

This book will change your life.
 That’s a strange thing to say about a computer book but, as sure as you are reading this
introduction, your life will be different by the time you fi nish the book. You will think
differently and you will approach problems differently.
 You see, your computer is not a lifeless piece of machinery. It is a dynamic tool that
interacts with your very thought processes. Whenever you use a computer it becomes,
for better or for worse, an extension of your mind. This means that, over an extended
period of time, the computer system you use changes how you think. Indeed, we might
classify systems as mentally “good” or “bad” depending on how they affect the minds of
their users. In this sense, Unix is, without a doubt, the very best computer system ever
invented (and Linux is a type of Unix).
 When you use Unix, you are not working with a machine. You are working with the
people who designed Unix. Every line and every picture you see on your monitor was put
there by a person. Every tool you use was invented by a person. Every technical term and
every concept you learn was created by a person. When you use Unix, you are interacting
with these people, just as surely as you are interacting with me as you read this page.
 Unix and Linux are wonderful because they were developed by bright, creative people
who delighted in thinking well. These people were not only very, very smart; they knew
what they were doing and they loved their work. This means that, whenever you use a
Unix or Linux system, you are forging a mental relationship with some of the smartest,
most accomplished (and satisfi ed) programmers and computer scientists who ever lived.
Such a partnership can’t help but have a positive effect on you.
 The fact is it really doesn’t matter why you want to learn Unix or Linux, or why you
picked up this book. Perhaps you love computers and you have a burning desire to learn.
Perhaps you are taking a class and this will be your textbook. Perhaps you have a job and
you are required to use Unix or Linux. It doesn’t matter.

A P E R S O N A L N O T E
F R O M H A R L E Y H A H N

83977_fm_i_xxxiv.indd i83977_fm_i_xxxiv.indd i 1/9/2008 12:51:58 PM1/9/2008 12:51:58 PM

 You are about to begin a long, complex, and very rewarding journey. In the days,
weeks, and months to come, you will encounter new ideas and build new skills, far
beyond anything you can imagine at this moment. As you do, your mind will change for
the better, your thought processes will improve, and your way of looking at the world and
at yourself will change.
 This is not your average computer book. (I’m sure you realize that by now.) Aside
from a large amount of technical material, there are hints, jokes and a lot of plain-spoken
advice. I did the very best I could to show what you really need to know. This is not a
computer manual. This is not a compendium of impersonal details. This is one person
(me) talking to another person (you).
 I will make you a promise. As you teach yourself Unix, I will be with you, every step of
the way. What you are holding in your hand is my guide to learning Unix and Linux, and
now it is yours.
 Are you ready?
 Good. Turn to page 1 and start reading.

83977_fm_i_xxxiv.indd ii83977_fm_i_xxxiv.indd ii 1/9/2008 12:51:59 PM1/9/2008 12:51:59 PM

Harley Hahn

G U I D E T O

Unix and Linux

83977_fm_i_xxxiv.indd iii83977_fm_i_xxxiv.indd iii 1/9/2008 12:51:59 PM1/9/2008 12:51:59 PM

HARLEY HAHN’S GUIDE TO UNIX AND LINUX

Published by McGraw-Hill, a business unit of The McGraw-Hill Companies, Inc., 1221 Avenue of the Americas,
New York, NY 10020. Copyright 2009 by Harley Hahn. All rights reserved. No part of this publication may be
reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the
prior written consent of The McGraw-Hill Companies, Inc., including, but not limited to, in any network or
other electronic storage or transmission, or broadcast for distance learning.

Some ancillaries, including electronic and print components, may not be available to customers outside the
United States.

The name “Harley Hahn” is a registered trademark of Harley Hahn.

This book is printed on acid-free paper.

1 2 3 4 5 6 7 8 9 0 DOC/DOC 0 9 8

ISBN 978-0-07-128397-7
MHID 0-07-128397-8

www.mhhe.com

hah83977_fm_i_xxxiv.indd ivhah83977_fm_i_xxxiv.indd iv 1/11/2008 10:33:31 AM1/11/2008 10:33:31 AM

http://www.mhhe.com

Harley Hahn is a writer, computer expert, philosopher, humorist, artist and musician. In
all, he has written 32 books, which have sold more than 2 million copies. This is his 7th
Unix book.
 The book Harley Hahn’s Internet Yellow Pages was the fi rst Internet book in history to
sell more than 1,000,000 copies. Two of his other books, Harley Hahn’s Internet Insecurity
and Harley Hahn’s Internet Advisor have been nominated for a Pulitzer Prize. These
books, along with others, have made Hahn the best-selling Internet author of all time.
 Hahn has written numerous articles, essays and stories on a wide variety of topics,
including romance, philosophy, economics, culture, medicine and money. Much of his
writing is available on his Web site www.harley.com.
 Hahn’s work — including a complete set of his books — is archived by the Special
Collections Department of the library at the University of California at Santa Barbara.
 Hahn has a degree in Mathematics and Computer Science from the University of
Waterloo (Canada), and a graduate degree in Computer Science from the University of
California at San Diego. He also studied medicine at the University of Toronto Medical
School. Hahn has been the recipient of a number of honors and awards, including a
National Research Council (Canada) post-graduate scholarship and the 1974 George
Forsythe Award from the ACM (Association for Computing Machinery).
 Hahn enjoys writing computer books, because “I get to sleep in, and I like telling
people what to do.”

A B O U T T H E A U T H O R

83977_fm_i_xxxiv.indd v83977_fm_i_xxxiv.indd v 1/9/2008 12:51:59 PM1/9/2008 12:51:59 PM

http://www.harley.com

To Linda, for patience and encouragement.

83977_fm_i_xxxiv.indd vi83977_fm_i_xxxiv.indd vi 1/9/2008 12:51:59 PM1/9/2008 12:51:59 PM

viiList of Chapters and Appendixes

L I S T O F C H A P T E R S
A N D A P P E N D I X E S

CHAPTER 1: Introduction to Unix 1
CHAPTER 2: What Is Unix? What is Linux? 9
CHAPTER 3: The Unix Connection 37
CHAPTER 4: Starting to Use Unix 55
CHAPTER 5: GUIs: Graphical User Interfaces 73
CHAPTER 6: The Unix Work Environment 93
CHAPTER 7: Using the Keyboard With Unix 131
CHAPTER 8: Programs to Use Right Away 161
CHAPTER 9: Documentation: The Unix Manual and Info . . . 189
CHAPTER 10: Command Syntax . 223
CHAPTER 11: The Shell . 239
CHAPTER 12: Using the Shell: Variables and Options 255
CHAPTER 13: Using the Shell: Commands
 and Customization 277
CHAPTER 14: Using the Shell: Initialization Files 327
CHAPTER 15: Standard I/O, Redirection, and Pipes 345
CHAPTER 16: Filters: Introduction and Basic Operations . . . 373
CHAPTER 17: Filters: Comparing and Extracting 395
CHAPTER 18: Filters: Counting and Formatting 421
CHAPTER 19: Filters: Selecting, Sorting, Combining,
 and Changing . 447
CHAPTER 20: Regular Expressions 497
CHAPTER 21: Displaying Files . 521
CHAPTER 22: The vi Text Editor 559
CHAPTER 23: The Unix Filesystem 627
CHAPTER 24: Working With Directories 659
CHAPTER 25: Working With Files 715
CHAPTER 26: Processes and Job Control 767

83977_fm_i_xxxiv.indd vii83977_fm_i_xxxiv.indd vii 1/9/2008 12:51:59 PM1/9/2008 12:51:59 PM

viii

APPENDIX A Summary of Unix Commands Covered in This Book . . 817

APPENDIX B Summary of Unix Commands by Category 821

APPENDIX C Summary of vi Commands 827

APPENDIX D The ASCII Code . 833

APPENDIX E What to Do If You Forget the Root Password 838

APPENDIX F Time Zones and 24-Hour Time 841

APPENDIX G Shell Options and Shell Variables 846

GLOSSARY . 851

QUICK INDEX FOR THE VI TEXT EDITOR 891

GENERAL INDEX . 895

QUICK INDEX OF UNIX COMMANDS Inside back cover

Harley Hahn’s Guide to Unix and Linux

83977_fm_i_xxxiv.indd viii83977_fm_i_xxxiv.indd viii 1/9/2008 12:51:59 PM1/9/2008 12:51:59 PM

ix

TA B L E O F C O N T E N T S

Table of Contents

 List of Figures . xxii
 A Note to Teachers . .xxvi
 Acknowledgments . xxx
 How This Book Was Developed . xxxiv

CHAPTER 1: Introduction to Unix 1
Why Use Unix? .2
The Unix Language .3
Hints for Learning Unix .4
People Who Don’t Know They Are Using Unix4
People Who Do Know They Are Using Unix 5
Getting the Most from This Book .5
What I Assume in This Book . .6
What I Do Not Assume in This Book 6
How to Use This Book .6

CHAPTER 2: What Is Unix? What is Linux? 9
What Is an Operating System? .9
What Is the Kernel? . 11
Unix = Kernel + Utilities . 12
“Unix” Used to Be a Specifi c Name 13
“Unix” Is Now a Generic Name . 14
The Free Software Foundation . 14
Excerpts from the GNU Manifesto 16
The GPL and Open Source Software 18
Unix in the 1970s: From Bell Labs to Berkeley 19
Unix in the 1980s: BSD and System V 20
Unix in 1991: Waiting for... . 22
...Mr. Right, Linus Torvalds . 24
Linux Distributions . 28
BSD Distributions . 29
What Type of Unix Should You Use? 30
How Do You Get Linux or FreeBSD? 32
What Is Unix? What Is Linux? . 35

83977_fm_i_xxxiv.indd ix83977_fm_i_xxxiv.indd ix 1/9/2008 12:51:59 PM1/9/2008 12:51:59 PM

x Harley Hahn’s Guide to Unix and Linux

CHAPTER 3: The Unix Connection 37
Humans, Machines and Aliens . 37
In the Olden Days, Computers Were Expensive 38
Host and Terminals . 41
Terminal Rooms and Terminal Servers 43
The Console . 45
The Unix Connection . 46
Hosts Without Consoles . 48
The Client/Server Relationship . 49
What Happens When You Press a Key? 50
Character Terminals and Graphics Terminals 52
The Most Common Types of Terminals 53

CHAPTER 4: Starting to Use Unix55
The System Administrator . 55
Userids and Passwords . 56
Logging In (Starting Work with Unix) 57
What Happens After You Log In? 59
Getting Down to Work: The Shell Prompt 61
Logging Out (Stopping Work with Unix): logout, exit, login . 62
Upper- and Lowercase . 63
A Sample Session with Unix . 64
Changing Your Password: passwd 66
Choosing a Password . 67
Checking If Someone Has Been Using
 Your Unix Account: last. . 69
Userids and Users . 70
The Superuser Userid: root . 70
Having Fun While Practicing Safe Computing 71

CHAPTER 5: GUIs: Graphical User Interfaces73
What is a GUI? . 73
X Window . 75
Who Is in Charge of X Window? . 77
Layers of Abstraction . 78
The Window Manager . 78
The Desktop Environment . 79
Layers of Abstraction: Revisited . 81
How the Unix Companies Blew It 81
KDE and Gnome . 82
CDE and Total Cost of Ownership 85
Choosing a Desktop Environment 87
The Grandmother Machine . 90

83977_fm_i_xxxiv.indd x83977_fm_i_xxxiv.indd x 1/9/2008 12:52:00 PM1/9/2008 12:52:00 PM

xi

CHAPTER 6: The Unix Work Environment 93
Doing More Than One Thing at a Time: Part I 93
The GUI and the CLI . 96
Logging In and Logging Out with a GUI 97
Runlevels . 98
Does Microsoft Windows Have Runlevels? 100
Learning to Use a GUI . 101
Of Mice and Menus . 102
Resizing, Minimizing, Maximizing and Closing Windows 104
Controlling the Focus: Task Switching 107
Multiple Desktops / Workspaces 108
Terminal Windows . 110
Virtual Consoles . 113
The One and Only Console . 116
Selecting and Inserting . 116
Copying and Pasting . 117
Working as Superuser: su . 118
Entering a Single Command as Superuser: sudo 121
Confi guration Files . 122
Looking Inside a Confi guration File 124
Shutting Down and Rebooting: init, reboot, shutdown . . 125
What Happens When the System Starts or Stops? dmesg 126
Doing More Than One Thing at a Time: Part II 127

CHAPTER 7: Using the Keyboard With Unix 131
The First Unix Terminals . 131
Teletypes and the Unix Culture . 133
Termcap, Terminfo and curses 134
How Does Unix Know What Type of Terminal You Are Using? . . 137
The Modifi er Keys; The <Ctrl> Key 138
The Unix Keyboard Signals . 139
Signals to Use While Typing: erase, werase, kill 140
The Strangeness of <Backspace> and <Delete> 142
The Case of the Mysterious ^H . 142
Stopping a Program: intr . 145
Another Way to Stop a Program: quit 146
Pausing the Display: stop, start 147
The End of File Signal: eof . 148
The Shell and the eof Signal . 149
Bash: Trapping the eof Signal . 149
Korn Shell: Trapping the eof Signal 150
C-Shell: Trapping the eof Signal 150
Displaying Key Mappings: stty -a 151

Table of Contents

83977_fm_i_xxxiv.indd xi83977_fm_i_xxxiv.indd xi 1/9/2008 12:52:00 PM1/9/2008 12:52:00 PM

xii Harley Hahn’s Guide to Unix and Linux

Changing Key Mappings: stty 151
Command Line Editing . 153
RETURN AnD LINEFEED . 155
The Importance oF NEWLINE . 156
An Important Use for ^J: stty sane, reset 157
The Fable of the Programmer and the Princess 158

CHAPTER 8: Programs to Use Right Away 161
Finding a Program on Your System: which,type, whence . . . 158
How Do You Stop a Program? . 164
Displaying the Time and Date: date 164
Displaying a Calendar: cal . 165
The Unix Reminder Service: calendar 167
Information About Your System: uptime, hostname, uname . 168
Information About You: whoami, quota 169
Information About Other Users: users, who, w 170
Locking Your Terminal Temporarily: lock 172
Asking Unix to Remind You When to Leave: leave 174
A Built-In Calculator: bc . 175
Using bc for Calculations . 176
Using Variables With bc . 179
Using bc with Different Bases . 180
Reverse Polish Notation . 182
The Stack-Based Calculator: dc 184

CHAPTER 9: Documentation: The Unix Manual and Info . . . 189
The Unix Tradition of Teaching Yourself 189
RTFM . 190
What Is the Unix Manual? man 192
Man Pages . 193
Displaying Man Pages . 193
Two Useful Man Page Techniques 196
Alternatives to man: xman and the Web 198
How the Unix Manual Is Organized 199
Specifying the Section Number When Using the man Command . 202
How Man Pages Are Referenced 203
The Format of a Manual Page . 204
A Quick Way to Find Out What a Command Does: whatis . . . 208
Searching For a Command: apropos 209
Foo, Bar and Foobar . 210
The Info System . 211
Info and Trees . 213
Starting Info: info . 214
Learning About Info . 215

83977_fm_i_xxxiv.indd xii83977_fm_i_xxxiv.indd xii 1/9/2008 12:52:00 PM1/9/2008 12:52:00 PM

xiii

Reading an Info File . 216
Jumping From One Node to Another 219

CHAPTER 10: Command Syntax . 223
Entering More Than One Command at a Time 223
What Happens When You Enter a Command? 224
Command Syntax . 225
Options . 226
Dash Options and Dash-Dash Options 227
Arguments . 229
Whitespace . 230
One or More; Zero or More . 231
The Formal Description of a Command: Syntax 232
Learning Command Syntax From the Unix Manual 235
How Can You Learn So Many Options? 235

CHAPTER 11: The Shell . 239
What is a Shell? . 239
The Bourne Shell Family: sh, ksh, bash 240
The C-Shell Family: csh, tcsh 244
Which Shell Should You Use? . 247
Changing Your Shell Temporarily 249
The Password File: Changing Your Login Shell: chsh 251

CHAPTER 12: Using the Shell: Variables and Options 255
Interactive and Non-interactive Shells 256
The Environment, Processes and Variables 257
Environment Variables and Shell Variables 259
Displaying Environment Variables: env, printenv 262
Displaying Shell Variables: set 264
Displaying and Using the Value of a Variable: echo, print . . . 264
Bourne Shell Family: Using Variables: export, unset 267
Shell Options: set -o, set +o 271
Displaying Shell Options . 273
Machine-readable, Human-readable 274

CHAPTER 13: Using the Shell: Commands
 and Customization 277

Metacharacters . 277
Quoting and Escaping . 279
Strong and Weak Quotes . 283
Commands That Are Built into the Shell: type 284
Learning About Builtin Commands 286
External Commands and the Search Path 287

Table of Contents

83977_fm_i_xxxiv.indd xiii83977_fm_i_xxxiv.indd xiii 1/9/2008 12:52:00 PM1/9/2008 12:52:00 PM

xiv Harley Hahn’s Guide to Unix and Linux

Modifying Your Search Path . 289
How a Hacker Can Use the Search Path 291
The Shell Prompt . 292
Modifying the Shell Prompt . 293
Using the Value of a Variable . 294
Which Quotes to Use When Quoting Variables 296
Special Codes That Use an Escape Character 297
Command Substitution . 299
Typing Commands and Making Changes 301
The History List: fc, history 302
History List: Setting the Size . 305
History List Example: Avoid Deleting the Wrong Files 306
Displaying Event Number & Working Directory in
 Your Shell Prompt . 307
Autocompletion . 309
Autocompletion: Beyond the Basics 312
Using Autocompletion for Fun and Profi t 314
Command Line Editing: bindkey 314
Aliases: alias, unalias . 316
Suspending an Alias Temporarily 318
Alias Example: Avoid Deleting the Wrong Files 319
Alias Example: Reusing Commands From the History List 320
Alias Example: Displaying Name of Working Directory
 in Shell Prompt . 322

CHAPTER 14: Using the Shell: Initialization Files 327
Initialization Files and Logout Files 327
Names of Initialization and Logout Files 329
Dotfi les and rc Files . 330
Using a Simple Text Editor . 331
Login Shells and Non-Login Shells. 332
When Are Initialization Files Executed? 333
A Quick History of Shell Initialization Files 334
What to Put in Your Initialization Files 335
Displaying, Creating and Editing Your Initialization Files 335
Comments in Shell Scripts . 336
Bourne Shell Family: Sample Initialization Files 337
C-Shell Family: Sample Initialization Files 341

CHAPTER 15: Standard I/O, Redirection, and Pipes 345
The Unix Philosophy . 345
The New Unix Philosophy . 346
Standard Input, Standard Output and Standard Error 348
Redirecting Standard Output . 349

83977_fm_i_xxxiv.indd xiv83977_fm_i_xxxiv.indd xiv 1/9/2008 12:52:00 PM1/9/2008 12:52:00 PM

xv

Preventing Files From Being Replaced or Created by Redirection . 350
Redirecting Standard Input . 352
File Descriptors; Redirecting Standard Error 353
With the Bourne Shell Family . 353
Subshells . 355
Redirecting Standard Error With the C-Shell Family 358
Combining Standard Output and Standard Error 359
Throwing Away Output . 360
Redirection: Summaries and Experimenting 362
Pipelines . 365
Splitting a Pipeline: tee . 367
The Importance of Pipelines . 369
Conditional Execution . 370

CHAPTER 16: Filters: Introduction and Basic Operations . . . 373
Variations of Commands and Options 373
Filters . 374
Should You Create Your Own Filters? 375
The Problem Solving Process . 376
The Simplest Possible Filter: cat 377
Increasing the Power of Filters . 380
A List of the Most Useful Filters 382
Combining Files: cat . 382
Splitting Files: split. 385
Combining Files While Reversing Lines: tac 388
Reversing the Order of Characters: rev 389
Select Lines From the Beginning or End of Data: head, tail . . 391
Deleting Columns of Data: colrm 392

CHAPTER 17: Filters: Comparing and Extracting 395
Comparing Files . 395
Comparing Any Two Files: cmp 396
Comparing Sorted Text Files: comm 397
Comparing Unsorted Text Files: diff 399
Options to Use With diff . 403
Output Formats When Comparing Files: diff, sdiff 404
Diffs and Patches . 408
Extracting Columns of Data: cut 410
Combining Columns of Data: paste 415

CHAPTER 18: Filters: Counting and Formatting 421
Creating line numbers: nl . 421
Counting Lines, Words and Characters: wc 424
How Unix Uses Tabs . 427

Table of Contents

83977_fm_i_xxxiv.indd xv83977_fm_i_xxxiv.indd xv 1/9/2008 12:52:00 PM1/9/2008 12:52:00 PM

xvi Harley Hahn’s Guide to Unix and Linux

Visualizing Tabs and Spaces . 429
Changing Tabs to Spaces: expand 430
Changing Spaces to Tabs: unexpand 432
Formatting lines: fold . 433
The 80-Character Line . 435
Formatting Paragraphs: fmt . 436
The Olden Days of Printing . 439
Formatting Text Into Pages: pr 440
Formatting Text Into Columns: pr 443

CHAPTER 19: Filters: Selecting, Sorting, Combining,
 and Changing . 447

Selecting Lines That Contain a Specifi c Pattern: grep 447
The Most Important grep Options 450
Variations of grep: fgrep, egrep 454
Selecting Lines Beginning With a Specifi c Pattern: look 455
When Do You Use look and When Do You Use grep? 457
Finding All the Words That Begin With a Specifi c Pattern: look . 458
Sorting Data: sort . 459
Controlling the Order in Which Data Is Sorted: sort -dfn . . . 461
Checking If Data Is Sorted: sort -c 463
The ASCII Code; Collating Sequences 464
Locales and Collating Sequences 466
Finding Duplicate Lines: uniq 471
Merging Sorted Data From Two Files: join 473
Create a Total Ordering From Partial Orderings: tsort 478
Translating Characters: tr . 482
Translating Unprintable Characters 484
Translating Characters: Advanced Topics 486
Non-interactive Text Editing: sed 488
Using sed for Substitutions . 490
Telling sed to Operate Only on Specifi c Lines 492
Using Very Long sed Commands 493

CHAPTER 20: Regular Expressions 497
Introducing Regular Expressions 497
The Origin of Regular Expressions 498
Basic and Extended Regular Expressions 500
Matching Lines and Words . 502
Matching Characters; Character Classes 505
Predefi ned Character Classes; Ranges 506
Locales and Collating Sequences: locale; The ASCII Code . . . 507
Using Ranges and Predefi ned Character Classes 510

83977_fm_i_xxxiv.indd xvi83977_fm_i_xxxiv.indd xvi 1/9/2008 12:52:00 PM1/9/2008 12:52:00 PM

xvii

Repetition Operators . 511
How to Understand a Complex Regular Expression 514
Solving Three Interesting Puzzles; The Dictionary File. 514

CHAPTER 21: Displaying Files . 521
Survey of Programs Used to Display Files 522
Introduction to less: Starting, Stopping, Help 524
The Story of less and more . 526
Using less . 527
Using less to Search Within a File 529
Options to Use With less . 531
When to Use less and When to Use cat 534
Using Environment Variables to Customize Your Pager 535
Displaying Multiple Files With less 536
Displaying a File Using more . 539
Displaying the Beginning of a File: head 541
Displaying the End of a File: tail 541
Watching the End of a Growing File: tail -f 542
Binary, Octal and Hexadecimal . 544
Reading and Writing Binary, Octal and Hexadecimal 549
Why We Use Hexadecimal Rather Than Octal 550
Displaying Binary Files: hexdump, od 551
Why Does So Much Computer Terminology Come
 From Mathematics? . 556

CHAPTER 22: The vi Text Editor 559
Why Is vi So Important? . 560
A Quick History of vi . 560
Vim: an Alternative to vi . 564
Starting vi . 565
Starting Vim: vim . 566
Command Mode and Input Mode 568
Knowing What Mode You Are In 570
Starting vi as a Read-Only Editor: view, vi -R 571
Recovering Data After a System Failure 571
Stopping vi . 572
How vi Uses the Screen . 573
Using vi and ex Commands . 574
A Strategy for Learning vi Commands 575
Creating a Practice File . 577
Moving the Cursor . 577
Moving Through the Editing Buffer 581
Jumping to a Previous Location 582

Table of Contents

83977_fm_i_xxxiv.indd xvii83977_fm_i_xxxiv.indd xvii 1/9/2008 12:52:00 PM1/9/2008 12:52:00 PM

xviii Harley Hahn’s Guide to Unix and Linux

Searching for a Pattern . 584
Using Line Numbers . 586
Inserting Text . 587
Changing Text . 590
Replacing Text . 592
Deleting Text . 594
Undoing or Repeating a Change 597
Recovering Deletions . 598
Moving Text . 599
Copying Text . 601
Changing the Case of Letters . 602
Setting Options . 603
Displaying Options . 605
Breaking Lines Automatically As You Type 606
Breaking and Joining Lines . 607
Copying and Moving Lines . 608
Entering Shell Commands . 608
Inserting Data From a File Into the Editing Buffer 610
Inserting the Output of a Shell Command Into
 the Editing Buffer . 610
Using a Program to Process Data: fmt 612
Writing Data to a File . 613
Changing to a New File . 615
Using Abbreviations . 615
Macros . 616
Initialization Files: .exrc, .vimrc 619
Using Two Initialization Files . 621
Learning to Use Vim . 621
It’s Always Something . 622

CHAPTER 23: The Unix Filesystem 627
What Is a File? . 627
Types of Files. 628
Directories and Subdirectories . 630
Special Files . 631
Special Files for Hardware . 632
Special Files for Terminals: tty 632
Special Files for Pseudo-Devices 633
Named Pipes: mkfifo . 635
Proc Files . 637
The Tree-Structured Filesystem; The Filesystem
 Hierarchy Standard . 638
The Root Directory; Subdirectories 640

83977_fm_i_xxxiv.indd xviii83977_fm_i_xxxiv.indd xviii 1/9/2008 12:52:01 PM1/9/2008 12:52:01 PM

xix

Mounting a Filesystem: mount, umount 642
A Tour of the Root Directory . 643
A Tour of the /usr Directory 647
Why Is There More Than One Directory for Programs? 649
Home Directories . 650
The Virtual File System . 653

CHAPTER 24: Working With Directories 659
Pathnames and Your Working Directory 659
Absolute and Relative Pathnames 661
Three Handy Pathname Abbreviations: .. . ~ 663
Moving Around the Directory Tree: cd, pwd 666
Removing a Directory: rmdir . 672
Using the Directory Stack: pushd, popd, dirs 676
The Most Important Program of All: ls 682
Listing the Contents of a Directory: ls -CrR1 683
Collating Sequences, Locales and ls 686
Checking File Types, Part I: ls -F 687
Checking File Types, Part II: ls --color 688
Checking File Types, Part III: file 690
Keeping Track of Your Disk Space Usage:
 ls -hs, du, df, quota . 691
How Big Is a File? Blocks and Allocation Units: dumpe2fs . . . 695
Globbing With Wildcards . 697
Dot Files (Hidden Files): ls -a 702
Long Directory Listings: ls -dhltu 703
Useful Aliases for Using ls . 707
Displaying a Directory Tree: tree 708
File Managers . 710

CHAPTER 25: Working With Files 715
Creating a File: touch . 715
Naming a File . 717
Copying a File: cp . 720
Copying Files to a Different Directory: cp 721
Copying a Directory to Another Directory: cp -r 722
Moving a File: mv . 723
Renaming a File or Directory: mv 723
Deleting a File: rm . 724
How to Keep From Deleting the Wrong Files: rm -if 725
Deleting an Entire Directory Tree: rm -r 727
Is It Possible to Restore a File That Has Been Deleted? 729
File Permissions . 729

Table of Contents

83977_fm_i_xxxiv.indd xix83977_fm_i_xxxiv.indd xix 1/9/2008 12:52:01 PM1/9/2008 12:52:01 PM

xx Harley Hahn’s Guide to Unix and Linux

Setuid . 731
How Unix Maintains File Permissions: id, groups 732
Displaying File Permissions: ls -l 734
File Modes . 735
Changing File Permissions: chmod 737
How Unix Assigns Permissions to a New File: umask 738
Wiping Out the Contents of a File: shred 739
The Idea of a Link: stat, ls -i 740
Multiple Links to the Same File 741
Creating a New Link: ln . 742
How the Basic File Commands Work 743
Symbolic Links: ln -s . 744
Using Symbolic Links With Directories 745
Finding Files Associated With a Unix Command: whereis . . . 747
Finding Files by Searching a Database: locate 748
Finding Files by Searching a Directory Tree: find 750
The find Command: Paths . 751
The find Command: Tests . 752
The find Command: Negating a Test With the ! Operator . . . 755
The find Command: Dealing With File Permission
 Error Messages . 756
The find Command: Actions . 757
Processing Files That Have Been Found: xargs 760

CHAPTER 26: Processes and Job Control 767
How the Kernel Manages Processes 767
Forking Till You Die . 768
Orphans and Abandoned Processes 771
Distinguishing Between Parent and Child 771
The Very First Process: init . 772
Foreground and Background Processes 773
Creating a Delay: sleep . 774
Job Control . 776
Running a Job in the Background 779
Suspending a Job: fg . 780
Suspending a Shell: suspend . 782
Job Control vs. Multiple Windows 783
Displaying a List of Your Jobs: jobs 784
Moving a Job to the Foreground: fg 785
Moving a Job to the Background: bg 787
Learning to Use the ps Program 788
The ps Program: Basic Skills . 789
The ps Program: Choosing Options 793

83977_fm_i_xxxiv.indd xx83977_fm_i_xxxiv.indd xx 1/9/2008 12:52:01 PM1/9/2008 12:52:01 PM

xxi

The ps Program: States . 795
Monitoring System Processes: top, prstat 798
Displaying a Process Tree: pstree, ptree 800
Thinking About How Unix Organizes
 Processes and Files: fuser . 803
Killing a Process: kill . 804
Sending a Signal to a Process: kill 806
Setting the Priority for a Process: nice 808
Changing the Priority of an Existing Process: renice 810
Daemons . 812
The End of the Last Chapter . 814
Bourne Shell Family . 846
C-Shell Family . 848

APPENDIX A Summary of Unix Commands Covered in This Book . . 817

APPENDIX B Summary of Unix Commands by Category 821

APPENDIX C Summary of vi Commands 827

APPENDIX D The ASCII Code . 833

APPENDIX E What to Do If You Forget the Root Password 838

APPENDIX F Time Zones and 24-Hour Time 841

APPENDIX G Shell Options and Shell Variables 846

GLOSSARY . 851

QUICK INDEX FOR THE VI TEXT EDITOR 891

GENERAL INDEX . 895

QUICK INDEX OF UNIX COMMANDS Inside back cover

Table of Contents

83977_fm_i_xxxiv.indd xxi83977_fm_i_xxxiv.indd xxi 1/9/2008 12:52:01 PM1/9/2008 12:52:01 PM

xxii Harley Hahn’s Guide to Unix and Linux

L I S T O F F I G U R E S

2-1 The most important types of commercial Unix 22
2-2 Linus Torvalds . 27
2-3 The most important Linux distributions . 31
2-4 The most important BSD distributions . 32
2-5 The most important Linux live CDs . 34

3-1 Ken Thompson, Dennis Ritchie, and the PDP-11 40
3-2 Teletype ASR33 . 42
3-3 Closeup of a Teletype 33ASR . 43
3-4 Terminals in a terminal room . 44
3-5 Terminals connected to a terminal server . 45
3-6 Unix/Linux computer on a local area network 47
3-7 VT100 terminal . 53

4-1 Keyboard of the Teletype ASR33 . 60
4-2 Login messages . 61
4-3 Sample Unix Work Session . 65
4-4 Output of the who command . 70

5-1 Layers of Abstraction . 81
5-2 Matthias Ettrich, founder of the KDE project 83
5-3 KDE desktop environment . 88
5-4 Gnome desktop environment . 89

6-1 Typical Linux runlevels. . 99
6-2 Windows XP Pro: Startup options . 101
6-3 KDE window operation menu . 104
6-4 Gnome window operation menu . 105
6-5 Window controls . 106
6-6 Window controls showing the Unmaximize Button 107
6-7 Multiple terminal windows . 111
6-8 Multiple terminals for one user . 113

7-1 Keyboard of the Teletype ASR33 . 133
7-2 Keyboard signals to use while typing . 141
7-3 Magnetic core memory . 147
7-4 Summary of important keyboard signals . 151

83977_fm_i_xxxiv.indd xxii83977_fm_i_xxxiv.indd xxii 1/9/2008 12:52:01 PM1/9/2008 12:52:01 PM

xxiii

8-1 bc: Basic operations . 177
8-2 bc: Mathematical functions . 178
8-3 dc: The most important commands . 187

9-1 Reading a man page: Important commands 195
9-2 Displaying a man page in a terminal window 197
9-3 xman program . 200
9-4 Eight sections of the online Unix manual 200
9-5 Standard headings used in a man page . 205
9-6 Sample Page from the Unix manual . 206
9-7 Example of a tree . 207
9-8 Info: Important commands . 217
9-9 The Info tree . 218

11-1 The Unix shells . 248
11-2 The relative complexity of various shells . 248

12-1 C-Shell family: Connected shell/environment variables 261
12-2 The most important environment variables 263
12-3 C-Shell family: The most important shell variables 265
12-4 Bourne Shell Family: Summary of options for interactive shells 273

13-1 Non-alphanumeric characters used with Unix 278
13-2 Metacharacters used with the shell . 280
13-3 Number of builtin commands for various shells 285
13-4 Standard shell prompts. 292
13-5 Environment variables that are useful within a shell prompt 296
13-6 Special codes, commands, and variables to use shell prompts 298
13-7 Displaying the history list event number in your shell prompt 308
13-8 Autocomplete keys . 310
13-9 Types of autocompletion . 312

14-1 Names of the initialization and logout fi les 328
14-2 Pronouncing the names of rc fi les . 330
14-3 Bourne Shell family: Sample login fi le . 339
14-4 Bourne Shell family: Sample environment fi le 340
14-5 C-Shell family: Sample environment fi le . 341
14-6 C-Shell family: Sample login fi le . 342

15-1 Bourne Shell family: Redirection of standard I/O 363
15-2 C-Shell family: Redirection of standard I/O 364

16-1 The Most Useful Unix Filters . 383
16-2 The Many Uses of the cat Program . 384

17-1 Programs to compare, sort, and select data from fi les 396

List of Figures

83977_fm_i_xxxiv.indd xxiii83977_fm_i_xxxiv.indd xxiii 1/9/2008 12:52:01 PM1/9/2008 12:52:01 PM

xxiv Harley Hahn’s Guide to Unix and Linux

19-1 Displaying the ASCII code . 464
19-2 The order of characters in the ASCII code 466
19-3 Collating sequences for the C and en_US locales 469
19-4 Codes used by the tr program to represent control characters 485

20-1 Regular expressions: Basic matching . 498
20-2 Regular expressions: Repetition operators 499
20-3 Regular expressions: Predefi ned character classes 499
20-4 Extended and basic regular expressions . 502
20-5 Displaying the ASCII code . 508

21-1 Programs to display fi les . 524
21-2 less: Summary of the Most Useful Commands 528
21-3 less: Commands to Use With Multiple Files 537
21-4 more: Useful Commands . 540
21-5 Decimal, Binary, Octal and Hexadecimal Equivalents 546
21-6 Octal and Binary Equivalents . 547
21-7 Hexadecimal and Binary Equivalents . 549
21-8 Conventions for Indicating Hexadecimal, Octal, and Binary Numbers . . . 550
21-9 Sample binary data displayed as hexadecimal and ASCII 552

22-1 Bill Joy and Dennis Ritchie . 561
22-2 The Lear Siegler ADM-3A terminal . 562
22-3 Vim Startup Screen . 567
22-4 Keyboard layout of the ADM-3A terminal 569
22-5 How vi Displays Empty Lines . 574
22-6 Keys to Use to Make Corrections While Using vi 575
22-7 The H, J, K and L keys on the ADM-3A terminal 578
22-8 Using regular expressions when searching with vi 585
22-9 vi Options: Switches and Variables . 605
22-10 Characters to use as vi and Vim macro names 617
22-11 vi/Vim sample initialization fi le . 620
22-12 Vim: Enhancements over standard vi . 623

23-1 An example of organizing with directories 630
23-2 The most interesting special fi les . 631
23-3 The most interesting Linux proc fi les . 638
23-4 The standard Linux fi lesystem . 639
23-5 The original Unix fi lesystem . 641
23-6 Contents of the root directory . 644
23-7 Contents of the /usr directory . 647
23-8 Directories that hold program fi les . 650
23-9 A typical home directory-based tree structure 652
23-10 The most common fi lesystems . 655

83977_fm_i_xxxiv.indd xxiv83977_fm_i_xxxiv.indd xxiv 1/9/2008 12:52:01 PM1/9/2008 12:52:01 PM

xxv

24-1 A sample directory tree. 661
24-2 Making a sample directory tree . 670
24-3 Directory stack commands . 677
24-4 Flags displayed by the ls -F command . 687
24-5 Summary of wildcards used to specify fi lenames 698
24-6 Wildcards: Predefi ned character classes . 700
24-7 Dotfi les used by the shells and by vi/Vim 703
24-8 File type indicators used by ls -l . 706
24-9 An example of a fi le manager . 711

25-1 Characters that are safe to use in fi lenames 719
25-2 Summary of fi le permissions . 730
25-3 Numeric values for fi le permission combinations 737
25-4 Contents of an inode (index node) . 741
25-5 The find program: Tests . 753
25-6 The find program: Actions . 757

26-1 Commonly used system calls . 769
26-2 Job control: Tools . 778
26-3 Job control: Specifying a job . 786
26-4 The ps program: UNIX options . 790
26-5 The ps program: BSD options . 791
26-6 The ps program: Column headings . 792
26-7 The ps program: Process state codes . 796
26-8 The top program . 799
26-9 Signals . 808
26-10 Daemons . 813

 F-1 U.S. time zones . 842
F-2 European and Indian time zones . 843
G-1 Bourne Shell family: Shell options . 847
G-2 C-Shell family: Shell options. 848
G-3 C-Shell family: Shell variables . 849

List of Figures

83977_fm_i_xxxiv.indd xxv83977_fm_i_xxxiv.indd xxv 1/9/2008 12:52:01 PM1/9/2008 12:52:01 PM

xxvi Harley Hahn’s Guide to Unix and Linux

I designed this book very carefully to help you teach Unix and Linux. My goal is to
support your teaching no matter what the length of your course, and no matter which
topics you choose to present to your class.
 To do so, I offer you a long book that covers every important topic a student needs
to master to understand and use basic Unix. I designed the book as a comprehensive
reference that can be read from beginning to end, in order. However, I also designed it
to give you maximum fl exibility. My intention is for you to look at the Table of Contents
and see what the book has to offer. Then choose which topics you want to teach directly,
and which ones you want to assign for self-study.
 This approach will work well for you, because I wrote every chapter so it can be studied
independently. Moreover, every section within a chapter is designed so that the student
can teach himself. In order to make this possible, I used several techniques.
 First, we know that, in any area of study, one of the most important things a student must
learn is the relevant terminology. There are 622 technical terms explained in this book,
and each term is explained explicitly. Moreover, no term is used until it is explained.
 To support this effort, there is an extensive glossary at the end of the book. If you
assign a chapter or section out of order, your students can simply use the glossary to
look up concepts with which they are unfamiliar. (Please encourage them to do so.) For
further help, each glossary defi nition is followed by the number of the chapter in which
the student can fi nd a detailed discussion of the topic.
 Second, as the student reads, he or she is led from one idea to the next by the careful
use of examples. Indeed, this book contains well over a thousand examples fully
integrated into the text. Most commands and ideas are coupled with sample input
and output, which allows the book to stand on its own. This makes it possible for the
student to fully understand what he is reading, even if he is not working in front of his
computer at the time.
 Third, all the examples in this book were tested on Linux, FreeBSD and Solaris systems.
In most cases, each example was also tested under four different shells: Bash, the Korn
Shell, the Tcsh, and the C-Shell. Thus, no matter which type of Unix or Linux your
students use, what they read in the book will work for them. Where there are important
exceptions, I note them. Thus, if the student is following along at his computer, what he
sees will be similar to what is printed in the book.

N O T E T O T E A C H E R S

83977_fm_i_xxxiv.indd xxvi83977_fm_i_xxxiv.indd xxvi 1/9/2008 12:52:01 PM1/9/2008 12:52:01 PM

xxvii

 Finally, as a student reads a particular section, there is no assumption that he has
read the previous section or that he will read the next section. This allows you to teach
whatever you want in whichever order makes sense to you. (For more thoughts on
choosing what to teach, see the discussion on the Unix Model Curriculum below.)
 What makes this possible is the liberal use of forward and backward references to
other parts of the book. Thus, whenever a topic depends upon ideas discussed elsewhere,
the student will fi nd it easy to take a moment and fi ll the gap in his knowledge.

UNIX AS A PART OF COMPUTER SCIENCE
One of the most interesting aspects of teaching Unix is that, unlike other areas of computer
science, there is no standard curriculum. This, in spite of the fact that Unix is a mature
area of study, having been taught for well over two decades.
 This seeming paradox is explained by the observation that, for many years, Unix was
considered to be merely a technology, rather than a part of computer science. As such,
instruction in Unix was confi ned mostly to explaining how to carry out various tasks
such as using the shell, entering commands, manipulating fi les, running programs, and
so on. For programming students, Unix was presented only as a vehicle for writing and
testing programs. To be sure, some operating systems teachers considered Unix to be
a classical system, important enough to be studied from a historical point of view. To
suggest, however, that Unix should be recognized as a legitimate topic within computer
science was, for many years, considered to be far-fetched.
 Today, however, this viewpoint is changing with the realization that the study of Unix
and Linux form an important part of the computer science curriculum. There are several
reasons for this change.
 First, the history of Unix is the best example we have of a well-designed computing
system that has evolved and survived for more than a (human) generation. There are,
indeed, many people using Unix whose fathers and mothers used Unix.
 Second, most parts of Unix were designed by computer scientists or programmers
well versed in basic computer science. Thus, a proper study of Unix affords the student
a chance to see computer science in action. This naturally leads to the study of more
mainstream topics, such as data structures and number systems. For example, see
the discussion of trees in Chapters 9 and 23; of stacks in Chapter 8 and 24; and of the
hexadecimal, octal and binary number systems in Chapter 21.
 Finally, the Unix culture was the crucible from which Linux and the Open Source
movement emerged in the 1990s. Thus, the study of Unix affords the student the
background necessary to understand, appreciate, and (perhaps) contribute to these
important international efforts.
 To promote the teaching of Unix and Linux in this way, this book is structured around
what is called the “Unix Model Curriculum”. The intention is that teachers will use this
curriculum to help plan their courses. For more information, see the section called
“Support for Teachers” below.

