
toward the CXF SOAP endpoint from this recipe, but you can equally define this property to access the JAX-
WS JDK endpoint from this recipe or any WSDL contract for that matter.

The namesapceUrl, serviceName, and portName properties pertain to the WSDL contract itself. Since
there can be various namespaces, services, and ports in a WSDL contract, you need to tell Spring which
values to use for the purpose of accessing the service. The values presented here can easily be verified by
doing a manual inspection of the weather WSDL contract.

Invoke a Web Service Using CXF
Let’s now use CXF to define a web service client. The client is the same as in previous recipes, and there
is no special Java configuration or coding to be done. You simply need the interface of the service on the
classpath. Once that’s done, you can use CXF’s namespace support to create a client.

package com.apress.springrecipes.weather.config;

import com.apress.springrecipes.weather.WeatherService;
import com.apress.springrecipes.weather.WeatherServiceClient;
import org.apache.cxf.jaxws.JaxWsProxyFactoryBean;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.context.annotation.ImportResource;

Chapter 13 ■ Spring Java enterpriSe ServiCeS and remoting teChnologieS

594

@Configuration
@ImportResource("classpath:META-INF/cxf/cxf.xml")
public class WeatherConfigCxfClient {

 @Bean
 public WeatherServiceClient weatherClient(WeatherService weatherService) {
 return new WeatherServiceClient(weatherService);
 }

 @Bean
 public WeatherService weatherServiceProxy() {
 JaxWsProxyFactoryBean factory = new JaxWsProxyFactoryBean();
 factory.setServiceClass(WeatherService.class);
 factory.setAddress("http://localhost:8080/cxf/weather");
 return (WeatherService) factory.create();
 }
}

Notice the @ImportResource("classpath:META-INF/cxf/cxf.xml"), which imports and loads the
infrastructure beans needed and provided by Apache CXF.

To create a client, you can use the JaxWsProxyFactoryBean and pass it the service class it needs to
use and the address it needs to connect with. Then you use the create method to have a proxy created
that acts like a regular WeatherService. That is all that’s required. The examples from previous recipes
work otherwise unchanged: here you inject the client into WeatherServiceClient and invoke it using the
weatherService reference (e.g., weatherService.getTemperatures(city, dates)).

13-10. Use Contract-First SOAP Web Services
Problem
You want to develop a contract-first SOAP web service instead of a code-first SOAP web service as you did in
the previous recipe.

Solution
There are two ways to develop SOAP web services. One is called code first, which means you start with a Java
class and then build out toward a WSDL contract. The other method is called contract first, which means
you start with an XML data contract—something simpler than WSDL—and build in toward a Java class to
implement the service. To create a data contract for a contract-first SOAP web service, you’ll need an XSD
file or XML Schema file that describes the operations and data supported by the service. The requirement for
an XSD file is because “under the hood” the communication between a SOAP service client and server takes
place as XML defined in an XSD file. However, because an XSD file can be difficult to write correctly, it’s
preferable to start by creating sample XML messages and then generating the XSD file from them. Then with
the XSD file, you can leverage something like Spring-WS to build the SOAP web service from the XSD file.

How It Works
The easiest way to start with a contract first web service is to write sample XML messages, when these are
written you can use a tool to extract the contract, the XSD files, from them. When you have the XSD files you
can use these with another tool to build the Web Services client.

Chapter 13 ■ Spring Java enterpriSe ServiCeS and remoting teChnologieS

595

Create Sample XML Messages
Let’s do the same weather service presented in previous recipes, but this time using the SOAP contract-first
approach. You’re asked to write a SOAP service that is able to communicate weather information based
on a city and date, returning the minimum, maximum, and average temperatures. Instead of writing code
to support the previous functionality as you did in the previous recipe, let’s describe the temperature of a
particular city and date using a contract-first approach with an XML message like the following:

<TemperatureInfo city="Houston" date="2013-12-01">
 <min>5.0</min>
 <max>10.0</max>
 <average>8.0</average>
</TemperatureInfo>

This is the first step toward having a data contract in a SOAP contract-first way for the weather service.
Now let’s define some operations. You want to allow clients to query the temperatures of a particular city
for multiple dates. Each request consists of a city element and multiple date elements. You’ll also specify
the namespace for this request to avoid naming conflicts with other XML documents. Let’s create this XML
message and save it into a file called request.xml.

<GetTemperaturesRequest
 xmlns="http://springrecipes.apress.com/weather/schemas">
 <city>Houston</city>
 <date>2013-12-01</date>
 <date>2013-12-08</date>
 <date>2013-12-15</date>
</GetTemperaturesRequest>

The response for a request of the previous type would consist of multiple TemperatureInfo elements,
each of which represents the temperature of a particular city and date, in accordance with the requested
dates. Let’s create this XML message and save it to a file called response.xml.

<GetTemperaturesResponse
 xmlns="http://springrecipes.apress.com/weather/schemas">
 <TemperatureInfo city="Houston" date="2013-12-01">
 <min>5.0</min>
 <max>10.0</max>
 <average>8.0</average>
 </TemperatureInfo>
 <TemperatureInfo city="Houston" date="2007-12-08">
 <min>4.0</min>
 <max>13.0</max>
 <average>7.0</average>
 </TemperatureInfo>
 <TemperatureInfo city="Houston" date="2007-12-15">
 <min>10.0</min>
 <max>18.0</max>
 <average>15.0</average>
 </TemperatureInfo>
</GetTemperaturesResponse>

Chapter 13 ■ Spring Java enterpriSe ServiCeS and remoting teChnologieS

596

Generate an XSD File from Sample XML Messages
Now, you can generate the XSD file from the preceding sample XML messages. Most XML tools and
enterprise Java IDEs can generate an XSD file from a couple of XML files. Here, you’ll use Apache XMLBeans
(http://xmlbeans.apache.org/) to generate the XSD file.

 ■ Note You can download apache XmlBeans (e.g., v2.6.0) from the apache XmlBeans web site and extract
it to a directory of your choice to complete the installation.

Apache XMLBeans provides a tool called inst2xsd to generate XSD files from XML files. It supports
several design types for generating XSD files. The simplest is called Russian doll design, which generates
local elements and local types for the target XSD file. Because there’s no enumeration type used in your XML
messages, you can disable the enumeration generation feature. You can execute the following command to
generate the XSD file from the previous XML files:

inst2xsd -design rd -enumerations never request.xml response.xml

The generated XSD file will have the default name schema0.xsd, located in the same directory. Let’s
rename it to temperature.xsd.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema attributeFormDefault="unqualified"
 elementFormDefault="qualified"
 targetNamespace="http://springrecipes.apress.com/weather/schemas"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name="GetTemperaturesRequest">
 <xs:complexType>
 <xs:sequence>
 <xs:element type="xs:string" name="city" />
 <xs:element type="xs:date" name="date"
 maxOccurs="unbounded" minOccurs="0" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="GetTemperaturesResponse">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="TemperatureInfo"
 maxOccurs="unbounded" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element type="xs:float" name="min" />
 <xs:element type="xs:float" name="max" />
 <xs:element type="xs:float" name="average" />
 </xs:sequence>
 <xs:attribute type="xs:string" name="city"
 use="optional" />

http://xmlbeans.apache.org/

Chapter 13 ■ Spring Java enterpriSe ServiCeS and remoting teChnologieS

597

 <xs:attribute type="xs:date" name="date"
 use="optional" />
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

Optimizing the Generated XSD File
As you can see, the generated XSD file allows clients to query temperatures for unlimited dates. If you
want to add a constraint on the maximum and minimum query dates, you can modify the maxOccurs and
minOccurs attributes.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema attributeFormDefault="unqualified"
 elementFormDefault="qualified"
 targetNamespace="http://springrecipes.apress.com/weather/schemas"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name="GetTemperaturesRequest">
 <xs:complexType>
 <xs:sequence>
 <xs:element type="xs:string" name="city" />
 <xs:element type="xs:date" name="date"
 maxOccurs="5" minOccurs="1" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="GetTemperaturesResponse">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="TemperatureInfo"
 maxOccurs="5" minOccurs="1">
 ...
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

Chapter 13 ■ Spring Java enterpriSe ServiCeS and remoting teChnologieS

598

Preview the Generated WSDL File
As you will learn shortly and in full detail, Spring-WS is equipped to automatically generate a WSDL contract
from an XSD file. The following snippet illustrates the Spring bean configuration for this purpose—we’ll add
context on how to use this snippet in the next recipe, which describes how to build SOAP web services with
Spring-WS.

<sws:dynamic-wsdl id="temperature" portTypeName="Weather" locationUri="/">
 <sws:xsd location="/WEB-INF/temperature.xsd"/>
</sws:dynamic-wsdl>

Here, you’ll preview the generated WSDL file to better understand the service contract. For simplicity’s
sake, the less important parts are omitted.

<?xml version="1.0" encoding="UTF-8" ?>
<wsdl:definitions ...
 targetNamespace="http://springrecipes.apress.com/weather/schemas">
 <wsdl:types>
 <!-- Copied from the XSD file -->
 ...
 </wsdl:types>
 <wsdl:message name="GetTemperaturesResponse">
 <wsdl:part element="schema:GetTemperaturesResponse"
 name="GetTemperaturesResponse">
 </wsdl:part>
 </wsdl:message>
 <wsdl:message name="GetTemperaturesRequest">
 <wsdl:part element="schema:GetTemperaturesRequest"
 name="GetTemperaturesRequest">
 </wsdl:part>
 </wsdl:message>
 <wsdl:portType name="Weather">
 <wsdl:operation name="GetTemperatures">
 <wsdl:input message="schema:GetTemperaturesRequest"
 name="GetTemperaturesRequest">
 </wsdl:input>
 <wsdl:output message="schema:GetTemperaturesResponse"
 name="GetTemperaturesResponse">
 </wsdl:output>
 </wsdl:operation>
 </wsdl:portType>
 ...
 <wsdl:service name="WeatherService">
 <wsdl:port binding="schema:WeatherBinding" name="WeatherPort">
 <soap:address
 location="http://localhost:8080/weather/services" />
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

Chapter 13 ■ Spring Java enterpriSe ServiCeS and remoting teChnologieS

599

In the Weather port type, a GetTemperatures operation is defined whose name is derived from the prefix
of the input and output messages (i.e., <GetTemperaturesRequest> and <GetTemperaturesResponse>). The
definitions of these two elements are included in the <wsdl:types> part, as defined in the data contract.

Now with the WSDL contract in hand, you can generate the necessary Java interfaces and then write the
backing code for each of the operations that started out as XML messages. This full technique is explored in
the next recipe, which uses Spring-WS for the process.

13-11. Expose and Invoke SOAP Web Services
with Spring-WS
Problem
You have an XSD file to develop a contract-first SOAP web service and don’t know how or what to use to
implement the contract-first SOAP service.

Spring-WS was designed from the outset to support contract-first SOAP web services. However, this
does not mean Spring-WS is the only way to create SOAP web services in Java. JAX-WS implementations like
CXF also support this technique. Nevertheless, Spring-WS is the more mature and natural approach to do
contract-first SOAP web services in the context of Spring applications. Describing other contract-first SOAP
Java techniques would lead you outside the scope of the Spring Framework.

Solution
Spring-WS provides a set of facilities to develop contract-first SOAP web services. The essential tasks for
building a Spring-WS web service include the following:

 1. Set up and configure a Spring MVC application for Spring-WS.

 2. Map web service requests to endpoints.

 3. Create service endpoints to handle the request messages and return the response
messages.

 4. Publish the WSDL file for the web service.

Chapter 13 ■ Spring Java enterpriSe ServiCeS and remoting teChnologieS

600

Set Up a Spring-WS Application
To implement a web service using Spring-WS, let’s first create a web application initializer class to bootstrap
a web application with a SOAP web service. You need to configure the MessageDispatcherServlet servlet,
which is part of Spring-WS. This servlet specializes in dispatching web service messages to appropriate
endpoints and detecting the framework facilities of Spring-WS.

package com.apress.springrecipes.weather.config;

import org.springframework.ws.transport.http.support.
AbstractAnnotationConfigMessageDispatcherServletInitializer;

public class Initializer extends AbstractAnnotationConfigMessageDispatcherServletInitializer
{

 @Override
 protected Class<?>[] getRootConfigClasses() {
 return null;
 }

 @Override
 protected Class<?>[] getServletConfigClasses() {
 return new Class<?>[] {SpringWsConfiguration.class};
 }

}

To make configuration easier, there is the AbstractAnnotationConfigMessageDispatcherServlet
Initializer base class that you can extend. You need to supply it with the configuration classes that make
up rootConfig and servletConfig. The first can be null, and the latter is required.

The previous configuration will bootstrap MessageDispatcherServlet using the SpringWs
Configuration class and register it for the /services/* and *.wsdl URLs.

package com.apress.springrecipes.weather.config;

import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.ComponentScan;
import org.springframework.context.annotation.Configuration;
import org.springframework.core.io.ClassPathResource;
import org.springframework.ws.config.annotation.EnableWs;
import org.springframework.ws.wsdl.wsdl11.DefaultWsdl11Definition;
import org.springframework.xml.xsd.SimpleXsdSchema;
import org.springframework.xml.xsd.XsdSchema;

@Configuration
@EnableWs
@ComponentScan("com.apress.springrecipes.weather")
public class SpringWsConfiguration {

 ...
}

Chapter 13 ■ Spring Java enterpriSe ServiCeS and remoting teChnologieS

601

The SpringWsConfiguration class is annotated with @EnableWs that registers necessary beans to make
MessageDispatcherServlet work. There is also the @ComponentScan annotation that scans for @Service and
@Endpoint beans.

Create Service Endpoints
Spring-WS supports annotating an arbitrary class as a service endpoint by the @Endpoint annotation so it
becomes accessible as a service. Besides the @Endpoint annotation, you need to annotate handler methods
with the @PayloadRoot annotation to map service requests. And each handler method also relies on the
@ResponsePayload and @RequestPayload annotations to handle the incoming and outgoing service data.

package com.apress.springrecipes.weather;

import org.dom4j.Document;
import org.dom4j.DocumentHelper;
import org.dom4j.Element;
import org.dom4j.XPath;
import org.dom4j.xpath.DefaultXPath;
import org.springframework.ws.server.endpoint.annotation.Endpoint;
import org.springframework.ws.server.endpoint.annotation.PayloadRoot;
import org.springframework.ws.server.endpoint.annotation.RequestPayload;
import org.springframework.ws.server.endpoint.annotation.ResponsePayload;

import java.text.DateFormat;
import java.text.SimpleDateFormat;
import java.util.*;

@Endpoint
public class TemperatureEndpoint {

 private static final String namespaceUri = "http://springrecipes.apress.com/weather/
schemas";

 private XPath cityPath;
 private XPath datePath;

 private final WeatherService weatherService;

 public TemperatureEndpoint(WeatherService weatherService) {
 this.weatherService = weatherService;
 // Create the XPath objects, including the namespace
 Map<String, String> namespaceUris = new HashMap<String, String>();
 namespaceUris.put("weather", namespaceUri);
 cityPath = new DefaultXPath("/weather:GetTemperaturesRequest/weather:city");
 cityPath.setNamespaceURIs(namespaceUris);
 datePath = new DefaultXPath("/weather:GetTemperaturesRequest/weather:date");
 datePath.setNamespaceURIs(namespaceUris);
 }

Chapter 13 ■ Spring Java enterpriSe ServiCeS and remoting teChnologieS

602

 @PayloadRoot(localPart = "GetTemperaturesRequest", namespace = namespaceUri)
 @ResponsePayload
 public Element getTemperature(@RequestPayload Element requestElement) throws Exception {
 DateFormat dateFormat = new SimpleDateFormat("yyyy-MM-dd");
 // Extract the service parameters from the request message
 String city = cityPath.valueOf(requestElement);
 List<Date> dates = new ArrayList<Date>();
 for (Object node : datePath.selectNodes(requestElement)) {
 Element element = (Element) node;
 dates.add(dateFormat.parse(element.getText()));
 }

 // Invoke the back-end service to handle the request
 List<TemperatureInfo> temperatures =
 weatherService.getTemperatures(city, dates);

 // Build the response message from the result of back-end service
 Document responseDocument = DocumentHelper.createDocument();
 Element responseElement = responseDocument.addElement(
 "GetTemperaturesResponse", namespaceUri);
 for (TemperatureInfo temperature : temperatures) {
 Element temperatureElement = responseElement.addElement(
 "TemperatureInfo");
 temperatureElement.addAttribute("city", temperature.getCity());
 temperatureElement.addAttribute(
 "date", dateFormat.format(temperature.getDate()));
 temperatureElement.addElement("min").setText(
 Double.toString(temperature.getMin()));
 temperatureElement.addElement("max").setText(
 Double.toString(temperature.getMax()));
 temperatureElement.addElement("average").setText(
 Double.toString(temperature.getAverage()));
 }
 return responseElement;
 }
}

In the @PayloadRoot annotation, you specify the local name (getTemperaturesRequest) and
namespace (http://springrecipes.apress.com/weather/schemas) of the payload root element to be
handled. Next, the method is decorated with the @ResponsePayload annotation, indicating the method’s
return value is the service response data. In addition, the method’s input parameter is decorated with the
@RequestPayload annotation to indicate it’s the service input value.

Then inside the handler method, you first extract the service parameters from the request message.
Here, you use XPath to help locate the elements. The XPath objects are created in the constructor so that
they can be reused for subsequent request handling. Note that you must also include the namespace in the
XPath expressions, or else they will not be able to locate the elements correctly. After extracting the service
parameters, you invoke the back-end service to handle the request. Because this endpoint is configured
in the Spring IoC container, it can easily refer to other beans through dependency injection. Finally, you
build the response message from the back-end service’s result. In this case, you used the dom4j library that
provides a rich set of APIs for you to build an XML message. But you can use any other XML processing API
or Java parser you want (e.g., DOM).

http://springrecipes.apress.com/weather/schemas

Chapter 13 ■ Spring Java enterpriSe ServiCeS and remoting teChnologieS

603

Because you already defined the @ComponentScan annotation in the SpringWsConfiguration class,
Spring automatically picks up all the Spring-WS annotations and deploys the endpoint to the servlet.

Publish the WSDL File
The last step to complete the SOAP web service is to publish the WSDL file. In Spring-WS, it’s not necessary
for you to write the WSDL file manually; you only need to add a bean to the SpringWsConfiguration class.

@Bean
public DefaultWsdl11Definition temperature() {
 DefaultWsdl11Definition temperature = new DefaultWsdl11Definition();
 temperature.setPortTypeName("Weather");
 temperature.setLocationUri("/");
 temperature.setSchema(temperatureSchema());
 return temperature;
}

@Bean
public XsdSchema temperatureSchema() {
 return new SimpleXsdSchema(new ClassPathResource("/META-INF/xsd/temperature.xsd"));
}

The DefaultWsdl11Definition class requires that you specify two properties: a portTypeName for the
service, as well as a locationUri on which to deploy the final WSDL. In addition, it requires that you specify
the location of the XSD file from which to create the WSDL—see the previous recipe for details on how to
create and XSD file. In this case, the XSD file will be located inside the application’s META-INF directory.
Because you have defined <GetTemperaturesRequest> and <GetTemperaturesResponse> in your XSD file
and you have specified the port type name as Weather, the WSDL builder will generate the following WSDL
port type and operation for you. The following snippet is taken from the generated WSDL file:

<wsdl:portType name="Weather">
 <wsdl:operation name="GetTemperatures">
 <wsdl:input message="schema:GetTemperaturesRequest"
 name="GetTemperaturesRequest" />
 <wsdl:output message="schema:GetTemperaturesResponse"
 name="GetTemperaturesResponse" />
 </wsdl:operation>
</wsdl:portType>

Finally, you can access this WSDL file by joining its definition’s bean name and the .wsdl suffix.
Assuming the web application is packaged in a WAR file named springws, then the service is deployed in
http://localhost:8080/springws/—because the Spring-WS servlet in the initializer is deployed on the /
services directory —and the WSDL file’s URL would be http://localhost:8080/springws/services/
weather/temperature.wsdl, given that the bean name of the WSDL definition is temperature.

Invoke SOAP Web Services with Spring-WS
Now, let’s create a Spring-WS client to invoke the weather service according to the contract it publishes. You
can create a Spring-WS client by parsing the request and response XML messages. As an example, you will
use dom4j to implement it, but you are free to choose any other XML-parsing APIs for it.

Chapter 13 ■ Spring Java enterpriSe ServiCeS and remoting teChnologieS

604

To shield the client from the low-level invocation details, you’ll create a local proxy to call the SOAP web
service. This proxy also implements the WeatherService interface, and it translates local method calls into
remote SOAP web service calls.

package com.apress.springrecipes.weather;

import org.dom4j.Document;
import org.dom4j.DocumentHelper;
import org.dom4j.Element;
import org.dom4j.io.DocumentResult;
import org.dom4j.io.DocumentSource;
import org.springframework.ws.client.core.WebServiceTemplate;

import java.text.DateFormat;
import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.util.ArrayList;
import java.util.Date;
import java.util.List;

public class WeatherServiceProxy implements WeatherService {

 private static final String namespaceUri = "http://springrecipes.apress.com/weather/
schemas";

 private final WebServiceTemplate webServiceTemplate;

 public WeatherServiceProxy(WebServiceTemplate webServiceTemplate) throws Exception {
 this.webServiceTemplate = webServiceTemplate;
 }

 public List<TemperatureInfo> getTemperatures(String city, List<Date> dates) {
 private DateFormat dateFormat = new SimpleDateFormat("yyyy-MM-dd");

 Document requestDocument = DocumentHelper.createDocument();
 Element requestElement = requestDocument.addElement(
 "GetTemperaturesRequest", namespaceUri);
 requestElement.addElement("city").setText(city);
 for (Date date : dates) {
 requestElement.addElement("date").setText(dateFormat.format(date));
 }

 DocumentSource source = new DocumentSource(requestDocument);
 DocumentResult result = new DocumentResult();
 webServiceTemplate.sendSourceAndReceiveToResult(source, result);

Chapter 13 ■ Spring Java enterpriSe ServiCeS and remoting teChnologieS

605

 Document responsetDocument = result.getDocument();
 Element responseElement = responsetDocument.getRootElement();
 List<TemperatureInfo> temperatures = new ArrayList<TemperatureInfo>();
 for (Object node : responseElement.elements("TemperatureInfo")) {
 Element element = (Element) node;
 try {
 Date date = dateFormat.parse(element.attributeValue("date"));
 double min = Double.parseDouble(element.elementText("min"));
 double max = Double.parseDouble(element.elementText("max"));
 double average = Double.parseDouble(
 element.elementText("average"));
 temperatures.add(
 new TemperatureInfo(city, date, min, max, average));
 } catch (ParseException e) {
 throw new RuntimeException(e);
 }
 }
 return temperatures;
 }
}

In the getTemperatures() method, you first build the request message using the dom4j API.
WebServiceTemplate provides a sendSourceAndReceiveToResult() method that accepts a java.xml.
transform.Source object and a java.xml.transform.Result object as arguments. You have to build a
dom4j DocumentSource object to wrap your request document and create a new dom4j DocumentResult
object for the method to write the response document to it. Finally, you get the response message and
extract the results from it.

With the service proxy written, you can declare it in a configuration class and later call it using a stand-
alone class.

package com.apress.springrecipes.weather.config;

import com.apress.springrecipes.weather.WeatherService;
import com.apress.springrecipes.weather.WeatherServiceClient;
import com.apress.springrecipes.weather.WeatherServiceProxy;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.ws.client.core.WebServiceTemplate;

@Configuration
public class SpringWsClientConfiguration {

 @Bean
 public WeatherServiceClient weatherServiceClient(WeatherService weatherService)

throws Exception {
 return new WeatherServiceClient(weatherService);
 }

Chapter 13 ■ Spring Java enterpriSe ServiCeS and remoting teChnologieS

606

 @Bean
 public WeatherServiceProxy weatherServiceProxy(WebServiceTemplate webServiceTemplate)

throws Exception {
 return new WeatherServiceProxy(webServiceTemplate);
 }

 @Bean
 public WebServiceTemplate webServiceTemplate() {
 WebServiceTemplate webServiceTemplate = new WebServiceTemplate();
 webServiceTemplate.setDefaultUri("http://localhost:8080/springws/services");
 return webServiceTemplate;
 }
}

Note the webServiceTemplate has its defaultUri value set to the endpoint defined for the Spring-WS
endpoint in the previous sections. Once the configuration is loaded by an application, you can call the SOAP
service using the following class:

package com.apress.springrecipes.weather;

import org.springframework.context.ApplicationContext;
import org.springframework.context.support.GenericXmlApplicationContext;

public class SpringWSInvokerClient {

 public static void main(String[] args) {
 ApplicationContext context =
 new AnnotationConfigApplicationContext("com.apress.springrecipes.weather.config");

 WeatherServiceClient client = context.getBean(WeatherServiceClient.class);
 TemperatureInfo temperature = client.getTodayTemperature("Houston");
 System.out.println("Min temperature : " + temperature.getMin());
 System.out.println("Max temperature : " + temperature.getMax());
 System.out.println("Average temperature : " + temperature.getAverage());
 }
}

13-12. Develop SOAP Web Services with Spring-WS and
XML Marshalling
Problem
To develop web services with the contract-first approach, you have to process request and response XML
messages. If you parse the XML messages with XML parsing APIs directly, you’ll have to deal with the XML
elements one by one with low-level APIs, which is a cumbersome and inefficient task.

Chapter 13 ■ Spring Java enterpriSe ServiCeS and remoting teChnologieS

607

Solution
Spring-WS supports using XML marshalling technology to marshal and unmarshal objects to and from XML
documents. In this way, you can deal with object properties instead of XML elements. This technology is
also known as object/XML mapping (OXM), because you are actually mapping objects to and from XML
documents. To implement endpoints with an XML marshalling technology, you can configure an XML
marshaller for it. Table 13-2 lists the marshallers provided by Spring for different XML marshalling APIs.

Similarly, Spring WS clients can also use this same marshalling and unmarshalling technique to
simplify XML data processing.

How It Works
You can use marshalling and unmarshalling for both the endpoints as well as clients. First you will see how
to create an endpoint and utilize the Spring OXM marshallers followed by a client which utilizes the same.

Create Service Endpoints with XML Marshalling
Spring-WS supports various XML marshalling APIs, including JAXB 2.0, Castor, XMLBeans, JiBX, and
XStream. As an example, you’ll create a service endpoint using Castor (www.castor.org) as the marshaller.
Using other XML marshalling APIs is similar. The first step in using XML marshalling is creating the object
model according to the XML message formats. This model can usually be generated by the marshalling API.
For some marshalling APIs, the object model must be generated by them so that they can insert marshalling-
specific information. Because Castor supports marshalling between XML messages and arbitrary Java
objects, you can start creating the following classes by yourself:

package com.apress.springrecipes.weather;
...
public class GetTemperaturesRequest {

 private String city;
 private List<Date> dates;

 // Constructors, Getters and Setters
 ...
}

Table 13-2. Marshallers for Different XML Marshalling APIs

API Marshaller

JAXB 2.0 org.springframework.oxm.jaxb.Jaxb2Marshaller

Castor org.springframework.oxm.castor.CastorMarshaller

XMLBeans org.springframework.oxm.xmlbeans.XmlBeansMarshaller

JiBX org.springframework.oxm.jibx.JibxMarshaller

XStream org.springframework.oxm.xstream.XStreamMarshaller

http://www.castor.org/

Chapter 13 ■ Spring Java enterpriSe ServiCeS and remoting teChnologieS

608

package com.apress.springrecipes.weather;
...
public class GetTemperaturesResponse {

 private List<TemperatureInfo> temperatures;

 // Constructors, Getters and Setters
 ...
}

With the object model created, you can easily integrate marshalling on any endpoint. Let’s apply this
technique to the endpoint presented in the previous recipe.

package com.apress.springrecipes.weather;

import org.springframework.ws.server.endpoint.annotation.Endpoint;
import org.springframework.ws.server.endpoint.annotation.PayloadRoot;
import org.springframework.ws.server.endpoint.annotation.RequestPayload;
import org.springframework.ws.server.endpoint.annotation.ResponsePayload;

import java.util.List;

@Endpoint
public class TemperatureMarshallingEndpoint {

 private static final String namespaceUri = "http://springrecipes.apress.com/weather/
schemas";

 private final WeatherService weatherService;

 public TemperatureMarshallingEndpoint(WeatherService weatherService) {
 this.weatherService = weatherService;
 }

 @PayloadRoot(localPart = "GetTemperaturesRequest", namespace = namespaceUri)
 public @ResponsePayload GetTemperaturesResponse getTemperature(@RequestPayload

GetTemperaturesRequest request) {
 List<TemperatureInfo> temperatures =
 weatherService.getTemperatures(request.getCity(), request.getDates());
 return new GetTemperaturesResponse(temperatures);
 }
}

Notice that all you have to do in this new method endpoint is handle the request object and
return the response object. Then, it will be marshalled to the response XML message. In addition
to this endpoint modification, a marshalling endpoint also requires that both the marshaller and
unmarshaller properties be set. Usually, you can specify a single marshaller for both properties.
For Castor, you declare a CastorMarshaller bean as the marshaller. Next to the marshaller you also
need to register MethodArgumentResolver and MethodReturnValueHandler to actually handle the
marshalling of the method argument and return type. For this you extend WsConfigurerAdapter
and override the addArgumentResolvers and addReturnValueHandlers methods and add
MarshallingPayloadMethodProcessor to both lists.

Chapter 13 ■ Spring Java enterpriSe ServiCeS and remoting teChnologieS

609

@Configuration
@EnableWs
@ComponentScan("com.apress.springrecipes.weather")
public class SpringWsConfiguration extends WsConfigurerAdapter {

 @Bean
 public MarshallingPayloadMethodProcessor marshallingPayloadMethodProcessor() {
 return new MarshallingPayloadMethodProcessor(marshaller());
 }

 @Bean
 public Marshaller marshaller() {
 CastorMarshaller marshaller = new CastorMarshaller();
 marshaller.setMappingLocation(new ClassPathResource("/mapping.xml"));
 return marshaller;
 }

 @Override
 public void addArgumentResolvers(List<MethodArgumentResolver> argumentResolvers) {
 argumentResolvers.add(marshallingPayloadMethodProcessor());
 }

 @Override
 public void addReturnValueHandlers(List<MethodReturnValueHandler> returnValueHandlers) {
 returnValueHandlers.add(marshallingPayloadMethodProcessor());
 }
}

Note that Castor requires a mapping configuration file to know how to map objects to and from XML
documents. You can create this file in the classpath root and specify it in the mappingLocation property (e.g.,
mapping.xml). The following Castor mapping file defines the mappings for the GetTemperaturesRequest,
GetTemperaturesResponse, and TemperatureInfo classes:

<!DOCTYPE mapping PUBLIC "-//EXOLAB/Castor Mapping DTD Version 1.0//EN"
 "http://castor.org/mapping.dtd">

<mapping>
 <class name="com.apress.springrecipes.weather.GetTemperaturesRequest">
 <map-to xml="GetTemperaturesRequest"
 ns-uri="http://springrecipes.apress.com/weather/schemas" />
 <field name="city" type="string">
 <bind-xml name="city" node="element" />
 </field>
 <field name="dates" collection="arraylist" type="string"
 handler="com.apress.springrecipes.weather.DateFieldHandler">
 <bind-xml name="date" node="element" />
 </field>
 </class>

Chapter 13 ■ Spring Java enterpriSe ServiCeS and remoting teChnologieS

610

 <class name="com.apress.springrecipes.weather.
 GetTemperaturesResponse">
 <map-to xml="GetTemperaturesResponse"
 ns-uri="http://springrecipes.apress.com/weather/schemas" />
 <field name="temperatures" collection="arraylist"
 type="com.apress.springrecipes.weather.TemperatureInfo">
 <bind-xml name="TemperatureInfo" node="element" />
 </field>
 </class>

 <class name="com.apress.springrecipes.weather.TemperatureInfo">
 <map-to xml="TemperatureInfo"
 ns-uri="http://springrecipes.apress.com/weather/schemas" />
 <field name="city" type="string">
 <bind-xml name="city" node="attribute" />
 </field>
 <field name="date" type="string"
 handler="com.apress.springrecipes.weather.DateFieldHandler">
 <bind-xml name="date" node="attribute" />
 </field>
 <field name="min" type="double">
 <bind-xml name="min" node="element" />
 </field>
 <field name="max" type="double">
 <bind-xml name="max" node="element" />
 </field>
 <field name="average" type="double">
 <bind-xml name="average" node="element" />
 </field>
 </class>
</mapping>

In addition, in all the date fields you have to specify a handler to convert the dates with a particular date
format. This handler is shown next:

package com.apress.springrecipes.weather;
...
import org.exolab.castor.mapping.GeneralizedFieldHandler;

public class DateFieldHandler extends GeneralizedFieldHandler {

 private DateFormat format = new SimpleDateFormat("yyyy-MM-dd");

 public Object convertUponGet(Object value) {
 return format.format((Date) value);
 }

Chapter 13 ■ Spring Java enterpriSe ServiCeS and remoting teChnologieS

611

 public Object convertUponSet(Object value) {
 try {
 return format.parse((String) value);
 } catch (ParseException e) {
 throw new RuntimeException(e);
 }
 }

 public Class getFieldType() {
 return Date.class;
 }
}

Invoke Web Services with XML Marshalling
A Spring-WS client can also marshal and unmarshal the request and response objects to and from XML
messages. As an example, you will create a client using Castor as the marshaller so that you can reuse the
object models GetTemperaturesRequest, GetTemperaturesResponse, and TemperatureInfo, as well as the
mapping configuration file, mapping.xml, from the service endpoint. Let’s implement the service proxy
with XML marshalling. WebServiceTemplate provides a marshalSendAndReceive() method that accepts a
request object as the method argument, which will be marshalled to the request message. This method has
to return a response object that will be unmarshalled from the response message.

package com.apress.springrecipes.weather;

import org.springframework.ws.client.core.WebServiceTemplate;

import java.util.Date;
import java.util.List;

public class WeatherServiceProxy implements WeatherService {

 private WebServiceTemplate webServiceTemplate;

 public WeatherServiceProxy(WebServiceTemplate webServiceTemplate) throws Exception {
 this.webServiceTemplate = webServiceTemplate;
 }

 public List<TemperatureInfo> getTemperatures(String city, List<Date> dates) {

 GetTemperaturesRequest request = new GetTemperaturesRequest(city, dates);
 GetTemperaturesResponse response = (GetTemperaturesResponse)
 this.webServiceTemplate.marshalSendAndReceive(request);
 return response.getTemperatures();
 }
}

Chapter 13 ■ Spring Java enterpriSe ServiCeS and remoting teChnologieS

612

When you are using XML marshalling, WebServiceTemplate requires both the marshaller and
unmarshaller properties to be set. You can also set them to WebServiceGatewaySupport if you extend
this class to have WebServiceTemplate autocreated. Usually, you can specify a single marshaller for both
properties. For Castor, you declare a CastorMarshaller bean as the marshaller.

package com.apress.springrecipes.weather.config;

import com.apress.springrecipes.weather.WeatherService;
import com.apress.springrecipes.weather.WeatherServiceClient;
import com.apress.springrecipes.weather.WeatherServiceProxy;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.core.io.ClassPathResource;
import org.springframework.oxm.castor.CastorMarshaller;
import org.springframework.ws.client.core.WebServiceTemplate;

@Configuration
public class SpringWsClientConfiguration {

 @Bean
 public WeatherServiceClient weatherServiceClient(WeatherService weatherService)

throws Exception {
 return new WeatherServiceClient(weatherService);
 }

 @Bean
 public WeatherServiceProxy weatherServiceProxy(WebServiceTemplate webServiceTemplate)

throws Exception {
 return new WeatherServiceProxy(webServiceTemplate);
 }

 @Bean
 public WebServiceTemplate webServiceTemplate() {
 WebServiceTemplate webServiceTemplate = new WebServiceTemplate(marshaller());
 webServiceTemplate.setDefaultUri("http://localhost:8080/springws/services");
 return webServiceTemplate;
 }

 @Bean
 public CastorMarshaller marshaller() {
 CastorMarshaller marshaller = new CastorMarshaller();
 marshaller.setMappingLocation(new ClassPathResource("/mapping.xml"));
 return marshaller;
 }
}

Chapter 13 ■ Spring Java enterpriSe ServiCeS and remoting teChnologieS

613

Summary
This chapter discussed JMX and a few of the surrounding specifications. You learned how to export
Spring beans as JMX MBeans and how to use those MBeans from a client, both remotely and locally by
using Spring’s proxies. You published and listened to notification events on a JMX server from Spring.
You also learned how to do e-mail tasks with the aid of Spring, including how to create e-mail templates
and send e-mails with attachments (MIME messages). You also learned how to schedule tasks using the
Quartz Scheduler, as well as Spring’s task namespace. This chapter introduced you to the various remoting
technologies supported by Spring. You learned how to both publish and consume an RMI service. We also
discussed how to build services that operate through HTTP, using three different techniques/protocols:
Burlap, Hessian, and HTTP Invoker. Next, we discussed SOAP web services and how to use JAX-WS, as well
as the Apache CXF framework, to build and consume these types of services. Finally, we discussed contract-
first SOAP web services and how to leverage Spring-WS to create and consume these types of services.

615© Marten Deinum, Daniel Rubio, and Josh Long 2017
M. Deinum et al., Spring 5 Recipes, DOI 10.1007/978-1-4842-2790-9_14

CHAPTER 14

Spring Messaging

In this chapter, you will learn about Spring’s support for messaging. Messaging is a very powerful technique
for scaling applications. It allows work that would otherwise overwhelm a service to be queued up. It also
encourages a decoupled architecture. A component, for example, might only consume messages with a
single java.util.Map-based key-value pair. This loose contract makes it a viable hub of communication for
multiple, disparate systems.

In this chapter, we’ll refer quite a bit to topics and queues. Messaging solutions are designed to solve
two types of architecture requirements: messaging from one point in an application to another known
point, and messaging from one point in an application to many other unknown points. These patterns are
the middleware equivalents of telling somebody something face to face and saying something over a loud
speaker to a room of people, respectively.

If you want messages sent on a message queue to be broadcast to an unknown set of clients who are
“listening” for the message (as in the loud speaker analogy), you send the message on a topic. If you want the
message sent to a single, known client, then you send it over a queue.

By the end of this chapter, you will be able to create and access message-based middleware using
Spring. This chapter will also provide you with a working knowledge of messaging in general, which will help
you when we discuss Spring Integration in the next chapter.

We will take a look at the messaging abstraction and how to use it to work with JMS, AMQP, and Apache
Kafka. For each of the technologies, Spring simplifies the usage with a template-based approach for easy
message sending and receiving. Moreover, Spring enables beans declared in its IoC container to listen for
messages and react to them. It takes the same approach for each of these technologies.

 ■ Note In the ch14\bin directory there are several scripts for starting a Dockerized version of the different
messaging providers: ActiveMQ for JMS, RabbitMQ for AMQP, and finally Apache Kafka.

14-1. Send and Receive JMS Messages with Spring
Problem
To send or receive a JMS message, you have to perform the following tasks:

 1. Create a JMS connection factory on a message broker.

 2. Create a JMS destination, which can be either a queue or a topic.

 3. Open a JMS connection from the connection factory.

ChAPteR 14 ■ SPRIng MeSSAgIng

616

 4. Obtain a JMS session from the connection.

 5. Send or receive the JMS message with a message producer or consumer.

 6. Handle JMSException, which is a checked exception that must be handled.

 7. Close the JMS session and connection.

As you can see, a lot of coding is required to send or receive a simple JMS message. In fact, most of these
tasks are boilerplate and require you to repeat them each time when dealing with JMS.

Solution
Spring offers a template-based solution to simplify JMS code. With a JMS template (the Spring Framework
class JmsTemplate), you can send and receive JMS messages with much less code. The template handles the
boilerplate tasks and also converts the JMS API’s JMSException hierarchy into Spring’s runtime exception
org.springframework.jms.JmsException hierarchy.

How It Works
Suppose you are developing a post-office system that includes two subsystems: the front-desk subsystem
and the back-office subsystem. When the front desk receives mail, it passes the mail to the back office for
categorizing and delivering. At the same time, the front-desk subsystem sends a JMS message to the back-
office subsystem, notifying it of new mail. The mail information is represented by the following class:

package com.apress.springrecipes.post;
public class Mail {

 private String mailId;
 private String country;
 private double weight;

 // Constructors, Getters and Setters
 ...
}

The methods for sending and receiving mail information are defined in the FrontDesk and BackOffice
interfaces as follows:

package com.apress.springrecipes.post;

public interface FrontDesk {

 public void sendMail(Mail mail);
}
package com.apress.springrecipes.post;

public interface BackOffice {

 public Mail receiveMail();
}

ChAPteR 14 ■ SPRIng MeSSAgIng

617

Send and Receive Messages Without Spring’s JMS Template Support
Let’s look at how to send and receive JMS messages without Spring’s JMS template support. The following
FrontDeskImpl class sends JMS messages with the JMS API directly.

package com.apress.springrecipes.post;

import javax.jms.Connection;
import javax.jms.ConnectionFactory;
import javax.jms.Destination;
import javax.jms.JMSException;
import javax.jms.MapMessage;
import javax.jms.MessageProducer;
import javax.jms.Session;

import org.apache.activemq.ActiveMQConnectionFactory;
import org.apache.activemq.command.ActiveMQQueue;

public class FrontDeskImpl implements FrontDesk {

 public void sendMail(Mail mail) {
 ConnectionFactory cf =
 new ActiveMQConnectionFactory("tcp://localhost:61616");
 Destination destination = new ActiveMQQueue("mail.queue");

 Connection conn = null;
 try {
 conn = cf.createConnection();
 Session session =
 conn.createSession(false, Session.AUTO_ACKNOWLEDGE);
 MessageProducer producer = session.createProducer(destination);

 MapMessage message = session.createMapMessage();
 message.setString("mailId", mail.getMailId());
 message.setString("country", mail.getCountry());
 message.setDouble("weight", mail.getWeight());
 producer.send(message);

 session.close();
 } catch (JMSException e) {
 throw new RuntimeException(e);
 } finally {
 if (conn != null) {
 try {
 conn.close();
 } catch (JMSException e) {
 }
 }
 }
 }
}

ChAPteR 14 ■ SPRIng MeSSAgIng

618

In the preceding sendMail() method, you first create JMS-specific ConnectionFactory and
Destination objects with the classes provided by ActiveMQ. The message broker URL is the default for
ActiveMQ if you run it on localhost. In JMS, there are two types of destinations: queue and topic.

As explained at the start of the chapter, a queue is for the point-to-point communication model, while
a topic is for the publish-subscribe communication model. Because you are sending JMS messages point
to point from front desk to back office, you should use a message queue. You can easily create a topic as a
destination using the ActiveMQTopic class.

Next, you have to create a connection, session, and message producer before you can send your
message. There are several types of messages defined in the JMS API, including TextMessage, MapMessage,
BytesMessage, ObjectMessage, and StreamMessage. MapMessage contains message content in key-value
pairs like a map. All of them are interfaces, whose superclass is simply Message. In the meantime, you have
to handle JMSException, which may be thrown by the JMS API. Finally, you must remember to close the
session and connection to release system resources. Every time a JMS connection is closed, all its opened
sessions will be closed automatically. So, you only have to ensure that the JMS connection is closed properly
in the finally block.

On the other hand, the following BackOfficeImpl class receives JMS messages with the JMS API
directly:

package com.apress.springrecipes.post;

import javax.jms.Connection;
import javax.jms.ConnectionFactory;
import javax.jms.Destination;
import javax.jms.JMSException;
import javax.jms.MapMessage;
import javax.jms.MessageConsumer;
import javax.jms.Session;

import org.apache.activemq.ActiveMQConnectionFactory;
import org.apache.activemq.command.ActiveMQQueue;

public class BackOfficeImpl implements BackOffice {

 public Mail receiveMail() {
 ConnectionFactory cf =
 new ActiveMQConnectionFactory("tcp://localhost:61616");
 Destination destination = new ActiveMQQueue("mail.queue");

 Connection conn = null;
 try {
 conn = cf.createConnection();
 Session session =
 conn.createSession(false, Session.AUTO_ACKNOWLEDGE);
 MessageConsumer consumer = session.createConsumer(destination);

 conn.start();
 MapMessage message = (MapMessage) consumer.receive();
 Mail mail = new Mail();
 mail.setMailId(message.getString("mailId"));
 mail.setCountry(message.getString("country"));

ChAPteR 14 ■ SPRIng MeSSAgIng

619

 mail.setWeight(message.getDouble("weight"));
 session.close();
 return mail;
 } catch (JMSException e) {
 throw new RuntimeException(e);
 } finally {
 if (conn != null) {
 try {
 conn.close();
 } catch (JMSException e) {
 }
 }
 }
 }
}

Most of the code in this method is similar to that for sending JMS messages, except that you create a
message consumer and receive a JMS message from it. Note that you used the connection’s start() method
here, although you didn’t in the FrontDeskImpl example before.

When using a Connection to receive messages, you can add listeners to the connection that are invoked
on receipt of a message, or you can block synchronously, waiting for a message to arrive. The container has
no way of knowing which approach you will take and so it doesn’t start polling for messages until you’ve
explicitly called start(). If you add listeners or do any kind of configuration, you do so before you invoke
start().

Finally, let’s create two configuration class for the front-desk subsystem (e.g., FrontOfficeConfiguration)
and one for the back-office subsystem (e.g., BackOfficeConfiguration).

package com.apress.springrecipes.post.config;

import com.apress.springrecipes.post.FrontDeskImpl;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;

@Configuration
public class FrontOfficeConfiguration {

 @Bean
 public FrontDeskImpl frontDesk() {
 return new FrontDeskImpl();
 }
}
package com.apress.springrecipes.post.config;

import com.apress.springrecipes.post.BackOfficeImpl;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;

ChAPteR 14 ■ SPRIng MeSSAgIng

620

@Configuration
public class BackOfficeConfiguration {

 @Bean
 public BackOfficeImpl backOffice() {
 return new BackOfficeImpl();
 }
}

Now, the front-desk and back-office subsystems are almost ready to send and receive JMS messages.
But before moving on to the final step, start up the ActiveMQ message broker (if not done already).

You can easily monitor the ActiveMQ messaging broker’s activity. In a default installation, you can open
http://localhost:8161/admin/queueGraph.jsp to see what’s happening with mail.queue, the queue used
in these examples. Alternatively, ActiveMQ exposes very useful beans and statistics from JMX. Simply run
jconsole and drill down to org.apache.activemq in the MBeans tab.

Next, let’s create a couple of main classes to run the message system: one for the front-desk subsystem
(FrontDeskMain class) and another for the back-office subsystem (BackOfficeMain) class.

package com.apress.springrecipes.post;

import com.apress.springrecipes.post.config.FrontOfficeConfiguration;
import org.springframework.context.ApplicationContext;
import org.springframework.context.annotation.AnnotationConfigApplicationContext;

public class FrontDeskMain {

 public static void main(String[] args) {

 Appl icationContext context =
new AnnotationConfigApplicationContext(FrontOfficeConfiguration.class);

 FrontDesk frontDesk = context.getBean(FrontDesk.class);
 frontDesk.sendMail(new Mail("1234", "US", 1.5));
 }
}
package com.apress.springrecipes.post;

import com.apress.springrecipes.post.config.BackOfficeConfiguration;
import org.springframework.context.ApplicationContext;
import org.springframework.context.annotation.AnnotationConfigApplicationContext;

public class BackOfficeMain {

 public static void main(String[] args) {

 Appl icationContext context =
new AnnotationConfigApplicationContext(BackOfficeConfiguration.class);

 BackOffice backOffice = context.getBean(BackOffice.class);
 Mail mail = backOffice.receiveMail();
 System.out.println("Mail #" + mail.getMailId() + " received");
 }
}

ChAPteR 14 ■ SPRIng MeSSAgIng

621

Every time you run the front-desk application with the previous FrontDeskMain class, a message is sent
to the broker, and every time you run the back-office application with the previous BackOfficeMain class, an
attempt is made pick a message from the broker.

Send and Receive Messages with Spring’s JMS Template
Spring offers a JMS template that can significantly simplify your JMS code. To send a JMS message
with this template, you simply call the send() method and provide a message destination, as well as a
MessageCreator object, which creates the JMS message you are going to send. The MessageCreator object is
usually implemented as an anonymous inner class.

package com.apress.springrecipes.post;

import javax.jms.Destination;
import javax.jms.JMSException;
import javax.jms.MapMessage;
import javax.jms.Message;
import javax.jms.Session;

import org.springframework.jms.core.JmsTemplate;
import org.springframework.jms.core.MessageCreator;

public class FrontDeskImpl implements FrontDesk {

 private JmsTemplate jmsTemplate;
 private Destination destination;

 public void setJmsTemplate(JmsTemplate jmsTemplate) {
 this.jmsTemplate = jmsTemplate;
 }

 public void setDestination(Destination destination) {
 this.destination = destination;
 }

 public void sendMail(final Mail mail) {
 jmsTemplate.send(destination, new MessageCreator() {
 public Message createMessage(Session session) throws JMSException {
 MapMessage message = session.createMapMessage();
 message.setString("mailId", mail.getMailId());
 message.setString("country", mail.getCountry());
 message.setDouble("weight", mail.getWeight());
 return message;
 }
 });
 }
}

Note that an inner class can only access arguments or variables of the enclosing method that are
declared as final. The MessageCreator interface declares only a createMessage() method for you to
implement. In this method, you create and return your JMS message with the provided JMS session.

ChAPteR 14 ■ SPRIng MeSSAgIng

622

A JMS template helps you to obtain and release the JMS connection and session, and it sends the
JMS message created by your MessageCreator object. Moreover, it converts the JMS API’s JMSException
hierarchy into Spring’s JMS runtime exception hierarchy, whose base exception class is org.springframework.
jms.JmsException. You can catch the JmsException thrown from send and the other send variants and then
take action in the catch block if you want.