Note to Teachers

83977_fm_i_xxxiv.indd xxvii83977_fm_i_xxxiv.indd xxvii 1/9/2008 12:52:02 PM1/9/2008 12:52:02 PM

A UNIX-NEUTRAL APPROACH
One of the goals of this book is to ensure that students become comfortable using any type
of Unix or Linux, in their own language, anywhere in the world. This goal is promoted
in several ways.
 First, it is a core belief of mine that students should be educated generally enough as
to be able to use any major type of Unix as well as the most important shells. Specifi cally,
students should be comfortable, not only with Linux, but with System V-based Unix
(such as Solaris), and BSD-based Unix (such as FreeBSD and Mac OS X). Moreover,
students should understand the basic operation of the most important shells: Bash (the
default Linux shell); the Korn shell (the modern version of the Bourne shell); and the
Tcsh (the modern version of the C-Shell). After all, in the course of a lifetime, one will be
called upon to use a variety of Unix and Linux systems. Thus, it behooves us to consider
the student’s long-term needs, regardless of which system happens to be available at your
particular school.
 Toward this end, this book introduces Unix and Linux by using a set of basic principles
common to all Unix-like operating system. Where signifi cant differences exist, they are
taught as variations of the standard, ensuring that the student becomes comfortable with
the most important, most enduring concepts.
 A similar didactic approach is used with the shells. The student is introduced to the
idea that there are the two main families of shells, each of which is explained in terms of
the appropriate historical and technical background. The Korn shell and Bash are then
introduced as members of the Bourne Shell family, while the C-Shell and the Tcsh are
taught as being members of the C-Shell family. Because some of the details are complex,
the book has numerous tables and explanatory notes that act as a reference, should the
student need to switch from one operating system to another, or from one shell to another
(as we all must do from time to time).
 The second way in which a Unix-neutral teaching environment is developed concerns
internationalization. In the early days (1970s and 1980s), all Unix systems were derived
from either System V or BSD (see Chapter 2), both of which were U.S.-centric systems,
based on the ASCII code.
 Today, Unix and Linux systems are used widely, well beyond the United States. Indeed,
the Linux kernel and the various Linux distributions are developed by volunteers from
around the world. As a result, Unix has evolved into a true international operating
system that supports much more than U.S. English and ASCII. For the beginner, the
most signifi cant concepts related to internationalization are locales, collating sequences,
and character classes. These topics are discussed in detail as part of the treatment of
fi lters (Chapter 19) and regular expressions (Chapter 20).
 It is my feeling that establishing and maintaining a Unix-neutral approach in our
teaching leads the student to internalize the idea that Unix and Linux are global systems.
In this way, the student develops the knowledge and skills to become conversant with any
type of Unix or Linux he or she may be called upon to use.

xxviii Harley Hahn’s Guide to Unix and Linux

83977_fm_i_xxxiv.indd xxviii83977_fm_i_xxxiv.indd xxviii 1/9/2008 12:52:02 PM1/9/2008 12:52:02 PM

xxix

SUPPORT FOR TEACHERS: THE UNIX MODEL CURRICULUM
The Unix Model Curriculum is a detailed plan for teaching all the important concepts
necessary for an introductory course for Unix or Linux. The Unix Model Curriculum was
designed to help you decide which topics to teach and the order in which to teach them.
 You can learn about the Unix Model Curriculum by visiting either of the following
Web sites. First, a special site I have set up for Unix teachers and students:

www.harley.com/unix

Second, a teaching support site sponsored by McGraw-Hill Higher Education specifi cally
for teachers who use this book:

www.mhhe.com/harleyhahn

On this Web site, you will fi nd a great deal of useful material, including answers to all the
exercises, a discussion of the Unix Model Curriculum, and a variety of teaching aids.
 To access the McGraw-Hill site, you will need a password, which you can obtain
at no charge, either from your sales rep or from the McGraw-Hill Higher Education
marketing department.

Note to Teachers

83977_fm_i_xxxiv.indd xxix83977_fm_i_xxxiv.indd xxix 1/9/2008 12:52:02 PM1/9/2008 12:52:02 PM

http://www.harley.com/unix
http://www.mhhe.com/harleyhahn

xxx Harley Hahn’s Guide to Unix and Linux

A C K N O W L E D G E M E N T S

This is a large book, and if you are going to read it all, you have a lot of work ahead
of you. As such, you might be asking yourself if you should take the time to read the
acknowledgements. I think you should, for two important reasons.
 First, if you are a student, this might be the only part of the book you will not cover in
class. For a few minutes, then, you can relax and enjoy yourself, knowing that what you
read here will never appear on a test.
 Second, although the information in this section is somewhat esoteric, you never
know when it will come in handy. For example, later in this section, you will fi nd out that
Professor Sanjiv Bhatia of the University of Missouri, St. Louis, was one of my reviewers.
One day, you may be visiting St. Louis and, as you are walking around the university, you
might actually run into Professor Bhatia. “Dr. Bhatia,” you will say, “it is such a pleasure
to meet you. I hear you did an excellent job helping Harley Hahn with his book.” Upon
which, he shakes your hand and invites you to the Faculty Club for tea.
 So are you ready? Good. Let’s push on.

MY TEAM (AND WELCOME TO IT)
This book was a long time in the making and, during that time, a lot of people helped
me. I produced the book myself, which means I hired and supervised the people who did
most of the work so, to start, let me introduce the members of my team.
 First, Lydia Hearn. Lydia and I have worked together on books for a long time, and
I have found her to be a truly remarkable person. Her skill, energy and enthusiasm
is virtually boundless. For this book, Lydia did the copy editing and the page layout.
However, to call Lydia a mere “copy editor” or “layout artist” is like calling the Grand
Canyon a hole in the ground. The reason this book looks so good is that Lydia spent
many, many hours painstakingly making every single page look as good as possible. She
is a tireless perfectionist with a devotion to quality that would be diffi cult to overpraise.
And just between us, Lydia Hearn is the only person in the world I will let make changes
in what I write.
 Lydia, by the way, is an accomplished academic in her own right. She is a tenured
professor at De Anza College in Cupertino, California, where she teaches English. She has

83977_fm_i_xxxiv.indd xxx83977_fm_i_xxxiv.indd xxx 1/9/2008 12:52:02 PM1/9/2008 12:52:02 PM

xxxi

served as Academic Senate President and Dean of Language Arts, and has been recognized
by the college as a Distinguished Educator. I am lucky to have her.
 Next, my art director, Lee Anne Dollison. Lee Anne brought her many years of
publishing experience to the project. Over many months, she helped Lydia and me create
an attractive, easy-to-read book. Lee Anne was responsible for the interior design, the
front cover*, and the illustrations. She was also our resident layout expert, patiently
fi nding answers to the many technical questions that come with producing a book of
this complexity. Actually, except for one thing, Lee Anne would be perfect. She doesn’t
have a PC; she only has a Macintosh. Still, maybe it’s all for the best. If she did get a PC,
she would be perfect, and it is not easy to work with a perfect person. (Just ask any of
my editors.)
 The indexes for the book (there are more than one) were created by Cheryl Lenser.
Cheryl is a very talented, highly experienced indexer, who has indexed several of my
books. She is always my fi rst choice, and I was lucky to get her for this project.
 Next, Alan Jones, one of the smartest people I know, prepared the production budget,
and helped solve a variety of important problems.
 Finally, the snazzy photo of me and Little Weedly (my cat) on the back cover was taken
by Dan Sullivan, a professional photographer based in Santa Barbara, California.

REVIEWERS
As I wrote the book, I had help from a number of extremely smart people who read and
critiqued every chapter as I fi nished it. I had two types of reviewers: professors who teach
Unix courses and technical experts who use Unix or Linux in their work. Because there
are 26 chapters, each of these people had to go through the process 26 times, which is a lot
of work, so they all deserve a special mention. First, here are the professors:

Ron Thomson: Central Michigan University
Don Southwell: Delta College, Michigan
Damarra Mulholland: Delta College, Michigan (retired)
Eugene Eberbach: Rensselaer Polytechnic Institute, Connecticut
James Heliotis: Rochester Institute of Technology, Rochester NY
Ivan Bajic: San Diego State University, California
Sanjiv Bhatia: University of Missouri, St. Louis

The experts are:

Andrew Eberbach: IBM Software Engineer, Research Triangle Park
Susan Pierce: Santa Barbara Linux Users Group (SBLUG)
Michael Schuster: Solaris Kernel Engineer, Sun Microsystems
Tammy Cravit: Taylored Software
Stephanie Lockwood-Childs: VCT Labs; President, SBLUG

*In case you are wondering, the green design on the left side of the front cover was taken from one of my paintings. To see
more, take a look at www.harley.com/art.

Acknowledgements

83977_fm_i_xxxiv.indd xxxi83977_fm_i_xxxiv.indd xxxi 1/9/2008 12:52:02 PM1/9/2008 12:52:02 PM

http://www.harley.com/art

TABLE OF CONTENTS COMMENTATORS

This book was three years in the making. However, before I even started writing, I created
a proposed Table of Contents for the book. The next group of people contributed by
looking at my original plans for the book and sharing generously with their comments
and suggestions:

Dave Spence: BBC, England
Ronald Czik: Boston University, Massachusetts
Mark Hutchenreuther: Cal Poly, San Luis Obispo, California
John Connely: Cal Poly, San Luis Obispo, California
Seung Bae Im: California State University, Chico
Tulin Mangir: California State University, Long Beach
Jay Harris: Clemson University, South Carolina
Riccardo Pucella: Cornell University, Ithaca, New York
Nathaniel Nystrom: Cornell University, Ithaca, New York
Pamela Williams: Fayetteville State University, North Carolina
Mike Smith: Harvard University, Cambridge, Massachusetts
Ancelin Shah: Houston Community College, Texas
Don Lopez: Idaho State University, College of Technology
Weldon Hill: Idaho State University, College of Technology
Ashvin Mahajan: Iowa State University
Brian Davison: Lehigh University, Pennsylvania
Peter McDervitt: New Brunswick Community College, Canada
Gordon Goodman: Rochester Institute of Technology, Rochester NY
Ivan Bajic: San Diego State University, California
Thuy Le: San Jose State University, California
Marty Froomin: San Jose State University, California
Ka-Cheong Leung: Texas Tech University, Lubbock, Texas
Adrienne Decker: University at Buffalo, State University of NY
Charlie Shub: University of Colorado, Colorado Springs
Frank Ducrest: University of Louisiana, Lafayette
Robert Morris: University of Massachusetts Boston
Iren Valova: University of Massachusetts, Dartmouth
Fred Hosch: University of New Orleans, Louisiana

EXPERTS WHO ANSWERED QUESTIONS
As I was working on the book, there were times when I needed to contact various experts
to ask questions. Most everyone was kind enough to write me back and, in some cases,
provide valuable historical information that you will not fi nd elsewhere. In particular, I
am happy to thank:

xxxii Harley Hahn’s Guide to Unix and Linux

83977_fm_i_xxxiv.indd xxxii83977_fm_i_xxxiv.indd xxxii 1/9/2008 12:52:02 PM1/9/2008 12:52:02 PM

 Richard Stallman, one of the seminal fi gures in the world of open source software.
Stallman is the founder of the Free Software Foundation (see Chapter 2) and a highly
accomplished programmer.
 Matthias Ettrich, founder of the KDE desktop environment project (see Chapter 5.)
 John Mashey, who worked at Bell Labs in the early days of Unix. Mashey is the creator
of the Mashey/PWB shell (see Chapter 11).
 Doug McIlroy, who also worked at Bell Labs on the early versions of Unix. It was
McIlroy who fi rst suggested the idea of pipes (see Chapter 15).
 Mark Nudelman, the creator of the less pager (see Chapter 21).
 Charles Haley, who worked with Bill Joy at U.C. Berkeley in the mid-1970s (see
Chapter 22). Haley and Joy created the ex text editor. Haley also contributed to the
original version of the vi text editor.
 This is also a good place to mention the members of the Santa Barbara Linux Users
Group, who patiently answered many questions: Stephanie Lockwood-Childs and Susan
Peirce (both mentioned above), Ron Lockwood-Childs, Chad Page, Tom King, Nick
Lockwood, Ron Jeffries and Marc Provett. Thanks also to Skona Brittain, who read and
commented on an early version of the fi rst fi ve chapters of the book.

PEOPLE WHO PROVIDED SERVICES
As you read through this book, you will see well over a thousand examples. Each of
these examples had to be tested on several different Unix and Linux systems using all
four major shells. (Shells are explained in Chapter 11.) For access to such systems, I am
grateful to the following people.
 First, Patrick Linstruth, co-founder of QNET, a high-quality, personalized Southern
California Internet Service Provider. Pat arranged for me to have access to a FreeBSD
system, as well as important Web and FTP services. Thanks also to Pat’s brother and QNET
co-founder Chris Linstruth, and to the staff of the Austin Cafe: Lana, Melanie and Austin.
 Next, Helmut vom Sondern, a Service and Support Engineer for Sun Microsystems in
Germany. Helmut very generously provided me with access to a state-of-the-art Solaris
system, which I used for as a test system virtually every day for well over two years.
 For other Sun-related resources, I thank the following Sun Microsystems employees. In
the Netherlands: Antoon Huiskens, Support Engineer. In California: Angel Camacho, Senior
Technical Product Manager, and Neha Sampat, Group Manager in Product Marketing.
 At Apple, I am grateful to Ernie Prabhaker (Unix Product Manager) and Farman Syed
(Software QA Engineer) for arranging for me to evaluate a Macintosh laptop computer
running OS X (which runs on Unix).
 As I mentioned earlier, the front cover image was created by my art director, Lee Anne
Dollison. The back cover and spine were created by Jenny Hobein, a cover designer who
proved herself to be both talented and patient (two traits that are crucial for anyone
working with me).
 Finally, Jake Warde of Warde Publishers, a pleasant, skillful, freelance developmental
editor, assisted the original publisher, Alan Apt, during the fi rst part of this project.

Acknowledgements xxxiii

83977_fm_i_xxxiv.indd xxxiii83977_fm_i_xxxiv.indd xxxiii 1/9/2008 12:52:02 PM1/9/2008 12:52:02 PM

xxxiv Harley Hahn’s Guide to Unix and Linux

H O W T H I S B O O K W A S D E V E L O P E D

Since this is such a long, complex book and since I supervised the production myself, it
occurred to me that you might be interested in how such a book was created.
 To start, I created a preliminary Table of Contents, planning the chapters and some of
the topics. As you might expect, in the course of the writing, many of the details changed.
Still, one needs to start somewhere. Using the Web, I showed the preliminary Table of
Contents to 28 Unix and Linux teachers from around the country. I asked them all to fi ll
in a form with their comments and suggestions. This helped me enhance my overall plan.
I then began to write the book, one chapter at a time.
 For each chapter, I started doing my research and compiling notes. I then talked to Susan
Pierce (a very experienced Unix/Linux expert) about my plans. Susan and I brainstormed
various ideas. What should be in the chapter? What should be omitted? I then started to
write the chapter, testing ideas and examples constantly. Indeed, almost every example
you see in this book — and there are over 1,000 of them — was tested on Linux, Solaris
and FreeBSD using a variety of shells. (Shells are explained in Chapter 11.)
 After the fi rst draft of the chapter was fi nished, I posted it on a secret Web site, and
notifi ed my reviewers. Each chapter was read by 12 different Unix professors and experts
(see the Acknowledgments on page xxx). Each reviewer used a special Web page to answer
questions about the chapter, send me their comments, make suggestions, and point out
mistakes. Since there are 33 chapters and appendixes, the reviewers and I went through
this time-consuming process 33 times. After each round, I would revise the chapter .
 I then sent the revised chapter to Lydia Hearn for copy editing, while I moved on
to the next chapter. At the same time, my art director, Lee Anne Dollison, created the
illustrations and tables for the chapter. After the editing was complete, Lydia (who is
multi-talented) created the actual book pages. In this way, the entire book — chapters,
appendixes, glossary, and indexes — was built carefully and slowly, one step at a time.
 You might ask, why did I decide to produce the book myself?
 Producing the book myself enabled Lydia, Lee Anne, and me to have complete control
over the fi nal product. It was a lot of work but I hope, by the time you fi nish reading the
book, you will agree that the extra effort was worth it.

83977_fm_i_xxxiv.indd xxxiv83977_fm_i_xxxiv.indd xxxiv 1/9/2008 12:52:02 PM1/9/2008 12:52:02 PM

1

C H A P T E R 1

Introduction to Unix

This book is about using Unix: a family of operating systems that are used throughout
the world and that run on virtually all types of computers. This book is also about Linux,
a type of Unix.
 We’ll talk about the details in Chapter 2. For now, all you have to know is that an
operating system is a master control program that runs a computer.
 There are many types of Unix: some are Linux; some aren’t. As a general rule, all types
of Unix are similar enough so that, for practical purposes, if you know how to use one
type of Unix, you know how to use them all.
 The fi rst Unix system was developed in 1969 by a programmer at AT&T’s Bell Labs
so that he could run a program called Space Travel*. Today, Unix is nothing less than a
worldwide culture, comprising many tools, ideas and customs.
 Modern Unix in its entirety is very large and complicated. Indeed, there is no single
person who knows everything about Unix in general or even everything about one
specifi c type of Unix. In fact, there is no single person who knows even most of Unix.
 I realize this might seem strange. After all, if Unix is that complex, how did it come
to exist at all? Who creates and enhances Unix? And who changes it and fi xes problems
when things go wrong?
 I’ll answer these questions in Chapter 2, when we talk a bit about the history of Unix
and about how Unix is maintained today.
 For now, what I want you to appreciate is that Unix is much more than an operating
system: it is nothing less than a culture. So as you read this book and think about what
you are learning, realize that you are doing more than simply learning how to use yet
another computer tool. You are becoming a member of the global Unix community, the
largest collection of smart people in the history of the world.
 If you have never used Unix before, you are in for some pleasant surprises. Unix is not
easy to learn, but it is well-designed, extremely powerful, and – once you get used to it – a
great deal of fun.

Introduction to Unix

 * Space Travel simulated the movements of the Sun and planets, as well as a spaceship that you could land in various
locations. The programmer in question was Ken Thompson who, with various other people at Bell Labs, went on to develop the
fi rst full-fl edged Unix operating system (presumably, after they got tired of Space Travel).

33614_01_001_008.indd 133614_01_001_008.indd 1 1/9/2008 12:20:03 PM1/9/2008 12:20:03 PM

Chapter 1

2 Harley Hahn’s Guide to Unix and Linux

 As with all computer systems, there will be times when you are puzzled by a problem
whose solution is not obvious. There will also be times when you will be frustrated or
discouraged. However, no matter what happens, I can promise you one thing: you will
never be bored.

WHY USE UNIX?
The Unix culture, which you are about to enter, contains an enormous number of tools
for you to learn about and use. You can create and manipulate information – text fi les,
documents, images, music, video, databases, spreadsheets, and so on – in more ways than
you can imagine; you can access the Internet to use the Web, email, fi le transfer, and
discussion groups; you can play games; you can design your own Web pages and even run
your own Web server; and you can write computer programs using a variety of different
languages and programming tools.
 Of course, you can do all these things using other operating systems, such as Windows,
so why learn Unix?
 There are lots of reasons but, at this point, they will seem rather technical, so let me
give the four most important reasons to learn Unix.
 The fi rst is choice. With Unix, you will decide how you want to use your computer and
how deep you want to get into the details. You are not stuck with using your computer the
way anyone else (such as Microsoft or IBM or your mother) thinks you should use it. You
can customize your system as you see fi t, and you can choose from many well-designed
tools and applications.
 Second, using Unix will change how you think, and for the better. I believe that if
you learn how to read Shakespeare, listen to Mozart, or appreciate the paintings of
Van Gogh, you will, in some sense, be a better person. The same is true for learning
how to use Unix.
 At this point, I don’t blame you if you don’t believe me, but when you have fi nished
the book, come back to this chapter, reread this section, and see if I am not right.
 Third, as a member of the global Unix community, you will learn how to use some of
the best tools ever invented by human beings.
 In addition, you will be working with a computer system that can run for months
without rebooting. You won’t have to worry about your computer crashing, freezing
or stopping unexpectedly, and – unless you are administering a large network – you
won’t need to care about such irritations as computer viruses, spyware, programs
that run amok, or mysterious rituals that must be carried out to keep your computer
running smoothly.
 Finally, if you are a programmer (or if you want to learn how to be a programmer),
you will fi nd a wonderful selection of Unix-based tools to develop, test and run programs:
text editors with language-specifi c plugins, script interpreters, compilers, cross-compilers,
debuggers, emulators, parser generators, GUI builders, software confi guration managers,
bug-tracking software, build managers, and documentation tools. Moreover, for most
types of programming, there are active communities with their own Web sites, mailing
lists and discussion groups, as well as comprehensive software archives.

33614_01_001_008.indd 233614_01_001_008.indd 2 1/9/2008 12:20:03 PM1/9/2008 12:20:03 PM

Introduction to Unix

3

 Of course, I can’t teach you all the details of the Unix culture in one book. If I tried, both
of us would be overwhelmed. Rather, I will teach you the basics. By the time you fi nish this
book, you will understand the most important concepts, and you will be able to use the
most important tools. You will also be able to teach yourself whatever else you want to know
as the need arises. To start, all you need is access to any computer that runs some type of
Unix (such as Linux), an Internet connection, and a lot of time and patience.
 And, oh yes, one more thing: in most cases, everything – including software
upgrades – is free.

THE UNIX LANGUAGE
Around the world, the fi rst language of Unix is American English. Nevertheless, Unix
systems and documentation have been translated into many other languages, so it is not
necessary to know English, as long as your system works in your language. However,
as you explore the worldwide Unix-based community, you will fi nd that much of the
information and many of the discussion groups are in English.
 In addition, the Unix community has introduced many new words of its own. In this
book, I will pay particular attention to such words. Every time I introduce a new word,
I will use CAPITAL LETTERS. I will make sure to explain the word and show you how
it is used. For easy reference, all the defi nitions are collected into a glossary at the end of
the book.When I come to a name with a particularly colorful history, I will give a special
explanation like this.

 Throughout the book, I print certain names in boldface, usually the names of
commands. This allows you to see immediately that a word is a special Unix term. Here
is an example:

The Unix Language

WHAT’S IN A NAME?

Unix
In the 1960s, a number of researchers from Bell Labs (a part of AT&T) worked at MIT on a
project called Multics, an early time-sharing operating system. Multics was a collaborative effort
involving programmers from MIT, GE and Bell Labs. The name Multics was an acronym for
“Multiplexed Information and Computing Service”. (“Multiplex” refers to combining multiple
electronic signals into a single signal.)
 By the late 1960s, the management at Bell Labs decided not to pursue Multics and moved
their researchers back into the lab. In 1969, one of these researchers, Ken Thompson, developed
a simple, small operating system for a PDP-7 minicomputer. In searching for a name, Thompson
compared his new system to Multics.
 The goal of Multics was to offer many features to multiple users at the same time. Multics
was large and unwieldy and had many problems.
 Thompson’s system was smaller, less ambitious and (at least at the beginning) was used
by one person at a time. Moreover, each part of the system was designed to do only one thing
and to do it well. Thompson decided to name his system Unics (the “Uni” meaning “one”, as in
unicycle), which was soon changed to Unix.
 In other words, the name Unix is a pun on the name Multics.

33614_01_001_008.indd 333614_01_001_008.indd 3 1/9/2008 12:20:03 PM1/9/2008 12:20:03 PM

Chapter 1

4 Harley Hahn’s Guide to Unix and Linux

 “To copy a fi le, you use the Unix cp command. To remove (delete) a fi le, you use the
rm command.”

HINTS FOR LEARNING UNIX
As you read this book, you will notice many hints for learning Unix. These are ideas and
shortcuts I have found to be important for newcomers and experienced users alike. To
emphasize these hints, I present them in a special format that looks like this:

PEOPLE WHO DON’T KNOW THEY ARE USING UNIX
What type of person uses Unix?
 Taken literally, there is no defi nitive answer to this question. Unix systems are used
by a vast number of people around the world, so it would be very diffi cult to generalize.
However, that never stopped me, so let’s have a go at it.
 Broadly speaking, we can divide the world of Unix users into two parts: those who
know they are using Unix and those who don’t.
 Most of the people who use Unix don’t know they are doing so. This is because Unix is
used with many different types of computer systems, and those systems work so well that
the people using them aren’t even aware they are using Unix.
 For example, most Web servers run some type of Unix. When you visit Web sites,
more often than not you are using Unix, at least indirectly. Unix is also used by many
businesses, schools, and organizations. When you have occasion to use their computer
systems, say, to make a reservation, look up information, control a machine, register for a
class, or do offi ce work, you are also using Unix without even knowing it.
 In addition, Unix is used to run all kinds of machines: not only computers of all sizes
(from the largest mainframes to the smallest handheld devices), but embedded or real-
time systems, such as appliances, cable modems, cell phones, robots, karaoke machines,
cash registers, and so on.
 Finally, most of the machines that support the Internet run Unix. For example,
the computers that pass data from one point to another (routers) all use some type
of Unix, as do most mail servers (which store email) and Web servers (which send
out Web pages). Once you understand Unix, a lot of the idiosyncrasies that you fi nd
while using the Net will make sense. For example, you will understand why you must
pay attention to case – that is, small letters and capital letters – when you type Web
addresses. (Most Web servers run under some type of Unix and, as you will see, Unix is
case sensitive.)
 To me, the most interesting group of people who use Unix without knowing it are the
Macintosh users. Millions of people using a Mac with OS X have no idea that, underneath,
OS X is actually based on a type of Unix called FreeBSD. (We’ll talk more about OS X

HINT

Unix is fun.

33614_01_001_008.indd 433614_01_001_008.indd 4 1/9/2008 12:20:04 PM1/9/2008 12:20:04 PM

Introduction to Unix

5

in Chapter 2.) This is one reason Macs are so reliable, especially when compared to PCs
running Windows (which is defi nitely not based on Unix).

PEOPLE WHO DO KNOW THEY ARE USING UNIX
What about the people who do know that they are running Unix? In other words, what
type of person voluntarily chooses to learn Unix?
 In my experience, such people (like you and I) have four basic characteristics.
 First, Unix people are smarter than average, in most cases, a lot smarter than average.
 Second, Unix people are both lazy and industrious. They don’t like to do busy work for
no reason, but when they have a problem that interests them, they will work hour after
hour looking for a solution.
 Third, Unix people like to read. In a world in which most people have trouble mustering
up an attention span longer than fi ve minutes, Unix people will actually read the manual
when they have a problem.
 Finally, when Unix people use a computer, they want to be in control of the experience;
they don’t want to feel as if the computer is controlling them.
 Are you wondering about yourself? If so, don’t worry. The fact that you are reading
this book and have gotten this far qualifi es you as a Unix person.

GETTING THE MOST FROM THIS BOOK
I have designed this book to make it easy for you to fi nd what you need quickly. Before
you start, take a moment to examine the various parts of the book. (I know when I say
that, most of you won’t want to do it, but please do it anyway.)
 First, look at the Quick Index of Unix Commands on the inside back cover. This is
a list of the most important commands covered in the book and where to look for the
discussion and examples.
 Next, take a look at the glossary. This will give you an overview of the important
concepts I will be teaching you in this book. Notice there is a lot to learn.
 Third, take a glance at the Quick Index for the vi Text Editor. Once you learn how to
use the program (Chapter 22), you will fi nd this index especially helpful.
 Now take a look at the general index. Spend a few minutes skimming it (always a
good idea with a new book). This will give you a rough feeling for the new ideas you will
encounter as well as the concepts I will be emphasizing.
 Aside from the glossary and the indexes, there are two summaries of Unix commands,
also at the back of the book. These summaries contain one-line descriptions of each
command I cover in the book.
 One summary lists the commands in alphabetical order; the other summary groups
the commands by category. These summaries are a good place to check if you want
to do something and are not sure what command to use. Once you have found your
command, check with the Quick Index of Unix Commands (inside back cover) to see
what page to read.
 If you want to fi nd the discussion of a particular topic, you can, of course, use the general
index. Alternatively, you can look up the appropriate term in the glossary. Along with each

Getting the Most From This Book

33614_01_001_008.indd 533614_01_001_008.indd 5 1/9/2008 12:20:04 PM1/9/2008 12:20:04 PM

Chapter 1

6 Harley Hahn’s Guide to Unix and Linux

defi nition, you will fi nd a reference to the chapter in which that term is explained. Once
you know the chapter you want, a quick look at the table of contents will show you what
section to read.

WHAT I ASSUME IN THIS BOOK
In this book, I make two important assumptions as to what type of Unix system you
are using.
 First, as you will see in Chapter 2, there are many versions of Unix. Today, the most
popular Unix systems are of a type called Linux. Most Unix systems contain the same
basic elements so, for the most part, it doesn’t matter what type of Unix you are using.
However, at times, there will be a choice between Linux or non-Linux functionality. In
such cases, I will lean toward the Linux conventions as these are the most popular.
 Second, as you will see in Chapter 4, the program that reads and interprets the
commands you type is called the “shell”. In Chapter 11, I will explain that there are various
shells you might choose to use. Almost all the time, it doesn’t really matter what shell you
use. However, in those few places where it does matter, I will use a particular shell named
“Bash”. If you want to use another shell, that is fi ne. A few details may be different, but
you won’t have any real problems.

WHAT I DO NOT ASSUME IN THIS BOOK
If you are an experienced computer user who wants to learn about Unix, this book will
get you started and provide you with a fi rm background in all the important areas.
 However, I do not assume that you have any prior experience. It’s okay if you have never
really used a computer. You do not need to know anything about Unix. You do not need to
be a programmer, nor do you need to know anything about electronics or mathematics.
 I will explain everything you need to know. Work at your own speed and enjoy yourself.

HOW TO USE THIS BOOK
Before we start, it is important to realize that the world of Unix is bursting with
information. To get started, read the fi rst seven chapters of the book. They will introduce
you to Unix and teach you the basic skills.
 After you are oriented to Unix, and you know how to start and stop a work session, enter
commands, and use the keyboard, you can read the rest of the book in any order you want.

 Although every effort has been made to make each chapter as independent as possible,
you should realize that each topic is dependent on other topics. There is no perfect place
to start learning Unix and no perfect order in which to study the various topics.

HINT

It is impossible to learn everything about Unix. Concentrate on what you need and what you think
you will enjoy.

33614_01_001_008.indd 633614_01_001_008.indd 6 1/9/2008 12:20:04 PM1/9/2008 12:20:04 PM

Introduction to Unix

7

For example, say that you want to customize your work environment. Naturally, it would
make sense to start by reading about the Unix working environment (Chapter 6). You
then need to understand what we call the “shell” (Chapter 11), as well as the details of
using the shell (Chapters 12, 13 and 14). At this point, you can customize your work
environment by modifying certain fi les.
 However, in order to modify fi les, it is handy to already know how to use a text editing
program (Chapter 22). Since you need to save these fi les, you should already understand
the fi le system (Chapter 23), the commands to display your fi les (Chapter 21), and the
commands to manipulate your fi les (Chapters 24 and 25). And, of course, before you can
type in messages, you need to understand how to start a work session (Chapters 4 and 5)
and how to use the keyboard with Unix (Chapter 7).
 Obviously, this sort of approach leads nowhere fast, but it does underscore the most
important principle that you need to understand at the outset: Unix was not designed
to be learned; Unix was designed to be used. In other words, it can be confusing and
time-consuming to learn Unix. However, once you have mastered the skills you need for
whatever work you want to do, working with Unix is fast and easy.
 If you think back to when you learned how to drive a car, you will remember that it
was anything but simple. Once you had some experience, though, your actions became
smooth and automatic. By now, you can probably drive all day with one hand on the
wheel as you listen to the radio and talk to other people.
 Let us embody this idea as the following hint:

 Remember, once you have read the fi rst few chapters of this book, you can teach yourself
any topic in any order. If you come across an idea or skill you do not yet understand, you
can either pause for a quick look at another chapter, or skip the part that confuses you
and learn it later. This is how people learn Unix in real life: a bit at a time, depending on
what they need at the moment.
 Don’t worry about memorizing every detail. In some chapters, I treat topics in depth.
Learn what seems interesting and useful to you and just skim the rest. If you know the
basics and you have an idea as to what is available, you can always return to the details
when you need them.

How to Use This Book

HINT

Unix is easy to use, but diffi cult to learn.

HINT

Start by learning the basics. Then learn whatever you want, in whatever order you want.

33614_01_001_008.indd 733614_01_001_008.indd 7 1/9/2008 12:20:04 PM1/9/2008 12:20:04 PM

Chapter 1

8 Harley Hahn’s Guide to Unix and Linux

C H A P T E R 1 E X E R C I S E S

REVIEW QUESTIONS

1. When was the fi rst Unix system developed? Where was the work done?

2. What are four important reasons to learn Unix?

3. What is the origin of the name “Unix”?

FOR FURTHER THOUGHT

1. Prior to 2001, the operating system used by Apple for Macintosh desktop computers
was completely proprietary. In 2001, Apple introduced a new operating system (OS X)
based on Unix. What are three advantages to changing to a Unix-based operating
system? What are three disadvantages?

33614_01_001_008.indd 833614_01_001_008.indd 8 1/9/2008 12:20:04 PM1/9/2008 12:20:04 PM

9

C H A P T E R 2

What Is Linux? What Is Unix?

What is Unix and what is Linux? The short answer is Unix is a type of computer system,
and Linux is the name of a particular family of Unix systems.
 That answer should be good enough if your grandmother happens to ask “What
is all this Unix stuff you are learning?” For practical purposes, however, you need to
know more.
 In this chapter, I’m going to explain the most important ideas that underlie Unix in
general and Linux in particular, and I’m going to do it for two reasons. First, I think you
will fi nd the discussion interesting. To me, Unix is the most wonderful computer system
ever invented, and I’d like you to share that feeling.
 Second, once you have a basic understanding of Unix, you’ll have a context for what I
will be teaching in this book. In that way, when we get into the heavy-duty technical stuff,
you’ll fi nd it a lot easier to remember the details.
 By the end of the chapter, I will have given you a good, serviceable defi nition of both
Unix and Linux. However, before I can do that, I’m going to have to explain a number of
important concepts. To lay the groundwork, I’m going to start with a discussion of the
fundamental component of any computer system: the operating system.

WHAT IS AN OPERATING SYSTEM?
Computers perform tasks automatically by following instructions. A list of instructions
is called a PROGRAM. As the computer follows the instructions, we say that it RUNS or
EXECUTES the program. In general, programs are referred to as SOFTWARE, while the
physical components of the computer are referred to as HARDWARE . The hardware includes
the system board, disk drives, keyboard, mouse, display, screen, printers, and so on.
 An OPERATING SYSTEM (which is software) is the complex master control program
that runs the computer. The principal function of an operating system is to make effi cient
use of the hardware. To do so, the operating system acts as the primary interface to the
hardware, both for you as you are working, and for your programs as they are executing.
 Whenever your computer is up and running, the operating system is there, waiting to
serve you and to manage the resources of your computer.

What Is an Operating System?

33614_02_009_036.indd 933614_02_009_036.indd 9 1/9/2008 12:23:35 PM1/9/2008 12:23:35 PM

Chapter 2

10 Harley Hahn’s Guide to Unix and Linux

 For example, say you type a command to display the names of your fi les. It is the
operating system that handles the details of fi nding the names and displaying them on
your screen. When you are running a program that needs to open a new fi le, it is the
operating system that sets aside the storage space and handles all the details.
 More precisely, the most important functions of an operating system are to:

• Take control of the computer and initialize itself each time the machine starts or
restarts. This initialization is part of the BOOTING process .

• Support the interface (text or graphical) that you use to interact with the computer.

• Provide an interface for programs as they need to use the computer’s resources (disk
space, fi le allocation, processing time, memory, and so on).

• Manage the computer’s memory.

• Maintain and manage a fi le system.

• Schedule work to be done.

• Provide accounting and security services.

 In addition, all operating systems are packaged with a large variety of programs for
you to use. For example, there are programs to help you create, modify and manage
fi les; to manage your work environment; to communicate with other people; to use the
Internet; to write programs; and on and on. Unix comes with more than a thousand such
programs, each of which is a tool to perform one specifi c job.
 As a family, Unix operating systems all share two important characteristics:
multitasking and multiuser. MULTITASKING means that a Unix system can run more
than one program at a time. MULTIUSER means that Unix can support more than
one user at a time. (Microsoft Windows, by the way, is a multitasking, single-user
operating system.)

WHAT’S IN A NAME?

Booting
The term “booting” is short for bootstrapping, which refers to the old saying “pulling yourself
up by the bootstraps”. For example, “After Bartholomew lost all his money, he was poor for a
long time. However, by working hard, he was able to pull himself up by the bootstraps and
become a successful groatcakes merchant.”
 Obviously, it is physically impossible to pull yourself up by straps that are attached to your
own boots. The idea is that a diffi cult, complex goal can often be accomplished by starting with
one small action and then, using that as a foundation, building one step at a time until the
desired goal is reached.
 A computer system starts in just this way. When you turn on the power (or restart the
computer) a single, small program is run automatically. That program starts another, more
elaborate program, and so on. Eventually, the operating system (a very complex program) takes
control and fi nishes the initialization.

33614_02_009_036.indd 1033614_02_009_036.indd 10 1/9/2008 12:23:35 PM1/9/2008 12:23:35 PM

What Is Unix? What Is Linux?

11

WHAT IS THE KERNEL?
When a computer is started, it goes through a sequence of actions that comprise the
booting process. The fi nal act in this process is to start a very complex program called
the KERNEL.
 The job of the kernel is to take control of the computer and to act as the core of the
operating system. As such, the kernel is always running. Indeed, it does not stop until you
shut down the system. In this way, the kernel is constantly available to provide essential
services as they are needed.
 The kernel, being the heart of the operating system, is very important, so I want to
take a moment to tell you a few details. I’m going to get a bit technical, so if you are at all
confused, just nod your head wisely and pretend you understand.
 Although the nature of a kernel can vary from one operating system to another, the
essential services it provides are pretty much the same from one system to another.
They are:

• Memory management (virtual memory management, including paging)

• Process management (process creation, termination, scheduling)

• Interprocess communication (local, network)

• Input/output (via DEVICE DRIVERS, programs that perform the actual
communications with physical devices)

• File management

• Security and access control

• Network access (such as TCP/IP)

If these technical terms mean something to you, fi ne. If not, don’t worry about it. Only
the most nerd-like programmers actually care about the internal details of a kernel. For
people like you and me, the crucial thing is to appreciate that the kernel is the most
important part of the operating system. In fact, as we will see later, the main difference
between Linux and other types of Unix is that Linux uses a particular kernel that is
different from other Unix kernels.
 There are a variety of different types of kernels, but basically they can be divided into
large ones called MONOLITHIC KERNELS and small ones called MICROKERNELS.
 A monolithic kernel consists of one very large program that does everything by itself.
A microkernel is a much smaller program that can carry out only the most basic tasks.
To perform the rest of its functions, a microkernel calls upon a set of other programs
called SERVERS .
 The advantage of a monolithic kernel is that it is fast: everything is done within a
single program, which is effi cient. The disadvantage is that monolithic kernels are large
and unwieldy, which makes them diffi cult to design and maintain.
 A microkernel is slower, because it must call upon servers to do most of its work, which
is less effi cient. However, because of the modular design, microkernels are a lot easier for

What Is the Kernel?

33614_02_009_036.indd 1133614_02_009_036.indd 11 1/9/2008 12:23:35 PM1/9/2008 12:23:35 PM

Chapter 2

12 Harley Hahn’s Guide to Unix and Linux

programmers to understand, and they can be modifi ed to work on new systems relatively
quickly. Microkernels also have the advantage in that they are easier to customize than are
monolithic kernels.
 For example, say you are creating an operating system for a mobile phone or a
robot. Storage space is at a premium, so a small kernel is better than a large one.
Moreover, with a special purpose device, you may not need all the functionality of a
monolithic kernel. In this case, a microkernel with a carefully selected set of servers
may be the best bet.
 When a new operating system is being created, the designers have a choice. They can
use either a single large monolithic kernel or a small minimal microkernel with servers.
Most Unix systems use some type of monolithic kernel. However, as we will see, some
Unixes, such as the Macintosh Unix (called OS X), use a microkernel.

UNIX = KERNEL + UTILITIES
I have explained that the kernel is the central part of the operating system. The kernel is
always running, and its job is to perform the essential tasks.
 But what about everything else?
 With Unix, “everything else” consists of a large number of auxiliary programs
that are included as part of the Unix package. These programs fall into a number of
different categories.
 The most important programs are the ones that provide an interface for you to use
the computer. They are the shells and GUIs. A shell is a program that provides a text-
based interface: you type commands, one after another; the shell reads your commands
and does what is necessary to carry them out. A GUI (graphical user interface) is a more
elaborate program, which provides a graphical interface with windows, a mouse pointer,
icons, and so on. We will talk about shells and GUIs in Chapters 5 and 6, and shells in
detail in Chapter 11 so, for now, all I will do is mention that they exist.
 The other programs are called the Unix UTILITIES, of which there are hundreds. Each
utility (that is, each program) is a separate tool. All Unix systems come with hundreds
of such tools as part of the operating system. Some of these are for programmers, but

WHAT’S IN A NAME?

Kernel
Imagine a pistachio nut. The outside is a hard shell. The inside is a soft, edible seed which,
in biology, is called the kernel. Thus, if we want to be precise, we can say that, when we eat
pistachio nuts, we crack open the shell in order to eat the kernel.
 If we think of Unix as a nut, the inside would be the kernel, and the outside would be the
shell; and indeed, that is the case.
 The kernel, which we just discussed, is what we call the core of the operating system. The
SHELL (which we will discuss in Chapter 11) is the name we give to a special type of program
(a command processor) that “surrounds” the kernel and acts as our personal interface into
the system.

33614_02_009_036.indd 1233614_02_009_036.indd 12 1/9/2008 12:23:36 PM1/9/2008 12:23:36 PM

What Is Unix? What Is Linux?

13

many of them are useful to anyone, even casual users. Moreover, as we will discuss in
Chapter 15, Unix provides ways to combine existing tools to solve new problems as they
arise. This wealth of tools, which is part of every Unix system, is the main reason why
Unix is so powerful.
 Unix utilities work pretty much the same on every Unix system. This means that, for
practical purposes, if you know how to use one type of Unix, you know how to use them
all. Indeed, most of this book is devoted to teaching you how to use the most important
Unix utilities. My goal is that, by the time you have fi nished this book, you will be familiar
with the most important tools, which means you will feel comfortable using Unix on a
day-by-day basis.
 So, what is Unix?
 A good answer would be that Unix is a type of operating system that uses a Unix kernel
and comes with the Unix utilities and a Unix shell. In fact, most (but not all) Unixes come
with a selection of shells and at least one GUI.
 In informal speech, we often use the term “utilities” to include the shell, so at this
point, we can defi ne Unix as follows:

 Unix = a Unix kernel + the Unix utilities

“UNIX” USED TO BE A SPECIFIC NAME
In Chapter 1, I described how the fi rst primitive Unix system was developed in 1969 by a
single programmer, Ken Thompson. The work was done at Bell Labs, the research arm of
AT&T. Since then, a large number of people have developed Unix into a modern family
of operating systems. But who owns the actual name “Unix”?
 For years, it was owned by AT&T, which insisted that Unix must always be spelled with
capital letters: UNIX. More precisely, the AT&T lawyers specifi ed that “The trademark
UNIX must always appear in a form that is typographically distinct.”
 In addition, the lawyers decreed that you could not talk about UNIX in its own right.
You had to talk about UNIX operating systems. (“The trademark UNIX may not be used
as a noun, but must always be used as an adjective modifying a common noun as in
‘UNIX operating system.’”)
 For many years, Bell Labs remained one of the centers of Unix development, and
the silliness continued. In 1990, AT&T formed a new organization to take over Unix.
The new organization was called Unix Systems Laboratory (USL). In June 1993, AT&T
sold USL to Novell Corporation. In October 1993, Novell transferred the rights to the
name “UNIX” to an international standards organization called X/Open. Finally, in
1996, X/Open merged with the Open Software Foundation (a consortium of computer
companies) to form The Open Group. Thus, the UNIX trademark is now owned by The
Open Group.
 So what does The Open Group say that UNIX means? They say that “UNIX” is a brand
that refers to any operating system that has been certifi ed by them as complying with
their so-called “Single UNIX Specifi cation”.
 The details are horrible, so let’s move on.