In the front-desk subsystem’s bean configuration file, you declare a JMS template that refers to the
JMS connection factory for opening connections. Then, you inject this template as well as the message
destination into your front-desk bean.

package com.apress.springrecipes.post.config;

import com.apress.springrecipes.post.FrontDeskImpl;
import org.apache.activemq.ActiveMQConnectionFactory;
import org.apache.activemq.command.ActiveMQQueue;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.jms.core.JmsTemplate;

import javax.jms.ConnectionFactory;
import javax.jms.Queue;

@Configuration
public class FrontOfficeConfiguration {

 @Bean
 public ConnectionFactory connectionFactory() {
 return new ActiveMQConnectionFactory("tcp://localhost:61616");
 }

 @Bean
 public Queue destination() {
 return new ActiveMQQueue("mail.queue");
 }

 @Bean
 public JmsTemplate jmsTemplate() {
 JmsTemplate jmsTemplate = new JmsTemplate();
 jmsTemplate.setConnectionFactory(connectionFactory());
 return jmsTemplate;
 }

 @Bean
 public FrontDeskImpl frontDesk() {
 FrontDeskImpl frontDesk = new FrontDeskImpl();
 frontDesk.setJmsTemplate(jmsTemplate());
 frontDesk.setDestination(destination());
 return frontDesk;
 }
}

ChAPteR 14 ■ SPRIng MeSSAgIng

623

To receive a JMS message with a JMS template, you call the receive() method by providing a message
destination. This method returns a JMS message, javax.jms.Message, whose type is the base JMS message
type (that is, an interface), so you have to cast it into proper type before further processing.

package com.apress.springrecipes.post;

import javax.jms.Destination;
import javax.jms.JMSException;
import javax.jms.MapMessage;

import org.springframework.jms.core.JmsTemplate;
import org.springframework.jms.support.JmsUtils;

public class BackOfficeImpl implements BackOffice {

 private JmsTemplate jmsTemplate;
 private Destination destination;

 public void setJmsTemplate(JmsTemplate jmsTemplate) {
 this.jmsTemplate = jmsTemplate;
 }

 public void setDestination(Destination destination) {
 this.destination = destination;
 }

 public Mail receiveMail() {
 MapMessage message = (MapMessage) jmsTemplate.receive(destination);
 try {
 if (message == null) {
 return null;
 }
 Mail mail = new Mail();
 mail.setMailId(message.getString("mailId"));
 mail.setCountry(message.getString("country"));
 mail.setWeight(message.getDouble("weight"));
 return mail;
 } catch (JMSException e) {
 throw JmsUtils.convertJmsAccessException(e);
 }
 }
}

However, when extracting information from the received MapMessage object, you still have to
handle the JMS API’s JMSException. This is in stark contrast to the default behavior of the framework,
where it automatically maps exceptions for you when invoking methods on JmsTemplate. To make
the type of the exception thrown by this method consistent, you have to make a call to JmsUtils.
convertJmsAccessException() to convert the JMS API’s JMSException into Spring’s JmsException.

ChAPteR 14 ■ SPRIng MeSSAgIng

624

In the back-office subsystem’s bean configuration file, you declare a JMS template and inject it together
with the message destination into your back-office bean.

package com.apress.springrecipes.post.config;

import com.apress.springrecipes.post.BackOfficeImpl;
import org.apache.activemq.ActiveMQConnectionFactory;
import org.apache.activemq.command.ActiveMQQueue;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.jms.core.JmsTemplate;

import javax.jms.ConnectionFactory;
import javax.jms.Queue;

@Configuration
public class BackOfficeConfiguration {

 @Bean
 public ConnectionFactory connectionFactory() {
 return new ActiveMQConnectionFactory("tcp://localhost:61616");
 }

 @Bean
 public Queue destination() {
 return new ActiveMQQueue("mail.queue");
 }

 @Bean
 public JmsTemplate jmsTemplate() {
 JmsTemplate jmsTemplate = new JmsTemplate();
 jmsTemplate.setConnectionFactory(connectionFactory());
 jmsTemplate.setReceiveTimeout(10000);
 return jmsTemplate;
 }

 @Bean
 public BackOfficeImpl backOffice() {
 BackOfficeImpl backOffice = new BackOfficeImpl();
 backOffice.setDestination(destination());
 backOffice.setJmsTemplate(jmsTemplate());
 return backOffice;
 }
}

Pay special attention to the JMS template’s receiveTimeout property, which specifies how long to
wait in milliseconds. By default, this template waits for a JMS message at the destination forever, and the
calling thread is blocked in the meantime. To avoid waiting for a message so long, you should specify a
receive timeout for this template. If there’s no message available at the destination in the duration, the JMS
template’s receive() method will return a null message.

ChAPteR 14 ■ SPRIng MeSSAgIng

625

In your applications, the main use of receiving a message might be because you’re expecting a response to
something or want to check for messages at an interval, handling the messages and then spinning down until the
next interval. If you intend to receive messages and respond to them as a service, you’re likely going to want to use
the message-driven POJO functionality described later in this chapter. There, we discuss a mechanism that will
constantly sit and wait for messages, handling them by calling back into your application as the messages arrive.

Send and Receive Messages to and from a Default Destination
Instead of specifying a message destination for each JMS template’s send() and receive() method call, you
can specify a default destination for a JMS template. Then, you no longer need to inject it into your message
sender and receiver beans again.

@Configuration
public class FrontOfficeConfiguration {
...
 @Bean
 public JmsTemplate jmsTemplate() {
 JmsTemplate jmsTemplate = new JmsTemplate();
 jmsTemplate.setConnectionFactory(connectionFactory());
 jmsTemplate.setDefaultDestination(mailDestination());
 return jmsTemplate;
 }

 @Bean
 public FrontDeskImpl frontDesk() {
 FrontDeskImpl frontDesk = new FrontDeskImpl();
 frontDesk.setJmsTemplate(jmsTemplate());
 return frontDesk;
 }
}

For the back office, the configuration would look like this:

@Configuration
public class BackOfficeConfiguration {
...
 @Bean
 public JmsTemplate jmsTemplate() {
 JmsTemplate jmsTemplate = new JmsTemplate();
 jmsTemplate.setConnectionFactory(connectionFactory());
 jmsTemplate.setDefaultDestination(mailDestination());
 jmsTemplate.setReceiveTimeout(10000);
 return jmsTemplate;
 }

 @Bean
 public BackOfficeImpl backOffice() {
 BackOfficeImpl backOffice = new BackOfficeImpl();
 backOffice.setJmsTemplate(jmsTemplate());
 return backOffice;
 }
}

ChAPteR 14 ■ SPRIng MeSSAgIng

626

With the default destination specified for a JMS template, you can delete the setter method for a
message destination from your message sender and receiver classes. Now, when you call the send() and
receive() methods, you no longer need to specify a message destination.

package com.apress.springrecipes.post;
...
import org.springframework.jms.core.MessageCreator;

public class FrontDeskImpl implements FrontDesk {
 ...
 public void sendMail(final Mail mail) {
 jmsTemplate.send(new MessageCreator() {
 ...
 });
 }
}
package com.apress.springrecipes.post;
...
import javax.jms.MapMessage;
...

public class BackOfficeImpl implements BackOffice {
 ...
 public Mail receiveMail() {
 MapMessage message = (MapMessage) jmsTemplate.receive();
 ...
 }
}

In addition, instead of specifying an instance of the Destination interface for a JMS template,
you can specify the destination name to let the JMS template resolve it for you, so you can delete the
destination property declaration from both bean configuration classes. This is done by adding the
defaultDestinationName property.

@Bean
 public JmsTemplate jmsTemplate() {
 JmsTemplate jmsTemplate = new JmsTemplate();
 ...
 jmsTemplate.setDefaultDestinationName("mail.queue");
 return jmsTemplate;
 }

Extend the JmsGatewaySupport Class
JMS sender and receiver classes can also extend JmsGatewaySupport to retrieve a JMS template. You have the
following two options for classes that extend JmsGatewaySupport to create their JMS template:

•	 Inject a JMS connection factory for JmsGatewaySupport to create a JMS template on
it automatically. However, if you do it this way, you won’t be able to configure the
details of the JMS template.

•	 Inject a JMS template for JmsGatewaySupport that is created and configured by you.

ChAPteR 14 ■ SPRIng MeSSAgIng

627

Of them, the second approach is more suitable if you have to configure the JMS template yourself. You
can delete the private field jmsTemplate and its setter method from both your sender and receiver classes.
When you need access to the JMS template, you just make a call to getJmsTemplate().

package com.apress.springrecipes.post;

import org.springframework.jms.core.support.JmsGatewaySupport;
...

public class FrontDeskImpl extends JmsGatewaySupport implements FrontDesk {
 ...
 public void sendMail(final Mail mail) {
 getJmsTemplate().send(new MessageCreator() {
 ...
 });
 }
}
package com.apress.springrecipes.post;
...

import org.springframework.jms.core.support.JmsGatewaySupport;

public class BackOfficeImpl extends JmsGatewaySupport implements BackOffice {
 public Mail receiveMail() {
 MapMessage message = (MapMessage) getJmsTemplate().receive();
 ...
 }
}

14-2. Convert JMS Messages
Problem
Your application receives messages from your message queue but needs to transform those messages from
the JMS-specific type to a business-specific class.

Solution
Spring provides an implementation of SimpleMessageConverter to handle the translation of a JMS message
received to a business object and the translation of a business object to a JMS message. You can leverage the
default or provide your own.

How It Works
The previous recipes handled the raw JMS messages. Spring’s JMS template can help you convert
JMS messages to and from Java objects using a message converter. By default, the JMS template uses
SimpleMessageConverter for converting TextMessage to or from a string, BytesMessage to or from a byte
array, MapMessage to or from a map, and ObjectMessage to or from a serializable object.

ChAPteR 14 ■ SPRIng MeSSAgIng

628

For the front-desk and back-office classes of the previous recipe, you can send and receive a map
using the convertAndSend() and receiveAndConvert() methods, where the map is converted to/from
MapMessage.

package com.apress.springrecipes.post;
...
public class FrontDeskImpl extends JmsGatewaySupport implements FrontDesk {
 public void sendMail(Mail mail) {
 Map<String, Object> map = new HashMap<String, Object>();
 map.put("mailId", mail.getMailId());
 map.put("country", mail.getCountry());
 map.put("weight", mail.getWeight());
 getJmsTemplate().convertAndSend(map);
 }
}
package com.apress.springrecipes.post;
...
public class BackOfficeImpl extends JmsGatewaySupport implements BackOffice {
 public Mail receiveMail() {
 Map map = (Map) getJmsTemplate().receiveAndConvert();
 Mail mail = new Mail();
 mail.setMailId((String) map.get("mailId"));
 mail.setCountry((String) map.get("country"));
 mail.setWeight((Double) map.get("weight"));
 return mail;
 }
}

You can also create a custom message converter by implementing the MessageConverter interface for
converting mail objects.

package com.apress.springrecipes.post;

import javax.jms.JMSException;
import javax.jms.MapMessage;
import javax.jms.Message;
import javax.jms.Session;

import org.springframework.jms.support.converter.MessageConversionException;
import org.springframework.jms.support.converter.MessageConverter;

public class MailMessageConverter implements MessageConverter {

 public Object fromMessage(Message message) throws JMSException,
 MessageConversionException {
 MapMessage mapMessage = (MapMessage) message;
 Mail mail = new Mail();
 mail.setMailId(mapMessage.getString("mailId"));
 mail.setCountry(mapMessage.getString("country"));
 mail.setWeight(mapMessage.getDouble("weight"));
 return mail;
 }

ChAPteR 14 ■ SPRIng MeSSAgIng

629

 public Message toMessage(Object object, Session session) throws JMSException,
 MessageConversionException {
 Mail mail = (Mail) object;
 MapMessage message = session.createMapMessage();
 message.setString("mailId", mail.getMailId());
 message.setString("country", mail.getCountry());
 message.setDouble("weight", mail.getWeight());
 return message;
 }
}

To apply this message converter, you have to declare it in both bean configuration classes and inject it
into the JMS template.

@Configuration
public class BackOfficeConfiguration {
 ...
 @Bean
 public JmsTemplate jmsTemplate() {
 JmsTemplate jmsTemplate = new JmsTemplate();
 jmsTemplate.setMessageConverter(mailMessageConverter());
 ...
 return jmsTemplate;
 }

 @Bean
 public MailMessageConverter mailMessageConverter() {
 return new MailMessageConverter();
 }
}

When you set a message converter for a JMS template explicitly, it will override the default
SimpleMessageConverter. Now, you can call the JMS template’s convertAndSend() and
receiveAndConvert() methods to send and receive mail objects.

package com.apress.springrecipes.post;
...
public class FrontDeskImpl extends JmsGatewaySupport implements FrontDesk {
 public void sendMail(Mail mail) {
 getJmsTemplate().convertAndSend(mail);
 }
}
package com.apress.springrecipes.post;
...
public class BackOfficeImpl extends JmsGatewaySupport implements BackOffice {
 public Mail receiveMail() {
 return (Mail) getJmsTemplate().receiveAndConvert();
 }
}

ChAPteR 14 ■ SPRIng MeSSAgIng

630

14-3. Manage JMS Transactions
Problem
You want to participate in transactions with JMS so that the receipt and sending of messages are
transactional.

Solution
You can use the same transactions strategy as you would for any Spring component. Leverage Spring’s
TransactionManager implementations as needed and wire the behavior into beans.

How It Works
When producing or consuming multiple JMS messages in a single method, if an error occurs in the middle,
the JMS messages produced or consumed at the destination may be left in an inconsistent state. You have to
surround the method with a transaction to avoid this problem.

In Spring, JMS transaction management is consistent with other data access strategies. For example,
you can annotate the methods that require transaction management with the @Transactional annotation.

package com.apress.springrecipes.post;

import org.springframework.jms.core.support.JmsGatewaySupport;
import org.springframework.transaction.annotation.Transactional;
...
public class FrontDeskImpl extends JmsGatewaySupport implements FrontDesk {

 @Transactional
 public void sendMail(Mail mail) {
 ...
 }
}
package com.apress.springrecipes.post;

import org.springframework.jms.core.support.JmsGatewaySupport;
import org.springframework.transaction.annotation.Transactional;
...
public class BackOfficeImpl extends JmsGatewaySupport implements BackOffice {

 @Transactional
 public Mail receiveMail() {
 ...
 }
}

Then, in both Java configuration classes, add the @EnableTransactionManagement annotation and
declare a transaction manager. The corresponding transaction manager for local JMS transactions is
JmsTransactionManager, which requires a reference to the JMS connection factory.

ChAPteR 14 ■ SPRIng MeSSAgIng

631

package com.apress.springrecipes.post.config;
...
import org.springframework.jms.connection.JmsTransactionManager;
import org.springframework.transaction.annotation.EnableTransactionManagement;

import javax.jms.ConnectionFactory;

@Configuration
@EnableTransactionManagement
public class BackOfficeConfiguration {

 @Bean
 public ConnectionFactory connectionFactory() { ... }

 @Bean
 public PlatformTransactionManager transactionManager() {
 return new JmsTransactionManager(connectionFactory());
 }
}

If you require transaction management across multiple resources, such as a data source and an ORM
resource factory, or if you need distributed transaction management, you have to configure JTA transaction
in your app server and use JtaTransactionManager. Note that for multiple resource transaction support, the
JMS connection factory must be XA compliant (i.e., it must support distributed transactions).

14-4. Create Message-Driven POJOs in Spring
Problem
When you call the receive() method on a JMS message consumer to receive a message, the calling thread
is blocked until a message is available. The thread can do nothing but wait. This type of message reception
is called synchronous reception because an application must wait for the message to arrive before it can
finish its work. You can create a message-driven POJO (MDP) to support the asynchronous reception of JMS
messages. An MDP is decorated with the @MessageDriven annotation.

 ■ Note A message-driven POJO or MDP in the context of this recipe refers to a POJO that can listen for
JMS messages without any particular runtime requirements. It does not refer to message-driven beans (MDBs)
aligned to the eJB specification that require an eJB container.

Solution
Spring allows beans declared in its IoC container to listen for JMS messages in the same way as MDBs, which
are based on the EJB spec. Because Spring adds message-listening capabilities to POJOs, they are called
message-driven POJOs (MDPs).

ChAPteR 14 ■ SPRIng MeSSAgIng

632

How It Works
Suppose you want to add an electronic board to the post office’s back office to display mail information in
real time as it arrives from the front desk. As the front desk sends a JMS message along with mail, the back-
office subsystem can listen for these messages and display them on the electronic board. For better system
performance, you should apply the asynchronous JMS reception approach to avoid blocking the thread that
receives these JMS messages.

Listen for JMS Messages with Message Listeners
First, you create a message listener to listen for JMS messages. The message listener provides an alternative
to the approach taken in BackOfficeImpl in previous recipes with JmsTemplate. A listener can also consume
messages from a broker. For example, the following MailListener listens for JMS messages that contain mail
information:

package com.apress.springrecipes.post;

import javax.jms.JMSException;
import javax.jms.MapMessage;
import javax.jms.Message;
import javax.jms.MessageListener;

import org.springframework.jms.support.JmsUtils;

public class MailListener implements MessageListener {

 public void onMessage(Message message) {
 MapMessage mapMessage = (MapMessage) message;
 try {
 Mail mail = new Mail();
 mail.setMailId(mapMessage.getString("mailId"));
 mail.setCountry(mapMessage.getString("country"));
 mail.setWeight(mapMessage.getDouble("weight"));
 displayMail(mail);
 } catch (JMSException e) {
 throw JmsUtils.convertJmsAccessException(e);
 }
 }

 private void displayMail(Mail mail) {
 System.out.println("Mail #" + mail.getMailId() + " received");
 }
}

A message listener must implement the javax.jms.MessageListener interface. When a JMS message
arrives, the onMessage() method will be called with the message as the method argument. In this sample,
you simply display the mail information to the console. Note that when extracting message information from
a MapMessage object, you need to handle the JMS API’s JMSException. You can make a call to JmsUtils.
convertJmsAccessException() to convert it into Spring’s runtime exception JmsException.

ChAPteR 14 ■ SPRIng MeSSAgIng

633

Next, you have to configure this listener in the back office’s configuration. Declaring this listener alone
is not enough to listen for JMS messages. You need a message listener container to monitor JMS messages at
a message destination and trigger your message listener on message arrival.

package com.apress.springrecipes.post.config;

import com.apress.springrecipes.post.MailListener;
import org.apache.activemq.ActiveMQConnectionFactory;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.jms.listener.SimpleMessageListenerContainer;

import javax.jms.ConnectionFactory;

@Configuration
public class BackOfficeConfiguration {

 @Bean
 public ConnectionFactory connectionFactory() { ... }

 @Bean
 public MailListener mailListener() {
 return new MailListener();
 }

 @Bean
 public Object container() {
 SimpleMessageListenerContainer smlc = new SimpleMessageListenerContainer();
 smlc.setConnectionFactory(connectionFactory());
 smlc.setDestinationName("mail.queue");
 smlc.setMessageListener(mailListener());
 return smlc;
 }
}

Spring provides several types of message listener containers for you to choose from in the
org.springframework.jms.listener package, of which SimpleMessageListenerContainer and
DefaultMessageListenerContainer are the most commonly used. SimpleMessageListenerContainer is the
simplest one that doesn’t support transactions. If you have a transaction requirement in receiving messages,
you have to use DefaultMessageListenerContainer.

Now, you can start the message listener. Since you won’t need to invoke a bean to trigger message
consumption—the listener will do it for you—the following main class, which only starts the Spring IoC
container, is enough:

package com.apress.springrecipes.post;

import org.springframework.context.support.GenericXmlApplicationContext;

public class BackOfficeMain {

 public static void main(String[] args) {
 new AnnotationConfigApplicationContext(BackOfficeConfiguration.class);
 }
}

ChAPteR 14 ■ SPRIng MeSSAgIng

634

When you start this back-office application, it will listen for messages on the message broker
(i.e., ActiveMQ). As soon as the front-desk application sends a message to the broker, the back-office
application will react and display the message to the console.

Listen for JMS Messages with POJOs
A listener that implements the MessageListener interface can listen for messages, and so can an arbitrary
bean declared in the Spring IoC container. Doing so means that beans are decoupled from the Spring
Framework interfaces as well as the JMS MessageListener interface. For a method of this bean to be
triggered on message arrival, it must accept one of the following types as its sole method argument:

•	 Raw JMS message type: For TextMessage, MapMessage, BytesMessage, and
ObjectMessage

•	 String: For TextMessage only

•	 Map: For MapMessage only

•	 byte[]: For BytesMessage only

•	 Serializable: For ObjectMessage only

For example, to listen for MapMessage, you declare a method that accepts a Map as its argument and
annotate it with @JmsListener. This class no longer needs to implement the MessageListener interface.

package com.apress.springrecipes.post;

import org.springframework.jms.annotation.JmsListener;

import java.util.Map;

public class MailListener {

 @JmsListener(destination = "mail.queue")
 public void displayMail(Map map) {
 Mail mail = new Mail();
 mail.setMailId((String) map.get("mailId"));
 mail.setCountry((String) map.get("country"));
 mail.setWeight((Double) map.get("weight"));
 System.out.println("Mail #" + mail.getMailId() + " received");
 }
}

To detect the @JmsListener annotations, you need to put the @EnableJms annotation on the
configuration class, and you need to register a JmsListenerContainerFactory, which by default is detected
with the name jmsListenerContainerFactory.

A POJO is registered to a listener container through a JmsListenerContainerFactory. This factory
creates and configures a MessageListenerContainer and registers the annotated method as a message
listener to it. You could implement your own version of the JmsListenerContainerFactory, but it is
generally enough to use one of the provided classes. SimpleJmsListenerContainerFactory creates an
instance of the SimpleMessageListenerContainer, whereas DefaultJmsListenerContainerFactory creates
a DefaultMessageListenerContainer.

ChAPteR 14 ■ SPRIng MeSSAgIng

635

For now you will use a SimpleJmsListenerContainerFactory. If the need arises, you can quite easily
switch to the DefaultMessageListenerContainer, for instance, when transactions or async processing with
a TaskExecutor is needed.

package com.apress.springrecipes.post.config;

import com.apress.springrecipes.post.MailListener;
import org.apache.activemq.ActiveMQConnectionFactory;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.jms.annotation.EnableJms;
import org.springframework.jms.config.SimpleJmsListenerContainerFactory;
import org.springframework.jms.listener.SimpleMessageListenerContainer;
import org.springframework.jms.listener.adapter.MessageListenerAdapter;

import javax.jms.ConnectionFactory;

@Configuration
@EnableJms
public class BackOfficeConfiguration {

 @Bean
 public ConnectionFactory connectionFactory() {
 return new ActiveMQConnectionFactory("tcp://localhost:61616");
 }

 @Bean
 public MailListener mailListener() {
 return new MailListener();
 }

 @Bean
 public SimpleJmsListenerContainerFactory jmsListenerContainerFactory() {
 Simp leJmsListenerContainerFactory listenerContainerFactory =

new SimpleJmsListenerContainerFactory();
 listenerContainerFactory.setConnectionFactory(connectionFactory());
 return listenerContainerFactory;
 }
}

Convert JMS Messages
You can also create a message converter for converting mail objects from JMS messages that contain mail
information. Because message listeners receive messages only, the method toMessage() will not be called,
so you can simply return null for it. However, if you use this message converter for sending messages too,

ChAPteR 14 ■ SPRIng MeSSAgIng

636

you have to implement this method. The following example reprints the MailMessageConvertor class
written earlier:

package com.apress.springrecipes.post;

import javax.jms.JMSException;
import javax.jms.MapMessage;
import javax.jms.Message;
import javax.jms.Session;

import org.springframework.jms.support.converter.MessageConversionException;
import org.springframework.jms.support.converter.MessageConverter;

public class MailMessageConverter implements MessageConverter {

 public Object fromMessage(Message message) throws JMSException,
 MessageConversionException {
 MapMessage mapMessage = (MapMessage) message;
 Mail mail = new Mail();
 mail.setMailId(mapMessage.getString("mailId"));
 mail.setCountry(mapMessage.getString("country"));
 mail.setWeight(mapMessage.getDouble("weight"));
 return mail;
 }

 public Message toMessage(Object object, Session session) throws JMSException,
 MessageConversionException {
 ...
 }
}

A message converter should be applied to the listener container factory for it to convert messages into
objects before calling your POJO’s methods.

package com.apress.springrecipes.post.config;

import com.apress.springrecipes.post.MailListener;
import com.apress.springrecipes.post.MailMessageConverter;
import org.apache.activemq.ActiveMQConnectionFactory;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.jms.annotation.EnableJms;
import org.springframework.jms.config.SimpleJmsListenerContainerFactory;

import javax.jms.ConnectionFactory;

@Configuration
@EnableJms
public class BackOfficeConfiguration {

ChAPteR 14 ■ SPRIng MeSSAgIng

637

 @Bean
 public ConnectionFactory connectionFactory() {
 return new ActiveMQConnectionFactory("tcp://localhost:61616");
 }

 @Bean
 public MailListener mailListener() {
 return new MailListener();
 }

 @Bean
 public MailMessageConverter mailMessageConverter() {
 return new MailMessageConverter();
 }

 @Bean
 public SimpleJmsListenerContainerFactory jmsListenerContainerFactory() {
 Simp leJmsListenerContainerFactory listenerContainerFactory =

new SimpleJmsListenerContainerFactory();
 listenerContainerFactory.setConnectionFactory(connectionFactory());
 listenerContainerFactory.setMessageConverter(mailMessageConverter());
 return listenerContainerFactory;
 }
}

With this message converter, the listener method of your POJO can accept a mail object as the method
argument.

package com.apress.springrecipes.post;

import org.springframework.jms.annotation.JmsListener;

public class MailListener {

 @JmsListener(destination = "mail.queue")
 public void displayMail(Mail mail) {
 System.out.println("Mail #" + mail.getMailId() + " received");
 }
}

Manage JMS Transactions
As mentioned, SimpleMessageListenerContainer doesn’t support transactions. So, if you need transaction
management for your message listener method, you have to use DefaultMessageListenerContainer
instead. For local JMS transactions, you can simply enable its sessionTransacted property, and
your listener method will run within a local JMS transaction (as opposed to XA transactions). To
use a DefaultMessageListenerContainer, change the SimpleJmsListenerContainerFactory to a
DefaultJmsListenerContainerFactory and configure said sessionTransacted property.

ChAPteR 14 ■ SPRIng MeSSAgIng

638

@Bean
public DefaultJmsListenerContainerFactory jmsListenerContainerFactory() {
 Defa ultJmsListenerContainerFactory listenerContainerFactory =

new DefaultJmsListenerContainerFactory();
 listenerContainerFactory.setConnectionFactory(cachingConnectionFactory());
 listenerContainerFactory.setMessageConverter(mailMessageConverter());
 listenerContainerFactory.setSessionTransacted(true);
 return listenerContainerFactory;
}

However, if you want your listener to participate in a JTA transaction, you need to declare a
JtaTransactionManager instance and inject it into your listener container factory.

14-5. Cache and Pool JMS Connections
Problem
Throughout this chapter, for the sake of simplicity, you’ve explored Spring’s JMS support with a simple
instance of org.apache.activemq.ActiveMQConnectionFactory as the connection factory. This isn’t the
best choice in practice. As with all things, there are performance considerations.

The crux of the issue it is that JmsTemplate closes sessions and consumers on each invocation. This
means that it tears down all those objects and frees the memory. This is “safe,” but not performant, as some
of the objects created—like consumers—are meant to be long lived. This behavior stems from the use of
JmsTemplate in application server environments, where typically the application server’s connection factory
is used, and it, internally, provides connection pooling. In this environment, restoring all the objects simply
returns it to the pool, which is the desirable behavior.

Solution
There’s no “one-size-fits-all” solution to this. You need to weigh the qualities you’re looking for and react
appropriately.

How It Works
Generally, you want a connection factory that provides pooling and caching of some sort when publishing
messages using JmsTemplate. The first place to look for a pooled connection factory might be your
application server. It may very well provide one by default.

In the examples in this chapter, you use ActiveMQ in a stand-alone configuration. ActiveMQ, like many
vendors, provides a pooled connection factory class alternative. ActiveMQ provides two, actually: one for
use consuming messages with a JCA connector and another one for use outside of a JCA container. You
can use these instead to handle caching producers and sessions when sending messages. The following
configuration pools a connection factory in a stand-alone configuration. It’s a drop-in replacement for the
previous examples when publishing messages.

@Bean(destroyMethod = "stop")
public ConnectionFactory connectionFactory() {
 ActiveMQConnectionFactory connectionFactoryToUse =
 new ActiveMQConnectionFactory("tcp://localhost:61616");

ChAPteR 14 ■ SPRIng MeSSAgIng

639

 PooledConnectionFactory connectionFactory = new PooledConnectionFactory();
 connectionFactory.setConnectionFactory(connectionFactoryToUse);
 return connectionFactory;
}

If you are receiving messages, you could still stand some more efficiency because the JmsTemplate
constructs a new MessageConsumer each time as well. In this situation, you have a few alternatives: use
Spring’s various *MessageListenerContainer implementations (MDPs) because it caches consumers
correctly, or use Spring’s ConnectionFactory implementations. The first implementation, org.
springframework.jms.connection.SingleConnectionFactory, returns the same underlying JMS
connection each time (which is thread-safe according to the JMS API) and ignores calls to the close()
method.

Generally, this implementation works well with the JMS API. A newer alternative is org.
springframework.jms.connection.CachingConnectionFactory. First, the obvious advantage is that it
provides the ability to cache multiple instances. Second, it caches sessions, message producers, and message
consumers. Finally, it works regardless of your JMS connection factory implementation.

@Bean
public ConnectionFactory cachingConnectionFactory() {
 return new CachingConnectionFactory(connectionFactory());
}

14-6. Send and Receive AMQP Messages with Spring
Problem
You want to use RabbitMQ to send and receive messages.

Solution
The Spring AMQP project provides easy access to the AMQP protocol. It has support similar to that of Spring
JMS. It comes with a RabbitTemplate, which provides basic send and receive options; it also comes with a
MessageListenerContainer option that mimics Spring JMS.

How It Works
Let’s look at how you can send a message using RabbitTemplate. To get access to RabbitTemplate, it is the
simplest to extend RabbitGatewaySupport. You’ll use FrontDeskImpl, which uses RabbitTemplate.

Send and Receive Message Without Spring’s Template Support
Let’s look at how to send and receive messages without Spring’s template support. The following
FrontDeskImpl class sends a message to RabbitMQ using the plain API:

package com.apress.springrecipes.post;

import com.fasterxml.jackson.databind.ObjectMapper;
import com.rabbitmq.client.Channel;
import com.rabbitmq.client.Connection;

ChAPteR 14 ■ SPRIng MeSSAgIng

640

import com.rabbitmq.client.ConnectionFactory;
import org.springframework.scheduling.annotation.Scheduled;

import java.io.IOException;
import java.util.Locale;
import java.util.Random;
import java.util.concurrent.TimeoutException;

public class FrontDeskImpl implements FrontDesk {

 private static final String QUEUE_NAME = "mail.queue";

 public void sendMail(final Mail mail) {
 ConnectionFactory connectionFactory = new ConnectionFactory();
 connectionFactory.setHost("localhost");
 connectionFactory.setUsername("guest");
 connectionFactory.setPassword("guest");
 connectionFactory.setPort(5672);

 Connection connection = null;
 Channel channel = null;
 try {

 connection = connectionFactory.newConnection();
 channel = connection.createChannel();
 channel.queueDeclare(QUEUE_NAME, true, false, false, null);
 String message = new ObjectMapper().writeValueAsString(mail);
 channel.basicPublish("", QUEUE_NAME, null, message.getBytes("UTF-8"));

 } catch (IOException | TimeoutException e) {
 throw new RuntimeException(e);
 } finally {
 if (channel != null) {
 try {
 channel.close();
 } catch (IOException | TimeoutException e) {
 }
 }

 if (connection != null) {
 try {
 connection.close();
 } catch (IOException e) {
 }
 }
 }
 }
 }

ChAPteR 14 ■ SPRIng MeSSAgIng

641

First you create a ConnectionFactory to obtain a connection to RabbitMQ; here we configured it for
localhost and provided a username/password combination. Next you need to obtain a Channel to finally
create a queue. Then the passed-in Mail message is converted to JSON using a Jackson ObjectMapper and
finally sent to the queue. When creating connections and sending messages, you need to take care of the
different exceptions that can occur, and after sending, you need to properly close and release Connection
again, which also can throw an exception.

Before you can send and receive AMQP messages, you need to install an AMQP message broker.

 ■ Note In the bin directory is a rabbitmq.sh file, which downloads and starts a RabbitMQ broker in a
Docker container.

The following BackOfficeImpl class receives messages using the plain RabbitMQ API:

package com.apress.springrecipes.post;

import com.fasterxml.jackson.databind.ObjectMapper;
import com.rabbitmq.client.*;
import org.springframework.stereotype.Service;

import javax.annotation.PreDestroy;
import java.io.IOException;
import java.util.concurrent.TimeoutException;

@Service
public class BackOfficeImpl implements BackOffice {

 private static final String QUEUE_NAME = "mail.queue";

 private MailListener mailListener = new MailListener();
 private Connection connection;

 @Override
 public Mail receiveMail() {

 ConnectionFactory connectionFactory = new ConnectionFactory();
 connectionFactory.setHost("localhost");
 connectionFactory.setUsername("guest");
 connectionFactory.setPassword("guest");
 connectionFactory.setPort(5672);

 Channel channel = null;
 try {

 connection = connectionFactory.newConnection();
 channel = connection.createChannel();
 channel.queueDeclare(QUEUE_NAME, true, false, false, null);

ChAPteR 14 ■ SPRIng MeSSAgIng

642

 Consumer consumer = new DefaultConsumer(channel) {
 @Override
 public void handleDelivery(String consumerTag, Envelope envelope,

AMQP.BasicProperties properties, byte[] body)
 throws IOException {
 Mail mail = new ObjectMapper().readValue(body, Mail.class);
 mailListener.displayMail(mail);
 }
 };
 channel.basicConsume(QUEUE_NAME, true, consumer);

 } catch (IOException | TimeoutException e) {
 throw new RuntimeException(e);
 }

 return null;
 }

 @PreDestroy
 public void destroy() {
 if (this.connection != null) {
 try {
 this.connection.close();
 } catch (IOException e) {
 }
 }
 }
}

This code is largely the same as FrontDeskImpl except that you now register a Consumer object to
retrieve the messages. In this consumer, you use Jackson to map the message to the Mail object again and
pass it to MailListener, which in turn prints the converted message to the console. When using a channel,
you can add a consumer that will be invoked when a message is received. The consumer will be ready as
soon as it is registered with the channel using the basicConsume method.

If you already have the FrontDeskImpl running, you will see the messages coming in quite quickly.

Send Messages with Spring’s Template Support
The FrontDeskImpl class extends RabbitGatewaySupport, which configures a RabbitTemplate based on the
configuration you pass in. To send a message, you use the getRabbitOperations method to get the template
and next to convert and send the message. For this you use the convertAndSend method. This method will first
use a MessageConverter to convert the message into JSON and then send it to the queue you have configured.

package com.apress.springrecipes.post;

import org.springframework.amqp.rabbit.core.RabbitGatewaySupport;

public class FrontDeskImpl extends RabbitGatewaySupport implements FrontDesk {

 public void sendMail(final Mail mail) {
 getRabbitOperations().convertAndSend(mail);
 }
}

ChAPteR 14 ■ SPRIng MeSSAgIng

643

Let’s take a look at the configuration:

package com.apress.springrecipes.post.config;

import com.apress.springrecipes.post.FrontDeskImpl;
import org.springframework.amqp.rabbit.connection.CachingConnectionFactory;
import org.springframework.amqp.rabbit.connection.ConnectionFactory;
import org.springframework.amqp.rabbit.core.RabbitTemplate;
import org.springframework.amqp.support.converter.Jackson2JsonMessageConverter;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;

@Configuration
public class FrontOfficeConfiguration {

 @Bean
 public ConnectionFactory connectionFactory() {
 Cach ingConnectionFactory connectionFactory =

new CachingConnectionFactory("127.0.0.1");
 connectionFactory.setUsername("guest");
 connectionFactory.setPassword("guest");
 connectionFactory.setPort(5672);
 return connectionFactory;
 }

 @Bean
 public RabbitTemplate rabbitTemplate() {
 RabbitTemplate rabbitTemplate = new RabbitTemplate();
 rabbitTemplate.setConnectionFactory(connectionFactory());
 rabbitTemplate.setMessageConverter(new Jackson2JsonMessageConverter());
 rabbitTemplate.setRoutingKey("mail.queue");
 return rabbitTemplate;
 }

 @Bean
 public FrontDeskImpl frontDesk() {
 FrontDeskImpl frontDesk = new FrontDeskImpl();
 frontDesk.setRabbitOperations(rabbitTemplate());
 return frontDesk;
 }
}

The configuration is quite similar to the JMS configuration. You need a ConnectionFactory to connect
to your RabbitMQ broker. You use a CachingConnectionFactory so that you can reuse your connections.
Next there is the RabbitTemplate that uses the connection and has a MessageConverter to convert the
message. The message is being converted into JSON using the Jackson2 library, which is the reason for
the configuration of the Jackson2JsonMessageConverter. Finally, RabbitTemplate is passed into the
FrontDeskImpl class so that it is available for usage.

ChAPteR 14 ■ SPRIng MeSSAgIng

644

package com.apress.springrecipes.post;

import com.apress.springrecipes.post.config.FrontOfficeConfiguration;
import org.springframework.context.ConfigurableApplicationContext;
import org.springframework.context.annotation.AnnotationConfigApplicationContext;

public class FrontDeskMain {

 public static void main(String[] args) throws Exception {
 ConfigurableApplicationContext context =
 new AnnotationConfigApplicationContext(FrontOfficeConfiguration.class);

 FrontDesk frontDesk = context.getBean(FrontDesk.class);
 frontDesk.sendMail(new Mail("1234", "US", 1.5));

 System.in.read();

 context.close();
 }
}

Listen for AMQP Messages with Message Listeners
Spring AMQP supports MessageListenerContainers for retrieving messages in the same way as it Spring
JMS does for JMS. Spring AMQP has the @RabbitListener annotation to indicate an AMQP-based message
listener. Let’s take a look at the MessageListener that is used.

package com.apress.springrecipes.post;

import org.springframework.amqp.rabbit.annotation.RabbitListener;

public class MailListener {

 @RabbitListener(queues = "mail.queue")
 public void displayMail(Mail mail) {
 System.out.println("Received: " + mail);
 }
}

MailListener is exactly the same as the one created in recipe 14-4 for receiving JMS messages.
The difference is in the configuration.

package com.apress.springrecipes.post.config;

import com.apress.springrecipes.post.MailListener;
import org.springframework.amqp.rabbit.annotation.EnableRabbit;
import org.springframework.amqp.rabbit.config.SimpleRabbitListenerContainerFactory;
import org.springframework.amqp.rabbit.connection.CachingConnectionFactory;
import org.springframework.amqp.rabbit.connection.ConnectionFactory;

ChAPteR 14 ■ SPRIng MeSSAgIng

645

import org.springframework.amqp.rabbit.listener.RabbitListenerContainerFactory;
import org.springframework.amqp.support.converter.Jackson2JsonMessageConverter;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;

@Configuration
@EnableRabbit
public class BackOfficeConfiguration {

 @Bean
 public RabbitListenerContainerFactory rabbitListenerContainerFactory() {
 Simp leRabbitListenerContainerFactory containerFactory =

new SimpleRabbitListenerContainerFactory();
 containerFactory.setConnectionFactory(connectionFactory());
 containerFactory.setMessageConverter(new Jackson2JsonMessageConverter());
 return containerFactory;
 }

 @Bean
 public ConnectionFactory connectionFactory() {
 CachingConnectionFactory connectionFactory = new

CachingConnectionFactory("127.0.0.1");
 connectionFactory.setUsername("guest");
 connectionFactory.setPassword("guest");
 connectionFactory.setPort(5672);
 return connectionFactory;
 }

 @Bean
 public MailListener mailListener() {
 return new MailListener();
 }

}

To enable AMQP annotation-based listeners, you add the @EnableRabbit annotation to the
configuration class. As each listener requires a MessageListenerContainer, you need to configure a
RabbitListenerContainerFactory, which takes care of creating those containers. The @EnableRabbit logic
will, by default, will look for a bean named rabbitListenerContainerFactory.

RabbitListenerContainerFactory needs a ConnectionFactory. For this you are using
CachingConnectionFactory. Before the MailListener.displayMail method is invoked by
MessageListenerContainer, it needs to convert the message payload, in JSON, into a Mail object using
Jackon2JsonMessageConverter.

ChAPteR 14 ■ SPRIng MeSSAgIng

646

To listen to messages, create a class with a main method that only needs to construct the application
context.

package com.apress.springrecipes.post;

import com.apress.springrecipes.post.config.BackOfficeConfiguration;
import org.springframework.context.annotation.AnnotationConfigApplicationContext;

public class BackOfficeMain {

 public static void main(String[] args) {
 new AnnotationConfigApplicationContext(BackOfficeConfiguration.class);
 }
}

14-7. Send and Receive Messages with Spring Kafka
Problem
You want to use Apache Kafka to send and receive messages.

Solution
The Spring Kafka project provides easy access to Apache Kafka. It has support similar to that of Spring JMS
using the Spring Messaging abstraction. It comes with KafkaTemplate, which provides basic send options; it
also comes with a MessageListenerContainer option that mimics Spring JMS and can be enabled by
@EnableKafka.

How It Works
First you will see how to setup the KafkaTemplate to send messages and how to listen to messages
using a KafkaListener. Finally you will look at how to convert objects into message payloads using
MessageConverters.

Send Messages with Spring’s Template Support
Let’s start by rewriting the FrontOfficeImpl class to use KafkaTemplate to send a message. To do so,
you actually want an object that implements KafkaOperations, which is the interface implemented by
KafkaTemplate.

package com.apress.springrecipes.post;

import com.fasterxml.jackson.core.JsonProcessingException;
import com.fasterxml.jackson.databind.ObjectMapper;
import org.springframework.kafka.core.KafkaOperations;
import org.springframework.kafka.support.SendResult;
import org.springframework.util.concurrent.ListenableFuture;
import org.springframework.util.concurrent.ListenableFutureCallback;

ChAPteR 14 ■ SPRIng MeSSAgIng

647

public class FrontDeskImpl implements FrontDesk {

 private final KafkaOperations<Integer, String> kafkaOperations;

 public FrontDeskImpl(KafkaOperations<Integer, String> kafkaOperations) {
 this.kafkaOperations = kafkaOperations;
 }

 public void sendMail(final Mail mail) {

 ListenableFuture<SendResult<Integer, String>> future =
 kafkaOperations.send("mails", convertToJson(mail));

 future.addCallback(new ListenableFutureCallback<SendResult<Integer, String>>() {

 @Override
 public void onFailure(Throwable ex) {
 ex.printStackTrace();
 }

 @Override
 public void onSuccess(SendResult<Integer, String> result) {
 System.out.println("Result (success): " + result.getRecordMetadata());
 }
 });
 }

 private String convertToJson(Mail mail) {
 try {
 return new ObjectMapper().writeValueAsString(mail);
 } catch (JsonProcessingException e) {
 throw new IllegalArgumentException(e);
 }
 }
}

Notice the kafkaOperations field, which takes KafkaOperations<Integer, String>. This means you
are sending a message with an Integer type as the key (generated when sending a message), and you will
send a message of type String. This means you need to convert the incoming Mail instance to a String.
This is taken care of by the convertToJson method using a Jackson2 ObjectMapper. The message will be sent
to the mails topic, which is the first argument in the send method; the second one is the payload to send
(the converted Mail message).

Sending a message using Kafka is generally an async operation, and the KafkaOperations.send
methods reflect this in returning a ListenableFuture. It is a normal Future, so you could use the call to
get() to make it a blocking operation or register ListenableFutureCallback to get notified of the success or
failure of the operation.

Next you need to create a configuration class to configure KafkaTemplate to use in FrontDeskImpl.

package com.apress.springrecipes.post.config;

import com.apress.springrecipes.post.FrontDeskImpl;
import org.apache.kafka.clients.producer.ProducerConfig;

ChAPteR 14 ■ SPRIng MeSSAgIng

648

import org.apache.kafka.common.serialization.IntegerSerializer;
import org.apache.kafka.common.serialization.StringSerializer;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.kafka.core.DefaultKafkaProducerFactory;
import org.springframework.kafka.core.KafkaTemplate;
import org.springframework.kafka.core.ProducerFactory;

import java.util.HashMap;
import java.util.Map;

@Configuration
public class FrontOfficeConfiguration {

 @Bean
 public KafkaTemplate<Integer, String> kafkaTemplate() {
 KafkaTemplate<Integer, String> kafkaTemplate = new KafkaTemplate<>(producerFactory());
 return kafkaTemplate;
 }

 @Bean
 public ProducerFactory<Integer, String> producerFactory() {
 DefaultKafkaProducerFactory producerFactory = new DefaultKafkaProducerFactory<>

(producerFactoryProperties());
 return producerFactory;
 }

 @Bean
 public Map<String, Object> producerFactoryProperties() {
 Map<String, Object> properties = new HashMap<>();
 properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");
 properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, IntegerSerializer.class);
 properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class);
 return properties;
 }

 @Bean
 public FrontDeskImpl frontDesk() {
 return new FrontDeskImpl(kafkaTemplate());
 }

}

The aforementioned configuration creates a minimally configured KafkaTemplate. You need to
configure ProducerFactory used by KafkaTemplate; it requires at least the URL to connect to and
needs to know which key and value types you want to serialize the messages to. The URL is specified by
using ProducerConfig.BOOTSTRAP_SERVERS_CONFIG. This can take one or more servers to connect to.
ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG and ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG
respectively configure the key and value serializers used. As you want to use an Integer for the key and
String for the value, those are configured with IntegerSerializer and StringSerializer.

ChAPteR 14 ■ SPRIng MeSSAgIng

649

Finally, the constructed KafkaTemplate is passed to FrontDeskImpl. To run the front-desk application,
the following Main class is all that is needed:

package com.apress.springrecipes.post;

import org.springframework.context.ConfigurableApplicationContext;
import org.springframework.context.annotation.AnnotationConfigApplicationContext;

import com.apress.springrecipes.post.config.FrontOfficeConfiguration;

public class FrontDeskMain {

 public static void main(String[] args) throws Exception {
 ConfigurableApplicationContext context =
 new AnnotationConfigApplicationContext(FrontOfficeConfiguration.class);
 context.registerShutdownHook();

 FrontDesk frontDesk = context.getBean(FrontDesk.class);
 frontDesk.sendMail(new Mail("1234", "US", 1.5));

 System.in.read();

 }
}

This will launch the front-desk application and send a message through Kafka.

Listen to Messages Using Spring Kafka
Spring Kafka also has message listener containers for listening to messages on topics just like Spring JMS and
Spring AMQP. To enable the use of these containers, you need to put @EnableKafka on your configuration
class and create and configure your Kafka consumer using @KafkaListener.

First let’s create the listener, which is as easy as annotating a method with a single argument with
@KafkaListener.

package com.apress.springrecipes.post;

import org.springframework.kafka.annotation.KafkaListener;

public class MailListener {

 @KafkaListener(topics = "mails")
 public void displayMail(String mail) {
 System.out.println(" Received: " + mail);
 }
}

ChAPteR 14 ■ SPRIng MeSSAgIng

650

For now you are interested in the raw String-based payload as that is what is being sent.
Next you need to configure the listener container.

package com.apress.springrecipes.post.config;

import com.apress.springrecipes.post.MailListener;
import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.common.serialization.IntegerDeserializer;
import org.apache.kafka.common.serialization.StringDeserializer;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.kafka.annotation.EnableKafka;
import org.springframework.kafka.config.ConcurrentKafkaListenerContainerFactory;
import org.springframework.kafka.config.KafkaListenerContainerFactory;
import org.springframework.kafka.core.ConsumerFactory;
import org.springframework.kafka.core.DefaultKafkaConsumerFactory;
import org.springframework.kafka.listener.ConcurrentMessageListenerContainer;

import java.util.HashMap;
import java.util.Map;

@Configuration
@EnableKafka
public class BackOfficeConfiguration {

 @Bean
 KafkaListenerContainerFactory<ConcurrentMessageListenerContainer<Integer, String>>

kafkaListenerContainerFactory() {
 ConcurrentKafkaListenerContainerFactory factory =

 new ConcurrentKafkaListenerContainerFactory();
 factory.setConsumerFactory(consumerFactory());
 return factory;
 }

 @Bean
 public ConsumerFactory<Integer, String> consumerFactory() {
 return new DefaultKafkaConsumerFactory<>(consumerConfiguration());
 }

 @Bean
 public Map<String, Object> consumerConfiguration() {
 Map<String, Object> properties = new HashMap<>();
 properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");
 properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, IntegerDeserializer.class);
 properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,

StringDeserializer.class);
 properties.put(ConsumerConfig.GROUP_ID_CONFIG, "group1");
 return properties;
 }

ChAPteR 14 ■ SPRIng MeSSAgIng

651

 @Bean
 public MailListener mailListener() {
 return new MailListener();
 }

}

The configuration is similar to the client; you need to pass the URL (or URLs) to connect to Apache
Kafka, and as you want to deserialize messages, you need to specify a key and value deserializer.
Finally, you need to add a group ID or you won’t be able to connect to Kafka. The URL is passed by
using ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG; the key and value deserializers used are the
IntegerDeserializer for the key (as that was an integer); and as the payload is a String, you need to use
the StringDeserializer. Finally, the group property is set.

With these properties, you can configure KafkaListenerContainerFactory, which is a factory used
to create a Kafka-based MessageListenerContainer. The container is internally used by the functionality
enabled by adding the @EnableKafka annotation. For each method annotated with @KafkaListener, a
MessageListenerContainer is created.