“Unix” Used to Be a Specifi c Name

33614_02_009_036.indd 1333614_02_009_036.indd 13 1/9/2008 12:23:36 PM1/9/2008 12:23:36 PM

Chapter 2

14 Harley Hahn’s Guide to Unix and Linux

“UNIX” IS NOW A GENERIC NAME
The Open Group (and AT&T and USL and Novell and X/Open) notwithstanding, the
word “Unix” has, for years, been used informally to refer to any operating system that is
Unix-like. In this sense, there are many, many different types of Unix, with more being
developed every year.
 However, all of this begs the question, what does it mean to be Unix-like?
 There are two answers, neither of which is exact. The fi rst answer is that an operating
system is Unix if (1) it consists of a Unix kernel and the Unix utilities and, (2) it can run
Unix programs that run on other Unix systems.
 The second answer is that an operating system is Unix if people who understand Unix
say that it is Unix.
 I realize that to a purist – such as Socrates or an Orthodox Rabbi – such an informal
defi nition is not satisfying. However, in the real world (the place we live when we are not
in school), it is not always possible to be completely precise.
 Consider, for example, the very interesting United States Supreme Court case of
 Jacobellis v. Ohio, 378 U.S. 184 (1964). This case involved an appeal by the manager of a
movie theater who was convicted of showing an obscene fi lm. In the offi cial written
judgment, Mr. Justice Potter Stewart discusses the question of obscenity. What, in fact, is it?
 He writes, “I shall not today attempt further to defi ne the kinds of [hard-core
pornography] material I understand to be embraced within that shorthand description;
and perhaps I could never succeed in intelligibly doing so. But I know it when I see it, and
the motion picture involved in this case is not that.”
 So, I know I am in good company if I tell you the truth: If you want to get really
technical, I can’t tell you what Unix is – perhaps no one can – but I know it when I see it.
(And, one day, you will too.)

THE FREE SOFTWARE FOUNDATION

Now that you know what Unix is, I’d like to answer the next question: What is Linux? To
do so, I need to start by talking about the Free Software Foundation and the idea of open
source software.
 Imagine you enjoy this book so much that you would like all your friends to have a
copy. How could you do so? You could buy a whole set of books and give them out to your
friends (which isn’t a bad idea, especially if you are trying to impress everyone you know).
Of course, that would cost a lot of money. However, each person would receive an actual
printed book, and at least you would feel you were getting something for your money.
 Alternatively, you could make copies of the book. For example, you could photocopy,
say, 30 copies of the book and give away the copies. This would save you some money but,
compared to the original, the copies would be far from perfect. Moreover, it would take
a lot of time and effort to photocopy, collate, bind and distribute the copies, and when
your friends received them, they would know they were getting an inferior product. Even
worse, if a friend wanted to make copies of his own, the quality would be worse because
a photocopy of a photocopy is not nearly as good as the original.

33614_02_009_036.indd 1433614_02_009_036.indd 14 1/9/2008 12:23:36 PM1/9/2008 12:23:36 PM

What Is Unix? What Is Linux?

15

 Now, suppose you were reading an electronic version of this book, and you wanted to
share the book with your friends. All you would have to do is copy some fi les and email
them to your friends or burn them onto a CD and give it away. Not only would it be cheap
to do so (maybe even free), but the copies would be identical to the original. Furthermore,
your friends could easily make copies of the copies.
 To be sure, it would be illegal to make such copies, but forget legal for a moment.
Morally, is it right or wrong to copy and distribute electronic data (books, software,
music, videos, and so on)?
 There is no easy answer here. It all depends on your point of view, and there are good
arguments on each side. One thing I can tell you: because electronic copying is so cheap
and reliable, we tend to devalue anything that is in electronic format. For example, think
of what you paid for this book. Would you feel comfortable paying the same amount of
money for a CD that contained the book? Or for access to a Web site where you could
read the book online?
 Because it is so easy to copy (or steal) electronic data, people tend to feel that
electronic data isn’t worth much. For this reason, software companies have traditionally
been wary about releasing programs without strict license agreements that prohibit
copying and modifi cation.
 However, what if you could convince a lot of talented programmers to distribute their
software in such a way that it encouraged copying? Would it change the world for the better?
In the early 1980s, a visionary named Richard Stallman asked himself that question.
 Stallman had been working in the MIT Artifi cial Intelligence (AI) Lab since 1971. The
AI Lab had a long history of sharing software with anyone, not only inside the lab, but
in other organizations. In 1981, however, conditions changed, and many of the AI Lab
people left to join a startup company. The main computer was changed and the operating
system was replaced with a proprietary system. Stallman now found himself working
in an environment in which he and his coworkers had lost the right to look inside the
operating system and modify it.
 It happened that Stallman was more than an expert programmer. He was also
a thoughtful social critic, who saw the change to a proprietary operating system
as a restriction on his social rights as a creator. In his words, a “proprietary-software
social system, in which you are not allowed to share or change software”, was not only
“antisocial”, it was “unethical” and “wrong”. Such systems, he observed, create unhealthy
power struggles between programmers and software companies.
 The solution was to create a large body of well-written, useful software that, from the
beginning, was designed to be freely distributed.
 In January 1984, Stallman quit his job to devote himself to the project. Within a short
time, he had attracted a small number of other programmers and, in 1985, they started
an organization called the FREE SOFTWARE FOUNDATION or FSF. Stallman’s guiding
principle was “Computer users should be free to modify programs to fi t their needs,
and free to share software, because helping other people is the basis of society.” Stallman
believed that programmers, by their nature, like to share their work and, when they do,
everyone benefi ts.

The Free Software Foundation

33614_02_009_036.indd 1533614_02_009_036.indd 15 1/9/2008 12:23:36 PM1/9/2008 12:23:36 PM

Chapter 2

16 Harley Hahn’s Guide to Unix and Linux

 It is important to understand that when Stallman talked about “free software”, he was not
referring to cost; he was referring to freedom. Free software can be examined, modifi ed,
shared and distributed by anyone. However, according to Stallman, there is nothing wrong
if someone charges for their services or makes other people pay for software distribution.
The way Stallman explained it is to think in terms of “free speech, not free beer”.
 Since the word “free” can refer to both freedom and cost, there is some ambiguity. So, to
avoid any possible confusion, free software is now called OPEN SOURCE SOFTWARE.
 (The name comes from a programming term. When a programmer creates a program,
the actual instructions he writes are called the SOURCE CODE or, more simply, the
SOURCE or the CODE.
 (For example, let’s say that you are talking to the Queen of England, and she is
complaining that the program she uses to rip music from CDs keeps crashing. “If I only
had the code”, she says, “I could get Charles to fi x the bug.” “Don’t worry,” you answer. “I
know where to get the source. I’ll email Chuck the URL.”)
 Since the heart of any computer is the operating system, Stallman’s fi rst major goal for
the FSF was to create an operating system that could be shared freely and modifi ed by
anyone. In order for the new operating system to be freely distributable, Stallman realized
that it would have to be written from scratch.
 Stallman wanted the FSF’s products to fi t smoothly into the prevailing programming
culture, so he decided that the new operating system should be compatible with Unix
in the sense that it should look just like Unix and should be able to run Unix programs.
In the tradition of the programming community in which he worked, Stallman chose a
whimsical name for the as-yet unbuilt operating system. He called it GNU.

EXCERPTS FROM THE GNU MANIFESTO
As I mentioned in the last section, Richard Stallman, the founder of the Free Software
Foundation, was more than a programmer. He was an educated social critic, and his
vision of the future was to have an enormous impact on the world.

WHAT’S IN A NAME?

GNU
GNU is the name Richard Stallman chose to describe the Free Software Foundation’s project to
develop a full Unix-like operating system. The name itself is an acronym meaning “GNU’s Not
Unix” and is pronounced “ga-new”. (It rhymes with the sound that you make when you sneeze.)
 Notice that, within the expression “GNU’s Not Unix”, the word GNU can be expanded
indefi nitely:

GNU
(GNU's Not Unix)
((GNU's Not Unix) Not Unix)
(((GNU's Not Unix) Not Unix) Not Unix)
((((GNU's Not Unix) Not Unix) Not Unix) Not Unix)

and so on. Thus, GNU is actually a recursive acronym. (RECURSIVE refers to something that
is defi ned in terms of itself.)

33614_02_009_036.indd 1633614_02_009_036.indd 16 1/9/2008 12:23:36 PM1/9/2008 12:23:36 PM

What Is Unix? What Is Linux?

17

 Shortly after founding the FSF, Stallman wrote a short essay in which he explained his
reasons for promoting the idea of free software. He called the essay the GNU MANIFESTO.
 His basic idea – that all software should be shared freely – is, at best, naïve. However,
with the rise of the Internet, the development and distribution of open source software
(what Stallman called “free software”) has become an important economic and social
force in our world. There are literally tens of thousands of programs available for free,
and their contribution to the world at large (and to the happiness of their programmers)
is beyond measure.
 We will discuss this idea more in the next section. Before we do, I’d like to take a
moment to show you a few passages from the original 1985 essay.
 As a philosopher, Stallman was not a heavyweight. His public declaration was not
as sophisticated as other well-known manifestos, such as 95 Theses (Martin Luther,
1517), Manifesto of the Communist Party (Karl Marx and Frederick Engels, 1848), or
The Playboy Philosophy (Hugh Hefner, 1962-1966). Still, the work of the Free Software
Foundation was very important and, to this day, it continues to make an important
contribution to our culture. For this reason, you may be interested in reading a few
excerpts from Stallman’s 1985 essay.
 (Quick aside: When Stallman was working at MIT, he created the Emacs text editor.
If you have access to a GNU version of Emacs, which is the case if you use Linux, you

EXCERPTS FROM THE GNU MANIFESTO
 “I consider that the golden rule requires that if I like a program I must share it with other
people who like it. Software sellers want to divide the users and conquer them, making each
user agree not to share with others. I refuse to break solidarity with other users in this way. I
cannot in good conscience sign a nondisclosure agreement or a software license agreement. For
years I worked within the [MIT] Artifi cial Intelligence Lab to resist such tendencies and other
inhospitalities, but eventually they had gone too far: I could not remain in an institution where
such things are done for me against my will.
 “So that I can continue to use computers without dishonor, I have decided to put together a
suffi cient body of free software so that I will be able to get along without any software that is not free.
I have resigned from the AI lab to deny MIT any legal excuse to prevent me from giving GNU away...
 “Many programmers are unhappy about the commercialization of system software.
It may enable them to make more money, but it requires them to feel in confl ict with other
programmers in general rather than feel as comrades. The fundamental act of friendship among
programmers is the sharing of programs; marketing arrangements now typically used essentially
forbid programmers to treat others as friends. The purchaser of software must choose between
friendship and obeying the law. Naturally, many decide that friendship is more important. But
those who believe in law often do not feel at ease with either choice. They become cynical and
think that programming is just a way of making money...
 “Copying all or parts of a program is as natural to a programmer as breathing, and as
productive. It ought to be as free...
 “In the long run, making programs free is a step toward the post-scarcity world, where
nobody will have to work very hard just to make a living. People will be free to devote themselves
to activities that are fun, such as programming, after spending the necessary ten hours a week
on required tasks such as legislation, family counseling, robot repair and asteroid prospecting.
There will be no need to be able to make a living from programming...”

Excerpts From the GNU Manifesto

33614_02_009_036.indd 1733614_02_009_036.indd 17 1/9/2008 12:23:37 PM1/9/2008 12:23:37 PM

Chapter 2

18 Harley Hahn’s Guide to Unix and Linux

can display the entire GNU Manifesto by starting Emacs and entering the command
<Ctrl-H> <Ctrl-P>.)

THE GPL AND OPEN SOURCE SOFTWARE
Over the years, Stallman and the many other programmers who supported the Free
Software Foundation worked hard to create a huge body of open source software. In fact,
as I mentioned, Stallman was the original author of the Emacs text editor.
 Today, the FSF is not the only organization to promote open source software; indeed,
there are many. However, the FSF has always been one of the leaders, not only with
Emacs, but with a C compiler (gcc), a C++ compiler (g++), a powerful debugger
(gdb), a Unix shell (Bash), and many, many other tools. All of this software – which
is part of the GNU project – is used around the world and is considered to be of the
highest quality.
 In the late 1980s, Stallman had some experiences that showed him if he was going to
create a large body of free software, he was going to need an appropriate license under
which he could distribute that software. For this purpose, he invented the idea of the
COPYLEFT . (The name came from a friend of Stallman’s who, in the mid-1980s, sent
Stallman a letter in which several witty sayings were written on the envelope. Among
these was “Copyleft — all rights reversed.”)
 Within the software community, traditional copyrights were used to restrict the use
of the software. The purpose of the copyleft was to do the opposite. In Stallman’s words,
“The central idea of copyleft is that we give everyone permission to run the program, copy
the program, modify the program, and distribute modifi ed versions – but not permission
to add restrictions of their own.”
 To implement the idea of copyleft, Stallman wrote the GENERAL PUBLIC LICENSE
or GPL, which he released in 1989. The GPL itself is rather complicated, so I won’t go into
the details. Basically, when applied to software, the GPL says that anyone may distribute the
software, view the source code, modify it, and distribute the changes. Furthermore – and
this is the crucial part – no one who redistributes the software, including modifi ed versions,
can take away any of the freedoms or add any restrictions of his own.
 The GPL ensures that, whenever anyone uses free software to create a new product, the
new product cannot be distributed except under the GPL. In practical terms, this means
that if someone starts with free software, changes it, and redistributes it, he must also
release the source code.
 The GPL became popular and, over the years, a variety of similar licenses have been
developed. Indeed, the combination of copyleft licenses and the Internet (allowing
programmers around the world to share and to work together) has led to an enormous
fl ourishing of shared creativity, the so-called OPEN SOURCE MOVEMENT.
 The open source movement is so important that it would be diffi cult to overstate its
impact within the world of programming and on the world at large. By way of illustration,
if all open source software were to vanish, the Internet as we know it would disappear in
an instant. (For example, most of the Web servers in the world are run by an open source
program called Apache.)

33614_02_009_036.indd 1833614_02_009_036.indd 18 1/9/2008 12:23:37 PM1/9/2008 12:23:37 PM

What Is Unix? What Is Linux?

19

 In the world of Unix, the effects of the open source movement have been momentous.
There are many reasons for this, not least of which is that if it hadn’t have been for the FSF
and the GPL, and the changes they made in the programming culture, you and I probably
would never have heard of Linux.

UNIX IN THE 1970S: FROM BELL LABS TO BERKELEY
At the beginning of Chapter 1, I explained that the fi rst version of Unix was developed
at AT&T’s Bell Labs, in New Jersey, in 1969. In the early 1970s, Unix was rewritten and
enhanced by a handful of people, all from Bell Labs.
 In 1973, a Unix development support group was formed. Later that year, Ken Thompson
(one of the two principal Unix developers) delivered the very fi rst paper on Unix at a
conference of computer professionals. This sparked an interest in Unix, and within six
months, the number of sites running Unix increased from 16 to 48.
 In July 1974, Thompson and Dennis Ritchie (the other principal Unix developer)
published a paper, “The UNIX Time-Sharing System”, in Communications of the ACM*,
the most widely read computer science journal in the world. It was the fi rst time that Unix
was described to the world at large, and the world at large began to respond. Academics
at universities and researchers inside companies requested copies of Unix and began
running it on their own computers. In some cases, they PORTED Unix (that is, they
adapted it) to run on new types of hardware.
 Outside Bell Labs, the most important nexus of Unix development was the Computer
Science Department at the University of California at Berkeley. In 1974, a professor at
Berkeley, Bob Fabry, procured a copy of AT&T’s UNIX version 4, and Berkeley students
started making major enhancements. In 1975, Ken Thompson went to Berkeley for a
one-year sabbatical, which acted as a catalyst for Berkeley’s Unix development.
 In the same year, AT&T formally started licensing UNIX to universities. (As you will
remember, AT&T insisted that “UNIX” must always be spelled in capital letters, and I will
do just that when I am referring specifi cally to AT&T UNIX.)
 Around this time, Bill Joy, a Berkeley graduate student, became very interested in Unix.
Although no one knew it at the time, Joy’s work was to have far-reaching effects.
 What Joy was doing set the stage for Berkeley to become a major player in the Unix
world, creating and distributing their own version of Unix. Indeed, several of today’s
important Unixes are direct descendents of Berkeley Unix and the work of Bill Joy.
 In addition, Joy was a skillful and prolifi c programmer who, over the course of a
few years, single-handedly created a great deal of important software. Even today, there

Unix in the 1970s: From Bell Labs to Berkeley

 *One month later, in August 1974, the same journal published my fi rst technical paper. At the time, I was an undergraduate
student at the University of Waterloo, in Canada, and I had won the ACM’s George E. Forsythe Student Paper Competition. The
name of the paper was “A New Technique for Compression and Storage of Data”.
 (In case you are wondering, the ACM is the principal professional association for computer scientists. The name, which
dates back to 1947, stands for Association for Computing Machinery.)
 Here is something interesting. If you check out the back copies of the CACM (as the journal is usually called), you will fi nd
that the July 1974 issue with the original UNIX paper is often missing, no doubt the result of overenthusiastic souvenir hunters.
The August 1974 issue (the one with my paper), however, is always available.

33614_02_009_036.indd 1933614_02_009_036.indd 19 1/9/2008 12:23:37 PM1/9/2008 12:23:37 PM

Chapter 2

20 Harley Hahn’s Guide to Unix and Linux

exists no Unix system in the world that is not signifi cantly infl uenced by the work Joy
did in Berkeley from 1975 to 1982. In 1982, Joy became one of the cofounders of Sun
Microsystems which, in its time, was one of the most important Unix companies in
the world.
 Perhaps I can illustrate the importance of Joy’s work in this way. It has been more than
20 years since Joy worked at Berkeley, and yet, there are several chapters of this book in
which we discuss programs that Joy developed at that time: the vi editor (Chapter 22)
which was written in 1976, and the C-Shell (Chapters 11-14) which was written in 1978.
 (While I am musing, let me mention the startling fact that the two most popular Unix
text editors, still in wide use today, were both written a very long time ago: vi by Bill Joy
in 1976, and Emacs by Richard Stallman in 1975.)
 In 1977, Bill Joy shipped the fi rst version of Berkeley’s Unix. This was the same year
in which I started using Unix. (At the time, I was a computer science graduate student at
U.C. San Diego.)
 The system that Bill Joy shipped was referred to as the Berkeley Software Distribution,
later abbreviated as BSD. In all, Joy ended up shipping about 30 copies to users outside
of Berkeley. Although this seems like a small number, it was considered a success, and in
mid-1978, Joy shipped the next version, 2BSD.
 In 1979, AT&T fi nally acknowledged the potential of UNIX and announced that they
were going to start selling it as a commercial product. The fi rst commercial version was
called UNIX System III (“System Three”). In time, it was replaced by UNIX System V
(“System Five”).
 By 1979, all BSD users were required to buy a license from AT&T and, every year,
AT&T increased the price of that license. More and more, the BSD programmers were
chafi ng under the yoke of the AT&T restrictions.

UNIX IN THE 1980S: BSD AND SYSTEM V
The fi rst version of Linux was developed in 1991, and we’ll get to it in a moment. However,
to understand how Linux fi ts into the overall picture, we need to look at what happened
to Unix in the 1980s. In particular, I want to explain how it came to pass that, by the end
of the 1980s, there were two principal branches of Unix: BSD and System V.
 By 1980, there was a dichotomy between East Coast Unix (AT&T UNIX) and West
Coast Unix (BSD), and it was growing quickly.
 The Berkeley programmers and BSD users resented having to pay money to AT&T
just to install BSD. AT&T, on the other hand, was determined to make UNIX a successful
commercial product, one that was oriented towards the needs of companies who were
willing to pay a lot of money for a license.
 In 1980, Bob Fabry , the Berkeley professor I mentioned earlier, received a large
contract from DARPA (the U.S. Defense Advanced Research Projects Agency) to
develop Unix. DARPA had set up a nationwide computer network connecting all their
major research centers. As such, they wanted an operating system that could run on
different types of hardware. The purpose of the Berkeley grant was to develop Unix
for this purpose.

33614_02_009_036.indd 2033614_02_009_036.indd 20 1/9/2008 12:23:37 PM1/9/2008 12:23:37 PM

What Is Unix? What Is Linux?

21

 (Quick aside: DARPA was the same agency that from 1965 through 1988 funded the
research that led to the creation of the Internet. Before 1972, the name of the agency was
ARPA. Thus, the ancestor of the Internet was called the Arpanet, a name you may have
heard. The Arpanet as a separate entity was shut down in 1989.)
 Once Fabry got the DARPA contract, he set up an organization called the Computer
Systems Research Group or CSRG. Although Fabry couldn’t have known it at the time,
the CSRG was to last until 1994 and, during those years, was to have a major infl uence on
BSD and on the growth of Unix throughout the world.
 In 1980, however, all Fabry cared about was developing BSD, and that was the task
to which the CSRG devoted itself. Over the years, they released a number of versions,
all of which were highly regarded within the academic and research communities.
The number of BSD users began to grow. By 1982, 4.1BSD supported TCP/IP, the
system which was to become the basis of the Internet. In 1983, 4.2BSD was released
and was considered very popular, being used in almost 1,000 installations around
the world.
 In the commercial world, AT&T was pushing in a different direction. AT&T’s goal was
to market UNIX as a commercial product. In 1982, they released UNIX System III, the
fi rst public release of UNIX outside of Bell Labs. In 1983, they released System V, the fi rst
version that came with offi cial support. At the same time, AT&T combined three internal
groups to create the UNIX System Development Lab.
 By the end of the year, System V had an installed base of 45,000. In 1984, when System V
Release 2 (SVR2) was introduced, there were 100,000 UNIX installations.
 Thus, by 1985, there were two main Unix streams of consciousness. To be sure there
were other forms of Unix, but all of them were derived from either BSD or System V.*
 In the world of Unix, the late 1980s was characterized by two phenomena: the growth
of Unix in general, and the proliferation of different types of Unix.
 Figure 2-1 shows the most important commercial Unixes that were used during the
1980s and beyond. (A few of these operating systems are still being sold today.) Every one
of these Unixes, without exception, was based on either BSD or System V or both.
 Although all the important Unixes were derived from either BSD or System V, there
came to be many different versions and, for several years, there was enormous infi ghting
and contention.
 During the last half of the 1980s, I was a writer and a consultant, and I remember the
intrigue and the confusion. The world of Unix was characterized by the various companies
making alliances, breaking alliances, forming consortiums, disbanding consortiums, and
offering one technical proposal after another, all in an attempt to “standardize” Unix and
dominate the market.
 In the meantime, in the universities and research institutions, Unix users were growing
restless. Many of them were using some variant of BSD, and they were not happy that

Unix in the 1980s: BSD and System V

 *Indeed, this situation was to last well into the 1990s, until the growing infl uence of Linux and the open source movement
was to change the world of Unix permanently.
 For example, in the first two editions of this book (1993 and 1996), I taught that Unix had basically two variations:
BSD and System V.

33614_02_009_036.indd 2133614_02_009_036.indd 21 1/9/2008 12:23:37 PM1/9/2008 12:23:37 PM

Chapter 2

22 Harley Hahn’s Guide to Unix and Linux

AT&T had partial control over what they were doing. The solution was to rewrite, from
scratch, the parts of BSD that were based on AT&T UNIX.
 It took a long time, but the Berkeley programmers worked diligently, replacing the
UNIX parts of BSD one component at a time. Creating a completely independent version
of BSD was a noble goal, but it was not to happen until 1992.

UNIX IN 1991: WAITING FOR...
By 1991, PCs had been around for 10 years. Still, there was no PC operating system that was
attractive to hackers, the type of programmers who like to take things apart and modify
them just for fun. DOS (for PCs) was simple and unsatisfying. The Apple Macintosh
operating system was better, but the machine itself was too expensive for hobbyists.
 Unix would have been fi ne. After all, some of the best hackers in the world had been
working on it for years. However, BSD (as yet) didn’t run on a PC, and commercial
versions of Unix were prohibitively expensive.
 Computer science professors had a similar problem. AT&T UNIX would be a good
tool to use for teaching operating systems courses except that, in 1979, AT&T changed

NAME COMPANY BSD OR SYSTEM V?

AIX IBM BSD + System V

AOS IBM BSD

A/UX Apple BSD + System V

BSD/OS Berkeley Software Design BSD

Coherent Mark Williams Company System V

Dynix Sequent BSD

HP-UX Hewlett-Packard System V

Irix Silicon Graphics BSD + System V

MachTen Tenon Intersystems BSD

Nextstep Next Software BSD

OSF/1 Digital Equipment Corp System V

SCO Unix Santa Cruz Operation (SCO) System V

Solaris Sun Microsystems BSD + System V

SunOS Sun Microsystems BSD

Ultrix Digital Equipment Corp BSD + System V

Unicos Cray Research System V

UNIX AT&T System V

Unixware Novell System V

Xenix Microsoft/SCO/Altos/Tandy System V

FIGURE 2-1: The most important types of commercial Unix

33614_02_009_036.indd 2233614_02_009_036.indd 22 1/9/2008 12:23:38 PM1/9/2008 12:23:38 PM

What Is Unix? What Is Linux?

23

their policy. Starting with what they called UNIX Seventh Edition, no one outside AT&T
was allowed to look at the UNIX source code.
 AT&T’s new policy meant that, unfortunately, UNIX could no longer be used for
teaching, because operating systems students need to be able to look at the source code to
see how the system works.
 What computer science professors needed was a free, readily available operating system,
one that was suitable for teaching and for which source code was readily available.
 One such professor was Andrew Tanenbaum, who taught at the Vrije Universiteit
in Amsterdam. He bought an IBM PC and set out to build his own operating system
from scratch. The new operating system was a lot like Unix, but was much smaller, so
Tanenbaum called it Minix (“minimal Unix”).
 Minix contained no AT&T source code whatsoever, which meant that Tanenbaum
could distribute the new operating system as he wished. The fi rst version of Minix,
released in 1987, was designed to be compatible with UNIX Seventh Edition. It was used
primarily for teaching and, as teaching tools go, it was a good one (but not perfect).
 For several years, Minix was the best tool available for programmers who wanted to
learn about operating systems and to experiment. People around the world began to use
it, especially in universities. At the same time, a great number of enthusiastic volunteers
began to modify Minix on their own.
 Still, Minix did not meet people’s expectations. A lot of programmers liked it and
wanted to enhance the offi cial version, but the copyright was held by Tanenbaum who
vetoed most of the requests. Minix, he insisted, should remain a simple operating system,
suitable for teaching.
 Minix users were disgruntled. When Richard Stallman had founded the Free Software
Foundation in 1985, he had inspired programmers around the world, and they yearned
for a robust, free operating system on which they could vent their collective energy.
 Now, Stallman had planned a free, Unix-compatible operating system as his fi rst major
project. He even had a name for it, GNU. By 1991, Stallman and the FSF had created a
great deal of high-quality, free software, but GNU itself was nowhere near ready.
 As we discussed earlier, there are two types of programs that make up Unix: the kernel
and everything else, which we called the “utilities”. By the end of the 1980s, the FSF had
programmed a lot of the important utilities, including a shell. However, they did not have
a fi nished kernel (the core of the operating system).
 Stallman and the FSF programmers had been working for some time, but the GNU
kernel, which he called HURD, was far from ready. In fact, work on HURD had really
only started in 1990 and, for years, programmers around the world had been crying
themselves to sleep every night, plaintively singing, “Someday, my HURD will come...”
 So to put it all together: By 1991, PCs had been available for 10 years, and thousands
of programmers, students and computer scientists shared a strong desire for an open-
source, Unix-like operating system.
 AT&T, however, had commercialized UNIX up the wazoo. BSD was available, but it
was encumbered by the AT&T license. Minix was okay, but far from perfect. Although the
source code was readily available, it still required a license and it couldn’t be shared freely.

Unix in 1991: Waiting for...

33614_02_009_036.indd 2333614_02_009_036.indd 23 1/9/2008 12:23:38 PM1/9/2008 12:23:38 PM

Chapter 2

24 Harley Hahn’s Guide to Unix and Linux

GNU, on the other hand, was distributed under the auspices of the GPL copyleft, which
was great. However, the kernel – the most important part of the operating system – was a
long way from being fi nished.
 As fate would have it, a young student in Finland named Linus Torvalds had just
started a project: just for fun, he decided to write his own operating system kernel.
 Little did Torvalds know that, within a decade, his personal operating system would
grow into the most important open source undertaking in history, an innovative project
that, in the fullness of time, would engage hundreds of thousands of programmers and,
literally, change the world.

...MR. RIGHT, LINUS TORVALDS
Linus Torvalds is the quintessential right guy with the right idea in the right place at the
right time.
 In 1991, Linus (pronounced “Lee’-nus”) was a second-year computer science student
at the University of Helsinki. Like tens of thousands of other programming students
who loved to tinker, Linus had read Andrew Tanenbaum’s book Operating Systems:
Design and Implementation, which explained the principles behind the design of Minix.
As an appendix to the book, Tanenbaum had included the 12,000 lines of source code
that comprised the operating system, and Linus spent hours studying the details. (At
this point, you may want to take a moment to think about what it would take to read
through 12,000 lines of code, and compare that to the type of information you fi nd in the
appendices of this book.)
 Like many other programmers, Linus wanted a free (open source) version of Unix.
Unlike the other programmers, Linus didn’t want to wait.

WHAT’S IN A NAME?

Hurd
In our discussion of kernels, I explained that most operating systems use either a monolithic
kernel (a single large program) or a microkernel combined with a number of smaller programs
called servers. For GNU, Richard Stallman chose to use a microkernel called Mach, combined
with a group of servers which he called “the Hurd”. (The name was coined by Thomas Bushnell,
the main kernel programmer.)
 Strictly speaking, the GNU kernel should be described as the Hurd (servers) running on top
of Mach. However, in common usage, the entire kernel is usually referred to as Hurd.
 You already know that when Stallman chose a name for the Free Software Foundation’s
version of Unix, he decided to call it GNU: a recursive acronym for “GNU’s not Unix”. When it
came to naming the kernel, Stallman one-upped himself.
 The name Hurd stands for “HIRD of Unix-Replacing Daemons”. (In Unix, a “daemon”
is a program that runs by itself in the background.) The name HIRD stands for “HURD of
Interfaces Representing Depth”.
 Thus, Hurd is an indirectly recursive acronym. (Hopefully, the only one you will ever meet
in your life).

33614_02_009_036.indd 2433614_02_009_036.indd 24 1/9/2008 12:23:38 PM1/9/2008 12:23:38 PM

What Is Unix? What Is Linux?

25

 On August 25, 1991, Linus sent a message to the Usenet discussion group that was used
as a Minix forum (comp.os.minix). In retrospect, this short message is considered
to be one of the historical documents in the world of Unix, so I will show it to you in its
entirety. When you read it, remember that English was Linus’s second language, and that
he was writing informally.
 Clearly, Linus was just trying to have fun by building his own operating system. He
recognized that his main job would be to write a kernel because, for the most part, the
utilities were already available from the Free Software Foundation in a form that he could
adapt for his own use when the time came.

LINUS TORVALDS ANNOUNCING HIS NEW PROJECT...

From: torvalds@klaava.Helsinki.FI (Linus Benedict Torvalds)
Newsgroups: comp.os.minix
Subject: What would you like to see most in minix?
Summary: small poll for my new operating system
Date: 25 Aug 91 20:57:08 GMT
Organization: University of Helsinki

Hello everybody out there using minix -
I'm doing a (free) operating system (just a hobby,
won't be big and professional like gnu) for
386(486) AT clones. This has been brewing since
april, and is starting to get ready. I'd like any
feedback on things people like/dislike in minix,
as my OS resembles it somewhat (same physical
layout of the file-system (due to practical
reasons) among other things).

I've currently ported bash(1.08) and gcc(1.40),
and things seem to work. This implies that I'll
get something practical within a few months, and
I'd like to know what features most people would
want. Any suggestions are welcome, but I won't
promise I'll implement them :-)

Linus (torvalds@kruuna.helsinki.fi)

PS. Yes - it's free of any minix code, and it has
a multi-threaded fs [file system]. It is NOT
protable (uses 386 task switching etc), and it
probably never will support anything other than
AT-harddisks, as that's all I have :-(.

...Mr. Right, Linus Torvalds

33614_02_009_036.indd 2533614_02_009_036.indd 25 1/9/2008 12:23:38 PM1/9/2008 12:23:38 PM

mailto:torvalds@klaava.Helsinki.FI
mailto:torvalds@kruuna.helsinki.fi

Chapter 2

26 Harley Hahn’s Guide to Unix and Linux

 In September 1991, Linus released the fi rst version of his kernel, which he called
LINUX. Linux was distributed over the Internet, and within a short time, Linus began to
release one new version after another. Programmers around the world began to join Linus:
fi rst by the tens, then by the hundreds, and, eventually, by the hundreds of thousands.
 Interesting note: Linus chose to design Linux using a monolithic kernel. Minix,
written by Andrew Tanenbaum, used a microkernel. Soon after Linux began to attract
attention, Tanenbaum (a well-known professor) publicly excoriated Linus (a more-
or-less unknown student) for that design decision. Even today, after the Linux kernel
has become the basis for the most successful form of Unix in history, Tanenbaum still
criticizes Linus for using a monolithic kernel. (Personally, I have read Tanenbaum’s
arguments, and I think he is wrong.)
 Eventually, Linux became so popular as to run on every type of computer: not only
PCs, but everything from handheld devices with their small built-in processors, to
massively parallel supercomputing clusters, the fastest, most powerful systems in the
world. Indeed, by 2005, virtually every niche in the world of computing would come
to be occupied by machines running some type of Linux, and Linux would be the most
popular operating system in the world. (Windows is more widespread, but Linux is
more popular.)
 Why was Linux so successful? There are four reasons, and they all have to do with
Linus himself.
 First, Linus Torvalds was an extremely skillful and knowledgeable programmer. He
was a fast worker, and he loved to program. In other words, he was exactly the type of guy
whose idea of fun would be writing his own operating system kernel.
 Second, Linus was an endless perfectionist. He was dedicated to his work and, when
a problem fell into his lap, Linus would not rest until he had come up with a solution. In
the early days of Linux, it was not unusual for Linus to make modifi cations so quickly
that he would sometimes release a new kernel more than once a day!
 Third, Linus had a pleasing personality. People describe him as a low-key, unassuming
fellow: a genuinely nice guy (see Figure 2-2). In person or online, Linus pretty much gets
along with everyone because he is so easygoing. As he once observed in an interview,
“Unlike Richard Stallman , I really don’t have a message.”
 Fourth – and most important – Linus had a genius for using the Internet to tap into
a wellspring of programming talent: the thousands and thousands of people who would
volunteer their efforts to modify and extend the Linux kernel.
 How large is Linux? Today, the Linux kernel in its entirely consists of well over 17,000
fi les and millions of lines of code. Every day, volunteer programmers submit hundreds
of patches (changes or corrections). (It is interesting to compare this to the very fi rst
kernel, version 0.01, which consisted of 83 fi les. In all, there were a bit fewer than 9,000
lines of code.)
 Having so many people on the job also gave Linus unusual opportunities because
he had the brain power to handle any new problem that came along. When a new piece
of hardware came out, for example, there was always somebody somewhere who was
knowledgeable enough to write the code to make the new device work under Linux.

33614_02_009_036.indd 2633614_02_009_036.indd 26 1/9/2008 12:23:38 PM1/9/2008 12:23:38 PM

What Is Unix? What Is Linux?

27

 Early on, Linus made a strategic decision to release the Linux kernel under the auspices
of the GNU GPL. This decision proved to be crucial, as it encouraged programmers to
volunteer their time. They knew that everything they worked on would be shared freely
with the rest of the world. Moreover, the GPL ensured that any operating system that
ultimately used the Linux kernel would itself fall under the auspices of the GPL and,
hence, would be freely distributable.
 From the start, Linus released new versions of the kernel as often as he could. Normally,
programmers like to hold onto new software, so they can test it thoroughly and fi x as
many bugs as possible before the program is released to the public.
 Where Linus’ genius came in is in realizing that, since he was releasing software to
a vast audience, he would have so many people testing and reading the new code, that
no bug could hide for long. This idea is embodied in what is now called LINUS’S LAW:
“Given enough eyeballs, all bugs are shallow.”
 Linus released new versions of the kernel far more often than anyone had ever done
before, and bugs were identifi ed and fi xed quickly, often within hours. The result was that

FIGURE 2-2: Linus Torvalds

In 1991, Linus founded a project to create a new operating system kernel, which we now call the
Linux kernel. The Linux kernel is the basis for the various Linux operating systems, making Linus’
undertaking one of the most important software projects in history. As you can see from the photo,
Linus does not take himself too seriously.

...Mr. Right, Linus Torvalds

33614_02_009_036.indd 2733614_02_009_036.indd 27 1/9/2008 12:23:39 PM1/9/2008 12:23:39 PM

Chapter 2

28 Harley Hahn’s Guide to Unix and Linux

work on Linux progressed faster and better than any major software project in the history
of the world.

LINUX DISTRIBUTIONS
Strictly speaking, what Linus Torvalds and the Linux project created was a kernel, not a
complete operating system (and this is still the case). When the kernel was fi rst released,
you needed to be a Unix expert in order to use it because you had to fi nd all the necessary
bits and pieces and put them together to form an operating system.
 Within 5 months of Linus’ fi rst kernel release, however, other people were offering free
operating systems that were based on the Linux kernel. Such an offering is called a Linux
DISTRIBUTION (sometimes shortened to DISTRO).
 As you can imagine, the fi rst few distributions were welcomed by the Linux community
but, unfortunately, they were not well-maintained. In July 1993, however, a programmer
named Patrick Volkerding announced a new distribution he called SLACKWARE. The
name comes from the word “slack”, referring to the feeling of exhilaration and satisfaction
that comes from achieving your personal goals. (For more information, look up the
Church of the SubGenius.)
 Slackware was a success because, over the years, Volkerding has always managed to
maintain it. Today, it is the oldest Linux distribution still being actively developed. In
fact, Slackware is so popular that it has spawned an entire family of distributions and
supporting groups of its own.
 Today’s modern Linux distributions offer a complete product: the kernel, the utilities,
programming tools, and at least one GUI. As I write this, there are literally hundreds of
such distributions. (If you want, once you become profi cient at Unix, you can make a
Linux distribution of our own.)
 Before we leave this section, I want to make sure you understand that the word
“Linux” has two meanings: First, “Linux” refers to a kernel, the product of the countless
programmers who work on the Linux project.
 Second, “Linux” is the name of any operating system that is based upon the Linux
kernel. This is the way most people use the word when they talk, and that is how we will
use it in this book.

WHAT’S IN A NAME?

Linux
The proper way to pronounce Linux is to rhyme with “Bin’-ex”.
 From the beginning, Linus Torvalds used the name Linux informally, “Linux” being a
contraction of “Linus’ Minix”. However, he actually planned to use the name Freax (“free Unix”)
when he released the fi rst public version of the kernel.
 As it happened, another programmer, Ari Lemmke, had convinced Linus to upload the fi les
to a server Lemmke ran, so they could be accessed easily via a system called “anonymous FTP”.
Lemmke was not happy with the name Freax, so when he set up a directory to hold the fi les, he
called the directory linux, and the name stuck.

33614_02_009_036.indd 2833614_02_009_036.indd 28 1/9/2008 12:23:39 PM1/9/2008 12:23:39 PM

What Is Unix? What Is Linux?

29

 Most Linux distributions use the GNU UTILITIES from the Free Software Foundation.
For this reason, the FSF insists that Linux-based operating systems should actually be
called GNU/Linux. I don’t know anyone who does this, but you might remember it in
case you are hanging out at a Unix bar and you happen to run into Richard Stallman.

BSD DISTRIBUTIONS
As we discussed earlier, BSD was one of the two main streams of Unix during the 1980s.
(The other was System V.) BSD was developed within the Computer Science Department
at U.C. Berkeley and, since 1980, the development had been managed by the CSRG
(Computer Science Research Group).
 By the end of the 1980s, BSD afi cionados had become disgruntled over AT&T’s
commercialization of Unix. Because BSD contained certain proprietary elements from
AT&T UNIX, and because the CSRG released source code with the operating system,
every BSD user was forced to buy an expensive source code license from AT&T.
 For this reason, the CSRG set a goal for themselves: to completely rewrite all the
AT&T-based parts of BSD. Doing so would free BSD from the clutches of the AT&T
lawyers (and the AT&T marketing department) once and for all.
 In 1989, the CSRG offered the fi rst totally open source BSD distribution called
Networking Release 1 (more formally, 4.3BSD NET/1). NET/1, however, consisted mostly
of networking tools – which were independent of AT&T UNIX – and not the full BSD
operating system.
 To create a truly independent version of BSD would require rewriting hundreds of
AT&T utilities and programming tools, but it had to be done. Using the Internet, the
CSRG solicited help from outside programmers and, within a year and a half, all the
AT&T utilities had been replaced with brand new programs.
 A careful check of the code showed that everything in BSD was fi ne except for six
kernel fi les. Rewriting these six fi les would have been a big job so, in 1991, the CSRG
released a new version of BSD that was almost UNIX-free. They called it NET/2.
 In 1992, a programmer named Bill Jolitz rewrote the last six problematic fi les and used
them to create a version of BSD for PCs. He called this operating system 386/BSD and
began to distribute it over the Internet.
 This was a huge achievement. After all these years, the holy grail of Berkeley – an
operating system that was independent of AT&T UNIX – existed. Finally, BSD could be
distributed freely as open source software to anyone in the world.
 This was important because BSD contained some of the best Unix software ever
written. To this day, there are very few Unixes in the world that don’t contain BSD code.
Indeed, most Linux distributions use a large number of BSD utilities. For this reason, the
creation of 386/BSD is one of the milestones in the history of Unix.
 Within a short time, 386/BSD became popular and an ever-increasing number of
people began to maintain it. Jolitz, however, had a full-time job, and he was not able to
keep up with all the incoming patches and enhancements. For this reason, a group of
volunteers was formed to take over the job. The fi rst thing the group did was to rename
the operating system FreeBSD.

BSD Distributions

33614_02_009_036.indd 2933614_02_009_036.indd 29 1/9/2008 12:23:39 PM1/9/2008 12:23:39 PM

Chapter 2

30 Harley Hahn’s Guide to Unix and Linux

 Initially, FreeBSD ran only on PC hardware, which was fi ne with most of the users.
Some, however, wanted to run BSD on other types of machines, so a new group was
formed, with the goal of porting FreeBSD to as many other types of computers as possible.
The version offered by the new group was called NetBSD.
 In the mid-1990s, the NetBSD group spawned yet another group that wanted to focus
on security and cryptography. Their operating system was called OpenBSD.
 As you can see, the world of BSD, which has only three main distributions (FreeBSD,
NetBSD and OpenBSD), is a lot different from the world of Linux, where there are literally
hundreds of different distributions.
 By now, you are probably wondering, if FreeBSD is completely open source and is
distributed for free over the Internet, how is it that Linux was the version of Unix that
grew so popular?
 There are two reasons. First, Linux was distributed under the auspices of the GNU GPL,
which encourages sharing. Since the GPL prohibits anyone from using Linux to create and
distribute a proprietary system, anything done with Linux belongs to the world at large.
 The BSD license is far less restrictive than the GPL. Under the BSD license, it is
allowable to use parts of BSD to create a new product without having to share it. When
this happens, the world at large does not get the benefi t of being able to use and modify
the new product. For this reason, many programmers prefer to work with Linux.
 (On the other hand, because the BSD license is so fl exible, FreeBSD has been used
widely in a large variety of machines and devices, as well as a great many Web servers
around the world.)
 The second reason Linux was more successful than FreeBSD had to do with timing. In
retrospect, it was clear that, by the end of the 1980s, programmers around the world had
a strong need for a completely open source version of Unix. Since Linus Torvalds released
the Linux kernel in 1991, and 386/BSD was not released until 1992, Linux got a head
start. As a result, Linus was able to attract a large number of programmers, who were just
waiting to work on the world’s fi rst free version of Unix.
 Now you know why this book is called Harley Hahn’s Guide to Unix and Linux, not
Harley Hahn’s Guide to Unix and FreeBSD.
 (And now you also know why I described Linus Torvalds as the right guy with the
right idea in the right place at the right time.)