To run the back-office application, you would need to load this configuration and let it listen:

package com.apress.springrecipes.post;

import com.apress.springrecipes.post.config.BackOfficeConfiguration;
import org.springframework.context.annotation.AnnotationConfigApplicationContext;

public class BackOfficeMain {

 public static void main(String[] args) {
 new AnnotationConfigApplicationContext(BackOfficeConfiguration.class);
 }
}

Now when the front-office application is started, the Mail message will be converted to a String and
sent through Kafka to the back office, resulting in the following output:

Received: {"mailId":"1234","country":"US","weight":1.5}

Use a MessageConverter to Convert Payloads into Objects
The listener now receives a String, but it would be nicer if you could automatically convert this
into a Mail object again. This is quite easily done with some tweaks in the configuration. The
KafkaListenerContainerFactory used here accepts a MessageConverter, and to automatically turn a
String into the desired object, you can pass it a StringJsonMessageConverter. This will take the String and
convert it into the object as specified as argument in the @KafkaListener annotated method.

ChAPteR 14 ■ SPRIng MeSSAgIng

652

First update the configuration.

package com.apress.springrecipes.post.config;

import org.springframework.kafka.support.converter.StringJsonMessageConverter;

@Configuration
@EnableKafka
public class BackOfficeConfiguration {

 @Bean
 KafkaListenerContainerFactory<ConcurrentMessageListenerContainer<Integer, String>>

kafkaListenerContainerFactory() {
 Conc urrentKafkaListenerContainerFactory factory =

new ConcurrentKafkaListenerContainerFactory();
 factory.setMessageConverter(new StringJsonMessageConverter());
 factory.setConsumerFactory(consumerFactory());
 return factory;
 }
 ...
}

Next you need to modify the MailListener to use a Mail object instead of the plain String.

package com.apress.springrecipes.post;

import org.springframework.kafka.annotation.KafkaListener;

public class MailListener {

 @KafkaListener(topics = "mails")
 public void displayMail(Mail mail) {
 System.out.println("Mail #" + mail.getMailId() + " received");
 }
}

When running the back office and front office, the message will still be sent and received.

Convert Objects to Payloads
In the front office, the Mail instance is manually being converted to a JSON string. Although it’s not hard, it
would be nice if the framework could do this transparently. This is possible by configuring JsonSerializer
instead of StringSerializer.

package com.apress.springrecipes.post.config;

import com.apress.springrecipes.post.FrontDeskImpl;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.common.serialization.IntegerSerializer;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;

ChAPteR 14 ■ SPRIng MeSSAgIng

653

import org.springframework.kafka.core.DefaultKafkaProducerFactory;
import org.springframework.kafka.core.KafkaTemplate;
import org.springframework.kafka.core.ProducerFactory;
import org.springframework.kafka.support.serializer.JsonSerializer;

import java.util.HashMap;
import java.util.Map;

@Configuration
public class FrontOfficeConfiguration {

 @Bean
 public KafkaTemplate<Integer, Object> kafkaTemplate() {
 return new KafkaTemplate<>(producerFactory());
 }

 @Bean
 public ProducerFactory<Integer, Object> producerFactory() {
 return new DefaultKafkaProducerFactory<>(producerFactoryProperties());
 }

 @Bean
 public Map<String, Object> producerFactoryProperties() {
 Map<String, Object> properties = new HashMap<>();
 properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");
 properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, IntegerSerializer.class);
 properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, JsonSerializer.class);
 return properties;
 }

 @Bean
 public FrontDeskImpl frontDesk() {
 return new FrontDeskImpl(kafkaTemplate());
 }
}

Instead of KafkaTemplate<Integer, String>, you now use KafkaTemplate<Integer, Object>
because you will now be able to send objects serialized to a String to Kafka.

The FrontOfficeImpl class can also be cleaned up now because conversion to JSON is now handled by
KafkaTemplate.

package com.apress.springrecipes.post;

import org.springframework.kafka.core.KafkaOperations;
import org.springframework.kafka.support.SendResult;
import org.springframework.util.concurrent.ListenableFuture;
import org.springframework.util.concurrent.ListenableFutureCallback;

ChAPteR 14 ■ SPRIng MeSSAgIng

654

public class FrontDeskImpl implements FrontDesk {

 private final KafkaOperations<Integer, Object> kafkaOperations;

 public FrontDeskImpl(KafkaOperations<Integer, Object> kafkaOperations) {
 this.kafkaOperations = kafkaOperations;
 }

 public void sendMail(final Mail mail) {

 ListenableFuture<SendResult<Integer, Object>> future = kafkaOperations.send("mails",
mail);

 future.addCallback(new ListenableFutureCallback<SendResult<Integer, Object>>() {

 @Override
 public void onFailure(Throwable ex) {
 ex.printStackTrace();
 }

 @Override
 public void onSuccess(SendResult<Integer, Object> result) {
 System.out.println("Result (success): " + result.getRecordMetadata());
 }
 });
 }
}

Summary
This chapter explored Spring’s messaging support and how to use this to build message-oriented
architectures. You learned how to produce and consume messages using different messaging
solutions. For different messaging solutions, you looked at how to build message-driven POJOs using
MessageListenerContainer.

You looked at JMS and AMQP with ActiveMQ, a reliable open source message queue, and you briefly
looked at Apache Kafka.

The next chapter will explore Spring Integration, which is an ESB-like framework for building
application integration solutions, similar to Mule ESB and ServiceMix. You will be able to leverage the
knowledge gained in this chapter to take your message-oriented applications to new heights with Spring
Integration.

655© Marten Deinum, Daniel Rubio, and Josh Long 2017
M. Deinum et al., Spring 5 Recipes, DOI 10.1007/978-1-4842-2790-9_15

CHAPTER 15

Spring Integration

In this chapter, you will learn the principles behind enterprise application integration (EAI), used by many
modern applications to decouple dependencies between components. The Spring Framework provides a
powerful and extensible framework called Spring Integration. Spring Integration provides the same level of
decoupling for disparate systems and data that the core Spring Framework provides for components within
an application. This chapter aims to give you all the required knowledge to understand the patterns involved
in EAI to understand what an enterprise service bus (ESB) is and—ultimately—how to build solutions using
Spring Integration. If you’ve used an EAI server or an ESB, you’ll find that Spring Integration is markedly
simpler than anything you’re likely to have used before.

After finishing this chapter, you will be able to write fairly sophisticated Spring Integration solutions
to integrate applications so that they can share services and data. You will learn Spring Integration’s many
options for configuration, too. Spring Integration can be configured entirely in a standard XML namespace,
if you like, but you’ll probably find that a hybrid approach, using annotations and XML, is more natural.
You will also learn why Spring Integration is a very attractive alternative for people coming from a classic
enterprise application integration background. If you’ve used an ESB before, such as Mule or ServiceMix, or
a classical EAI server, such as Axway’s Integrator or TIBCO’s ActiveMatrix, the idioms explained here should
be familiar and the configuration refreshingly straightforward.

15-1. Integrate One System with Another Using EAI
Problem
You have two applications that need to talk to each other through external interfaces. You need to establish a
connection between the applications’ services and/or their data.

Solution
You need to employ EAI, which is the discipline of integrating applications and data using a set of well-
known patterns. These patterns are usefully summarized and embodied in a landmark book called
Enterprise Integration Patterns by Gregor Hohpe and Bobby Woolf. Today the patterns are canonical and are
the lingua franca of the modern-day ESB.

How It Works
There are several different integration styles which you can use, you could use the File system, the database,
messaging or even do remote procedure calls. Next you will explore how you could implement or realise the
different integration styles and what choices there are next to Spring Integration.

Chapter 15 ■ Spring integration

656

Pick an Integration Style
There are multiple integration styles, each best suited for certain types of applications and requirements.
The basic premise is simple: your application can’t speak directly to the other system using the native
mechanism in one system. So, you can devise a bridging connection, something to build on top of, abstract,
or work around some characteristic about the other system in a way that’s advantageous to the invoking
system. What you abstract is different for each application. Sometimes it’s the location, sometimes it’s the
synchronous or asynchronous nature of the call, and sometimes it’s the messaging protocol. There are many
criteria for choosing an integration style, related to how tightly coupled you want your application to be, to
server affinity, to the demands of the messaging formats, and so on. In a way, TCP/IP is the most famous of
all integration techniques because it decouples one application from another’s server.

You have probably built applications that use some or all of the following integration styles (using
Spring, no less!). A shared database, for example, is easily achieved using Spring’s JDBC support; Remote
Procedure Invocation is easily achieved using Spring’s exporter functionality.

The four integration styles are as follows:

•	 File transfer: Have each application produce files of shared data for others to
consume and to consume files that others have produced.

•	 Shared database: Have the applications store the data they want to share in a
common database. This usually takes the form of a database to which different
applications have access. This is not usually a favored approach because it means
exposing your data to different clients that might not respect the constraints you
have in place (but not codified). Using views and stored procedures can often make
this option possible, but it’s not ideal. There’s no particular support for talking to
a database, per se, but you can build an endpoint that deals with new results in a
SQL database as message payloads. Integration with databases doesn’t tend to be
granular or message-oriented but batch-oriented instead. After all, a million new
rows in a database isn’t an event so much as a batch! It’s no surprise then that Spring
Batch (discussed in Chapter 11) included terrific support for JDBC-oriented input
and output.

•	 Remote Procedure Invocation: Have each application expose some of its procedures
so that they can be invoked remotely and have applications invoke them to initiate
behavior and exchange data. There is specific support for optimizing RPC exchanges
(which includes remote procedure calls such as SOAP, RMI, and HTTP Invoker)
using Spring Integration.

•	 Messaging: Have each application connect to a common messaging system and
exchange data and invoke behavior using messages. This style, mostly enabled
by JMS in the JEE world, also describes other asynchronous or multicast publish-
subscribe architectures. In a way, an ESB or an EAI container such as Spring
Integration lets you handle most of the other styles as though you were dealing with
a messaging queue: a request comes in on a queue and is managed, responded to, or
forwarded to another queue.

Build on an ESB Solution
Now that you know how you want to approach the integration, it’s all about implementing it. You have
many choices in today’s world. If the requirement is common enough, most middleware or frameworks
will accommodate it in some way. JEE, .NET, and others handle common cases very well via SOAP,

http://dx.doi.org/10.1007/978-1-4842-2790-9_11

Chapter 15 ■ Spring integration

657

XML-RPC, a binary layer such as EJB or binary remoting, JMS, or an MQ abstraction. If, however, the
requirement is somewhat exotic or you have a lot of configuration to do, then perhaps an ESB is required. An
ESB is middleware that provides a high-level approach to modeling integrations, in the spirit of the patterns
described by EAI. The ESB provides a manageable configuration format for orchestrating the different pieces
of an integration in a simple high-level format.

Spring Integration, an API in the SpringSource portfolio, provides a robust mechanism for modeling a
lot of these integration scenarios that work well with Spring. Spring Integration has many advantages over a
lot of other ESBs, especially the lightweight nature of the framework. The nascent ESB market is filled with
choices. Some are former EAI servers, reworked to address the ESB-centric architectures. Some are genuine
ESBs, built with that in mind. Some are little more than message queues with adapters.

Indeed, if you’re looking for an extraordinarily powerful EAI server (with almost integration with the
JEE platform and a very hefty price tag), you might consider Axway Integrator. There’s very little it can’t do.
Vendors such as TIBCO and WebMethods made their marks (and were subsequently acquired) because they
provided excellent tools for dealing with integration in the enterprise. These options, although powerful, are
usually very expensive and middleware-centric; your integrations are deployed to the middleware.

Standardization attempts, such as Java Business Integration (JBI), have proven successful to an extent,
and there are good compliant ESBs based on these standards (OpenESB and ServiceMix, for example). One
of the thought leaders in the ESB market is the Mule ESB, which has a good reputation; it is free/open source
friendly, community friendly, and lightweight. These characteristics also make Spring Integration attractive.
Often, you simply need to talk to another open system, and you don’t want to requisition a purchase
approval for middleware that’s more expensive than some houses!

Each Spring Integration application is completely embedded and needs no server infrastructure.
In fact, you could deploy an integration inside another application, perhaps in your web application
endpoint. Spring Integration flips the deployment paradigms of most ESBs on their head. You deploy Spring
Integration into your application; you don’t deploy your application into Spring Integration. There are no
start and stop scripts and no ports to guard. The simplest possible working Spring Integration application is
a simple Java public static void main() method to bootstrap a Spring context.

package com.apress.springrecipes.springintegration;

import org.springframework.context.annotation.AnnotationConfigApplicationContext;

public class Main {
 public static void main(String [] args){
 Appl icationContext applicationContext =

new AnnotationConfigApplicationContext(IntegrationConfiguration.class);
 }
}

You created a standard Spring application context and started it. The contents of the Spring application
context will be discussed in subsequent recipes, but it’s helpful to see how simple it is. You might decide to
hoist the context up in a web application, an EJB container, or anything else you want. Indeed, you can use
Spring Integration to power the e-mail polling functionality in a Swing/JavaFX application! It’s as lightweight
as you want it to be. In subsequent examples, the configuration shown should be put in an XML file and
that XML file referenced as the first parameter when running this class. When the main method runs to
completion, your context will start up the Spring Integration bus and start responding to requests on the
components configured in the application context’s XML.

Chapter 15 ■ Spring integration

658

15-2. Integrate Two Systems Using JMS
Problem
You want to build an integration to connect one application to another using JMS, which provides locational
and temporal decoupling on modern middleware for Java applications. You’re interested in applying more
sophisticated routing and want to isolate your code from the specifics of the origin of the message (in this
case, the JMS queue or topic).

Solution
While you can do this by using regular JMS code or EJB’s support for message-driven beans (MDBs) or by
using core Spring’s message-driven POJO (MDP) support, all are necessarily coded for handling messages
coming specifically from JMS. Your code is tied to JMS. Using an ESB lets you hide the origin of the message
from the code that’s handling it. You’ll use this solution as an easy way to see how a Spring Integration
solution can be built. Spring Integration provides an easy way to work with JMS, just as you might use MDPs
in the core Spring container. Here, however, you could conceivably replace the JMS middleware with an
e-mail, and the code that reacts to the message could stay the same.

How It Works
As you might recall from Chapter 14, Spring can replace EJB’s MDB functionality by using MDPs. This is a
powerful solution for anyone wanting to build something that handles messages on a message queue. You’ll
build an MDP, but you will configure it using Spring Integration’s more concise configuration and provide
an example of a very rudimentary integration. All this integration will do is take an inbound JMS message
(whose payload is of type Map<String,Object>) and write it to the log.

As with a standard MDP, a configuration for the ConnectionFactory class exists. Shown following is a
configuration class. You can pass it in as a parameter to the Spring ApplicationContext instance on creation
(as you did in the previous recipe, in the Main class).

package com.apress.springrecipes.springintegration;

import org.apache.activemq.ActiveMQConnectionFactory;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.ComponentScan;
import org.springframework.context.annotation.Configuration;
import org.springframework.integration.config.EnableIntegration;
import org.springframework.integration.dsl.IntegrationFlow;
import org.springframework.integration.dsl.IntegrationFlows;
import org.springframework.integration.jms.dsl.Jms;
import org.springframework.jms.connection.CachingConnectionFactory;
import org.springframework.jms.core.JmsTemplate;

import javax.jms.ConnectionFactory;

@Configuration
@EnableIntegration

http://dx.doi.org/10.1007/978-1-4842-2790-9_14

Chapter 15 ■ Spring integration

659

@ComponentScan
public class IntegrationConfiguration {

 @Bean
 public CachingConnectionFactory connectionFactory() {
 Acti veMQConnectionFactory connectionFactory =

new ActiveMQConnectionFactory("tcp://localhost:61616");
 return new CachingConnectionFactory(connectionFactory);
 }

 @Bean
 public JmsTemplate jmsTemplate(ConnectionFactory connectionFactory) {
 return new JmsTemplate(connectionFactory);
 }

 @Bean
 public InboundHelloWorldJMSMessageProcessor messageProcessor() {
 return new InboundHelloWorldJMSMessageProcessor();
 }

 @Bean
 public IntegrationFlow jmsInbound(ConnectionFactory connectionFactory) {
 return return IntegrationFlows
 .from(Jms.messageDrivenChannelAdapter(connectionFactory)
 .extractPayload(true)
 .destination("recipe-15-2"))
 .handle(messageProcessor())
 .get();
 }
}

As you can see, the most intimidating part is the schema import! The rest of the code is standard
boilerplate. You define a connectionFactory exactly as if you were configuring a standard MDP.

Then, you define any beans specific to this solution, in this case, a bean that responds to messages
coming in to the bus from the message queue, messageProcessor. A service activator is a generic endpoint
in Spring Integration that’s used to invoke functionality—whether it be an operation in a service, some
routine in a regular POJO, or anything you want instead—in response to a message sent in on an input
channel. Although this will be covered in some detail, it’s interesting here only because you are using it to
respond to messages. These beans taken together are the collaborators in the solution, and this example is
fairly representative of how most integrations look. You define your collaborating components, and then you
define the flow using the Spring Integration Java DSL that configures the solution itself.

 ■ Tip there is also a Spring integration groovy DSL.

The configuration starts with IntegrationFlows, which is used to define how the messages flow
through the system. The flow starts with the definition of messageDrivenChannelAdapter, which basically
receives messages from the recipe-15-2 destination and passes it to a Spring Integration channel.
messageDrivenChannelAdapter is, as the name suggests, an adapter. An adapter is a component that knows
how to speak to a specific type of subsystem and translate messages on that subsystem into something

Chapter 15 ■ Spring integration

660

that can be used in the Spring Integration bus. Adapters also do the same in reverse, taking messages on
the Spring Integration bus and translating them into something a specific subsystem will understand. This
is different from a service activator (covered next) in that an adapter is meant to be a general connection
between the bus and the foreign endpoint. A service activator, however, only helps you invoke your
application’s business logic on receipt of a message. What you do in the business logic, connecting to
another system or not, is up to you.

The next component, a service activator, listens for messages coming into that channel and invokes
the bean referenced through the handle method, which in this case is the messageProcessor bean defined
previously. Because of the @ServiceActivator annotation on the method of the component, Spring
Integration knows which method to invoke.

package com.apress.springrecipes.springintegration;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.integration.annotation.ServiceActivator;
import org.springframework.messaging.Message;

import java.util.Map;

public class InboundHelloWorldJMSMessageProcessor {

 priv ate final Logger logger =
LoggerFactory.getLogger(InboundHelloWorldJMSMessageProcessor.class);

 @ServiceActivator
 public void handleIncomingJmsMessage(Message<Map<String, Object>> inboundJmsMessage)
 throws Throwable {
 Map<String, Object> msg = inboundJmsMessage.getPayload();
 logger.info("firstName: {}, lastName: {}, id: {}", msg.get("firstName"),
 msg.get("lastName"),
 msg.get("id"));
 }
}

Notice that there is an annotation, @ServiceActivator, that tells Spring to configure this component,
and this method as the recipient of the message payload from the channel, which is passed to the method
as Message<Map<String, Object>> inboundJmsMessage. In the previous configuration, extract-
payload="true" tells Spring Integration to take the payload of the message from the JMS queue (in this
case, a Map<String,Object>) and extract it and pass that as the payload of the message that’s being moved
through Spring Integration’s channels as a org.springframework.messaging.Message<T>. The Spring
Message interface is not to be confused with the JMS Message interface, although they have some similarities.
Had you not specified the extractPayload option, the type of payload on the Spring Message interface
would have been javax.jms.Message. The onus of extracting the payload would have been on you, the
developer, but sometimes getting access to that information is useful. Rewritten to handle unwrapping the
javax.jms.Message interface, the example would look a little different, as shown here:

Chapter 15 ■ Spring integration

661

package com.apress.springrecipes.springintegration;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.integration.annotation.ServiceActivator;
import org.springframework.messaging.Message;

import javax.jms.MapMessage;

public class InboundHelloWorldJMSMessageProcessor {

 priv ate final Logger logger =
LoggerFactory.getLogger(InboundHelloWorldJMSMessageProcessor.class);

 @ServiceActivator
 public void handleIncomingJmsMessageWithPayloadNotExtracted(
 Message<javax.jms.Message> msgWithJmsMessageAsPayload) throws Throwable {
 java x.jms.MapMessage jmsMessage =

(MapMessage) msgWithJmsMessageAsPayload.getPayload();
 logger.debug("firstName: {}, lastName: {}, id: {}", jmsMessage.

getString("firstName"),
 jmsMessage.

getString("lastName"),
 jmsMessage.getLong("id"));
 }
}

You could have specified the payload type as the type of parameter passed into the method. If the
payload of the message coming from JMS was of type Cat, for example, the method prototype could
just as well have been public void handleIncomingJmsMessageWithPayloadNotExtracted(Cat
inboundJmsMessage) throws Throwable. Spring Integration will figure out the right thing to do. In this case,
we prefer access to Spring Message<T>, which has header values that can be useful to interrogate.

Also note that you don’t need to specify throws Throwable. Error handling can be as generic or as
specific as you want in Spring Integration.

In the example, you use the @ServiceActivator annotation to invoke the functionality where the
integration ends. However, you can forward the response from the activation on to the next channel by
returning a value from the method. The type of the return value is what will be used to determine the next
message sent in the system. If you return a Message<T>, that will be sent directly. If you return something
other than Message<T>, that value will be wrapped as a payload in a Message<T> instance, and that will
become the next message that is ultimately sent to the next component in the processing pipeline. This
Message<T> interface will be sent on the output channel that’s configured on the service activator. There is
no requirement to send a message on the output channel with the same type as the message that came on in
the input channel; this is an effective way to transform the message type. A service activator is a very flexible
component in which to put hooks to your system and to help mold the integration.

This solution is pretty straightforward, and in terms of configuration for one JMS queue, it’s not
really a win over straight MDPs because there’s an extra level of indirection to overcome. The Spring
Integration facilities make building complex integrations easier than Spring Core or EJB3 could because the
configuration is centralized. You have a bird’s-eye view of the entire integration, with routing and processing
centralized, so you can better reposition the components in your integration. However, as you’ll see, Spring
Integration wasn’t meant to compete with EJB and Spring Core; it shines at solutions that couldn’t naturally
be built using EJB3 or Spring Core.

Chapter 15 ■ Spring integration

662

15-3. Interrogate Spring Integration Messages for Context
Information
Problem
You want more information about the message coming into the Spring Integration processing pipeline than
the type of the message implicitly can give you.

Solution
Interrogate the Spring Integration Message<T> interface for header information specific to the message.
These values are enumerated as header values in a map (of type Map<String,Object>).

How It Works
The Spring Message<T> interface is a generic wrapper that contains a pointer to the actual payload of the
message as well as to headers that provide contextual message metadata. You can manipulate or augment
this metadata to enable/enhance the functionality of components that are downstream, too; for example,
when sending a message through e-mail, it’s useful to specify the TO/FROM headers.

Any time you expose a class to the framework to handle some requirement (such as the logic you
provide for the service activator component or a transformer component), there will be some chance
to interact with Message<T> and with the message headers. Remember that Spring Integration pushes a
Message<T> instance through a processing pipeline. Each component that interfaces with the Message<T>
instance has to act on it, do something with it, or forward it on. One way of providing information to those
components, and of getting information about what’s happened in the components up until that point, is to
interrogate MessageHeaders.

You should be aware of several values when working with Spring Integration (see Tables 15-1 and 15-2).
These constants are exposed on the org.springframework.messaging.MessageHeaders interface and org.
springframework.integration.IntegrationMessageHeaderAccessor.

Table 15-1. Common Headers Found in Core Spring Messaging

Constant Description

ID This is a unique value assigned to the message by the Spring Integration engine.

TIMESTAMP This is the timestamp assigned to the message.

REPLY_CHANNEL This is the String name of the channel to which the output of the current
component should be sent. This can be overridden.

ERROR_CHANNEL This is the String name of the channel to which the output of the current
component should be sent if an exception bubbles up into the runtime. This can
be overridden.

CONTENT_TYPE This is the content type (MIME type) of the message, mainly used for Web Socket
messages.

Chapter 15 ■ Spring integration

663

In addition to the headers defined by Spring Messaging, there are some commonly used
headers in Spring Integration; these are defined in the org.springframework.integration.
IntegrationMessageHeaderAccessor class (see Table 15-2).

Some header values are specific to the type of the source message’s payload; for example, payloads
sourced from a file on the file system are different from those coming in from a JMS queue, which are
different from messages coming from an e-mail system. These different components are typically packaged
in their own JARs, and there’s usually some class that provides constants for accessing these headers.
Component-specific headers are examples of the constants defined for files on org.springframework.
integration.file.FileHeaders: FILENAME and PREFIX. Naturally, when in doubt, you can just enumerate
the values manually because the headers are just a java.util.Map instance.

package com.apress.springrecipes.springintegration;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.integration.annotation.ServiceActivator;
import org.springframework.messaging.Message;
import org.springframework.messaging.MessageHeaders;

import java.io.File;
import java.util.Map;

public class InboundFileMessageServiceActivator {
 private final Logger logger = LoggerFactory.getLogger(InboundFileMessageService

Activator.class);

Table 15-2. Common Headers Found in Spring Integration

Constant Description

CORRELATION_ID This is optional and used by some components (such as aggregators) to
group messages together in some sort of processing pipeline.

EXPIRATION_DATE This is used by some components as a threshold for processing after
which a component can wait no longer in processing.

PRIORITY This is the priority of the message; higher numbers indicate a higher
priority.

SEQUENCE_NUMBER This is the order in which the message is to be sequenced; it is typically
used with a sequencer.

SEQUENCE_SIZE This is the size of the sequence so that an aggregator can know when
to stop waiting for more messages and move forward. This is useful in
implementing join functionality.

ROUTING_SLIP This is the header containing the information when the Routing Slip
pattern is used.

CLOSEABLE_RESOURCE This is optional and used by some components to determine if the
message payload can/should be closed (like a File or InputStream).

Chapter 15 ■ Spring integration

664

 @ServiceActivator
 public void interrogateMessage(Message<File> message) {
 MessageHeaders headers = message.getHeaders();
 for (Map.Entry<String, Object> header : headers.entrySet()) {
 logger.debug("{} : {}", header.getKey(), header.getValue());
 }
 }
}

These headers let you interrogate the specific features of these messages without surfacing them as a
concrete interface dependency if you don’t want them. They can also be used to help processing and allow
you to specify custom metadata to downstream components. The act of providing extra data for the benefit
of a downstream component is called message enrichment. Message enrichment is when you take the
headers of a given message and add to them, usually to the benefit of components in the processing pipeline
downstream. You might imagine processing a message to add a customer to a customer relationship
management (CRM) system that makes a call to a third-party web site to establish credit ratings. This credit
is added to the headers so the component downstream, which is tasked with adding or rejecting customers,
can make its decisions on these header values.

Another way to get access to header metadata is to simply have it passed as parameters to your
component’s method. You simply annotate the parameter with the @Header annotation, and Spring
Integration will take care of the rest.

package com.apress.springrecipes.springintegration;

import java.io.File;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.integration.annotation.ServiceActivator;
import org.springframework.integration.file.FileHeaders;
import org.springframework.messaging.MessageHeaders;
import org.springframework.messaging.handler.annotation.Header;

public class InboundFileMessageServiceActivator {
 private final Logger logger = LoggerFactory.getLogger(InboundFileMessageService

Activator.class);

 @ServiceActivator
 public void interrogateMessage(
 @Header(MessageHeaders.ID) String uuid,
 @Header(FileHeaders.FILENAME) String fileName, File file) {
 logger.debug("the id of the message is {}, and name of the file payload is {}",

uuid, fileName);
 }
}

You can also have Spring Integration simply pass Map<String,Object>.

Chapter 15 ■ Spring integration

665

package com.apress.springrecipes.springintegration;

import java.io.File;
import java.util.Map;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.integration.annotation.ServiceActivator;
import org.springframework.integration.file.FileHeaders;
import org.springframework.messaging.MessageHeaders;
import org.springframework.messaging.handler.annotation.Header;

public class InboundFileMessageServiceActivator {
 private final Logger logger = LoggerFactory.getLogger(InboundFileMessageService

Activator.class);

 @ServiceActivator
 public void interrogateMessage(
 @Header(MessageHeaders.ID) Map<String, Object> headers, File file) {
 logger.debug("the id of the message is {}, and name of the file payload is {}",
 headers.get(MessageHeaders.ID), headers.get(FileHeaders.FILENAME));
 }
}

15-4. Integrate Two Systems Using a File System
Problem
You want to build a solution that takes files on a well-known, shared file system and uses them as the
conduit for integration with another system. An example might be that your application produces a
comma-separated value (CSV) dump of all the customers added to a system every hour. The company’s
third-party financial system is updated with these sales by a process that checks a shared folder, mounted
over a network file system, and processes the CSV records. What’s required is a way to treat the presence of
a new file as an event on the bus.

Solution
You have an idea of how this could be built by using standard techniques, but you want something more
elegant. Let Spring Integration isolate you from the event-driven nature of the file system and from the file
input/output requirements. Instead, let’s use it to focus on writing the code that deals with the java.io.File
payload itself. With this approach, you can write unit-testable code that accepts an input and responds
by adding the customers to the financial system. When the functionality is finished, you configure it in
the Spring Integration pipeline and let Spring Integration invoke your functionality whenever a new file is
recognized on the file system. This is an example of an event-driven architecture (EDA). EDAs let you ignore
how an event was generated and focus instead on reacting to them, in much the same way that event-driven
GUIs let you change the focus of your code from controlling how a user triggers an action to actually reacting
to the invocation itself. Spring Integration makes it a natural approach for loosely coupled solutions. In fact,
this code should look similar to the solution you built for the JMS queue because it’s just another class that
takes a parameter (a Spring Integration Message<T> interface, a parameter of the same type as the payload of
the message, and so on).

Chapter 15 ■ Spring integration

666

How It Works
Building a solution to talk to JMS is old hat. Instead, let’s consider what building a solution using a shared
file system might look like. Imagine how to build it without an ESB solution. You need some mechanism by
which to poll the file system periodically and detect new files. Perhaps Quartz and some sort of cache? You
need something to read in these files quickly and then pass the payload to your processing logic efficiently.
Finally, your system needs to work with that payload.

Spring Integration frees you from all that infrastructure code; all you need to do is configure it. There are
some issues with dealing with file system–based processing, however, that are up to you to resolve. Behind
the scenes, Spring Integration is still dealing with polling the file system and detecting new files. It can’t
possibly have a semantically correct idea for your application of when a file is “completely” written, and thus
providing a way around that is up to you.

Several approaches exist. You might write out a file and then write another zero-byte file. The presence
of that file would mean it’s safe to assume that the real payload is present. Configure Spring Integration to
look for that file. If it finds it, it knows that there’s another file (perhaps with the same name and a different
file extension?) and that it can start reading it/working with it. Another solution along the same line is to
have the client (“producer”) write the file to the directory using a name that the glob pattern that Spring
Integration is using to poll the directory won’t detect. Then, when it’s finished writing, issue an mv command
if you trust your file system to do the right thing there.

Let’s revisit the first solution, but this time with a file-based adapter. The configuration looks
conceptually the same as before, except the configuration for the adapter has changed, and with that has
gone a lot of the configuration for the JMS adapter, like the connection factory. Instead, you tell Spring
Integration about a different source from whence messages will come: the file system.

package com.apress.springrecipes.springintegration;

import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.ComponentScan;
import org.springframework.context.annotation.Configuration;
import org.springframework.integration.config.EnableIntegration;
import org.springframework.integration.dsl.IntegrationFlow;
import org.springframework.integration.dsl.IntegrationFlows;
import org.springframework.integration.dsl.Pollers;
import org.springframework.integration.file.dsl.Files;

import java.io.File;
import java.util.concurrent.TimeUnit;

@Configuration
@EnableIntegration
@ComponentScan
public class IntegrationConfiguration {

 @Bean
 public InboundHelloWorldFileMessageProcessor messageProcessor() {
 return new InboundHelloWorldFileMessageProcessor();
 }

Chapter 15 ■ Spring integration

667

 @Bean
 public IntegrationFlow inboundFileFlow(@Value("${user.home}/inboundFiles/new/") File

directory) {
 return IntegrationFlows
 .from(
 Files.inboundAdapter(directory).patternFilter("*.csv"),
 c -> c.poller(Pollers.fixedRate(10, TimeUnit.SECONDS)))
 .handle(messageProcessor())
 .get();
 }
}

This is nothing you haven’t already seen, really. The code for Files.inboundAdapter is the only
new element. The code for the @ServiceActivator annotation has changed to reflect the fact that you’re
expecting a message containing a message of type Message<java.io.File>.

package com.apress.springrecipes.springintegration;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.integration.annotation.ServiceActivator;
import org.springframework.messaging.Message;

import java.io.File;

public class InboundHelloWorldFileMessageProcessor {
 private final Logger logger = LoggerFactory.getLogger(InboundHelloWorldFileMessage

Processor.class);

 @ServiceActivator
 public void handleIncomingFileMessage(Message<File> inboundJmsMessage)
 throws Throwable {
 File filePayload = inboundJmsMessage.getPayload();
 logger.debug("absolute path: {}, size: {}", filePayload.getAbsolutePath(),

filePayload.length());
 }
}

15-5. Transform a Message from One Type to Another
Problem
You want to send a message into the bus and transform it before working with it further. Usually, this is done
to adapt the message to the requirements of a component downstream. You might also want to transform a
message by enriching it—adding extra headers or augmenting the payload so that components downstream
in the processing pipeline can benefit from it.

Chapter 15 ■ Spring integration

668

Solution
Use a transformer component to take a Message<T> interface of a payload and send Message<T> out with
a payload of a different type. You can also use the transformer to add extra headers or update the values of
headers for the benefit of components downstream in the processing pipeline.

How It Works
Spring Integration provides a transformer message endpoint to permit the augmentation of the message
headers or the transformation of the message itself. In Spring Integration, components are chained together,
and output from one component is returned by way of the method invoked for that component. The return
value of the method is passed out on the “reply channel” for the component to the next component, which
receives it as an input parameter. A transformer component lets you change the type of the object being
returned or add extra headers, and that updated object is what is passed to the next component in the chain.

Modify a Message’s Payload
The configuration of a transformer component is very much in keeping with everything you’ve seen so far.

package com.apress.springrecipes.springintegration;

import org.springframework.integration.annotation.Transformer;
import org.springframework.messaging.Message;

import java.util.Map;

public class InboundJMSMessageToCustomerTransformer {

 @Transformer
 public Customer transformJMSMapToCustomer(
 Message<Map<String, Object>> inboundSprignIntegrationMessage) {
 Map< String, Object> jmsMessagePayload =

inboundSprignIntegrationMessage.getPayload();
 Customer customer = new Customer();
 customer.setFirstName((String) jmsMessagePayload.get("firstName"));
 customer.setLastName((String) jmsMessagePayload.get("lastName"));
 customer.setId((Long) jmsMessagePayload.get("id"));
 return customer;
 }
}

Nothing terribly complex is happening here: a Message<T> interface of type Map<String,Object> is
passed in. The values are manually extracted and used to build an object of type Customer. The Customer
object is returned, which has the effect of passing it out on the reply channel for this component. The next
component in the configuration will receive this object as its input Message<T>.

The solution is mostly the same as you’ve seen, but there is a new transformer element.

Chapter 15 ■ Spring integration

669

package com.apress.springrecipes.springintegration;

import javax.jms.ConnectionFactory;

import org.apache.activemq.ActiveMQConnectionFactory;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.ComponentScan;
import org.springframework.context.annotation.Configuration;
import org.springframework.integration.config.EnableIntegration;
import org.springframework.integration.dsl.IntegrationFlow;
import org.springframework.integration.dsl.IntegrationFlows;
import org.springframework.integration.jms.dsl.Jms;
import org.springframework.jms.connection.CachingConnectionFactory;
import org.springframework.jms.core.JmsTemplate;

@Configuration
@EnableIntegration
@ComponentScan
public class IntegrationConfiguration {

 @Bean
 public CachingConnectionFactory connectionFactory() {
 Acti veMQConnectionFactory connectionFactory =

new ActiveMQConnectionFactory("tcp://localhost:61616");
 return new CachingConnectionFactory(connectionFactory);
 }

 @Bean
 public JmsTemplate jmsTemplate(ConnectionFactory connectionFactory) {
 return new JmsTemplate(connectionFactory);
 }

 @Bean
 public InboundJMSMessageToCustomerTransformer customerTransformer() {
 return new InboundJMSMessageToCustomerTransformer();
 }

 @Bean
 public InboundCustomerServiceActivator customerServiceActivator() {
 return new InboundCustomerServiceActivator();
 }

 @Bean
 public IntegrationFlow jmsInbound(ConnectionFactory connectionFactory) {
 return IntegrationFlows
 . from(Jms.messageDrivenChannelAdapter(connectionFactory).

extractPayload(true).destination("recipe-15-5"))
 .transform(customerTransformer())
 .handle(customerServiceActivator())
 .get();
 }
}

Chapter 15 ■ Spring integration

670

Here, you’re specifying a messageDrivenChannelAdapter component that moves the incoming content
to an InboundJMSMessageToCustomerTransformer, which transforms it into a Customer, and that Customer is
sent to the InboundCustomerServiceActivator.

The code in the next component can now declare a dependency on the Customer interface with
impunity. You can, with transformers, receive messages from any number of sources and transform them
into a Customer so that you can reuse the InboundCustomerServiceActivator instance.

package com.apress.springrecipes.springintegration;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.integration.annotation.ServiceActivator;
import org.springframework.messaging.Message;

public class InboundCustomerServiceActivator {
 private static final Logger logger = LoggerFactory.getLogger(InboundCustomerService

Activator.class);

 @ServiceActivator
 public void doSomethingWithCustomer(Message<Customer> customerMessage) {
 Customer customer = customerMessage.getPayload();
 logger.debug("id={}, firstName: {}, lastName: {}",
 customer.getId(), customer.getFirstName(), customer.getLastName());
 }
}

Modify a Message’s Headers
Sometimes changing a message’s payload isn’t enough. Sometimes you want to update the payload as well
as the headers. Doing this is slightly more interesting because it involves using the MessageBuilder<T> class,
which allows you to create new Message<T> objects with any specified payload and any specified header
data. The XML configuration is identical in this case.

package com.apress.springrecipes.springintegration;

import org.springframework.integration.annotation.Transformer;
import org.springframework.integration.core.Message;
import org.springframework.integration.message.MessageBuilder;

import java.util.Map;

public class InboundJMSMessageToCustomerTransformer {
 @Transformer
 public Message<Customer> transformJMSMapToCustomer(
 Message<Map<String, Object>> inboundSpringIntegrationMessage) {
 Map<String, Object> jmsMessagePayload =
 inboundSpringIntegrationMessage.getPayload();
 Customer customer = new Customer();
 customer.setFirstName((String) jmsMessagePayload.get("firstName"));
 customer.setLastName((String) jmsMessagePayload.get("lastName"));
 customer.setId((Long) jmsMessagePayload.get("id"));

Chapter 15 ■ Spring integration

671

 return MessageBuilder.withPayload(customer)
 .copyHeadersIfAbsent(inboundSpringIntegrationMessage.getHeaders())
 .setHeaderIfAbsent("randomlySelectedForSurvey", Math.random() > .5)
 .build();
 }
}

As before, this code is simply a method with an input and an output. The output is constructed
dynamically using MessageBuilder<T> to create a message that has the same payload as the input message
as well as copy the existing headers and adds an extra header: randomlySelectedForSurvey.

15-6. Handle Errors Using Spring Integration
Problem
Spring Integration brings together systems distributed across different nodes; computers; and services,
protocol, and language stacks. Indeed, a Spring Integration solution might not even finish in remotely the
same time period as when it started. Exception handling, then, can never be as simple as a language-level
try/catch block in a single thread for any component with asynchronous behavior. This implies that many
of the kinds of solutions you’re likely to build, with channels and queues of any kind, need a way of signaling
an error that is distributed and natural to the component that created the error. Thus, an error might get sent
over a JMS queue on a different continent, or in process, on a queue in a different thread.

Solution
Use Spring Integration’s support for an error channel, both implicitly and explicitly via code.

How It Works
Spring Integration provides the ability to catch exceptions and send them to an error channel of your
choosing. By default, it’s a global channel called errorChannel. By default Spring Integration registers
a handler called LoggingHandler to this channel, which does nothing more than log the exception and
stacktrace. To make this work, you have to tell the message-driven channel adapter that you want the error to
be sent to errorChannel; you can do this by configuring the error channel attribute.

@Bean
public IntegrationFlow jmsInbound(ConnectionFactory connectionFactory) {
 return IntegrationFlows
 . from(Jms.messageDrivenChannelAdapter(connectionFactory).extractPayload(true).

destination("recipe-15-6").errorChannel("errorChannel"))
 .transform(customerTransformer())
 .handle(customerServiceActivator())
 .get();
}

Chapter 15 ■ Spring integration

672

Use a Custom Handler to Handle Exceptions
Of course, you can also have components subscribe to messages from this channel to override the
exception-handling behavior. You can create a class that will be invoked whenever a message comes in on
the errorChannel channel.

@Bean
public IntegrationFlow errorFlow() {
 return IntegrationFlows
 .from("errorChannel")
 .handle(errorHandlingServiceActivator())
 .get();
}

The Java code is exactly as you’d expect it to be. Of course, the component that receives the error
message from the errorChannel channel doesn’t need to be a service activator. You are just using it for
convenience here. The code for the following service activator depicts some of the machinations you might
go through to build a handler for errorChannel:

package com.apress.springrecipes.springintegration;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.integration.annotation.ServiceActivator;
import org.springframework.messaging.Message;
import org.springframework.messaging.MessagingException;

public class DefaultErrorHandlingServiceActivator {
 private static final Logger logger = LoggerFactory.getLogger(DefaultErrorHandlingService

Activator.class);

 @ServiceActivator
 public void handleThrowable(Message<Throwable> errorMessage)
 throws Throwable {
 Throwable throwable = errorMessage.getPayload();
 logger.debug("Message: {}", throwable.getMessage(), throwable);

 if (throwable instanceof MessagingException) {
 Message<?> failedMessage = ((MessagingException) throwable).getFailedMessage();

 if (failedMessage != null) {
 // do something with the original message
 }
 } else {
 // it's something that was thrown in the execution of code in some component you

created
 }
 }
}

Chapter 15 ■ Spring integration

673

All errors thrown from Spring Integration components will be a subclass of MessagingException.
MessagingException carries a pointer to the original Message that caused an error, which you can dissect for
more context information. In the example, you’re doing a nasty instanceof. Clearly, being able to delegate
to custom exception handlers based on the type of exception would be useful.

Route to Custom Handlers Based on the Type of Exception
Sometimes more specific error handling is required. In the following code, this router is configured as an
exception-type router, which in turn listens to errorChannel. It then splinters off, using the type of the
exception as the predicate in determining which channel should get the results.

@Bean
public ErrorMessageExceptionTypeRouter exceptionTypeRouter() {
 ErrorMessageExceptionTypeRouter router = new ErrorMessageExceptionTypeRouter();
 router.setChannelMapping(MyCustomException.class.getName(), "customExceptionChannel");
 router.setChannelMapping(RuntimeException.class.getName(), "runtimeExceptionChannel");
 router.setChannelMapping(MessageHandlingException.class.getName(),

"messageHandlingExceptionChannel");
 return router;
}

@Bean
public IntegrationFlow errorFlow() {
 return IntegrationFlows
 .from("errorChannel")
 .route(exceptionTypeRouter())
 .get();
}

Build a Solution with Multiple Error Channels
The preceding example might work fine for simple cases, but often different integrations require different
error-handling approaches, which implies that sending all the errors to the same channel can eventually
lead to a large switch-laden class that’s too complex to maintain. Instead, it’s better to selectively route
error messages to the error channel most appropriate to each integration. This avoids centralizing all error
handling. One way to do that is to explicitly specify on what channel errors for a given integration should
go. The following example shows a component (service activator) that, upon receiving a message, adds a
header indicating the name of the error channel. Spring Integration will use that header and forward errors
encountered in the processing of this message to that channel.

package com.apress.springrecipes.springintegration;

import org.apache.log4j.Logger;
import org.springframework.integration.annotation.ServiceActivator;
import org.springframework.integration.core.Message;
import org.springframework.integration.core.MessageHeaders;
import org.springframework.integration.message.MessageBuilder;

Chapter 15 ■ Spring integration

674

public class ServiceActivatorThatSpecifiesErrorChannel {
 private static final Logger logger = Logger.getLogger(
 ServiceActivatorThatSpecifiesErrorChannel.class);

 @ServiceActivator
 public Message<?> startIntegrationFlow(Message<?> firstMessage)
 throws Throwable {
 return MessageBuilder.fromMessage(firstMessage).
 setHeaderIfAbsent(MessageHeaders.ERROR_CHANNEL,
 "errorChannelForMySolution").build();
 }
}

Thus, all errors that come from the integration in which this component is used will be directed to
customErrorChannel, to which you can subscribe any component you like.

15-7. Fork Integration Control: Splitters and Aggregators
Problem
You want to fork the process flow from one component to many, either all at once or to a single one based on
a predicate condition.

Solution
You can use a splitter component (and maybe its cohort, the aggregator component) to fork and join
(respectively) control of processing.

How It Works
One of the fundamental cornerstones of an ESB is routing. You’ve seen how components can be chained
together to create sequences in which progression is mostly linear. Some solutions require the capability to
split a message into many constituent parts. One reason this might be is that some problems are parallel in
nature and don’t depend on each other in order to complete. You should strive to achieve the efficiencies of
parallelism wherever possible.

Use a Splitter
It’s often useful to divide large payloads into separate messages with separate processing flows. In Spring
Integration, this is accomplished by using a splitter component. A splitter takes an input message and asks
you, the user of the component, on what basis it should split Message<T>: you’re responsible for providing
the split functionality. Once you’ve told Spring Integration how to split Message<T>, it forwards each result
out on the output channel of the splitter component. In a few cases, Spring Integration ships with useful
splitters that require no customization. One example is the splitter provided to partition an XML payload
along an XPath query, XPathMessageSplitter.

One example of a useful application of a splitter might be a text file with rows of data, each of which
must be processed. Your goal is to be able to submit each row to a service that will handle the processing.
What’s required is a way to extract each row and forward each row as a new Message<T>. The configuration
for such a solution looks like this:

Chapter 15 ■ Spring integration

675

@Configuration
@EnableIntegration
public class IntegrationConfiguration {

 @Bean
 public CustomerBatchFileSplitter splitter() {
 return new CustomerBatchFileSplitter();
 }

 @Bean
 public CustomerDeletionServiceActivator customerDeletionServiceActivator() {
 return new CustomerDeletionServiceActivator();
 }

 @Bean
 public IntegrationFlow fileSplitAndDelete(@Value("file:${user.home}/customerstoremove/

new/") File inputDirectory) throws Exception {

 return IntegrationFlows.from(
 Files.inboundAdapter(inputDirectory).patternFilter("customerstoremove-*.txt"),

c -> c.poller(Pollers.fixedRate(1, TimeUnit.SECONDS)))
 .split(splitter())
 .handle(customerDeletionServiceActivator())
 .get();
 }
}

The configuration for this is not terribly different from the previous solutions. The Java code is just
about the same as well, except that the return type of the method annotated by the @Splitter annotation is
of type java.util.Collection.

package com.apress.springrecipes.springintegration;

import org.springframework.integration.annotation.Splitter;

import java.io.File;
import java.io.IOException;
import java.nio.file.Files;
import java.util.Collection;

public class CustomerBatchFileSplitter {

 @Splitter
 public Collection<String> splitAFile(File file) throws IOException {
 System.out.printf("Reading %s....%n", file.getAbsolutePath());
 return Files.readAllLines(file.toPath());
 }
}

Chapter 15 ■ Spring integration

676

A message payload is passed in as a java.io.File component, and the contents are read. The result
(a collection or array value; in this case, a Collection<String> collection) is returned. Spring Integration
executes a kind of foreach on the results, sending each value in the collection out on the output channel
configured for the splitter. Often, you split messages so that the individual pieces can be forwarded to
processing that’s more focused. Because the message is more manageable, the processing requirements are
dampened. This is true in many different architectures. In map/reduce solutions, tasks are split and then
processed in parallel, and the fork/join constructs in a BPM system let control flow proceed in parallel so
that the total work product can be achieved quicker.

Use Aggregators
At some point you’ll need to do the reverse: combine many messages into one and create a single result
that can be returned on the output channel. An @Aggregator collects a series of messages (based on some
correlation that you help Spring Integration make between the messages) and publishes a single message
to the components downstream. Suppose that you know you’re expecting 22 different messages from 22
actors in the system, but you don’t know when. This is similar to a company that auctions off a contract and
collects all the bids from different vendors before choosing the ultimate vendor. The company can’t accept a
bid until all bids have been received from all companies. Otherwise, there’s the risk of prematurely signing a
contract that would not be in the best interest of the company. An aggregator is perfect for building this type
of logic.

There are many ways for Spring Integration to correlate incoming messages. To determine how many
messages to read until it can stop, it uses the class SequenceSizeCompletionStrategy, which reads a well-
known header value. (Aggregators are often used after a splitter. Thus, the default header value is provided
by the splitter, though there’s nothing stopping you from creating the header parameters yourself.) The
class SequenceSizeCompletionStrategy calculates how many it should look for and notes the index of the
message relative to the expected total count (e.g., 3/22).

For correlation when you might not have a size but know that you’re expecting messages
that share a common header value within a known time, Spring Integration provides
HeaderAttributeCorrelationStrategy. In this way, it knows that all messages with that value are from the
same group, in the same way that your last name identifies you as being part of a larger group.