WHAT TYPE OF UNIX SHOULD YOU USE?
With all the different types of Unix, the questions arises, what type of Unix should you use?
 The answers (there are several) are actually rather simple. However, before I proceed,
let me tell you that, for practical purposes, basic Unix is basic Unix: if you know how to
use one type of Unix, you know how to use them all. In particular, as you read this book,
it really doesn’t matter what type of Unix you are using (as long as you don’t read with
your mouth full).
 I fi rst used Unix in 1977, and everything I learned then still works the same way. If
you had used Unix in 1977 and you fell into a time warp, emerging in 2006 in front of a
Linux or FreeBSD computer, how would you feel? You would have to learn how to use

33614_02_009_036.indd 3033614_02_009_036.indd 30 1/9/2008 12:23:39 PM1/9/2008 12:23:39 PM

What Is Unix? What Is Linux?

31

some new tools, including a new, sophisticated GUI (graphical user interface). However,
you wouldn’t feel like you had woken up in a brand new world. Unix is Unix.
 That said, here is my advice.
 In many cases, you don’t have a choice as to what type of Unix you must use. For
example, you may work for a company that uses a commercial Unix such as AIX (from
IBM) or Solaris (from Sun); or you may be taking a class where everyone has to use the
same type of Linux; or you might be hacking with your grandmother, who insists on
using FreeBSD because it reminds her of all the fun she had in Berkeley in the ‘70s. If this
is the case, just go with the fl ow and don’t worry. Unix is Unix.
 If you are choosing your own Unix, here is how to decide:
 1. If you are using Unix because you want to learn how it works, how to customize
your environment, how to program, or you just want to have fun, use Linux.
 To help you with your choices, Figure 2-3 shows the most important Linux
distributions. All of these are readily available on the Internet. Most of the distributions
can be downloaded at no cost. If you are not sure which one to use, use Ubuntu.
 2. FreeBSD is very stable and reliable, and tends to work just out of the box. So, if you
are working at a company, and you are looking for a system that needs as little attention
as possible, use FreeBSD. Similarly, if you are working at home and want to run a server
(such as a Web server), use FreeBSD.
 If your system is not supported by FreeBSD, use NetBSD. If you are very interested
in security, use OpenBSD. For completeness, Figure 2-4 shows the most important
BSD distributions .
 3. If you want to run Unix under Microsoft Windows, you can use a free product
called Cygwin. Once Cygwin is installed, all you have to do is open a Cygwin window and,
within that window, everything looks like Linux.
 I love Cygwin. Even though I have several Unix computers, I use Windows a lot and,
with Cygwin, I can access my favorite Unix programs whenever I want.

NAME

Debian

Fedora Core

Gentoo

Knoppix

Mandriva (used to be Mandrake)

MEPIS

Red Hat

Slackware

SuSE

Ubuntu

Xandros

FIGURE 2-3: The most important Linux distributions

What Type of Unix Should You Use?

33614_02_009_036.indd 3133614_02_009_036.indd 31 1/9/2008 12:23:40 PM1/9/2008 12:23:40 PM

Chapter 2

32 Harley Hahn’s Guide to Unix and Linux

 4. Finally, if you want Unix, but you want it to look like Windows, get a Macintosh and
run OS X.
 OS X is the Macintosh operating system. Although it has a Mac-like look and feel, it is
actually Unix under the hood. Specifi cally, OS X uses a microkernel based on Mach, the
FreeBSD utilities, and a proprietary GUI named Aqua.
 To access Unix directly under OS X, just open a Terminal window. (You will fi nd
Terminal in your Applications/Utilities folder.)

HOW DO YOU GET LINUX OR FREEBSD?
Most of the time, Unix is installed from one or more CDs. To install Linux or FreeBSD,
all you need to do is fi nd a free downloading site (which is easy), download the fi les, burn
the CDs, and then use the CDs to install the operating system.
 Better yet, if you ask around, you may fi nd someone who already has the CDs. Since
both Linux and FreeBSD are free software, there is no problem borrowing CDs or even
making your own copies to share with other people.
 When you install Linux or FreeBSD in this way, the operating system resides on
your hard disk. If your Unix system is the only operating system on your computer, the
situation is simple. Whenever you turn on the computer, Unix will boot automatically.
 Alternatively, you can install more than one operating system on your computer. You
might, for example, want both Windows and Unix, which allows you to switch back and
forth as you wish. However, you can only run one operating system at a time and, to switch
from one to the other, you need to reboot. Such a setup is called a DUAL BOOT system.
 When you use a dual boot system, you make use of a special program called a BOOT
LOADER. The boot loader takes control every time you start or restart your computer.
Its job is to show you a list of available operating systems, so you can choose the one you
want. The boot manager then transfers control to the appropriate kernel, and the kernel
starts the rest of the operating system. (As a general rule, if your PC takes a minute to

NAME

FreeBSD

OpenBSD

NetBSD

FIGURE 2-4: The most important BSD distributions

WHAT’S IN A NAME?

OS X
OS X (the Macintosh operating system) is pronounced “O-S-ten”. The name is a pun.
 The previous Mac operating system — which was not based on Unix — was called OS 9.
Thus, the “X” stands for the Roman numeral 10, but it also makes you think of Unix.

33614_02_009_036.indd 3233614_02_009_036.indd 32 1/9/2008 12:23:40 PM1/9/2008 12:23:40 PM

What Is Unix? What Is Linux?

33

boot, about 15 seconds is used by the boot loader, and about 45 seconds is used to load
the operating system.)
 The most common Linux boot loaders are GRUB (Grand Unifi ed Bootloader)
and LILO (Linux Loader). LILO was developed a long time ago as part of the Linux
distribution, and it has been well maintained over the years. GRUB is newer and was
developed as a part of GNU. Both boot loaders are fi ne but if you have a choice, use
GRUB because it is more powerful and more fl exible.
 To set up your machine as a dual boot system, you must divide your hard disk into
parts called PARTITIONS. To do so, you use what is called a PARTITION MANAGER.
Each operating system must be installed using its own partition (or partitions, if more
than one is required).
 The most common type of dual boot system is one in which Windows coexists with some
type of Unix. However, there is no reason why you can’t partition your disk to use more
than two operating systems on the same computer. For example, you might have Windows,
Fedora Core Linux and FreeBSD. The boot loader will then offer you three choices, rather
than two. In such cases, we would say that you have a MULTI-BOOT system.
 A second way to run Unix is not to install it onto your hard disk. Instead, you can
boot from a special CD called a LIVE CD.
 A live CD is a CD-ROM that has been made bootable, and that contains everything
necessary to run a full operating system: the kernel, the utilities, and so on. When you boot
from a live CD, you bypass the hard disk. This allows you to use a second (or third or fourth)
operating system whenever you want, without having to install anything on your disk.
 For example, if you are a Windows user, you can experiment with Linux or FreeBSD
without having to repartition and install a whole new operating system. Similarly, if
you are a Linux user, you can try out, say, FreeBSD, without having to make changes
to your system. Some people who don’t know what type of Linux they want to use
permanently will use live CDs to try out different distributions.
 Live CDs are also useful when you are using a PC that does not belong to you. For
example, if you work for a company that forces you to use Windows, you can use a
live Linux CD to run Unix when no one is watching. Or, if you are fi xing a friend’s
computer, you can boot your own operating system with your favorite tools without
changing your friend’s computer in any way.
 To create a live CD, just pick the one you want, download the fi les, and burn the CD.
You might even make several live CDs to experiment with different systems.
 There are many different live CDs available on the Internet for free. To help you,
Figure 2-5 lists the most important ones. If you are not sure which one to use, use
Knoppix (pronounced “Nop’-pix”).

How Do You Get Linux or FreeBSD?

HINT

If your computer boots from the hard disk even when you have a CD in the drive, check the
BIOS settings.
 You may have to modify a setting to tell the computer to look for a bootable CD before
looking for a bootable hard disk.

33614_02_009_036.indd 3333614_02_009_036.indd 33 1/9/2008 12:23:40 PM1/9/2008 12:23:40 PM

Chapter 2

34 Harley Hahn’s Guide to Unix and Linux

 How do you choose between a full hard disk installation and a live CD?
 A full installation is a commitment as it requires you to make lasting changes to your
hard disk. (Of course, you can undo these changes if you want.) The advantage of a full
installation is that the operating system is on your disk permanently. Not only is this
convenient, but you can customize your system and store fi les permanently.
 With a live CD, there is less of a commitment. However, unless you set aside a
special disk partition for the live CD to use for its data, you can’t make permanent
modifi cations or save Unix data fi les.
 Moreover, running Unix from a live CD will decrease the performance of your
computer a bit. Not only is it slower to boot off a CD than a hard disk, a live CD system
will have to create a RAM disk to hold the fi les that would normally be on your hard disk.
This will use up some of your memory. (A RAM disk is a part of memory that is used to
simulate a real disk.)
 A nice compromise is to install Unix to some type of removable storage device, such as
a USB key drive (sometimes called a USB fl ash drive). This is a very small, portable device
that plugs into a USB port and acts like a tiny hard disk.
 Once you have installed Unix to a key drive, all you have to do is insert it into a USB
port, turn on (or restart) the computer, and Unix will boot automatically. (You may need
to change your computer’s BIOS settings to tell it to boot from the key drive before the
hard disk.)
 By installing to a key drive, you get most of the benefi ts of a permanent Unix system
without having to modify your hard disk. For example, when you boot from a key drive,
you can modify your system, you can save fi les, and so on. Unlike a CD-ROM, which is
only readable, a key drive is read/writeable. And whenever you want to use the operating
system on your hard disk, all you have to do is remove the key drive and reboot.
 Still, once you decide to use an operating system permanently, you will fi nd it faster
and more practical to install it on your hard disk. Flexibility is nice but, in the long run,
as with most areas of life, commitment works better.

NAME

Damn Small Linux

FreeBSD

Kanofi x

Knoppix

MEPIS

PCLinuxOS

SLAX

SuSE

Ubuntu

FIGURE 2-5: The most important Linux live CDs

33614_02_009_036.indd 3433614_02_009_036.indd 34 1/9/2008 12:23:40 PM1/9/2008 12:23:40 PM

What Is Unix? What Is Linux?

35

WHAT IS UNIX? WHAT IS LINUX?
Before we leave this chapter, I’d like to summarize our discussion by, once again, answering
the questions: What is Unix? and What is Linux?
 Unix is a multiuser, multitasking operating system that consists of a Unix-like kernel,
Unix-like utilities and a Unix-like shell. Linux is the name given to any Unix that uses the
Linux kernel. (As we discussed, there is no good defi nition of the term “Unix-like”. You
just have to know it when you see it.)
 However, there is another way to look at Unix.
 Over the years, a great many very, very smart people have worked on Unix to build
themselves the very best tools they could. As Unix users, you and I get to reap the benefi ts
of that work.
 To me, Unix is an an abstract idea: an actual applied philosophy that dictates a
particular approach to problem solving. In using Unix, you will learn to approach and
solve problems the Unix way. For example, you will learn how to combine simple tools,
like building blocks, into elegant structures to solve complex problems; you will learn
how to be self-reliant, teaching yourself most of what you need to know; and you will
learn how to organize your thoughts and actions in a logical way that makes the best use
of your time and effort.
 As you do so, you will be following in the footsteps of giants, and your mind will be
changed for the better. This may be hard to understand right now, but don’t worry. Just
stick with Unix long enough, and you will see for yourself.
 For this reason, let me give you another defi nition of Unix. This is the best defi nition
of Unix I know, and it is the one I would like you to remember as you read this book.
 I’ll give it to you in the form of a hint:

HINT

Downloading and installing any type of Unix will take longer than you anticipate, so don’t do
it when you are in a hurry.
 For example, if it is your honeymoon night, and you have a half hour to kill while your
wife changes her clothes and freshens up, starting a brand new Linux installation would be a
bad idea.

What Is Unix? What Is Linux?

HINT

Unix is a set of tools for smart people.

33614_02_009_036.indd 3533614_02_009_036.indd 35 1/9/2008 12:23:41 PM1/9/2008 12:23:41 PM

Chapter 2

36 Harley Hahn’s Guide to Unix and Linux

C H A P T E R 2 E X E R C I S E S

REVIEW QUESTIONS

1. What is an operating system?

2. What is the kernel? Name four tasks performed by the kernel.

3. What is open source software? Why is it important?

4. What is Linux? When was the fi rst version of Linux released? By whom?

FOR FURTHER THOUGHT

1. Would the Internet have been possible without Unix? Would Linux have been possible
without the Internet?

2. When Richard Stallman founded the Free Software Foundation in 1985, he was able
to tap into the energy of many programmers around the world who wanted to work
on a free operating system. Later, in the early 1990s, Linux Torvalds was also able to
fi nd programmers to help him, in this case, to develop the Linux kernel. Why are so
many programmers willing to work a long time on a diffi cult project and then give
away the fruits of their labor for free? Is this more common with young programmers
than old programmers? If so, why?

3. Traditionally, lawyers are expected to offer a certain amount of work free as a public
service, such work being described as pro bono publico (Latin: “for the public good”).
Should the programming profession have a similar expectation of its members? If so,
why? If not, why not?

33614_02_009_036.indd 3633614_02_009_036.indd 36 1/9/2008 12:23:41 PM1/9/2008 12:23:41 PM

37

C H A P T E R 3

The Unix Connection

Being able to connect to different types of computers has always been an integral part of
Unix. Indeed, the fact that Unix has this capability is one of the main reasons there are so
many computer networks in the world. (The Internet, for example, has always depended
on Unix connections.)
 In this chapter, we’ll discuss the basic concepts that make it possible to connect to
other computers: on the Internet and on local networks. Along the way, you will learn
how these concepts underlie the most fundamental Unix connection of all: the one
between you and your computer.

HUMANS, MACHINES AND ALIENS
I’d like to start by talking about an idea that is rarely discussed explicitly. And yet, it is
such an important idea that, if you don’t understand it, a lot of Unix is going to seem
mysterious and confusing. The idea concerns human beings and how we use machines.
 Think about the most common machines in your life: telephones, cars, TVs, radios,
and so on. Because you and the machine are separate entities, there must be a way for you
to interact with it when you use it. We call this facility an INTERFACE.
 Consider, for example, a mobile phone. The interface consists of a set of buttons, a
speaker or ear plug, a small video screen, and a microphone. Consider a car: the interface
consists of a key, the steering wheel, the accelerator pedal, the brake pedal, a variety of
dials and displays, and a gaggle of levers, knobs and buttons.
 The point is every machine that is used by a human being can be thought of as having
two components: the interface and everything else.
 For example, with a desktop computer, the interface consists of the monitor, the
keyboard, the mouse, speakers and (possibly) a microphone. “Everything else” consists
of the contents of the box: the hard disk, the CD drive, the processors, the memory, the
video card, the network adapter, and so on.
 In Unix terminology, we call the interface the TERMINAL (I’ll explain why later), and
we call everything else the HOST. Understanding these concepts is crucial, so I am going
to talk about them in detail.

Humans, Machines and Aliens

33614_03_037_054.indd 3733614_03_037_054.indd 37 1/9/2008 12:24:35 PM1/9/2008 12:24:35 PM

Chapter 3

38 Harley Hahn’s Guide to Unix and Linux

 Since the terminal provides the interface, it has two main jobs: to accept input and
to generate output. With a desktop computer, the input facility consists of the keyboard,
mouse and microphone. The output facility consists of the monitor and the speakers.
 To capture these ideas, we can describe any computer system by the following two
simple equations:

 COMPUTER = TERMINAL + HOST

 TERMINAL = INPUT FACILITY + OUTPUT FACILITY

 Has it ever occurred to you that, as a human being, you also consist of a terminal and a
host? In other words, these same two equations describe you and me and everyone else.
 Your “terminal” (that is, your interface to the rest of the world) provides your input
facility and your output facility. Your input facility consists of your sense organs (eyes,
ears, mouth, nose, and skin). Your output facility consists of the parts of your body that
can make sounds (your mouth) and can create change in your environment (your hands
and arms, your legs, and the muscles of facial expression).
 What is your “host”? Everything else: your brain, your organs, your muscles and
bones, your blood, your hormones, and so on.
 It might seem artifi cial and a bit ludicrous to separate your “host” from your “terminal”
because you are a single, self-contained unit. But think about a laptop computer. Even
though all the components are built-in, we can still talk about the terminal (the screen, the
keyboard, the touch pad, the speakers, and the microphone) and the host (everything else).
 Imagine two aliens from another planet watching you use a laptop computer. One
alien turns to the other and says, “Look, there is a human being who is using his interface
to interact with the interface of a computer.”
 To the aliens, it doesn’t matter that your interface is built-in because the laptop’s
interface is also built-in. The aliens, being from another planet, see what you and I don’t
normally see: as you use a computer, your interface communicates with the computer’s
interface. Indeed, this is the only way in which you can use a computer (or any other
machine, for that matter).
 However, what if the aliens happened to come from a Unix planet? After the fi rst
alien made his comment, the second alien would respond, “I see what you mean. Isn’t it
interesting how the human’s terminal interacts with the computer’s terminal?”

IN THE OLDEN DAYS, COMPUTERS WERE EXPENSIVE
In Chapter 1, I mentioned that the very fi rst version of Unix was developed in 1969 by
Ken Thompson, a researcher at Bell Labs, New Jersey. (At the time, Bell Labs was part of
AT&T.) Thompson had been working on a large, complex project called Multics, which
was centered at MIT. When Bell Labs decided to end their support of Multics, Thompson
returned full-time to New Jersey, where he and several others were determined to create
their own, small operating system. In particular, Thompson had a game called Space
Travel that he had developed on Multics, and he wanted to be able to run the program
on a system of his own.

33614_03_037_054.indd 3833614_03_037_054.indd 38 1/9/2008 12:24:36 PM1/9/2008 12:24:36 PM

The Unix Connection

39

 At the time, there were no personal computers. Most computers were large,
expensive, temperamental machines that required their own staff of programmers and
administrators. (We now call such machines MAINFRAME COMPUTERS.)
 Mainframe computers required their own special rooms, referred to whimsically
as “glass houses”. There were three reasons for glass houses. First, the machines were
somewhat fragile, and they needed to be in an environment where the temperature and
humidity could be controlled. Second, computers were very expensive, often costing
millions of dollars. Such machines were far too valuable to allow just anyone to wander
in and out of the computer room. A glass house could be kept locked and closed to
everyone but the computer operators.
 Finally, computers were not only complex; they were relatively rare. Putting such
important machines in glass houses allowed companies (or universities) to show off their
computers, especially to visitors. I have a memory as a young college student: standing in
front of a huge computer room at the University of Waterloo, looking through the glass
with awe, intimidated by the large number of mysterious boxes that comprised three
separate IBM mainframe computers.
 Multics ran on a similar computer, a GE-645. The GE-645, like most mainframes, was
expensive to buy, expensive to lease, and expensive to run. In those days, computer users
were given budgets based on real money, and every time someone ran a program, he was
charged for processing time and disk storage. For example, each time Thompson ran Space
Travel on the GE-645, it cost about $75 just for the processing time ($445 in 2008 money).
 Once Bell Labs moved Thompson and the others back to New Jersey, the researchers
knew there was no way they would be able to get their hands on another large computer.
Instead, they began looking around for something smaller and more accessible.
 In those days, most computers cost well over $100,000, and coming up with a machine
for personal research was not easy. However, in 1969, Thompson was looking around
Bell Labs and he found an unused PDP-7.
 (The PDP-7, made by DEC, the Digital Equipment Corporation, was a so-called
MINICOMPUTER. It was smaller, cheaper and much more accessible than a main-
frame. In 1965 dollars, the PDP-7 cost about $72,000; the GE-45 mainframe cost about
$10 million. The name PDP was an abbreviation for “Programmed Data Processor”.)
 This particular PDP-7 had been ordered for a project that had fl oundered, so
Thompson was able to commandeer it. He wrote a lot of software and was able to get
Space Travel running. However, the PDP-7 was woefully inadequate, and Thompson and
several others lobbied to get another computer.
 Eventually, they were able to acquire a newer PDP-11, which was delivered in the
summer of 1970. The main advantage of the PDP-11 was that its base cost was only(!)
$10,800 ($64,300 in 2008 money). Thompson and a few others began to work with the
PDP-11 and, within months, they had ported Unix to the new computer. (You can see
Thompson and Dennis Ritchie, his Unix partner, hard at work in Figure 3-1.)
 Why am I telling you all of this? Because I want you to appreciate that, in the late
1960s and early 1970s, computers cost a lot and were diffi cult to use. (The PDP-11 was
expensive and inadequate. The PDP-7 was very expensive and inadequate. And the GE-645

In the Olden Days, Computers Were Expensive

33614_03_037_054.indd 3933614_03_037_054.indd 39 1/9/2008 12:24:36 PM1/9/2008 12:24:36 PM

Chapter 3

40 Harley Hahn’s Guide to Unix and Linux

was very, very expensive and inadequate.) As a result, there was an enormous need to make
computing, not only easier, but cheaper.
 One of the biggest bottlenecks was that, using the current software, the PDP-11 could
only run one program at a time. This meant, of course, that only one person could use
the machine at a time.
 The solution was to change Unix so that it would allow more than one program
to run at a time. This was not easy, but by 1973 the goal had been achieved and
Unix became a full-fl edged multitasking system. (The old name for multitasking is
MULTIPROGRAMMING.)
 From there, it was but a step to enhance Unix to support more than one user at a time,
turning it into a true multiuser system. (The old name is a TIME-SHARING SYSTEM.)
Indeed, in 1974, when Thompson and Ritchie published the fi rst paper that described
Unix (see Chapter 2), they called it “The UNIX Time-Sharing System”.
 However, in order to make such a change, the Unix developers had to come to terms
with a very important concept, the one you and I discussed earlier in the chapter: human
beings could only use a machine if the machine had a suitable interface. Moreover, if

FIGURE 3-1: Ken Thompson, Dennis Ritchie, and the PDP-11

Ken Thompson (sitting) and Dennis Ritchie (standing) and the Bell Labs’ PDP-11 minicomputer.
Thompson and Ritchie are using two Teletype 33-ASR terminals to port Unix to the PDP-11.

33614_03_037_054.indd 4033614_03_037_054.indd 40 1/9/2008 12:24:36 PM1/9/2008 12:24:36 PM

The Unix Connection

41

more than one person were to use a computer at the same time, each person would need
a separate interface.
 This only makes sense. For example, if two people wanted to type commands at
the same time, the computer would have to be connected to two different keyboards.
However, in the early days of Unix, computer equipment was expensive and hard to
come by. Where could Thompson and Ritchie come up with the equipment they needed
to run a true multiuser system?
 The answer to this question proved to be crucial, as it affected the basic design of
Unix, not only for the very early Unix systems, but for every Unix system that ever existed
(including System V, BSD, Linux, FreeBSD and OS X).

HOST AND TERMINALS
It was the early 1970s, and Ken Thompson and Dennis Ritchie had a problem. They
wanted to turn Unix into a true multitasking, multiuser operating system. However,
this meant that each user would need his own interface. Today, high quality color
video monitors, keyboards and mice are cheap. In those days, however, everything was
expensive. There was no such thing as a separate keyboard; there were no mice; and the
cost of a separate computer monitor for each user was prohibitive.
 As a solution, Thompson and Ritchie decided to use a machine that was inexpensive
and available, even though it had been designed for a completely different purpose. This
machine was the Teletype ASR33 (ASR stood for Automatic Send-Receive).
 Teletype machines were originally developed to send and receive messages over
telegraph lines. As such, the machines were called teletypewriters (“Teletype” was a
brand name).
 The original experimental teletypewriters were invented in the early 1900s. Throughout
the fi rst half of the twentieth century, teletypewriter technology became more and more
sophisticated, to the point where Teletype machines were used around the world. AT&T
(Bell Lab’s parent company) was heavily involved in such services. In 1930, AT&T bought
the Teletype company and, indeed, the name AT&T stands for American Telephone and
Telegraph Company.
 Thus, it came to pass that, in the early 1970s, Thompson and Ritchie were able to use
Teletype machines as the interfaces to their new PDP-11 Unix system. You can see the
actual machines in Figure 3-1 above, and a close-up view in Figures 3-2 and 3-3.
 As an interface, all the Teletype had was a keyboard for input and a wide roll of paper
for printed output. To store programs and data, there was a paper tape punch that could
make holes in a long, narrow band of paper, and a paper tape reader that could read the
holes and convert them back to data.
 Compared to today’s equipment, the Teletype was primitive. Except for the power
supply, everything was mechanical, not electronic. There was no video screen, no mouse
and no sound. Moreover, the keyboard was uncomfortable and diffi cult to use: you had to
depress a key about half an inch to generate a character. (Imagine what typing was like.)
 What made the Teletype so valuable was that it was economical and it was available.

Host and Terminals

33614_03_037_054.indd 4133614_03_037_054.indd 41 1/9/2008 12:24:36 PM1/9/2008 12:24:36 PM

Chapter 3

42 Harley Hahn’s Guide to Unix and Linux

 Here’s where it all comes together. Thompson and Ritchie wanted to create a true
multiuser system. Computing equipment was expensive. All they had were some Teletypes
for the interfaces, and a single PDP-11 minicomputer to do the processing.
 Like the aliens I mentioned above, Thompson and Ritchie realized that they could,
conceptually, separate the interface from the rest of the system, and this is the way they
designed Unix.
 There would be a single processing element, which they called the host, along with
multiple interface units, which they called terminals. At fi rst, the host was the PDP-11
and the terminals were Teletypes. However, that was merely for convenience. In principle,
Unix could be made to work with any host and any type of terminal. (It would take work,
but not too much work.)
 This design decision proved to be prescient. From the beginning, the connection that
Unix forged between a user and the computer was dependent upon a specifi c design
principle, not upon specifi c hardware. This meant that, year after year, no matter what
new equipment happened to come along, the basic way in which Unix was organized
would never have to change.
 As terminals became more sophisticated, an old one could be thrown away and a
new one swapped in to take its place. As computers became more complex and more
powerful, Unix could be ported to a new host and everything would work as expected.

FIGURE 3-2: Teletype 33-ASR

A Teletype 33-ASR, similar to the ones used by Ken Thompson and Dennis Ritchie with the very early
Unix systems.

33614_03_037_054.indd 4233614_03_037_054.indd 42 1/9/2008 12:24:37 PM1/9/2008 12:24:37 PM

The Unix Connection

43

 Compare this to Microsoft Windows. Because Windows was created specifi cally for
single-user PCs, Microsoft never completely separated the terminal from the host. As a
result, Windows is inelegant, infl exible, and is wedded permanently to the PC architecture.
Unix is elegant, fl exible, and can be made to work with any computer architecture. After
all these years, the Unix terminal/host paradigm still works marvelously.

TERMINAL ROOMS AND TERMINAL SERVERS
As I explained, Unix was designed as a multiuser system. This meant that more than one
person could use a computer at the same time, as long as (1) each person had his own
terminal, and (2) that terminal was connected to a host.
 So, imagine a room full of terminals. They are not computers. In fact, they are not
much more than a keyboard, a monitor, and some basic circuitry. At the back of each
terminal is a cable that snakes down into a hole in the fl oor and, from there, makes its
way to an unseen host computer.

FIGURE 3-3: Close-up of a Teletype 33-ASR

A close-up view of a Teletype 33-ASR. Notice the tall, cylindrical keys. A key had to be depressed about
half an inch to generate a character. To the left, you can see the paper tape punch/reader. The tape is
1-inch wide.

Terminal Rooms and Terminal Servers

33614_03_037_054.indd 4333614_03_037_054.indd 43 1/9/2008 12:24:37 PM1/9/2008 12:24:37 PM

Chapter 3

44 Harley Hahn’s Guide to Unix and Linux

 The room is occupied by a number of people. Some of them are sitting in front of a
terminal, typing away or looking at their screens and thinking. These people are using
the same host computer at the same time. Other people are patiently waiting for their
turn. It happens to be a busy time, and there are not enough terminals for everyone.
 The picture I just described is what it was like to use Unix in the late 1970s. At the
time, computers – even minicomputers – were still expensive, and there weren’t enough
to go around. Terminals, however, were relatively inexpensive.

COMPUTER ROOM

CONSOLE

TERMINAL ROOM

HOST COMPUTER

FIGURE 3-4: Terminals in a terminal room

In the late 1970s, when computers were still expensive and terminals weren’t, it was common to see
terminal rooms, in which multiple terminals were connected to the same host.

COMPUTER ROOM COMPUTER ROOM COMPUTER ROOM

TERMINAL ROOM

TERMINAL SERVER

FIGURE 3-5: Terminals connected to a terminal server

In the late 1970s, some organizations could afford to have more than one computer available for their
users. It was common to have all the terminals in the organization connect to a terminal server which
would act as a switch, allowing a user to access any of the host computers from any terminal.

33614_03_037_054.indd 4433614_03_037_054.indd 44 1/9/2008 12:24:37 PM1/9/2008 12:24:37 PM

The Unix Connection

45

 Since Unix was designed to support multiple users, it was common to see TERMINAL
ROOMS fi lled with terminals, each of which was connected to a host. When you wanted
to use the computer, you would go to the terminal room, and wait for a free terminal.
Once you found one, you would log in by typing your user name and password. (We’ll
talk about this process in detail in Chapter 4.)
 This setup is conceptualized in Figure 3-4.
 Some organizations, such as university departments or companies, could afford more
than one host computer. In this case, it only made sense to allow people to use any host
from any terminal. To do so required a TERMINAL SERVER, a device that acted as a
switch, connecting any terminal to any host.
 To use a terminal server, you entered a command to tell it which computer you wanted
to use. The terminal server would then connect you to that host. You would then enter
your user name and password, and log in in the regular manner.
 You can see such a system in Figure 3-5. In this drawing, I have shown only six
terminals and three hosts. This is a bit unrealistic. In large organizations, it was common
to have many tens of terminals, all over the building, connected to terminal servers that
allowed access to a number of different hosts.

THE CONSOLE
Out of all the terminals that might be connected to a host, there is one terminal that is
special. It is the terminal that is considered to be part of the computer itself, and it is used
to administer the system. This special terminal is called the CONSOLE.
 To give you an example, I’d like to return, for a moment, to the late 1970s. We are being
given a tour of a university department, and we see a locked room. Inside the room there is
a PDP-11 minicomputer with a terminal next to it. The terminal is connected directly to the
computer. This is the console, a special terminal that is used only by the system administrator.
(You can see the console in Figure 3-4 above.) Down the hall, there is a terminal room with
other terminals. These terminals are for the users, who access the computer remotely.
 Now, let’s jump forward in time to the present day. You are using a laptop computer
on which you have installed Linux. Although Linux can support multiple users at the
same time, you are the only person who ever uses the computer.
 Do you have a console?
 Yes, you do. Because you are using Unix, you must have a terminal. In this case, your
terminal is built-in: the keyboard, the touch pad, the screen, and the speakers. That is
also your console.
 Typically, the console is used by the system administrator to manage the system. In the
fi rst example, when the system administrator wanted to use the console of the PDP-11,
he would need to go into the computer room and sit down in front of the actual console.
With your laptop, you are the administrator, and there is only one (built-in) terminal.
Thus, any time you use your Linux laptop, whether or not you are actually managing the
system or just doing work, you are using the console.
 Why do you need to know about consoles and regular terminals? There are three
reasons. First, Unix systems have always distinguished between consoles and regular

The Console

33614_03_037_054.indd 4533614_03_037_054.indd 45 1/9/2008 12:24:37 PM1/9/2008 12:24:37 PM

Chapter 3

46 Harley Hahn’s Guide to Unix and Linux

terminals and, when you are learning about Unix and come across a reference to the
“console”, I want you to know what it means.
 Second, if you are a system administrator (which is the case when you have your own
Unix system), there are certain things that can only be done at the console, not from a
remote terminal.
 (Here is an example. If your system has a problem that arises during the boot process,
you can only fi x the problem from the console. This is because, until the system boots,
you can’t access it via a remote terminal.)
 Finally, from time to time, a Unix system may need to display a very serious
error message. Such messages are displayed on the console to ensure that the system
administrator will see them.
 Having said so much about consoles and why they are important, I’d like to pose the
question: Are there computers that don’t have consoles?
 You betcha. There are lots of them. However, before I explain how a system can work
without a console, I need to take a moment to talk about Unix and networks.

THE UNIX CONNECTION
As we have discussed, Unix is designed so that the terminal (that is, the interface) is separate
from the host (the processing unit). This means that more than one person can use the
same Unix system at the same time, as long as each person has his or her own terminal.
 Once you understand this idea, it makes sense to ask, how far apart can a terminal be
from the host? The answer is as far as you want, as long as there is a connection between
the terminal and the host.
 When you run Unix on a laptop computer, the terminal and the host are connected
directly. When you run Unix on a desktop computer, the terminal is connected to the host
by cables. (Remember, the terminal consists of the keyboard, monitor, mouse, speakers,
and microphone.)
 What about a larger distance? Is it possible to connect a terminal to a host over a local
area network (LAN)? Yes, it is.
 For example, let’s say you use a PC that is connected to a LAN on which there are
many computers, three of which are Unix hosts. It is possible to use your PC as a terminal
to access any one of the three Unix hosts. (Of course, before you can use any Unix host,
you must have authorization to use that computer.)
 When you use your computer to connect to a remote Unix host, you run a program
that uses your hardware to EMULATE (act like) a terminal. This program then connects
over the network to the remote host.
 You can do this from any type of computer system: a Windows computer, a Macintosh,
or another Unix computer. Typically, the terminal program runs in its own window, and
you can have as many separate windows as you want.
 For example, you might have three windows open at the same time, each running a
terminal program. Each “terminal” can be connected to a different Unix host over the
network. In this case, you would be working on four computers simultaneously: your
own computer, and the three Unix hosts.

33614_03_037_054.indd 4633614_03_037_054.indd 46 1/9/2008 12:24:38 PM1/9/2008 12:24:38 PM

The Unix Connection

47

 You can see this illustrated in Figure 3-6.
 In Figure 3-6, the network connections between the PC and the three Unix hosts are
via cables, as in a traditional network. However, any type of network connection will do.
In particular, you can use a wireless connection.
 Here is an example. Let’s say you have three geeky friends, Manny, Moe and Jack.
Each of you has a laptop computer that runs Unix. You use Debian Linux; Manny uses
Fedora Core Linux; Moe uses Gentoo Linux; and Jack uses FreeBSD. (Jack always was
a bit odd.)
 You get together for a Unix party (that is, computers, caffeinated drinks, and junk
food), and you decide that each person should have access to the other three computers.
First, each of you creates user accounts on your own computer for the other three people.
(I won’t go into the details here, but it’s not hard.)
 Then, you all use either the iwconfig command or the wiconfig command to
confi gure your computers in such a way as to allow them to connect, wirelessly, into a
small network.
 Once the network is established, you each open three terminal windows on your own
computer. Within each window, you connect to one of the three other computers.
 You now have four people in the same room, each running a different type of Unix on
his laptop computer, each of which also has access to the other three computers. Could
anything be cooler?
 So, we have talked about a terminal directly connected to a host (a laptop computer),
a terminal connected to a host by cables (a desktop computer), a terminal connected to

The Unix Connection

PROGRAM RUNNING
ON REMOTE COMPUTER 1

PROGRAM RUNNING
ON REMOTE COMPUTER 2

PROGRAM RUNNING ON
REMOTE COMPUTER 3

PROGRAM RUNNING
ON LOCAL COMPUTER

FIGURE 3-6: Unix/Linux computer on a local area network

A computer on a local area network, running four terminal programs, each in its own window. Three
of the “terminals” are connected, via the network, to different remote hosts. The fourth “terminal” is
running a program on the local computer.

33614_03_037_054.indd 4733614_03_037_054.indd 47 1/9/2008 12:24:38 PM1/9/2008 12:24:38 PM

Chapter 3

48 Harley Hahn’s Guide to Unix and Linux

a host over a regular LAN, and a terminal connected to a host over a wireless LAN. Can
we go further?
 Yes. By using the Internet to connect a terminal to a host, we can have a connection
that can reach anywhere in the world. Indeed, I regularly use the Net to connect to remote
Unix hosts from my PC. To do so, I open a terminal window and connect to the remote
host. And, as long as I have a good connection, it feels as if I were working on a computer
down the hall.

HOSTS WITHOUT CONSOLES
I mentioned earlier that there are many Unix host computers in the world that are not
connected to terminals. This is because, if a computer can run on its own, without direct
input from a human being, there is no need for a terminal. Such computers are referred
to as HEADLESS SYSTEMS.
 On the Internet, there are many Unix hosts that run just fi ne without terminals. For
instance, there are millions of headless systems acting as Web servers and mail servers,
silently doing their job without any human intervention. Many of these servers are
running Unix, and most of them are not connected to a terminal.
 (A WEB SERVER responds to requests for Web pages and sends out the appropriate
data. A MAIL SERVER sends and receives email.)
 If the need arises to directly control such a host computer – say, to confi gure the
machine or to solve a problem – the system administrator will simply connect to the host
over a network. When the system administrator is done, he simply disconnects from the
host and leaves it to run on its own.
 On the Internet, there are two very common types of hosts that run automatically
without terminals. First, there are the servers, such as the Web servers and mail servers I
mentioned above. We’ll talk about them in a moment.
 Second, there are the ROUTERS: special-purpose computers that relay data from
one network to another. On the Internet, routers provide the connectivity that actually
creates the network itself.
 For example, when you send an email message, the data will pass through a series
of routers on its way to the destination computer. This will happen automatically,
without any human intervention whatsoever. There are millions of routers, all around
the world, working automatically, 24 hours a day, and many of them are Unix hosts
without a console.
 What if there is a problem? In such cases, it is the work of a moment for a system
administrator to open a terminal window on his PC, connect to the router, fi x the
problem, and then disconnect.
 Some large companies with many Unix servers use a different approach. They will
connect the console of every host computer to a special terminal server. That way, when
there is a problem, a system administrator can use the terminal server to log in directly
to the computer that has the problem. I have a friend who once worked at a company
where 95 different Unix hosts were connected to a set of terminal servers that were used
only for system administration.

33614_03_037_054.indd 4833614_03_037_054.indd 48 1/9/2008 12:24:38 PM1/9/2008 12:24:38 PM

The Unix Connection

49

THE CLIENT/SERVER RELATIONSHIP
In computer terminology, a program that offers a service of some type is called a SERVER;
a program that uses a service is called a CLIENT .
 These terms, of course, are taken from the business world. If you go to see a lawyer or
an accountant, you are the client and they serve you.
 The client/server relationship is a fundamental concept, used in both networks and
operating systems. Not only are clients and servers used extensively on the Internet, they
are an important part of Unix (and Microsoft Windows, for that matter). Consider the
following example.
 As I am sure you know, to access the Web you use a program called a BROWSER.
(The two most important browsers are Internet Explorer and Firefox. Internet Explorer
is used more widely, but Firefox is much better.)
 Let’s say you decide to take a look at my Web site (http://www.harley.com).
To start, you type the address into the address bar of your browser and press the Enter
key. Your browser then sends a message to my Web server. (I’m skipping a few details
here.) Upon receiving the request, the Web server responds by sending data back to your
browser. The browser then displays the data for you in the form of a Web page (in this
case, my home page).
 What I have just described is a client/server relationship. A client (your browser) contacts
a server on your behalf. The server sends back data. The client then processes the data.
 Let’s take another example. There are two ways to use email. You can use a Web-based
service (such as Gmail), or you can run a program on your computer that sends and
receives mail on your behalf. I’d like to talk about the second type of service.
 When you run your own email program, it uses different systems for sending and
receiving. To send mail, it uses SMTP (Simple Mail Transport Protocol). To receive mail,
it uses either POP (Post Offi ce Protocol) or IMAP (Internet Message Access Protocol).
 Let’s say you have just fi nished composing an email message, and your email program
is ready to send it. To do so, it temporarily becomes an SMTP client and connects to an
SMTP server. Your SMTP client then calls upon the SMTP server to accept the message
and send it on its way.
 Similarly, when you check for incoming mail, your email program temporarily
becomes a POP (or IMAP) client, and connects to your POP (or IMAP) server. It then
asks the server if there is any incoming mail. If so, the server sends the mail to your client,
which processes the messages appropriately.
 My guess is that, even if you have sent and received email for years, you may have
never heard of SMTP, POP and IMAP clients and servers. Similarly, you can use the Web
for years without knowing that your browser is actually a Web client. This is because
client/server systems generally work so well that the clients and servers are able to do
their jobs without bothering the user (you) with the details.
 Once you get to know Unix and the Internet, you will fi nd that there are clients and
servers all over the place. Let me leave you with three such examples.
 First, to connect to a remote host, you use a client/server system called SSH. (The
name stands for “secure shell”.) To use SSH, you run an SSH client on your terminal, and

The Client/Server Relationship

33614_03_037_054.indd 4933614_03_037_054.indd 49 1/9/2008 12:24:38 PM1/9/2008 12:24:38 PM

http://www.harley.com

Chapter 3

50 Harley Hahn’s Guide to Unix and Linux

your SSH client connects to an SSH server running on the host. Second, to upload and
download fi les to a remote computer, you use a system called FTP (File Transfer Protocol).
To use FTP, you run an FTP client on your computer. Your FTP client connects to an FTP
server. The client and the server then work together to transfer the data according to
your wishes.
 As you become an experienced Unix or Linux user, you will fi nd yourself working
with both these systems. As you do, you will come to appreciate the beauty and power of
the client/server model.
 Finally, you may have heard of Usenet, the worldwide system of discussion groups. (If
you haven’t, go to http://www.harley.com/usenet.) To access Usenet, you run
a Usenet client, called a newsreader. Your newsreader connects to a Usenet server called
a news server. (I’ll explain the names in a minute.)
 All of these examples are different, but one thing is the same. In each case, the client
requests a service from the server.
 Strictly speaking, clients and servers are programs, not machines. However,
informally, the term “server” sometimes refers to the computer on which the server
program is running.
 For example, suppose you are taking a tour of a company and you are shown a room with
two computers in it. Your guide points to the computer on the left and says, “That is our Web
server.” He then points to the other computer and says, “And that is our mail server.”

WHAT HAPPENS WHEN YOU PRESS A KEY?
As you now understand, Unix is based on the idea of terminals and hosts. Your terminal
acts as your interface; the host does the processing.
 The terminal and the host can be part of the same computer, such as when you use a
laptop or a desktop computer. Or the terminal and host can be completely separate from
one another, as when you access a Unix host over a LAN or via the Internet.
 Regardless, the terminal/host relationship is deeply embedded into the fabric of Unix.
Having said that, I want to pose what seems like a simple question: “What happens when
you press a key?” The answer is more complex than you might expect. Let’s say you are
using a Unix computer and you want to fi nd out what time it is. The Unix command

WHAT’S IN A NAME?

Newsreader, News server
The Usenet system of worldwide discussion groups was started in 1979 by two graduate students
at Duke University, Jim Ellis and Tom Truscott. Ellis and Truscott conceived of Usenet as a way
to send news and announcements between two universities in North Carolina (University of
North Carolina and Duke University).
 Within a short time, Usenet spread to other schools and, within a few years, it had blossomed
into a large system of discussion groups.
 Because of its origin, Usenet is still referred to as the NEWS (or sometimes NETNEWS), even
though it is not a news service. Similarly, the discussion groups are referred to as NEWSGROUPS,
the clients are called NEWSREADERS, and the servers are called NEWS SERVERS.