Let’s revisit the previous example. Suppose that the file was split (by lines, each belonging to a new
customer) and subsequently processed. You now want to reunite the customers and do some cleanup with
everyone at the same time. In this example, you use the default completion strategy and correlation strategy,
and as such you can use the default aggregate() in the integration flow configuration. The result is passed
to another service activator, which will print a small summary.

package com.apress.springrecipes.springintegration;

import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.integration.config.EnableIntegration;
import org.springframework.integration.dsl.IntegrationFlow;
import org.springframework.integration.dsl.IntegrationFlows;
import org.springframework.integration.dsl.Pollers;
import org.springframework.integration.file.dsl.Files;

import java.io.File;
import java.util.concurrent.TimeUnit;

Chapter 15 ■ Spring integration

677

@Configuration
@EnableIntegration
public class IntegrationConfiguration {

 @Bean
 public CustomerBatchFileSplitter splitter() {
 return new CustomerBatchFileSplitter();
 }

 @Bean
 public CustomerDeletionServiceActivator customerDeletionServiceActivator() {
 return new CustomerDeletionServiceActivator();
 }

 @Bean
 public SummaryServiceActivator summaryServiceActivator() {
 return new SummaryServiceActivator();
 }

 @Bean
 public IntegrationFlow fileSplitAndDelete(@Value("file:${user.home}/customerstoremove/

new/") File inputDirectory) throws Exception {

 return IntegrationFlows.from(
 Files.inboundAdapter(inputDirectory).patternFilter("customerstoremove-*.txt"),

c -> c.poller(Pollers.fixedRate(1, TimeUnit.SECONDS)))
 .split(splitter())
 .handle(customerDeletionServiceActivator())
 .aggregate()
 .handle(summaryServiceActivator())
 .get();
 }
}

The Java code for SummaryServiceActivator is quite simple.

package com.apress.springrecipes.springintegration;

import org.springframework.integration.annotation.ServiceActivator;

import java.util.Collection;

public class SummaryServiceActivator {

 @ServiceActivator
 public void summary(Collection<Customer> customers) {
 System.out.printf("Removed %s customers.%n", customers.size());
 }
}

Chapter 15 ■ Spring integration

678

15-8. Implement Conditional Routing with Routers
Problem
You want to conditionally move a message through different processes based on some criteria. This is the
EAI equivalent to an if/else branch.

Solution
You can use a router component to alter the processing flow based on some predicate. You can also use a
router to multicast a message to many subscribers (as you did with the splitter).

How It Works
With a router you can specify a known list of channels on which the incoming Message object should be
passed. This has some powerful implications. It means you can change the flow of a process conditionally,
and it also means you can forward a Message object to as many (or as few) channels as you want. There
are some convenient default routers available to fill common needs, such as payload-type–based routing
(PayloadTypeRouter) and routing to a group or list of channels (RecipientListRouter).

Imagine, for example, a processing pipeline that routes customers with high credit scores to one
service and customers with lower credit scores to another process in which the information is queued up
for a human audit and verification cycle. The configuration is, as usual, very straightforward. The following
example shows the configuration. One router element, which in turn delegates the routing logic to a class, is
CustomerCreditScoreRouter.

@Bean
public IntegrationFlow fileSplitAndDelete(@Value("file:${user.home}/customerstoimport/new/")
File inputDirectory) throws Exception {

 return IntegrationFlows.from(
 Files.inboundAdapter(inputDirectory).patternFilter("customers-*.txt"), c ->

c.poller(Pollers.fixedRate(1, TimeUnit.SECONDS)))
 .split(splitter())
 .transform(transformer())
 .<Customer, Boolean>route(c -> c.getCreditScore() > 770,
 m -> m
 .channelMapping(Boolean.TRUE, "safeCustomerChannel")
 .channelMapping(Boolean.FALSE, "riskyCustomerChannel").applySequence(false)
).get();
}

You could use a class with a method annotated with @Router instead. It feels a lot like a workflow
engine’s conditional element, or even a JSF backing-bean method, in that it extricates the routing logic into
the XML configuration, away from code, delaying the decision until runtime. In the example, the Strings
returned are the names of the channels on which the Message component should pass.

Chapter 15 ■ Spring integration

679

package com.apress.springrecipes.springintegration;

import org.springframework.integration.annotation.Router;

public class CustomerCreditScoreRouter {

 @Router
 public String routeByCustomerCreditScore(Customer customer) {
 if (customer.getCreditScore() > 770) {
 return "safeCustomerChannel";
 } else {
 return "riskyCustomerChannel";
 }
 }
}

If you decide that you’d rather not let Message<T> pass and want to stop processing, you can return null
instead of a String.

15-9. Stage Events Using Spring Batch
Problem
You have a file with a million records in it. This file is too big to handle as one event; it’s far more natural to
react to each row as an event.

Solution
Spring Batch works very well with these types of solutions. It allows you to take an input file or a payload and
reliably and systematically decompose it into events that an ESB can work with.

How It Works
Spring Integration does support reading files into the bus, and Spring Batch does support providing custom,
unique endpoints for data. However, just like Mom always says, “just because you can doesn’t mean you
should.” Although it seems as if there’s a lot of overlap here, it turns out that there is a distinction (albeit
a fine one). While both systems will work with files and message queues, or anything else you could
conceivably write code to talk to, Spring Integration doesn’t do well with large payloads because it’s hard to
deal with something as large as a file with a million rows that might require hours of work as an event. That’s
simply too big a burden for an ESB. At that point, the term event has no meaning. A million records in a CSV
file isn’t an event on a bus; it’s a file with a million records, each of which might in turn be events. It’s a subtle
distinction.

A file with a million rows needs to be decomposed into smaller events. Spring Batch can help here: it
allows you to systematically read through, apply validations, and optionally skip and retry invalid records.
The processing can begin on an ESB such as Spring Integration. Spring Batch and Spring Integration can be
used together to build truly scalable decoupled systems.

Staged event-driven architecture (SEDA) is an architecture style that deals with this sort of processing
situation. In SEDA, you dampen the load on components of the architecture by staging it in queues and
advance only those the components downstream can handle. Put another way, imagine video processing.

Chapter 15 ■ Spring integration

680

If you ran a site with a million users uploading video that in turn needed to be transcoded and you had only
ten servers, your system would fail if your system attempted to process each video as soon as it received the
uploaded video. Transcoding can take hours and pegs a CPU (or multiple CPUs!) while the system works.
The most sensible thing to do would be to store the file and then, as capacity permits, process each one. In
this way, the load on the nodes that handle transcoding is managed. There’s always only enough work to
keep the machine humming, but not overrun.

Similarly, no processing system (such as an ESB) can deal with a million records at once efficiently.
Strive to decompose bigger events and messages into smaller ones. Let’s imagine a hypothetical solution
designed to accommodate a drop of batch files representing hourly sales destined for fulfillment. The batch
files are dropped onto a mount that Spring Integration is monitoring. Spring Integration kicks off processing
as soon as it sees a new file. Spring Integration tells Spring Batch about the file and launches a Spring Batch
job asynchronously.

Spring Batch reads the file, transforms the records into objects, and writes the output to a JMS topic
with a key correlating the original batch to the JMS message. Naturally, this takes half a day to get done, but
it does get done. Spring Integration, completely unaware that the job it started half a day ago is now finished,
begins popping messages off the topic, one by one. Processing to fulfill the records would begin. Simple
processing involving multiple components might begin on the ESB.

If fulfillment is a long-lived process with a long-lived, conversational state involving many actors,
perhaps the fulfillment for each record could be farmed to a BPM engine. The BPM engine would thread
together the different actors and work lists and allow work to continue over the course of days instead of the
small millisecond time frames Spring Integration is more geared to. In this example, we talked about using
Spring Batch as a springboard to dampen the load for components downstream. In this case, the component
downstream was again a Spring Integration process that took the work and set it up to be funneled into a
BPM engine where final processing could begin. Spring Integration could use directory polling as a trigger to
start a batch job and supply the name of the file to process. To launch a job from Spring Integration, Spring
Batch provides the JobLaunchingMessageHandler class. This class takes a JobLaunchRequest instance
to determine which job with which parameters to start. You have to create a transformer to change the
incoming Message<File> to a JobLaunchRequest instance.

The transformer could look like the following:

package com.apress.springrecipes.springintegration;

import org.springframework.batch.core.Job;
import org.springframework.batch.core.JobParametersBuilder;
import org.springframework.batch.integration.launch.JobLaunchRequest;
import org.springframework.integration.annotation.Transformer;

import java.io.File;

public class FileToJobLaunchRequestTransformer {

 private final Job job;
 private final String fileParameterName;

 public FileToJobLaunchRequestTransformer(Job job, String fileParameterName) {
 this.job=job;
 this.fileParameterName=fileParameterName;
 }

Chapter 15 ■ Spring integration

681

 @Transformer
 public JobLaunchRequest transform(File file) throws Exception {

 JobParametersBuilder builder = new JobParametersBuilder();
 builder.addString(fileParameterName, file.getAbsolutePath());
 return new JobLaunchRequest(job, builder.toJobParameters());
 }
}

The transformer needs a Job object and a filename parameter to be constructed; this parameter is used
in the Spring Batch job to determine which file needs to be loaded. The incoming message is transformed in
a JobLaunchRequest using the full name of the file as a parameter value. This request can be used to launch
a batch job.

To wire everything together, you can use the following configuration (note the Spring Batch setup is
missing here; see Chapter 11 for information on setting up Spring Batch):

package com.apress.springrecipes.springintegration;

import org.springframework.batch.core.Job;
import org.springframework.batch.core.launch.JobLauncher;
import org.springframework.batch.integration.launch.JobLaunchingMessageHandler;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Bean;
import org.springframework.integration.dsl.IntegrationFlow;
import org.springframework.integration.dsl.IntegrationFlows;
import org.springframework.integration.dsl.Pollers;
import org.springframework.integration.file.dsl.Files;

import java.io.File;
import java.util.concurrent.TimeUnit;

public class IntegrationConfiguration {

 @Bean
 public FileToJobLaunchRequestTransformer transformer(Job job) {
 return new FileToJobLaunchRequestTransformer(job, "filename");
 }

 @Bean
 public JobLaunchingMessageHandler jobLaunchingMessageHandler(JobLauncher jobLauncher) {
 return new JobLaunchingMessageHandler(jobLauncher);
 }

 @Bean
 public IntegrationFlow fileToBatchFlow(@Value("file:${user.home}/customerstoimport/

new/") File directory, FileToJobLaunchRequestTransformer transformer,
JobLaunchingMessageHandler handler) {

 return IntegrationFlows
 .from(Files.inboundAdapter(directory).patternFilter("customers-*.txt"),

c -> c.poller(Pollers.fixedRate(10, TimeUnit.SECONDS)))
 .transform(transformer)

http://dx.doi.org/10.1007/978-1-4842-2790-9_11

Chapter 15 ■ Spring integration

682

 .handle(handler)
 .get();

 }

}

FileToJobLaunchRequestTransformer is configured as well as JobLaunchingMessageHandler. A file-
inbound channel adapter is used to poll for files. When a file is detected, a message is placed on a channel.
A chain is configured to listen to that channel. When a message is received, it is first transformed and next
passed on to JobLaunchingMessageHandler.

Now a batch job will be launched to process the file. A typical job would probably use a
FlatFileItemReader to actually read the file passed using the filename parameter. A JmsItemWriter could
be used to write messages per read row on a topic. In Spring Integration, a JMS-inbound channel adapter
could be used to receive messages and process them.

15-10. Use Gateways
Problem
You want to expose an interface to clients of your service, without betraying the fact that your service is
implemented in terms of messaging middleware.

Solution
Use a gateway—a pattern from the classic book Enterprise Integration Patterns by Gregor Hohpe and Bobby
Woolf—that enjoys rich support in Spring Integration.

How It Works
A gateway is a distinct animal, similar to a lot of other patterns but ultimately different enough to warrant
its own consideration. You used adapters in previous examples to enable two systems to speak in terms of
foreign, loosely coupled, middleware components. This foreign component can be anything: the file system,
JMS queues/topics, Twitter, and so on.

You also know what a façade is, serving to abstract away the functionality of other components in an
abbreviated interface to provide courser-grained functionality. You might use a façade to build an interface
oriented around vacation planning that in turn abstracts away the minutiae of using a car rental, hotel
reservation, and airline reservation system.

You build a gateway, on the other hand, to provide an interface for your system that insulates clients
from the middleware or messaging in your system so that they’re not dependent on JMS or Spring
Integration APIs, for example. A gateway allows you to express compile-time constraints on the inputs and
outputs of your system.

You might want to do this for several reasons. First, it’s cleaner. Secondly if you have the latitude to insist
that clients comply with an interface, this is a good way to provide that interface. Your use of middleware
can be an implementation detail. Perhaps your architecture’s messaging middleware can be to exploit
the performance increases had by leveraging asynchronous messaging, but you didn’t intend for those
performance gains to come at the cost of a precise, explicit, external-facing interface.

This feature—the capability to hide messaging behind a POJO interface—is interesting and has been
the focus of several other projects. Lingo, a project from Codehaus.org that is no longer under active

Chapter 15 ■ Spring integration

683

development, had such a feature that was specific to JMS and the Java EE Connector Architecture (JCA)—it
was originally used to talk about the Java Cryptography Architecture but is more commonly used for the Java
EE Connector Architecture now). Since then, the developers have moved on to work on Apache Camel.

In this recipe, you’ll explore Spring Integration’s core support for messaging gateways and explore its
support for message exchange patterns. Then, you’ll see how to completely remove implementation details
from the client-facing interface.

SimpleMessagingGateway
The most fundamental support for gateways comes from the Spring Integration class
SimpleMessagingGateway. The class provides the ability to specify a channel on which requests should
be sent and a channel on which responses are expected. Finally, the channel on which replies are sent
can be specified. This gives you the ability to express in-out and in-only patterns on top of your existing
messaging systems. This class supports working in terms of payloads, isolating you from the gory details of
the messages being sent and received. This is already one level of abstraction. You could, conceivably, use
SimpleMessagingGateway and Spring Integration’s concept of channels to interface with file systems, JMS,
e-mail, or any other system and deal simply with payloads and channels. There are implementations already
provided for you to support some of these common endpoints such as web services and JMS.

Let’s look at using a generic messaging gateway. In this example, you’ll send messages to a service
activator and then receive the response. You manually interface with SimpleMessageGateway so that you can
see how convenient it is.

package com.apress.springrecipes.springintegration;

import org.springframework.context.ConfigurableApplicationContext;
import org.springframework.context.annotation.AnnotationConfigApplicationContext;
import org.springframework.messaging.MessageChannel;

public class Main {
 public static void main(String[] args) {
 Conf igurableApplicationContext ctx =

new AnnotationConfigApplicationContext(AdditionConfiguration.class);
 MessageChannel request = ctx.getBean("request", MessageChannel.class);
 MessageChannel response = ctx.getBean("response", MessageChannel.class);

 SimpleMessagingGateway msgGateway = new SimpleMessagingGateway();
 msgGateway.setRequestChannel(request);
 msgGateway.setReplyChannel(response);
 msgGateway.setBeanFactory(ctx);
 msgGateway.afterPropertiesSet();
 msgGateway.start();

 Number result = msgGateway.convertSendAndReceive(new Operands(22, 4));

 System.out.printf("Result: %f%n", result.floatValue());

 ctx.close();

 }
}

Chapter 15 ■ Spring integration

684

The interface is straightforward. SimpleMessagingGateway needs a request and a response channel, and
it coordinates the rest. In this case, you’re doing nothing but forwarding the request to a service activator,
which in turn adds the operands and sends them out on the reply channel. The configuration is sparse
because most of the work is done in those five lines of Java code.

package com.apress.springrecipes.springintegration;

import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.integration.config.EnableIntegration;
import org.springframework.integration.dsl.IntegrationFlow;
import org.springframework.integration.dsl.IntegrationFlows;

@Configuration
@EnableIntegration
public class AdditionConfiguration {

 @Bean
 public AdditionService additionService() {
 return new AdditionService();
 }

 @Bean
 public IntegrationFlow additionFlow() {

 return IntegrationFlows
 .from("request")
 .handle(additionService(), "add")
 .channel("response")
 .get();
 }
}

Break the Interface Dependency
The previous example demonstrates what’s happening behind the scenes. You’re dealing only with Spring
Integration interfaces and are isolated from the nuances of the endpoints. However, there are still plenty
of inferred constraints that a client might easily fail to comply with. The simplest solution is to hide the
messaging behind an interface. Let’s look at building a fictional hotel reservation search engine. Searching
for a hotel might take a long time, and ideally processing should be offloaded to a separate server. An ideal
solution is JMS because you could implement the aggressive consumer pattern and scale simply by adding
more consumers. The client would still block waiting for the result, in this example, but the server (or
servers) would not be overloaded or in a blocking state.

You’ll build two Spring Integration solutions: one for the client (which will in turn contain the gateway)
and one for the service itself, which, presumably, is on a separate host connected to the client only by way of
well-known message queues.

Chapter 15 ■ Spring integration

685

Let’s look at the client configuration first. The first thing that the client configuration does is declare
a ConnectionFactory. Then you declare the flow that starts with the gateway for the VacationService
interface. The gateway element simply exists to identify the component and the interface, to which the proxy
is cast and made available to clients. jms-outbound-gateway is the component that does most of the work. It
takes the message you created and sends it to the request JMS destination, setting up the reply headers, and
so on. Finally, you declare a generic gateway element, which does most of the magic.

package com.apress.springrecipes.springintegration;

import com.apress.springrecipes.springintegration.myholiday.VacationService;
import org.apache.activemq.ActiveMQConnectionFactory;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.integration.config.EnableIntegration;
import org.springframework.integration.dsl.IntegrationFlow;
import org.springframework.integration.dsl.IntegrationFlows;
import org.springframework.integration.jms.dsl.Jms;
import org.springframework.jms.connection.CachingConnectionFactory;

import java.util.Arrays;

@Configuration
@EnableIntegration
public class ClientIntegrationContext {

 @Bean
 public CachingConnectionFactory connectionFactory() {
 Acti veMQConnectionFactory connectionFactory =

new ActiveMQConnectionFactory("tcp://localhost:61616");
 connectionFactory.setTrustAllPackages(true);
 return new CachingConnectionFactory(connectionFactory);
 }

 @Bean
 public IntegrationFlow vacationGatewayFlow() {
 return IntegrationFlows
 .from(VacationService.class)
 .handle(
 Jms.outboundGateway(connectionFactory())
 .requestDestination("inboundHotelReservationSearchDestination")
 .replyDestination("outboundHotelReservationSearchResultsDestination"))
 .get();
 }

}

To be able to use VacationService as a gateway, it needs to be annotated with the @MessagingGateway
annotation, and the method that serves as the entry point needs to be annotated with @Gateway.

Chapter 15 ■ Spring integration

686

package com.apress.springrecipes.springintegration.myholiday;

import org.springframework.integration.annotation.Gateway;
import org.springframework.integration.annotation.MessagingGateway;

import java.util.List;

@MessagingGateway
public interface VacationService {

 @Gateway
 List<HotelReservation> findHotels(HotelReservationSearch hotelReservationSearch);
}

This is the client-facing interface. There is no coupling between the client-facing interface exposed via
the gateway component and the interface of the service that ultimately handles the messages. You use the
interface for the service and the client to simplify the names needed to understand everything that’s going
on. This is not like traditional, synchronous remoting in which the service interface and the client interface
match.

In this example, you’re using two very simple objects for demonstration: HotelReservationSearch and
HotelReservation. There is nothing interesting about these objects in the slightest; they are simple POJOs
that implement Serializable and contain a few accessor/mutators to flesh out the example domain.

The following client Java code demonstrates how all of this comes together:

package com.apress.springrecipes.springintegration;

import com.apress.springrecipes.springintegration.myholiday.HotelReservation;
import com.apress.springrecipes.springintegration.myholiday.HotelReservationSearch;
import com.apress.springrecipes.springintegration.myholiday.VacationService;
import org.springframework.context.ConfigurableApplicationContext;
import org.springframework.context.annotation.AnnotationConfigApplicationContext;

import java.time.LocalDate;
import java.time.ZoneId;
import java.util.Date;
import java.util.List;

public class Main {
 public static void main(String[] args) throws Throwable {
 // Start server
 Conf igurableApplicationContext serverCtx =

new AnnotationConfigApplicationContext(ServerIntegrationContext.class);

 // Start client and issue search
 Conf igurableApplicationContext clientCtx =

new AnnotationConfigApplicationContext(ClientIntegrationContext.class);

 VacationService vacationService = clientCtx.getBean(VacationService.class);

Chapter 15 ■ Spring integration

687

 LocalDate now = LocalDate.now();
 Date start = Date.from(now.plusDays(1).atStartOfDay(ZoneId.systemDefault()).

toInstant());
 Date stop = Date.from(now.plusDays(8).atStartOfDay(ZoneId.systemDefault()).

toInstant());
 Hote lReservationSearch hotelReservationSearch =

new HotelReservationSearch(200f, 2, start, stop);
 List<HotelReservation> results = vacationService.findHotels(hotelReservationSearch);

 System.out.printf("Found %s results.%n", results.size());
 results.forEach(r -> System.out.printf("\t%s%n", r));

 serverCtx.close();
 clientCtx.close();
 }
}

It just doesn’t get any cleaner than that! No Spring Integration interfaces whatsoever. You make
a request, searching is done, and you get the result back when the processing is done. The service
implementation for this setup is interesting, not because of what you’ve added but because of what’s not
there.

package com.apress.springrecipes.springintegration;

import com.apress.springrecipes.springintegration.myholiday.VacationServiceImpl;
import org.apache.activemq.ActiveMQConnectionFactory;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.integration.config.EnableIntegration;
import org.springframework.integration.dsl.IntegrationFlow;
import org.springframework.integration.dsl.IntegrationFlows;
import org.springframework.integration.jms.dsl.Jms;
import org.springframework.jms.connection.CachingConnectionFactory;

import java.util.Arrays;

@Configuration
@EnableIntegration
public class ServerIntegrationContext {

 @Bean
 public CachingConnectionFactory connectionFactory() {
 Acti veMQConnectionFactory connectionFactory =

new ActiveMQConnectionFactory("tcp://localhost:61616");
 connectionFactory.setTrustAllPackages(true);
 return new CachingConnectionFactory(connectionFactory);
 }

 @Bean
 public VacationServiceImpl vacationService() {
 return new VacationServiceImpl();
 }

Chapter 15 ■ Spring integration

688

 @Bean
 public IntegrationFlow serverIntegrationFlow() {
 return IntegrationFlows.from(
 Jms . inboundGateway(connectionFactory())

.destination("inboundHotelReservationSearchDestination"))
 .handle(vacationService())
 .get();
 }
}

Here, you’ve defined an inbound JMS gateway. The messages from the inbound JMS gateway are put on
a channel, whose messages are forwarded to a service activator, as you would expect. The service activator
is what handles actual processing. What’s interesting here is that there’s no mention of a response channel,
either for the service activator or for the inbound JMS gateway. The service activator looks, and fails to find, a
reply channel and so uses the reply channel created by the inbound JMS gateway component, which in turn
has created the reply channel based on the header metadata in the inbound JMS message. Thus, everything
just works without specification.

The implementation is a simple useless implementation of the interface.

package com.apress.springrecipes.springintegration.myholiday;

import org.springframework.integration.annotation.ServiceActivator;

import javax.annotation.PostConstruct;
import java.util.Arrays;
import java.util.List;

public class VacationServiceImpl implements VacationService {
 private List<HotelReservation> hotelReservations;

 @PostConstruct
 public void afterPropertiesSet() throws Exception {
 hotelReservations = Arrays.asList(
 new HotelReservation("Bilton", 243.200F),
 new HotelReservation("East Western", 75.0F),
 new HotelReservation("Thairfield Inn", 70F),
 new HotelReservation("Park In The Inn", 200.00F));
 }

 @ServiceActivator
 public List<HotelReservation> findHotels(HotelReservationSearch searchMsg) {
 try {
 Thread.sleep(1000);
 } catch (Throwable th) {
 }

 return this.hotelReservations;
 }
}

Chapter 15 ■ Spring integration

689

Summary
This chapter discussed building an integration solution using Spring Integration, an ESB-like framework
built on top of the Spring Framework. You were introduced to the core concepts of enterprise application
integration. You learned how to handle a few integration scenarios, including JMS and file polling.

In the next chapter, you will explore the capabilities of Spring in the field of testing.

691© Marten Deinum, Daniel Rubio, and Josh Long 2017
M. Deinum et al., Spring 5 Recipes, DOI 10.1007/978-1-4842-2790-9_16

CHAPTER 16

Spring Testing

In this chapter, you will learn about basic techniques you can use to test Java applications, as well as the
testing support features offered by the Spring Framework. These features can make your testing tasks easier
and lead you to better application design. In general, applications developed with the Spring Framework
and the dependency injection pattern are easy to test.

Testing is a key activity for ensuring quality in software development. There are many types of testing,
including unit testing, integration testing, functional testing, system testing, performance testing, and
acceptance testing. Spring’s testing support focuses on unit and integration testing, but it can also help with
other types of testing. Testing can be performed either manually or automatically. However, since automated
tests can be run repeatedly and continuously at different phases of a development process, they are highly
recommended, especially in agile development processes. The Spring Framework is an agile framework that
fits these kinds of processes.

Many testing frameworks are available on the Java platform. Currently, JUnit and TestNG are the most
popular. JUnit has a long history and a large user group in the Java community. TestNG is another popular
Java testing framework. Compared to JUnit, TestNG offers additional powerful features such as test grouping,
dependent test methods, and data-driven tests.

Spring’s testing support features have been offered by the Spring TestContext framework, which
abstracts the underlying testing framework with the following concepts:

•	 Test context: This encapsulates the context of a test’s execution, including the
application context, test class, current test instance, current test method, and current
test exception.

•	 Test context manager: This manages a test context for a test and triggers test
execution listeners at predefined test execution points, including when preparing
a test instance, before executing a test method (before any framework-specific
initialization methods), and after executing a test method (after any framework-
specific cleanup methods).

•	 Test execution listener: This defines a listener interface; by implementing this, you
can listen to test execution events. The TestContext framework provides several test
execution listeners for common testing features, but you are free to create your own.

Spring provides convenient TestContext support classes for JUnit and TestNG, with particular test
execution listeners preregistered. You can simply extend these support classes to use the TestContext
framework without having to know much about the framework details.

After finishing this chapter, you will understand the basic concepts and techniques of testing and the
popular Java testing frameworks JUnit and TestNG. You will also be able to create unit tests and integration
tests using the Spring TestContext framework.

Chapter 16 ■ Spring teSting

692

16-1. Create Tests with JUnit and TestNG
Problem
You want to create automated tests for your Java application so that they can be run repeatedly to ensure the
correctness of your application.

Solution
The most popular testing frameworks on the Java platform are JUnit and TestNG. Both JUnit and TestNG
allow you to annotate your test methods with the @Test annotation, so an arbitrary public method can be
run as a test case.

How It Works
Suppose you are going to develop a system for a bank. To ensure the system’s quality, you have to test every
part of it. First, let’s consider an interest calculator, whose interface is defined as follows:

package com.apress.springrecipes.bank;

public interface InterestCalculator {

 void setRate(double rate);
 double calculate(double amount, double year);
}

Each interest calculator requires a fixed interest rate to be set. Now, you can implement this calculator
with a simple interest formula, shown here:

package com.apress.springrecipes.bank;

public class SimpleInterestCalculator implements InterestCalculator {

 private double rate;

 public void setRate(double rate) {
 this.rate = rate;
 }

 public double calculate(double amount, double year) {
 if (amount < 0 || year < 0) {
 throw new IllegalArgumentException("Amount or year must be positive");
 }
 return amount * year * rate;
 }
}

Next, you will test this simple interest calculator with the popular testing frameworks JUnit and TestNG
(version 5).

Chapter 16 ■ Spring teSting

693

 ■ Tip Usually, a test and its target class are located in the same package, but the source files of tests are
stored in a separate directory (e.g., test) from the source files of other classes (e.g., src).

Test with JUnit
A test case is simply a public method with the @Test annotation. To set up data, you can annotate a method
with @Before. To clean up resources, you can annotate a method with @After. You can also annotate a public
static method with @BeforeClass or @AfterClass to have it run once before or after all test cases in the class.

You have to call the static assert methods declared in the org.junit.Assert class directly. However, you
can import all assert methods via a static import statement. You can create the following JUnit test cases to
test your simple interest calculator.

 ■ Note to compile and run test cases created for JUnit, you have to include JUnit on your CLASSPATH. if you
are using Maven, add the following dependency to your project:

<dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>4.12</version>
</dependency>

For gradle, add the following:

testCompile 'junit:junit:4.12'

package com.apress.springrecipes.bank;

import static org.junit.Assert.*;

import org.junit.Before;
import org.junit.Test;

public class SimpleInterestCalculatorJUnit4Tests {

 private InterestCalculator interestCalculator;

 @Before
 public void init() {
 interestCalculator = new SimpleInterestCalculator();
 interestCalculator.setRate(0.05);
 }

 @Test
 public void calculate() {
 double interest = interestCalculator.calculate(10000, 2);
 assertEquals(interest, 1000.0, 0);
 }

Chapter 16 ■ Spring teSting

694

 @Test(expected = IllegalArgumentException.class)
 public void illegalCalculate() {
 interestCalculator.calculate(-10000, 2);
 }
}

JUnit offers a powerful feature that allows you to expect an exception to be thrown in a test case. You can
simply specify the exception type in the expected attribute of the @Test annotation.

Test with TestNG
A TestNG test looks similar to a JUnit test, except that you have to use the classes and annotation types
defined by the TestNG framework.

 ■ Note to compile and run test cases created for testng, you have to add testng to your CLASSPATH. if you
are using Maven, add the following dependency to your project:

<dependency>
 <groupId>org.testng</groupId>
 <artifactId>testng</artifactId>
 <version>6.11</version>
</dependency>

For gradle, add the following:

testCompile 'org.testng:testng:6.11'

package com.apress.springrecipes.bank;

import static org.testng.Assert.*;

import org.testng.annotations.BeforeMethod;
import org.testng.annotations.Test;

public class SimpleInterestCalculatorTestNGTests {

 private InterestCalculator interestCalculator;

 @BeforeMethod
 public void init() {
 interestCalculator = new SimpleInterestCalculator();
 interestCalculator.setRate(0.05);
 }

 @Test
 public void calculate() {
 double interest = interestCalculator.calculate(10000, 2);
 assertEquals(interest, 1000.0);
 }

Chapter 16 ■ Spring teSting

695

 @Test(expectedExceptions = IllegalArgumentException.class)
 public void illegalCalculate() {
 interestCalculator.calculate(-10000, 2);
 }
}

 ■ Tip if you are using eclipse for development, you can download and install the testng eclipse plug-in from
http://testng.org/doc/eclipse.html to run testng tests in eclipse. again, you will see a green bar if all
your tests pass and a red bar otherwise.

One of the powerful features of TestNG is its built-in support for data-driven testing. TestNG cleanly
separates test data from test logic so that you can run a test method multiple times for different data sets.
In TestNG, test data sets are provided by data providers, which are methods with the @DataProvider
annotation.

package com.apress.springrecipes.bank;

import org.testng.annotations.BeforeMethod;
import org.testng.annotations.DataProvider;
import org.testng.annotations.Test;

import static org.testng.Assert.assertEquals;

public class SimpleInterestCalculatorTestNGTests {

 private InterestCalculator interestCalculator;

 @BeforeMethod
 public void init() {
 interestCalculator = new SimpleInterestCalculator();
 interestCalculator.setRate(0.05);
 }

 @DataProvider(name = "legal")
 public Object[][] createLegalInterestParameters() {
 return new Object[][]{new Object[]{10000, 2, 1000.0}};
 }

 @DataProvider(name = "illegal")
 public Object[][] createIllegalInterestParameters() {
 return new Object[][]{
 new Object[]{-10000, 2},
 new Object[]{10000, -2},
 new Object[]{-10000, -2}
 };
 }

http://testng.org/doc/eclipse.html

Chapter 16 ■ Spring teSting

696

 @Test(dataProvider = "legal")
 public void calculate(double amount, double year, double result) {
 double interest = interestCalculator.calculate(amount, year);
 assertEquals(interest, result);
 }

 @Test(
 dataProvider = "illegal",
 expectedExceptions = IllegalArgumentException.class)
 public void illegalCalculate(double amount, double year) {
 interestCalculator.calculate(amount, year);
 }
}

If you run the preceding test with TestNG, the calculate() method will be executed once, while the
illegalCalculate() method will be executed three times, as there are three data sets returned by the illegal
data provider.

16-2. Create Unit Tests and Integration Tests
Problem
A common testing technique is to test each module of your application in isolation and then test them in
combination. You want to apply this skill in testing your Java applications.

Solution
Unit tests are used to test a single programming unit. In object-oriented languages, a unit is usually a class
or a method. The scope of a unit test is a single unit, but in the real world, most units won’t work in isolation.
They often need to cooperate with others to complete their tasks. When testing a unit that depends on other
units, a common technique you can apply is to simulate the unit dependencies with stubs and mock objects,
both of which can reduce the complexity of your unit tests caused by dependencies.

A stub is an object that simulates a dependent object with the minimum number of methods required
for a test. The methods are implemented in a predetermined way, usually with hard-coded data. A stub
also exposes methods for a test to verify the stub’s internal states. In contrast to a stub, a mock object usually
knows how its methods are expected to be called in a test. The mock object then verifies the methods
actually called against the expected ones. In Java, there are several libraries that can help create mock
objects, such as Mockito, EasyMock, and jMock. The main difference between a stub and a mock object is
that a stub is usually used for state verification, while a mock object is used for behavior verification.

Integration tests, in contrast, are used to test several units in combination as a whole. They test if the
integration and interaction between units are correct. Each of these units should already have been tested
with unit tests, so integration testing is usually performed after unit testing.

Finally, note that applications developed using the principle of separating interface from
implementation and the dependency injection pattern are easy to test, both for unit testing and for
integration testing. This is because that principle and pattern can reduce coupling between different units of
your application.

Chapter 16 ■ Spring teSting

697

How It Works
First you will explore how to write a unit test for a single class, which will then be extended to testing a class
with mocked and/or stubbed colaborates. Finally you will take a look on how to write an integration test.

Create Unit Tests for Isolated Classes
The core functions of your bank system should be designed around customer accounts. First, you create the
following domain class, Account, with custom equals() and hashCode() methods:

package com.apress.springrecipes.bank;

public class Account {

 private String accountNo;
 private double balance;

 // Constructors, Getters and Setters
 ...

 @Override
 public boolean equals(Object o) {
 if (this == o) return true;
 if (o == null || getClass() != o.getClass()) return false;
 Account account = (Account) o;
 return Objects.equals(this.accountNo, account.accountNo);
 }

 @Override
 public int hashCode() {
 return Objects.hash(this.accountNo);
 }
}

Next, you define the following DAO interface for persisting account objects in your bank system’s
persistence layer:

package com.apress.springrecipes.bank;

public interface AccountDao {

 public void createAccount(Account account);
 public void updateAccount(Account account);
 public void removeAccount(Account account);
 public Account findAccount(String accountNo);
}

To demonstrate the unit testing concept, let’s implement this interface by using a map to store account
objects. The AccountNotFoundException and DuplicateAccountException classes are subclasses of
RuntimeException that you should be able to create yourself.

Chapter 16 ■ Spring teSting

698

package com.apress.springrecipes.bank;

import java.util.Collections;
import java.util.HashMap;
import java.util.Map;

public class InMemoryAccountDao implements AccountDao {

 private Map<String, Account> accounts;

 public InMemoryAccountDao() {
 accounts = Collections.synchronizedMap(new HashMap<String, Account>());
 }

 public boolean accountExists(String accountNo) {
 return accounts.containsKey(accountNo);
 }

 public void createAccount(Account account) {
 if (accountExists(account.getAccountNo())) {
 throw new DuplicateAccountException();
 }
 accounts.put(account.getAccountNo(), account);
 }

 public void updateAccount(Account account) {
 if (!accountExists(account.getAccountNo())) {
 throw new AccountNotFoundException();
 }
 accounts.put(account.getAccountNo(), account);
 }

 public void removeAccount(Account account) {
 if (!accountExists(account.getAccountNo())) {
 throw new AccountNotFoundException();
 }
 accounts.remove(account.getAccountNo());
 }

 public Account findAccount(String accountNo) {
 Account account = accounts.get(accountNo);
 if (account == null) {
 throw new AccountNotFoundException();
 }
 return account;
 }
}

Obviously, this simple DAO implementation doesn’t support transactions. However, to make it thread-
safe, you can wrap the map storing accounts with a synchronized map so that it will be accessed serially.

Chapter 16 ■ Spring teSting

699

Now, let’s create unit tests for this DAO implementation with JUnit. As this class doesn’t depend directly
on other classes, it’s easy to test. To ensure that this class works properly for exceptional cases as well as
normal cases, you should also create exceptional test cases for it. Typically, exceptional test cases expect an
exception to be thrown.

package com.apress.springrecipes.bank;

import static org.junit.Assert.*;

import org.junit.Before;
import org.junit.Test;

public class InMemoryAccountDaoTests {

 private static final String EXISTING_ACCOUNT_NO = "1234";
 private static final String NEW_ACCOUNT_NO = "5678";

 private Account existingAccount;
 private Account newAccount;
 private InMemoryAccountDao accountDao;

 @Before
 public void init() {
 existingAccount = new Account(EXISTING_ACCOUNT_NO, 100);
 newAccount = new Account(NEW_ACCOUNT_NO, 200);
 accountDao = new InMemoryAccountDao();
 accountDao.createAccount(existingAccount);
 }

 @Test
 public void accountExists() {
 assertTrue(accountDao.accountExists(EXISTING_ACCOUNT_NO));
 assertFalse(accountDao.accountExists(NEW_ACCOUNT_NO));
 }

 @Test
 public void createNewAccount() {
 accountDao.createAccount(newAccount);
 assertEquals(accountDao.findAccount(NEW_ACCOUNT_NO), newAccount);
 }

 @Test(expected = DuplicateAccountException.class)
 public void createDuplicateAccount() {
 accountDao.createAccount(existingAccount);
 }

 @Test
 public void updateExistedAccount() {
 existingAccount.setBalance(150);
 accountDao.updateAccount(existingAccount);
 assertEquals(accountDao.findAccount(EXISTING_ACCOUNT_NO), existingAccount);
 }

Chapter 16 ■ Spring teSting

700

 @Test(expected = AccountNotFoundException.class)
 public void updateNotExistedAccount() {
 accountDao.updateAccount(newAccount);
 }

 @Test
 public void removeExistedAccount() {
 accountDao.removeAccount(existingAccount);
 assertFalse(accountDao.accountExists(EXISTING_ACCOUNT_NO));
 }

 @Test(expected = AccountNotFoundException.class)
 public void removeNotExistedAccount() {
 accountDao.removeAccount(newAccount);
 }

 @Test
 public void findExistedAccount() {
 Account account = accountDao.findAccount(EXISTING_ACCOUNT_NO);
 assertEquals(account, existingAccount);
 }

 @Test(expected = AccountNotFoundException.class)
 public void findNotExistedAccount() {
 accountDao.findAccount(NEW_ACCOUNT_NO);
 }
}

Create Unit Tests for Dependent Classes Using Stubs and Mock Objects
Testing an independent class is easy, because you needn’t consider how its dependencies work and how
to set them up properly. However, testing a class that depends on results of other classes or services
(e.g., database services and network services) would be a little bit difficult. For example, let’s consider the
following AccountService interface in the service layer:

package com.apress.springrecipes.bank;

public interface AccountService {

 void createAccount(String accountNo);
 void removeAccount(String accountNo);
 void deposit(String accountNo, double amount);
 void withdraw(String accountNo, double amount);
 double getBalance(String accountNo);
}

The implementation of this service interface has to depend on an AccountDao object in the
persistence layer to persist account objects. The InsufficientBalanceException class is also a subclass of
RuntimeException that you have to create.

Chapter 16 ■ Spring teSting

701

package com.apress.springrecipes.bank;

public class AccountServiceImpl implements AccountService {

 private AccountDao accountDao;

 public AccountServiceImpl(AccountDao accountDao) {
 this.accountDao = accountDao;
 }

 public void createAccount(String accountNo) {
 accountDao.createAccount(new Account(accountNo, 0));
 }

 public void removeAccount(String accountNo) {
 Account account = accountDao.findAccount(accountNo);
 accountDao.removeAccount(account);
 }

 public void deposit(String accountNo, double amount) {
 Account account = accountDao.findAccount(accountNo);
 account.setBalance(account.getBalance() + amount);
 accountDao.updateAccount(account);
 }

 public void withdraw(String accountNo, double amount) {
 Account account = accountDao.findAccount(accountNo);
 if (account.getBalance() < amount) {
 throw new InsufficientBalanceException();
 }
 account.setBalance(account.getBalance() - amount);
 accountDao.updateAccount(account);
 }

 public double getBalance(String accountNo) {
 return accountDao.findAccount(accountNo).getBalance();
 }
}

A common technique in unit testing to reduce complexity caused by dependencies is to use stubs.
A stub must implement the same interface as the target object so that it can substitute for the target object.
For example, you can create a stub for AccountDao that stores a single customer account and implements
only the findAccount() and updateAccount() methods, as they are required for deposit() and withdraw().

package com.apress.springrecipes.bank;

import static org.junit.Assert.*;

import org.junit.Before;
import org.junit.Test;

Chapter 16 ■ Spring teSting

702

public class AccountServiceImplStubTests {

 private static final String TEST_ACCOUNT_NO = "1234";
 private AccountDaoStub accountDaoStub;
 private AccountService accountService;

 private class AccountDaoStub implements AccountDao {

 private String accountNo;
 private double balance;

 public void createAccount(Account account) {}
 public void removeAccount(Account account) {}

 public Account findAccount(String accountNo) {
 return new Account(this.accountNo, this.balance);
 }

 public void updateAccount(Account account) {
 this.accountNo = account.getAccountNo();
 this.balance = account.getBalance();
 }
 }

 @Before
 public void init() {
 accountDaoStub = new AccountDaoStub();
 accountDaoStub.accountNo = TEST_ACCOUNT_NO;
 accountDaoStub.balance = 100;
 accountService = new AccountServiceImpl(accountDaoStub);
 }

 @Test
 public void deposit() {
 accountService.deposit(TEST_ACCOUNT_NO, 50);
 assertEquals(accountDaoStub.accountNo, TEST_ACCOUNT_NO);
 assertEquals(accountDaoStub.balance, 150, 0);
 }

 @Test
 public void withdrawWithSufficientBalance() {
 accountService.withdraw(TEST_ACCOUNT_NO, 50);
 assertEquals(accountDaoStub.accountNo, TEST_ACCOUNT_NO);
 assertEquals(accountDaoStub.balance, 50, 0);
 }

 @Test(expected = InsufficientBalanceException.class)
 public void withdrawWithInsufficientBalance() {
 accountService.withdraw(TEST_ACCOUNT_NO, 150);
 }
}

Chapter 16 ■ Spring teSting

703

However, writing stubs yourself requires a lot of coding. A more efficient technique is to use mock objects.
The Mockito library is able to dynamically create mock objects that work in a record/playback mechanism.

 ■ Note to use Mockito for testing, you have to add it to your CLASSPATH. if you are using Maven, add the
following dependency to your project:

<dependency>
 <groupId>org.mockito</groupId>
 <artifactId>mockito-core</artifactId>
 <version>2.7.20</version>
 <scope>test</scope>
</dependency>

Or when using gradle, add the following:

testCompile 'org.mockito:mockito-core:2.7.20'

package com.apress.springrecipes.bank;

import org.junit.Before;
import org.junit.Test;

import static org.mockito.Mockito.*;

public class AccountServiceImplMockTests {

 private static final String TEST_ACCOUNT_NO = "1234";

 private AccountDao accountDao;
 private AccountService accountService;

 @Before
 public void init() {
 accountDao = mock(AccountDao.class);
 accountService = new AccountServiceImpl(accountDao);
 }

 @Test
 public void deposit() {
 // Setup
 Account account = new Account(TEST_ACCOUNT_NO, 100);
 when(accountDao.findAccount(TEST_ACCOUNT_NO)).thenReturn(account);

 // Execute
 accountService.deposit(TEST_ACCOUNT_NO, 50);

 // Verify
 verify(accountDao, times(1)).findAccount(any(String.class));
 verify(accountDao, times(1)).updateAccount(account);

 }

Chapter 16 ■ Spring teSting

704

 @Test
 public void withdrawWithSufficientBalance() {
 // Setup
 Account account = new Account(TEST_ACCOUNT_NO, 100);
 when(accountDao.findAccount(TEST_ACCOUNT_NO)).thenReturn(account);

 // Execute
 accountService.withdraw(TEST_ACCOUNT_NO, 50);

 // Verify
 verify(accountDao, times(1)).findAccount(any(String.class));
 verify(accountDao, times(1)).updateAccount(account);

 }

 @Test(expected = InsufficientBalanceException.class)
 public void testWithdrawWithInsufficientBalance() {
 // Setup
 Account account = new Account(TEST_ACCOUNT_NO, 100);
 when(accountDao.findAccount(TEST_ACCOUNT_NO)).thenReturn(account);

 // Execute
 accountService.withdraw(TEST_ACCOUNT_NO, 150);
 }
}

With Mockito, you can create a mock object dynamically for an arbitrary interface or class. This mock
can be instructed to have certain behavior for method calls, and you can use it to selectively verify whether
something has happened. In your test you want that in the findAccount method that a certain Account
object is returned. You use the Mockito.when method for this, and you can then either return a value, throw
an exception, or do more elaborate things with an Answer. The default behavior for the mock is to return
null. You use the Mockito.verify method to do selective verification of actions that should have happened.
You want to make sure that the findAccount method is called and that the account gets updated.

Create Integration Tests
Integration tests are used to test several units in combination to ensure that the units are properly integrated
and can interact correctly. For example, you can create an integration test to test AccountServiceImpl using
InMemoryAccountDao as the DAO implementation.

package com.apress.springrecipes.bank;

import static org.junit.Assert.*;

import org.junit.After;
import org.junit.Before;
import org.junit.Test;

Chapter 16 ■ Spring teSting

705

public class AccountServiceTests {

 private static final String TEST_ACCOUNT_NO = "1234";
 private AccountService accountService;

 @Before
 public void init() {
 accountService = new AccountServiceImpl(new InMemoryAccountDao());
 accountService.createAccount(TEST_ACCOUNT_NO);
 accountService.deposit(TEST_ACCOUNT_NO, 100);
 }

 @Test
 public void deposit() {
 accountService.deposit(TEST_ACCOUNT_NO, 50);
 assertEquals(accountService.getBalance(TEST_ACCOUNT_NO), 150, 0);
 }

 @Test
 public void withDraw() {
 accountService.withdraw(TEST_ACCOUNT_NO, 50);
 assertEquals(accountService.getBalance(TEST_ACCOUNT_NO), 50, 0);
 }

 @After
 public void cleanup() {
 accountService.removeAccount(TEST_ACCOUNT_NO);
 }
}

16-3. Implement Unit Testing for Spring MVC Controllers
Problem
In a web application, you want to test the web controllers developed with the Spring MVC framework.

Solution
A Spring MVC controller is invoked by DispatcherServlet with an HTTP request object and an HTTP
response object. After processing a request, the controller returns it to DispatcherServlet for rendering
the view. The main challenge of unit testing Spring MVC controllers, as well as web controllers in other
web application frameworks, is simulating HTTP request objects and response objects in a unit testing
environment. Fortunately, Spring supports web controller testing by providing a set of mock objects for the
Servlet API (including MockHttpServletRequest, MockHttpServletResponse, and MockHttpSession).

To test a Spring MVC controller’s output, you need to check whether the object returned to
DispatcherServlet is correct. Spring also provides a set of assertion utilities for checking the contents of
an object.

Chapter 16 ■ Spring teSting

706

How It Works
In your bank system, suppose you are going to develop a web interface for bank staff to input the account
number and amount of a deposit. You create a controller named DepositController using the techniques
you already know from Spring MVC.

package com.apress.springrecipes.bank.web;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Controller;
import org.springframework.ui.ModelMap;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestParam;

@Controller
public class DepositController {

 private AccountService accountService;

 @Autowired
 public DepositController(AccountService accountService) {
 this.accountService = accountService;
 }

 @RequestMapping("/deposit.do")
 public String deposit(
 @RequestParam("accountNo") String accountNo,
 @RequestParam("amount") double amount,
 ModelMap model) {
 accountService.deposit(accountNo, amount);
 model.addAttribute("accountNo", accountNo);
 model.addAttribute("balance", accountService.getBalance(accountNo));
 return "success";
 }
}

Because this controller doesn’t deal with the Servlet API, testing it is easy. You can test it just like a
simple Java class.

package com.apress.springrecipes.bank.web;

import static org.junit.Assert.*;

import com.apress.springrecipes.bank.AccountService;
import org.junit.Before;
import org.junit.Test;
import org.mockito.Mockito;
import org.springframework.ui.ModelMap;

Chapter 16 ■ Spring teSting

707

public class DepositControllerTests {

 private static final String TEST_ACCOUNT_NO = "1234";
 private static final double TEST_AMOUNT = 50;
 private AccountService accountService;
 private DepositController depositController;

 @Before
 public void init() {
 accountService = Mockito.mock(AccountService.class);
 depositController = new DepositController(accountService);
 }

 @Test
 public void deposit() {
 //Setup
 Mockito.when(accountService.getBalance(TEST_ACCOUNT_NO)).thenReturn(150.0);
 ModelMap model = new ModelMap();

 //Execute
 String viewName =
 depositController.deposit(TEST_ACCOUNT_NO, TEST_AMOUNT, model);

 assertEquals(viewName, "success");
 assertEquals(model.get("accountNo"), TEST_ACCOUNT_NO);
 assertEquals(model.get("balance"), 150.0);
 }
}

16-4. Manage Application Contexts in Integration Tests
Problem
When creating integration tests for a Spring application, you have to access beans declared in the
application context. Without Spring’s testing support, you have to load the application context manually
in an initialization method of your tests, a method with @Before or @BeforeClass in JUnit. However, as an
initialization method is called before each test method or test class, the same application context may be
reloaded many times. In a large application with many beans, loading an application context may require a
lot of time, which causes your tests to run slowly.

Solution
Spring’s testing support facilities can help you manage the application context for your tests, including loading
it from one or more bean configuration files and caching it across multiple test executions. An application
context will be cached across all tests within a single JVM, using the configuration file locations as the key. As a
result, your tests can run much faster without reloading the same application context many times.

The TestContext framework provides a few test execution listeners that are registered by default, as
shown in Table 16-1.

Chapter 16 ■ Spring teSting

708

To have the TestContext framework manage the application context, your test class has to integrate
with a test context manager internally. For your convenience, the TestContext framework provides support
classes that do this, as shown in Table 16-2. These classes integrate with a test context manager and
implement the ApplicationContextAware interface, so they can provide access to the managed application
context through the protected field applicationContext.

Your test class can simply extend the corresponding TestContext support class for your testing
framework.

These TestContext support classes have only DependencyInjectionTestExecutionListener,
DirtiesContextTestExecutionListener, and ServletTestExecutionListener enabled.

If you are using JUnit or TestNG, you can integrate your test class with a test context manager by yourself
and implement the ApplicationContextAware interface directly, without extending a TestContext support
class. In this way, your test class doesn’t bind to the TestContext framework class hierarchy, so you can
extend your own base class. In JUnit, you can simply run your test with the test runner SpringRunner to have
a test context manager integrated. However, in TestNG, you have to integrate with a test context manager
manually.

How It Works
First, let’s declare an AccountService instance and an AccountDao instance in the configuration class. Later,
you will create integration tests for them.

Table 16-1. Default Test Execution Listeners

TestExecutionListener Description

DependencyInjectionTestExecutionListener This injects dependencies, including the
managed application context, into your tests.

DirtiesContextTestExecutionListener,
DirtiesContextBeforeModesTestExecutionListener

This handles the @DirtiesContext annotation
and reloads the application context when
necessary.

TransactionalTestExecutionListener This handles the @Transactional annotation in
test cases and does a rollback at the end of a test.

SqlScriptsTestExecutionListener This detects @Sql annotations on the test and
executes the SQL before the start of the test.

ServletTestExecutionListener This handles the loading of a web application
context when the @WebAppConfiguration
annotation is detected.

Table 16-2. TestContext Support Classes for Context Management

Testing Framework TestContext Support Class

JUnit AbstractJUnit4SpringContextTests

TestNG AbstractTestNGSpringContextTests

Chapter 16 ■ Spring teSting

709

package com.apress.springrecipes.bank.config;

import com.apress.springrecipes.bank.AccountServiceImpl;
import com.apress.springrecipes.bank.InMemoryAccountDao;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;

@Configuration
public class BankConfiguration {

 @Bean
 public InMemoryAccountDao accountDao() {
 return new InMemoryAccountDao();
 }

 @Bean
 public AccountServiceImpl accountService() {
 return new AccountServiceImpl(accountDao());
 }
}

Access the Context with the TestContext Framework in JUnit
If you are using JUnit to create tests with the TestContext framework, you will have two options to access the
managed application context. The first option is by implementing the ApplicationContextAware interface
or using @Autowired on a field of the ApplicationContext type. For this option, you have to explicitly specify
a Spring-specific test runner for running your test SpringRunner. You can specify this in the @RunWith
annotation at the class level.

package com.apress.springrecipes.bank;

import com.apress.springrecipes.bank.config.BankConfiguration;
import org.junit.After;
import org.junit.Before;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.test.context.ContextConfiguration;
import org.springframework.test.context.junit4.SpringRunner;

import static org.junit.Assert.assertEquals;

@RunWith(SpringRunner.class)
@ContextConfiguration(classes = BankConfiguration.class)
public class AccountServiceJUnit4ContextTests implements ApplicationContextAware {

 private static final String TEST_ACCOUNT_NO = "1234";
 private ApplicationContext applicationContext;
 private AccountService accountService;

Chapter 16 ■ Spring teSting

710

 @Override
 public void setApplicationContext(ApplicationContext applicationContext) throws

BeansException {
 this.applicationContext=applicationContext;
 }

 @Before
 public void init() {
 accountService = applicationContext.getBean(AccountService.class);
 accountService.createAccount(TEST_ACCOUNT_NO);
 accountService.deposit(TEST_ACCOUNT_NO, 100);
 }

 @Test
 public void deposit() {
 accountService.deposit(TEST_ACCOUNT_NO, 50);
 assertEquals(accountService.getBalance(TEST_ACCOUNT_NO), 150, 0);
 }

 @Test
 public void withDraw() {
 accountService.withdraw(TEST_ACCOUNT_NO, 50);
 assertEquals(accountService.getBalance(TEST_ACCOUNT_NO), 50, 0);
 }

 @After
 public void cleanup() {
 accountService.removeAccount(TEST_ACCOUNT_NO);
 }

}

You can specify the configuration classes in the classes attribute of the @ContextConfiguration
annotation at the class level. When using XML-based configuration, you can use the locations attribute
instead. If you don’t specify any test configuration, the TestContext will try to detect one. It will first try to
load a file by joining the test class name with -context.xml as the suffix (i.e., AccountServiceJUnit4Tests-
context.xml) from the same package as the test class. Next it will scan the test class for any public static
inner classes that are annotated with @Configuration. If a file or classes are detected, those will be used to
load the test configuration.

By default, the application context will be cached and reused for each test method, but if you want it
to be reloaded after a particular test method, you can annotate the test method with the @DirtiesContext
annotation so that the application context will be reloaded for the next test method.

The second option to access the managed application context is by extending the TestContext
support class specific to JUnit: AbstractJUnit4SpringContextTests. This class implements the
ApplicationContextAware interface, so you can extend it to get access to the managed application
context via the protected field applicationContext. However, you first have to delete the private field
applicationContext and its setter method. Note that if you extend this support class, you don’t need to
specify SpringRunner in the @RunWith annotation because this annotation is inherited from the parent.

Chapter 16 ■ Spring teSting

711

package com.apress.springrecipes.bank;
...
import org.springframework.test.context.ContextConfiguration;
import org.springframework.test.context.junit4.AbstractJUnit4SpringContextTests;

@ContextConfiguration(classes = BankConfiguration.class)
public class AccountServiceJUnit4ContextTests extends AbstractJUnit4SpringContextTests {

 private static final String TEST_ACCOUNT_NO = "1234";
 private AccountService accountService;

 @Before
 public void init() {
 accountService = applicationContext.getBean(AccountService.class);
 accountService.createAccount(TEST_ACCOUNT_NO);
 accountService.deposit(TEST_ACCOUNT_NO, 100);
 }
 ...
}

Access the Context with the TestContext Framework in TestNG
To access the managed application context with the TestContext framework in TestNG, you can extend
the TestContext support class AbstractTestNGSpringContextTests. This class also implements the
ApplicationContextAware interface.

package com.apress.springrecipes.bank;

import com.apress.springrecipes.bank.config.BankConfiguration;
import org.springframework.test.context.ContextConfiguration;
import org.springframework.test.context.testng.AbstractTestNGSpringContextTests;
import org.testng.annotations.AfterMethod;
import org.testng.annotations.BeforeMethod;
import org.testng.annotations.Test;

import static org.testng.Assert.assertEquals;

@ContextConfiguration(classes = BankConfiguration.class)
public class AccountServiceTestNGContextTests extends AbstractTestNGSpringContextTests {

 private static final String TEST_ACCOUNT_NO = "1234";
 private AccountService accountService;

 @BeforeMethod
 public void init() {
 accountService = applicationContext.getBean(AccountService.class);
 accountService.createAccount(TEST_ACCOUNT_NO);
 accountService.deposit(TEST_ACCOUNT_NO, 100);
 }

Chapter 16 ■ Spring teSting

712

 @Test
 public void deposit() {
 accountService.deposit(TEST_ACCOUNT_NO, 50);
 assertEquals(accountService.getBalance(TEST_ACCOUNT_NO), 150, 0);
 }

 @Test
 public void withDraw() {
 accountService.withdraw(TEST_ACCOUNT_NO, 50);
 assertEquals(accountService.getBalance(TEST_ACCOUNT_NO), 50, 0);
 }

 @AfterMethod
 public void cleanup() {
 accountService.removeAccount(TEST_ACCOUNT_NO);
 }

}

If you don’t want your TestNG test class to extend a TestContext support class, you can implement the
ApplicationContextAware interface just as you did for JUnit. However, you have to integrate with a test
context manager by yourself. Please refer to the source code of AbstractTestNGSpringContextTests for
details.

16-5. Inject Test Fixtures into Integration Tests
Problem
The test fixtures of an integration test for a Spring application are mostly beans declared in the application
context. You might want to have the test fixtures automatically injected by Spring via dependency injection,
which saves you the trouble of retrieving them from the application context manually.

Solution
Spring’s testing support facilities can inject beans automatically from the managed application context into
your tests as test fixtures. You can simply annotate a setter method or field of your test with Spring’s
@Autowired annotation or JSR-250’s @Resource annotation to have a fixture injected automatically. For
@Autowired, the fixture will be injected by type, and for @Resource, it will be injected by name.

How It Works
You will explore how to inject test fixtures with JUnit and TestNG.

Inject Test Fixtures with the TestContext Framework in JUnit
When using the TestContext framework to create tests, you can have their test fixtures injected from the
managed application context by annotating a field or setter method with the @Autowired or @Resource
annotation. In JUnit, you can specify SpringRunner as your test runner without extending a support class.

Chapter 16 ■ Spring teSting

713

package com.apress.springrecipes.bank;
...
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.test.context.ContextConfiguration;
import org.springframework.test.context.junit4.SpringRunner;

@RunWith(SpringRunner.class)
@ContextConfiguration(classes = BankConfiguration.class)
public class AccountServiceJUnit4ContextTests {

 private static final String TEST_ACCOUNT_NO = "1234";

 @Autowired
 private AccountService accountService;

 @Before
 public void init() {
 accountService.createAccount(TEST_ACCOUNT_NO);
 accountService.deposit(TEST_ACCOUNT_NO, 100);
 }
 ...
}

If you annotate a field or setter method of a test with @Autowired, it will be injected using autowiring
by type. You can further specify a candidate bean for autowiring by providing its name in the @Qualifier
annotation. However, if you want a field or setter method to be autowired by name, you can annotate it with
@Resource.

By extending the TestContext support class AbstractJUnit4SpringContextTests, you can also have test
fixtures injected from the managed application context. In this case, you don’t need to specify SpringRunner
for your test, as it is inherited from the parent.

package com.apress.springrecipes.bank;
...
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.test.context.ContextConfiguration;
import org.springframework.test.context.junit4.AbstractJUnit4SpringContextTests;

@ContextConfiguration(classes = BankConfiguration.class)
public class AccountServiceJUnit4ContextTests extends AbstractJUnit4SpringContextTests {

 private static final String TEST_ACCOUNT_NO = "1234";

 @Autowired
 private AccountService accountService;
 ...
}

Chapter 16 ■ Spring teSting

714

Inject Test Fixtures with the TestContext Framework in TestNG
In TestNG, you can extend the TestContext support class AbstractTestNGSpringContextTests to have test
fixtures injected from the managed application context.

package com.apress.springrecipes.bank;
...
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.test.context.ContextConfiguration;
import org.springframework.test.context.testng.AbstractTestNGSpringContextTests;

@ContextConfiguration(classes = BankConfiguration.class)
public class AccountServiceTestNGContextTests extends AbstractTestNGSpringContextTests {

 private static final String TEST_ACCOUNT_NO = "1234";

 @Autowired
 private AccountService accountService;

 @BeforeMethod
 public void init() {
 accountService.createAccount(TEST_ACCOUNT_NO);
 accountService.deposit(TEST_ACCOUNT_NO, 100);
 }
 ...
}

16-6. Manage Transactions in Integration Tests
Problem
When creating integration tests for an application that accesses a database, you usually prepare the test data
in the initialization method. After each test method runs, it may have modified the data in the database. So,
you have to clean up the database to ensure that the next test method will run from a consistent state. As a
result, you have to develop many database cleanup tasks.

Solution
Spring’s testing support facilities can create and roll back a transaction for each test method, so the changes
you make in a test method won’t affect the next one. This can also save you the trouble of developing
cleanup tasks to clean up the database.

The TestContext framework provides a test execution listener related to transaction management. It will
be registered with a test context manager by default if you don’t specify your own explicitly.

TransactionalTestExecutionListener handles the @Transactional annotation at the class or method
level and has the methods run within transactions automatically.

Your test class can extend the corresponding TestContext support class for your testing framework, as
shown in Table 16-3, to have its test methods run within transactions. These classes integrate with a test
context manager and have @Transactional enabled at the class level. Note that a transaction manager is
also required in the bean configuration file.

Chapter 16 ■ Spring teSting

715

These TestContext support classes have TransactionalTestExecutionListener and
SqlScriptsTestExecutionListener enabled in addition to DependencyInjectionTestExecutionListener
and DirtiesContextTestExecutionListener.

In JUnit and TestNG, you can simply annotate @Transactional at the class level or the method level to
have the test methods run within transactions, without extending a TestContext support class. However, to
integrate with a test context manager, you have to run the JUnit test with the test runner SpringRunner, and
you have to do it manually for a TestNG test.

How It Works
Let’s consider storing your bank system’s accounts in a relational database. You can choose any JDBC-
compliant database engine that supports transactions and then execute the following SQL statement on it to
create the ACCOUNT table. For testing we are going to use an in-memory H2 database.

CREATE TABLE ACCOUNT (
 ACCOUNT_NO VARCHAR(10) NOT NULL,
 BALANCE DOUBLE NOT NULL,
 PRIMARY KEY (ACCOUNT_NO)
);

Next, you create a new DAO implementation that uses JDBC to access the database. You can take
advantage of JdbcTemplate to simplify your operations.

package com.apress.springrecipes.bank;

import org.springframework.jdbc.core.support.JdbcDaoSupport;

public class JdbcAccountDao extends JdbcDaoSupport implements AccountDao {

 public void createAccount(Account account) {
 String sql = "INSERT INTO ACCOUNT (ACCOUNT_NO, BALANCE) VALUES (?, ?)";
 getJdbcTemplate().update(
 sql, account.getAccountNo(), account.getBalance());
 }

 public void updateAccount(Account account) {
 String sql = "UPDATE ACCOUNT SET BALANCE = ? WHERE ACCOUNT_NO = ?";
 getJdbcTemplate().update(
 sql, account.getBalance(), account.getAccountNo());
 }

Table 16-3. TestContext Support Classes for Transaction Management

Testing Framework TestContext Support Class*

JUnit AbstractTransactionalJUnit4SpringContextTests

TestNG AbstractTransactionalTestNGSpringContextTests

Chapter 16 ■ Spring teSting

716

 public void removeAccount(Account account) {
 String sql = "DELETE FROM ACCOUNT WHERE ACCOUNT_NO = ?";
 getJdbcTemplate().update(sql, account.getAccountNo());
 }

 public Account findAccount(String accountNo) {
 String sql = "SELECT BALANCE FROM ACCOUNT WHERE ACCOUNT_NO = ?";
 double balance =
 getJdbcTemplate().queryForObject(sql, Double.class, accountNo);
 return new Account(accountNo, balance);
 }
}

Before you create integration tests to test the AccountService instance that uses this DAO to persist
account objects, you have to replace InMemoryAccountDao with this DAO in the configuration class and
configure the target data source as well.

 ■ Note to use h2, you have to add it as a dependency to your classpath.

<dependency>
 <groupId>com.h2database:</groupId>
 <artifactId>h2</artifactId>
 <version>1.4.194</version>
</dependency>

Or when using gradle, add the following:

testCompile 'com.h2database:h2:1.4.194'

@Configuration
public class BankConfiguration {

 @Bean
 public DataSource dataSource() {
 DriverManagerDataSource dataSource = new DriverManagerDataSource();
 dataSource.setUrl("jdbc:h2:mem:bank-testing");
 dataSource.setUsername("sa");
 dataSource.setPassword("");
 return dataSource;
 }

 @Bean
 public AccountDao accountDao() {
 JdbcAccountDao accountDao = new JdbcAccountDao();
 accountDao.setDataSource(dataSource());
 return accountDao;
 }

Chapter 16 ■ Spring teSting

717

 @Bean
 public AccountService accountService() {
 return new AccountServiceImpl(accountDao());
 }
}

Manage Transactions with the TestContext Framework in JUnit
When using the TestContext framework to create tests, you can have the tests methods run within
transactions by annotating @Transactional at the class or method level. In JUnit, you can specify
SpringRunner for your test class so that it doesn’t need to extend a support class.

package com.apress.springrecipes.bank;
...
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.test.context.ContextConfiguration;
import org.springframework.test.context.junit4.SpringRunner;
import org.springframework.transaction.annotation.Transactional;

@RunWith(SpringRunner.class)
@ContextConfiguration(classes = BankConfiguration.class)
@Transactional
public class AccountServiceJUnit4ContextTests {

 private static final String TEST_ACCOUNT_NO = "1234";

 @Autowired
 private AccountService accountService;

 @Before
 public void init() {
 accountService.createAccount(TEST_ACCOUNT_NO);
 accountService.deposit(TEST_ACCOUNT_NO, 100);
 }

 // Don't need cleanup() anymore
 ...
}

If you annotate a test class with @Transactional, all of its test methods will run within transactions.
An alternative is to annotate individual methods with @Transactional, not the entire class.

By default, transactions for test methods will be rolled back at the end. You can alter this behavior by
disabling the defaultRollback attribute of @TransactionConfiguration, which should be applied to the
class level. Also, you can override this class-level rollback behavior at the method level with the @Rollback
annotation, which requires a Boolean value.

 ■ Note Methods with the @Before or @After annotation will be executed within the same transactions
as test methods. if you have methods that need to perform initialization or cleanup tasks before or after a
transaction, you have to annotate them with @BeforeTransaction or @AfterTransaction.

Chapter 16 ■ Spring teSting

718

Finally, you also need a transaction manager configured in the bean configuration file. By default,
a bean whose type is PlatformTransactionManager will be used, but you can specify another one in the
transactionManager attribute of the @TransactionConfiguration annotation by giving its name.

@Bean
public DataSourceTransactionManager transactionManager(DataSource dataSource) {
 return new DataSourceTransactionManager(dataSource);
}

In JUnit, an alternative to managing transactions for test methods is to extend the transactional
TestContext support class AbstractTransactionalJUnit4SpringContextTests, which has @Transactional
enabled at the class level so that you don’t need to enable it again. By extending this support class, you don’t
need to specify SpringRunner for your test, as it is inherited from the parent.

package com.apress.springrecipes.bank;
...
import org.springframework.test.context.ContextConfiguration;
import org.springframework.test.context.junit4.
AbstractTransactionalJUnit4SpringContextTests;

@ContextConfiguration(classes = BankConfiguration.class)
public class AccountServiceJUnit4ContextTests extends
AbstractTransactionalJUnit4SpringContextTests {
 ...
}

Manage Transactions with the TestContext Framework in TestNG
To create TestNG tests that run within transactions, your test class can extend the TestContext support class
AbstractTransactionalTestNGSpringContextTests to have its methods run within transactions.

package com.apress.springrecipes.bank;
...
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.test.context.ContextConfiguration;
import org.springframework.test.context.testng.
AbstractTransactionalTestNGSpringContextTests;

@ContextConfiguration(classes = BankConfiguration.class)
public class AccountServiceTestNGContextTests extends
 AbstractTransactionalTestNGSpringContextTests {

 private static final String TEST_ACCOUNT_NO = "1234";

 @Autowired
 private AccountService accountService;

Chapter 16 ■ Spring teSting

719

 @BeforeMethod
 public void init() {
 accountService.createAccount(TEST_ACCOUNT_NO);
 accountService.deposit(TEST_ACCOUNT_NO, 100);
 }

 // Don't need cleanup() anymore
 ...
}

16-7. Access a Database in Integration Tests
Problem
When creating integration tests for an application that accesses a database, especially one developed with
an ORM framework, you might want to access the database directly to prepare test data and validate the data
after a test method runs.

Solution
Spring’s testing support facilities can create and provide a JDBC template for you to perform database-
related tasks in your tests. Your test class can extend one of the transactional TestContext support classes
to access the precreated JdbcTemplate instance. These classes also require a data source and a transaction
manager in the bean configuration file.

How It Works
When using the TestContext framework to create tests, you can extend the corresponding
TestContext support class to use a JdbcTemplate instance via a protected field. For JUnit, this class is
AbstractTransactionalJUnit4SpringContextTests, which provides similar convenient methods for you to
count the number of rows in a table, delete rows from a table, and execute a SQL script.

package com.apress.springrecipes.bank;
...
import org.springframework.test.context.ContextConfiguration;
import org.springframework.test.context.junit4.
AbstractTransactionalJUnit4SpringContextTests;

@ContextConfiguration(classes = BankConfiguration.class)
public class AccountServiceJUnit4ContextTests extends AbstractTransactionalJUnit4Spring
ContextTests {
 ...
 @Before
 public void init() {
 executeSqlScript("classpath:/bank.sql",true);
 jdbcTemplate.update(
 "INSERT INTO ACCOUNT (ACCOUNT_NO, BALANCE) VALUES (?, ?)",
 TEST_ACCOUNT_NO, 100);
 }

Chapter 16 ■ Spring teSting

720

 @Test
 public void deposit() {
 accountService.deposit(TEST_ACCOUNT_NO, 50);
 double balance = jdbcTemplate.queryForObject(
 "SELECT BALANCE FROM ACCOUNT WHERE ACCOUNT_NO = ?",
 Double.class, TEST_ACCOUNT_NO);
 assertEquals(balance, 150.0, 0);
 }

 @Test
 public void withDraw() {
 accountService.withdraw(TEST_ACCOUNT_NO, 50);
 double balance = jdbcTemplate.queryForObject(
 "SELECT BALANCE FROM ACCOUNT WHERE ACCOUNT_NO = ?",
 Double.class, TEST_ACCOUNT_NO);
 assertEquals(balance, 50.0, 0);
 }
}

Instead of using the executeSqlScript method, you could also put the @Sql annotation on the class or
test method to execute some SQL or a script.

@ContextConfiguration(classes = BankConfiguration.class)
@Sql(scripts="classpath:/bank.sql")
public class AccountServiceJUnit4ContextTests extends
AbstractTransactionalJUnit4SpringContextTests {

 private static final String TEST_ACCOUNT_NO = "1234";

 @Autowired
 private AccountService accountService;

 @Before
 public void init() {
 jdbcTemplate.update(
 "INSERT INTO ACCOUNT (ACCOUNT_NO, BALANCE) VALUES (?, ?)",
 TEST_ACCOUNT_NO, 100);
 }
}

With the @Sql method, you can execute scripts which you can specify in the scripts attribute or put
in SQL statements directly in the statements attribute of the annotation. Finally, you can specify when to
execute the specified instructions before or after a test method. You can put multiple @Sql annotations on a
class/method so you can execute statements before and after the test.

Chapter 16 ■ Spring teSting

721

In TestNG, you can extend AbstractTransactionalTestNGSpringContextTests to use a JdbcTemplate
instance.

package com.apress.springrecipes.bank;
...
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.test.context.ContextConfiguration;
import org.springframework.test.context.testng.
AbstractTransactionalTestNGSpringContextTests;

@ContextConfiguration(classes = BankConfiguration.class)
public class AccountServiceTestNGContextTests extends
AbstractTransactionalTestNGSpringContextTests {
 ...
 @BeforeMethod
 public void init() {
 executeSqlScript("classpath:/bank.sql",true);
 jdbcTemplate.update(
 "INSERT INTO ACCOUNT (ACCOUNT_NO, BALANCE) VALUES (?, ?)",
 TEST_ACCOUNT_NO, 100);
 }

 @Test
 public void deposit() {
 accountService.deposit(TEST_ACCOUNT_NO, 50);
 double balance = jdbcTemplate.queryForObject(
 "SELECT BALANCE FROM ACCOUNT WHERE ACCOUNT_NO = ?",
 Double.class, TEST_ACCOUNT_NO);
 assertEquals(balance, 150, 0);
 }

 @Test
 public void withDraw() {
 accountService.withdraw(TEST_ACCOUNT_NO, 50);
 double balance = jdbcTemplate.queryForObject(
 "SELECT BALANCE FROM ACCOUNT WHERE ACCOUNT_NO = ?",
 Double.class, TEST_ACCOUNT_NO);
 assertEquals(balance, 50, 0);
 }
}

16-8. Use Spring’s Common Testing Annotations
Problem
You often have to manually implement common testing tasks, such as expecting an exception to be thrown,
repeating a test method multiple times, ensuring that a test method will complete in a particular time
period, and so on.

Chapter 16 ■ Spring teSting

722

Solution
Spring’s testing support provides a common set of testing annotations to simplify your test creation. These
annotations are Spring-specific but independent of the underlying testing framework. Of these, the annotations
in Table 16-4 are useful for common testing tasks. However, they are supported only for use with JUnit.

You can use Spring’s testing annotations by extending one of the TestContext support classes. If you
don’t extend a support class but run your JUnit test with the test runner SpringRunner, you can also use
these annotations.

How It Works
When using the TestContext framework to create tests for JUnit, you can use Spring’s testing annotations if
you run your test with SpringRunner or extend a JUnit TestContext support class.

package com.apress.springrecipes.bank;
...
import org.springframework.test.annotation.Repeat;
import org.springframework.test.annotation.Timed;
import org.springframework.test.context.ContextConfiguration;
import org.springframework.test.context.junit4.
AbstractTransactionalJUnit4SpringContextTests;

@ContextConfiguration(locations = "/beans.xml")
public class AccountServiceJUnit4ContextTests extends
AbstractTransactionalJUnit4SpringContextTests {
 ...
 @Test
 @Timed(millis = 1000)
 public void deposit() {
 ...
 }

Table 16-4. Spring’s Test Annotations

Annotation Description

@Repeat This indicates that a test method has to run multiple times. The number of times
it will run is specified as the annotation value.

@Timed This indicates that a test method must complete in a specified time period
(in milliseconds). Otherwise, the test fails. Note that the time period includes the
repetitions of the test method and any initialization and cleanup methods.

@IfProfileValue This indicates that a test method can run only in a specific testing environment. This
test method will run only when the actual profile value matches the specified one.
You can also specify multiple values so that the test method will run if any of the
values is matched. By default, SystemProfileValueSource is used to retrieve system
properties as profile values, but you can create your own ProfileValueSource
implementation and specify it in the @ProfileValueSourceConfiguration
annotation.

Chapter 16 ■ Spring teSting

723

 @Test
 @Repeat(5)
 public void withDraw() {
 ...
 }
}

16-9. Implement Integration Tests for Spring MVC
Controllers
Problem
In a web application, you want to integration test the web controllers developed with the Spring MVC
framework.

Solution
A Spring MVC controller is invoked by DispatcherServlet with an HTTP request object and an HTTP
response object. After processing a request, the controller returns it to DispatcherServlet for rendering
the view. The main challenge of integration testing Spring MVC controllers, as well as web controllers in
other web application frameworks, is simulating HTTP request objects and response objects in a unit testing
environment as well as setting up the mocked environment for a unit test. Fortunately, Spring has the mock
MVC part of the Spring Test support. This allows for easy setup of a mocked servlet environment.

Spring Test Mock MVC will set up a WebApplicationContext according to your configuration. Next you
can use the MockMvc API to simulate HTTP requests and verify the result.

How It Works
In the banking application, you want to integration test your DepositController. Before you can start
testing, you need to create a configuration class to configure the web-related beans.

package com.apress.springrecipes.bank.web.config;

import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.ComponentScan;
import org.springframework.context.annotation.Configuration;
import org.springframework.web.servlet.ViewResolver;
import org.springframework.web.servlet.config.annotation.EnableWebMvc;
import org.springframework.web.servlet.view.InternalResourceViewResolver;

@Configuration
@EnableWebMvc
@ComponentScan(basePackages = "com.apress.springrecipes.bank.web")
public class BankWebConfiguration {

Chapter 16 ■ Spring teSting

724

 @Bean
 public ViewResolver viewResolver() {
 InternalResourceViewResolver viewResolver = new InternalResourceViewResolver();
 viewResolver.setPrefix("/WEB-INF/views/");
 viewResolver.setSuffix(".jsp");
 return viewResolver;

 }
}

The configuration enables annotation-based controllers by using the @EnableWebMvc annotation;
next you want the @Controller annotated beans to be picked up automatically using the @ComponentScan
annotation. Finally, there is an InternalResourceViewResolver that turns the name of the view into a URL,
which normally would be rendered by the browser, that you will now validate in the controller.

Now that the web-based configuration is in place, you can start to create your integration test. This unit
test has to load your BankWebConfiguration class and also has to be annotated with @WebAppConfiguration
to inform the TestContext framework you want a WebApplicationContext instead of a regular
ApplicationContext.

Integration Test Spring MVC Controllers with JUnit
In JUnit it is the easiest to extend one of the base classes, in this case AbstractTransactionalJUnit4Spring
ContextTests because you want to insert some test data and to roll back after the tests complete.

package com.apress.springrecipes.bank.web;

import com.apress.springrecipes.bank.config.BankConfiguration;
import com.apress.springrecipes.bank.web.config.BankWebConfiguration;
import org.junit.Before;
import org.junit.Test;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.test.context.ContextConfiguration;
import org.springframework.test.context.junit4.AbstractTransactionalJUnit4Spring
ContextTests;
import org.springframework.test.context.web.WebAppConfiguration;
import org.springframework.test.web.servlet.MockMvc;
import org.springframework.test.web.servlet.setup.MockMvcBuilders;
import org.springframework.web.context.WebApplicationContext;

import static org.springframework.test.web.servlet.request.MockMvcRequestBuilders.get;
import static org.springframework.test.web.servlet.result.MockMvcResultHandlers.print;
import static org.springframework.test.web.servlet.result.MockMvcResultMatchers.forwardedUrl;
import static org.springframework.test.web.servlet.result.MockMvcResultMatchers.status;

Chapter 16 ■ Spring teSting

725

@ContextConfiguration(classes= { BankWebConfiguration.class, BankConfiguration.class})
@WebAppConfiguration
public class DepositControllerJUnit4ContextTests extends
AbstractTransactionalJUnit4SpringContextTests {

 private static final String ACCOUNT_PARAM = "accountNo";
 private static final String AMOUNT_PARAM = "amount";

 private static final String TEST_ACCOUNT_NO = "1234";
 private static final String TEST_AMOUNT = "50.0";

 @Autowired
 private WebApplicationContext webApplicationContext;

 private MockMvc mockMvc;

 @Before
 public void init() {
 executeSqlScript("classpath:/bank.sql", true);
 jdbcTemplate.update(
 "INSERT INTO ACCOUNT (ACCOUNT_NO, BALANCE) VALUES (?, ?)",
 TEST_ACCOUNT_NO, 100);
 mockMvc = MockMvcBuilders.webAppContextSetup(webApplicationContext).build();

 }

 @Test
 public void deposit() throws Exception {
 mockMvc.perform(
 get("/deposit.do")
 .param(ACCOUNT_PARAM, TEST_ACCOUNT_NO)
 .param(AMOUNT_PARAM, TEST_AMOUNT))
 .andDo(print())
 .andExpect(forwardedUrl("/WEB-INF/views/success.jsp"))
 .andExpect(status().isOk());
 }
 }

In the init method, you prepare the MockMvc object by using the convenient MockMvcBuilders. Using
the factory method webAppContextSetup, you can use the already loaded WebApplicationContext to
initialize the MockMvc object. The MockMvc object basically mimics the behavior of DispatcherServlet,
which you would use in a Spring MVC–based application. It will use the passed-in WebApplicationContext
to configure the handler mappings and view resolution strategies and will also apply any interceptors that
are configured.

There is also some setup of a test account so that you have something to work with.
In the deposit test method, the initialized MockMvc object is used to simulate an incoming request to

the /deposit.do URL with two request parameters, accountNo and amount. The MockMvcRequestBuilders.
get factory method results in a RequestBuilder instance that is passed to the MockMvc.perform method.

Chapter 16 ■ Spring teSting

726

The perform method returns a ResultActions object that can be used to do assertions and certain
actions on the return result. The test method prints the information for the created request and returned
response using andDo(print()), which can be useful while debugging your test. Finally, there are two
assertions to verify that everything works as expected. The DepositController returns success as the
viewname, which should lead to a forward to /WEB-INF/views/success.jsp because of the configuration of
the ViewResolver. The return code of the request should be 200 (OK), which can be tested with status().
isOk() or status().is(200).

Integration Test Spring MVC Controllers with TestNG
Spring Mock MVC can also be used with TestNG to extend the appropriate base class
AbstractTransactionalTestNGSpringContextTests and add the @WebAppConfiguration annotation.

@ContextConfiguration(classes= { BankWebConfiguration.class, BankConfiguration.class})
@WebAppConfiguration
public class DepositControllerTestNGContextTests
 extends AbstractTransactionalTestNGSpringContextTests {

 @BeforeMethod
 public void init() {
 executeSqlScript("classpath:/bank.sql", true);
 jdbcTemplate.update(
 "INSERT INTO ACCOUNT (ACCOUNT_NO, BALANCE) VALUES (?, ?)",
 TEST_ACCOUNT_NO, 100);
 mockMvc = MockMvcBuilders.webAppContextSetup(webApplicationContext).build();
 }

}

16-10. Write Integration Tests for REST Clients
Problem
You want to write an integration test for a RestTemplate-based client.

Solution
When writing an integration test for a REST-based client, you don’t want to rely on the availability of the
external service. You can write an integration test using a mock server to return an expected result instead of
calling the real endpoint.

How It Works
When working at a bank, you need to validate the account numbers people enter; you could implement your
own validation or you could reuse an existing one. You are going to implement an IBAN validation service
that will use the API available at http://openiban.com.

http://openiban.com/

Chapter 16 ■ Spring teSting

727

First you write an interface defining the contract.

package com.apress.springrecipes.bank.web;

public interface IBANValidationClient {

 IBANValidationResult validate(String iban);
}

IBANValidationResult contains the results of the call to the validation endpoint.

package com.apress.springrecipes.bank.web;

import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

public class IBANValidationResult {

 private boolean valid;
 private List<String> messages = new ArrayList<>();
 private String iban;

 private Map<String, String> bankData = new HashMap<>();

 public boolean isValid() {
 return valid;
 }

 public void setValid(boolean valid) {
 this.valid = valid;
 }

 public List<String> getMessages() {
 return messages;
 }

 public void setMessages(List<String> messages) {
 this.messages = messages;
 }

 public String getIban() {
 return iban;
 }

 public void setIban(String iban) {
 this.iban = iban;
 }

Chapter 16 ■ Spring teSting

728

 public Map<String, String> getBankData() {
 return bankData;
 }

 public void setBankData(Map<String, String> bankData) {
 this.bankData = bankData;
 }

 @Override
 public String toString() {
 return "IBANValidationResult [" +
 "valid=" + valid +
 ", messages=" + messages +
 ", iban='" + iban + '\'' +
 ", bankData=" + bankData +
 ']';
 }
}

Next write the OpenIBANValidationClient class, which will use a RestTemplate instance
to communicate with the API. For easy access to a RestTemplate instance, you can extend
RestGatewaySupport.

package com.apress.springrecipes.bank.web;

import org.springframework.stereotype.Service;
import org.springframework.web.client.support.RestGatewaySupport;

@Service
public class OpenIBANValidationClient extends RestGatewaySupport implements
IBANValidationClient {

 private static final String URL_TEMPLATE = "https://openiban.com/validate/{IBAN_NUMBER}?
getBIC=true&validateBankCode=true";

 @Override
 public IBANValidationResult validate(String iban) {

 return getRestTemplate().getForObject(URL_TEMPLATE, IBANValidationResult.class, iban);
 }
}

Next you will create a test that will construct a MockRestServiceServer class for the
OpenIBANValidationClient class, and you configure it to return a specific result in JSON for an expected
request.

package com.apress.springrecipes.bank.web;

import com.apress.springrecipes.bank.config.BankConfiguration;
import org.junit.Before;
import org.junit.Test;

Chapter 16 ■ Spring teSting

729

import org.junit.runner.RunWith;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.core.io.ClassPathResource;
import org.springframework.http.MediaType;
import org.springframework.test.context.ContextConfiguration;
import org.springframework.test.context.junit4.SpringRunner;
import org.springframework.test.web.client.MockRestServiceServer;

import static org.junit.Assert.assertFalse;
import static org.junit.Assert.assertTrue;
import static org.springframework.test.web.client.match.MockRestRequestMatchers.requestTo;
import static org.springframework.test.web.client.response.MockRestResponseCreators.
withSuccess;

@RunWith(SpringRunner.class)
@ContextConfiguration(classes= { BankConfiguration.class})
public class OpenIBANValidationClientTest {

 @Autowired
 private OpenIBANValidationClient client;

 private MockRestServiceServer mockRestServiceServer;

 @Before
 public void init() {
 mockRestServiceServer = MockRestServiceServer.createServer(client);
 }

 @Test
 public void validIban() {

 mockRestServiceServer
 .expect(requestTo("https://openiban.com/validate/NL87TRIO0396451440?getBIC=

true&validateBankCode=true"))
 .andRespond(withSuccess(new ClassPathResource("NL87TRIO0396451440-result.

json"), MediaType.APPLICATION_JSON));

 IBANValidationResult result = client.validate("NL87TRIO0396451440");
 assertTrue(result.isValid());
 }

 @Test
 public void invalidIban() {

 mockRestServiceServer
 .expect(requestTo("https://openiban.com/validate/NL28XXXX389242218?getBIC=

true&validateBankCode=true"))
 .andRespond(withSuccess(new ClassPathResource("NL28XXXX389242218-result.

json"), MediaType.APPLICATION_JSON));

Chapter 16 ■ Spring teSting

730

 IBANValidationResult result = client.validate("NL28XXXX389242218");
 assertFalse(result.isValid());
 }
}

The test class has two test methods, and both are quite similar. In the init method, you create a
MockRestServiceService class using the OpenIBANValidationClient class (this is possible because it
extends RestGatewaySupport; if that wasn’t the case, you would have to use the configured RestTemplate
class to create a mocked server). In the test method, you set up the expectation with a URL, and now when
that URL is called, a JSON response, from the classpath, will be returned as the answer.

For testing you probably want to use some well-known responses from the server, and for this you could
use some recorded results from a live system or maybe they already provide results for testing.

Summary
In this chapter, you learned about the basic concepts and techniques used in testing Java applications. JUnit
and TestNG are the most popular testing frameworks on the Java platform. Unit tests are used for testing a
single programming unit, which is typically a class or a method in object-oriented languages. When testing
a unit that depends on other units, you can use stubs and mock objects to simulate its dependencies, thus
making the tests simpler. In contrast, integration tests are used to test several units as a whole.

In the web layer, controllers are usually hard to test. Spring offers mock objects for the Servlet API so
that you can easily simulate web request and response objects to test a web controller. There is also Spring
Mock MVC for easy integration testing of your controllers. What applies to controllers also applies to REST-
based clients. To help you test these clients, Spring provides the MockRestServiceServer, which you can use
to mock an external system.

Spring’s testing support facilities can manage application contexts for your tests by loading them from
bean configuration files and caching them across multiple test executions. You can access the managed
application context in your tests, as well as have your test fixtures injected from the application context
automatically. In addition, if your tests involve database updates, Spring can manage transactions for them
so that changes made in one test method will be rolled back and thus won’t affect the next test method.
Spring can also create a JDBC template for you to prepare and validate your test data in the database.

Spring provides a common set of testing annotations to simplify your test creation. These annotations
are Spring-specific but independent of the underlying testing framework. However, some of these are only
supported for use with JUnit.

731© Marten Deinum, Daniel Rubio, and Josh Long 2017
M. Deinum et al., Spring 5 Recipes, DOI 10.1007/978-1-4842-2790-9_17

CHAPTER 17

Grails

When you embark on the creation of a Java web application, you need to put together a series of Java classes,
create configuration files, and establish a particular layout, all of which have little to do with the problems
an application solves. Such pieces are often called scaffolding code or scaffolding steps since they are just the
means to an end—the end being what an application actually accomplishes.

Grails is a framework designed to limit the amount of scaffolding steps you need to take in Java
applications. Based on the Groovy language, which is a Java Virtual Machine–compatible language, Grails
automates many steps that need to be undertaken in a Java application on the basis of conventions.

For example, when you create application controllers, they are eventually accompanied by a series of
views (e.g., JavaServer Pages [JSP] pages), in addition to requiring some type of configuration file to make
them work. If you generate a controller using Grails, Grails automates numerous steps using conventions
(e.g., creating views and configuration files). You can later modify whatever Grails generates to more specific
scenarios, but Grails undoubtedly shortens your development time since you won’t need to write everything
from scratch (e.g., write XML configuration files and prepare a project directory structure).

Grails is fully integrated with Spring, so you can use it to kick-start your Spring applications and thus
reduce your development efforts.

17-1. Get and Install Grails
Problem
You want to start creating a Grails application but don’t know where to get Grails and how to set it up.

Solution
You can download Grails at www.grails.org/. Ensure that you download Grails version 3.2 or higher. Grails
is a self-contained framework that comes with various scripts to automate the creation of Java applications.
In this sense, you simply need to unpack the distribution and perform a few installation steps to create Java
applications on your workstation.

How It Works
After you unpack Grails on your workstation, define two environment variables on your operating system:
GRAILS_HOME and PATH. This allows you to invoke Grails operations from anywhere on your workstation.
If you use a Linux workstation, you can edit the global bashrc file, located under the /etc/ directory, or a
user’s .bashrc file, located under a user’s home directory. Note that, depending on the Linux distribution,
these last file names can vary (e.g., bash.bashrc). Both files use identical syntax to define environment

http://www.grails.org/

Chapter 17 ■ Grails

732

variables, with one file used to define variables for all users and another for a single user. Place the following
contents in either one:

GRAILS_HOME=/<installation_directory>/grails
export GRAILS_HOME
export PATH=$PATH:$GRAILS_HOME/bin

If you use a Windows workstation, go to the Control Panel and click the System icon. In the window
that opens, click the Advanced Options tab. Next, click the “Environment variables” box to bring up the
environment variable editor. From there, you can add or modify environment variables for either a single
user or all users, using the following steps:

 1. Click the New box.

 2. Create an environment variable with the name GRAILS_HOME and a value
corresponding to the Grails installation directory (e.g., /<installation_
directory>/grails).

 3. Select the PATH environment variable, and click the Modify box.

 4. Add the ;%GRAILS_HOME%\bin value to the end of the PATH environment variable.

 ■ Caution Be sure to add this last value and not modify the PATH environment variable in any other way
because this may cause certain applications to stop working.

Once you perform these steps in either a Windows or Linux workstation, you can start creating Grails
applications. If you execute the command grails help from any directory on your workstation, you should
see Grails’ numerous commands.

17-2. Create a Grails Application
Problem
You want to create a Grails application.

Solution
To create a Grails application, invoke the following command wherever you want to create an application:
grails create-app <grailsappname>. This creates a Grails application directory, with a project structure in
accordance to the framework’s design. If this last command fails, consult recipe 17-1. The grails command
should be available from any console or terminal if Grails was installed correctly.

How It Works
For example, typing grails create-app court creates a Grails application under a directory named
court. Inside this directory, you will find a series of files and directories generated by Grails on the basis of
conventions. Figure 17-1 shows the initial project structure for a Grails application.

Chapter 17 ■ Grails

733

 ■ Note in addition to this layout, Grails creates a series of working directories and files (i.e., not intended
to be modified directly) for an application. these working directories and files are placed under a user’s home
directory under the name .grails/<grails_version>/.

Figure 17-1. Grails application project structure

Chapter 17 ■ Grails

734

As you can note from this last listing, Grails generates a series of files and directories that are common
in most Java applications. You’ll have a directory called src\main\groovy for placing source code files and a
src\main\web-app directory that includes the common layout for Java web applications (e.g., /WEB-INF/,
/META-INF/, css, images, and js). Right out of the box, Grails saves you time by putting these common Java
application constructs together using a single command.

Explore a Grails Application’s File and Directory Structure
Since some of these files and directories are Grails specific, we will describe the purpose behind each one:

•	 gradle.properties: Used to define an application’s build properties, including the
Grails version, the servlet version, and an application’s name

•	 grails-app: A directory containing the core of an application, which further
contains the following folders:

•	 #. assets: A directory containing an application’s static resources (i.e., .css and
.js files).

•	 conf: A directory containing an application’s configuration sources

•	 controllers: A directory containing an application’s controller files

•	 domain: A directory containing an application’s domain files

•	 i18n: A directory containing an application’s internationalization (i18n) files

•	 services: A directory containing an application’s service files

•	 taglib: A directory containing an application’s tag libraries

•	 utils: A directory containing an application’s utility files

•	 views: A directory containing an application’s view files

•	 src\main: Directory used for an application’s source code files; contains a subfolder
named groovy, for sources written in this language (you could add a java subfolder
to write Java)

•	 src\test: Directory used for an application’s unit test files

•	 src\integration-test: Directory used for an application’s integration test files

•	 web-app: Directory used for an application’s deployment structure; contains the
standard web archive (WAR) files and directory structure (e.g., /WEB-INF/,
/META-INF/, css, images, and js)

Run an Application
Grails comes preconfigured to run applications on an Apache Tomcat web container. Similar to the creation
of creating a Grails application, the process of running Grails applications is highly automated.

Placed under the root directory of a Grails application, invoke grails run-app. This command will
trigger the build process for an application if it’s needed, as well as start the Apache Tomcat web container
and deploy the application.

Since Grails operates on conventions, an application is deployed under a context named after the project
name. So, for example, the application named court is deployed to the URL http://localhost:8080/.
Figure 17-2 illustrates the default main screen for Grails applications.

Chapter 17 ■ Grails

735

The application is still in its out-of-the-box state. Next, we will illustrate how to create your first Grails
construct in order to realize more time-saving procedures.

Create Your First Grails Application Construct
Now that you have seen how easy it is to create a Grails application, let’s incorporate an application
construct in the form of a controller. This will further illustrate how Grails automates a series of steps in the
development process of Java applications.

Placed under the root directory of a Grails application, invoke grails create-controller welcome.
Executing this command will perform the following steps:

 1. Create a controller named WelcomeController.groovy under the application
directory grails-app/controllers.

 2. Create a directory named welcome under the application directory
grails-app/views.

 3. Create a test class named WelcomeControllerSpec.groovy under the application
directory src/u.

Figure 17-2. Default main screen for court Grails application

Chapter 17 ■ Grails

736

As a first step, let’s analyze the contents of the controller generated by Grails. The contents of the
WelcomeController.groovy controller are as follows:

class WelcomeController {
 def index {}
}

If you’re unfamiliar with Groovy, the syntax will seem awkward. But it’s simply a class named
WelcomeController with a method named index. The purpose is the same as the Spring MVC controllers
you created in Chapter 3. WelcomeController represents a controller class, whereas the method index
represents a handler method. However, in this state the controller isn’t doing anything. Modify it to reflect
the following:

class WelcomeController {
 Date now = new Date()
 def index = {[today:now]}
}

The first addition is a Date object assigned to the now class field, to represent the system date. Since def
index {} represents a handler method, the addition of [today:now] is used as a return value. In this case,
the return value represents a variable named today with the now class field, and that variable’s value will be
passed onto the view associated with the handler method.

Having a controller and a handler method that returns the current date, you can create a corresponding
view. If you place yourself under the directory grails-app/views/welcome, you will not find any views.
However, Grails attempts to locate a view for the WelcomeController controller inside this directory, in
accordance with the name of the handler method; this, once again, is one of the many conventions used by
Grails.

Therefore, create a GSP page named index.gsp inside this directory with the following contents:

<!DOCTYPE html>
<html>
<head>
 <title>Welcome</title>
</head>

<body>
<h2>Welcome to Court Reservation System</h2>
Today is <g:formatDate format="yyyy-MM-dd" date="${today}"/>
</body>
</html>

This is a standard GSP page, which makes use of the expressions and a tag library. When writing GSP
pages, the default tag library is available using the g tag. The formatDate tag renders a variable named
${today}, which is precisely the name of the variable returned by the controller handler method named
index.

Next, from the root directory of the Grails application, invoke the command grails run-app. This
automatically builds the application, compiling the controller class and copying files where they are needed
as well as starting the Apache Tomcat web container and deploying the application.

Following the same Grails convention process, the WelcomeController along with its handler methods
and views will be accessible from the context path http://localhost:8080/welcome/. Since index is the
default page used for context paths, if you open a browser and visit http://localhost:8080/welcome/ or

http://dx.doi.org/10.1007/978-1-4842-2790-9_3

Chapter 17 ■ Grails

737

the explicit URL http://localhost:8080/welcome/ index, you will see the previous JSP page that renders
the current date as returned by the controller. Note the lack of view extensions in the URLs (i.e., .html).
Grails hides the view technology by default; the reasons for this will become more evident in more advanced
Grails scenarios.

As you repeat the simple steps needed to create an application controller and view, bear in mind you
didn’t have to create or modify any configuration files, manually copy files to different locations, or set up a
web container to run the application. As an application moves forward, avoiding these scaffolding steps that
are common in Java web applications can be a great way to reduce development time.

Export a Grails Application to a WAR
The previous steps were all performed in the confines of a Grails environment. That is to say, you relied
on Grails to bootstrap a web container and run applications. However, when you want to run a Grails
application in a production environment, you will undoubtedly need to generate a format in which to deploy
the application to an external web container, which is a WAR file in the case of Java applications.

Placed under the root directory of a Grails application, invoke grails war. Executing this command
generates a WAR file under the root directory in the form <application-name>-<application-version>.
war. This WAR is a self-contained file with all the necessary elements needed to run a Grails application
on any Java standard web container. In the case of the court application, a file named court-0.1.war is
generated in the root directory of the Grails application, and the application version is taken from the
parameter app.version defined in the application.properties file.

In accordance with Apache Tomcat deployment conventions, a WAR named court-0.1.war would be
accessible at a URL in the form http://localhost:8080/court-0.1/. WAR deployment to URL conventions
may vary depending on the Java web container (e.g., Jetty or Oracle WebLogic).

17-3. Get Grails Plug-Ins
Problem
You want to use functionality from a Java framework or Java API inside Grails applications, while taking
advantage of the same Grails techniques to save scaffolding. The problem isn’t simply using a Java
framework or Java API in an application; this can be achieved by simply dropping the corresponding JARs
into an application’s lib directory. But rather having a Java framework or Java API tightly integrated with
Grails, something that is provided in the form of Grails plug-ins.

By tightly integrated with Grails, we mean having the capacity to use shortcut instructions
(e.g., grails <plug-in-task>) for performing a particular Java framework or Java API task or the ability to
use functionality inside an application’s classes or configuration files without resorting to scaffolding steps.