33614_03_037_054.indd 5033614_03_037_054.indd 50 1/9/2008 12:24:38 PM1/9/2008 12:24:38 PM

http://www.harley.com/usenet

The Unix Connection

51

to display the time and date is date. So, you press the four keys: <d>, <a>, <t>, <e>,
followed by the <Enter> key.
 As you press each letter, it appears on your screen, so it’s natural to assume that your
terminal is displaying the letters as you type them. Actually, this is not the case. It is the
host, not the terminal, that is in charge of displaying what you have typed.
 Each time you press a key, the terminal sends a signal to the host. It is up to the host
to respond in such a way that the appropriate character is displayed on your screen.
 For example, when you press the <d> key, the terminal sends a signal to the host that
means “the user has just sent a d character”. The host then sends back a signal that means
“display the letter d on the screen of the terminal”. When this happens, we say that the
host ECHOES the character to your screen.
 The same thing happens when you use a mouse. Moving the mouse or clicking a
button sends signals to the host. The host interprets these signals and sends instructions
back to your terminal. Your terminal then makes the appropriate changes to your screen:
move the pointer, resize a window, display a menu, and so on.
 In most cases, it all happens so fast that it looks as if your keyboard and mouse are
connected directly to your screen. However, if you are using a long-distance connection,
say over the Internet, you may occasionally notice a delay between the time you press the
key and the time you see the character appear on your screen. You may also see a delay
when you move your mouse or press a mouse button and the screen is not updated right
away. We refer to this delay as LAG.
 You might ask, why was Unix designed so that the host echoes each character? Why not
have the host silently accept whatever it receives and have the terminal do the echoing?
Doing so would be faster, which would avoid lag.
 The answer is that when the host does the echoing, you can see that what you are typing
is being received successfully, and that the connection between your terminal and the host
is intact. If the terminal did the echoing and you had a problem, you would have no way of
knowing whether or not your connection to the host was working. This, of course, is most
important when you are using a host that is physically separate from your terminal.
 Aside from dependability, there is another reason why the Unix designers chose to
have the host do the echoing. As I will discuss in Chapter 7, there are certain keys (such as
<Backspace> or <Delete>), that you can press to make corrections as you type. Unix was
designed to work with a wide variety of terminals, and it made sense for the operating
system itself to handle the processing of these keypresses in a uniform way, rather than
expect each different type of terminal to be able to do the job on its own.

What Happens When You Press a Key?

HINT

When you use Unix, the characters you type are echoed to your screen by the host, not by the
terminal. Most of the time, the lag is so small that you won’t even notice it. However, if you
are using a distant host over a slow connection, there may be times when there will be a delay
before the characters you type are displayed on your screen.
 Unix allows you to type ahead many characters, so don’t worry. Just keep typing, and eventually,
the host will catch up. In almost all cases, no matter how long the lag, nothing will be lost.

33614_03_037_054.indd 5133614_03_037_054.indd 51 1/9/2008 12:24:38 PM1/9/2008 12:24:38 PM

Chapter 3

52 Harley Hahn’s Guide to Unix and Linux

CHARACTER TERMINALS AND GRAPHICS TERMINALS
Broadly speaking, there are two classes of terminals you can use with Unix. How you
interact with Unix will depend on which type of terminal you are using.
 Take a moment to look back at Figures 3-2 and 3-3, the photos of the Teletype ASR33.
As we discussed, this machine was the very fi rst Unix terminal. If you look at it carefully,
you will see that the only input device was a rudimentary keyboard, and the only output
device was a roll of paper upon which characters were printed.
 Over the years, as hardware developed, Unix terminals became more advanced. The
keyboard became more sophisticated and a lot easier to use, and the roll of paper was
replaced by a monitor with a video screen.
 Still, for a long time, one basic characteristic of Unix terminals did not change: the only
form of input and output was characters (also called TEXT). In other words, there were
letters, numbers, punctuation, and a few special keys to control things, but no pictures.
 A terminal that only works with text is called a CHARACTER TERMINAL or a
TEXT-BASED TERMINAL. As PC technology developed, a new type of terminal became
available, the GRAPHICS TERMINAL. Graphics terminals had a keyboard and mouse
for input and, for output, they took full advantage of the video hardware. Not only could
they handle text; they could display just about anything that could be drawn on a screen
using small dots: pictures, geometric shapes, shading, lines, colors, and so on.
 Obviously, graphics terminals are more powerful than character terminals. When you
use a character terminal, you are restricted to typing characters and reading characters.
When you use a graphics terminal, you can use a full-fl edged GUI (graphical user
interface), with icons, windows, colors, pictures, and so on.
 For this reason, you might think that graphics terminals are always better than
character terminals. After all, isn’t a GUI always better than plain text?
 This is certainly true for PCs using Microsoft Windows and for Macintoshes. From
the beginning, both Windows and the Macintosh operating systems were designed to use
a GUI; in fact, they depend upon a GUI.
 Unix is different.
 Because Unix was developed in an era of character terminals, virtually all the power
and function of the operating system is available with plain text. Although there are Unix
GUIs (which we will discuss in Chapter 5) and you do need to learn how to use them,
a great deal of what you do with Unix – including everything I teach you in this book
– requires only plain text. With Unix, graphics are nice, but not necessary.
 What does this mean in practical terms? When you use Unix on your own computer,
you will be working within a GUI (using a mouse, manipulating windows, and so on).
This means your computer will be emulating a graphics terminal.
 However, much of the time, you will fi nd yourself working within a window that acts as
a character terminal. Within that window, all you will type is text, and all you will see is text.
In other words, you will be using a character terminal. In the same way, when you connect
to a remote host, you usually do so by opening a window to act as a character terminal.
 When you fi nd yourself working in this way, I want you to take a moment to think
about this: you are using Unix in the same way that the original users used Unix back in

33614_03_037_054.indd 5233614_03_037_054.indd 52 1/9/2008 12:24:38 PM1/9/2008 12:24:38 PM

The Unix Connection

53

the 1970s. What’s interesting is that, over thirty years later, the system still works well.
Most of the time, text is all you need.

THE MOST COMMON TYPES OF TERMINALS
Over the years, Unix was developed to work with literally hundreds of different types of
terminals. Today, of course, we don’t use actual standalone hardware terminals: we use
computers to emulate a terminal.
 I have mentioned the idea of opening a window to emulate a character terminal. In
most cases, the emulation is based on the characteristics of a very old terminal, called
the VT100, which dates from 1978. (The VT100 was made by the Digital Equipment
Corporation, the same company that made the PDP-11 computers we discussed at the
beginning of the chapter.) Although actual VT100s haven’t been used for years, they were
so well-designed and so popular, they set a permanent standard for character terminals.
(You can see an actual VT100 in Figure 3-7 below.)
 Graphics terminals, of course, have a different standard. As you will see (in Chapter 5),
Unix GUIs are all based on a system called X Window, and the basic support for X Window

The Most Common Types of Terminals

FIGURE 3-7: VT100 Terminal

The most popular Unix terminal of all time, the VT100, was introduced in 1978 by the Digital
Equipment Corporation. The VT100 was so popular that it set a permanent standard. Even today,
most terminal emulation programs use specifi cations based on the VT100.

33614_03_037_054.indd 5333614_03_037_054.indd 53 1/9/2008 12:24:38 PM1/9/2008 12:24:38 PM

Chapter 3

54 Harley Hahn’s Guide to Unix and Linux

is provided by a graphics terminal called the X TERMINAL. Today, the X terminal is the
basis of graphics terminal emulation, the same way that the VT100 is the basis of character
terminal emulation.
 Thus, when you connect to a remote host, you have two choices. You can use a
character terminal (the most common choice), in which case you will be emulating a
VT100 or something like it. Or, if you want to use GUI, you can use a graphics terminal,
in which case you will be emulating an X terminal.
 Although I won’t go into the details now, I’ll show you the two commands you will
use. To connect to a remote host and emulate a character terminal, you use the ssh
(secure shell) command. To emulate an X Window graphics terminal, you use the
 ssh -X command.

C H A P T E R 3 E X E R C I S E S

REVIEW QUESTIONS

1. What type of machine was used as the very fi rst Unix terminal and why was it
chosen?

2. What are terminal rooms? Why were they necessary?

3. What is a headless system? Give two examples of headless systems that are used on
the Internet to provide very important services.

4. What is a server? What is a client?

FOR FURTHER THOUGHT

1. In 1969, Ken Thompson of AT&T Bell Labs was looking for a computer to create what,
eventually, became the fi rst Unix system. He found an unused PDP-7 minicomputer,
which he was able to use. Suppose Thompson had not found the PDP-7. Would we
have Unix today?

2. In the 1970s, computers (even minicomputers) were very expensive. Since no one had
their own computer, people had to share. Compared to today, computers in the 1970s
were slow, with limited memory and storage facilities. Today, every programmer
has his own computer with very fast processors, lots of memory, lots of disk space,
sophisticated tools, and Internet access. Who had more fun, programmers in the
1970s or programmers today? How about programmers 20 years from now?

hah33614_c03_037_054.indd 54hah33614_c03_037_054.indd 54 5/20/2009 2:13:42 PM5/20/2009 2:13:42 PM

55

C H A P T E R 4

Starting to Use Unix

The System Administrator

When you take your very fi rst lesson on how to use Unix, what you need to learn depends
on how you will be accessing Unix. Will you be using Unix as part of a shared, multiuser
system, say, at school or on the job? Or do you have a Unix computer of your own, in
which case you will control the computer and be the only user?
 In this chapter, we’ll discuss the fi rst situation: what it’s like to use a Unix system that
is maintained by someone else. I’ll show you how to start and stop a work session, and I’ll
explain the basic concepts, such as system administrators, passwords, userids, users and
superusers. As I explain ideas to you, I will assume that you are using a straightforward
text-based interface.
 In Chapter 5, we’ll talk about the more complex situation, in which you are using your
own Unix system installed on your own computer. In that chapter, we’ll talk about the
ideas underlying a graphical interface.
 What if you are never planning to use Unix as part of a shared system? What if you
will only be using your own computer and a graphical interface? Do you still need to read
this chapter?
 The answer is yes. No matter how you use Unix, the skills and ideas we are going to
cover in this chapter are basic to Unix and important for everyone. (Besides, you don’t
want to miss the story about the Hotdog-bun Boy.)

THE SYSTEM ADMINISTRATOR
In the broadest sense, there are two ways in which you can access a Unix system. First,
you might have your own Unix computer, in which case you are the only user and you
are in charge of managing the system.
 Alternatively, you might use a shared multiuser system – at school or at work – in
which case you will be only one of the users. If this is the case, someone else will be in
charge, so you don’t have to worry about maintaining the system. However, you will have
to follow some rules and work within certain limitations.
 Of course, you may be able to access Unix in both ways. For example, you might use
a shared system at school and your own PC at home.

33614_04_055_072.indd 5533614_04_055_072.indd 55 1/9/2008 12:25:34 PM1/9/2008 12:25:34 PM

Chapter 4

56 Harley Hahn’s Guide to Unix and Linux

 Although having your own Unix computer sounds simpler, it actually isn’t. The truth
is it’s easier to use a shared system. Because you don’t own the system, someone else
manages it for you, which is a very big deal.
 All Unix systems require administration and maintenance. The person who performs
these duties is called the SYSTEM ADMINISTRATOR, often abbreviated as SYSADMIN
or ADMIN. (The old term, not used much anymore, is SYSTEM MANAGER.)
 If the computer you use is owned by an organization – such as a university or a company
– the admin will probably be a paid employee. Indeed, within organizations that have
networks of Unix computers, system administration is a full-time job that calls for a great
deal of specialized knowledge. There may be many admins with a staff of assistants.
 Before the mid 1990s, it was very unusual for someone to have his or her own Unix
computer. Most everyone who used Unix did so by accessing a shared system. Unix
systems were maintained by an organization (usually a school or a company), and there
were rules that all the users were required to follow.
 Most of the time, people accessed Unix remotely, either by using a terminal or by using
a PC to emulate a terminal (see Chapter 3). As such, the most common way to use Unix
was with a text-based interface, using only a keyboard and a monitor (as we will be doing
in this chapter). It was only a minority of users who used Unix with a graphical interface.
 When you have your own personal Unix computer, you are, for better or for worse,
your own admin. At best, administering your system is a highly fulfi lling activity, which
will build your skills and confi dence, making you feel that you are truly in control of your
computing destiny. At worst, you will, at times, feel frustrated and confused.
 To use Unix well, you need to understand a number of basic concepts: the fi le system,
text editors, the shell, and so on, all of which I will teach you in this book. To be an
effective administrator of a large system or a network, you need a lot more. You will have
to master a great many esoteric skills, many of which are, alas, beyond the scope of this
book. To manage your own personal system is a lot easier. All you will need is basic Unix
skills and a thoughtful attitude.
 Regardless, no matter how long it takes to learn to manage your own Unix computer
well, I can assure you that system administration is always a learning experience. (If
nothing else, you will, at least, learn patience.)
 In the meantime, let’s move ahead and see what life is like when someone else is
managing the system for you.

USERIDS AND PASSWORDS
Before you can use a Unix computer, the system administrator must give you a name that
you will use to identify yourself to the system. This name is called your USERID. The
word userid is a contraction of “user identifi cation”, and is pronounced “user-eye-dee”.
 Along with the userid, you will also get a PASSWORD, which you will have to type in
each time you start a work session.
 Once you have permission to use a Unix system, we say that you have an ACCOUNT
on that computer. Even though you aren’t paying real money for your account, Unix will
keep track of how much you use the system. (Unix comes with a lot of built-in accounting,

33614_04_055_072.indd 5633614_04_055_072.indd 56 1/9/2008 12:25:34 PM1/9/2008 12:25:34 PM

Starting to Use Unix

57Logging In (Starting Work With Unix)

which your system administrator can use to keep records of who is doing what.) In
addition, your account will probably come with certain predefi ned limits, such as how
much disk space you are allowed for your fi les, or how many pages you can print.
 If you are a student, one limit you are likely to encounter is an expiration date on
your account. For example, your account may terminate automatically at the end of the
semester, which only makes sense.
 What will your userid be? In most cases, your system administrator will choose a
userid for you. One common method is to base the userid on the person’s real name. For
example, for the name Harley Q. Hahn, the userid might be harley, hahn,hhahn,
harleyh or hqh.
 Alternatively, your userid may refl ect some completely objective criteria. For example,
if you are a student and you are the 25th person in the CS110 class to ask for a Unix
account, you might be assigned the userid cs110-25.
 Each time you start a Unix session, you must enter your userid. From then on, this
name is used by Unix to identify you. For example, when you create fi les, they will not
belong to you; they will be “owned” by your userid. (We’ll talk about this distinction later
in the chapter.)
 It is important to understand that userids are not secret. For example, if you use Unix for
email, your userid will be part of your address. Moreover, at any time, it is easy for anyone
to display all the userids that are currently using the system and – if you know what you are
doing – you can even display a list of all the userids that are registered with the system.
 Security, of course, is important, but it does not require that userids be secret. Rather,
security is maintained by making sure that passwords are secret. In this way, everyone
can fi nd out who else uses the computer, but access to the system is controlled.
 Your password will probably be a meaningless group of characters, such as H!lg%12,
something which is diffi cult for someone else to guess. Later in the chapter, I’ll explain how
to change your password if you don’t like it, and what types of passwords are good to use.

LOGGING IN (STARTING WORK WITH UNIX)
When you sit down in front of your terminal, the process you go through to start work is
called LOGGING IN. Although the idea is simple, the terminology is a bit tricky.
 When we talk about the idea as a verb, we write two words, “log in”. When we express
the same idea as a noun or an adjective, we use a single word LOGIN.
 For example, “In order to log in, you need to learn the login procedure.” Or, “We need
a larger computer. Our current one gets over 500 logins a day; there are too many people
trying to log in at the same time.”
 The actual login process is straightforward. All you need to do is type your userid and
your password. Here is how it works.
 When a Unix program wants you to type something, it displays a PROMPT, a short
message indicating that you must enter input from the keyboard. When Unix wants to
show that it is waiting for you to log in, it displays the following prompt:

login:

33614_04_055_072.indd 5733614_04_055_072.indd 57 1/9/2008 12:25:34 PM1/9/2008 12:25:34 PM

Chapter 4

58 Harley Hahn’s Guide to Unix and Linux

 Unix is saying, “Type your userid and press the <Return> key.”
 Although this seems straightforward, I would like to pause for a moment to answer an
important question: What, exactly, is the <Return> key?
 In Chapter 7, you will learn that Unix uses a set of special keys that do not necessarily
correspond to the exact same physical keys on every keyboard. We’ll talk about the
details then. For now, all I want you to know is that Unix has a special key that you press
to indicate you have fi nished typing a line of input. This key is called the <Return> key.
When you press the <Return> key, it sends Unix a signal called a newline.
 If your keyboard has an actual <Return> key, pressing it will send the newline signal.
(This is the case with a Macintosh.) Otherwise, you send the newline by pressing the
 <Enter> key (which is the case with PCs). Thus, throughout this book, when I tell you to
press <Return>, use either the <Return> key or the <Enter> key, whichever you have on
your particular keyboard.
 Once you have typed your userid and pressed <Return>, Unix asks for your password
by displaying the following prompt:

Password:

 As you type, you will notice that your password is not echoed. This is to prevent
other people from seeing your password if they happen to be looking over your shoulder.
(Remember, in Unix, userids are not secret but passwords are, which is why, when you
log in, userids are echoed but passwords are not.)
 Notice also that, unlike Windows, when you type a password, the system does not
display an asterisk for each character. This means that if someone is watching you, he
not only can’t see your password, but also he doesn’t even know how many characters
you typed.
 After you have typed your password, press <Return> once again. Unix will check to
confi rm the password is valid. If it is, Unix will complete the login process and you will
be ready to start work.
 If either your userid or password was incorrect, Unix will display:

Login incorrect

and let you try again. If you are connecting remotely, some systems will disconnect you
if you log in incorrectly too many times. This is to make it diffi cult for someone who is
trying to break into the system to keep guessing passwords indefi nitely. (Typically, you
get 3-5 tries. The exact number is controlled by the system administrator.)
 As you type your userid and your password, there are three important things I would
like you to remember.

• Be sure not to mix up small letters and capital letters. For example, if your userid is
“harley”, type harley, not Harley.

• Be careful not to confuse the number 0 (zero), with the capital letter O (oh).

• Be careful not to confuse the number 1 (one), with the small letter l (el).

33614_04_055_072.indd 5833614_04_055_072.indd 58 1/9/2008 12:25:35 PM1/9/2008 12:25:35 PM

Starting to Use Unix

59

Before we fi nish this section, I want to point out a curious thing that very few people
notice. On virtually all Unix systems, the login program displays login: with a small
“l” and Password: with a capital “P”. No one knows why.

WHAT HAPPENS AFTER YOU LOG IN?
After you log in successfully, Unix will display some informative messages, followed by
an invitation to enter a command. You can then start your work session by entering one
command after another.
 The informative messages you see will vary, depending on how the system
administrator has confi gured your system. Figure 4-2, for example, has a typical example
from a FreeBSD system:

HINT

Whenever you type a userid, Unix always asks for a password, even if that particular userid is
invalid. This makes it more diffi cult for evil-minded people to guess userids.
 For example, if someone enters the userid harley, he or she will always be asked for a
password, even if there is no such userid registered with the system.
 Of course, this also means that if you mistype your userid or your password, you won’t know
which one was wrong. You will just be told that your login was incorrect.

WHAT’S IN A NAME?

The <Return> key
Today, most keyboards have an <Enter> key, not a <Return> key. Why, then, does Unix use the
name <Return>?
 The use is traditional. As I explained in Chapter 3, for many years Unix was accessed
from terminals, not from PCs, and it happened that all terminals had a <Return> key. Even
though there are now countless PC keyboards with <Enter> keys, the Unix terminology has
not changed.
 The name “Return” comes from typewriters. In the olden days, the part of a mechanical
typewriter that held the paper was called the “carriage”. Each time you put in a new piece of
paper, the carriage would start at the far right. As you typed, the carriage would move to the left
one character at a time.
 When you came to the end of a line, you would use your left hand to push a lever that would
move the carriage back to the right. At the same time, the lever would also move the paper up
one line. In this way, the paper would be positioned at the start of a new line.
 The fi rst Unix terminals were Teletype ASR33 machines (see Chapter 3). Unlike typewriters,
they did not have a movable carriage. However, while printing text, changing from the end of
one line to the beginning of the next did involve two separate motions. These motions were
analogous to what happened when you pushed the lever on a typewriter, so they were described
using typewriter terminology and referred to as CARRIAGE RETURN and LINEFEED. (These
two terms are still important in the world of Unix, and you will meet them time and again.)
 Figure 4-1 shows a photo of the Teletype ASR33 keyboard. Notice that there is both a
 <Linefeed> key and a <Return> key. This is why, to this day, Unix still refers to the key that
terminates a line of text as the <Return> key.

What Happens After You Log In?

33614_04_055_072.indd 5933614_04_055_072.indd 59 1/9/2008 12:25:35 PM1/9/2008 12:25:35 PM

Chapter 4

60 Harley Hahn’s Guide to Unix and Linux

 The fi rst line shows us the last time we logged into this computer using the current
userid. At the end of the line, we see ttyp1, which is the name of the terminal that was
used at the time.
 Whenever you log in, take a minute to check this line; it is here for security reasons. If
the time you see is more recent than you remember, someone else may have been using
your account without your permission. If so, change your password immediately. (I’ll
explain how to do so later in the chapter.)
 The next three lines contain copyright information. As you will recall from Chapter 3,
FreeBSD is based on work done at U.C. Berkeley, so it is understandable that the University
of California is named as the copyright holder.
 The second to last line shows we are using FreeBSD version 4.9. The date and time
show that the kernel was “built” – that is, generated – on March 8, 2006 at 4:26 PM. (Unix
uses a 24-hour clock.)
 Finally, the last line is a welcome greeting put there by a friendly FreeBSD programmer.
 What happens after the login message is displayed depends, in part, on how your
system was set up. As part of the login process, Unix executes a list of predefi ned
commands that are kept in special initialization fi les. Some of these fi les are controlled
by the system administrator, so he can ensure that specifi c tasks are carried out each time
someone logs in. For example, he may want to display a specifi c message to all the users
whenever they log in.

FIGURE 4-1: Keyboard of the Teletype ASR33

The keyboard of the Teletype ASR33, the very fi rst device used as a Unix terminal. Notice the <Linefeed>
and <Return> keys (on the far right of the second row).

33614_04_055_072.indd 6033614_04_055_072.indd 60 1/9/2008 12:25:35 PM1/9/2008 12:25:35 PM

Starting to Use Unix

61

 Aside from the general initialization fi les, each userid has its own personal initialization
fi les which can be customized. The fi rst time you log in, your initialization fi les will
contain whatever default commands your system administrator has put in it. As you
become more experienced, you can modify these fi les to suit your preferences. For
example, you might have Unix execute a certain program each time you log in.
 We’ll talk about these fi les in Chapter 14, after we discuss the details and basic
concepts involved in using the shell. (As I mentioned in Chapter 2, the shell is the
program that reads and processes your commands.)

GETTING DOWN TO WORK: THE SHELL PROMPT
Once the initialization commands have fi nished executing, you are ready to start work. Unix
will start the shell and pass control to it. The shell will then display a prompt – called the
SHELL PROMPT – and wait for you to enter a command. To do so, you type the command
and press the <Return> key. The shell will then process the command appropriately, usually
by running a program.
 For example, if you enter the command to start your email program, the shell will
see that the program starts properly and will give it control. When the email program
terminates, control will return to the shell, which will display a new prompt and wait for
another command.
 Eventually, when you have no more commands to enter, you will end your work
session by logging out (explained below), at which time the shell will stop running.
 It is very important to know when the shell is waiting for you to enter a command. For
this reason, the shell prompt is chosen to be particularly distinctive.
 Within the world of Unix, there are many different shells, and the actual prompt
depends on which shell you are using. The three most popular shells are (in this order)
Bash, the C-Shell, and the Korn Shell. I’ll talk about each of them in detail later in the
book (Chapters 12-14). For now, all I want you to know is what the basic shell prompt
looks like for each particular shell.
 For Bash and for the Korn shell, the prompt is a dollar sign:

$

Last login: Sat Jun 28 17:02:18 on ttyp1

Copyright 1980, 1983, 1986, 1988, 1990, 1991, 1993, 1994
The Regents of the University of California.
All rights reserved.

FreeBSD 4.9-RELEASE: Wed Mar 8 16:26:07 PDT 2006

Welcome to FreeBSD!

Figure 4-2: Login Messages

After you login successfully, you will see welcome messages. In this example, we see typical messages
displayed by a FreeBSD system.

Getting Down to Work: The Shell Prompt

33614_04_055_072.indd 6133614_04_055_072.indd 61 1/9/2008 12:25:35 PM1/9/2008 12:25:35 PM

Chapter 4

62 Harley Hahn’s Guide to Unix and Linux

For the C-Shell, the prompt is a percent sign:

%

 If your system administrator has customized your environment, the prompt may be
somewhat different. For instance, it may show the name of the machine you are logged
into such as:

nipper$

 In this case, the prompt shows us that we are logged into the machine called nipper.
As you get more advanced, you can customize your shell prompt in many different ways.
However, one thing that you should never change is the very last character of the prompt
(the $ or the %). This character is a reminder that the shell is running and that it is
waiting for you to type in a command. And, because the various shells use different
prompts, this character is also a reminder of what shell you are running. (It is true that
both Bash and the Korn shell use the $ prompt, but it’s not diffi cult to remember which
shell you are using so, for practical purposes, there is no real ambiguity.)
 Regardless of which shell you are using, once you see the prompt, you can type any
command you want and press the <Return> key. If you are logging in for the fi rst time
and you would like to practice, try the date command to display the time and date;
the whoami command to display your userid; or the who command to display the
userids of all the people who are currently logged in. If you want to snoop a bit more,
try the w command. It tells you who is logged in and what they are doing.

LOGGING OUT (STOPPING WORK WITH UNIX): logout, exit, login
When you are fi nished working with Unix, you end your session by LOGGING OUT.
(When we refer to this idea as a noun or adjective, we use a single word, LOGOUT.) You
log out to tell Unix that you are fi nished working under the current userid. Once your
logout is complete, Unix will stop your shell and end your work session.
 It is important that you never forget to log out when you are fi nished working with a
Unix system. If you were to just pick up and leave with your terminal (or computer) logged
in, anyone could come by and use the Unix system under the auspices of your userid.
 At the very least, you run the risk of someone fooling around under your userid. At the
other extreme, some mischievous person might erase fi les (including yours) and cause
all types of trouble. If this happens, you will bear some responsibility: leaving a terminal
logged in in a public place is like leaving your car unlocked with the keys in the ignition.
 There are several ways to log out. First, you can wait until you see the shell prompt
and then press <Ctrl-D>. (Hold down the <Ctrl> key and press the <D> key at the
same time.)
 When you press <Ctrl-D>, it sends a signal called eof or “end of fi le”. Essentially, this
tells the shell that there is no more data coming. The shell terminates, and Unix logs you
out. (We will discuss the Unix keyboard in detail in Chapter 7.)
 As you will fi nd out later, the end-of-fi le signal has other uses, and it is altogether possible
that you might press <Ctrl-D> once too often and inadvertently log yourself out.

33614_04_055_072.indd 6233614_04_055_072.indd 62 1/9/2008 12:25:35 PM1/9/2008 12:25:35 PM

Starting to Use Unix

63

 For this reason, there is a safeguard. Most shells have a way for you to specify that you
do not want to log out by pressing <Ctrl-D>. Rather, you must enter a special command.
In this way, it is impossible to log out accidentally.
 It may be that your system administrator has set up your system so that, by default,
you cannot log out by pressing <Ctrl-D>. If this is the case, you must use one of the
specifi c logout commands. They are logout and exit.
 To fi nd out how you must log out with your system, try pressing <Ctrl-D>. If it works,
fi ne. If not, your shell was set up to ignore <Ctrl-D>, and you may see a message like this:

Use "logout" to logout.

In this case, use the logout command. (Type “logout” and press the <Return> key.) If,
instead, you see a message like this:

Use "exit" to logout

you will need to use the exit command.
 One fi nal way to log out is to use the login command. This tells Unix to log you out
and then get ready for a new person to log in. After you are logged out, Unix will ask for
a new userid by displaying the original prompt:

login:

This command is handy if you want to log out but leave your computer or terminal ready
for someone else to log in.

UPPER- AND LOWERCASE
Unix distinguishes between small letters and capital letters. For example, when we
discussed possible userids, I used the examples harley and hahn, both of which start
with a small “h”. At the same time, I suggested a possible password, H!lg%12, which
contains two small letters and one capital letter.
 Some operating systems are designed to ignore the differences between small and
capital letters, a notable example being Microsoft Windows. Unix (which is much older)
was written to be more precise.
 For convenience, we refer to small letters as LOWERCASE and capital letters as
UPPERCASE. The names come from typewriter terminology. When you use an old-

HINT

On some systems, the login command will not disengage you completely. Instead, login
will change the userid temporarily but, offi cially, you will still be logged in under your original
name. When the new person logs out, he will fi nd himself back in your original session.
 If this is the case on your system, you should not use login because it could allow someone
else to end up logged in under your userid.
 You can fi nd out how your version of login works by testing it. Enter the login command.
Then log in and log out, and see if you are back in your original session. If so, it is not safe to use
login for logging out. Use logout or exit instead.

Upper- and Lowercase

33614_04_055_072.indd 6333614_04_055_072.indd 63 1/9/2008 12:25:35 PM1/9/2008 12:25:35 PM

Chapter 4

64 Harley Hahn’s Guide to Unix and Linux

fashioned typewriter, pressing the <Shift> key moves the “upper” case into position to
print capital letters.

 Within Unix, when you type names or commands, you must be sure to be exact. For
example, if your userid is harley, you must type all lowercase letters when you log in.
If you type Harley, Unix considers it to be an entirely different userid. Similarly, when
you log out, you must type logout, not Logout.
 When a program or an operating system distinguishes between upper- and lowercase,
we say that it is CASE SENSITIVE. Thus, we can say that Unix is case sensitive, and
Windows is not.
 Since Unix considers uppercase letters to be different from lowercase letters (as,
indeed, they are), it is possible for a system administrator to assign two different userids
that differ only in the case of the letters, for example, harley and Harley. In practice,
however, you would never see such userids, because it would be too confusing. In fact, it
is the custom to use only lowercase letters for userids.
 In order to maintain scrupulous accuracy in this book, I will not capitalize
command names, even when they come at the beginning of a sentence. For example:
“logout, exit and login are three commands that you can use to log out.”
 Please appreciate that the distinction between upper- and lowercase applies only
when you are logging in and entering Unix commands. When you use a program that
works with regular textual data – for example, if you are using a word processor to create
a document – you type in the regular manner.

A SAMPLE SESSION WITH UNIX
Figure 4-3 shows a short session with Unix. This example was created using a shared
system on which several userids were logged in at the same time.
 The session starts by logging in using userid harley. Notice that Unix does not echo
the password.
 After the userid and password are accepted, the Unix system identifi es itself. In this
example, you can see that we are using Linux on a computer named weedly.
 The rest of the numbers show information about the kernel. The version of the kernel
is 2.6.22-14-generic; it was built on June 24 at 4:53 PM. (Remember, Unix uses a
24-hour clock.)
 Next come two messages regarding Ubuntu, which is the name of this particular
Linux distribution.
 After the Ubuntu messages is a line showing the last time we logged in under the same
userid. The login was on September 20 at 8:33 AM, and the connection was made from
a computer named nipper.harley.com.

HINT

The idea of upper- and lowercase applies only to the letters of the alphabet, not to punctuation,
numbers or any special characters.

33614_04_055_072.indd 6433614_04_055_072.indd 64 1/9/2008 12:25:35 PM1/9/2008 12:25:35 PM

Starting to Use Unix

65

 Finally, the preliminaries are over, and we are presented with the shell prompt. In this
case, the prompt is confi gured to display the name of the userid (harley), the name of
the computer (weedly), and the $ character.
 The $ indicates that we are using Bash for our shell, and that the shell is ready for us
to enter a command.
 We enter the date command, which displays the current time and date. (Unix does
have a time command, but it does not display the time. Rather, it times how long it
takes to execute a specifi ed command.)
 After the date command has displayed its output, we see the shell prompt again.
We then enter the who command. This displays a list of all the userids that are currently
logged in to the system.
 The fi rst column shows the userids. Notice that tammy (who happens to be the
system administrator) is logged in from two terminals.
 The second column – tty1, pts/0, pts/1, and so on – are the names of the
terminals that are in use.
 The third column shows the time that the userid logged in.

A Sample Session With Unix

login: harley
Password:

Linux weedly 2.6.22-14-generic Tue Jun 24 16:53:01 2008

The programs included with the Ubuntu system are free
software; the exact distribution terms for each program
are described in the individual files in
/usr/share/doc/*/copyright.

Ubuntu comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.

Last login: Sat Sep 20 08:33:17 from nipper.harley.com

harley@weedly:$ date
Mon Sep 29 10:34:36 PDT 2008

harley@weedly:$ who
tammy tty1 Sep 28 21:25
linda pts/0 Sep 29 07:13 (static)
tammy pts/1 Sep 29 09:31 (coco)
casey pts/2 Sep 29 10:07 (luna)
alex pts/4 Sep 29 10:27 (alpha.taylored-software.com)
harley pts/3 Sep 29 10:34 (nipper.harley.com)

harley@weedly:$ logout
Connection to weedly.wordsofwonder.net closed.

FIGURE 4-3: Sample Unix work session

33614_04_055_072.indd 6533614_04_055_072.indd 65 1/9/2008 12:25:35 PM1/9/2008 12:25:35 PM

Chapter 4

66 Harley Hahn’s Guide to Unix and Linux

 The fi nal column shows the computers from which the users logged in. The fi rst three
computers (static, coco, luna) are on the same network as weedly. The last two
are on remote networks, which is why we are shown longer names.
 After the who command fi nishes, we see another shell prompt. We type the logout
command, ending the session.
 As I mentioned, userid tammy is logged in twice. Unix allows you to log in as many
times as you want without logging out. However, you would normally use only one
terminal at a time. In our example, tammy is the system administrator, so it’s okay.
 However, if you ever enter the who command and see yourself logged in to more
than one terminal, you should fi gure out what is happening. You may have inadvertently
fi nished a previous work session without logging out. Or, you may be running more than
one X session (see Chapter 6), and each such session shows up as a separate terminal.
Alternately, the explanation may not be so benign: someone may be using your userid
without your permission.

CHANGING YOUR PASSWORD: passwd
When your Unix account is set up, the system administrator will assign you a userid and
a password. System administrators usually have their own ways of organizing things, and
you may not be able to get the userid you want.
 For example, you may want to use your fi rst name as a userid, but the system
administrator may have decided that all userids should be last names. Don’t fi ght with
your system administrator. He or she has a great deal of responsibility – Unix systems are
hard to manage – and is probably massively overworked.
 You can change your own password. Indeed, some system administrators use a facility
called PASSWORD AGING to force you to change your password regularly for security
reasons. (Password aging may also be used to prevent you from changing your password
too often.) For example, you might be required to change your password every 60 days.
If your system has password aging and your password has expired, you will be notifi ed
when you log in. You will then be forced to select a new password.
 Aside from password aging, you can change your password voluntarily whenever you
want (as long your system manager has no restrictions). To change your password, use
the passwd command.
 Once you enter the command, passwd will ask you to enter your old password.
This proves you are authorized to make the change. Otherwise, anyone who walks by a
terminal or computer that was left logged in could change your password.
 Next, passwd will ask you to type the new password. Some systems require all
passwords to meet certain specifi cations. For example, your password may need to be at
least eight characters. If your new password does not meet the local criteria, you will be
so informed and asked to enter a new choice.
 Finally, passwd will ask you to retype the new password. Entering your new password
a second time ensures that you did not make a mistake.
 As you type the password, the characters will not be echoed. This prevents anyone
from reading your new password over your shoulder.

33614_04_055_072.indd 6633614_04_055_072.indd 66 1/9/2008 12:25:36 PM1/9/2008 12:25:36 PM

Starting to Use Unix

67

CHOOSING A PASSWORD
The reason we use passwords is to make sure that only authorized people are able to
access Unix accounts. As you might imagine, there are always a number of bright people
who take pleasure in trying to break into a system. Such people are called CRACKERS.
(Note: You will often see troublemakers referred to as hackers. There is a difference,
which I will explain below.)
 Some crackers want only to match wits against the Unix security system to see if they
can log in on the sly. Other crackers enjoy causing real damage.
 Thus, it behooves you to (1) never tell your password to anyone, and (2) choose a
password that is not easy to guess. Remember, if you give your password to someone who
damages the computer system, you are responsible.
 When you fi rst get your Unix account, the system administrator will choose a
password for you. Whenever you want, you can use the passwd command to change
your password.
 The rules for choosing a password are actually guidelines for what not to choose:

• Do not choose your userid (such as harley), or your userid spelled backward
(yelrah). This is like hiding the key to your house under the mat.

• Do not choose your fi rst or last name, or any combination of names.

• Do not choose the name of a loved one or friend.

• Do not choose a word that is in the dictionary, any dictionary.

• Do not choose a number that is meaningful to you, such as a phone number, important
date (such as a birthday), social security number and so on.

• Do not choose a password that is even remotely related to Harry Potter, Star Wars,
Monty Python, The Hitchhiker’s Guide to the Galaxy, or any other part of the
popular culture.

• Do not choose a keyboard sequence, such as 123456, qwerty, or 1q2w3e4r.
There are password-guessing programs that look for this type of pattern.

WHAT’S IN A NAME?

passwd
To change your password, you use the passwd command. Obviously, passwd is a contraction
of “password”, so why isn’t the command named password?
 The answer is that Unix people like short names. As you learn Unix, you will encounter this
tradition repeatedly. For example, the command to list your fi les is ls; the command to copy
fi les is cp; and the command to show the status of processes (programs that are running) is ps.
There are many more such names.
 At fi rst, leaving out a few letters seems unnecessary and even a bit odd, but once you get used
to it, you will fi nd the brevity to be comfortable.

Choosing a Password

33614_04_055_072.indd 6733614_04_055_072.indd 67 1/9/2008 12:25:36 PM1/9/2008 12:25:36 PM

Chapter 4

68 Harley Hahn’s Guide to Unix and Linux

• Do not use the password fred. Many people pick this password because it’s easy to
type, but it’s also one of the fi rst ones a cracker will try.

In addition, there are several routine precautions you should practice:

• Never write down your password on a piece of paper. (Someone is bound to fi nd it
after you lose it.)

• Change your password regularly (once a month works well).

 Within the cracker community, there are programs that exist to guess passwords.
Such programs not only make intelligent guesses (such as your fi rst name, last name and
so on), but they use large lists of probable passwords to see if any of them will work. For
example, there are lists of dictionary words, fi rst and last names, movie actors, movie
titles, Internet addresses, U.S. zip codes, and much, much more, including words from
foreign languages.
 Thus, if you think of an idea that is well-known and amusing, chances are that the
crackers have been there ahead of you. This is especially true for passwords that relate
to popular movies, books, and TV shows. For example, if you are a college student, both
Star Wars and Monty Python were cool long before you were born, and there is probably
no name or term that you could use that is not in a widely distributed cracker’s list.
 Password cracking programs are far more successful than you would imagine, so
protect yourself (and your fi les) by choosing wisely. The best idea is to make up a pattern
of meaningless characters. For good measure, mix in uppercase, lowercase, numbers
and punctuation. (Some systems will force you to use such mixtures.) As an example,
consider the password H!lg%12, which I used earlier in the chapter. Such a password
would be hard to guess.
 If you suspect that someone knows your password, change it right away. If you are
using a shared system and you forget your password, all you need to do is tell your system
administrator. He or she can assign you a new password without knowing the old one.
You can then change the new password to whatever you want.
 An ideal password is one you can remember without writing down, but that no one
will ever guess and that will never appear on a cracker’s word list. One good idea is to
start with a phrase or sentence that makes sense to you and create an abbreviation. Here
are some examples:

dontBL8 ("Don’t be late")
tHd-bBic (the Hotdog-bun Boy* is cool)
2b||~2b (for C programmers: "To be or not to be")
wan24NIK8? (random meaningless phrase)

 *The Hotdog-bun Boy came home from school one day. His mother looked at him and said, “You look so unhappy. Did
something go wrong in school today?”
 “Yes,” he answered. “I hate history class.”
 “Why is that?” asked the Hotdog-bun Boy’s mother.
 “Because we read and read, and we listen to the teacher talk, and we have to memorize so many facts, but we never learn
anything about Hotdog buns.”
 “Now son,” said the mother, “how many times do I have to tell you? History is written by the wieners.”

hah33614_c04_055_072.indd 68hah33614_c04_055_072.indd 68 5/20/2009 2:15:46 PM5/20/2009 2:15:46 PM

Starting to Use Unix

69

You get the idea. Just be sure that, in the excitement of creating a totally cool password,
you resist the temptation to tell someone just to show off how clever you are.

CHECKING IF SOMEONE HAS BEEN USING YOUR UNIX ACCOUNT: last
Whenever you log in, look carefully at the initial message; most systems will tell you
the time and date you last logged in. If you don’t remember logging in at this time,
somebody might be using your account.
 To check further, you can use the last command. Simply enter last followed by
your userid. For example, if you are logged in as harley, enter:

last harley

You will see some information telling you the last time, or last several times, you logged
in. If you accidentally enter the command without a userid:

last

you will see information about all the userids on the system. This may go on for some
time, so if you want to terminate the command, press <Ctrl-C>. (Hold down the <Ctrl>
key and press <C> at the same time.)
 You might think it would be fun to enter the last command without a userid and
spy on all the other people by seeing when they logged in. Well, you can if you want, but
it gets boring real fast. If you have nothing to do, you will probably have more fun using
one of the programs I describe in Chapter 8.

WHAT’S IN A NAME?

Hacker, Cracker
There are two types of people who spend a lot of time programming: hackers and crackers.
A HACKER is someone who spends his or her time working on useful (or at least benign)
programming projects.
 The word HACK is often used as a verb to indicate a larger-than-life devotion to programming.
For example, “Elmo spent all weekend hacking at his fi le-sharing program.”
 Thus, the term “hacker” is often used in a positive sense, to describe someone who is capable
of massive amounts of nerd-like effort. Similarly, “hacker” also refers to a clever person who
knows how to utilize a computer to solve problems creatively.
 Hackers are socially useful people, though rarely cool. The most fi nancially successful hacker
in the world is Bill Gates.
 A CRACKER is a bad guy: someone who enjoys breaking into computer systems and
doing things that people in authority do not want him to do. (Notice I say “him”. For some
reason – perhaps a genetic defi ciency – virtually all crackers are male.)
 A cracker is someone you would not want your sister to marry. A hacker in the family
would be okay. It’s just that everyone would receive their wedding invitations by email and,
during the honeymoon, you would receive a daily email update of what the happy couple is
doing, along with a Web address where you can fi nd the latest photos of their trip and updated
blog entries.

Checking If Someone Has Been Using Your Unix Account: last

33614_04_055_072.indd 6933614_04_055_072.indd 69 1/9/2008 12:25:36 PM1/9/2008 12:25:36 PM

Chapter 4

70 Harley Hahn’s Guide to Unix and Linux

USERIDS AND USERS
A USER is a person who utilizes a Unix system in some way. However, Unix itself does
not know about users: Unix knows only about userids.
 The distinction is an important one. For example, if someone logs in using your
userid, Unix has no way of knowing whether or not it is really you (which is why you
need to protect your password).
 In the world of Unix, only userids have a real identity. Userids, not users, own fi les,
run programs, send email, log in, and log out. This means that if someone is able to log in
using your userid, he will have the same rights as you do. He will be able to change your
fi les, send email under your name, and so on.
 Earlier in this chapter, we saw a sample session in which we used the who command
to fi nd out who was logged in. Figure 4-4 shows the output from that command.
 Notice that you see only userids, not people’s names. This is because Unix systems are
populated by userids, not users.