Solution
Grails actually comes with a few preinstalled plug-ins, even though this is not evident if you stick to using
Grails’ out-of-the-box functionality. However, there are many Grails plug-ins that can make working with a
particular Java framework or Java API as productive a process as using Grails core functionality. Some of the
more popular Grails plug-ins follow:

•	 App Engine: Integrates Google’s App Engine SDK and tools with Grails

•	 Quartz: Integrates the Quartz Enterprise Job Scheduler to schedule jobs and have
them executed using a specified interval or cron expression

Chapter 17 ■ Grails

738

•	 Spring WS: Integrates and supports the provisioning of web services, based on the
Spring Web Services project

•	 Clojure: Integrates Clojure and allows Clojure code to be executed in Grails artifacts

To obtain a complete list of Grails plug-ins, you can execute the command grails list-plugins.
This last command connects to the Grails plug-in repository and displays all the available Grails plug-ins.
In addition, the command grails plugin-info <plugin_name> can be used to obtain detailed information
about a particular plug-in. As an alternative, you can visit the Grails plug-in page located at http://grails.
org/plugin/home.

Installing a Grails plug-in is as easy as adding a dependency to your build.gradle file; uninstalling is
the reverse, removing it from the build.gradle file.

How It Works
A Grails plug-in follows a series of conventions that allow it to tightly integrate a particular Java framework or
Java API with Grails. By default, Grails comes with the Apache Tomcat and Hibernate plug-ins preinstalled.

Besides these default plug-ins, additional plug-ins can be installed on a per-application basis. For
example, to install the Clojure plug-in, you would add the following dependency to your build.gradle file:

dependencies {
 compile "org.grails.plugins:clojure:2.0.0.RC4"
}

17-4. Develop, Produce, and Test in Grails Environments
Problem
You want to use different parameters for the same application on the basis of the environment
(e.g., development, production, and testing) it’s being run in.

Solution
Grails anticipates that a Java application can undergo various phases that require different parameters.
These phases, or environments as they are called by Grails, can be, for instance, development, production,
and testing.

The most obvious scenario involves data sources, where you are likely to use a different permanent
storage system for development, production, and testing environments. Since each of these storage systems
will use different connection parameters, it’s easier to configure parameters for multiple environments and
let Grails connect to each one depending on an application’s operations.

In addition to data sources, Grails provides the same feature for other parameters that can change in
between application environments, such as server URLs for creating an application’s absolute links.

Configuration parameters for a Grails application environment are specified in the files located under
an application’s /grails-app/conf/ directory.

http://grails.org/plugin/home
http://grails.org/plugin/home

Chapter 17 ■ Grails

739

How It Works
Depending on the operation you’re performing, Grails automatically selects the most suitable environment:
development, production, or testing. For example, when you invoke the command grails run-app, this
implies that you are still developing an application locally, so a development environment is assumed. In
fact, when you execute this command, among the output you can see a line that reads as follows:

Environment set to development

This means that whatever parameters are set for a development environment are used to build,
configure, and run the application. Another example is the grails war command. Since exporting a
Grails application to a stand-alone WAR implies you will be running it on an external web container, Grails
assumes a production environment. In the output generated for this command, you will find a line that reads
as follows:

Environment set to production

This means that whatever parameters are set for a production environment are used to build, configure,
and export the application. Finally, if you run a command like grails test-app, Grails assumes a testing
environment. This means that whatever parameters are set for a testing environment are used to build,
configure, and run tests. In the output generated for this command, you will find a line that reads as follows:

Environment set to test

Inside the application.yml file located in an application’s directory /grails-app/conf/, you can find
sections in the following form:

environments:
 development:
 dataSource:
 dbCreate: create-drop
 url: jdbc:h2:mem:devDb;MVCC=TRUE;LOCK_TIMEOUT=10000;DB_CLOSE_ON_EXIT=FALSE
 test:
 dataSource:
 dbCreate: update
 url: jdbc:h2:mem:testDb;MVCC=TRUE;LOCK_TIMEOUT=10000;DB_CLOSE_ON_EXIT=FALSE
 production:
 dataSource:
 dbCreate: none
 url: jdbc:h2:./prodDb;MVCC=TRUE;LOCK_TIMEOUT=10000;DB_CLOSE_ON_EXIT=FALSE

In this last listing, different connection parameters are specified for permanent storage systems on the
basis of an application’s environment. This allows an application to operate on different data sets, as you
will surely not want development modifications to take place on the same data set used in a production
environment. It should be noted that this doesn’t mean these last examples are the only parameters that are
allowed to be configured on the basis of an application’s environment. You can equally place any parameter
inside the corresponding environments section. These last examples simply represent the most likely
parameters to change in between an application’s environments.

Chapter 17 ■ Grails

740

It’s also possible to perform programming logic (e.g., within a class or script) on the basis of a given
application’s environment. This is achieved through the grails.util.Environment class. The following
listing illustrates this process:

import grails.util.Environment
...
...
switch(Environment.current) {
 case Environment.DEVELOPMENT:
 // Execute development logic
 break
 case Environment.PRODUCTION:
 // Execute production logic
 break
}

This last code snippet illustrates how a class first imports the grails.util.Environment class. Then, on
the basis of the Environment.current value, which contains the environment an application is being run on,
the code uses a switch conditional to execute logic depending on this value.

Such a scenario can be common in areas such as sending out e-mails or performing geolocation.
It would not make sense to send out e-mails or determine where a user is located on a development
environment, given that a development team’s location is irrelevant in addition to not requiring an
application’s e-mail notifications.

Finally, it’s worth mentioning that you can override the default environment used for any Grails
command.

For example, by default, the grails run-app command uses the parameters specified for a
development environment. If for some reason you want to run this command with the parameters specified
for a production environment, you can do so using the following instruction: grails prod run-app. If
you want to use the parameters specified for a test environment, you can also do so by using the following
instruction: grails test run-app.

By the same token, for a command such as grails test-app, which uses the parameters specified
for a test environment, you can use the parameters belonging to a development environment by using the
command grails dev test-app. The same case applies for all other commands, by simply inserting the
prod, test, or dev keyword after the grails command.

17-5. Create an Application’s Domain Classes
Problem
You need to define an application’s domain classes.

Solution
Domain classes are used to describe an application’s primary elements and characteristics. If an application
is designed to attend reservations, it’s likely to have a domain class for holding reservations. Equally, if
reservations are associated with a person, an application will have a domain class for holding people.

In web applications, domain classes are generally the first things to be defined, because these classes
represent data that is saved for posterity—in a permanent storage system—so it interacts with controllers, as
well as representing data displayed in views.

Chapter 17 ■ Grails

741

In Grails, domain classes are placed under the /grails-app/domain/ directory. The creation of domain
classes, like most other things in Grails, can be carried out by executing a simple command in the following
form:

grails create-domain-class <domain_class_name>

This last command generates a skeleton domain class file named <domain_class_name>.groovy inside
the /grails-app/domain/ directory.

How It Works
Grails creates skeleton domain classes, but you still need to modify each domain class to reflect the purpose
of an application.

Let’s create a reservation system, similar to the one you created in Chapter 4 to experiment with Spring
MVC. Create two domain classes, one named Reservation and another named Player. To do so, execute the
following commands:

grails create-domain-class Player
grails create-domain-class Reservation

By executing these commands, a class file named Player.groovy and another one named
Reservation.groovy are placed under an application’s /grails-app/domain/ directory. In addition,
corresponding unit test files are generated for each domain class under an application’s src/test/groovy
directory, though testing will be addressed in recipe 17-10. Next, open the Player.groovy class to edit its
contents to the following:

class Player {
 static hasMany = [reservations : Reservation]
 String name
 String phone
 static constraints = {
 name(blank:false)
 phone(blank:false)
 }
}

The first addition, static hasMany = [reservations : Reservation], represents a relationship
among domain classes. This statement indicates that the Player domain class has a reservations field that
has many Reservation objects associated with it. The following statements indicate that the Player domain
class also has two String fields, one called name and another called phone.

The remaining element, static constraints = { }, defines constraints on the domain class. In this
case, the declaration name(blank:false) indicates that a Player object’s name field cannot be left blank. The
declaration phone(blank:false) indicates that a Player object cannot be created unless the phone field is
provided with a value. Once you modify the Player domain class, open the Reservation.groovy class to
edit its contents.

package court

import java.time.DayOfWeek
import java.time.LocalDateTime

http://dx.doi.org/10.1007/978-1-4842-2790-9_4

Chapter 17 ■ Grails

742

class Reservation {

 static belongsTo = Player
 String courtName;
 LocalDateTime date;
 Player player;
 String sportType;
 static constraints = {
 sportType(inList: ["Tennis", "Soccer"])
 date(validator: { val, obj ->
 if (val.getDayOfWeek() == DayOfWeek.SUNDAY && (val.getHour() < 8 || val.

getHour() > 22)) {
 return ['invalid.holidayHour']
 } else if (val.getHour() < 9 || val.getHour() > 21) {
 return ['invalid.weekdayHour']
 }
 })
 }
}

The first statement added to the Reservation domain class, static belongsTo = Player, indicates
that a Reservation object always belongs to a Player object. The following statements indicate the
Reservation domain class has a field named courtName of the type String, a field named date of the type
LocalDateTime, a field named player of the type Player, and another field named sportType of the type
String.

The constraints for the Reservation domain class are a little more elaborate than the Player domain
class. The first constraint, sportType(inList:["Tennis", "Soccer"]), restricts the sportType field of a
Reservation object to a string value of either Tennis or Soccer. The second constraint is a custom-made
validator to ensure the date field of a Reservation object is within a certain hour range depending on the
day of the week.

Now that you have an application’s domain classes, you can create the corresponding views and
controllers for an application.

Before proceeding, though, a word on Grails domain classes is in order. While the domain classes you
created in this recipe provide you with a basic understanding of the syntax used to define Grails domain
classes, they illustrate only a fraction of the features available in Grails domain classes.

As the relationship between domain classes grows more elaborate, more sophisticated constructs are
likely to be required for defining Grails domain classes. This comes as a consequence of Grails relying on
domain classes for various application functionalities.

For example, if a domain object is updated or deleted from an application’s permanent storage
system, the relationships between domain classes need to be well established. If relationships are not well
established, there is a possibility for inconsistent data to arise in an application (e.g., if a person object
is deleted, its corresponding reservations also need to be deleted to avoid an inconsistent state in an
application’s reservations).

Equally, a variety of constraints can be used to enforce a domain class’s structure. Under certain
circumstances, if a constraint is too elaborate, it’s often incorporated within an application’s controller
prior to creating an object of a certain domain class. Though for this recipe, model constraints were used to
illustrate the design of Grails domain classes.

Chapter 17 ■ Grails

743

17-6. Generate CRUD Controllers and Views for an
Application’s Domain Classes
Problem
You need to generate create, read, update, and delete (CRUD) controllers and views for an application’s
domain classes.

Solution
An application’s domain classes by themselves are of little use. The data mapped to domain classes still needs
to be created, presented to end users, and potentially saved for future use in a permanent storage system.

In web applications backed by permanent storage systems, these operations on domain classes are
often referred to as CRUD operations. In the majority of web frameworks, generating CRUD controllers and
views entails a substantial amount of work. This is on account of needing controllers capable of creating,
reading, updating, and deleting domain objects to a permanent storage system, as well as creating the
corresponding views (e.g., JSP pages) for an end user to create, read, update, and delete these same objects.

However, since Grails operates on the basis of conventions, the mechanism for generating CRUD
controllers and views for an application’s domain classes is easy. You can execute the following command to
generate the corresponding CRUD controller and views for an application’s domain class:

grails generate-all <domain_class_name>

How It Works
Grails is capable of inspecting an application’s domain classes and generating the corresponding controllers
and views necessary to create, read, update, and delete instances belonging to an application’s domain
classes.

For example, take the case of the Player domain class you created earlier. To generate its CRUD
controller and views, you only need to execute the following command from an application’s root directory:

grails generate-all court.Player

A similar command would apply to the Reservation domain class. Simply execute the following
command to generate its CRUD controller and views:

grails generate-all court.Reservation

So, what is actually generated by executing these steps? If you saw the output for these commands, you
will have a pretty good idea, but I will recap the process here nonetheless.

 1. Compile an application’s classes.

 2. Generate 12 properties files under the directory grails-app/i18n to support an
application’s internationalization (e.g., messages_<language>.properties).

 3. Create a controller named <domain_class>Controller.groovy with CRUD
operations designed for an RDBMS, placed under an application’s grails-app/
controllers directory.

Chapter 17 ■ Grails

744

 4. Create four views corresponding to a controller class’s CRUD operations named
create.gsp, edit.gsp, index.gsp, and show.gsp. Note that the .gsp extension
stands for “Groovy Server Pages,” which is equivalent to JavaServer Pages except
it uses Groovy to declare programmatic statements instead of Java. These views
are placed under an application’s grails-app/views/<domain_class> directory.

Once you finish these steps, you can start the Grails application using grails run-app and work as
an end user with the application. Yes, you read correctly; after performing these simple commands, the
application is now ready for end users. This is the mantra of Grails operating on conventions, to simplify the
creation of scaffolding code through one-word commands. After the application is started, you can perform
CRUD operations on the Player domain class at the following URLs:

•	 Create: http://localhost:8080/player/create

•	 Read: http://localhost:8080/player/list (for all players) or
http://localhost:8080/court/player/show/<player_id>;

•	 Update: http://localhost:8080/player/edit/<player_id>

•	 Delete: http://localhost:8080/player/delete/<player_id>

The page navigation between each view is more intuitive than these URLs have it to be, but we
will illustrate with a few screenshots shortly. An important thing to be aware about these URLs is their
conventions. Notice the pattern <domain>/<app_name>/<domain_class>/<crud_action>/<object_id>,
where <object_id> is optional depending on the operation.

In addition to being used to define URL patterns, these conventions are used throughout an
application’s artifacts. For example, if you inspect the PlayerController.groovy controller, you can
observe there are handler methods named like the various <crud_action> values. Similarly, if you inspect
an application’s backing RDBMS, you can note that the domain class objects are saved using the same
<player_id> used in a URL.

Now that you’re aware of how CRUD operations are structured in Grails applications, create a Player
object by visiting the address http://localhost:8080/player/create. Once you visit this page, you can see
an HTML form with the same field values you defined for the Player domain class.

Introduce any two values for the name and phone fields and submit the form. You’ve just persisted a
Player object to an RDBMS. By default, Grails comes preconfigured to use HSQLDB, an in-memory RDBMS.
A future recipe will illustrate how to change this to another RDBMS; for now, HSQLDB will suffice.

Next, try submitting the same form but, this time, without any values. Grails will not persist the Player
object; it will instead show two warning messages indicating that the name and phone fields cannot be
blank, as shown in Figure 17-3.

Chapter 17 ■ Grails

745

This validation process is being enforced on account of the statements, name(blank:false) and
phone(blank:false), which you placed in the Player domain class. You didn’t need to modify an
application’s controllers or views or even create properties files for these error messages; everything was
taken care of by the Grails convention-based approach.

 ■ Note When using an htMl5-capable browser, you won’t be allowed to submit the form. Both input
elements are marked required, which prevents the form submission in these browsers. these rules are also
added based on the statements mentioned earlier.

Experiment with the remaining views available for the Player domain class, creating, reading, updating,
and deleting objects directly from a web browser to get a feel for how Grails handles these tasks.

Moving along the application, you can also perform CRUD operations on the Reservation domain class
at the following URLs:

•	 Create: http://localhost:8080/reservation/create

•	 Read: http://localhost:8080/reservation/list (for all reservations) or
http://localhost:8080/court/reservation/show/<reservation_id>

•	 Update: http://localhost:8080/reservation/edit/<reservation_id>

•	 Delete: http://localhost:8080/reservation/delete/<reservation_id>

These last URLs serve the same purpose as those for the Player domain class: the ability to create, read,
update, and delete objects belonging to the Reservation domain class from a web interface.

Next, let’s analyze the HTML form used for creating Reservation objects, available at the URL
http://localhost:8080/reservation/create. Figure 17-4 illustrates this form.

Figure 17-3. Grails domain class validation taking place in a view (in this case, an HTML form)

Chapter 17 ■ Grails

746

Figure 17-4 is interesting in various ways. Though the HTML form is still created on the basis of the
fields of the Reservation domain class, just like the HTML form for the Player domain class, notice that it
has various prepopulated HTML select menus.

The first select menu belongs to the sportType field. Since this particular field has a definition
constraint to have a string value of either Soccer or Tennis, Grails automatically provides a user with these
options instead of allowing open-ended strings and validating them afterward.

The second select menu belongs to the date field. In this case, Grails generates various HTML select
menus representing a date to make the date-selection process easier, instead of allowing open-ended dates
and validating them afterward.

The third select menu belongs to the player field. This select menu’s options are different in the sense
they are taken from the Player objects you’ve created for the application. The values are being extracted
from querying the application’s RDBMS; if you add another Player object, it will automatically become
available in this select menu.

In addition, a validation process is performed on the date field. If the selected date does not conform to
a certain range, the Reservation object cannot be persisted, and a warning message appears on the form.

Currently you cannot submit a valid Reservation because the date field only accepts a date and not a
time. To fix this, open the create.gsp (and also the edit.gsp) file under the views/reservation directory.
This contains an <f:all bean="reservation" /> tag. This tag is responsible for creating the HTML form,
and based on the type of field, it will render an HTML input element. To be able to input time as well, add a
<g:datePicker /> tag and exclude the date field from the default form.

Figure 17-4. Grails domain class HTML form, populated with domain objects from separate class

Chapter 17 ■ Grails

747

<fieldset class="form">
 <f:all bean="reservation" except="date" />
 <div class="fieldcontain required">
 <label for="date">Date</label>
 <g:datePicker name="date" value="${reservation?.date}" precision="minute"/>
 </div>
</fieldset>

The <g:datePicker /> tag allows you to specify a precision value. When set to minute, it allows for
setting the hour and minutes next to the date. Now when selecting a proper range, a Reservation can be
stored.

Try experimenting with the remaining views available for the Reservation domain class, creating,
reading, updating, and deleting objects directly from a web browser.

Finally, just to keep things in perspective, realize what your application is already doing in a few steps:
validating input; creating, reading, updating, and deleting objects from an RDBMS; completing HTML
forms from data in an RDBMS; and supporting internationalization. And you haven’t even modified a
configuration file, been required to use HTML, or needed to deal with SQL or object-relational mappers
(ORMs).

17-7. Implement Internationalization (I18n) for Message
Properties
Problem
You need to internationalize values used throughout a Grails application.

Solution
By default, all Grails applications are equipped to support internationalization. Inside an application’s
/grails-app/i18n/ folder, you can find a series of *.properties files used to define messages in 12 languages.
The values declared in these *.properties files allow Grails applications to display messages based on a
user’s languages preferences or an application’s default language. Within a Grails application, the values
declared in *.properties files can be accessed from places that include views (JSP or GSP pages) or an
application’s context.

How It Works
Grails determines which locale (i.e., from an internationalization properties file) to use for a user based on
two criteria:

•	 The explicit configuration inside an application’s /grails-app/conf/spring/
resource.groovy file

•	 A user’s browser language preferences

Since the explicit configuration of an application’s locale takes precedence over a user’s browser
language preferences, there is no default configuration present in an application’s resource.groovy file.
This ensures that if a user’s browser language preferences are set to Spanish (es) or German (de), a user is
served messages from the Spanish or German properties files (e.g., messages_es.properties or messages_
de.properties). On the other hand, if an application’s resource.groovy file is configured to use Italian (it),

Chapter 17 ■ Grails

748

it won’t matter what a user’s browser language preferences are; a user will always be served messages from
the Italian properties file (e.g., messages_it.properties).

Therefore, you should define an explicit configuration inside an application’s /grails-app/conf/
spring/resource.groovy file, only if you want to coerce users into using a specific language locale. For
example, maybe you don’t want to update several internationalization properties files or maybe you simply
value uniformity.

Since Grails internationalization is based on Spring’s Locale Resolver, you need to place the following
contents inside an application’s /grails-app/conf/spring/resource.groovy file to force a specific
language on users:

import org.springframework.web.servlet.i18n.SessionLocaleResolver

beans = {
 localeResolver(SessionLocaleResolver) {
 defaultLocale= Locale.ENGLISH
 Locale.setDefault (Locale.ENGLISH)
 }
}

By using this last declaration, any visitor is served messages from the English properties files
(e.g., messages_en.properties) irrespective of his or her browser’s language preferences. It’s also worth
mentioning that if you specify a locale for which there are no available properties files, Grails reverts to using
the default messages.properties file, which by default is written in English though you can easily modify its
values to reflect another language if you prefer. This same scenario applies when a user’s browser language
preferences are the defining selection criteria (e.g., if a user browser’s language preferences are set for Chinese
and there is no Chinese properties file, Grails falls back to using the default messages.properties file).

Now that you know how Grails determines which properties file to choose from in order to serve
localized content, let’s take a look at the syntax of a Grails *.properties file:

default.paginate.next=Next
typeMismatch.java.net.URL=Property {0} must be a valid URL
default.blank.message=Property [{0}] of class [{1}] cannot be blank
default.invalid.email.message=Property [{0}] of class [{1}] with value [{2}] is not a valid
e-mail address
default.invalid.range.message=Property [{0}] of class [{1}] with value [{2}] does not fall
within the valid range from [{3}] to [{4}]

The first line is the simplest declaration possible in a *.properties file. If Grails encounters the
property named default.paginate.next in an application, it will substitute it for the value Next, or
whatever other value is specified for this same property based on a user’s determining locale.

On certain occasions, it can be necessary to provide more explicit messages that are best determined
from wherever a localized message is being called. This is the purpose of the keys {0}, {1}, {2}, {3}, and {4}.
They are parameters used in conjunction with a localized property. In this manner, the localized message
displayed to a user can convey more detailed information. Figure 17-5 illustrates localized and parameterized
messages for the court application determined on a user browser’s language preferences.

Chapter 17 ■ Grails

749

Armed with this knowledge, define the following four properties inside Grails message.properties
files:

invalid.holidayHour=Invalid holiday hour
invalid.weekdayHour=Invalid weekday hour
welcome.title=Welcome to Grails
welcome.message=Welcome to Court Reservation System

Next, it’s time to explore how property placeholders are defined in Grails applications.
In recipe 17-5, you might not have realized it, but you declared a localized property for the Reservation

domain class. In the validation section (static constraints = { }), you created this statement in the
following form:

return ['invalid.weekdayHour']

If this statement is reached, Grails attempts to locate a property named invalid.weekdayHour inside
a properties file and substitute its value on the basis of a user’s determining locale. It’s also possible to
introduce localized properties into an application’s views. For example, you can modify the GSP page

Figure 17-5. Grails localized and parameterized messages, determined on a user browser’s language
preferences (left-right, top-down: Spanish, German, Italian, and French)

Chapter 17 ■ Grails

750

created in recipe 17-2 and located under /court/grails-app/views/welcome/index.gsp to use the
following:

<html>
<!DOCTYPE html>
<html>
<head>
 <title><g:message code="welcome.title"/></title>
</head>

<body>
<h2><g:message code="welcome.message"/></h2>
Today is <g:formatDate format="yyyy-MM-dd" date="${today}"/>
</body>
</html>

This GSP page uses the <g:message/> tag. Then using the code attribute, the properties welcome.title
and welcome.messsage are defined, both of which will be replaced with the corresponding localized values
once the JSP is rendered.

17-8. Change Permanent Storage Systems
Problem
You want to change a Grails application’s permanent storage system to your favorite RDBMS.

Solution
Grails is designed to use an RDBMS as a permanent storage system. By default, Grails comes preconfigured
to use HSQLDB. HSQLDB is a database that is automatically started by Grails upon deploying an application
(i.e., executing grails run-app).

However, the simplicity of HSQLDB can also be its primary drawback. Every time an application is
restarted in development and testing environments, HSQLDB loses all its data since it’s configured to
operate in memory. And even though Grails applications in a production environment are configured with
HSQLDB to store data permanently on a file, the HSQLDB feature set may be seen as limited for certain
application demands.

You can configure Grails to use another RDBMS by modifying an application’s application.yml file,
located under the grails-app/conf directory. Inside this file, you can configure up to three RDBMSs, one for
each environment—development, production, and testing—undertaken by an application. See recipe 17-4
for more on development, production, and testing environments in Grails applications.

How It Works
Grails relies on the standard Java JDBC notation to specify RDBMS connection parameters, as well as
on the corresponding JDBC drivers provided by each RDBMS vendor, to create, read, update, and delete
information.

One important aspect you need to be aware of if you change RDBMSs is that Grails uses an ORM called
Groovy Object Relational Mapper (GROM) to interact with an RDBMS. The purpose behind GROM is the
same as all other ORM solutions—to allow you to concentrate on an application’s business logic, without

Chapter 17 ■ Grails

751

worrying about the particularities of an RDBMS implementation, which can range from discrepancies in
data types to working with SQL directly. GROM allows you to design an application’s domain classes and
maps your design to the RDBMS of your choice.

Set Up an RDBMS Driver
The first step you need to take in changing the Grails default RDBMS is to add the JDBC driver for the
RDBMS of your choice to the gradle.build file. This allows the application access to the JDBC classes
needed to persist objects to a particular RDBMS.

Configure an RDBMS Instance
The second step consists of modifying the application.yml file located under an application’s
grails-app/conf directory. Inside this file, there are three sections for defining an RDBMS instance.

Each RDBMS instance corresponds to a different possible application environment: development,
production, and testing. Depending on the actions you take, Grails chooses one of these instances to
perform any permanent storage operations an application is designed to do. See recipe 17-4 for more on
development, production, and testing environments in Grails applications.

However, the syntax used for declaring an RDBMS in each of these sections is the same. Table 17-1
contains the various properties that can be used in a dataSource definition for the purpose of configuring an
RDBMS.

Table 17-1. dataSource Properties for Configuring an RDBMS

Property Definition

driverClassName Class name for the JDBC driver

username Username to establish a connection to an RDBMS

password Password to establish a connection to an RDBMS

url URL connection parameters for an RDBMS

pooled Indicates whether to use connection pooling for an RDMBS; defaults to true

jndiName Indicates a JNDI connection string for a data source (this is an alternative to
configuring driverClassName, username, password, and url directly in Grails and
instead relying on a data source being configured in a web container)

logSql Indicates whether to enable SQL logging

dialect Indicates the RDBMS dialect to perform operations

properties Used to indicate extra parameters for RDBMS operation

dbCreate Indicates autogeneration of RDBMS data definition language (DDL)

dbCreate Value Definition

create-drop Drops and re-creates the RDBMS DDL when Grails is run
(warning: deletes all existing data in the RDBMS)

create Creates the RDBMS DDL if it doesn’t exist but doesn’t modify
if it does (warning: deletes all existing data in the RDBMS)

update Creates the RDBMS DDL if it doesn’t exist or updates if it does

Chapter 17 ■ Grails

752

If you’ve used a Java ORM, such as Hibernate or EclipseLink, the parameters in Table 17-1 should be
fairly familiar. The following code illustrates the dataSource definition for a MySQL RDBMS:

dataSource:
 dbCreate: update
 pooled: true
 jmxExport: true
 driverClassName: com.mysql.jdbc.Driver
 username: grails
 password: groovy

Of the properties in the previous definition, the one you should be most careful with is dbCreate since
it can destroy data in an RDBMS. In this case, the update value is the most conservative of all three available
values, as explained in Table 17-1.

If you’re using a production RDBMS, then dbCreate="update" is surely to be your preferred strategy,
since it doesn’t destroy any data in the RDBMS. If, on the other hand, a Grails application is undergoing
testing, you are likely to want data in an RDBMS being cleaned out on every test run; thus, a value like
dbCreate="create" or dbCreate="create-drop" would be more common. For a development RDBMS,
which of these options you select as the better strategy depends on how advanced a Grails application is in
terms of development.

Grails also allows you to use an RDBMS configured on a web container. In such cases, a web container,
such as Apache Tomcat, is set up with the corresponding RDBMS connection parameters, and access to the
RDBMS is made available through JNDI. The following code illustrates the dataSource definition to access
the RDBMS via JNDI:

dataSource:
 jndiName: java:comp/env/grailsDataSource

Finally, it’s worth mentioning that you can configure a dataSource definition to take effect on an
application’s various environments, while further specifying properties for each specific environment.
This configuration is illustrated in the following code:

dataSource:
 driverClassName: com.mysql.jdbc.Driver
 username: grails

environments:
 production:
 dataSource:
 url: jdbc:mysql://localhost/grailsDBPro
 password: production
 development:
 dataSource:
 url: jdbc:mysql://localhost/grailsDBDev
 password: development

As the previous code illustrates, a dataSource’s driverClassName and username properties are defined
globally, taking effect on all environments, while other dataSource properties are declared specifically for
each individual environment.

Chapter 17 ■ Grails

753

17-9. Customize Log Output
Problem
You want to customize the logging output generated by a Grails application.

Solution
Grails relies on Logback to perform its logging operations. In doing so, all configuration parameters are
specified inside the logback.groovy file located under an application’s /grails-app/conf directory.
Note you could replace this with a logback.xml file if you are more familiar with the XML configuration of
Logback.

Given Logback’s logging versatility, a Grails application logging can be configured in various ways. This
includes creating custom appenders, logging levels, console output, logging by artifacts, and custom logging
layouts.

How It Works
Grails comes preconfigured with a basic set of parameters. Defined inside the logback.groovy file located
under an application’s /grails-app/conf directory, these parameters are as follows:

import grails.util.BuildSettings
import grails.util.Environment
import org.springframework.boot.logging.logback.ColorConverter
import org.springframework.boot.logging.logback.WhitespaceThrowableProxyConverter

import java.nio.charset.Charset

conversionRule 'clr', ColorConverter
conversionRule 'wex', WhitespaceThrowableProxyConverter

// See http://logback.qos.ch/manual/groovy.html for details on configuration
appender('STDOUT', ConsoleAppender) {
 encoder(PatternLayoutEncoder) {
 charset = Charset.forName('UTF-8')

 pattern =
 '%clr(%d{yyyy-MM-dd HH:mm:ss.SSS}){faint} ' + // Date
 '%clr(%5p) ' + // Log level
 '%clr(---){faint} %clr([%15.15t]){faint} ' + // Thread
 '%clr(%-40.40logger{39}){cyan} %clr(:){faint} ' + // Logger
 '%m%n%wex' // Message
 }
}

def targetDir = BuildSettings.TARGET_DIR
if (Environment.isDevelopmentMode() && targetDir != null) {
 appender("FULL_STACKTRACE", FileAppender) {
 file = "${targetDir}/stacktrace.log"
 append = true

Chapter 17 ■ Grails

754

 encoder(PatternLayoutEncoder) {
 pattern = "%level %logger - %msg%n"
 }
 }
 logger("StackTrace", ERROR, ['FULL_STACKTRACE'], false)
}
root(ERROR, ['STDOUT'])

In logging parlance, each package is known as a logger. Logback supports the following logging levels:
error, warn, info, debug, and trace. error is the most severe. Grails thus follows a conservative default
logging policy by using the error level on most of its packages. Specifying a less severe level (e.g., debug)
would result in greater volumes of logging information, which may not be practical for most cases.

By default, all logging messages are sent to the stacktrace.log file located under an application’s root
directory and, if applicable, to the standard output (i.e., console) of a running application. When you execute
a Grails command, you will observe logging messages sent to standard output.

Configuring Custom Appenders and Loggers
Logback relies on appenders and loggers to offer versatile logging functionality. An appender is a location
where logging information is sent (e.g., a file or standard output), whereas a logger is a location where
logging information is generated (e.g., a class or package).

Grails is configured with a root logger, from which all other loggers inherit their behavior. The default
logger can be customized in a Grails application using the following statement within an application’s
Logback.groovy file:

root(ERROR, ['STDOUT'])

This last statement defines a logger so that messages of an error level, or a more severe one, are logged
to standard output. This is the reason you can see logging messages from other loggers (e.g., a class or
package) being sent to standard output; they all inherit the root logger’s behavior, in addition to specifying
their own log level. On the other hand, Logback appenders provide a means to send logging messages to
various locations. There are four types of appenders available by default.

•	 jdbc : An appender that logs to a JDBC connection

•	 console: An appender that logs to standard output

•	 file: An appender that logs to a file

•	 rollingFile: An appender that logs to a rolling set of files

To define appenders in a Grails application, you need to declare them within the application’s
Logback.groovy file, as follows:

def USER_HOME = System.getProperty("user.home")

appender('customlogfile', FileAppender) {
 encoder(PatternLayoutEncoder) {
 Pattern = "%d %level %thread %mdc %logger - %m%n"
 }
 file = '${USER_HOME}/logs/grails.log'
}

Chapter 17 ■ Grails

755

appender('rollinglogfile', RollingFileAppender) {
 encoder(PatternLayoutEncoder) {
 Pattern = "%d %level %thread %mdc %logger - %m%n"
 }

 rollingPolicy(TimeBasedRollingPolicy) {
 FileNamePattern = "${USER_HOME}/logs/rolling-grails-%d{yyyy-MM}.log"
 }
}

To use appenders, you simply need to add them to a corresponding logger where they can receive input.
The following declaration illustrates how to put together the use of appenders, loggers, and logging

levels:

root(DEBUG, ['STDOUT','customlogfile'])

This last listing overrides the default root logger. It indicates to use a debug level for outputting logging
messages to both the stdout appender (i.e., standard output or console) as well as the customlogfile
appender, the last of which represents a file defined in the appender section. Be aware that a debug level
generates a lot of logging information.

17-10. Run Unit and Integration Tests
Problem
To make sure that your application’s classes are working as specified, you need to perform unit and
integration tests on them.

Solution
Grails has built-in support for running both unit and integration tests on an application. Earlier when you
generated Grails artifacts, such as an application’s domain classes, you might recall a series of test classes
were automatically generated.

In a Grails application, tests are placed under an application’s src/test or src/integration-test
directory. Similar to other functionality offered by Grails, much of the drudgery involved in setting up and
configuring application tests is handled by Grails. You simply need to concentrate on designing tests.

Once you’ve designed an application’s tests, running tests in Grails is as simple as executing the grails
test-app command from an application’s root directory.

How It Works
Grails bootstraps an environment necessary to perform application tests. This environment includes the
libraries (i.e., JARs) and permanent storage system (i.e., RDBMS), as well as any other artifact necessary to
carry out unit and integration tests.

Let’s start by analyzing the output of executing the grails test-app command, illustrated in Figure 17-6.

Chapter 17 ■ Grails

756

The first section indicates the execution of the tests, which are taken from the src/test/groovy
directory under an application’s root directory. In this case, 13 failed and 4 successful unit tests are
performed, which correspond to the skeleton test classes generated upon creation of an application’s
domain classes. Since these test classes contain a test skeleton, most of them fail.

The second section indicates if it was a success or failure; in this case, it was a failure. The results are
available as HTML reports for which the link is shown; they can be found in the build/reports/tests/test
directory of the project.

Now that you know how Grails executes tests, let’s modify the preexisting unit test classes to incorporate
unit tests based on a domain class’s logic. Given that Grails testing is based on the foundations of the JUnit
testing framework (www.junit.org/). If you’re unfamiliar with this framework, we advise you to look over its
documentation to grasp its syntax and approach. The following sections assume a basic understanding
of JUnit (see also chapter 16).

Figure 17-6. Test output

http://www.junit.org/
http://dx.doi.org/10.1007/978-1-4842-2790-9_16

Chapter 17 ■ Grails

757

Add the following methods (i.e., unit tests) to the PlayerSpec.groovy class located under an
application’s src/test/groovy directory and remove the "test something" method:

void "A valid player is constructed"() {
 given:
 def player = new Player(name: 'James', phone: '120-1111')
 when: "validate is called"
 def result = player.validate();
 then: "it should be valid"
 result
}

void "A player without a name is constructed"() {
 given:
 def player = new Player(name: '', phone: '120-1111')
 when: "validate is called"
 def result = player.validate();
 then: "The name should be rejected"
 !result
 player.errors['name'].codes.contains('nullable')
}

void "A player without a phone is constructed"() {
 given:
 def player = new Player(name: 'James', phone: '')
 when: "validate is called"
 def result = player.validate()
 then: "The phone number should be rejected."
 !result
 player.errors['phone'].codes.contains('nullable')
}

The first unit test creates a Player object and instantiates it with both a name field and a phone field. In
accordance with the constraints declared in the Player domain class, this type of an instance should always
be valid. Therefore, the statement assertTrue player.validate() confirms the validation of this object is
always true.

The second and third unit tests also create a Player object. However, notice in one test the Player
object is instantiated with a blank name field, and in another, the Player object is instantiated with a blank
phone field. In accordance with the constraints declared in the Player domain class, both instances should
always be invalid. Therefore, the !result statements in the then: block to confirm the validation of such
objects are always false. The player.errors['phone'].codes.contains('nullable') part checks whether
the validation contains the excepted code for the validation exception.

Next, add the following methods (i.e., unit tests) to the ReservationSpec.groovy class located under an
application’s src/test/groovy directory:

void testReservation() {
 given:
 def calendar = LocalDateTime.of(2017, 10, 13, 15, 00)
 .toInstant(ZoneOffset.UTC)
 def validDateReservation = Date.from(calendar)

Chapter 17 ■ Grails

758

 def reservation = new Reservation(
 sportType:'Tennis', courtName:'Main',
 date:validDateReservation,player:new Player(name:'James',phone:'120-1111'))

 expect:
 reservation.validate()
}

void testOutOfRangeDateReservation() {
 given:
 def calendar = LocalDateTime.of(2017, 10, 13, 23, 00)
 .toInstant(ZoneOffset.UTC)

 def invalidDateReservation = Date.from(calendar)
 def reservation = new Reservation(
 sportType:'Tennis',courtName:'Main',
 date:invalidDateReservation,player:new Player(name:'James',phone:'120-1111'))

 expect:
 !reservation.validate()
 reservation.errors['date'].code == 'invalid.weekdayHour'
}

void testOutOfRangeSportTypeReservation() {
 given:
 def calendar = LocalDateTime.of(2017, 10, 13, 15, 00)
 .toInstant(ZoneOffset.UTC)
 def validDateReservation = Date.from(calendar)
 def reservation = new Reservation(
 sportType:'Baseball',courtName:'Main',
 date:validDateReservation,player:new Player(name:'James',phone:'120-1111'))

 expect:
 !reservation.validate()
 reservation.errors['sportType'].codes.contains('not.inList')
}

This last listing contains three unit tests designed to validate the integrity of Reservation objects. The
first test creates a Reservation object instance and confirms that its corresponding values pass through
the Reservation domain class’s constraints. The second test creates a Reservation object that violates the
domain class’s date constraint and confirms such an instance is invalid. The third test creates a Reservation
object that violates the domain class’s sportType constraint and confirms such an instance is invalid.

If you execute the grails test-app command, Grails automatically executes all the previous tests and
outputs the test results to the application’s build directory.

There are still failing tests, specifically PlayerControllerSpec and ReservationControllerSpec. When
open, there is a method called populateValidParams that contains an @TODO.

Chapter 17 ■ Grails

759

def populateValidParams(params) {
 assert params != null

 // TODO: Populate valid properties like...
 //params["name"] = 'someValidName'
 assert false, "TODO: Provide a populateValidParams() implementation for this generated

test suite"
}

To fix the tests, it needs to be modified to submit proper values to the controller. For
PlayerControllerSpec, modify populateValidParams to include params["name"] and params["phone"].

def populateValidParams(params) {
 assert params != null

 params["name"] = 'J. Doe'
 params["phone"] = '555-123-4567'
}

And the following for ReservationControllerSpec:

def populateValidParams(params) {
 assert params != null

 def calendar = LocalDateTime.of(2017, 10, 13, 12, 00)
 .toInstant(ZoneOffset.UTC)

 params["courtName"] = 'Tennis Court #1'
 params["sportType"] = "Tennis"
 params["date"] = Date.from(calendar)
 params["player"] = new Player(name: "J. Doe", phone: "555-432-1234")
}

Now the only remaining failing test is WelcomeControllerSpec, which you can remove to have a
successful build.

Now that you’ve created unit tests for a Grails application, let’s explore the creation of integration tests.
Unlike unit tests, integration tests validate more elaborate logic undertaken by an application.

Interactions between various domain classes or operations performed against an RDBMS are the realm of
integration testing. In this sense, Grails aids the integration testing process by automatically bootstrapping
an RDBMS and other application properties to perform integration tests. The “Grails Differences for
Running Unit and Integration Tests” sidebar contains more details on the different aspects provided by
Grails for running both unit and integration tests.

Unit tests are designed to validate the logic contained in a single domain class. Because of this fact,
besides automating the execution of such tests, Grails provides no type of bootstrapping properties for
performing these types of tests.

Integration tests are designed to validate more elaborate logic that can span a series of application
classes. Therefore, Grails bootstraps not only an RDBMS for the purpose of running tests against this type of
permanent storage system but also bootstraps a domain class’s dynamic methods to simplify the creation of
such tests. This of course entails additional overhead for performing such tests, compared to unit tests.

It’s also worth mentioning that if you look closely at the skeleton test classes generated by Grails for both
unit and integration tests, there isn’t any difference among them. The only difference is that tests placed

Chapter 17 ■ Grails

760

inside the integration directory have access to the series of provisions mentioned earlier, whereas those
inside the unit directory do not. You could go down the route of placing unit tests inside the integration
directory, but this is a matter for you to decide by considering convenience versus overhead.

Next, create an integration class for the application by executing the following command: grails
create-integration-test CourtIntegrationTest. This generates an integration test class inside the
application’s src/integration-test/groovy directory.

Incorporate the following method (i.e., the integration test) into this last class to validate the RDBMS
operations performed by the application:

void testQueries() {
 given: "2 Existing Players"
 // Define and save players
 def players = [new Player(name:'James',phone:'120-1111'),
 new Player(name:'Martha',phone:'999-9999')]
 players*.save()

 // Confirm two players are saved in the database
 Player.list().size() == 2
 when: "Player James is retrieved"
 // Get player from the database by name
 def testPlayer = Player.findByName('James')
 then: "The phone number should match"
 // Confirm phone
 testPlayer.phone == '120-1111'
 when: "Player James is Updated"
 // Update player name
 testPlayer.name = 'Marcus'
 testPlayer.save()

 then: "The name should be updated in the DB"
 // Get updated player from the database, but now by phone
 def updatedPlayer = Player.findByPhone('120-1111')

 // Confirm name
 updatedPlayer.name == 'Marcus'

 when: "The updated player is deleted"
 // Delete player
 updatedPlayer.delete()

 then: "The player should be removed from the DB."
 // Confirm one player is left in the database
 Player.list().size() == 1

 // Confirm updatedPlayer is deleted
 def nonexistantPlayer = Player.findByPhone('120-1111')
 nonexistantPlayer == null
}

Chapter 17 ■ Grails

761

This last listing performs a series of operations against an application’s RDBMS, starting from
saving two Player objects and then querying, updating, and deleting those objects from the RDBMS.
After each operation, a validation step is performed to ensure the logic—in this case contained in the
PlayerController controller class—operates as expected (i.e., the controller list() method returns the
correct number of objects in the RDBMS).

By default, Grails performs RDBMS test operations against HSQLDB. However, you can use any RDBMS
you like. See recipe 17-8 for details on changing the Grails RDBMS.

Finally, it’s worth mentioning that if you want to execute a single type of test (i.e., unit or integration),
you can rely on the command flag -unit or -integration. Executing the grails test-app -unit command
performs only an application’s unit tests, whereas executing the grails test-app -integration command
performs only an application’s integration tests. This can be helpful if you have a large amount of both tests
since it can cut down on the overall time needed to perform tests.

17-11. Use Custom Layouts and Templates
Problem
You need to customize layouts and templates to display an application’s content.

Solution
By default, Grails applies a global layout to display an application’s content. This allows views to have a
minimal set of display elements (e.g., HTML, CSS, and JavaScript) and inherit their layout behavior from a
separate location.

This inheritance process allows application designers and graphic designers to perform their work
separately, with application designers concentrating on creating views with the necessary data and graphic
designers concentrating on the layout (i.e., aesthetics) of such data.

You can create custom layouts to include elaborate HTML displays, as well as custom CSS or JavaScript
libraries. Grails also supports the concept of templates, which serve the same purpose as layouts except
applied at a more granular level. In addition, it’s also possible to use templates for rendering a controller’s
output, instead of a view as in most controllers.

How It Works
Inside the /grails-app/view/ directory of an application, you can find a subdirectory called layouts,
containing the layouts available to an application. By default, there is a file named main.gsp whose contents
is the following:

<!doctype html>
<html lang="en" class="no-js">
<head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
 <meta http-equiv="X-UA-Compatible" content="IE=edge"/>
 <title>
 <g:layoutTitle default="Grails"/>
 </title>

Chapter 17 ■ Grails

762

 <meta name="viewport" content="width=device-width, initial-scale=1"/>

 <asset:stylesheet src="application.css"/>

 <g:layoutHead/>
</head>
<body>

 <div class="navbar navbar-default navbar-static-top" role="navigation">
 <div class="container">
 <div class="navbar-header">
 <button type="button" class="navbar-toggle" data-toggle="collapse"

data-target=".navbar-collapse">
 Toggle navigation

 </button>

 <i class="fa grails-icon">
 <asset:image src="grails-cupsonly-logo-white.svg"/>
 </i> Grails

 </div>
 <div class="navbar-collapse collapse" aria-expanded="false" style="height: 0.8px;">
 <ul class="nav navbar-nav navbar-right">
 <g:pageProperty name="page.nav" />

 </div>
 </div>
 </div>

 <g:layoutBody/>

 <div class="footer" role="contentinfo"></div>

 <div id="spinner" class="spinner" style="display:none;">
 <g:message code="spinner.alt" default="Loading…"/>
 </div>

 <asset:javascript src="application.js"/>

</body>
</html>

Though apparently a simple HTML file, this last listing contains several elements that are used as
placeholders in order for application views (i.e., JSP and GSP pages) to inherit the same layout.

The first of such elements are Groovy tags appended to the <g:*> namespace. The <g:layoutTitle> tag
is used to define the contents of a layout’s title section. If a view inherits the behavior from this layout and
lacks such a value, Grails automatically assigns the Grails value, as indicated by the default attribute. On the
other hand, if an inheriting view has such a value, it’s displayed in its place.

Chapter 17 ■ Grails

763

The <g:layoutHead> tag is used to define the contents of a layout’s head section. Any values declared in
the head of a view head inheriting this layout are placed in this location upon rendering.

The <asset:javascript src="application"> tag allows any view inheriting this layout automatic
access to JavaScript libraries. Upon rendering, this element is transformed into the following: <script
type="text/javascript" src="/court/assets/application.js"></script>. Bear in mind JavaScript
libraries have to be placed inside the Grails /<app-name>/web-app/assets/javascripts subdirectory;
<app-name> in this case corresponds to court.

Moving along, you will also find several declarations in the form ${assetPath*} with a src attribute.
Such statements are translated by Grails to reflect a resource contained in an application. So, for example,
the statement ${assetPath(src: 'favicon.ico')} is transformed into /court/assets/images/favicon.ico.
Notice the addition of the application’s name (i.e., context path) to the transformed values. This allows the
layout to be reused in several applications while referencing the same image, the last of which should be
placed under the Grails /court/web-app/assets/images subdirectory.

Now that you know how a Grails layout is structured, let’s take a look at how a view inherits its behavior.
If you open any of the views generated by the application controllers created earlier—player, reservation,
or welcome (also located under the views directory)—you will find the following statement used to inherit
behavior from a Grails layout:

<meta name="layout" content="main"/>

The <meta> tag is a standard HTML tag that has no effect on a page’s display but is used by Grails
to detect the layout from which a view should inherit its behavior. By using this last statement, a view is
automatically rendered with the layout named main, which is precisely the template described earlier.

Looking further into a view’s structure, you will notice that all generated views are structured as
stand-alone HTML pages; they contain <html>, <body>, and other such HTML tags, similar to the layout
template. This doesn’t mean, however, that a page will contain duplicate HTML tags upon rendering.
Grails automatically sorts out the substitution process by placing a view’s <title> content inside the
<g:layoutTitle> tag, a view’s <body> content inside the <g:layoutBody /> tag, and so on.

What happens if you remove the <meta> tag from a Grails view? On the face of it, the answer to this
question is obvious: no layout is applied upon rendering a view, which also implies no visual elements are
rendered (e.g., images, menus, and CSS borders). However, since Grails operates on the basis of conventions,
Grails always attempts to apply a layout on the basis of a controller’s name.

For example, even if the views corresponding to the reservation controller have no <meta
name="layout"> tag declaration’s associated with them, if a layout named reservation.gsp is present inside
an application’s layout directory, it will be applied to all views corresponding to the controller.

Though layouts provide an excellent foundation on which to modularize an application’s views, they are
applicable only to a view’s entire page. Providing a more granular approach, templates allow certain chunks
of a view’s page be made reusable.

Take the case of an HTML section used to display a player’s reservations. You’d like to display this
information on all views corresponding to this controller as a reminder. Placing this HTML section explicitly
on all views not only results in more initial work but can also result in more ongoing work in case such an
HTML section changes. To facilitate this inclusion process, a template can be used. The following code
illustrates the contents of a template named _reservationList.gsp:

<table>
 <g:each in="${reservationInstanceList}" status="i" var="reservationInstance">
 <tr class="${(i % 2) == 0 ? 'odd' : 'even'}">
 <td><g:link action="show" id="${reservationInstance.id}">
 ${fieldValue(bean:reservationInstance, field:'id')}</g:link></td>
 <td>${fieldValue(bean:reservationInstance, field:'sportType')}</td>
 <td>${fieldValue(bean:reservationInstance, field:'date')}</td>

Chapter 17 ■ Grails

764

 <td>${fieldValue(bean:reservationInstance, field:'courtName')}</td>
 <td>${fieldValue(bean:reservationInstance, field:'player')}</td>
 </tr>
 </g:each>
</table>

This last template generates an HTML table relying on the Groovy tag <g:each> with a list of
reservations. The underscore (_) prefix used to name the file is a notation by Grails to differentiate between
templates and stand-alone views; templates are always prefixed with an underscore.

To use this template inside a view, you need to use the <g:render> tag illustrated here:

<g:render template="reservationList" model="[reservationList:reservationInstanceList]" />

In this case, the <g:render> tag takes two attributes: the template attribute to indicate the
name of a template and the model attribute to pass reference data needed by a template. Another
variation of the <g:render> tag includes a template’s relative and absolute locations. By declaring
template="reservationList", Grails attempts to locate a template in the same directory as the view
in which it’s declared. To facilitate reuse, templates can be loaded from a common directory for which
absolute directories are used. For example, a view with a statement in the form template="/common/
reservationList" would attempt to locate a template named _reservationList.gsp under an
application’s grails-app/views/common directory.