THE SUPERUSER USERID: root
Within Unix, all userids are more or less equal, with one notable exception.
 From time to time, it becomes necessary for the system administrator to have special
privileges. For example, he or she may need to add a new user to the system, change
somebody’s password, update some software, and so on.
 Toward this end, Unix supports a special userid, called root, that has extraordinary
privileges. A person who has logged in using the root userid is allowed to do anything
he or she wants. (Obviously, the root password is a closely guarded secret.) When
someone logs in as root, we refer to him or her as the SUPERUSER.
 At fi rst, the name root may not make any sense. However, in Chapter 23, you will see
that the basis of the entire Unix fi le system is called the “root directory”. Thus, the name
root refers to a very important part of Unix.
 Most of the time, the system administrator will use his regular userid for regular work
and will change to superuser only to do work that requires special privileges. Once the
special job is done, the system administrator will change back to his regular userid. This
prevents the power of the superuser from causing damage inadvertently.
 For example, if you make a mistake entering the rm (remove) command, it is possible
to erase fi les accidentally. If you are logged in under your own userid, the worst that you

$ who
tammy tty1 Jun 28 21:25
tlc pts/0 Jun 29 07:13 (static)
tammy pts/1 Jun 29 09:31 (coco)
casey pts/2 Jun 29 10:07 (luna)
harley pts/3 Jun 29 10:52 (nipper.harley.com)
alex pts/4 Jun 29 14:39 (thing.taylored-soft.com)

FIGURE 4-4: Output of the who command

33614_04_055_072.indd 7033614_04_055_072.indd 70 1/9/2008 12:25:36 PM1/9/2008 12:25:36 PM

Starting to Use Unix

71

can do is erase your own fi les. If you are logged in as root, an ill-formed rm command
could create widespread damage by erasing fi les all over the system.

HAVING FUN WHILE PRACTICING SAFE COMPUTING
From its early days , Unix was designed for people working together who needed to share
programs and documents, and who enjoyed helping one another. The basic design of the
system assumes that everybody is honest and of good will. Even modern Unix, with its
passwords and security measures, is not 100 percent bulletproof, nor is it meant to be.
People who use Unix are supposed to respect other users.
 Since Unix is so complex, there are always a few crackers who get a kick out of trying
to beat the system. In some environments, young programmers who fi gure out how to
break into a system and perform clandestine acts are tolerated, perhaps even admired for
their ingenuity.
 Not so in the Unix community. Crackers and troublemakers are tracked down and
punished. For example, I mentioned earlier that there exist programs that are used to
guess people’s passwords. In some schools, just being caught running such a program is
grounds for immediate expulsion.
 However, the wonderful thing about Unix is that there are so many challenging and
pleasant diversions. It is unlikely that you (as one of my readers) will ever become bored
enough to get into real mischief. Nevertheless, if you are ever so tempted, please remember
that system administrators are always overworked, and they have little patience with
willful people who create unnecessary trouble.
 If you fi nd that you like Unix and you do have extra time on your hands, you can
get a great deal of pleasure out of teaching and helping other people, two of the most
important Unix traditions.

HINT

When the shell is ready to accept a command from you, it displays a prompt. The fi nal character
of the prompt shows you which shell you are using. For example, the Korn shell and Bash use a
$ character . The C-Shell uses a % character.
 Regardless of which shell you are using, when you log in as superuser, your prompt will change
to the # character. When you see the # prompt, be careful: the superuser has a lot of power.

Having Fun While Practicing Safe Computing

33614_04_055_072.indd 7133614_04_055_072.indd 71 1/9/2008 12:25:36 PM1/9/2008 12:25:36 PM

Chapter 4

72 Harley Hahn’s Guide to Unix and Linux

C H A P T E R 4 E X E R C I S E S

REVIEW QUESTIONS

1. What is the difference between a user and a userid?

2. What are four different ways to log out?

3. You suspect that someone has been using your Unix account without your permission.
How do you check to see if this is the case? Suppose you fi nd out someone has been
using your account, but you don’t know who it is. How do you stop them?

4. What is the userid of the superuser?

APPLYING YOUR KNOWLEDGE

1. Being able to change your password is a basic skill you must master before you start
using Unix. Whenever you change your password, you should immediately test to
make sure it works properly. Use passwd to change your password to dontBL8
(“Don’t be late”). Log out and back in again to make sure it works. Then change your
password back to what it was originally. Test again to make sure it worked.

FOR FURTHER THOUGHT

1. Unix is case sensitive; that is, it distinguishes between lower case (small letters) and
upper case (capital letters). Microsoft Windows is not case sensitive. For example, in
Unix, harley and Harley are two completely different names. With Windows,
they are the same. Why do you think the original Unix developers chose to make Unix
case sensitive? Why did Microsoft choose to make Windows case insensitive? Which
do you prefer, and why?

2. When you use passwd to change your password, the program requires you to type
the new password twice. Why?

3. Why is it important to have a superuser?

33614_04_055_072.indd 7233614_04_055_072.indd 72 1/9/2008 12:25:36 PM1/9/2008 12:25:36 PM

73

C H A P T E R 5

GUIs: Graphical User
Interfaces

What Is A GUI?

There are two ways in which you can interact with Unix: you can use a text-based interface
or you can use a graphical interface. In Chapter 4, I introduced you to using Unix by
explaining what it is like to use a shared system that has a text-based interface. In this
chapter, I am going to explain graphical interfaces: what they are, how and why they were
developed, and which ones are in common use today. In Chapter 6, we’ll talk about both
types of interfaces, and I’ll show you the details of how to manage your work sessions.
 Before we do, I want to introduce you to the basic concepts about graphical interfaces:
how to think about them and their place in the Unix universe. Along the way, I have a
few treats for you: a few jokes you will probably get; one joke you probably won’t get; a
true/false test to see if you are a KDE or a Gnome person (you’ll see); and some sound
advice on how to create a Grandmother Machine.

WHAT IS A GUI?
A GRAPHICAL USER INTERFACE or GUI is a program that allows you to interact with
a computer using a keyboard, a pointing device (mouse, trackball or touchpad), and a
monitor. Input comes from the keyboard and the pointing device; output is displayed
on the monitor. The design of the interface is such that it uses not only characters but
windows, pictures and icons (small pictures), all of which you can manipulate.
 When it comes to displaying information, there are, broadly speaking, two types of
data, text (characters) and graphics (images), hence the name graphical user interface.
Both Microsoft Windows and the Macintosh use GUIs, so I am sure you are familiar with
the idea.

HINT

When you talk about GUIs, there are two ways to pronounce “GUI”: either as three separate
letters “G-U-I”, or as a word in itself, “gooey”.
 Choose whichever pronunciation best fi ts your temperament and your audience. (I’m a
“G-U-I” man, myself.)

33614_05_073_092.indd 7333614_05_073_092.indd 73 1/9/2008 12:29:47 PM1/9/2008 12:29:47 PM

Chapter 5

74 Harley Hahn’s Guide to Unix and Linux

 Because of cultural inertia, most GUIs today follow the same basic design. Compared
to Windows and the Mac, when you take a look at the various Unix GUIs, you will see
some important differences. Perhaps the most basic one is that, in the world of Unix, no
one believes that one size fi ts all. As a Unix user, you have a lot of choice.
 To work with a GUI, there are several basic ideas you need to understand and several
skills you have to master. First, you need to learn to use two input devices cooperatively:
the keyboard and a pointing device.
 Most people use a mouse but, as I mentioned above, you may also see trackballs,
touchpads, and so on. In this book, I will assume that you are using a mouse, but the
differences are minor. (I prefer a trackball, by the way.)
 Typically, as you move the mouse, a pointer on the screen follows the motion. This
pointer is a small picture, often an arrow. With some GUIs, the pointer will change as you
move from one region of the screen to another.
 Pointing devices not only move the on-screen pointer, but they also have buttons for
you to press. Microsoft Windows requires a mouse with two buttons; the Mac requires
only a single button. Unix GUIs are more complex. Most of them are based on a system
called X Window (explained in detail below). X Window uses three mouse buttons,
although it is possible to get by with two.
 By convention, the three buttons are numbered from left to right. Button number 1 is
on the left, number 2 is in the middle, and number 3 is on the right. GUIs are designed so
that you use button 1, the left button, most often. This is because, if you are right-handed
and the mouse is on your right, the left button is the easiest one to press (using your right
index fi nger). If you are left-handed, it is possible to change the order of the buttons, so
you can move the mouse to your left and use it with your left hand.
 With a GUI, the screen is divided into a number of bounded regions called
WINDOWS. As with real windows, the boundary is usually, but not always, a rectangle.
Unlike real windows, GUI windows can overlap on the screen, and you can change their
sizes and positions whenever you want. (You can see this in Figures 5-3 and 5-4 later in
the chapter.)
 Each window contains the output and accepts input for a different activity. For
example, you might be using fi ve different windows, each of which contains a different
program. As you work, it is easy to switch from one window to another, which allows
you to switch back and forth from one program to another. If you don’t want to look at
a window for a while, you can shrink it or hide it, and when you are fi nished with it, you
can close it permanently.
 In Chapter 4, we talked about what it is like to use Unix with a text-based interface,
one that emulates a character terminal. In such cases, you can only see one program
at a time. With a GUI, you can see multiple programs at once, and it is easy to switch
from one to another. In fact, one of the prime motivations behind the development of X
Window – and of windowing systems in general – was to make it as easy as possible for
people to work with more than one program at the same time.
 There are other important ideas and skills that you need to understand in order to
work with a Unix GUI, and we will discuss them in Chapter 6. In this chapter, we’ll talk

33614_05_073_092.indd 7433614_05_073_092.indd 74 1/9/2008 12:29:48 PM1/9/2008 12:29:48 PM

GUIs: Graphical User Interfaces

75X Window

about the most important ideas relating to such systems. We’ll start with the software that
forms the basis for virtually all Unix GUIs: X Window.

X WINDOW
X Window is a system that provides services to programs that work with graphical
data. In the world of Unix, X Window is important in three ways. First, it is the basis of
virtually all the GUIs you will encounter. Second, X Window allows you to run programs
on a remote computer, while displaying full graphical output on your own computer (see
Chapter 6). Third, X Window makes it possible for you to use a wide variety of hardware.
Moreover, you can use more than one monitor at the same time.
 Imagine yourself working at your computer and, in front of you, you have fi ve open
windows. Three of them are running programs on your computer; the other two are
running programs on remote computers. All of them, however, are displaying the
graphical elements that come with a GUI: icons, scroll bars, a pointer, pictures, and so
on. It is X Window that makes this all possible. It does so by working behind the scenes
to provide the supporting structure, so that programs needing to display graphical data
and receive input from a mouse or keyboard don’t have to bother with the details.
 For convenience, we usually refer to X Window as X. Thus, you might ask a friend,
“Did you know that most Unix GUIs are based on X?” (I know X is a strange name, but
you will get used to it quickly if you hang around the right type of people.)
 The roots of X extend back to MIT (Massachusetts Institute of Technology) in the
mid-1980s. At the time, MIT wanted to build a network of graphical workstations
(powerful, single-user computers) for teaching purposes. Unfortunately, what they had
was a mishmash of mutually incompatible equipment and software from a variety of
different vendors.
 In 1984, MIT formed PROJECT ATHENA, a collaboration between researchers at
MIT, IBM (International Business Machines Corporation) and DEC (Digital Equipment
Corporation). Their goal was to create the fi rst standardized, networked, graphical
operating environment that was independent of specifi c hardware. This environment
would then be used to build a large, campus-wide network called Athena.
 To build Athena, MIT needed to connect a large amount of heterogeneous computing
hardware into a functioning network, and it all had to be done in a way that would be
suitable for students. This required the Athena developers to replace the complex gaggle
of vendor-specifi c graphical interfaces with a single, well-designed interface: one that
they hoped would become the industry standard.
 Because of the demands of such an ambitious undertaking, they decided to name the
project – and the network itself – after Athena, the Greek goddess of wisdom. (Athena
was also the goddess of strategy and war which, in 1984, made her an important ally for
anyone trying to connect computing equipment made by different vendors.)
 Ultimately, Project Athena was successful in two important ways. First, the Athena
programmers were able to create a vendor-neutral, network-friendly graphical interface,
which they called X Window. X Window grew to achieve wide acceptance and, indeed,
did become an industry standard (although not the only industry standard). Second, the

33614_05_073_092.indd 7533614_05_073_092.indd 75 1/9/2008 12:29:48 PM1/9/2008 12:29:48 PM

Chapter 5

76 Harley Hahn’s Guide to Unix and Linux

programmers were able to build the Athena network and deploy it successfully, servicing
hundreds of computers within the MIT community.
 The fi rst version of X Window (called X1) was released in June 1984. The second
version (X6) was released in January 1985, and the third version (X9) was released the
following September. (I am sure the numbering scheme made sense to someone.) The
fi rst popular version of X Window was X10, which was released in late 1985.
 By now, X had started to attract attention outside of MIT. In February 1986, Project
Athena released X to the outside world. This version was called X10R3: X Window version
10 release 3. The next major release was X11, which came out in September 1987.
 Why am I telling you all this? To illustrate an interesting point. When a complex
software product is new, it has yet to gather many users. This means that the developers
can change the product radically without inconveniencing a lot of people or “breaking”
programs that use that product. Once the product acquires a large installed base, and
once programmers have written a large amount of software that depends on the product,
it becomes a lot more diffi cult to make signifi cant changes.
 The more popular a product becomes, the more its development slows. This only
makes sense: as more and more people – and more and more programs – come to depend
on a piece of software, it becomes inconvenient to make major changes.
 Thus, it came to pass that, in its fi rst fi ve years, X Window went through fi ve major
versions (X1, X6, X9, X10 and X11). X10 was the fi rst popular version and X11 gathered
an even bigger audience. X11 was so successful that it slowed down the development of X
enormously. In fact, over 20 years later, the current version of X is still X11!
 To be sure, X11 has been revised. After all, over a period of more than 20 years,
hardware standards change and operating systems evolve. These revisions were called
X11R2 (X Window version 11 release 2), X11R3, X11R4, X11R5 and X11R6, culminating
in X11R7, which was released on December 21, 2005 (my birthday, by the way). However,
none of the revisions was signifi cant enough to be called X12.
 Since 2005, X11R7 has been the standard. Again, there have been revisions, but they
were relatively minor: X11R7.0, X11R7.1, X11R7.2, X11R7.3, and so on. There are people
who talk about X12, but it’s not going to happen anytime soon.
 One way to make sense out of all this is by quoting the principle I mentioned above: a
large user base retards future development. This is certainly true, and is something worth
remembering, because it is one of the important long-term principles of software design
that most people (and most companies) fail to appreciate.
 However, there is another way to look at X Window development. You could say
that the original MIT programmers designed such a good system that, almost 20 years
later, the basic principles still work well, and the main changes that have had to be
made are in the details: fi xing bugs, supporting new hardware, and working with new
versions of Unix.
 What the X programmers showed is that, when you develop an important product
and you want it to last a long time, it is worthwhile to take your time at the beginning.
A fl exible, well thought-out design gives a product enormous longevity. This too is a
programming principle that many people fail to appreciate.

33614_05_073_092.indd 7633614_05_073_092.indd 76 1/9/2008 12:29:48 PM1/9/2008 12:29:48 PM

GUIs: Graphical User Interfaces

77

WHO IS IN CHARGE OF X WINDOW?
By 1987, X was becoming so popular that MIT wanted to relinquish the responsibility
for running the show. (After all, they were a school, not a company.) At fi rst, a group of
vendors who wanted X development to remain neutral talked MIT into remaining in
charge. Eventually, however, MIT stood fi rm and the responsibility for X was passed on:
fi rst to one organization (the MIT X Consortium), then to another (the X Consortium),
and then to yet another (the Open Group).
 Today, X is maintained by a fourth organization, an independent group called X.Org.
(I bet you can guess their Web address.) X.Org was formed in January 2004, and has
supervised the maintenance of X since X11R6.5.1.
 In 1992, a project was started by three programmers to work on a version of X for PCs.
In particular, they were working with PCs that used an Intel 386 processor, so they called
their software XFree86. (The name is a pun, because “XFree86” sounds like “X386”.)
 Because XFree86 supported PC video cards, it came to be used with Linux and, as
Linux grew in popularity, so did XFree86. During the late 1990s and early 2000s, when
offi cial X development had slowed to a crawl, the XFree86 developers took up the slack.
Indeed, XFree86 became so widespread that, at one time, if you were using a PC with
Unix and a GUI, you were probably using XFree86.
 However, in 2004, the president of the XFree86 organization decided to make a change
in the distribution license. His idea was to force people to give credit to the XFree86
development team whenever certain parts of the software were distributed.
 It sounds like a noble idea, and XFree86 was still open source software. That idea
never changed. However, the new license was incompatible with the standard GNU GPL
distribution license (see Chapter 2). This bothered a lot of programmers as well as most
of the Unix companies, because it would have resulted in terrible logistical problems.
 The ultimate solution was for X.Org to take over the development of X, which they
did, starting with the most recent version of XFree86 that was unencumbered by the new
license. As a result, the XFree86 project lost most of its volunteer programmers, many of
whom switched to X.Org.

WHAT’S IN A NAME?

X Window, X
The roots of X Window lie in a particular operating system that was developed at Stanford
University. This system, called V, was developed by the Distributed Systems Group at
Stanford University from 1981 to 1988.
 When a windowing interface was developed for V, it was called W. Some time later, the W
program was given to a programmer at MIT who used it as a basis for a new windowing system,
which he called X.
 Since then, the name has stuck, perhaps for two reasons. First, names of Unix systems often
end in “x” or “ix”, and X Window is used mostly with Unix. Second, if they kept changing the
name, they would reach the end of the alphabet in just two more letters.
 Notice, by the way, that the proper name for the system is X Window, not X Windows.

Who Is in Charge of X Window?

33614_05_073_092.indd 7733614_05_073_092.indd 77 1/9/2008 12:29:48 PM1/9/2008 12:29:48 PM

Chapter 5

78 Harley Hahn’s Guide to Unix and Linux

 I mention all of this for two reasons. First, from time to time, you will come across the
name XFree86, and I want you to know what it means. Second, I want you to appreciate
that, when open source software is distributed, the details of the license can be crucial
to the future of the software. The more popular the software, the more important the
license be in harmony with previous licenses. We will see this again, later in the chapter,
when we talk about a system called KDE.

LAYERS OF ABSTRACTION
As I have explained, X Window is a portable, hardware-independent windowing system
that works with many different types of computing equipment. Moreover, X can run
on virtually any type of Unix as well as certain non-Unix systems (such as Open VMS,
originally developed by DEC).
 How can this be? How can a graphical windowing system work with so many operating
systems and so many different types of computers, video cards, monitors, pointing
devices, and so on?
 As we discussed earlier, X was developed as part of Project Athena with the goal of
providing a graphical operating environment that would run a variety of software on many
different types of hardware. Thus, from the beginning, X was designed to be fl exible.
 To achieve this goal, the designers of X used what computer programmers call LAYERS
OF ABSTRACTION. The idea is to defi ne a large overall goal in terms of layers that can
be visualized as being stacked from the bottom up, one on top of the next. Each layer
is designed to provide services to the layer above and to request services from the layer
below. There is no other interaction.
 Let’s take a quick, abstract example, and then we’ll move onto something concrete.
Let’s say that a computing system is made up of fi ve layers: A, B, C, D and E. Layer E is at
the bottom; layer D is on top of E; layer C is on top of D; and so on. Layer A is on top.
 Programs running in Layer A call upon programs in Layer B (and only Layer B) to
perform various services; Layer B programs call upon programs in Layer C (and only
Layer C); and so on.
 If such a system is designed well, it means that a programmer working on, say, Layer C,
does not have to know about all the other layers and how they function. All he has to know
is how to call upon Layer D for services, and how to provide services for Layer B. Because
he is concerned only with the details of his own layer, he doesn’t care if someone makes
changes to the internals of Layer A or Layer E.

THE WINDOW MANAGER
To cement the idea of layers of abstraction, let’s consider a real example.
 From the beginning, X Window was designed to be a standardized interface between a
GUI and the hardware. In itself, X does not furnish a graphical interface, nor is there any
specifi cation that describes what the user interface should look like. Providing the actual
GUI is the job of another program called the WINDOW MANAGER.

33614_05_073_092.indd 7833614_05_073_092.indd 78 1/9/2008 12:29:48 PM1/9/2008 12:29:48 PM

GUIs: Graphical User Interfaces

79

 The window manager controls the appearance and characteristics of the windows and
other graphical elements (buttons, scroll bars, icons, and so on). What X does is bridge
the gap between the window manager and the actual hardware.
 For example, say that the window manager wants to draw a window on the screen of a
monitor. It sends the request to X along with the relevant specifi cations (the shape of the
window, the position of the window, the thickness of the borders, the colors, and so on).
X causes the window to be drawn and sends back a message to the window manager once
the task is completed.
 In this way, the window manager doesn’t have to know anything about how to draw a
window. That is X’s job. Similarly, X doesn’t have to know anything about how to create
an actual GUI. That is the window manager’s job.
 Thus you see the importance of levels of abstraction. A programmer working on
one level can ignore the internal details of all the other levels. In this case, the window
manager resides in a layer above X Window. When the window manager needs to display
something, it calls upon X Window to do the job.
 When Project Athena released X10 – the fi rst popular version of X – they included a
rudimentary window manager named xwm (the X Window Manager). With X10R3, they
included a new window manager, uwm. With X11, the fi rst very successful version of X,
there was another new window manager, twm.
 (The name uwm stood for Ultrix Window Manager, Ultrix being DEC’s version of
Unix. Later, the name was changed to the Universal Window Manager. The name twm
stood for Tom’s Window Manager, because it was written by Tom LaStrange. Later, the
name was changed to the Tab Window Manager.)
 The twm window manager became very popular. In fact, it is still included with X11 and
can be considered the default window manager; it is certainly the most infl uential. Over
the years, twm has spawned a number of derivative products written by programmers
who modifi ed it to create window managers of their own. (Remember, all of X Window is
open source, and anyone can change any part of it to create their own version of whatever
they want.)
 I mention xwm, uwm and twm because they are important for historical reasons, so
you should know the names. Since then, there have been many other window managers
written for X, each with its own special features, advantages, and disadvantages. However,
out of the many new window managers that have been created, there are only two I want
to mention: Metacity and kwm.
 These are particularly important window managers. However, before I can explain
why, I need to discuss the next layer of abstraction, the one that sits on top of the window
manager: the desktop environment.

THE DESKTOP ENVIRONMENT
As we discussed, it is the job of a window manager to provide a basic graphical interface.
As such, it is the window manager that enables you to create windows, move and size
them, click on icons, maneuver scroll bars, and so on.

The Desktop Environment

33614_05_073_092.indd 7933614_05_073_092.indd 79 1/9/2008 12:29:48 PM1/9/2008 12:29:48 PM

Chapter 5

80 Harley Hahn’s Guide to Unix and Linux

 However, using a modern computer system requires a lot more than a basic GUI. You
need a well thought-out, consistent interface. Moreover, you want that interface to be
attractive, sensible and fl exible (just like the people in your life).
 The power of a GUI comes from being able to provide a work environment in which
you can manipulate the various elements in a way that makes sense and serves your needs
well. Your interface needs to have an underlying logic to it, one that will allow you to solve
problems from moment to moment as you work.
 In the early days of X, people would interact directly with the window manager.
However, the basic GUI provided by a window manager can only go so far. What it can’t
do is help you with the complex cognitive tasks associated with using a modern computer.
This is the job of a more sophisticated system called the DESKTOP ENVIRONMENT
and, sometimes, the DESKTOP MANAGER.
 The name comes from the fact that, as you are working, you can imagine the screen
of your monitor as being a desktop on which you place the objects with which you are
working. The metaphor was chosen in the olden days, when graphical interfaces were still
new, and GUI designers felt that it would be intuitive to untrained users to consider the
screen as a desktop. Personally, I think the metaphor is misleading and confusing. I wish
it would have been discarded a long time ago*.
 The desktop environment allows you to answer such questions as: How do I start a
program? How do I move or hide a window when I don’t want to look at it? How do I
fi nd a fi le when I can’t remember where it was? How do I move an icon from one place to
another? How do I prioritize my fi les and programs so that the most important ones are
easier to fi nd?
 Here is a specifi c example. Where a window manager might process our mouse
movements and display icons and windows, a desktop environment would allow us to
use the mouse to drag an icon and drop it on a window. In doing so, it is the desktop
environment that brings meaning to the idea of dragging and dropping.

 * However, when it comes to metaphors I am a lot more picky than other people. Consider, for example, the American
humorist Will Rogers who used to say, “I never met-a-phor I didn’t like.”

HINT

 Never let yourself be fooled into thinking that a computer interface should be so “intuitive”
as to be immediately useful to a beginner. Complex tasks require complex tools, and complex
tools take time to master.
 In some cases, it is possible for designers to dumb down an interface so much that people
with no experience can use it immediately. However, what’s easy to use on the fi rst day will not
be what you want to use once you are experienced. In the long run, easy-to-learn interfaces are
much more frustrating than powerful tools that take time to master.
 When we use tools that are designed primarily to be easy to learn, we end up with systems in
which the computer is in control. When we use well-designed, powerful tools that take time to

learn, we end up with systems in which the user is in control.
 That is the case with Unix.

33614_05_073_092.indd 8033614_05_073_092.indd 80 1/9/2008 12:29:48 PM1/9/2008 12:29:48 PM

GUIs: Graphical User Interfaces

81

LAYERS OF ABSTRACTION: REVISITED
To continue with our layers of abstraction model, we can say that the window manager sits
on top of X Window, and the desktop environment sits on top of the window manager.
 You can see this in Figure 5-1, which shows the layers of abstraction that support a
typical Unix GUI. Notice there are several layers I have not mentioned. At the bottom, X
Window calls upon the operating system’s device drivers to do the actual communication
with the hardware. At the top, the user and the programs he or she runs call upon the
desktop environment as needed.
 There are two important concepts I want to emphasize about this model. First, as
we discussed, the details of what is happening at any particular level are completely
independent of any other level. Second, the only communication that exists takes place
between adjacent levels, using a well-defi ned interface.
 For example, the window manager communicates only with X Window below and the
display environment above. This is adequate because the window manager doesn’t care
about the details of anything that is happening on any other level. It lives only to respond
to requests from the level above (the desktop environment) and, in turn, it calls upon the
level below (X Window) to service its own requests.

HOW THE UNIX COMPANIES BLEW IT
When X Window was fi rst developed, there were only window managers which, by today’s
standards, offered primitive GUIs. The idea that people might want a full-featured desktop
environment developed over time, as programmers learned more about designing and
implementing interfaces. Although there is no exact moment when window managers
were replaced by desktop environments, here is more or less how it happened.
 By 1990, the world of Unix was fragmented because there were a number of different
Unix companies, each with its own type of Unix. In spite of promises to cooperate, there

APPLICATION PROGRAMS / USER

DESKTOP ENVIRONMENT

WINDOW MANAGER

X WINDOW

DEVICE DRIVERS IN THE KERNEL

HARDWARE

Figure 5-1: Layers of abstraction

Within Unix, a graphical working environment can be thought of as a system consisting of various levels
of programs and hardware At the top level, we have our application programs (including utilities), as
well as the user. One level down is the desktop environment. Below the desktop environment is the
window manager, and so on. At the very bottom is the actual computer. Philosophically, we can think of
the entire system as a means of bridging the gap between human hardware and computing hardware.

How the Unix Companies Blew It

33614_05_073_092.indd 8133614_05_073_092.indd 81 1/9/2008 12:29:48 PM1/9/2008 12:29:48 PM

Chapter 5

82 Harley Hahn’s Guide to Unix and Linux

was a great deal of competitive sniping, and most companies were much more interested
in dominating the marketplace than in working together. In the same way that young
boys who fi ght in the playground will choose up sides, the Unix companies formed two
umbrella organizations, each of which purported to be developing the one true Unix.
 As we discussed in Chapter 2, by the mid-1980s, most types of Unix were based either on
AT&T’s UNIX or Berkeley’s BSD or both. In October 1987, AT&T and Sun Microsystems
announced their intention to work together on unifying UNIX and BSD once and for
all. This upset the other Unix vendors and in May 1988, eight of them formed the OPEN
SOFTWARE FOUNDATION (OSF) in order to develop their own “standard” Unix. The
eight vendors included three of the most important Unix companies: DEC, IBM, and HP
(Hewlett-Packard).
 The formation of the OSF scared AT&T and Sun. They decided that, if they were to
compete against OSF, they too needed their own organization. So in December 1989, they
corralled a few smaller companies and formed UNIX INTERNATIONAL (UI).
 Thus, by the early 1990s, there were two rival organizations, each of which was trying to
create what it hoped would become the one true Unix. As part of their work, both OSF and
UI developed their own window managers. OSF’s was called mwm (Motif window manager),
and UI’s was called olwm (Open Look window manager). This meant that X Window users
now had three popular choices for their window managers: mwm, olwm, and twm (which I
mentioned earlier).
 However, where twm was a plain vanilla window manager, both mwm and olwm were
more complex and powerful. In fact, they were the ancestors of today’s sophisticated
desktop environments.
 So, why aren’t Motif and Open Look the most important GUIs today? The answer
is that their sponsors, OSF and UI, spent so much time fi ghting that they lost their
leadership in the Unix world. The details are incredibly boring, so I won’t go into them*.
What is important is that, by the mid-1990s, there was a big gap in the world of Unix, a
gap that was fi lled by Microsoft Windows NT and Linux. And along with Linux came two
new GUIs, KDE and Gnome, which had nothing to do with either OSF or UI.

KDE AND GNOME
In 1996, Matthias Ettrich , a German student at the University of Tübingen, was dissatisfi ed
with the current state of Unix GUIs. On October 14, 1996, he sent out a Usenet posting
in which he proposed to remedy the problem by starting a new project called the Kool
Desktop Environment (KDE). (See Figure 5-2.)
 Ettrich argued that the current window managers were defi cient, that “a GUI should offer
a complete, graphical environment. It should allow a user to do his everyday tasks with it,
like starting applications, reading mail, confi guring his desktop, editing some fi les, deleting
some fi les, looking at some pictures, etc. All parts must fi t together and work together.”

* If you really want to know what happened, just go to a Unix programming conference, fi nd an old person, and invite him for
a drink. Once he gets settled in, ask him to tell you about the “Unix Wars”.
 If you are not sure whom to ask, just walk around the conference until you see someone with a ponytail and a faded
Grateful Dead T-shirt.

33614_05_073_092.indd 8233614_05_073_092.indd 82 1/9/2008 12:29:49 PM1/9/2008 12:29:49 PM

GUIs: Graphical User Interfaces

83

 Ettrich had noticed these defi ciencies when he was confi guring a Linux system for his
girlfriend. He realized that, in spite of all his expertise, there was no way for him to put
together a GUI that was integrated well and was easy for his girlfriend to use. He asked
people to volunteer to work on KDE, promising that “one of the major goals is to provide
a modern and common look & feel for all the applications.” *

FIGURE 5-2: Matthias Ettrich, founder of the KDE project

Matthias Ettrich founded the KDE project in October, 1996. Eventually, KDE would become so
successful that Ettrich can be considered the Father of the Desktop Environment.

KDE and Gnome

* Presumably, Ettrich’s girlfriend was not as technically inclined as he was, leading him to realize that the current GUIs, while
tolerated by programmers, did not work well for regular people. Eventually, the KDE project inspired by Ettrich’s experience
would produce the very fi rst integrated desktop environment, changing forever the way people thought about GUIs.
 One can only wonder: If Ettrich’s girlfriend had been, say, a tad less pretty and a tad more nerd-like, how long would it have
taken to develop a true desktop environment? Since KDE would come to have a profound infl uence on the acceptance of Linux
around the world, is this not, then, an argument that more of society’s resources should be devoted to encouraging beautiful
women to date programmers?

33614_05_073_092.indd 8333614_05_073_092.indd 83 1/9/2008 12:29:49 PM1/9/2008 12:29:49 PM

Chapter 5

84 Harley Hahn’s Guide to Unix and Linux

 More specifi cally, Ettrich asked people to help create a control panel (with “nice”
icons), a fi le manager, an email client, an easy-to-use text editor, a terminal program, an
image viewer, a hypertext help system, system tools, games, documentation, and “lots of
other small tools”. Ettrich’s invitation was answered by a variety of programmers, and the
KDE project was formed.
 One of Ettrich’s major complaints was that none of the popular Unix applications
worked alike or looked alike. The KDE programmers worked hard and, by early 1997, they
were releasing large, important applications that worked together within an integrated
desktop environment. In doing so, they produced a new, highly functional GUI that
began to attract a great deal of interest.
 Within a few months, however, a number of programmers within the Linux
community began to voice concerns about KDE. Ettrich had chosen to build the new
desktop environment using a programming toolkit called Qt. Qt had been written by a
Norwegian company, Trolltech, which had licensed it in such a way that it was free for
personal use, but not for commercial use.
 To the KDE programmers, this was fi ne: from the beginning, they saw KDE as a non-
commercial product. Other people, however, felt that Trolltech’s licensing arrangement
was not “free” enough. In particular, the programmers who were associated with the
GNU project and the Free Software Foundation wanted a less restrictive license for KDE,
either that, or an alternative to KDE that would be licensed under the GNU GPL. (See the
discussion of free software in Chapter 2.)
 In August 1997, two programmers, Miguel de Icaza and Federico Mena, started a
project to create just such an alternative, which they called GNOME. Although KDE was
already well-established, the Gnome project attracted a lot of attention and, within a year,
there were about 200 programmers working on Gnome.
 (You may remember that, earlier in the chapter, I mentioned two window managers,
 Metacity and kwm. At the time, I said that, out of the many window managers that are
available, these two are important enough that I wanted you to know the names. The
reason they are important is that Metacity is the window manager for Gnome, and kwm
is the window manager for KDE.)

WHAT’S IN A NAME?

KDE, Gnome
 The project to build KDE, the fi rst X-based desktop environment, was started by a German
university student, Matthias Ettrich. At the time Ettrich proposed the project, he suggested
the name KDE, which would stand for Kool Desktop Environment. Later, however, this was
changed to K Desktop Environment.
 In the same way that X Window became X, the letter K is often used to stand for the KDE
desktop environment. For example, within KDE, the native Web browser is called Konqueror;
the CD ripper is KAudioCreator; the calculator program is called KCalc; and so on. In perhaps
the most egregious use of the letter K, the KDE terminal emulator is called Konsole.
 Within Gnome – and the GNU project in general – you see the same thing with the letter G.
For example, the Photoshop-like program is called Gimp (GNU Image Manipulation Program);
the instant messaging program is Gaim; and the calculator program is Gcalctool; and so on.

33614_05_073_092.indd 8433614_05_073_092.indd 84 1/9/2008 12:29:49 PM1/9/2008 12:29:49 PM

GUIs: Graphical User Interfaces

85

CDE AND TOTAL COST OF OWNERSHIP
By 1999, there were two popular, well-designed desktop environments: KDE and Gnome.
Both GUIs enjoyed widespread support within the Linux community (and, to this day,
they are used widely around the world).
 In the meantime, the commercial Unix companies were still in business and, by now,
they realized the importance of desktop environments. The Open Group organization I
mentioned earlier had taken over development of the Motif window manager. In the early
1990s, they had started work on a new proprietary desktop environment – CDE (Common
Desktop Environment) – based on Motif. After a large, multi-company effort, CDE was
introduced in 1995. By 2000, CDE had become the GUI of choice for commercial Unix
systems, such as AIX from IBM, HP/UX from HP, Unix from Novell, and Solaris from Sun.
 You may wonder why there was a need for CDE? Why would so many computer
companies pay to develop a proprietary product when both KDE and Gnome were
available at no cost? On a larger scale, why was there a need for commercial Unix at all?
After all, Linux was available for free and the licensing terms were liberal. Why didn’t
every company simply switch to Linux and use either KDE or Gnome?
 The answer has to do with one of the fundamental differences between the commercial
and consumer markets, and the principle is so important that I want to take a moment
to explain it.
 As consumers, you and I want two things out of our software. First, it should be
inexpensive (free, if possible); second, it should work. We realize that when we have
problems, we are on our own. We can read the documentation, we can look for help on
the Internet, or we can ask someone else for help. If we get desperate we can pay someone
to help us but, in most cases, there is no great urgency. If we have to wait for a solution, it
is inconvenient but not devastating.
 In a company, especially a large company, the situation is different. Even a simple
software problem can affect hundreds or thousands of people. Waiting for a solution can
be very expensive, both to the company and to its customers. Because large companies
can’t afford serious problems, they employ full-time computer personnel to maintain
networks, servers, and personal computers. For this reason, when companies evaluate a
product – software or hardware – they don’t focus on initial cost. They look at what is
called the TOTAL COST OF OWNERSHIP or TCO.
 To calculate the total cost of ownership, a company must answer the question: If we
decide to use this product, what is it going to cost us in the long run?
 Calculating the TCO for something as complex and as fundamental as a desktop
environment is not simple. For you or me, the initial cost is the only cost. If we can get
KDE or Gnome for free, that’s all we care about. Software problems can be bothersome
but, as I said, it’s more a matter of inconvenience than money.

CDE and Total Cost of Ownership

(continued...) The name Gnome stands for GNU Network Object Model Environment.
“Gnome” is pronounced either “Guh-nome” or “Nome”. In my experience, programming geeks
pronounce GNU with a hard G (“Guh-new”) and Gnome with a soft G (“Nome”).

33614_05_073_092.indd 8533614_05_073_092.indd 85 1/9/2008 12:29:49 PM1/9/2008 12:29:49 PM

Chapter 5

86 Harley Hahn’s Guide to Unix and Linux

 A large company looks at it differently. Although they do evaluate the initial purchase
cost or licensing fees, they also perform a more complicated, long-term analysis. The
details of such calculation are beyond the scope of this book, but the ideas are important
to understand, so I will give you a quick summary.
 Before a company adopts a signifi cant hardware or software system, their fi nancial
analysts look at what are called direct costs and indirect costs. The direct costs include
both hardware and software: initial purchase or lease expenses, operations, tech support,
and administration. The indirect costs have to do with lost productivity. They include the
amount of time employees spend learning how to use the system; the amount of time some
employees will lose because they are helping other employees (something that happens
everywhere); and the cost of downtime due to failure and scheduled maintenance.
 Once all these costs are estimated, they are converted to annual expenditures,
a calculation that includes the depreciation and the cost of upgrades. The annual
expenditures are then integrated into the company-wide budget, which is reconciled with
the company’s plan for long-term growth.
 In most cases, when total cost of ownership for software or hardware is calculated,
what we fi nd is counter-intuitive: the initial costs are not that signifi cant. In the long run,
what counts the most are the ongoing expenditures and indirect costs.
 Thus, when a company is thinking about adopting new software, they don’t ask how
much it costs to buy or license the product. They ask, how well will this software integrate
into our existing environment? How does it fi t into our long-term plans? How well does
it serve our customers? How much will it cost to maintain on an ongoing basis?
 Once these questions are answered, it becomes clear that, for corporate use, the best
software is usually not free software that has been designed for individual or educational
use. Business software must have features that are suitable for business. There must be
a large family of well-maintained programming tools; there must be a well-defi ned,
long-term development plan tailored to the needs of businesses, not individuals; most
important, there must be excellent documentation and high-quality tech support. This
is why most large businesses prefer to stick to commercial software. It is also why, in the
corporate world, Linux has not replaced Microsoft Windows and probably never will.
 This is not to say that large companies never use free software. They do when it makes
sense to do so. For example, IBM offers not only their own version of Unix (AIX), but
 Linux as well. However, when a company like IBM offers an open source (“free”) software
product, they put a lot of money into it, supporting and enhancing that product. IBM, for
example, has spent millions of dollars on Linux development and support. The truth is,
for a large company, nothing is free.
 To return to the desktop, you can see why, in the 1990s, it was so important for
the corporate world to have its own desktop environment. Although both KDE and
Gnome worked well, they didn’t have the type of features and support that were needed
by businesses.
 That is why the Open Group was set up and why they developed CDE. And that is also
why, at the end of the 1990s, CDE – not KDE or Gnome – was the desktop environment
of choice for corporate users.

33614_05_073_092.indd 8633614_05_073_092.indd 86 1/9/2008 12:29:49 PM1/9/2008 12:29:49 PM

GUIs: Graphical User Interfaces

87

 In the 2000s, as free software became more and more important, Unix companies
started to offer their own versions of Linux as well as their own proprietary Unix. For
example, IBM offers both AIX and Linux; Sun offers both Solaris and Linux; HP offers
both HP-UX and Linux; and so on.
 As you might expect, this also means that Unix companies also offer KDE and Gnome.
For example, IBM offers their AIX users a choice of CDE, KDE and Gnome; Sun offers
both CDE and Gnome; and HP offers both CDE and Gnome.
 Of course, these versions of Linux, KDE and Gnome are not the same distributions that
you or I would download for free from the Net with no support. They are commerical-
quality products that come with commerical-quality tech support (at a price).

CHOOSING A DESKTOP ENVIRONMENT
When you use Unix, you get a strong feeling that the desktop environment is separate
from the actual operating system. This is not the case with Windows or Mac OS, because
Microsoft and Apple try hard to convince people that every important program that
comes with the computer (including the browser, the fi le manager and the media player)
is part of the operating system.
 The truth is it isn’t: it’s just packaged that way. Because you are a Unix user, you can
make the distinction between the operating system and everything else, which leaves you
free to ask yourself, “What do I want on my desktop?”
 Many companies and schools standardize on computer tools. If you work for one of these
companies or go to one of these schools, you will have to use whichever desktop environment
they tell you to use. However, if you are running Linux on your own computer – or if your
organization gives you a choice – you will be able to decide for yourself what GUI to use.
 So which desktop environment is best for you?
 If you use Linux, there are many free desktop environments, so you have a lot of
choice. (To see what I mean, just search on the Internet for “desktop environment”.)
However, virtually all Linux distributions come with either KDE or Gnome or both, and
it is my advice that – unless you have a reason to choose otherwise – you start with one of
these two GUIs. (See Figures 5-3 and 5-4. When you look at these pictures, please focus
on the appearance and organization of the GUI – the windows, the icons, the toolbar,
and so on – rather than on the content within the windows.)
 So let’s narrow down the question: With respect to KDE and Gnome, which one is
right for a person like you?
 To start, take a look at the following fi ve statements. Mark each statement either True
or False, with respect to your personal preferences. We will then evaluate your answers to
choose the desktop environment that’s best for you.

1. I would rather drive a car with manual transmission than a car with automatic
transmission.

2. I am more comfortable in a home that is simple and organized than a home that is
decorated and has comfortable clutter.

Choosing a Desktop Environment

33614_05_073_092.indd 8733614_05_073_092.indd 87 1/9/2008 12:29:49 PM1/9/2008 12:29:49 PM

Chapter 5

88 Harley Hahn’s Guide to Unix and Linux

3. When I have a personal discussion with my girlfriend/boyfriend or wife/husband, it is
important to me that we take the time to fi gure out who is right.

4. After I bought my DVD player, I read at least part of the manual.

5. When I use Microsoft Windows or a Macintosh, I generally leave things the way they
are. I don’t mess around with the colors, the backgrounds, and so on.

Before we interpret your answers, I want you to appreciate that all desktop environments
are merely a way of using the same underlying computing environment. So no matter
which desktop environment you pick, it will be fi ne. Having said that, you will be more
comfortable using a desktop environment that is suited to your personality, so let’s move
on with the analysis.
 Regardless of your technical skill or your interest in computers, if you answered
True 3, 4 or 5 times, use Gnome; if you answered True 0, 1 or 2 times, use KDE.

FIGURE 5-3: KDE desktop environment

The project to create KDE, the fi rst real desktop environment, was started in 1996 by Matthias Ettrich.
His goal was to create “a complete, graphical environment” in which “all parts fi t together and work
together”.