Finally, it’s worth mentioning that a template can also be used by a controller to render its output.
For example, most controllers return control to a view using the following syntax:

render view:'reservations', model:[reservationList:reservationList]

However, it’s also possible to return control to a template using the following syntax:

render template:'reservationList', model:[reservationList:reservationList]

By using this last render statement, Grails attempts to locate a template by the name _reservationList.gsp.

17-12. Use GORM Queries
Problem
You want to perform queries against an application’s RDBMS.

Solution
Grails performs RDBMS operations using GORM (http://gorm.grails.org/latest/). GORM is based on
the popular Java ORM Hibernate, allowing Grails applications to perform queries using Hibernate Query
Language (HQL). However, in addition to supporting the use of HQL, GORM also has a series of built-in
functionalities that make querying an RDBMS very simple.

How It Works
In Grails, queries against an RDBMS are generally performed from within controllers. If you inspect any of
the court application controllers, one of the simplest queries is the following:

Player.get(id)

http://gorm.grails.org/latest/

Chapter 17 ■ Grails

765

This query is used to obtain a Player object with a particular ID. Under certain circumstances, though,
an application can be required to perform queries on another set of criteria. For example, Player objects
in the court application have the name and phone fields, as defined in the Player domain class. GORM
supports the querying of domain objects on the basis of its field names. It does so by offering methods in the
form findBy<field_name>, as illustrated here:

Player.findByName('Henry')
Player.findByPhone('120-1111')

These two statements are used to query an RDBMS and obtain a Player object on the basis of a name
and phone. These methods are called dynamic finders since they are made available by GORM on the basis
of a domain class’s fields.

In a similar fashion, the Reservation domain class having its own field names will have dynamic
finders like findByPlayer(), findByCourtName(), and findByDate(). As you can see, this process simplifies
the creation of queries against an RDBMS in Java applications.

In addition, dynamic finder methods can also use comparators to further refine a query’s results.
The following snippet illustrates how to use a comparator to extract Reservation objects in a particular
date range:

def now = new Date()
def tomorrow = now + 1
def reservations = Reservation.findByDateBetween(now, tomorrow)

Besides the Between comparator, another comparator that can be of use in the court application is the
Like comparator. The following snippet illustrates the use of the Like comparator to extract Player objects
with names starting with the letter A:

def letterAPlayers = Player.findByNameLike('A%')

Table 17-2 describes the various comparators available for dynamic finder methods.

Table 17-2. GORM Dynamic Finder Comparators

GORM Comparator Query

InList If value is present in a given list of values

LessThan For lesser object(s) than the given value

LessThanEquals For lesser or equal object(s) than the given value

GreaterThan For greater object(s) than the given value

GreaterThanEquals For greater or equal object(s) than the given value

Like For object(s) like the given value

Ilike For object(s) like the given value in a case insensitive manner

NotEqual For object(s) not equal to the given value

Between For object(s) between to the two given values

IsNotNull For not null object(s); uses no arguments

IsNull For null object(s); uses no arguments

Chapter 17 ■ Grails

766

GORM also supports the use of Boolean logic (and /or) in the construction of dynamic finder methods.
The following snippet demonstrates how to perform a query for Reservation objects that satisfy both a
certain court name and a date in the future:

def reservations = Reservation.findAllByCourtNameLikeAndDateGreaterThan("%main%",
new Date()+7)

In a similar fashion, the Or statement (instead of And) could have been used in this last dynamic finder
method to extract Reservation objects that satisfy at least one of the criteria.

Finally, dynamic finder methods also support the use of pagination and sorting to further refine queries.
This is achieved by appending a map to the dynamic finder method. The following snippet illustrates how to
limit the number of results in a query, as well as define its sorting and order properties:

def reservations = Reservation.findAllByCourtName("%main%", [max: 3, sort: "date",
order: "desc"])

As outlined at the start of this recipe, GORM also supports the use HQL to execute queries against an
RDBMS. Though more verbose and error prone than the preceding listing, the following one illustrates
several equivalent queries using HQL:

def letterAPlayers = Player.findAll("from Player as p where p.name like 'A%'")
def reservations = Reservation.findAll("from Reservation as r
 where r.courtName like '%main%' order by r.date desc", [max: 3])

17-13. Create Custom Tags
Problem
You want to execute logic inside a Grails view that is not available through a prebuilt GSP or JSTL tag and yet
not resort to the inclusion of code in a view.

Solution
A Grails view can contain display elements (e.g., HTML tags), business logic elements (e.g., GSP or JSTL
tags), or straightforward Groovy or Java code to achieve its display objectives. On certain occasions, a
view can require a unique combination of display elements and business logic. For example, displaying
the reservations of a particular player on a monthly basis requires the use of custom code. To simplify the
inclusion of such a combination and facilitate its reuse in multiple views, you can use a custom tag.

How It Works
To create custom tags, you can use the grails create-taglib <tag-lib-name> command. This command
creates a skeleton class for a custom tag library under an application’s /grails-app/tag-lib/ directory.

Knowing this, let’s create a custom tag library for the court application designed to display special
reservation offers. The first custom tag will detect the current date and based on this information display
special reservation offers. The end result is the ability to use a tag like <g:promoDailyAd/> inside an
application’s view, instead of placing inline code in a view or performing this logic in a controller.

Chapter 17 ■ Grails

767

Execute the grails create-taglib DailyNotice command to create the custom tag library class. Next,
open the generated DailyNoticeTagLib.groovy class located under an application’s /grails-app/taglib/
directory, and add the following method (i.e., custom tag):

def promoDailyAd = { attrs, body ->
 def dayoftheweek = Calendar.getInstance().get(Calendar.DAY_OF_WEEK)
 out << body() << (dayoftheweek == 7 ?
 "We have special reservation offers for Sunday!": "No special offers")
}

The name of this method defines the name of the custom tag. The first declarations of the method
(attrs, body) represent the input values of a custom tag—its attributes and body. Next, the day of the week is
determined using a Calendar object.

After that, you can find a conditional statement based on the day of the week. If the day of the week is
7 (Saturday), the conditional statement resolves to the string "We have special reservation offers for
Saturday!". Otherwise, it resolves to "No special offers".

The string is outputted through << and is first assigned through the body() method, which represents
the custom tag’s body, then throughout, which represents the custom tag’s output. In this manner, you
declare the custom tag in an application’s view using the following syntax:

<h3><g:promoDailyAd /></h3>

When the view containing this custom tag is rendered, Grails executes the logic in the backing class
method and supplants it with the results. This allows a view to display results based on more elaborate logic
by means of a simple declaration.

 ■ Caution this type of tag is automatically available in Gsp pages but not Jsp pages. For this custom tag to
function properly in Jsp, it’s necessary to add it to the corresponding tag library definition (tlD) called grails.
tld. tlDs are located in an application’s /web-app/WEB-INF/tld/ directory.

Custom tags can also rely on input parameters passed in as tag attributes to perform a backing class’s
logic. The following code illustrates another custom tag that expects an attribute named offerdate to
determine its results:

def upcomingPromos = { attrs, body ->
 def dayoftheweek = attrs['offerdate']
 out << body() << (dayoftheweek == 7 ?
 "We have special reservation offers for Saturday!": "No special offers")
}

Though similar to the earlier custom tag, this last listing uses the statement attrs['offerdate'] to
determine the day of the week. In this case, attrs represents the attributes passed as input parameters to the
class method (i.e., those declared in the view). Therefore, to use this last custom tag, a declaration like the
following is used:

<h3><g:upcomingPromos offerdate='saturday'/></h3>

Chapter 17 ■ Grails

768

This type of custom tag allows more flexibility since its logic is executed on the basis of data provided in
a view. Inclusively, it’s also possible to use a variable representing data passed by a controller into a view, as
illustrated here:

<h3><g:upcomingPromos offerdate='${promoDay}'/></h3>

Finally, a word about the namespace used in Grails custom tags—by default, Grails assigns custom tags
to the <g:> namespace. To use a custom namespace, it’s necessary to declare the namespace field at the top
of the custom tag library class.

class DailyNoticeTagLib {
 static namespace = 'court'
 def promoDailyAd = { attrs, body ->
 ...
 }
 def upcomingPromos = { attrs, body ->
 ...
 }
}

By using this last statement, a class’s custom tags are assigned their own custom namespace named
court. With the custom tag, the declarations made in a view need to be changed to the following:

<h3><court:promoDailyAd/></h3>
<h3><court:upcomingPromos offerdate='${promoDay}'/></h3>

17-14. Add Security
Problem
You want to secure your application using Spring Security.

Solution
Use the Grails Spring Security plug-in (see recipe 17-3 about plug-ins in general) to have security applied to
your application.

How It Works
To secure an application, you need to add the Grails plug-in spring-security-core to the application.
To do this, open the build.gradle file and add the plug-in to it.

dependencies {
 compile "org.grails.plugins:spring-security-core:3.1.2"
}

Now that the plug-in is added, running grails compile will download and install the plug-in.

Chapter 17 ■ Grails

769

After installing the plug-in, security can be set up using the s2-quickstart command. This command
takes a package name and names of the classes to use for representing the user and its authorities.

grails s2-quickstart court SecUser SecRole

Running this will create a SecUser and SecRole domain object. It will also modify (or create) the
grails-app/conf/application.groovy file. This will have a security section added.

// Added by the Spring Security Core plugin:
grails.plugin.springsecurity.userLookup.userDomainClassName = 'court.SecUser'
grails.plugin.springsecurity.userLookup.authorityJoinClassName = 'court.SecUserSecRole'
grails.plugin.springsecurity.authority.className = 'court.SecRole'
grails.plugin.springsecurity.controllerAnnotations.staticRules = [
 [pattern: '/', access: ['permitAll']],
 [pattern: '/error', access: ['permitAll']],
 [pattern: '/index', access: ['permitAll']],
 [pattern: '/index.gsp', access: ['permitAll']],
 [pattern: '/shutdown', access: ['permitAll']],
 [pattern: '/assets/**', access: ['permitAll']],
 [pattern: '/**/js/**', access: ['permitAll']],
 [pattern: '/**/css/**', access: ['permitAll']],
 [pattern: '/**/images/**', access: ['permitAll']],
 [pattern: '/**/favicon.ico', access: ['permitAll']]
]
grails.plugin.springsecurity.filterChain.chainMap = [
 [pattern: '/assets/**', filters: 'none'],
 [pattern: '/**/js/**', filters: 'none'],
 [pattern: '/**/css/**', filters: 'none'],
 [pattern: '/**/images/**', filters: 'none'],
 [pattern: '/**/favicon.ico', filters: 'none'],
 [pattern: '/**', filters: 'JOINED_FILTERS']
]

When running the application with grails run-app, the application will start and have security
applied. If you try to access the application, you will be prompted with a login screen asking for a username
and password (see Figure 17-7).

Chapter 17 ■ Grails

770

Currently there are no users and roles in the system, so logging on to the system isn’t possible at the moment.

Bootstrap Security
To use the system, you need users who have passwords and roles in a live application. These would come
from a database, LDAP directory, or maybe some files on the file system. You will add some users in the
bootstrap script of the application. Open the BootStrap.groovy file in the grails-app/init directory and
add two users and two roles to the system.

class BootStrap {
def init = { servletContext ->
def adminRole = new court.SecRole(authority: 'ROLE_ADMIN').save(flush: true)
def userRole = new court.SecRole(authority: 'ROLE_USER').save(flush: true)
def testUser = new court.SecUser(username: 'user', password: 'password')
testUser.save(flush: true)
def testAdmin = new court.SecUser(username: 'admin', password: 'secret')
testAdmin.save(flush: true)
court.SecUserSecRole.create testUser, userRole, true
court.SecUserSecRole.create testAdmin, adminRole, true
 }
 ...
}

Figure 17-7. Login screen after adding security

Chapter 17 ■ Grails

771

The first two roles, ROLE_ADMIN and ROLE_USER, are added to the system. The next two users are added
both with a username and password. Finally, the link between the user and the role is made.

Now that everything is in place, restart the application and log on to the system (see Figure 17-8).

Although you are able to log in, you will be greeted with a page telling you that you aren’t allowed to
access the page you requested. Although there are now users in the system, the system doesn’t know that
those are allowed to access the page requests. For this, you need to add the configuration to make clear
which URLs are allowed to be accessed.

Secure URLs
After creating the security configuration, only some default URLs are added to it, and this doesn’t include
the specific URLs for your application. For this, open the application.groovy file in the grails-app/conf
directory.

grails.plugin.springsecurity.controllerAnnotations.staticRules = [
 [pattern: '/', access: ['permitAll']],
 [pattern: '/error', access: ['permitAll']],
 [pattern: '/index', access: ['permitAll']],
 [pattern: '/index.gsp', access: ['permitAll']],
 [pattern: '/shutdown', access: ['permitAll']],
 [pattern: '/assets/**', access: ['permitAll']],
 [pattern: '/**/js/**', access: ['permitAll']],

Figure 17-8. The system after logging in with a user

Chapter 17 ■ Grails

772

 [pattern: '/**/css/**', access: ['permitAll']],
 [pattern: '/**/images/**', access: ['permitAll']],
 [pattern: '/**/favicon.ico', access: ['permitAll']],
 [pattern: '/player/**', access: ['isAuthenticated()']],
 [pattern: '/reservation/**', access: ['isAuthenticated()']]
]

Notice the two new additions, one for the players section of the site and one for the reservation section
of the site. The expression /player/** is a so-called Ant-style pattern that matches everything that starts
with /player. permitAll means everyone even no users can access those parts of the web site (mostly
useful for static and public content). With isAuthenticated(), only authenticated users are allowed to
access the site. For more allowed expressions, see the recipes on Spring Security in Chapter 7.

After rebuilding and starting the application, you should be able to access the player and reservations
screens again.

Use Annotations for Security
In addition to securing URLs, it is possible to secure methods; for this you can use the @Secured annotation.
Let’s secure the create method so that only admins can create new players.

import grails.plugin.springsecurity.annotation.Secured

class PlayerController {
...

 @Secured(['ROLE_ADMIN'])
 def create() {
 respond new Player(params)
 }
}

Notice the addition of the @Secured annotation to the create method. The annotation takes an array
of roles that are allowed access. Here ROLE_ADMIN is specified, as access is limited to administrators only.
The @Secured annotation can also be placed on the class level instead of the method level, and this will add
security to all methods in the class. Logging in as a normal user (using user/password) and trying to create
a new player will result in an access denied page (the same as shown in Figure 17-8). When doing the same
with an administrator (using admin/secret), you will be allowed to enter a new player.

Summary
In this chapter, you learned how to develop Java web applications using the Grails framework. You started by
learning the structure of a Grails application and quickly followed that by working with a sample application
that demonstrated the automation of several steps undertaken in a web application.

Throughout the various recipes, you learned how Grails uses conventions in its automation process to
create an application’s views, controllers, models, and configuration files. In addition, you learned about the
existence of Grails plug-ins to automate tasks for related Java APIs or frameworks in the context of Grails.
You then explored how Grails separates configuration parameters and executes tasks on the basis of an
application’s working environment, which can be development, testing, or production.

http://dx.doi.org/10.1007/978-1-4842-2790-9_7

Chapter 17 ■ Grails

773

You then learned how, from an application’s domain classes, Grails generates the corresponding
controller and views used to perform CRUD operations against an RDBMS. Next, you explored Grails
internationalization, logging, and testing facilities.

Next, you explored Grails layouts and templates used to modularize an application’s display and
followed that with a look at the Grails Object Relational Mapping facilities, as well as the creation of custom
tags.

Finally, you explored how to apply Spring Security to a Grails project and how to configure and use it to
secure URLs and methods.

775© Marten Deinum, Daniel Rubio, and Josh Long 2017
M. Deinum et al., Spring 5 Recipes, DOI 10.1007/978-1-4842-2790-9

APPENDIX A

Deploying to the Cloud

Over the last couple of years, the cloud has grown considerably, and a lot of companies now offer these types
of cloud solutions:

•	 Platform as a service

•	 Infrastructure as a service

•	 Software as a service

A platform as a service is, as the name implies, a full platform to run your applications on. Often you
can choose some of the services (database, messaging, logging, etc.) you want to use for your applications.
These services are provided by companies such as Google (Google Cloud Platform), Pivotal (CloudFoundry),
and Amazon (Amazon Web Services).

Infrastructure as a service provides infrastructure such as virtual machines and other resources to build
your own platform for deployment. Some examples are VMware ESX and Oracle VirtualBox.

Software as service is a piece of software or pieces of software delivered through the cloud, such as
Office 365 and Google Apps for Work.

This chapter will focus on the platform as a service cloud solution, specifically the cloud solution
offered by Pivotal named CloudFoundry.

A-1. Sign Up for CloudFoundry
Problem
You want to use CloudFoundry to deploy your applications.

Solution
Sign up with CloudFoundry at http://run.pivotal.io.

http://run.pivotal.io/

APPENDIX A ■ DEPloyINg to thE ClouD

776

How It Works
To be able to deploy to CloudFoundry, you need an account. Navigate to http://run.pivotal.io and click
the Sign Up For Free button (see Figure A-1).

Figure A-1. Sign-up screen for CloudFoundry

Signing up for CloudFoundry is as easy as entering your name, your e-mail address, and a password
followed by clicking the Sign Up button (see Figure A-2).

http://run.pivotal.io/

APPENDIX A ■ DEPloyINg to thE ClouD

777

After clicking the button, you will receive a confirmation e-mail with a link. After clicking this link, you
will be transferred to the confirmation page (see Figure A-3).

Figure A-2. Sign-up form for CloudFoundry

APPENDIX A ■ DEPloyINg to thE ClouD

778

After accepting the terms of service and clicking the Next: Claim Your Trial button, you will be
transferred to the account verification page (see Figure A-4) where you are asked to enter your mobile
number.

Figure A-3. CloudFoundry confirmation page

APPENDIX A ■ DEPloyINg to thE ClouD

779

After clicking the “Send me my code” button, you will receive a text message on your mobile phone with
a verification code. You can enter this code on the next verification page (see Figure A-5).

Figure A-4. CloudFoundry account verification page

APPENDIX A ■ DEPloyINg to thE ClouD

780

After you enter the verification code, you are asked to create an organization (see Figure A-6). This can
be the name of the project or your organization name. The organization name has to be unique, and you will
receive an error if you try to reuse an existing organization name.

Figure A-5. Entering the verification code

APPENDIX A ■ DEPloyINg to thE ClouD

781

A-2. Install and Use the CloudFoundry CLI
Problem
You want to use the CloudFoundry CLI tooling to push your application.

Solution
Download and install the CloudFoundry CLI tools.

How It Works
To be able to manipulate your CloudFoundry instance, you need some tools. You can find tools in different
IDEs such as Spring Source’s Spring Tool Suite and Intellij’s IDEA. However, the most powerful are the
command-line tools. To install the command-line tools, first download the version for your system from
https://github.com/cloudfoundry/cli/releases, or you can use a package manager to install them. Select
and download the installer for your system. After installation, the tools are available on the command line.

Now you need to set up the command-line tools, so open a terminal and type cf login. This will
prompt you for the API, e-mail, and password. The URL for the API is the URL to your CloudFoundry
instance. For this recipe, you are using the public API, so the URL is https://api.run.pivotal.io.
The e-mail address and password are the ones you used for registration.

Next it will ask for the org and space to use. You can skip these because you have only a single org and
single space at the moment.

Figure A-6. Entering an organization name

https://github.com/cloudfoundry/cli/releases
https://api.run.pivotal.io/

APPENDIX A ■ DEPloyINg to thE ClouD

782

After filling out the questions, the configuration is written to a config.json file in the .cf directory in
the user’s home directory.

Let’s create a simple Hello World application and deploy that to CloudFoundry.

package com.apress.springrecipes.cloud;

public class Main {

 public static void main(String[] args) {
 System.out.println("Hello World from CloudFoundry.");
 }
}

The class is a basic Java class with a main method. The only thing that is being printed is a message
to the console. After compiling the file and creating a JAR for it, it can be deployed to CloudFoundry. To
deploy, type cf push <application-name> -p Recipe_a_2_i-4.0.0.jar on the command line, where
<application-name> is a nice name you can make up for your application. During deployment, the output
should look like Figure A-7.

Figure A-7. Output for application deployment

APPENDIX A ■ DEPloyINg to thE ClouD

783

The first thing to notice is that, apparently, starting the application failed. Actually, it did start, but it
only printed a message in the console and quit right after that. For the CloudFoundry tooling, it looks like it
failed to start because it already shut down before it was able to detect that it was up.

The first thing in the output is the creation of the application on CloudFoundry. It reserves some space
and assigns memory to it (the default is 1GB). Next it creates the route <application-name>.cfapps.io
for public applications. This route is the entry point for an application with a web interface. For the current
application, it has little use (adding the --no-route option to the cf push command prevents a route from
being created).

After creation, the JAR file is uploaded. After uploading, CloudFoundry does detection on what
kind of application it has to deal with. When it has determined the type, the corresponding buildpack is
downloaded and added. In this case, that means the Java buildpack is installed. After that, the application
is started, and the tooling will try to detect the successful start of the application. In this case, it appears to
have failed.

Type cf logs <application-name> --recent, which will give you the last logging of the application
(see Figure A-8).

The logging contains the line you have put in System.out. So, it actually did start but ended right after
that, which made it unavailable to the health check, which signaled that it crashed.

As mentioned, CloudFoundry uses so-called buildpacks to (optionally) build and run applications.
CloudFoundry supports a variety of different buildpacks. Typing cf buildpacks on the command line will
give a list of default supported buildpacks (see Figure A-9).

Figure A-8. Logging output for application

APPENDIX A ■ DEPloyINg to thE ClouD

784

As you can see, multiple languages such as Ruby, Python, Go, Java, and even .NET are supported, which
means CloudFoundry isn’t limited to just Java-based applications.

A-3. Deploy a Spring MVC Application
Problem
You want to deploy your Spring MVC–based application to CloudFoundry.

Solution
Use cf push to push the WAR to CloudFoundry.

How It Works
First you will create a web application to deploy to CloudFoundry. Before deploying the created application
to CloudFoundry you will learn how to add configuration specific for the cloud and how to bind to services.
When all that is done you will use cf push to publish the application to CloudFoundry.

Create the Application
Let’s start by creating a simple Spring MVC–based web application. First create a ContactRepository
interface.

package com.apress.springrecipes.cloud;

import java.util.List;

public interface ContactRepository {

 List<Contact> findAll();
 void save(Contact c);
}

Figure A-9. Default supported buildpacks

APPENDIX A ■ DEPloyINg to thE ClouD

785

Now create a Map-based implementation for this interface.

package com.apress.springrecipes.cloud;

import org.springframework.stereotype.Repository;

import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.concurrent.atomic.AtomicLong;

@Repository
public class MapBasedContactRepository implements ContactRepository {

 private final AtomicLong SEQUENCE = new AtomicLong();
 private Map<Long, Contact> contacts = new HashMap<>();

 @Override
 public List<Contact> findAll() {
 return new ArrayList<>(contacts.values());
 }

 @Override
 public void save(Contact c) {
 if (c.getId() <= 0) {
 c.setId(SEQUENCE.incrementAndGet());
 }
 contacts.put(c.getId(), c);
 }
}

Of course, there needs to be a Contact entity; this is just a simple class with three properties.

package com.apress.springrecipes.cloud;

public class Contact {

 private long id;
 private String name;
 private String email;

 public long getId() {
 return id;
 }

 public void setId(long id) {
 this.id = id;
 }

APPENDIX A ■ DEPloyINg to thE ClouD

786

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public String getEmail() {
 return email;
 }

 public void setEmail(String email) {
 this.email = email;
 }
}

As this is a web application, let’s create a controller.

package com.apress.springrecipes.cloud.web;

import com.apress.springrecipes.cloud.Contact;
import com.apress.springrecipes.cloud.ContactRepository;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Controller;
import org.springframework.ui.Model;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.ModelAttribute;
import org.springframework.web.bind.annotation.PostMapping;
import org.springframework.web.bind.annotation.RequestMapping;

@Controller
@RequestMapping("/contact")
public class ContactController {

 private final ContactRepository contactRepository;

 @Autowired
 public ContactController(ContactRepository contactRepository) {
 this.contactRepository = contactRepository;
 }

 @GetMapping
 public String list(Model model) {
 model.addAttribute("contacts", contactRepository.findAll());
 return "list";
 }

APPENDIX A ■ DEPloyINg to thE ClouD

787

 @GetMapping("/new")
 public String newContact(Model model) {
 model.addAttribute(new Contact());
 return "contact";
 }

 @PostMapping("/new")
 public String newContact(@ModelAttribute Contact contact) {
 contactRepository.save(contact);
 return "redirect:/contact";
 }
}

The controller is simple. It has a method for showing a list of currently available contacts, and it has a
method to add a new contact. The next two views need to be created in the /WEB-INF/views directory. First,
here’s the list.jsp file:

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<!doctype HTML>
<html>
<head>
 <title>Spring Recipes - Contact Sample</title>
</head>
<body>
<h1>Contacts</h1>
<table>
 <tr><th>Name</th><th>Email</th></tr>
 <c:forEach items="${contacts}" var="contact">
 <tr><td>${contact.name}</td><td>${contact.email}</td></tr>
 </c:forEach>
</table>
<a href="<c:url value="/contact/new"/>">New Contact
</body>
</html>

Next, here’s the contact.jsp file for adding new contacts:

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<%@ taglib prefix="form" uri="http://www.springframework.org/tags/form" %>
<!doctype HTML>
<html>
<head>
 <title>Spring Recipes - Contact Sample</title>
</head>
<body>
<h1>Contact</h1>
<form:form method="post" modelAttribute="contact">
 <fieldset>
 <legend>Contact Information</legend>
 <div>

APPENDIX A ■ DEPloyINg to thE ClouD

788

 <div><form:label path="name">Name</form:label></div>
 <div><form:input path="name"/></div>
 </div>
 <div>
 <div><form:label path="email">Email Address</form:label></div>
 <div><form:input path="email" type="email"/></div>
 </div>
 <div><button>Save</button></div>
 </fieldset>
 <form
</form:form>
</html>

That is all the application code. What remains is the application configuration and a class to start the
application. First, here’s the application configuration:

package com.apress.springrecipes.cloud.config;

import org.springframework.context.annotation.ComponentScan;
import org.springframework.context.annotation.Configuration;

@ComponentScan(basePackages = {"com.apress.springrecipes.cloud"})
@Configuration
public class ContactConfiguration {}

The application configuration is quite empty. It only defines a component scan annotation to detect the
service and controller. Next, a configuration for the web-related part is needed.

package com.apress.springrecipes.cloud.web;

import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.web.servlet.config.annotation.DefaultServletHandlerConfigurer;
import org.springframework.web.servlet.config.annotation.EnableWebMvc;
import org.springframework.web.servlet.config.annotation.ViewControllerRegistry;
import org.springframework.web.servlet.config.annotation.WebMvcConfigurer;
import org.springframework.web.servlet.view.InternalResourceViewResolver;

@Configuration
@EnableWebMvc
public class ContactWebConfiguration implements WebMvcConfigurer {

 @Override
 public void configureDefaultServletHandling(DefaultServletHandlerConfigurer configurer) {
 configurer.enable();
 }

APPENDIX A ■ DEPloyINg to thE ClouD

789

 @Override
 public void addViewControllers(ViewControllerRegistry registry) {
 registry.addViewController("/").setViewName("redirect:/contact");
 }

 @Bean
 public InternalResourceViewResolver internalResourceViewResolver() {
 InternalResourceViewResolver viewResolver = new InternalResourceViewResolver();
 viewResolver.setPrefix("/WEB-INF/views/");
 viewResolver.setSuffix(".jsp");
 return viewResolver;
 }
}

The final missing part is the application initializer.

package com.apress.springrecipes.cloud.web;

import com.apress.springrecipes.cloud.config.ContactConfiguration;
import org.springframework.web.servlet.support.
AbstractAnnotationConfigDispatcherServletInitializer;

public class ContactWebApplicationInitializer extends
AbstractAnnotationConfigDispatcherServletInitializer {
 @Override
 protected Class<?>[] getRootConfigClasses() {
 return null;
 }

 @Override
 protected Class<?>[] getServletConfigClasses() {
 return new Class[] {ContactConfiguration.class, ContactWebConfiguration.class};
 }

 @Override
 protected String[] getServletMappings() {
 return new String[] {"/"} ;
 }
}

Now everything is in place. After building the WAR file, push it to CloudFoundry by entering cf push
<application-name> -p contact.war on the command line. This will show the progress of uploading,
installing the buildpack, and installing Tomcat. After a successful deployment, the application is available at
<application-name>.cfapps.io (see Figure A-10).

APPENDIX A ■ DEPloyINg to thE ClouD

790

Use a Data Source
At the moment, the application stores the contact information in a HashMap. This is nice for testing
purposes, but for a real application the data needs to be stored in a database. First, create a JDBC-driven
ContactRepository implementation.

package com.apress.springrecipes.cloud;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.jdbc.core.support.JdbcDaoSupport;
import org.springframework.stereotype.Service;

import javax.sql.DataSource;
import java.util.List;

@Service
public class JdbcContactRepository extends JdbcDaoSupport implements ContactRepository {

 @Autowired
 public JdbcContactRepository(DataSource dataSource) {
 super.setDataSource(dataSource);
 }

Figure A-10. Contact application on CloudFoundry

APPENDIX A ■ DEPloyINg to thE ClouD

791

 @Override
 public List<Contact> findAll() {
 return getJdbcTemplate().query("select id, name, email from contact", (rs, rowNum) -> {
 Contact contact = new Contact();
 contact.setId(rs.getLong(1));
 contact.setName(rs.getString(2));
 contact.setEmail(rs.getString(3));
 return contact;
 });
 }

 @Override
 public void save(Contact c) {
 getJdbcTemplate().update("insert into contact (name, email) values (?, ?)",

c.getName(), c.getEmail());
 }
}

Next, update the configuration and add DataSource and DataSourceInitializer classes.

package com.apress.springrecipes.cloud.config;

import com.apress.springrecipes.cloud.ContactRepository;
import com.apress.springrecipes.cloud.JdbcContactRepository;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.ComponentScan;
import org.springframework.context.annotation.Configuration;
import org.springframework.core.io.ClassPathResource;
import org.springframework.jdbc.core.JdbcTemplate;
import org.springframework.jdbc.datasource.embedded.EmbeddedDatabaseBuilder;
import org.springframework.jdbc.datasource.embedded.EmbeddedDatabaseType;
import org.springframework.jdbc.datasource.init.DataSourceInitializer;
import org.springframework.jdbc.datasource.init.ResourceDatabasePopulator;

import javax.sql.DataSource;

@ComponentScan(basePackages = {"com.apress.springrecipes.cloud"})
@Configuration
public class ContactConfiguration {

 @Bean
 public DataSource dataSource() {
 return new EmbeddedDatabaseBuilder().setType(EmbeddedDatabaseType.H2).build();
 }

 @Bean
 public DataSourceInitializer dataSourceInitializer(DataSource dataSource) {
 ResourceDatabasePopulator populator = new ResourceDatabasePopulator();
 populator.addScript(new ClassPathResource("/sql/schema.sql"));
 populator.setContinueOnError(true);

APPENDIX A ■ DEPloyINg to thE ClouD

792

 DataSourceInitializer initializer = new DataSourceInitializer();
 initializer.setDataSource(dataSource);
 initializer.setDatabasePopulator(populator);
 return initializer;
 }
}

For testing and local deployment, the in-memory H2 database is used to configure this instance.
The EmbeddedDatabaseBuilder class is used to create the DataSource, and the DataSourceInitializer
class takes care of executing the create script.

After building the WAR file again and deploying to CloudFoundry, the application should still be
running and using the in-memory database. However, instead of the in-memory database, you want to use a
real database so that content survives redeployments, outages, and so on.

CloudFoundry provides several services that are available in the marketplace. To get an overview, type
cf marketplace (or cf m) on the command line (see Figure A-11).

As you can see, there are different services such as database implementations, messaging, and e-mail.
For this recipe, a database instance is needed. There are two database options: MySQL and PostgreSQL.
Choose which one you like and create an instance. To construct a basic MySQL instance, type cf
create-service cleardb spark contacts-db. After the database has been created, you need to bind it
(make it available for access) to your application. Type cf bind-service <application-name> contacts-db.

Now the database is ready to be used. To use it, simply restart or redeploy the application.
CloudFoundry has a feature called autoreconfiguration, which is enabled by default. It finds a bean

of a certain type, in this case, a DataSource. It will try to replace it with one provided by your configured
services. This will, however, work only when there is a single service and a single bean of that type. If you
have multiple data sources, autoreconfiguration won’t work. It will work for all the provided services, such as
AMQP connection factories and MongoDB instances.

Figure A-11. Overview of CloudFoundry services

APPENDIX A ■ DEPloyINg to thE ClouD

793

Access the Cloud Service
Although autoreconfiguration is a nice feature, as already mentioned, it doesn’t always work. However, there
is an easy way to explicitly tell which service to use when deployed to CloudFoundry. Another nice thing that
CloudFoundry does is that it activates a profile called cloud. This profile can be used to determine whether
the application is deployed on CloudFoundry or not, and as such certain beans can be accessed specifically
when deployed here.

Two additional dependencies are needed.

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-cloudfoundry-connector</artifactId>
 <version>1.2.4.RELEASE</version>
</dependency>
<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-spring-service-connector</artifactId>
 <version>1.2.4.RELEASE</version>
</dependency>

These two dependencies make it easy to interact with the CloudFoundry instance and the provided
services. Now that these are available, it is just a matter of a reconfiguration.

package com.apress.springrecipes.cloud.config;

import org.springframework.cloud.config.java.AbstractCloudConfig;
import org.springframework.context.annotation.Profile;
...
@Configuration
@ComponentScan(basePackages = {"com.apress.springrecipes.cloud"})
public class ContactConfiguration {

 @Configuration
 @Profile("default")
 public static class LocalDatasourceConfiguration {
 @Bean
 public DataSource dataSource() {
 return new EmbeddedDatabaseBuilder().setType(EmbeddedDatabaseType.H2).build();
 }
 }

 @Configuration
 @Profile("cloud")
 public static class CloudDatasourceConfiguration extends AbstractCloudConfig {

 @Bean
 public DataSource dataSource() {
 return connectionFactory().dataSource("contacts-db");
 }
 }
}

APPENDIX A ■ DEPloyINg to thE ClouD

794

Notice the two inner configuration classes. Both have the @Profile annotation. LocalDataSource
Configuration is available when there is no cloud profile active. CloudDataSourceConfiguration is
available only when deployed to the cloud. The latter extends the AbstractCloudConfig class, which
has convenient methods to access the provided services. To get a reference to the data source, use the
dataSource() lookup method on the connectionFactory() method. For default services (data sources,
MongoDB, Redis, etc.), it provides convenient access methods. If you have developed and deployed custom
services, they can be accessed using the general service() method.

After rebuilding the WAR and pushing it to CloudFoundry, it will still be working.

A-4. Remove an Application
Problem
You want to remove an application from CloudFoundry.

Solution
Use the CloudFoundry tools to delete the application from your space.

How It Works
To remove an application, you issue a delete command, instead of push, to let CloudFoundry remove the
application. To remove the application, type cf delete <application-name> on the command line. After
confirming that you really want to delete the application, CloudFoundry will start to remove the application.

The output should look like that in Figure A-12.

Summary
In this chapter, you explored how to deploy to and remove an application from the cloud platform provided by
Pivotal’s CloudFoundry. First you deployed a basic web application without any external connections. After
that, you added a data source, and you learned how to create and bind a service to your application. As soon as
the service was available, you experienced the autoreconfiguration feature provided by CloudFoundry.

Finally, you explored how to interact with the cloud from within your application configuration and not
to rely on autoreconfiguration.

Figure A-12. Output of removing an application from CloudFoundry

795© Marten Deinum, Daniel Rubio, and Josh Long 2017
M. Deinum et al., Spring 5 Recipes, DOI 10.1007/978-1-4842-2790-9

APPENDIX B

Caching

When a heavy computation is done in a program, when retrieval of data is slow, or when the retrieved
data hardly ever changes, it can be useful to apply caching. Caching is the ability to store and retrieve data
transparently so that data can be served quicker to the client.

In the Java ecosystem, there are multiple cache implementations, ranging from the use of a simple Map
implementation to a fully distributed cache solution (Oracle Coherence, for instance). However, there is also
the proven and trusted Ehcache.

As of Java Enterprise Edition 7, there is also a general caching API (JSR-107) named JCache. For this
specification, several implementations exist (such as Apache JCS, Hazelcast, and Oracle Coherence, which is
JCache compliant).

Spring provides a cache abstract to make it easier to work with any of these implementations, which
makes it quite easy to add caching to your application. For testing, you could use a simple Map-based
implementation, whereas your real system would use an Oracle Coherence cluster for caching.

In this appendix, you will explore Spring’s caching abstraction and will take a look at different strategies
of applying caching to your application.

B-1. Implement Caching with Ehcache
Problem
You have an application with some heavy computation tasks, and you want to cache the result and reuse it.

Solution
Use Ehcache to store the result of your computation. For each computation, check whether a result is
already present. If it is, return the cached value, and if it is not, calculate and put it in the cache.

How It Works
Let’s create CalculationService, which simulates a heavy computation by using a Thread.sleep() method.

package com.apress.springrecipes.caching;

import java.math.BigDecimal;

public class PlainCalculationService implements CalculationService {

 @Override
 public BigDecimal heavyCalculation(BigDecimal base, int power) {
 try {

APPENDIX B ■ CAChINg

796

 Thread.sleep(500);
 } catch (InterruptedException e) {}
 return base.pow(power);
 }
}

As you can see, calculating the power of something is a heavy computation to do. Create a Main class to
run this program in a couple of iterations.

package com.apress.springrecipes.caching;

import java.math.BigDecimal;

public class Main {

 public static final void main(String[] args) throws Exception {

 CalculationService calculationService = new PlainCalculationService();
 for (int i = 0; i < 10 ;i++) {
 long start = System.currentTimeMillis();
 System.out.println(calculationService.heavyCalculation(BigDecimal.valueOf(2L), 16));
 long duration = System.currentTimeMillis() - start;
 System.out.println("Took: " + duration);
 }
 }
}

The Main class will run the computation ten times and output the result as well as the time it took
to calculate the result. When it’s running, you will see that the time for each computation is about 500
milliseconds, mainly because of Thread.sleep().

Use Ehcache Without Spring
Let’s improve the system by introducing caching. For this you are going to use plain Ehcache. The modified
service looks like this:

package com.apress.springrecipes.caching;

import net.sf.ehcache.Ehcache;
import net.sf.ehcache.Element;

import java.math.BigDecimal;

public class PlainCachingCalculationService implements CalculationService {

 private final Ehcache cache;

 public PlainCachingCalculationService(Ehcache cache) {
 this.cache = cache;
 }

APPENDIX B ■ CAChINg

797

 @Override
 public BigDecimal heavyCalculation(BigDecimal base, int power) {
 String key = base +"^"+power;
 Element result = cache.get(key);
 if (result != null) {
 return (BigDecimal) result.getObjectValue();
 }
 try {
 Thread.sleep(500);
 } catch (InterruptedException e) {}
 BigDecimal calculatedResult = base.pow(power);
 cache.putIfAbsent(new Element(key, calculatedResult));
 return calculatedResult;
 }
}

First notice the addition of a cache variable in the service. This cache is injected through the
constructor. Let’s take a look at the updated heavyCalculation method. First it generates a unique key based
on the method arguments; this key is used to look up a result from the cache. If found, it is returned. If there
is no cached result, the calculation proceeds as normal, and after the calculation, it is added to the cache;
finally, the value is returned.

Because of the need for an Ehcache cache, the Main class needs to be modified to bootstrap Ehcache
and look up a cache before constructing the service. The updated Main class looks like this:

package com.apress.springrecipes.caching;

import net.sf.ehcache.CacheManager;
import net.sf.ehcache.Ehcache;
...
public class Main {

 public static final void main(String[] args) throws Exception {
 CacheManager cacheManager = CacheManager.getInstance();
 Ehcache cache = cacheManager.getEhcache("calculations");
 CalculationService calculationService = new PlainCachingCalculationService(cache);
 ...
 cacheManager.shutdown();
 }
}

First there needs to be a CacheManager instance constructed. For this, use the getInstance method on
the CacheManager class. This class will try to read a file called ehcache.xml from the root of the classpath to
configure the cache. Next a cache instance is requested with the name calculations; the resulting cache is
injected into the PlainCachingCalculationService instance.

The ehcache.xml file is the configuration file for Ehcache, and it contains the following:

<ehcache>
 <diskStore path="java.io.tmpdir"/>

 <defaultCache
 maxElementsInMemory="1000"

APPENDIX B ■ CAChINg

798

 eternal="false"
 timeToIdleSeconds="120"
 timeToLiveSeconds="120"
 overflowToDisk="true"
 />

 <cache name="calculations"
 maxElementsInMemory="100"
 eternal="false"
 timeToIdleSeconds="600"
 timeToLiveSeconds="3600"
 overflowToDisk="true"
 />
</ehcache>

This configures Ehcache and the specific cache you want to use. It keeps 100 results in memory
(maxElementsInMemory) for 1 hour (timeToLiveSeconds). When there are more elements, it will store those
on disk (overflowToDisk).

When running the Main class, the first computation takes about 500 milliseconds, whereas the next
computations take a lot less time, around 0 to 1 milliseconds.

Use Ehcache with Spring for Configuration
The application is integrated with Spring, and Spring will be leveraged for configuring CacheManager
and constructing the service. To make this work, you need to do some Spring configuration and use an
ApplicationContext object to load everything. The configuration is as follows:

package com.apress.springrecipes.caching.config;

import com.apress.springrecipes.caching.CalculationService;
import com.apress.springrecipes.caching.PlainCachingCalculationService;
import net.sf.ehcache.CacheManager;
import net.sf.ehcache.Ehcache;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;

@Configuration
public class CalculationConfiguration {

 @Bean
 public CacheManager cacheManager() {
 return CacheManager.getInstance();
 }

 @Bean
 public CalculationService calculationService() {
 Ehcache cache = cacheManager().getCache("calculations");
 return new PlainCachingCalculationService(cache);
 }
}

APPENDIX B ■ CAChINg

799

You also need a modified Main class that loads the configuration and obtains the CalculationService
class from the context.

package com.apress.springrecipes.caching;

import com.apress.springrecipes.caching.config.CalculationConfiguration;
import org.springframework.context.ApplicationContext;
import org.springframework.context.annotation.AnnotationConfigApplicationContext;

import java.math.BigDecimal;

public class Main {

 public static final void main(String[] args) throws Exception {

 Appl icationContext context =
new AnnotationConfigApplicationContext(CalculationConfiguration.class);

 CalculationService calculationService = context.getBean(CalculationService.class);

 for (int i = 0; i < 10 ;i++) {
 long start = System.currentTimeMillis();
 Syst em.out.println(

calculationService.heavyCalculation(BigDecimal.valueOf(2L), 16));
 long duration = System.currentTimeMillis() - start;
 System.out.println("Took: " + duration);
 }
 ((AbstractApplicationContext) context).close();
 }
}

Although this reduces the direct references to Ehcache from the bootstrapping code, the
implementation of the CalculationService class is still riddled with references to Ehcache. Not to mention,
manual caching is quite cumbersome and an erroneous task that pollutes the code. It would be nice if
caching could just be applied, just like transactions, with AOP.

Use Spring to Configure Ehcache
Spring contains some Ehcache support classes to make it easier to configure Ehcache and easier to obtain a
cache instance. To configure the Ehcache CacheManager, you can use Spring’s EhCacheManagerFactoryBean.
To obtain a Cache instance, there is EhCacheFactoryBean.

The advantage of using EhCacheManagerFactoryBean is that it can leverage Spring’s resource-loading
mechanism to load the configuration file for Ehcache. It also allows for easy reuse of an already existing
CacheManager and allows you to register it with a certain name.

EhCacheFactoryBean will create a cache automatically if one doesn’t exist yet. In the code so far, the
cache that was used was explicitly defined. EhCacheFactoryBean will first try to locate an existing explicitly
configured cache; if one doesn’t exist, one is created using the defaultCache element from ehcache.xml.

APPENDIX B ■ CAChINg

800

The modified configuration looks like this:

package com.apress.springrecipes.caching.config;

import com.apress.springrecipes.caching.CalculationService;
import com.apress.springrecipes.caching.PlainCachingCalculationService;
import org.springframework.cache.ehcache.EhCacheFactoryBean;
import org.springframework.cache.ehcache.EhCacheManagerFactoryBean;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.core.io.ClassPathResource;

@Configuration
public class CalculationConfiguration {

 @Bean
 public EhCacheManagerFactoryBean cacheManager() {
 EhCacheManagerFactoryBean factory = new EhCacheManagerFactoryBean();
 factory.setConfigLocation(new ClassPathResource("ehcache.xml"));
 return factory;
 }

 @Bean
 public EhCacheFactoryBean calculationsCache() {
 EhCacheFactoryBean factory = new EhCacheFactoryBean();
 factory.setCacheManager(cacheManager().getObject());
 factory.setCacheName("calculations");
 return factory;
 }

 @Bean
 public CalculationService calculationService() {
 return new PlainCachingCalculationService(calculationsCache().getObject());
 }
}

B-2. Cache with Spring’s Cache Abstraction
Problem
You have an application with some heavy computation tasks. You want to cache the result and reuse it, but at
the same time you don’t want to be bound to a single cache implementation.

Solution
Use Ehcache to store the result of your computation through Spring’s cache abstraction. For each
computation, check whether a result is already present. If it is, return the cached value; if it is not, calculate
and put it in the cache.

APPENDIX B ■ CAChINg

801

How It Works
First, add caching to your application using Spring’s Cache class. Second, check whether a result is already
present using the get() method. If it is, present return; if it is not, continue with the program. After the
calculation, the value is added to the cache.

package com.apress.springrecipes.caching;

import org.springframework.cache.Cache;

import java.math.BigDecimal;

public class PlainCachingCalculationService implements CalculationService {

 private final Cache cache;

 public PlainCachingCalculationService(Cache cache) {
 this.cache = cache;
 }

 @Override
 public BigDecimal heavyCalculation(BigDecimal base, int power) {
 String key = base +"^"+power;
 BigDecimal result = cache.get(key, BigDecimal.class);
 if (result != null) {
 return result;
 }
 try {
 Thread.sleep(500);
 } catch (InterruptedException e) {}

 BigDecimal calculatedResult = base.pow(power);
 cache.put(key, calculatedResult);
 return calculatedResult;
 }
}

Next, the CacheManager class needs to be configured. First configure a simple Map-based cache by using
ConcurrentMapCacheManager, which, as the name implies, uses ConcurrentMap underneath for caching.

package com.apress.springrecipes.caching.config;
...
import org.springframework.cache.CacheManager;
import org.springframework.cache.concurrent.ConcurrentMapCacheManager;

@Configuration
public class CalculationConfiguration {

 @Bean
 public CacheManager cacheManager() {
 return new ConcurrentMapCacheManager();
 }

APPENDIX B ■ CAChINg

802

 @Bean
 public CalculationService calculationService() {
 return new PlainCachingCalculationService(cacheManager().getCache("calculations"));
 }
}

You can leave the Main class unchanged.

Use Ehcache with Spring’s Cache Abstraction
Although ConcurrentMapCacheManager appears to do its job, it is not a full cache implementation. It will
only add things to the cache; there is no cache eviction or cache overflowing. Ehcache, on the other hand,
has all of this. Using Ehcache (or another cache implementation like JCS or Hazelcast) is just a matter of
configuration.

To use Ehcache, first configure Ehcache using EhCacheManagerFactoryBean and next use
EhCacheCacheManager to hook it up with Spring’s cache abstraction. PlainCachingCalculationService can
remain untouched because that already uses Spring’s cache abstraction to use a cache.

package com.apress.springrecipes.caching.config;
...
import org.springframework.cache.CacheManager;
import org.springframework.cache.ehcache.EhCacheCacheManager;
import org.springframework.cache.ehcache.EhCacheManagerFactoryBean;

@Configuration
public class CalculationConfiguration {

 @Bean
 public CacheManager cacheManager() {
 EhCacheCacheManager cacheManager = new EhCacheCacheManager();
 cacheManager.setCacheManager(ehCacheManagerFactoryBean().getObject());
 return cacheManager;
 }

 @Bean
 public EhCacheManagerFactoryBean ehCacheManagerFactoryBean() {
 EhCacheManagerFactoryBean factory = new EhCacheManagerFactoryBean();
 factory.setConfigLocation(new ClassPathResource("ehcache.xml"));
 return factory;
 }

 @Bean
 public CalculationService calculationService() {
 return new PlainCachingCalculationService(cacheManager().getCache("calculations"));
 }
}

APPENDIX B ■ CAChINg

803

B-3. Implement Declarative Caching with AOP
Problem
Caching is a kind of crosscutting concern. Applying caching manually can be tedious and error prone. It is
simpler to specify declaratively what behavior you are expecting and to not prescribe how that behavior is to
be achieved.

Solution
Spring (since version 3.1) offers a cache advice that can be enabled with @EnableCaching.

How It Works
To enable declarative caching, you have to add @EnableCaching to the configuration class. This will register
a CacheInterceptor or AnnotationCacheAspect class (depending on the mode), which will detect, among
others, the @Cacheable annotation.

public BigDecimal heavyCalculation(BigDecimal base, int power) {
 String key = base +"^"+power;
 Element result = cache.get(key);
 if (result != null) {
 return (BigDecimal) result.getObjectValue();
 }
 try {
 Thread.sleep(500);
 } catch (InterruptedException e) {}
 BigDecimal calculatedResult = base.pow(power);
 cache.putIfAbsent(new Element(key, calculatedResult));
 return calculatedResult;
}

The registered advice replaces the code in bold because that is mainly boilerplate and would need to be
duplicated in each method in which you want to introduce caching. When the boilerplate code is removed,
the following code is what would remain:

@Override
public BigDecimal heavyCalculation(BigDecimal base, int power) {
 try {
 Thread.sleep(500);
 } catch (InterruptedException e) {}
 return base.pow(power);
}

To enable caching for this method, you need to place a @Cacheable annotation on the method. This
annotation requires the name of the cache to use to be specified (by using the value attribute of the
annotation).

@Override
@Cacheable("calculations")
public BigDecimal heavyCalculation(BigDecimal base, int power) { ... }

APPENDIX B ■ CAChINg

804

This annotation has three other attributes: key, condition, and unless. Each of these attributes takes a
SpEL expression that is evaluated at runtime. The key attribute specifies which method arguments to use to
calculate the key used for caching. The default is to use all method arguments. The condition attribute can
be used to define the condition for which the cache is applied. The default is to always cache and is invoked
before the actual method is invoked. The unless attribute works like the condition attribute; however, this
is invoked after the actual method invocation.

Use Spring AOP
The default operation mode for the @EnableCachin annotation is to use plain Spring AOP. This means a
proxy will be created for CalculationService. The configuration looks like this:

package com.apress.springrecipes.caching.config;

import com.apress.springrecipes.caching.CalculationService;
import com.apress.springrecipes.caching.PlainCalculationService;
import org.springframework.cache.CacheManager;
import org.springframework.cache.annotation.EnableCaching;
import org.springframework.cache.ehcache.EhCacheCacheManager;
import org.springframework.cache.ehcache.EhCacheManagerFactoryBean;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.core.io.ClassPathResource;

@Configuration
@EnableCaching
public class CalculationConfiguration {

 @Bean
 public CacheManager cacheManager() {
 EhCacheCacheManager cacheManager = new EhCacheCacheManager();
 cacheManager.setCacheManager(ehCacheManagerFactoryBean().getObject());
 return cacheManager;
 }

 @Bean
 public EhCacheManagerFactoryBean ehCacheManagerFactoryBean() {
 EhCacheManagerFactoryBean factory = new EhCacheManagerFactoryBean();
 factory.setConfigLocation(new ClassPathResource("ehcache.xml"));
 return factory;
 }

 @Bean
 public CalculationService calculationService() {
 return new PlainCalculationService();
 }
}

The configuration now has a @EnableCaching annotation, and CalculationService has only the
@Cacheable annotation; there’s no dependency on the caching framework.

APPENDIX B ■ CAChINg

805

Use AspectJ
Using the AspectJ mode for caching is as easy as setting the mode attribute of the @EnableCaching annotation
to ASPECTJ. Depending on whether you use compile-time or load-time weaving, it might be necessary to add
@EnableLoadTimeWeaving. For the sample, it is assumed that the code uses load-time weaving. For this, add
the aforementioned annotation to the configuration class.

package com.apress.springrecipes.caching.config;
...
import org.springframework.cache.annotation.EnableCaching;
import org.springframework.context.annotation.EnableLoadTimeWeaving;

@Configuration
@EnableLoadTimeWeaving
@EnableCaching(mode = AdviceMode.ASPECTJ)
public class CalculationConfiguration { ... }

You can find more information on load-time weaving in recipe 3-19. To run the main application,
you have to start it with a so-called Java agent. To run the program with load-time weaving, use java
-javaagent:./lib/spring-instrument-5.0.0.RELEASE.jar -jar Recipe_19_3_ii-4.0.0.jar (from the
build/libs directory of this recipe).

B-4. Configure a Custom KeyGenerator
Problem
The default KeyGenerator generates a key based on the method parameters. You want to modify this
behavior.

Solution
Implement a custom KeyGenerator with the desired strategy and configure the caching support to use this
custom KeyGenerator.

How It Works
The caching abstraction uses a KeyGenerator interface as a callback mechanism for the key generation. By
default it uses the SimpleKeyGenerator class for key generation. This class takes all method arguments and
calculates a hash code. This hash is used as a key.

It is possible to implement your own generation strategy and use that to generate the keys. To do this,
create a class that implements the KeyGenerator interface and implements the generate method.

package com.apress.springrecipes.caching;

import org.springframework.cache.interceptor.KeyGenerator;

import java.lang.reflect.Method;

public class CustomKeyGenerator implements KeyGenerator {

APPENDIX B ■ CAChINg

806

 @Override
 public Object generate(Object target, Method method, Object... params) {
 return params[0] + "^" + params[1];
 }
}

CustomKeyGenerator takes the first and second parameters and appends them with a ^ in between (the
same as was done in the samples when you generated your own key for the cache).

Next wire up the custom implementation with the caching support in Spring. For this, use the
CachingConfigurer interface, which further configures the caching support in Spring. To implement it, you
can use the CachingConfigurerSupport class to override only those parts of the configuration you want to
override. Here you will override keyGenerator and cacheMananger.

 ■ Note Don’t forget to put @Bean on the overridden methods or the created instances won’t be managed by
the Spring container.

package com.apress.springrecipes.caching.config;

import org.springframework.cache.CacheManager;
import org.springframework.cache.annotation.CachingConfigurerSupport;
import org.springframework.cache.annotation.EnableCaching;
import org.springframework.cache.ehcache.EhCacheCacheManager;
import org.springframework.cache.ehcache.EhCacheManagerFactoryBean;
import org.springframework.cache.interceptor.KeyGenerator;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.core.io.ClassPathResource;

import com.apress.springrecipes.caching.CalculationService;
import com.apress.springrecipes.caching.CustomKeyGenerator;
import com.apress.springrecipes.caching.PlainCalculationService;

@Configuration
@EnableCaching
public class CalculationConfiguration extends CachingConfigurerSupport {

 @Bean
 @Override
 public CacheManager cacheManager() {
 EhCacheCacheManager cacheManager = new EhCacheCacheManager();
 cacheManager.setCacheManager(ehCacheManagerFactoryBean().getObject());
 return cacheManager;
 }

 @Bean
 @Override
 public KeyGenerator keyGenerator() {
 return new CustomKeyGenerator();
 }

APPENDIX B ■ CAChINg

807

 @Bean
 public EhCacheManagerFactoryBean ehCacheManagerFactoryBean() {
 EhCacheManagerFactoryBean factory = new EhCacheManagerFactoryBean();
 factory.setConfigLocation(new ClassPathResource("ehcache.xml"));
 return factory;
 }

 @Bean
 public CalculationService calculationService() {
 return new PlainCalculationService();
 }

}

First notice the addition of CustomKeyGenerator as a bean so that it is available for use. Next you’ll
see the inner class for CachingConfigurer (you can also create a normal class as long as it implements the
CachingConfigurer interface). The implementation for CachingConfigurer returns the already configured
CacheManager as well as the KeyGenerator. When using CachingConfigurer, CacheManager is no longer
autodetected and must be configured through CachingConfigurer.

B-5. Add and Remove Objects from the Cache
Problem
You want to use cache eviction and cache puts when objects get created, updated, or removed.

Solution
Use the @CachePut and @CacheEvict annotations on methods that you want to update or when you want to
invalidate objects in the cache.

How It Works
In addition to @Cacheable, Spring has the @CachePut and @CacheEvict annotations, which, respectively, add
or remove objects (or invalidate the whole cache) to/from a cache.

When using caches, you don’t only want your cache to fill up; you also want it to keep in sync with what
is happening inside your application, including object updates and removal. For methods whose results
update the cache, add the @CachePut annotation; for methods that invalidate objects inside the cache, use
the @CacheEvict annotation.

When using CustomerRepository, obtaining the customers from the underlying data source is time-
consuming. You decide to add caching to the repository. First create the CustomerRepository interface.

package com.apress.springrecipes.caching;

public interface CustomerRepository {

 Customer find(long customerId);
 Customer create(String name);
 void update(Customer customer);
 void remove(long customerId);
}

APPENDIX B ■ CAChINg

808

You also need a Customer class.

package com.apress.springrecipes.caching;

import java.io.Serializable;

public class Customer implements Serializable {

 private final long id;
 private String name;

 public Customer(long id) {
 this.id = id;
 }

 public long getId() {
 return id;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 @Override
 public String toString() {
 return String.format("Customer [id=%d, name=%s]", this.id, this.name);
 }
}

Finally, the implementation of the CustomerRepository interface is based on a HashMap because it is
just for testing purposes. The slow retrieval is faked with a call to Thread.sleep().

package com.apress.springrecipes.caching;

import org.springframework.cache.annotation.Cacheable;

import java.util.HashMap;
import java.util.Map;
import java.util.UUID;

public class MapBasedCustomerRepository implements CustomerRepository {

 private final Map<Long, Customer> repository = new HashMap<>();

 @Override
 @Cacheable(value = "customers")
 public Customer find(long customerId) {

APPENDIX B ■ CAChINg

809

 try {
 Thread.sleep(500);
 } catch (InterruptedException e) {}
 return repository.get(customerId);
 }

 @Override
 public Customer create(String name) {
 long id = UUID.randomUUID().getMostSignificantBits();
 Customer customer = new Customer(id);
 customer.setName(name);
 repository.put(id, customer);
 return customer;
 }

 @Override
 public void update(Customer customer) {
 repository.put(customer.getId(), customer);
 }

 @Override
 public void remove(long customerId) {
 repository.remove(customerId);
 }
}

Next everything needs to be configured with a configuration class.

package com.apress.springrecipes.caching.config;

import com.apress.springrecipes.caching.CustomerRepository;
import com.apress.springrecipes.caching.MapBasedCustomerRepository;
import org.springframework.cache.CacheManager;
import org.springframework.cache.annotation.EnableCaching;
import org.springframework.cache.ehcache.EhCacheCacheManager;
import org.springframework.cache.ehcache.EhCacheManagerFactoryBean;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.core.io.ClassPathResource;

@Configuration
@EnableCaching
public class CustomerConfiguration {

 @Bean
 public CacheManager cacheManager() {
 EhCacheCacheManager cacheManager = new EhCacheCacheManager();
 cacheManager.setCacheManager(ehCacheManagerFactoryBean().getObject());
 return cacheManager;
 }

APPENDIX B ■ CAChINg

810

 @Bean
 public EhCacheManagerFactoryBean ehCacheManagerFactoryBean() {
 EhCacheManagerFactoryBean factory = new EhCacheManagerFactoryBean();
 factory.setConfigLocation(new ClassPathResource("ehcache.xml"));
 return factory;
 }

 @Bean
 public CustomerRepository customerRepository() {
 return new MapBasedCustomerRepository();
 }
}

Last but not least, to be able to run this program, you need a Main class.

package com.apress.springrecipes.caching;

import org.springframework.context.ApplicationContext;
import org.springframework.context.annotation.AnnotationConfigApplicationContext;
import org.springframework.context.support.AbstractApplicationContext;
import org.springframework.util.StopWatch;

import com.apress.springrecipes.caching.config.CustomerConfiguration;

public class Main {

 public static final void main(String[] args) throws Exception {

 ApplicationContext context =
 new AnnotationConfigApplicationContext(CustomerConfiguration.class);
 CustomerRepository customerRepository = context.getBean(CustomerRepository.class);
 StopWatch sw = new StopWatch("Cache Evict and Put");

 sw.start("Get 'Unknown Customer'");
 Customer customer = customerRepository.find(1L);
 System.out.println("Get 'Unknown Customer' (result) : " + customer);
 sw.stop();

 sw.start("Create New Customer");
 customer = customerRepository.create("Marten Deinum");
 System.out.println("Create new Customer (result) : " + customer);
 sw.stop();

 long customerId = customer.getId();

 sw.start("Get 'New Customer 1'");
 customer = customerRepository.find(customerId);
 System.out.println("Get 'New Customer 1' (result) : " + customer);
 sw.stop();

APPENDIX B ■ CAChINg

811

 sw.start("Get 'New Customer 2'");
 customer = customerRepository.find(customerId);
 System.out.println("Get 'New Customer 2' (result) : " + customer);
 sw.stop();

 sw.start("Update Customer");
 customer.setName("Josh Long");
 customerRepository.update(customer);
 sw.stop();

 sw.start("Get 'Updated Customer 1'");
 customer = customerRepository.find(customerId);
 System.out.println("Get 'Updated Customer 1' (result) : " + customer);
 sw.stop();

 sw.start("Get 'Updated Customer 2'");
 customer = customerRepository.find(customerId);
 System.out.println("Get 'Updated Customer 2' (result) : " + customer);
 sw.stop();

 sw.start("Remove Customer");
 customerRepository.remove(customer.getId());
 sw.stop();

 sw.start("Get 'Deleted Customer 1'");
 customer = customerRepository.find(customerId);
 System.out.println("Get 'Deleted Customer 1' (result) : " + customer);
 sw.stop();

 sw.start("Get 'Deleted Customer 2'");
 customer = customerRepository.find(customerId);
 System.out.println("Get 'Deleted Customer 2' (result) : " + customer);
 sw.stop();

 System.out.println();
 System.out.println(sw.prettyPrint());

 ((AbstractApplicationContext) context).close();
 }
}

The first thing to notice is the number of System.out calls that use StopWatch. These are there to show
the behavior of what is happening to the program. After running this class, there should be output similar to
that in Figure B-1.

APPENDIX B ■ CAChINg

812

There are a couple of things to notice in the output after running the program. First, after removing
the customer, you still get a result when trying to find the deleted customer. This is because the object
is removed from the repository only if it still is in the cache that is being used. Second, the first get after
creating the customer is taking a long time; it would be more efficient to have the created customer cached
immediately. Third, although not directly apparent from the output, the first get after the update of the
object is really fast. After updating the object, the cached instance should be removed.

 ■ Note The update only appears to be working because we are updating the same Customer instance as is
in the cache. If the update were a real JDBC update, the cache wouldn’t reflect the update!

Use @CacheEvict to Remove Invalid Objects
When an object is removed from the underlying repository, it has to be removed from the cache (or maybe
the whole cache needs to be invalidated). To do this, add the @CacheEvict annotation to the remove method.
Now when this method is called, the object with the same key will be removed from the cache.

package com.apress.springrecipes.caching;

import org.springframework.cache.annotation.CacheEvict;
...

public class MapBasedCustomerRepository implements CustomerRepository {
...
 @Override
 @CacheEvict(value="customers")
 public void remove(long customerId) {
 repository.remove(customerId);
 }
}

Figure B-1. Initial output of running Main

APPENDIX B ■ CAChINg

813

Notice the @CacheEvict annotation on the remove method needs the name of the cache from which to
remove the item. In this case, the cache name is customers. It has a few other attributes that can be used
(see Table B-1).

When running the Main program again, the output has changed a little (see Figure B-2).

Looking at the output, it is apparent that when a customer is removed, there is no more result.
When retrieving the deleted customer, null is returned instead of a cached instance. Next let’s add the
@CacheEvict annotation to the update method; after an update, the object should be retrieved from the
underlying data source again. Adding it to the update method, however, yields a problem. The method
argument is a Customer value, whereas the cache uses the ID of the customer as a key. (Remember that the
default key generation strategy uses all method arguments to generate the key; the find and remove methods
both have a long as method argument.)

To overcome this, you can write a little SpEL expression in the key attribute. You want it to use the id
property of the first argument as the key. The #customer.id expression will take care of that. It will reference
the method argument named customer.

Table B-1. @CacheEvict Attributes

Attribute Description

key SpEL expression for computing the key. The default is to use all method arguments.

condition The condition on which the cache will or will not be invalidated.

allEntries Sets whether the whole cache should be evicted; the default is false.

beforeInvocation Sets whether the cache should be invalidated before or after (the default) method
invocation. When invoked before the method, the cache will invalidate regardless of
the method outcome.

Figure B-2. Output after adding @CacheEvict to remove method

APPENDIX B ■ CAChINg

814

The modified update method looks like the following:

package com.apress.springrecipes.caching;
...
import org.springframework.cache.annotation.CacheEvict;

public class MapBasedCustomerRepository implements CustomerRepository {
...
 @Override
 @CacheEvict(value="customers", key="#customer.id")
 public void update(Customer customer) {
 repository.put(customer.getId(), customer);
 }
}

After running the Main class, the timing information shows that the first lookup for the updated
customer takes a little longer (see Figure B-3).

Use @CachePut to Place Objects in the Cache
The create method creates a Customer object based on the input at the moment. The first find operation for
this object after the creation takes some time to finish. Although it works, it can be made faster by having the
create method place the object into the cache.

To make a method put a value in the cache, you can use the @CachePut annotation. The annotation
requires the name of the cache to add the object to. This is done through the value attribute. Just like the
other annotations, there are also the key, condition, and unless attributes.

package com.apress.springrecipes.caching;

import org.springframework.cache.annotation.CachePut;
...

Figure B-3. Output after adding @CacheEvict to update method

APPENDIX B ■ CAChINg

815

public class MapBasedCustomerRepository implements CustomerRepository {

 @Override
 @CachePut(value="customers", key = "#result.id")
 public Customer create(String name) { ... }
}

First notice the @CachePut annotation on the update method. It is given the name of the cache, customers,
through the value attribute. The key attribute is needed because in general a method that creates an object
returns the actual object to be cached. The key, however, is generally not the object itself, which is why you
need to specify an SpEL expression for the key attribute. The #result placeholder gives access to the returned
object. As the id of the Customer object is the key, the expression #result.id yields the desired result.

The result of running the main program should look like Figure B-4.

The first retrieval of the newly created customer is now a lot faster as the object is returned from the
cache instead of being looked up from the repository.

Veto Results for the @Cacheable Annotation
At the moment, the find method caches all the results even when the method returns null. It can be
undesirable to disable caching. For certain results, you can use the unless attribute on the @Cacheable
annotation. When the criteria (an SpEL expression) are met, the returned object is not cached.

package com.apress.springrecipes.caching;

import org.springframework.cache.annotation.Cacheable;
...

Figure B-4. The result after adding @CachePut to the update method

APPENDIX B ■ CAChINg

816

public class MapBasedCustomerRepository implements CustomerRepository {

 @Override
 @Cacheable(value = "customers", unless="#result == null")
 public Customer find(long customerId) { ... }
...
}

Notice the expression in the unless attribute. If the result is null, the caching will be vetoed. The
#result placeholder gives you access to the object returned from the called method. This can be used to
write an expression. The expression here is a simple null check.

Figure B-5 shows the results after excluding null from being cached. Both lookups for the deleted
customer take approximately the same amount of time.

B-6. Synchronize Caching with a Transactional Resource
Problem
You want your cache to be transaction aware.

Solution
Some of the Spring-provided CacheManager implementations can be made aware of the fact that they are
running in a transactional context. EhCacheCacheManager is one of them. To switch on the transaction
awareness, set the transactionAware property to true.

Figure B-5. Results after excluding null from being cached

APPENDIX B ■ CAChINg

817

How It Works
First create a transactional implementation of CustomerRepository, for instance, using JDBC.

package com.apress.springrecipes.caching;

import java.sql.Connection;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;

import javax.sql.DataSource;

import org.springframework.cache.annotation.CacheEvict;
import org.springframework.cache.annotation.CachePut;
import org.springframework.cache.annotation.Cacheable;
import org.springframework.jdbc.core.JdbcTemplate;
import org.springframework.jdbc.core.PreparedStatementCreator;
import org.springframework.jdbc.core.RowMapper;
import org.springframework.jdbc.support.GeneratedKeyHolder;
import org.springframework.jdbc.support.KeyHolder;
import org.springframework.stereotype.Repository;
import org.springframework.transaction.annotation.Transactional;

@Repository
@Transactional
public class JdbcCustomerRepository implements CustomerRepository {

 private final JdbcTemplate jdbc;

 public JdbcCustomerRepository(DataSource dataSource) {
 this.jdbc = new JdbcTemplate(dataSource);
 }

 @Override
 @Cacheable(value = "customers")
 public Customer find(long customerId) {
 final String sql = "SELECT id, name FROM customer WHERE id=?";
 return jdbc.query(sql, (rs, rowNum) -> {
 Customer customer = new Customer(rs.getLong(1));
 customer.setName(rs.getString(2));
 return customer;
 }, customerId).stream().findFirst().orElse(null);
 }
 @Override
 @CachePut(value="customers", key = "#result.id")
 public Customer create(String name) {

 final String sql = "INSERT INTO customer (name) VALUES (?);";
 KeyHolder keyHolder = new GeneratedKeyHolder();
 jdbc.update(con -> {
 PreparedStatement ps = con.prepareStatement(sql);

APPENDIX B ■ CAChINg

818

 ps.setString(1, name);
 return ps;
 }, keyHolder);

 Customer customer = new Customer(keyHolder.getKey().longValue());
 customer.setName(name);

 return customer;
 }

 @Override
 @CacheEvict(value="customers", key="#customer.id")
 public void update(Customer customer) {
 final String sql = "UPDATE customer SET name=? WHERE id=?";
 jdbc.update(sql, customer.getName(), customer.getId());
 }

 @Override
 @CacheEvict(value="customers")
 public void remove(long customerId) {
 final String sql = "DELETE FROM customer WHERE id=?";
 jdbc.update(sql, customerId);
 }
}

Now you need to add DataSource and DataSourceTransactionManager to your configuration and of
course JdbcCustomerRepository.

@Bean
public CustomerRepository customerRepository(DataSource dataSource) {
 return new JdbcCustomerRepository(dataSource);
}
@Bean
public DataSourceTransactionManager transactionManager(DataSource dataSource) {
 return new DataSourceTransactionManager(dataSource);
}

@Bean
public DataSource dataSource() {
 return new EmbeddedDatabaseBuilder()
 .setType(EmbeddedDatabaseType.H2)
 .setName("customers")
 .addScript("classpath:/schema.sql").build();
}

The CUSTOMER table is defined in the following schema.sql:

CREATE TABLE customer (
 id bigint AUTO_INCREMENT PRIMARY KEY,
 name VARCHAR(255) NOT NULL,
);

APPENDIX B ■ CAChINg

819

Finally, set the transactionAware property of EhCacheCacheManager to true. Setting this to true will
wrap the actual Cache instances with TransactionAwareCacheDecorator, which will register the operations
on the cache with the current ongoing transaction (or execute directly if no transaction is available).

@Bean
public CacheManager cacheManager() {

 EhCacheCacheManager cacheManager = new EhCacheCacheManager();
 cacheManager.setCacheManager(ehCacheManagerFactoryBean().getObject());
 cacheManager.setTransactionAware(true);
 return cacheManager;
}

Now when you run the application, everything should still look normal, but all caching operations are
bound to the successful execution of a transaction. So, if the delete operation fails with an exception, the
Customer would still be in the cache.

B-7. Use Redis as a Cache Provider
Problem
You want to use Redis as a caching provider.

Solution
Use Spring Data Redis and configure a RedisCacheManager object to connect to a Redis instance. See also
Chapter 12 for more information on Redis and Spring Data Redis.

How It Works
First make sure you have Redis up and running.

 ■ Note There is a redis.sh file in the bin directory that starts a Dockerized version of Redis.

Configure RedisCacheManager
To be able to use Redis for caching, you need to set up RedisCacheManager, which will delegate caching to
Redis. RedisCacheManager in turn requires a RedisTemplate class to use for its operations.

@Configuration
@EnableCaching
public class CustomerConfiguration {

 @Bean
 public RedisCacheManager cacheManager(RedisConnectionFactory connectionFactory) {
 return RedisCacheManager.create(connectionFactory);
 }

http://dx.doi.org/10.1007/978-1-4842-2790-9_12

APPENDIX B ■ CAChINg

820

 @Bean
 public RedisConnectionFactory redisConnectionFactory() {
 return new JedisConnectionFactory();
 }

 @Bean
 public CustomerRepository customerRepository() {
 return new MapBasedCustomerRepository();
 }
}

To connect to Redis, you set up JedisConnectionFactory, which itself is used to configure
RedisCacheManager. To create a RedisCacheManager object, you can pass the connection factory to the
create method, or if you want to customize the cache, you can use the builder method instead. When using
builder, you can customize things such as cache names, transaction awareness, and so on.

You can leave the remaining code untouched. When running the main program, it will show, among
others things, the adding and removing of objects to the cache.

Summary
In this chapter, you discovered how to add caching to your application and that it is quite cumbersome to
do so, especially if you want to introduce this in multiple parts of your code. You explored both the plain
Ehcache API and Spring’s cache abstraction. After doing manual caching, you explored applying caching
with AOP, both with plain Spring AOP using proxies and with AspectJ using load-time weaving.

Next you learned about the different annotations, @Cacheable, @CacheEvict, and @CachePut, and how
those influence the caching behavior of your application. You also learned how to use a SpEL expression to
retrieve the correct key for caching or cache invalidation and how to influence the caching behavior of the
@Cacheable annotation.

The final recipe introduced Spring Gemfire as a caching solution and explored how it can be used as a
local or remote caching solution.

821© Marten Deinum, Daniel Rubio, and Josh Long 2017
M. Deinum et al., Spring 5 Recipes, DOI 10.1007/978-1-4842-2790-9

��������� A
Access control, 297
Access control decisions

AccessDecisionManager, 319–320
AffirmativeBased, 320
expression, 322–326
voter creation, 320–322
WebFlux application, 343

Access control entries (ACEs), 332
Access control list (ACL)

access control decisions, 338–340
BasicLookupStrategy, 335
Ehcache, 333
JdbcMutableAclService, 334–337
MutableAclService, 334
settings, 332–333
to-do, 336–337

@After advice, 78
@AfterReturning advice, 78
@AfterThrowing advice, 79–80
Aggregators, 676–677
AOP

ArithmeticCalculatorImpl class, 93
counter operations, 95–96
@DeclareParents, 93
max() and min(), 92, 94

ApplicationEvent, 112
ApplicationListener, 115
@Around advice, 80–81
AspectJ, 805
AspectJ framework configuration, 101–103
AspectJ load-time weaving

add() and sub(), 98
compile-time weaving, 97
constructor, 100
post-compile-time weaving, 97
Spring load-time weaver, 101
testing calculator, 98
toString(), 97

AspectJ pointcut expressions
ArithmeticCalculator interface, 89

declare pointcut parameters, 90–91
@LoggingRequired, 89
operators, 90
@Pointcut, 90
signature patterns, 87–89

Aspect-oriented programming
advice annotations, 75
@After, 78
@AfterReturning, 78
@AfterThrowing, 79–80
@Around, 80–81
@EnableAspectJAutoProxy, 73, 76
join points, 77
POJOs, 74–75

Async processing
interceptors, 222–224
requests handling

AsyncTaskExecutor, 211
callable, 212
CompletableFuture, 214–215
DeferredResult, 213–214
ListenableFuture, 216–217
return types, 210
setAsyncSupported(), 210

response writers
ResponseBodyEmitter, 217–218, 220
server-sent events, 220–221
SseEmitter, 221–222

web client, 259, 261–263
Atomicity, consistency, isolation, and

durability (ACID), 416
Authenticate users

cache user details, 317–319
encrypt passwords, 314–315
in-memory definitions, 311
LDAP repository, 315–317
repository, 310
SQL statements, 311–313
WebFlux-based, 341–342

Authentication, 297
Authorization, 297
Aware interfaces, 72

Index

■ INDEX

822

��������� B
Batch processing, 447

applications, 447
fixed-width data, 448
solutions, 447

batchUpdate() template methods, 372–373
@Bean annotated method, 102
Bean factory, 30
Bean-managed transaction (BMT), 415
BeanNameAware interface, 73
Bean validation with annotations

Maven project, 176
objective, 174
Reservation domain class, 175
specification, 174
validator annotations, 175

Business-to-business (B2B) transaction, 448

��������� C
Caching

with AOP, 803, 805
@Cacheable, 815, 816
@CacheEvict, 812–814
@CachePut, 814–815
configuration class, 809–810
CustomerRepository, 807–808
custom KeyGenerator, 805, 807
Ehcache

CalculationService, 795
configuration, 800
without Spring, 796–797
with Spring, 798–799

Redis, 819–820
Spring’s cache abstraction, 800, 802
StopWatch, 811
transactional resource, 816–819

Callback methods, 134
CloudFoundry

CLI tool, 781–783
removing application, 794
sign up

confirmation page, 778
form, 777
home page, 776
organization name, 780–781
verification page, 779–780

Spring MVC application
cf push, 784
Cloud service, 793–794
configuration, 788
Contact entity, 785
contact application, 790
ContactRepository, 784

data source, 790, 792
views creation, 787

Comma-separated value (CSV) file, 448
@Component annotation, 104
Concurrent transactions, 436–437
Container-managed transaction (CMT), 415
Content negotiation

configure, 145–146
ContentNegotiatingViewResolver, 146
HTTP Accept headers, 145, 146
media type, 146
URL, 145

Couchbase
CouchbaseVehicleRepository, 533–534
installation

cluster settings, 523
default bucket, 525
notifications and registration, 526
sample buckets, 524
setting up, admin user, 527

Spring Data’s
CouchbaseTemplate, 534–537
CrudRepository, 537–538
ReactiveCouchbaseRepository, 538–540

store and retrieve documents
CouchbaseCluster.create() method, 530
CouchbaseVehicleRepository, 530–531
JSON, 531–532
openBucket() method, 527
SerializableDocument class, 529
Vehicle, 530
Vehicle class, 527–528

Create, read, update, and delete (CRUD)
controllers, 743

Credential, 297
Cross-site forgery request (CSFR), 289
CSFR protection, 302–303
Customer Information Control

System (CICS), 447

��������� D
Data access, JDBC

CRUD operations, 362
DAO, 363–364, 366, 368
DriverManagerDataSource, 366–367
exception-handling

customization, 388–389
DataAccessException hierarchy, 384–385
DuplicateKeyException, 386
errorCode and SQLState, 386–387

JndiDataSourceLookup, 367
named parameters, 382–383
ORM (see ORM framework)
properties, 363

■ INDEX

823

query
findAll(), 376–377
mapRow(), 375–376
processRow(), 374
queryForObject(), 378
RowCallbackHandler, 374–375

settings, 362
template creation

inject, 379–380
JdbcDaoSupport class, 380–381

update
batchUpdate(), 372–373
parameter values, 372
PreparedStatement, 372
PreparedStatementCreator, 369–371
PreparedStatementSetter, 371

Data access object (DAO), 31, 363–364, 366
Data definition language (DDL), 449
Declarative transaction

management, 415, 430
Device detection

Spring mobile
DeviceResolverHandlerInterceptor, 351
DeviceResolverRequestFilter, 351

without Spring mobile
bootstrapping, 347–348
DeviceResolverRequestFilter, 347
filter, 345–346
viewing application, 349

DeviceResolverHandlerInterceptor, 351
DeviceResolverRequestFilter, 351
Dispatcher servlet, 117
Domain classes, 740–742
Domain object security, ACL service, 333
Duplicate form submission, 155

��������� E
Ehcache

CalculationService, 795
configuration, 800
with Spring, 798–799
without Spring, 796–797

@EnableGlobalMethodSecurity annotation, 328
Encrypt passwords, 314–315
Error handling, 671

custom handler, 672–673
exception types, 673
multiple error channels, 673

Excel and PDF files
AbstractPdfView class, 178–180
create Date object, 178
create resolvers, 181
date parameter, 177
HTTP GET handler method, 178

report generation function, 177
resolver, 177–178
view class, 177
XLS file, 181

Exception-handling
customization, 388–389
DataAccessException hierarchy, 384–385
DuplicateKeyException, 386
errorCode and SQLState, 386–387

External resources data, 49, 51–54

��������� F
Form handling

controller, 247–248
custom types, 252–254
model attribute object, 249
reference data, 250–252
service processing, 246–247
validate form data, 254–257
value, 250
view creation, 244–246

Front controller, 117

��������� G
Gateway

defined, 682
interface dependency, 684–689
middleware, 682
SimpleMessagingGateway, 683–684

getMember method, 190
GORM dynamic finder comparators, 765
Gradle command-line interface, 23–24
Gradle wrapper, 22–23, 25–26
Grails

application creation
controller and handler method, 736
create-app court, 732
create-controller welcome, 735
file and directory structure, 734
GSP page, 736
project structure, 733
run applications, 734–735
WAR, 737

CRUD controllers and application’s domain
classes, 743–746

customize log output, 753–754
custom layouts and templates, 761–764
custom tags creation, 766–768
development, production,

and testing, 738–740
domain classes, 740–742
GORM queries, 764–765
installation, 731–732

■ INDEX

824

internationalization (I18n), message
properties, 747–749

permanent storage systems, 750–752
plug-ins, 737–738
security

annotations, 772
bootstrap security, 770
login screen, 770
SecUser and SecRole

domain object, 769
URLs, 771

unit and integration tests, 755–760
Groovy Object Relational

Mapper (GROM), 750

��������� H
Handle forms with controllers

annotations, 153–154
create form view, 150–151
Date class, 159–160
DateFormatter class, 160
duplicate form submission, 155
error codes, 152
getAllSportTypes() method, 156
HTML form, 151
HTTP GET request, 150
HTTP POST request, 150
make() method, 153
player object field, 155–156
properties of custom types, 158–160
reference data, 156–157
reservation object, 154
service processing, 152–153
setupForm handler method, 157
setupForm method, 154
SportTypeConverter class, 158–160
submitForm method, 154
successful reservation, 152
tags, 151
validate form data, 160

Handler interceptors, intercept
requests with

callback methods, 134
create custom, 134
DispatcherServlet, 134
implement interface, 135
Java configuration, 136
register interceptor, 135
servlet filters, 133
URLs, 133

Hibernate contextual session, 407–409
Hibernate Query Language (HQL), 361
Hibernate XML mappings, 391–394

��������� I
IllegalArgumentException, 87
Infrastructure as service, 775
Integration

aggregators, 676–677
EAI, 655–656
error handling, 671, 673–674
ESB, 656–657
file system, 665–667
gateway (see Gateway)
JMS, 658
MDP

ConnectionFactory, 658–659
error handling, 661
messageDrivenChannel

Adapter, 659
messageProcessor, 659–660

MessageHeaders, 662–665
splitter, 674, 676
styles, 656
transformer message

message’s headers, 670–671
message’s payload, 668, 670

Integration tests
AccountServiceImpl, 704
database access, 719–721
JUnit, 708–710
REST-based client, 726, 728, 730
Spring MVC controller

DepositController, 723
InternalResource

ViewResolver, 724
JUnit, 724–725
TestNG, 726

TestContext framework, 707–708
test fixtures, 712, 714
TestNG, 708, 711–712
transaction management, 715–719

IntelliJ IDE
Gradle project, 10, 19–20
Maven project, 12, 14–17
selection file/directory, 13
Spring project, 11

Intercept requests, handler
interceptors

callback methods, 134
create custom, 134
DispatcherServlet, 134
implement interface, 135
Java configuration, 136
register interceptor, 135
servlet filters, 133
URLs, 133

IoC container, 429, 431, 445

Grails (cont.)

■ INDEX

825

��������� J
Java enterprise services, 541

contract-first SOAP web services
generated WSDL file, 598–599
generated XSD file, 597
problem, 594
sample XML messages, 595–597
solution, 594

e-mail with Spring’s support, sending
with attachments (MIME message),

570–572
JavaMail API, 565–567
MailSender, 567–569
problem, 564
solution, 564
template, 569–570
working, 564–565

services through HTTP
exposing, 587
Hessian service, 585–587
invoking, 587
problem, 585
solution, 585

services through RMI
problem, 580
solution, 580
working, 581–584

SOAP web services with JAX-WS
problem, 588
solution, 588
using CXF, 591–594
using JaxWsPortProxy

FactoryBean, 593
working, 588–590

SOAP web services with Spring-WS
problem, 599
solution, 599
working, 600–606
XML marshalling, 606–612

Spring’s Quartz support
problem, 572
solution, 572
with Spring’s support, 575–577
without Spring’s support, 572–575

Spring’s scheduling
problem, 577
solution, 577
working, 577–580

Java Management Extensions (JMX), 541
problem, 557
solution, 557–559

Java Persistence API (JPA), 361
Java Standard Tag Library (JSTL), 117
Jaxb2Marshaller, 185

JMX MBeans
accessing remote

problem, 559
solution, 559
through proxy, 563
through server connection, 560–562

register Spring POJOs
with annotations, 555–557
management interface, 552–554
problem, 541
for remote access with RMI, 551–552
server instances, 550–551
solution, 542
with Spring support, 549
without Spring’s support, 545–548
working, 542–545

Join points, 77, 81–82, 87
JPA contextual session, 409–410, 412
JSON with REST services

GSON, 195
MappingJackson2JsonView, 191–194
@ResponseBody, 194–195

JSR-303 standard
Maven project, 176
objective, 174
Reservation domain class, 175
specification, 174
validator annotations, 175

JUnit, 693–694

��������� K
KeyGenerator, custom, 805, 807

��������� L
Lazy initialization, 57
LiteDeviceDelegatingViewResolver, 354, 357
Login, web application

anonymous login, 309
form-based login, 305–307
HTTP Basic authentication, 303–304
logout service, 308
remember-me support, 303, 309
security configuration, 303

��������� M
Managed beans (MBeans), 541
Map exceptions to views

configuration, 148
@ControllerAdvice, 149
defaultErrorView property, 148
error.jsp, 148
@ExceptionHandler, 149

■ INDEX

826

exceptionMappings property, 148
InternalResourceViewResolver, 148
reservation service, 147–148
resolver beans, 147

MappingJackson2JsonView, 191–194
Map Requests

file extension, 133
handler method, 129–130, 132
HTTP requests, 132–133
memberLogic, 132
request method to annotation mapping, 132
URL wildcards, 130

MarshallingView, 184–187
Maven command-line interface, 20–22
Media type, 146
Message-Driven POJO (MDP)

ConnectionFactory, 658–659
error handling, 661
messageDrivenChannelAdapter, 659
messageProcessor, 659–660

MessageHeaders, 662–665
Model-View-Controller (MVC)

views, 117
web application, 117, 119–129

MongoDB
annotations, mapping

information, 492–493
connection, 484–488
download, 484
reactive repository, creation, 495–496
setup and configuration, 488–489
Spring Data MongoDB repository, 494
template, 489–492

��������� N
Neo4j

download and run, 503
@EnableNeo4jRepositories annotations, 519, 520
@EnableTransactionManagement, 516
Hello World program, 504
implementation, 508
map objects, Neo4j OGM, 511–514
Neo4jStarwarsRepository class, 517
Neo4jTransactionManager implementation, 516
nodes, 505–506
Planet and Character classes, 507
Planet object, 509
PlanetRepository and CharacterRepository

classes, 518
relationship diagram, 506
remote connection, 520–521
Spring configuration class, 514–516
StarwarsRepository, 518–519
StarwarsRepository interface, 508

��������� O
Object-relational mapping (ORM), 361, 368
@Order annotation, 83–84
ORM framework

DAO, 398
entity manager factory, 397–398
entity/persistent class, 389
Hibernate XML mappings, 391–394
JPA annotations, 394–395
JPA engine, 396
metadata mapping, 390
resource factory configure

Hibernate, 399–403
JPA, 403–406

��������� P
Partitioning, 472
@PathVariable annotation, 189–190
PDF files

AbstractPdfView class, 179–180
create Date object, 178
create resolvers, 181
date parameter, 177
HTTP GET handler method, 178
report generation function, 177
resolver, 177–178
view class, 177
XLS file, 181

Permissions, 332
Plain Old Java Objects (POJOs)

ApplicationEvent, 112
ApplicationListener, 115
autowiring

@autowired annotation, 38–39
constructors, 40–41
@inject annotation, 45–46
@Primary annotation, 41–43
@Qualifier annotation, 41–43
@Resource annotation, 44
@Scope annotation, 46–49

aware interfaces, 71–72
@Component, 104
@Configurable, 104
default profiles, 71
initialization and destruction

@DependsOn, 60
@Lazy, 59–60
@Bean, 57–58
@PostConstruct and @PreDestroy, 58–59

instance factory method, 65–66
loading profiles, 71
post-processors, 61–63
@Profile annotation, 69–70
publish events, 113

Map exceptions to views (cont.)

■ INDEX

827

@Required annotation, 63
references

Java config class, 37–38
multiple locations, 43–44

setFileName() method, 73
Spring’s factory bean, 67–68
static factory method, 64–65
@Value, 104

Platform as service, 775
PlatformTransactionManager, 423
@Pointcut annotation, 85–86
POJOs configuration

@Component, 31–33
constructor, 34–37
IoC container, 30

beans, 34
filters, 33–34
getBean(), 30–31

Java config class, 29
SequenceGenerator class, 28, 29

@PostAuthorize annotation, 329
@PostFilter annotation, 329
postHandle() method, 223
postProcessAfterInitialization() method, 63
postProcessBeforeInitialization() method, 63
@PreAuthorize annotation, 329
@PreFilter annotation, 329
preHandle() method, 223
@Profile annotation, 69–70
@Profile annotation, 70
Programmatic transaction management, 415

transaction manager API, 424–426
transaction template, 427–429

Publish events, 113

��������� Q
Quartz, 447

��������� R
RDBMS Driver, 751
Reactive handler function, 264–266
Reactive REST services

consume JSON, 258
publish JSON, 257

Redis
configuration, 501–502
connection, 498
downloading and installing, 497
RedisSerializer implementations, 502
RedisTemplate, 501–502
store objects, 499–500

RedisCacheManager, 819
Remote Method Invocation (RMI), 580
Render views, 354–357

@Required annotation, 63
Resolve views

beans, 141
configuration, 142
multiple resolvers, 144
redirect prefix, 144
resource bundle, 143
XML configuration file, 142

ResourceBundleMessageSource, 54, 56
@ResponseBody annotation, 188–189, 194–195
RestMemberController, 194
REST service

getForObject method, 198
RestTemplate class, 196–197
retrieve data

mapped object, 199
parameterized URL, 199

WADL, 197
RestTemplate Class Methods, 197
Rich Internet applications (RIAs), 117
Rollback transaction attribute, 444
Routers, 678
RowCallbackHandler, 374–375
RSS and Atom feeds

AtomFeedView class, 203–204
buildFeedEntries, 205
buildFeedMetadata, 204
characteristics, 201
feed’s structure, 200–201
RssFeedView class, 206–207
Spring MVC controller, 201–202, 205–208

��������� S
Salted Secure Hash Algorithm (SSHA), 317
@Scope annotation, 46–49
@Secured annotation, 327
Security framework

accesscontrol (see Access control decisions)
authenticate users

cache user details, 317–319
encrypt passwords, 314–315
in-memory definitions, 311
LDAP repository, 315–317
repository, 310
SQL statements, 311–313

authentication, 297
authorization, 297
CSFR protection, 302–303
domain objectlevel (see Access control list

(ACL))
login page, 300–302
login, web application

anonymous login, 309
form-based login, 305–307
HTTP Basic authentication, 303–304

■ INDEX

828

logout service, 308
remember-me support, 303, 309
security configuration, 303

secure method invocations, 327–330
URL access, 298–300
in views, 330–331
WebFlux application, 340–343

Security identity (SID), 332
SequenceGenerator class, 28, 29
Servlet filters, 133
setActiveProfiles() method, 71
setDefaultProfiles() method, 71
SitePreference, 352–353
SitePreferenceHandlerInterceptor, 353
Site switching, 358–360
Software as service, 775
Splitter, 674–675
Spring and TaskExecutors

API, 106
creation, 110
ExecutorService, 106
get(), 106
runnable, 106–109
SimpleAsyncTaskExecutor, 111
submit(), 108
SyncTaskExecutor, 111
ThreadPoolTaskExecutor, 111

Spring Batch, 448, 679–682
control step execution

concurrency, 471–472
conditional steps with decisions, 474
conditional steps with statuses, 472–473
problem, 470
sequential steps, 471
solution, 470
working, 471

data, reading and writing
input, 457–458
ItemReader and ItemWriter

configuration, 459–460
job configuration, 454–457
output, 458–459
problem, 453
solution, 453
working, 453–454

infrastructure
problem, 449
solution, 449
working, 449–453

ItemReader and ItemWriter
problem, 460
solution, 460
working, 460–462

job, launching

problem, 474
run from command line, 477
run on schedule, 477–479
solution, 475
from web application, 476–477
working, 475–476

job, parameterizing
accessing parameters, 480–481
parameters, 480
problem, 479
solution, 479

process input before writing
chain processors, 465
problem, 463
solution, 463
working, 463–464

retry
AOP-based, 470
problem, 467
solution, 467
template, 468–470
working, 467

rollbacks, 466–467
runtime metadata model, 448
transactions, 465–466

problem, 465
solution, 465

Spring Data JPA, 412–413
Spring Integration, 448, 654
Spring messaging, 615

AMQP messages
message listeners, 644–646
problem, 639
solution, 639
with Spring’s template support, 642–644
without Spring’s template support, 639–642

Apache Kafka
convert objects to payloads, 652–654
MessageConverter, 651–652
message listener, 649–651
problem, 646
solution, 646
with Spring’s template support, 646–649

cache and pool JMS connections
problem, 638
solution, 638
working, 638–639

converting JMS messages
problem, 627
solution, 627
working, 627–629

managing JMS transactions
problem, 630
solution, 630
working, 630–631

Security framework (cont.)

■ INDEX

829

message-driven POJOs
converting JMS messages, 635–637
managing JMS transactions, 637–638
message listeners, 632–635
problem, 631
solution, 631

send and receive JMS messages
default destination, 625–626
JmsGatewaySupport class, extending,

626–627
problem, 615
solution, 616
with Spring’s support, 621–625
without Spring’s support, 617–620, 624
working, 616

Spring mobile
detectdevices (see Device detection)
render views, 354–358
SitePreference, 352–353
site switching, 358–359

Springs Expression Language (SpEL), 322
Spring Social

configuration, 267–268
Facebook access

FacebookConnectionFactory, 276–277
FacebookTemplate, 276–277
registration, 274
settings page, 276

JdbcUsersConnectionRepository, 284–285
modules, 268
security, 289

configuration, 289–290
@EnableWebMvcSecurity, 287
JdbcUserDetailsManager, 287
login page, 288
ProviderSignInUtils, 295
settings, 286
signing in, 290–295
username, 290

service providers
configuration, 278
ConnectController, 277–280
connector and configuration, 282
WebApplicationInitializer, 279–280

Twitter access
API key and secret, 272
configuration, 272–273
registration, 270–271
TwitterConnectionFactory, 273

Twitter API, 282–284
Spring Tool Suite (STS)

buildship STS installation, 8
executable class, defining, 7
Gradle project, 7–10
Java build tools, 3

Maven project, 3, 5
OS, 2
run configurations, 6
Spring project creation, 1
startup screen, 2

Spring WebFlux
@Controller, 233, 239
@GetMapping, 239–240
HttpHandler, 233
@PostMapping, 241
reservation services, 235–236
settings, 236
string and void, 234
Thymeleaf views, 241–242, 244

Spring Web Services (Spring-WS), 541
Staged event-driven architecture

(SEDA), 679

��������� T
Target object, 82
Testing

integration (see Integration tests)
interest calculator, 692
JUnit, 693–694
TestContext, 691
TestNG, 691, 694–696
unit (see Unit tests)

TestNG, 691, 694–696
Text messages, externalize locale-sensitive

different locales, 140
independent web page, 140
JSP file, 140–141
message source, 140
resource bundles, 140

Timeout and read-only transaction
attributes, 444–445

Toolboxes, 1
toString() method, 104
Transaction management

BookShop interface, 418
bookshop database, 420
declarative, 415
DriverManagerDataSource, 419–420
enterprise application

development, 416
implementation, 423–424
isolation

concurrent transactions, 436–439
levels, 437
READ_UNCOMMITTED and

READ_COMMITTED, 439–441
REPEATABLE_READ, 442–443
SERIALIZABLE, 443
testing, bookshop database, 439

■ INDEX

830

JdbcBookShop class, 418, 419
JDBC commit and rollback, 422
JDBC properties, application

database, 417
load-time weaving, 445–446
programmatic, 415
propagation behaviors

bean configuration file, 433
bookshop database, testing, 433
Cashier interface, 432
checkout() method, 433
REQUIRED, 434–435
REQUIRES_NEW, 435–436

properties, 416
roll back, 444
Spring IoC container, 424
timeout and read-only transaction

attributes, 444–445
@Transactional annotation, 430–431
transactional method, 431
transaction manager API, 424–426
TransactionTemplate, 427–429

Transaction’s isolation level, 437
Twitter API, 282–284

��������� U
Unit tests

dependent class, 700–701, 703–704
isolated classes, 697–698, 700
Spring MVC controller, 705–706
stub, 696

User locales
cookie, 138
HTTP request header, 137
locale resolver, 137
paramName property, 138
session attribute, 137
URLs change, 139

��������� V
Validate form data, 160

error messages, 161–162
HTTP POST handler method, 162
@InitBinder annotated

method, 162
reject() method, 161
session data, 162–163

Valid bean scopes, 47
@Value annotation, 104
View resolver, 119

��������� W
Weaving, 97
Web application

annotation-based controller class, 123
@Controller annotation, 124
court reservation system, 119–121
CourtServletContainerInitializer, 123
create JSP views, 126, 128
deployment directory, 128
dispatcher servlet, 117
DispatcherServlet instance, 122–123
front controller, 117
@GetMapping annotation, 125
handler method, 118
HTML form, 126
HTTP GET handler method, 124–125
HTTP POST requests, 126
Java EE specification, 121
Maven project, 121–122
querying reservations, 125
request, 118
@RequestMapping annotation, 123–124
valid argument types, 118
view resolver, 119
WebApplicationInitializer, 128–129
WEB-INF directory, 122

Web Application Description Language
(WADL), 197, 260

Web Client
exchange(), 262
HTTP request methods, 261
REST service, 261
retrieve data

mapped object, 263
parameterized URL, 262–263

WebSockets
configuration, 225
MessageMapping, 230–232
STOMP, 230–232
WebSocketHandler, 225–229

Wizard form controllers, multipage forms with
cancel button, 165, 167
controller handler method, 163
error message, 165
getTargetPage method, 171
handler methods, 168
HashMap, 170
HttpServletRequest object, 171
@InitBinder annotated method, 174
make() method, 164–165
makePeriodic() method, 164
next button, 165

Transaction management (cont.)

■ INDEX

831

PeriodicReservation class, 164
@PostMapping, 170
reservationCourtForm.jsp, 165
reservationPlayerForm.jsp, 167
reservationTimeForm.jsp, 166–167
validate() method, 171–172
validator class, 172

��������� X, Y, Z
XML-based REST service

getMember method, 190
MarshallingView, 184–187
@PathVariable, 189–190
@ResponseBody, 188–189