33614_05_073_092.indd 8833614_05_073_092.indd 88 1/9/2008 12:29:50 PM1/9/2008 12:29:50 PM

GUIs: Graphical User Interfaces

89

 Notice that I said that your choice should not depend on how much you know about
computers. Some very technical people prefer KDE; others prefer Gnome. Similarly,
many non-technical people choose KDE, while others like Gnome.
 The dichotomy has more to do with how you see the world, rather than how much
you know. Gnome people thrive on simplicity and order. They want things to be logical.
If necessary, they are willing to put in as much effort as it takes to make something work
in a way that makes sense to them.
 A Gnome person would agree with the dictum “form ever follows function”, an idea
expressed by the American architect Louis Sullivan in 1896. Sullivan observed that the
appearance of natural objects was infl uenced by their function. Gnome people want the
world to behave in a rational way, and they prefer tools whose appearance directly refl ects
their purpose.
 Whereas Gnome people like to control how things work, KDE people like to control
how things look. This is because they care less about “being right” than they do about
living in a way that makes them emotionally comfortable.

FIGURE 5-4: Gnome desktop environment

The Gnome project was started in 1997 by Miguel de Icaza and Federico Mena in order to create an
alternative to KDE that would be distributed with more liberal licensing terms.

Choosing a Desktop Environment

33614_05_073_092.indd 8933614_05_073_092.indd 89 1/9/2008 12:29:50 PM1/9/2008 12:29:50 PM

Chapter 5

90 Harley Hahn’s Guide to Unix and Linux

 KDE people see the world as a place fi lled with color, variation and, at times, confusion.
They are inclined to accept much of life as it is, rather than putting in a lot of effort
to fi x small details. When they feel motivated to spend time customizing their working
environment, they tend to makes things that look nice and act nice.
 Now, take another look at your answers to the true/false questions. Are you a KDE
person or a Gnome person?
 A question arises. We have two different desktop environments, each of which was
created by its own group of people from around the world, working together. How could
it be that there are personality traits that differentiate KDE people from Gnome people?
 The answer lies in the genesis of each group. As we discussed earlier, the KDE group
was started by people who were not satisfi ed with the status quo. They wanted to create
a complete working environment that worked better and looked better than the window
managers of the day.
 The Gnome group was started by people who were dissatisfi ed with KDE because of an
abstract legal problem related to licensing terms, a defi ciency that – let’s face it – most people
would have ignored (as all the KDE people did). However, to a Gnome person – or, more
precisely, to a Free Software Foundation-type of person – what’s right is right and what isn’t
isn’t, and that’s all there is to it. (See the discussion of Richard Stallman in Chapter 2.)
 Does it not make sense, then, that each group would create a desktop environment
suitable for their type of person? Perhaps people who design consumer products
(including software) should pay more attention to the KDE/Gnome dichotomy.

THE GRANDMOTHER MACHINE
Now that we have discussed the most important GUIs and the most important types of
Linux (Chapter 2), I want to end this chapter by answering a question I hear a lot:
 “I am putting together a system using free software for someone who doesn’t know a
lot about computers. What software should I use?”
 I call such a computer the Grandmother Machine, because it is the type of machine
you might create for your grandmother.
 When you set up a Grandmother Machine, you must realize that you will bear permanent
responsibility because, whenever your grandmother has a problem, she will call you. So you
should use software that is dependable, easy to install, and easy to update. You also want a
system that you can confi gure to make it easy for a beginner to access the Web, check email,
and (in some cases) use word processing, spreadsheets, presentation graphics, and so on.
 Here are my recommendations. When you read them, remember that conditions
change over time. New software comes along and old software grows to become bloated
and unusable. So concentrate on the general principles behind my choices, and not just
the specifi c selections.
 To create a Grandmother Machine, use the following:

• Ubuntu Linux: It’s based on Debian Linux and is easy to install and maintain.

• Gnome: The Gnome desktop environment is simple to use, but robust enough that a
beginner won’t mess it up.

33614_05_073_092.indd 9033614_05_073_092.indd 90 1/9/2008 12:29:50 PM1/9/2008 12:29:50 PM

GUIs: Graphical User Interfaces

91

If the grandmother in question is a very KDE-like person, you can give her KDE.
However, please stick with either Gnome or KDE. Regardless of your personal
preferences, don’t mess around with the less common desktop environments.

When you set up the GUI, be sure to take some time to make it as easy as possible for
your grandmother to start her favorite applications. The best idea is to create a few icons
on the control panel. (At the same time, you can remove the icons she will never use.)

• Firefox: The Firefox browser is easy to use and powerful. For email, get her a Web-based
account (such as Google’s Gmail) and let her use her browser to communicate.

Firefox is wonderful, but do plan on taking some time to show your grandmother how
to use it. In addition, plan on answering questions over the phone until she gets used
to using the Web. (The best way to avoid unnecessary questions is to create a link to
Google, and to show your grandmother how to use it. When you do, be sure to take a
few moments to explain how to make sense out of the search results.)

• Open Offi ce: A suite of free productivity software (word processor, a spreadsheet
program, and so on), compatible with Microsoft Offi ce.

One last piece of advice: I have a lot of experience helping people choose computer
systems, and there is a general principle I have noticed that rarely gets mentioned.
 When you choose a computer for someone, it doesn’t work well to base your advice
on what I might call their “hardware needs”. What works best is to choose a system based
on their psychological needs. This idea is so important that I will embody it in the form
of a hint.

The Grandmother Machine

HINT

Harley Hahn’s Rules for Helping Someone Choose a Computer
1. When you are choosing a computer for someone to use as their personal machine, choose a

system that meets their psychological and emotional needs.

In most cases, the person will not be able to articulate their needs, so you must fi gure them
out for yourself. During this process, do not allow yourself to be sidetracked into long
discussions of hardware specifi cations or other trivia.

2. When you choose a computer for someone who is working for a company, choose a system that
is in harmony with the psychology of the person who will be approving the expenditure.

Within a corporate environment, people come and go, so don’t choose a system based on the
needs of a particular user. Choose a system that suits the company.

The best way to do this is to look for a computer that meets the psychological and emotional
needs of the person writing the check, not the person who will be using the machine. This is
especially true when you are dealing with a small business.

33614_05_073_092.indd 9133614_05_073_092.indd 91 1/9/2008 12:29:50 PM1/9/2008 12:29:50 PM

Chapter 5

92 Harley Hahn’s Guide to Unix and Linux

C H A P T E R 5 E X E R C I S E S

REVIEW QUESTIONS

1. When it comes to displaying information, there are, broadly speaking, two types of
data. What are they?

2. What is the name of the system that supports most Unix graphical user interfaces
(GUIs)? Where and when was it fi rst developed? Name three important services it
provides.

3. What are layers of abstraction? Name the six layers in a typical Unix GUI
environment.

4. What is total cost of ownership? Who uses the concept and why? When total cost of
ownership is calculated, how important are the initial costs?

5. What is a desktop environment? In the Linux world, what are the two most popular
desktop environments?

FOR FURTHER THOUGHT

1. As a general rule, when using a GUI, windows are rectangular. Why is this? When
might it make sense to use a round window?

2. You work for a large company that uses PCs running Windows. The company has
standardized on Microsoft Offi ce products (Word, Excel, Powerpoint, and so on).
You are at a meeting where a young, newly graduated programmer proposes that the
company change from Offi ce to the free software alternative, Open Offi ce. Why is this
a bad idea? Does it bother you to recommend that the company stick with Microsoft
products? If so, why?

33614_05_073_092.indd 9233614_05_073_092.indd 92 1/9/2008 12:29:50 PM1/9/2008 12:29:50 PM

93

C H A P T E R 6

The Unix Work Environment

Doing More Than One Thing at a Time: Part I

As I explained in Chapter 3, Unix was developed using a text-based interface. Later,
as more sophisticated hardware became available, graphical interfaces were created.
Although the Unix interfaces were based on hardware, they were created with more in
mind than their appearance and basic function. They were designed to provide a complex
working environment that is particularly well-suited to the human mind.
 In this chapter, I’m going to show you how to use a combination of the text-based and
graphical interfaces. My goal is to teach you enough so you can organize your work in a
way that suits your thought processes and your temperament. Along the way, I’m going
to cover other topics that are important to mastering the Unix work environment, such as
how to copy and paste data, how to work as superuser, and how to shutdown and reboot
your system.
 Throughout this chapter, I will be building on ideas from Chapters 4 and 5. So before
you continue reading, please make sure you are comfortable with the following concepts:

• From Chapter 4: userids, passwords, logging in and logging out, the shell prompt,
upper- and lowercase letters, the system administrator, the superuser.

• From Chapter 5: GUIs, desktop environments.

As you read this chapter, a lot of what you have already learned will come together, as you
start to use Unix in the way it was intended to be used.

DOING MORE THAN ONE THING AT A TIME: PART I
In Chapter 3, I explained that Unix systems are multitasking, which means they can run
more than one program at the same time.
 “Multitasking” is a technical term but, these days, it is fashionable to use the word to
describe the type of mental processing that allows people to concentrate on more than
one thing at a time. For example, one hears, “Women are better at multitasking than men,”
or, “It’s okay if I talk on the phone while I drive, because I am good at multitasking.”
 The truth is neither computers nor human beings can actually perform two similar
tasks at the same time. This realization has important implications when it comes to

33614_06_093_130.indd 9333614_06_093_130.indd 93 1/9/2008 12:30:23 PM1/9/2008 12:30:23 PM

Chapter 6

94 Harley Hahn’s Guide to Unix and Linux

learning how to use the Unix interfaces so, before we move on, I’d like to take a moment
to talk about multitasking. We’ll start with computers.
 Within a computer system, what looks like multitasking is, in reality, a very fast machine
performing tasks so quickly that they look as if they are happening at the same time.
 In Unix, instead of talking about programs executing, we talk about PROCESSES
executing. A process is a program that is loaded into memory and ready to run, along
with the program’s data and the information needed to keep track of that program*.
 At all times, Unix systems have many active processes, each of which requests processor
time in order to run. (Although you may not be aware of it, there are processes running
in the background.) However, a processor can execute only one process at a time. This
means that a one-processor computer can honor only one request at a time. A multi-
processor computer may be able to handle more than one request, but even then, it is not
nearly enough to service all the processes at the same time.
 To manage so many overlapping processor requests, Unix uses a system in which each
process in turn is allowed to use the processor for a very short interval, called a TIME
SLICE. A typical time slice would be 10 milliseconds (10 thousandths of a second).
 Once the time slice is over, the current process is put on hold and a special service
called the SCHEDULER decides which process to execute next. Because time slices are so
short and processors are so fast, and because the Unix scheduler handles the whole thing
so artfully, it looks to you and me as if Unix is doing more than one thing simultaneously.
Thus, the illusion of multitasking is created.**
 Now let’s talk about humans. In certain circumstances, we can all do more than one
thing at a time. For example, when we eat, we can smell, taste and chew at the same time.
Similarly, we can talk while we walk, play an instrument while we sing, or listen to sound as
we watch a movie. However, what we can’t do is think about two things at the same time.
 We can, of course, switch back and forth between mental activities and, if we do it
fast enough, it looks as if the activities are happening at the same time. For example,
say you are instant messaging with four different people. As long as you answer each
person within a reasonable amount of time, they have no way of knowing that you are
not talking to them exclusively.
 This sounds a bit like what Unix does when it multitasks. However, there are important
differences. First, compared to computers, human beings change from one task to
another very slowly. (The next time you are instant messaging, try switching from one
conversation to another every 10 milliseconds.)
 Second, human minds are much more complex than computers†, and the type of
tasks people carry out are much more complicated than what a computer does.
 Third, as Unix switches from one process to another, it needs to keep track of only a
small amount of information. When you change from one task to another, you need to

 *The idea of a process is fundamental to Unix. Indeed, within a Unix system, every object is represented by either a fi le or
a process. In simple terms, fi les hold data or allow access to resources; processes are programs that are executing.
 Processes can be divided into smaller units called threads, a thread being a set of instructions that runs within the environment
of a process. It is possible to structure programs so that, within a process, more than one thread can run at the same time.
 **In Chapter 26, we will talk more about processes and how to control them. For now, I’ll tell you that if you want to see how
many processes are active on your system right now, use the top command. (Note: This command is not available on all systems.)
 †The most complex piece of matter in the known universe is the human brain.

33614_06_093_130.indd 9433614_06_093_130.indd 94 1/9/2008 12:30:23 PM1/9/2008 12:30:23 PM

The Unix Work Environment

95Doing More Than One Thing at a Time: Part I

reorient yourself in a much more complicated manner. Consider, for example, what must
be happening in your mind as you switch from using your Web browser, to checking your
email, to answering the phone, to returning to your Web browser, to eating a jelly donut.
Although you aren’t consciously aware of your mental processes, they are much more
complex than what Unix does as it juggles multiple processes. (Moreover, even the latest
versions of Linux don’t know what to do with a jelly donut.)
 The biggest difference, however, between computers and humans is that we have free
will. From moment to moment, we can think about whatever we want. This means that,
as we use a computer, we form momentary strategies as to how we will do what needs
to be done, and the operating system must support such strategies. Because there is no
way of knowing in advance exactly how a person will think in a particular situation, an
operating system must be fl exible when it comes to providing a work environment.
 Within reason, every computer user should be allowed to structure his work environment
according to his needs. Moreover, he should be able to change that environment whenever
he wants, from one moment to the next, as his mental processes evolve. What’s more, as a
user becomes more experienced, there should be more sophisticated tools for him to use.
 For example, a beginner (or a dull person) will typically do only one thing at a time on
his computer. He will expand one window to take up the entire screen, and he will control
what is happening by using the mouse almost exclusively (and not the keyboard). As a
result, he will be unable to carry out any but the simplest tasks.
 An experienced person (especially one who is smart and creative) will use multiple
windows, will use the keyboard as much as possible, and will structure his moment-to-
moment work so that it moves quickly and effi ciently. If you have ever watched someone
work who is a master at using his computer, you know what I mean.
 When people design user interfaces systems, they must take into account that,
when it comes to thinking, humans have important limitations. For example, it is very
diffi cult for us to remember much of what happens from one moment to the next* and,
conventional wisdom notwithstanding, we are incapable of concentrating on two things
at the same time.
 What we can do is reorient ourselves within a fraction of a second as conditions
change. This is why mothers can watch a toddler, hold the baby, talk on the phone, and
cook dinner, all at the same time. (It is also why people think they can talk on the phone
and drive safely at the same time.)
 Our limited memory and our ability to reorient ourselves mean that a good user
interface must allow us to juggle as many tasks as we want, and it should do so in such a
way that we feel comfortable, once we are used to the interface.
 Moreover, the user interface should be able to support our growth. That is, no matter
how skillful we become, our interface should still be able to meet our demands.
 It is my contention that the text-based and graphical interfaces that come with Unix
are so well-designed and so fl exible that, when they are combined well, they are able
to meet all these demands and then some. For this reason, I want you to consider two
important ideas as you read this chapter.

 *Can you close your eyes and remember what you read ten seconds ago?

33614_06_093_130.indd 9533614_06_093_130.indd 95 1/9/2008 12:30:23 PM1/9/2008 12:30:23 PM

Chapter 6

96 Harley Hahn’s Guide to Unix and Linux

 First, I want you to understand that what you are about to read is more than a mere
description of how things work. The system I am about to show you has evolved by trial
and error, and has been designed by some of the smartest people who have ever lived. The
goal of this system is to overcome the limitations of both the computers and the humans
who use them, in such a way that the human thinks that both he and the computer are
actually multitasking.
 Second, I want you to take some time to practice and master the interfaces you will
meet in this chapter. The real power of Unix comes when you are able to combine the
text-based interfaces with the graphical interfaces.
 I believe that, overall, Unix has the best system of user interfaces that has ever existed
(including Microsoft Windows and the Macintosh). By the time you fi nish this chapter, I
expect you to agree with me.

THE GUI AND THE CLI
 From time to time, I have referred to two different Unix interfaces, text-based and
graphical. The time has come to give them formal names.
 The graphical interface is, of course, the GUI (graphical user interface) we discussed
at length in Chapter 3. Unix GUIs are created by a combination of X Window, a window
manager and a desktop environment.
 The text-based interface is usually referred to as the COMMAND LINE INTERFACE
(CLI). Here is why.
 As you know from Chapter 4, the basic Unix text-based interface is simple. The shell
(command processor) displays a prompt. You type a command. The shell does what’s
necessary to carry out the command. Once the command has been processed, the shell
displays another prompt, you type another command, and so on.
 The entire process uses only text (plain characters), and the line on which you type
your commands is called the COMMAND LINE. Thus, we have the name “command
line interface”.
 I want you to know the term CLI, because it is the counterpart of GUI, and you will
see it a lot in your reading, especially on the Internet. However, when people talk, they
don’t say CLI; they say “command line”. For example, you might read the following on a
Web site: “Although the Groatcake Software Package was designed for a GUI, there is also
a CLI version.”
 When people talk about interfaces in person, however, you are more likely to hear, “I
started with the GUI version of the Groatcake Software Package, but now I prefer using
the command line version.” Even more common would be, “I prefer to use the Groatcake
Software Package from the command line.”
 In other words, when you read or hear “command line” or when you read “CLI”, it tells
you that someone is typing a command, not selecting a choice from a menu.
 GUI programs are important. For example, just about everyone uses the GUI programs
for Web browsers and offi ce software, so I expect that you too will spend a lot of time
using your GUI.

33614_06_093_130.indd 9633614_06_093_130.indd 96 1/9/2008 12:30:23 PM1/9/2008 12:30:23 PM

The Unix Work Environment

97

 However, most of the power of Unix lies with the command line, because it provides
a fast and simple way to use the hundreds of different Unix commands. Indeed, once we
leave this chapter, we will be concentrating on using command line programs for the rest
of the book.

LOGGING IN AND LOGGING OUT WITH A GUI
In Chapter 4, we discussed what happens when you log in with a traditional Unix text-based
system. You see the prompt login: and you type your userid. You then see the prompt
Password: and you type your password. The system completes the login process, starts
your shell, and leaves you at the shell prompt. When you are fi nished, you log out.
 With a GUI, it’s more complicated. I’ll explain what happens with Linux. If you are using
another type of Unix, things may be a bit different, but you should be able to fi gure it out.
 After you turn on the computer, Linux will start. When the system is ready for you
to log in, you will see a login screen. The exact appearance varies depending on what
Linux distribution you are using. However, most distributions will show you the same
basic elements.
 First you will see a small box with the label “Username:”. This box corresponds to the
login: prompt. You are being asked to enter your userid.
 Before you enter your userid, take a moment to look around. You will see several other
choices: Language, Session, Reboot and Shutdown. To select a choice, you can either click
on it with your mouse or press what is called an ACCELERATOR key.
 To fi gure out what the accelerator key is for a particular choice, look carefully at the
word. One letter will be underlined. To select that choice, hold down the <Alt> key
and press that letter. For example, let’s say that, in the word “Session”, the letter “S” is
underlined. This means that the accelerator key for Session is <Alt-S>.

 To return to the login screen, the four choices are used as follows:

• Language: To change the language that Linux will use for this particular work
session.

HINT

As a Unix user, the basic skill you need is the ability to solve problems by using the command
line to enter one command after another.

Logging In and Logging Out With a GUI

HINT

Accelerator keys are a standard feature of GUIs, and you will fi nd them on many menus and dialog
boxes. For example, within most GUI-based programs, you can display the File menu by pressing
<Alt-F>, the Edit menu by pressing <Alt-E>, the Help menu by pressing <Alt-H>, and so on.
 Do take time to look for accelerator keys, as they can make your work easier. You will fi nd
that, when you want to make a selection, it is a lot easier to press a simple key combination than
it is to take one hand off the keyboard to move your mouse and click a button.

33614_06_093_130.indd 9733614_06_093_130.indd 97 1/9/2008 12:30:23 PM1/9/2008 12:30:23 PM

Chapter 6

98 Harley Hahn’s Guide to Unix and Linux

• Session: To select what type of work session you want.

Normally, you would not have to change either the language or type of session, because
the default will be what you want.

• Reboot: To reboot the computer.

• Shutdown: To shutdown the computer.

Once you enter your userid, you will be prompted to enter your password. Linux will
then proceed with the login process and start your desktop environment.
 When you are fi nished working, you log out by selecting the “Logout” item from the
main menu. You will then be asked to confi rm that you want to end your work session.
(Depending on what desktop environment you are using, you may also be given a choice
to shutdown or restart the computer.)
 Once you confi rm that you want to log out, Linux will terminate your desktop
environment and return you to the login screen. At this point, you can either log in again
or select Reboot or Shutdown.

RUNLEVELS
You now know that Unix can boot as either a GUI-based system or as a CLI-system.
Before we continue our discussion of interfaces, I’d like to take a few minutes to explain
to you how Unix can offer such fl exibility. The concepts are not only interesting, but they
will also show you a lot about the type of thinking and organization that makes Unix such
a good operating system.
 When a computer system, a program or a device can be in one of several states, we use
the term MODE to refer to a particular state. For example, we might say that you can use
Unix either in text mode (with a CLI) or in graphics mode (with a GUI).
 The concept of modes is so basic to computing that computer people often use the
term whimsically to refer to states of mind. For instance, one programmer might tell
another, “Sorry I didn’t come to visit you yesterday. I was in cleaning mode, and I spent
all afternoon vacuuming the house.”
 The reason I mention this idea is because Unix was designed to be fl exible when it
boots. This is done by having the capability of running Unix in one of several different
modes. These modes are called RUNTIME LEVELS or, more simply, RUNLEVELS.
 The strict defi nition of a runlevel is somewhat technical: a runlevel is a system software
confi guration that allows a specifi ed group of processes to exist. This is a tough defi nition,
so let’s be a bit more informal. A runlevel specifi es which fundamental services Unix will
provide. At different runlevels, Unix provides different sets of services*.
 Each time a Unix system boots, it goes through a complex process and, as part of that
process, the runlevel is set. Setting the runlevel controls the mode in which Unix will run.
Figure 6-1 shows the runlevels that are used with most Linux distributions.

 * The runlevel system that is used in Linux was originally introduced in System V. Within the BSD world (including
 FreeBSD), runlevels are not used. Instead, the system boots into either single-user mode or multiuser mode. Thus, the discussion
of runlevels in this chapter applies to Linux, but not to FreeBSD. (For information about System V and BSD, see Chapter 2.)

33614_06_093_130.indd 9833614_06_093_130.indd 98 1/9/2008 12:30:24 PM1/9/2008 12:30:24 PM

The Unix Work Environment

99

 In most cases, Linux will boot, by default, into either runlevel 3 or runlevel 5. If your
system is set to boot into runlevel 3, you will see a text-based login screen, and you will
log in and log out in the manner we discussed in Chapter 4. Once you log in, you will
work with a basic CLI.
 If your system boots into runlevel 5, Linux will start your default GUI. You will log in
using a graphical login screen (as I described earlier in the chapter), and you will work
with a desktop environment.
 Most people want to use a desktop environment so runlevel 5 is the default. However,
when a system administrator needs to solve a problem with a server – such as a Web server
or mail server – he will usually want runlevel 3, because the CLI allows him to do what
he wants quickly and easily. (Most system administration is done by typing commands,
not by making selections from menus.) For this reason, desktop systems are usually set to
boot into runlevel 5, and servers are set to boot into runlevel 3.
 Runlevel 1 is a holdover from the old days, when most Unix systems were shared by a
number of users and managed by a system administrator. From time to time, the admin
would have to do some work that required that no one else be logged in to the system. In
other words, for a short period of time, the admin would have to turn a multiuser user
system into a single-user system.
 To do this, the admin would send a notice to all the users that the system would be
going down in, say, 5 minutes. When the interval had passed, he would reboot Unix
into what, today, is runlevel 1. This would place the system in what used to be called
SYSTEM MAINTENANCE MODE and is now called SINGLE USER MODE. The
admin could now do his work, knowing that no one else would be able to log in. Once
his work was fi nished, he would reboot into multiuser mode (runlevel 3 or 5), and the
users would, once again, be allowed to log in to the system.
 Today, runlevel 1 is not used much. This is because modern Unix systems are so fl exible
that admins can do a lot of work – even upgrades and maintenance – while other users
are logged in. (This was not true in the old days.) The only times admins need to boot the
system into runlevel 1 occur when there are very serious problems, such as when a hard
disk becomes corrupted.

RUNLEVEL DESCRIPTION

0 Halt (Shutdown)

1 Single-user mode: command line

2 Not standardized

3 Multiuser mode: command line

4 Not standardized

5 Multiuser mode: GUI

6 Reboot

FIGURE 6-1: Typical Linux runlevels

Runlevels

33614_06_093_130.indd 9933614_06_093_130.indd 99 1/9/2008 12:30:24 PM1/9/2008 12:30:24 PM

Chapter 6

100 Harley Hahn’s Guide to Unix and Linux

DOES MICROSOFT WINDOWS HAVE RUNLEVELS?
Because so many people use Microsoft Windows, it is instructive to compare it to Unix
and ask: Does Windows have runlevels? (If you don’t care about Windows, just skip
this section.)
 There are two answers to this question. First, Windows does have boot options that
look like runlevels, but really aren’t. Second, Windows has a facility that does offer
runlevels, but it is hidden so well hardly anyone knows it exists.
 To begin, Windows has a special startup menu that you can display as the system
initializes. (With Windows XP, hold down <F8> as the system starts.) The menu is called
the Windows Advanced Options Menu, and it gives you a number of different choices,
which you can see in Figure 6-2.
 These choices do allow Windows to boot into different modes. However, unlike Unix
runlevels, the Windows startup options are not confi gurable, and they do not offer a great
deal of fl exibility. To get very technical for a moment, the Windows boot modes are more
like Unix kernel boot options than runlevels. (If this makes no sense to you, don’t worry
about it.)
 Still, Windows does have a system that can work the same way as runlevels, in that you
can decide which system services you want to run. It is possible to create what are called
“hardware profi les”. (Right-click on “My Computer”, and select “Properties”. Click on the
“Hardware” tab, and then click on the “Hardware Profi les” button.)
 Hardware profi les were intended to let you boot a computer using different sets
of devices. For example, with a laptop computer, you may want different hardware
confi gurations when the machine is docked than when you are using it on its own.
 This much is common knowledge (at least among the type of people who care about
stuff like this). What is less well known is that, once you have created a hardware profi le,

TECHNICAL HINT

If you would rather use the basic CLI rather than a GUI (as many people do), you can change
your system so that by default it boots to runlevel 3 instead of runlevel 5. If you use a computer
at a company or school, just ask your system administrator* to make the change for you.
 If you maintain your own computer, you’ll have to do it yourself. I won’t go into the details,
as they lie beyond the scope of the book, but I’ll give you the general idea.
 First, make the system boot automatically to runlevel 3 by changing the value of
initdefault to 3 in the /etc/inittab fi le. Then examine the symbolic links in the
rc3.d directory, and make sure the GUI is not started automatically for this runlevel.
 Hint: If you are using a CLI at runlevel 3 and you want to start the GUI, you can use the
 startx command.
 Before we leave this section, here are two questions to ponder. However, let me warn you, don’t
actually make the changes I am about to describe, or you will be sorry. Just think about them.
 1. What would happen if you set the value of initdefault to 0 (Halt)?
 2. Would would happen if you set it to 6 (Reboot)?

* “Real admins understand runlevels.” ~Stephanie Lockwood-Childs

33614_06_093_130.indd 10033614_06_093_130.indd 100 1/9/2008 12:30:24 PM1/9/2008 12:30:24 PM

The Unix Work Environment

101

you can choose which system services you want enabled and disabled for that profi le.
This is very similar to Unix runlevels.
 Seeing as this is not a Windows book, I won’t go into the details. However, if you are
interested in exploring on your own, here’s what to do with Windows XP Professional.
 Start by creating one or more hardware profi les. Then, from the Control Panel, click on
“Administrative Tools”, and then “Services”. Right-click on any service, select “Properties”,
and then click on the “Log On” tab. You will now be able to enable or disable this service
for the various hardware profi les.
 An example of when you might want to do this would be if you have a special hardware
profi le for a laptop when it is not connected to a network. In such a situation, you would
want to disable all the network-related services.

LEARNING TO USE A GUI
My guess is that, even if you have never used Unix, you have some experience with
GUIs, either with Microsoft Windows or with a Macintosh. However, before we discuss
how to integrate the Unix GUI and CLI in your work, I want you to be completely
comfortable with the basic concepts, so I’m going to take a few minutes to discuss the
most important ideas.
 Learning to use a graphical user interface is easy. Learning to use it well is not so easy.
So even if you are a veteran GUI user, do take a few moments to skim this part of the
chapter. I bet you’ll fi nd something you don’t know.
 Although the various desktop environments have a lot of commonality, there are small
but important differences, and it is diffi cult to write down a single set of instructions that
will work for all the different interfaces. In addition, virtually every part of a GUI can be
customized. The fi rst time you use a particular GUI, you will fi nd that the default settings
look and act in a specifi c way. Once you become a veteran user, you should take some
time to customize your system according to your own needs and preferences.
 In the following three sections, I will discuss the basic ideas that you must understand
to use a GUI. This will be enough to get you started. After you have fi nished reading,

STARTUP OPTIONS FOR MICROSOFT WINDOWS

Safe Mode

Safe Mode with Networking

Safe Mode with Command Prompt

Enable Boot Logging

Enable VGA Mode

Last Known Good Confi guration

Debugging Mode

Start Windows Normally

FIGURE 6-2: Windows XP Pro: Startup options

Learning to Use a GUI

33614_06_093_130.indd 10133614_06_093_130.indd 101 1/9/2008 12:30:24 PM1/9/2008 12:30:24 PM

Chapter 6

102 Harley Hahn’s Guide to Unix and Linux

please set aside some time to read the built-in help that comes with your specifi c desktop
environment. In particular, look for a list of the shortcut keys. Learning how to use them
well is the single most important thing you can do to master any GUI.
 In Chapter 5, I have already covered the fi rst few important ideas:

• A GUI allows you to work with windows.

• A window is a bounded area of the screen, usually a rectangle.

• Windows can overlap.

• As the need arises, you can change the size of a window, or move it from one part of
the screen to another.

Let’s move on.

OF MICE AND MENUS
On your screen will be a small, movable image called a POINTER. You use a pointing
device, usually a mouse, to move the pointer around the screen. The shape of the pointer
may change, depending on what you are doing and where it is on the screen.
 To initiate an action, you move the pointer to a specifi c position on the screen and
then press a button. Your mouse may have either one, two or three buttons. X Window
is designed to work with a 3-button mouse, which means – as a general rule – that Unix
desktop environments use a 3-button mouse. These buttons are referred to as the LEFT,
MIDDLE and RIGHT BUTTONS.

 There are only two things you can do with a mouse button: click or hold.
 When you press it and let go, we say that you CLICK the button. If you press the
button twice in rapid succession, we say that you DOUBLE-CLICK. On rare occasions,
you may have to TRIPLE-CLICK, that is, press a button three times quickly.
 When you click the left button, we say that you LEFT-CLICK. This is the most common
type of click. Similarly, you can RIGHT-CLICK (less common) and MIDDLE-CLICK
(least common).
 When you see the word “click” by itself, it always means left-click. For example,
you might read, “To pull down the Groatcakes Menu, click on the icon of a groatcake.”

HINT

Unix GUIS are designed to work with a 3-button mouse. If your mouse only has two buttons,
you simulate the middle button by pressing the left and right buttons at the same time. (Pressing
two mouse buttons at the same time is called CHORDING.) Alternatively, if your mouse has a
scroll wheel, pressing the wheel may simulate the middle button.
 For Macintosh users: If you are using OS X with a one-button mouse, you simulate a right-
click by using Control-Click, and you simulate a middle-click by using Option-Click.
 That is, to right-click, hold down the <Control> key and click the mouse button. To middle-
click, hold down the <Option> key and click the mouse button.

33614_06_093_130.indd 10233614_06_093_130.indd 102 1/9/2008 12:30:24 PM1/9/2008 12:30:24 PM

The Unix Work Environment

103

This means to left-click on the icon of a groatcake. (An ICON is a tiny picture that
represents something.)
 Aside from clicking, you can press a button and HOLD it. Most of the time, you hold
down a button when you want to move something. For example, to move a window, you
position the pointer onto the TITLE BAR (the horizontal area at the top of the window
that has the name of the program). Hold down the left button and move the mouse. The
window will follow your movement. Once the window is where you want it, release the
mouse button.
 When we move an object in this way, we say that we DRAG it. Thus, we can say that to
move a window, you drag its title bar to a new location.
 Much of the time, you make choices by selecting an item from a list called a MENU.
There are two types of menus: pull-down menus (more common) and pop-up menus
(less common).
 A PULL-DOWN menu is a menu that appears when you click on a particular word
or icon. For example, most windows have a horizontal list of words near the top of the
window (the MENU BAR). If you move the pointer to one of these words and click, a list
of related items will appear below the word. You can then select an item from the list.
 The most important pull-down menu is the WINDOW OPERATION MENU, which you
will fi nd in virtually every window. To display the Window Operation menu, click on the tiny
icon at the top-left of the window (at the left edge of the title bar). Doing so will display a list
of actions that pertain to the window itself, the most important of which are: Move, Resize,
Minimize, Maximize and Close. You can see this in Figures 6-3 (KDE) and 6-4 (Gnome).

 Whenever you pull down a menu, take a careful look at the choices. Some of them
will have the name of a key or a key combination next to them. These are called
SHORTCUT KEYS. By pressing the shortcut key, you can select the particular actions
without having to go to the trouble of pulling down the menu.
 A few shortcut keys are standardized – that is, they are the same for all windows
within most GUIs – and are worth memorizing. The most important such shortcut key
is <Alt-F4>. Pressing it will close the current window.
 Make sure you memorize <Alt-F4>. Using it will make your work with a desktop
environment a lot smoother. If you don’t learn to use it, every time you want to close a
window, you have to use the mouse, which is awkward and slow. Personally, I use <Alt-F4>
many times a day.
 The second type of menu, the POP-UP MENU, appears out of nowhere after some
action has occurred, often a right-click. By convention, right-clicking on an item will
display what is called a CONTEXT MENU, that is, a group of actions that relate to the

Of Mice and Menus

HINT

As I mentioned earlier in the chapter, you can also pull down a menu by pressing its accelerator
key. For example, you can pull down the File menu by pressing <Alt-F>.
 Using accelerator keys saves you the trouble of taking your hand off the keyboard in order to
move the mouse and click a button.

33614_06_093_130.indd 10333614_06_093_130.indd 103 1/9/2008 12:30:24 PM1/9/2008 12:30:24 PM

Chapter 6

104 Harley Hahn’s Guide to Unix and Linux

item itself. To try this for yourself, position your pointer over anything you want – for
example, within a window that contains a program – right-click and see what happens.

RESIZING, MINIMIZING, MAXIMIZING AND CLOSING WINDOWS
It is possible to change the size of the windows you are using to suit your minute-to-
minute preferences. When you do this, we say that you RESIZE the window. The details
can vary from one GUI to another. However, there are two standard methods.
 First, you can use your mouse to change the borders of a window. Move the pointer to
the border you want to change. Then hold down the left button and drag the border to a
new location. You can also start with the pointer at a corner of the window. Dragging the
corner changes two adjacent sides at the same time. (Try it.)
 Second, you can use the keyboard to move the borders of the window. Pull down the
Window Operation menu and select “Resize”. You can then use the arrow keys (<Left>,
<Right>, <Up> and <Down>) to change the size of the window. (Many people don’t
know about this feature.)
 Similarly, you can move a window by selecting “Move” from the Window Operation
menu, and then using the arrow keys to move the window however you want. When you
are fi nished, press <Return> (or <Enter>).

FIGURE 6-3: KDE window operation menu

The Window Operation menu displays a list of actions pertaining to the current window. This is the
KDE version of that menu.

33614_06_093_130.indd 10433614_06_093_130.indd 104 1/9/2008 12:30:24 PM1/9/2008 12:30:24 PM

The Unix Work Environment

105

 Aside from changing the size of a window or moving it, there will be times when
you want the window to vanish temporarily. You don’t want to close the window (which
would stop the program). You just want it out of the way until you need it.
 In such cases, you MINIMIZE or ICONIFY the window. This causes it to vanish from
the main part of the screen. At the same time, a small representation of the window (an
icon) appears on the TASKBAR, the horizontal bar at the bottom of the screen.
 When a window is minimized, the program inside the window keeps running. So, for
example, you might have seven windows, four of which are open, and three of which are
minimized to the taskbar. However, even though only four windows are visible, all seven
programs are still running.
 Once a window is minimized, you can expand the window back to its original size and
position whenever you want. When you do, we say that you RESTORE the window.
 I’ll tell you how to minimize and restore in a moment. Before I do, I want to mention
two more things you can do with a window. First, you can CLOSE a window permanently,
which stops the program running in the window and makes the window disappear.
 Second, you can MAXIMIZE a window, which expands it to take up the entire screen. This
is handy when you want to concentrate on only one task. Maximizing the window allows
you to concentrate on that task without being visually distracted by other windows.
 So, how do you minimize, restore, close and maximize windows? There are several ways.
Before I explain, I want to take a moment to discuss what I call the “window controls”.

FIGURE 6-4: Gnome window operation menu

The Window Operation menu displays a list of actions pertaining to the current window. This is the
Gnome version of that menu.

Resizing, Minimizing, Maximizing and Closing Windows

33614_06_093_130.indd 10533614_06_093_130.indd 105 1/9/2008 12:30:24 PM1/9/2008 12:30:24 PM

Chapter 6

106 Harley Hahn’s Guide to Unix and Linux

 If you look at the top right-hand corner of a window, you can see three small boxes
(see Figure 6-5). From right to left, there is a CLOSE BUTTON (it looks like an “X”), a
MAXIMIZE BUTTON (a small rectangle) and a MINIMIZE BUTTON (an underscore).
 The use of these buttons is straightforward:

• Click on the Minimize Button to minimize the window to the taskbar.

• Click on the Close Button to close the window and stop the program running in the
window. (This is the same as pressing <Alt-F4>.)

• Click on the Maximize Button to maximize the window. This enlarges the window to
take up the entire screen (although you will still see the taskbar).

However, you don’t have to click on these buttons. There is an alternative that you may
prefer: you can select the same actions from the Window Operation menu. Display the
menu by clicking on the small icon in the top-left corner of the window and select either
“Minimize”, “Maximize” or “Close”.
 Once a program is minimized to the taskbar, you can restore it by clicking on the
representation of the window in the task bar. This will cause the window to be expanded
back to its original size and position.

FIGURE 6-5: Window controls

In the top-right of most windows, you will see three window controls. The right control (“X”) closes the
window; the middle control (the rectangle) maximizes the window; the left control (the underscore)
minimizes the window to the taskbar.

33614_06_093_130.indd 10633614_06_093_130.indd 106 1/9/2008 12:30:25 PM1/9/2008 12:30:25 PM

The Unix Work Environment

107

 When you maximize a window, it expands to fi ll the entire screen. When this happens,
the middle of the three window control buttons changes from a maximize button to an
UNMAXIMIZE BUTTON. (See Figure 6-6.) To change the window back to its original
size and location, simply click on this button. Alternatively, you can pull down the window
operation menu and select the appropriate action.

CONTROLLING THE FOCUS: TASK SWITCHING
With a GUI, you can have as many windows as you want, each of which contains its own
program. However, when you type on the keyboard, or click, or hold down a mouse
button, the input will go to only one specifi c window. The window to which your input
goes is said to have the FOCUS and is called the ACTIVE WINDOW. The window that
has the focus is highlighted in some way. Typically, its title bar will be a different color
than the other windows. (See Figure 6-7 later in the chapter.)
 From one moment to the next, you can change which window has the focus, according
to your needs. For example, over the course of a few minutes, you might change from a
Web browser, to an email program, to a word processor, and back to the browser.

Controlling the Focus: Task Switching

FIGURE 6-6: Window controls showing the Unmaximize Button

When a window is maximized, the Maximize Button changes into an Unmaximize Button. Here we see
three window controls. The right control (“X”) closes the window; the middle control (the overlapping
rectangles) unmaximizes the window; the left control (the underscore) minimizes the window to the
taskbar.

33614_06_093_130.indd 10733614_06_093_130.indd 107 1/9/2008 12:30:25 PM1/9/2008 12:30:25 PM

Chapter 6

108 Harley Hahn’s Guide to Unix and Linux

 There are several ways to change the focus. First, if the window is open, just click on it.
Alternatively, you can click on the name of the window in the taskbar.
 In either case, the focus will be brought to the window you select, and the keyboard will
be connected to the program that is running in that window. In addition, if the window is
partially obscured by another window, the window with the focus will be redrawn to be
on top and will become completely visible.
 Another way to change the active window is to use what is called TASK SWITCHING.
Each program that is running in a window is called a TASK. To see all the tasks that are
currently running, just look at the task bar (usually at the bottom of the screen). Each
task will have its own small button. As I mentioned, if you click on one of these buttons,
it sends the focus to that window.
 This works fi ne, but there is an easier way. Pressing <Alt-Tab> allows you to switch
from one task to another without having to take your hands away from the keyboard.
 When you press <Alt-Tab>, your GUI will highlight a specifi c task. (You will see small
pictures in the center of your screen. It will be obvious.) Press <Alt-Tab> again and the
next task is highlighted.
 All you have to do is hold down the <Alt> key, and keep pressing <Tab> until you get to
the task you want. Release the keys and the window for that task will be given the focus.

MULTIPLE DESKTOPS / WORKSPACES
When you are using a GUI, the basic space in which you work is called your DESKTOP.
As we discussed in Chapter 5, the name is a metaphor. As such you can imagine your
windows open on the desktop like pieces of paper on a real desk.
 The desktop metaphor runs out of steam quickly, so we won’t push it. Instead, I want
you to consider your desktop as an abstract environment in which you can organize
your work. The desktop has characteristics that reach well beyond the physical reality of
the screen. Understanding those characteristics is crucial if you are to master the Unix
working environment*.

HINT

To switch from one task to another, press <Alt-Tab> repeatedly. At fi rst, this can be a bit slow,
so here is a trick.
 Hold down the left <Alt> keys with your left thumb. Without letting go, press the <Tab> key
repeatedly with the middle fi nger of your left hand. (Take a moment to try it now.)
 To cycle through the tasks in the opposite order, simply press <Alt-Shift-Tab> instead of
<Alt-Tab>. (Give it a try.)
 Do take a few moments and master the <Alt-Tab> and <Alt-Shift-Tab> key combinations.
Not only will they speed up your task switching, but they are so handy that they will change the
way you organize your work environment.

 *In the Yoga Sutras, written about 2,000 years ago, the ancient sage Patañjali addresses this very concept. In Book II, Verse 21,
he writes (in the original Sanskrit): Tadartthah eva drsyasya atma.
 This can be translated as “The nature and intelligence of the Unix desktop exist solely to serve the user’s true
purpose, emancipation.”

33614_06_093_130.indd 10833614_06_093_130.indd 108 1/9/2008 12:30:25 PM1/9/2008 12:30:25 PM

The Unix Work Environment

109

 The most important idea is that you can have more than one desktop, each of which
has its own background, its own windows, its own taskbar, and so on. Switching from one
desktop to another is easy and, when you do, it feels as if you are switching to a totally
new system.

 There are two ways to switch from one desktop/workspace to another. You can use
your mouse or your keyboard.
 To use your mouse, look at the bottom of the screen near the taskbar. You will see a
set of small squares, one for each desktop. For example, if you have four desktops, there
will be four squares. You can see this in Figure 6-7 (later in the chapter). To change to a
desktop, just click on its square. Although this sounds a bit vague, it’s easy once you get
the hang of it. Just experiment a bit.
 To use your keyboard to switch from one desktop to another, there are shortcut keys.
These keys can vary from one desktop environment to another, so the best thing is to
check the documentation under “Shortcut Keys”. (Look for a Help icon.)
 With KDE, the desktop shortcut keys are <Ctrl-Tab> and <Ctrl-Shift-Tab>.
 With Gnome, they are <Ctrl-Alt-Left>, <Ctrl-Alt-Right>, <Ctrl-Alt-Up> and
<Ctrl-Alt-Down>. (That is, hold down <Ctrl> and <Alt> and press an arrow key.)
 Using the desktop shortcut keys is so simple that you will probably master it quickly
and never have to use your mouse to switch from one desktop to another.
 As a general rule, desktop environments offer four different desktops by default.
However, it is possible to add more if you want. To do so, right-click on one of the small
desktop squares at the bottom of the screen. This will pop up a context menu. Look for a
menu item like “Preferences” or “Desktop Confi guration”.
 Before we leave this section, I want to bring up an idea that we will revisit at the end of
the chapter. So far, I have shown you how the Unix work environment makes it possible
to do more than one thing at the same time. Within each desktop, you can open multiple
windows, each of which runs a separate program. You can have multiple desktops, each of
which has its own set of windows. Moreover, using shortcut keys, it is easy to move from
one desktop to another and, within a desktop, from one window to another.

WHAT’S IN A NAME?

Desktop, Workspace
Within a GUI, the desktop is the basic working environment. The desktop contains the
background, the windows, the task bar, and so on.
 Most desktop environments allow you to use multiple desktops. This has the advantage of
being able to create what look and feel like multiple graphical work environments.
 The name “desktop”, however, can be confusing, because it is often used to refer to the desktop
environment itself, that is, the GUI as a whole. For this reason, you will often see desktops
referred to as WORKSPACES, which makes a lot more sense.
 For example, when you work with KDE, you use “desktops”. When you work with Gnome,
you use “workspaces”. Regardless of what they are called, they are the same thing and, minor
details aside, work the same way.

Multiple Desktops/Workspaces

33614_06_093_130.indd 10933614_06_093_130.indd 109 1/9/2008 12:30:25 PM1/9/2008 12:30:25 PM

Chapter 6

110 Harley Hahn’s Guide to Unix and Linux

 What I want you to think about is, given all these resources, what is the best way for
you to organize your work? As you will come to see, how you answer this question is very
important to your total Unix experience.

TERMINAL WINDOWS
In Chapter 3, we talked about terminals, and how they were used in the old days to access
multiuser Unix systems using a CLI or command line interface. We discussed how, today,
we don’t use actual terminals. Instead, we run a program that emulates (acts like) a
terminal. When we run such a program under a GUI, the program emulates an X terminal
(the graphics terminal we discussed at the end of Chapter 3).
 As I have explained, most of the power of Unix lies in using the CLI. This means that
most of what you will be doing as you read this book is entering commands at the shell
prompt, one command after another, as well as working with text-based programs. In
order to do this, you will need access to a terminal.
 Obviously, we don’t use real terminals. Instead, we use terminal emulators. So the
question arises, how do we access a terminal emulator?
 With modern Unix systems, there are two ways, both of which are important. We’ll
discuss one now (terminal windows) and the other (virtual consoles) in the next section.
 Within your desktop environment, all your work is done within windows, so it only
makes sense that you would run a terminal emulation program within a window.
 Doing so is easy. All desktop environments come with a simple way to start a terminal
program. Just open the main menu and look for it. Within Gnome, for example, if you
look in the System Tools submenu, you will see “Terminal”. Within KDE, if you look at
the System submenu, you will fi nd two such programs: “Terminal” and “Konsole”. (I’ll
explain why there are two in a moment.)
 When you start such a program, a window will appear on your screen. Within that
window, you have a standard CLI. As an example, take a look at Figure 6-7, where you will
see two terminal windows.
 As you remember from Chapter 4, the shell is the command processor. It displays a
prompt and waits for you to enter a command. It then processes the command. When the
command is done, the shell displays another prompt, and waits for the next command.
 In our example, at the fi rst shell prompt, I entered the date command (to display
the current time and date). The shell processed this command, and then displayed
another prompt.
 Since the terminal emulator runs in a window, and since you can have as many windows
as you want, you can have multiple terminals running at the same time. Although you may
wonder why you would want to do so, the time will come – once you are an experienced

HINT

As you organize your work, you can move a window from one desktop to another.
 Right-click on the window’s title bar. This will pop up a menu that will let you move the
window to the desktop of your choice.

33614_06_093_130.indd 11033614_06_093_130.indd 110 1/9/2008 12:30:25 PM1/9/2008 12:30:25 PM

The Unix Work Environment

111

Unix user – when it will be commonplace for you to have a variety of command-line
programs working for you at the same time, each one in its own terminal window.

 As I mentioned earlier, KDE gives you a choice of two terminal programs. Actually,
the need to emulate a terminal has been around for so long that there are many different
terminal programs, and most desktop environments give you a choice as to which one
you want to use.

FIGURE 6-7: Multiple terminal windows

Within your desktop environment, you can open as many terminal windows as you want. Inside a
terminal window, you enter commands using the standard Unix CLI (command line interface). In
this example, there are two open terminal windows. The active window, with the focus, has the darker
title bar.

Terminal WIndows

HINT

Most desktop environments have a collection of icons that allow you to start frequently used
programs. (You will fi nd these icons at either the top or bottom of your screen.) If you right-
click in this area, you will see a pop-up menu that will allow you to add and delete programs by
creating an icon for them.
 My suggestion is to add your favorite terminal program. That way you can open a new
terminal window whenever you want, just by clicking on an icon.
 This is so important that I suggest you take a moment and do it now. At the same time, you
can reduce the clutter by deleting the icons for programs that you won’t be using.

33614_06_093_130.indd 11133614_06_093_130.indd 111 1/9/2008 12:30:25 PM1/9/2008 12:30:25 PM

Chapter 6

112 Harley Hahn’s Guide to Unix and Linux

 Some desktop environments let you choose the terminal program you want directly
from the menu. (This is the case with KDE, which is why you see two choices.) Other
desktop environments have only one Terminal item in the menu, but you can change it to
refer to whichever terminal program you want. (This is the case with Gnome.) To see the
choices, right-click on Terminal item and select “Properties”.
 So which terminal program should you use? Strictly speaking, it doesn’t really matter
all that much, because all terminal programs offer the same basic functionality: providing
a CLI within a window. However, if you want to get fancy, the Konsole program is a
particularly good one, in that it has a number of useful features not found in other
terminal programs.
 For example, you can run multiple CLI sessions in the same window, each session
having its own tab. You can then switch from one session to another by clicking on a tab
or by using the shortcut keys <Shift-Right> and <Shift-Left>. (That is, hold down the
<Shift> key and press the right-arrow key or the left-arrow key.) You will fi nd these keys
particularly handy.
 My advice is to use Konsole if it is available on your system. It is a common program
and it may be installed on your computer even if you are not using KDE. Once you start
using Konsole, do take some time to read the built-in help. It’s easy to understand, and
doing so will help you a lot.

WHAT’S IN A NAME?

xterm, xvt, Konsole
When X Window was fi rst developed, it came with a terminal program named xterm, which
emulated the VAXstation 100 (VS100) graphics terminal. (See Chapter 3 for a discussion of
graphics terminals.) The original version of xterm was developed in the summer of 1984 by
Mark Vandevoorde, a student at MIT.
 (Interestingly enough, Vandevoorde developed xterm as a standalone terminal emulator:
it had nothing to do with X. Within a short time, however, xterm was recast and ported to the
new X Window system, where it has lived ever since. For this reason, it made sense to keep the
name xterm for the X Window terminal.)
 The modern version of xterm can emulate both a character-based terminal (the old
DEC VT-102, very similar to a VT-100) and a graphics terminal (the Tektronix 4014). For a
long time, xterm was the main terminal program available with X.
 In 1992, John Bovey of the University of Kent, wrote xvt, a new terminal emulator to
replace xterm. Although xvt was more or less compatible with xterm, the new program
was faster and required less memory (a big deal in those days). One reason was that it was
only a basic VT-100 emulator; it did not include Tektronix 4014 support. (Thus, the name
xvt, X Window VT-100 emulator.)
 Since the 1990s, many X Window-based terminal programs have been written, and almost
all of them have been based on either xterm or xvt. In 1998, a German programmer
Lars Doelle released Konsole, a brand new terminal program. Konsole was part of the KDE
project and, over the years, it has been enhanced so that, today, it is one of the most powerful
terminal emulators around.
 Konsole, by the way, is the German word for “console”. This is a happy coincidence because,
as I mentioned in Chapter 5, it is the custom that KDE programs should have names that
begin with K.

33614_06_093_130.indd 11233614_06_093_130.indd 112 1/9/2008 12:30:25 PM1/9/2008 12:30:25 PM

The Unix Work Environment

113

VIRTUAL CONSOLES

It’s 1980 and we are at a major East Coast university, visiting the Most Important Professor
on campus. The MIP has a fancy offi ce with a large desk and seven different terminals, all
of which are connected to a powerful Unix system. (See Figure 6-8.)
 The MIP is showing us around his offi ce. “Six of these terminals are character devices,
offering the standard command-line interface,” he explains. “In fact, this particular
terminal over here is the console.”
 Wait a second, we say. Isn’t the console supposed to be near the computer or, at the
very least, in the system administrator’s offi ce?
 “In most cases, yes,” says the MIP, “but I’m a very important person. The six character
terminals are for me to use however I want. It often happens that I need to work on more
than one project at a time, so having all the terminals all to myself is very convenient. If
the system breaks, let the admin come to my offi ce to use the console.”
 How kind of you, we say. But do you really use all six terminals?
 “You bet I do. I’m important. I need a lot of terminals. However, I do let my secretary*
use one of them from time to time.”
 Finally, the MIP points to the seventh terminal, off to one side. “This is a graphics
terminal, very special” he says. “It’s true; there are only a limited number of programs that
run on such a terminal but, since I am so important, I must, of course, have one.”

Virtual Consoles

 *A secretary was a mammalian version of a personal digital assistant. Secretaries fl ourished in the university environment
from the 1930s to the late 1980s.
 Compared to PDAs, university secretaries were unreliable, diffi cult to control, not upgradable, and often had memory
problems. Moreover, because of licensing restrictions in the 1980s and 1990s, many secretaries were impossible to discard, even
if they were performing poorly.
 In 1996, secretaries were put on the endangered species list and, since 1998, they have been considered extinct. The last
sighting of an actual university secretary was in late 1998 at the University of North Dakota, Fargo. However, the sighting was
not confi rmed, and most authorities believe the “secretary” was actually a reference librarian (also on the endangered list).

6 TEXT-BASED TERMINALS GRAPHICS TERMINAL

DESK OF THE MOST IMPORTANT PROFESSOR

FIGURE 6-8: Multiple terminals for one user

In the year 1980, this was the desk of the Most Important Professor in the university. The MIP was
so important he had seven terminals just for his own use: six text-based terminals and one graphics
terminal (the one on the right). Today, when you use your own Linux computer, you have a much better
facility: the 7 built-in virtual consoles. (See text for details.)

33614_06_093_130.indd 11333614_06_093_130.indd 113 1/9/2008 12:30:26 PM1/9/2008 12:30:26 PM

Chapter 6

114 Harley Hahn’s Guide to Unix and Linux

 Let’s move forward 25 years. You have just read about the Most Important Professor,
and you are thinking wistfully, “Imagine having seven terminals all to yourself. Wouldn’t
that be wonderful? I wish I were that important.”
 Actually, if you have your own Unix computer, you are that important. All modern
Unix systems allow you to use multiple terminals at the same time, one of which is a
graphics terminal.
 Moreover, you don’t have to clutter your desk with more than one monitor and
keyboard. Unix will use the same monitor and keyboard for each terminal. All you have
to do is press a shortcut key to switch from one terminal to another.
 Here is how it works with Linux (other systems are similar).
 When you start Linux, your GUI – that is, your desktop environment – starts
automatically. What you may not know is that, at the same time, Linux actually starts
seven different terminal emulation programs running on your behalf. They are called
VIRTUAL CONSOLES. (Unfortunately, the name is a bit misleading, as I will discuss in
the next section.)
 Virtual consoles #1-6 are full-screen, text-based terminals for using a CLI. Virtual
console #7 is a graphics terminal for running a GUI. In fact, when your desktop manager
starts, what you are looking at is actually virtual console #7. The other six virtual consoles
are invisible.
 To switch from one virtual console to another, all you need to do is press a special key
combination. For virtual console #1, press <Ctrl-Alt-F1>. (That is, hold down the <Ctrl>
and <Alt> keys and press <F1>.) For console #2, press <Ctrl-Alt-F2>; for console #3,
<Ctrl-Alt-F3>; and so on.
 When you press one of these key combinations, you will instantly see a full-screen
CLI terminal. You have six of them to use however you want. To return to the GUI (your
desktop environment), just press <Ctrl-Alt-F7>. (Remember, the 7th virtual console is
the graphics terminal.)

 When you switch away from a virtual console, the program that is running in it keeps
running. For example, you start a program in terminal #4 to perform a lengthy job (such
as compiling a large program or downloading a lot of fi les from the Internet). You can
then press <Alt-F5> and switch to terminal #5 to work on something else. Later, you can
press <Alt-F4> to return to terminal #4 and see how your program is doing.

HINT

The shortcut keys to switch from one virtual console to another are actually <Alt-F1>
(terminal #1) through <Alt-F7> (terminal #7). However, within most GUIs, these keys have
other uses, so you must hold down the <Ctrl> key as well.
 For example, say you are working with your GUI (terminal #7). To switch to terminal #3, you
press <Ctrl-Alt-F3>.
 You are now at a CLI. To switch to terminal #4, press <Alt-F4>; to switch to terminal #1,
press <Alt-F1>; and so on. To switch back to terminal #7 (the GUI), press <Alt-F7>.
 So why would you want to use <Alt> by itself instead of <Ctrl-Alt>? It’s simpler and quicker,
and Unix people like it when things are as simple and as quick as possible.

33614_06_093_130.indd 11433614_06_093_130.indd 114 1/9/2008 12:30:26 PM1/9/2008 12:30:26 PM

The Unix Work Environment

115

 The question arises, why bother with the six text-based virtual consoles? Why not just stay
in the GUI and use terminal windows and multiple desktops? There are several reasons.
 First, the text-based virtual consoles use the entire screen, and display characters using
a monospaced (constant width) font typeface. Overall, this is a particularly pleasing way
to use a CLI, much more so than a terminal window under a GUI, even a maximized
window. (Try it and see.)
 Second, it is cool to press <Alt-F1>, <Alt-F2>, and so on, to switch from one command
line to another. (Again, try it and see.)
 Third, if you ever have a serious problem with your desktop environment, it’s handy to
be able to switch to a virtual console in order to solve the problem. For example, if your
GUI freezes, you can usually press <Ctrl-Alt-F1> to get to another terminal. You can then
log in to fi x the problem or reboot the system.
 To complete our discussion, let me explain why I told you the story about the Most
Important Professor. There are two reasons.
 First, I want you to realize how powerful modern Unix really is. If you used Unix in
1980, you would have had to share terminals, usually by going to a terminal room and
waiting your turn. If you somehow managed to acquire your own personal terminal, it
would have been a very big deal.
 The truth is, in 1980, computing equipment was so expensive that even the most
important person at a university wasn’t important enough to have several terminals in
his offi ce, let alone seven. And yet, today, that’s exactly what you have on your desktop
when you use Linux on a PC. (FreeBSD actually gives you eight.)
 Second, I want you to notice that the idea of multiple virtual consoles is a software
implementation of a hardware reality from over a quarter century ago. How many
computing paradigms that old are still so valuable? So far, in this book, we have met
two: the system of clients and servers (Chapter 3), and the fl exible, open-ended design
of X Window (Chapter 5). To these two, we can now add another basic principle.
 Unix is based on the idea of using terminals to access a host computer, an idea so powerful
that – long after the actual terminals were gone – the system they inspired is still thriving.

Virtual Consoles

WHAT’S IN A NAME?

Virtual
Within computing, the term “virtual” is used to describe something that exists because it is
simulated by software. For example, the virtual consoles we discussed in this chapter are not
real, in the sense that they do not have an independent physical existence. They exist only
because they are created by software.
 A more important example is the idea of virtual memory, a method of simulating more
memory than physically exists in the computer. For example, if a computer has 2 GB of memory,
the operating system may simulate, say, an extra 4 GB of virtual memory by using the hard disk
to hold the excess data. (Unix, by the way, uses virtual memory.)
 The term “virtual” comes from optics, a branch of physics. Imagine you are looking at a
candle in front of a mirror. When you look at the actual candle, a physicist would say you are
looking at the “real” image. When you look at the candle in the mirror, you are looking at the
“virtual” image.

33614_06_093_130.indd 11533614_06_093_130.indd 115 1/9/2008 12:30:26 PM1/9/2008 12:30:26 PM

Chapter 6

116 Harley Hahn’s Guide to Unix and Linux

THE ONE AND ONLY CONSOLE
In Chapter 3, we talked about the idea of the console. This term can be a bit confusing, so
let’s take a moment to get it straight.
 In the old days, most Unix computers were connected to a number of terminals. When
someone wanted to use the system, he or she would fi nd an unused terminal and log in.
 One of the terminals, the console, was special because it was used by the system
administrator to manage the system. In most cases, the console was kept in a locked
room, either next to the host computer or in the admin’s offi ce.
 Physically, the console looked like other terminals, but there are two things that made
it different. First, when Unix needed to display a very important message, that message
was sent to the console.
 Second, when the system was booted into single-user mode – for maintenance or
problem solving – only the console would be activated. In this way, other users would not
be able to log in until the system was rebooted into multiuser mode.
 Today, the word “console” is often used as a synonym for terminal, which can be
confusing. For example, the virtual consoles we just discussed are not real consoles. It
would make a lot more sense to call them “virtual terminals”.
 Similarly, consider the Konsole terminal emulation program I mentioned earlier in
the chapter. The program was written by a German programmer, and Konsole is the
German word for “console”. Still, the name is incorrect. When you run Konsole you get a
terminal window, not a console.

SELECTING AND INSERTING
When you are working with multiple windows, each of which contains its own program,
there will be times when you will want to copy or move information from one window to
another. If you have used Microsoft Windows or a Macintosh, you are probably familiar
with copying and pasting.
 With Unix, there are two different ways to copy data. First, X Window allows you to
select and insert text from one window to another or within the same window. Second,
many GUI-based programs support the Windows-type of copy/paste facility (<Ctrl-C>,
<Ctrl-V> and so on).
 These two systems are completely separate and they work differently, so you need to
learn how to use them both. Let’s start with the X Window system, as it is simpler.
 The X Window select/insert facility works only with text, that is, characters. To start,
you select some text with your mouse (more on that in a moment). You then move the
mouse to where you want to insert the text and click the middle button. That’s all there
is to it. As soon as you click the middle button, the selected text will be inserted. If your
mouse doesn’t have a middle button, click the right and left buttons at the same time.
 To select text, position the mouse pointer at the start of the text. Then hold down the
left mouse button while you drag the pointer over the text. As you drag the pointer, the
selected text will be highlighted. (Open a terminal window and try it.)
 Alternatively, you can select text in two other ways. If you double-click, a word will be
selected; if you triple-click, the entire line will be selected. (Try it. It takes a bit of practice.)

33614_06_093_130.indd 11633614_06_093_130.indd 116 1/9/2008 12:30:26 PM1/9/2008 12:30:26 PM

The Unix Work Environment

117

 Although the instructions might sound a bit complicated when you read them,
selecting and inserting text is actually quick and easy once you get the hang of it. If you
are in front of your computer, I suggest that you take a few moments now to open two
windows and practice selecting and inserting. If possible, have someone show you how
it works.

COPYING AND PASTING
As I explained in the previous section, you can use the X Window select/insert facility
to copy text within a window or between two windows. In addition to selecting and
inserting, many – but not all – GUI-based programs also support a completely different
system called copying and pasting.
 The Unix copy/paste facility works the same way as it does with Microsoft Windows.
It even uses the same keys and menus. Unlike Windows, however, not all GUI-based Unix
programs use copy/paste. You will have to check for yourself.
 Before we get into the details, here is a brief summary: To start, you “copy” or “cut”
data to the “clipboard”. You can then “paste” the contents of the clipboard anywhere
it makes sense to do so. Most of the time you will be copying text, that is, characters.
However, you can also copy graphics, as long as it makes sense to do so with the programs
you are using.
 To work with copy/paste, you need to understand four basic ideas:

• The CLIPBOARD is an invisible storage area.

• When you COPY to the clipboard, the original data is not changed.

• When you CUT data to the clipboard, the original data is deleted.

• To copy data from the clipboard, you PASTE it into a window.

Thus, to copy data from one place to another, you copy and paste. To move data from one
place to another, you cut and paste.
 Whenever you copy or cut, the current contents of the clipboard are replaced, and you
can’t get them back. For example, let’s say the clipboard contains 50 paragraphs of text.
You then copy one single character to the clipboard. The clipboard now contains only the
one character; the 50 paragraphs of text are gone.

Copying and Pasting

HINT

Since it is X Window that provides the select/insert facility, you can only use it within your GUI.
You can’t use it with the virtual consoles.
 There is, however, a program called Linux gpm that extends this functionality to text-based
virtual consoles (#1-6). With FreeBSD, there is a similar program called moused.
 If gpm or moused is installed on your system (as they often are by default), you can
select and insert within the text-based virtual consoles in the same way that you do within
your GUI. The only difference is that, to insert text, you may have to right-click rather than
middle-click.

33614_06_093_130.indd 11733614_06_093_130.indd 117 1/9/2008 12:30:26 PM1/9/2008 12:30:26 PM

Chapter 6

118 Harley Hahn’s Guide to Unix and Linux

 On the other hand, when you paste data, the contents of the clipboard do not change.
This means that the contents of the clipboard remain unchanged, until you perform
another copy or cut. This allows you to paste the same data over and over. (Of course, the
contents of the clipboard are lost when you reboot or when you shutdown the system.)
 So how do you copy, cut and paste? To start, you must select the data you want to go
to the clipboard. There are two ways to do this.
 First, you can use the mouse. Position the mouse pointer at the start of the data you
want to copy or cut. Then hold down the left mouse button while you drag the pointer
over the text. As you drag the pointer, the selected text will be highlighted.
 Alternately, if you are working with data that can be typed, you can select using the
keyboard. Position the cursor at the beginning of the text you want to copy, and hold
down the <Shift> key. While you are holding it down, use any of the cursor control keys
to move the cursor. The text it passes over will be selected.
 Once you have selected your data, you can copy or cut it in three different ways. You
can press <Ctrl-C> to copy and <Ctrl-X> to cut; or you can right click to pop up a
menu and select “Copy” or “Cut”; or you can pull down the Edit menu and select either
“Copy” or “Cut”.
 Similarly, you can paste in three different ways. Move the cursor to where you want the
data inserted and press <Ctrl-V>; or right-click and select “Paste”; or pull down the Edit
menu and select “Paste”.

WORKING AS SUPERUSER: su
In order to maintain security, Unix is designed so that each userid has a limited set of
privileges. For example, you can delete your own fi les, but you can’t delete someone else’s
fi les unless he gives you explicit permission. Similarly, as a regular user, you cannot make
changes or run programs that could affect the integrity of the system.
 In Chapter 4, we discussed the idea that, from time to time, it becomes necessary for
the system administrator to log in as superuser, in order to have privileges beyond those
of a regular user. For example, an admin may need to add a new user to the system,
change somebody’s password, update or install software, and so on.
 As I explained, there exists a special userid, root, that has such privileges. When you
log in as root, you are the superuser and you can do pretty much whatever you want.
(Obviously, the root password is a very important secret.)
 If you are using a shared system, say, at school or at work, someone else will take care
of the system administration, so you don’t have to worry about it. If you forget your
password, for example, you have someone to ask for help. However, when you use your

HINT

If you make a mistake when you cut or paste, you can cancel the last operation by pressing
 <Ctrl-Z> or by selecting “Undo” from a menu.
 With some programs, you can cancel more than one operation by pressing <Ctrl-Z> more
than once.

33614_06_093_130.indd 11833614_06_093_130.indd 118 1/9/2008 12:30:26 PM1/9/2008 12:30:26 PM

The Unix Work Environment

119

own Unix system, such as a PC running Linux or FreeBSD, you are the admin and, as
such, you must know how to work as superuser.
 In order to become superuser, you need the superuser password, usually referred to
as the root password. If you installed Unix on your computer, you will have chosen the
root password as part of the installation process.

 Once you know the root password, there are two ways to become superuser. First, at
a login prompt, you can log in as root. You can do this when the system fi rst starts, or
by using a virtual console.
 Alternatively, if you are already logged in as a regular user, you can use the su
(substitute userid) command to change to superuser.
 The purpose of the su command is to allow you to change temporarily to another
userid. Just type su followed by the new userid. Here is an example.
 You are logged in as harley, and here is what the shell prompt looks like:

[harley]$

(In this example, we are using the Bash shell. The shell prompt has been set to show the
current userid. We will discuss the shell prompt in detail in Chapter 13.)
 You now enter the su command to change to userid weedly. You are then prompted
for weedly’s password. Once you enter the password, your current shell is put on hold
and a new shell is started for weedly.

[harley]$ su weedly
Password:
[weedly]$

When you are fi nished working as weedly, all you need to do is end the current shell. To
do this, you type exit. Once you end the new shell, you will be returned automatically
to your original shell as userid harley:

[weedly]$ exit
[harley]$

Working as Superuser: su

HINT

Some Linux distributions are set up so that a root userid is not created during the installation
process. In such cases, use your regular password as the superuser password.

HINT

On any Unix system, the root password is the single most important piece of information
you possess. Thus, it makes sense to memorize it rather than writing it down. However, if in
the course of human events, you happen to forget the root password for your own computer,
it is a big, big deal.
 In the olden days, there was not a lot you could do other than reinstall Unix. With
modern systems, there is a way out. For the details, see Appendix G, What to Do If You
Forget the root Password.

33614_06_093_130.indd 11933614_06_093_130.indd 119 1/9/2008 12:30:26 PM1/9/2008 12:30:26 PM

Chapter 6

120 Harley Hahn’s Guide to Unix and Linux

Although you can use su to change to any userid (if you have the password), it is
mostly used to change to superuser. Before we get into the details, I want to explain one
more thing.
 Whenever you log in, Unix runs certain commands to set up an environment
specifi c to your userid. (Later in the book, when we talk about shells, I’ll show you how
to customize the process.) Let’s say you are logged in as harley, and you enter the
following command:

su weedly

You have changed your userid to weedly, but you are still working under the harley
environment. If you want to change both your userid and the environment, type a - (hyphen)
after the command name. Notice there is a space on each side of the hyphen.

su - weedly

You are now working as weedly within the weedly environment. When you type
exit, you will go back to working as harley within the harley environment.
 I know this all sounds a bit mysterious but, I promise you, one day it will make sense.
The reason I mention it now is that I am about to show you how to use su to change to
superuser. When you do, it is important that you work under the superuser environment,
not your own environment.
 To change to superuser, use the su command with the userid root. Remember not
to leave out the hyphen.

su - root

You will now be asked for a password. Once you enter the password, your current shell
will be put on hold, and a new shell will be started. Within the new shell, your userid will
be root, and you will have full superuser privileges.

[harley]$ su - root
Password:
#

Notice that the shell prompt has changed to #. As I explained in Chapter 4, this indicates
you are the superuser.
 When you are fi nished doing whatever you need to do as superuser, type exit and
you will be returned to your old shell:

exit
[harley]$

As a convenience, if you use the su command without a userid, the default is root,
which is what you want most of the time anyway. Thus, the following two commands
are equivalent.

su -
su - root

hah33614_c06_093_130.indd 120hah33614_c06_093_130.indd 120 1/11/2008 10:17:51 AM1/11/2008 10:17:51 AM

The Unix Work Environment

121

One last word. If your system is shared by a number of people, you must be careful what
you do as superuser. There’s a lot I could say, but it all boils down to two basic rules:

1. Respect the privacy of others.

2. Think before you type.

ENTERING A SINGLE COMMAND AS SUPERUSER: sudo
As I mentioned in the last section, it can be dangerous to spend too much time as
superuser: you might inadvertently type something that will cause trouble. There is, in
addition, another potential problem.
 Let’s say you are logged in as root, and you happen to get hungry. You walk away
from your computer for a moment to get some hot buttered groatcakes. While you are
gone, you unexpectedly get into an argument with someone about whether or not the
water in a sink in the Southern Hemisphere fl ows out in the opposite direction than the
water in a sink in the Northern Hemisphere*. When you get back, you fi nd that – while
you were gone – some wiseguy took over your machine and, acting as superuser, deleted
hundreds of fi les.
 Of course, you should never walk away from your computer while you are logged in
under any userid. That’s like leaving your car unlocked with the keys hidden under the
seat. However, leaving your computer while you are logged in as root is like leaving the
car unlocked with the engine running and the door open.
 The best defense against these types of inadvertent errors is to use the sudo command.
 The job of sudo is to allow you to execute a single command as another userid. (The
name sudo means: “substitute the userid, then do something”.) Like su, the default is to
assume userid root. Thus, to run a specifi c command as superuser, type sudo followed
by the command:

sudo command

For example, to run the id command as root, you would use:

sudo id

(The id command displays your current userid.)

Entering a Single Command as Superuser: SUDO

IMPORTANT HINT

When you are logged in as root, you can do anything that can be done, which can lead to
mistakes. The best way to guard against accidentally causing a problem (or a catastrophe!) is to
be the superuser for as short a time as necessary.
 For example, on my system, I am normally logged in as harley. When I need to perform
a system administration task, I use su to become superuser just long enough to do what I have
to do. I then return to harley as soon as possible. There is no need to stay logged in as root,
because I can become superuser again whenever I want.
 In other words, spend most of your time as Clark Kent, not as Superman.

 *It doesn’t.

33614_06_093_130.indd 12133614_06_093_130.indd 121 1/9/2008 12:30:27 PM1/9/2008 12:30:27 PM

Chapter 6

122 Harley Hahn’s Guide to Unix and Linux

 When you use sudo to run a command as root, you will be asked to enter your
password (not the superuser password).
 As superuser, you run any command you want*. Here is a simple example showing
how the userid changes when you run the id command as root. Don’t worry about
understanding all the output right now. All I want you to notice is how the name of the
userid (uid) changes.

[harley]$ id
uid=500(harley) gid=500(harley) groups=500(harley)
[harley]$ sudo id
Password:
uid=0(root) gid=0(root) groups=0(root)

As a convenience, once you have entered the superuser password correctly, you can run
sudo for a certain amount of time without having to enter the password again. The
default on most systems is 5 minutes, although it can vary. This means that, if you use the
sudo command more than once within a 5 minute interval, you will only have to enter
the password once.

CONFIGURATION FILES
We have discussed how, from time to time, it is necessary to become superuser in order to
carry out certain tasks. Certainly this is true often enough if you are managing a system
with multiple users (“I forgot my password”). But how often is this the case when you are
the only user, running Linux or FreeBSD on your own PC?

WHAT’S IN A NAME?

su, sudo
The su (substitute userid) command allows you to change to another userid. The sudo
(substitute the userid and do something) command allows you to run a single command under
the auspices of another userid.
 The name su is pronounced as two separate letters: “ess-you”. The name sudo is pronounced
phonetically to sound like “pseudo”. In fact, the fi rst few times you hear someone talk about
sudo, you will be confused as it sounds as if they are saying “pseudo”.
 It is the custom to use su and sudo, not only as names, but as verbs. For example, let’s
eavesdrop on two Unix people who have had a bit too much to drink.
 Person 1: “I have an idea. Let’s edit the password fi le just for fun. All we have to do is pseudo
the vipw command.”
 Person 2: “Ahh, that’s too lame. Let’s ess-you instead. I like to live dangerously.”

 * You might be wondering if this is a security problem. As I mentioned, when you use the sudo command, you are asked
for your own password, not the superuser password. Does this mean that, on a shared system, anyone would be allowed to use
sudo to run a command as superuser?
 The answer is no, because not everyone is allowed to use sudo. You can only use sudo if your userid is on a special list.
This list is kept in the fi le /etc/sudoers, and it can be changed only by the superuser. (The name of this fi le will make sense
after we talk about the Unix fi le system in Chapter 23.)

33614_06_093_130.indd 12233614_06_093_130.indd 122 1/9/2008 12:30:27 PM1/9/2008 12:30:27 PM

The Unix Work Environment

123

 The answer is when you have your own system you don’t need to become superuser
all that often. However, there are times when it is necessary. In particular, there is one
important function you will want to perform that does require special privileges.
 Most Unix programs are written so they can be customized by editing a
CONFIGURATION FILE. The confi guration fi le contains information that is read by the
program, usually when it starts. This information affects how the program does its work.
 For example, earlier in the chapter, we discussed the startup process, when Unix boots
into a particular runlevel. This process depends on information in a specifi c confi guration
fi le named inittab (see below).
 Confi guration fi les are particularly important when you are installing new software.
Most likely, the software uses a confi guration fi le and, if you want to set certain options,
you will need to modify the fi le. In most cases, the details will be explained in the
documentation that comes with the software.
 With some software, there are easy-to-use programs that help you to change a
confi guration fi le. For example, within your desktop environment, there are menu-
based programs that you can use to select preferences and specify options. What you
may not know is that all of these preferences and options are stored in a confi guration
fi le somewhere. When you “apply” the changes, all the program is doing is updating the
confi guration fi le according to your instructions.
 Although this is a convenient way to modify a confi guration fi le, it is important that
you learn how to edit such fi les on your own, for several reasons.
 First, most programs don’t come with a menu-based confi guration program so, if you
want to make changes, you’ll have to do it for yourself.
 Second, changing a confi guration fi le yourself is faster (and more fun) than using a
program to do it for you.
 Third, even if there is a menu-driven program, it may not allow access to all possible
options and preferences. To really know what is available, you will have to look inside the
confi guration fi le.
 Finally, when you look inside a confi guration fi le, it gives you insight into how the
underlying program functions. It is common for programmers to put comments in such
fi les and, sometimes, the only way you can actually understand the more subtle aspects of
the program is by reading the comments.

 Before you can edit a confi guration fi le safely, you must fulfi ll several requirements.
First you must be comfortable working as superuser.
 Second, you must be able to use a text editor well. The best choices are either vi
(which I will teach you in Chapter 22) or Emacs.
 Finally, you must, in a general sense, know what you are doing. This will come in time.
 You may be wondering, how do Unix confi guration fi les compare to what is done in
Microsoft Windows? Within Windows, programs store confi guration information in two

Confi guration Files

HINT

In Unix, you are encouraged to look inside any system fi le you want, including confi guration fi les.

33614_06_093_130.indd 12333614_06_093_130.indd 123 1/9/2008 12:30:27 PM1/9/2008 12:30:27 PM

Chapter 6

124 Harley Hahn’s Guide to Unix and Linux

places: in the Registry and, sometimes, in .ini fi les. Windows users are encouraged to
leave the Registry alone. This is because if you screw up the registry, you can cause yourself
big trouble. Moreover, the contents of the Registry are poorly documented. Indeed, many
of the entries are not documented at all.
 Unix has a very different philosophy. There is no central Registry. Instead, every
program is allowed to have its own confi guration fi le. Moreover, the contents of that fi le are
documented. Users are encouraged to read the fi le and (when appropriate) make changes.
 Of course, if you change a confi guration fi le incorrectly, you might cause a problem.
However, it will be confi ned to that particular program and, in most cases, it will be
easy to fi x.

LOOKING INSIDE A CONFIGURATION FILE
In the previous section, I told you not to edit a confi guration fi le until you know what
you are doing. However, there’s no reason why you can’t look inside a fi le, just to see
what’s there.
 Below is a list of several interesting confi guration fi les. To look inside, you use a
program called less. The job of less is to display the contents of a fi le, one screenful
at a time.
 We will discuss less in detail (including its name) in Chapter 21. For now, I’ll tell
you that to display the contents of a fi le you type less followed by the name of the fi le.
For example, to examine the fi le named /etc/passwd, you use the command:

less /etc/passwd

Once less starts, it shows you the fi rst screenful of information. To move forward, you
press <Space>; to move back, press ; for help, press <h>; to quit, press <q>. That’s
all you’ll need for now.
 Here is a list of confi guration fi les you may fi nd interesting. You don’t need to be
superuser to look at them (just to change them).
 Don’t worry if you don’t understand what you see. Eventually, you will. In particular,
the fi le name will make sense to you after you read Chapter 23. (Note: These fi les are

HINT

Before you edit any important fi le, such as a confi guration fi le, make a backup copy. That way,
if something goes wrong, you can restore the original. (You will learn how to work with fi les in
Chapters 23, 24 and 25.)
 Here is an example to show you how I do it. Let’s say I want to edit a fi le called harley,
and that date happens to be December 21, 2008. Before I start, I would make a copy of the fi le
and call it harley-2008-12-21. Then, if I have a problem, I can copy the fi le back to its
original name.
 Why don’t I use a name such as harley- or harley-original or harley-old? It
would work, but sometimes I want to leave the backup fi le around after I fi nish my work. By
embedding the date in the fi le name, I know exactly when the backup fi le was created.

33614_06_093_130.indd 12433614_06_093_130.indd 124 1/9/2008 12:30:27 PM1/9/2008 12:30:27 PM

The Unix Work Environment

125

found on most Linux systems. If you use a different type of Unix, some of the fi les may
have different names.)

 /boot/grub/menu.lst: Information about the operating systems that can boot on
your computer.

 /etc/hosts: A list of hostnames and IP addresses that are known to the system.

 /etc/inittab: Defi nition of the various runlevels.

 /etc/passwd: Basic information about each userid. (The actual passwords are
encrypted and kept elsewhere.)

 /etc/profile: Commands that are executed automatically when a userid logs in.

 /etc/samba/smb.conf: Confi guration information for Samba, a facility that allows
Unix systems to share fi les and printers with Windows systems.

SHUTTING DOWN AND REBOOTING: init, reboot, shutdown
At the beginning of the chapter , we talked about what happens when you log in. It’s now
time to talk about what to do when you are fi nished working.
 Basically, you have two choices. You can SHUTDOWN, which stops Unix and turns
off the computer; or you can REBOOT (also called RESTART), which stops Unix and
then starts it again. You can perform both of these actions by making a selection from a
menu, or by typing commands.
 From within your desktop environment, you shutdown or reboot by opening the
main menu and selecting “Logout” (or something similar). As part of the logout process,
you may have a choice to shutdown or reboot. If not, you can click on “Shutdown” or
“Reboot” when you fi nd yourself back at the login screen.
 Using GUIs, however, is rather boring. It’s a lot more interesting to shutdown or reboot
by typing commands. Before I teach you the commands, let me recall to your memory
the idea of runlevels. If you look back at Figure 6-1, you will see that there are 6 different
runlevels, each of which causes Unix to run in a particular way.
 Normally, a runlevel is chosen as part of the startup process in order to boot the
system. For example, runlevel 5 boots Linux in multiuser mode with a GUI.
 However, there are two runlevels that have special meanings. Runlevel 0 halts the
system (that is, causes it to shutdown), and runlevel 6 reboots the system. Thus, when you
choose “Shutdown” from a menu, it’s like changing to runlevel 0; and when you choose
“Reboot”, it’s like changing to runlevel 6.
 As you might have guessed by now, almost anything that you can do in Unix by using
a menu, you can also do by typing a command. The command to change runlevels is
called init.
 In order to use init, you need to be superuser. Once you are superuser, type the
command followed by the runlevel to which you want to change. For example, you can
reboot the system by changing to runlevel 6:

Shutting Down and Rebooting: INIT, REBOOT, SHUTDOWN

33614_06_093_130.indd 12533614_06_093_130.indd 125 1/9/2008 12:30:27 PM1/9/2008 12:30:27 PM

Chapter 6

126 Harley Hahn’s Guide to Unix and Linux

sudo init 6

To shutdown the system, you can change to runlevel 0:

sudo init 0

If you feel brave, try changing to another runlevel and see what happens.
 Although you can use init to reboot or shutdown, it is not designed for everyday
use. Instead, we normally use two other commands, reboot and shutdown.
 The reboot command is straightforward. Just type it and your system will change to
runlevel 0:

sudo reboot

The shutdown command is a bit more complex, because you have to specify when you
want to shutdown. The are various choices, but the simplest one is to use the word now:

sudo shutdown now

Typing this command tells the system to change to runlevel 0 right away.

WHAT HAPPENS WHEN THE SYSTEM STARTS OR STOPS? dmesg

During the booting and shutdown processes, Linux displays a lot of messages on the
console. Most of these messages relate to fi nding and confi guring the hardware components
of your system. Other messages have to do with starting or stopping the services that are
involved in the boot process, and the processes that will run in the background once the
system has booted.
 A discussion of all the details is beyond the scope of this book. However, it is interesting
to look at these messages, just to see what’s there.
 As the system boots, many of the messages go by so fast you won’t have time to read
them, let alone fi gure out what they mean. Once you have logged in, however, you can
display the boot messages at your leisure. Just go to a command line and enter:

dmesg | less

Although the boot messages look cryptic, you will eventually be able to understand them*.
 The job of the dmesg command is to display the boot messages. However, there are
so many that, if you enter the command by itself, most of the output will scroll off your
screen before you can read it. (Try it.)
 Instead, use the three-part command above dmesg, followed by the | (vertical bar)
character, followed by less. This runs dmesg and sends the output to less, which will

 *If you are a guy and you have a special someone in your life, here is an especially good way to impress her.
 Invite your special someone over on a Friday night and, when she arrives say, “You are in for a real treat.” Then show her the
output of the dmesg command. If you are knowledgeable enough, invite her to pick any message and offer to explain it to her.
 According to my research, this technique works especially well when combined with pizza and non-caffeinated beverages.

33614_06_093_130.indd 12633614_06_093_130.indd 126 1/9/2008 12:30:27 PM1/9/2008 12:30:27 PM

The Unix Work Environment

127

display the output one screenful at a time. The vertical bar creates what is called a “pipeline”.
(We’ll talk about pipelines in Chapter 15; we’ll talk about less in Chapter 21.)

DOING MORE THAN ONE THING AT A TIME: PART II

We started this chapter by talking about the characteristics of people and computers. I
explained that, as human beings, we have imperfect memories and cannot concentrate on
more than one thing at a time. What we can do is work with complex mental ideas and,
whenever necessary, change from one idea to another within a fraction of a second.
 Computers can store and recall data much faster and much more accurately than can
humans. Computers can also perform straightforward tasks extremely quickly and, while
they are doing so, they can change from one task to another within milliseconds.
 While human beings can think and plot strategies, computers can do many things
quickly without mixing up the details. In this way, machines are able to make up for
the shortcomings of our minds, and our minds are able to complement the astounding
capabilities of the machines. The result – when we do it right – is a melding of human
being and computer in such a way as to produce something that is neither one nor the
other, but far greater than the sum of its parts.
 The glue that holds together the man/machine partnership is the user interfaces.
In Unix, we have two of them, the GUI (your desktop environment) and the CLI (the
command line).
 For the rest of this book, we will be concentrating on the CLI. In other words, we will
be typing commands and learning how to use text-based programs. In order to do this
well, you must become profi cient in using terminal windows, regular windows, virtual
terminals and multiple desktops/workspaces – all at the same time.
 The ultimate goal is to be able to conceive of doing something and then – without
thinking – to make it happen. You already know how to do this when you drive a car, play
a musical instrument, or cook a meal. What I want is for you to be able to carry out the
same type of actions when you are sitting in front of your computer, using Unix to work
on mental tasks.
 Since we are all different, I can’t teach you how to conceive of your moment-to-
moment mental strategies. You will have to develop those skills for yourself. What I can
do is focus your attention, right now, by reminding you of the wonderful tools that are at
your disposal. To do so, I will summarize the default Linux work environment.
 Within Linux, you have 6 text-based virtual consoles, each of which has its own CLI.
In addition, you have a 7th virtual console that contains your desktop environment
(the GUI).
 Within your desktop environment, you have 4 different desktops/workspaces, each of
which can have as many windows as you want, including terminal windows.
 You are able to copy and paste text from one window to another, and from one virtual
console to another. Moreover, you can work as either a regular user or as superuser.

Doing More Than One Thing at a Time: Part II

33614_06_093_130.indd 12733614_06_093_130.indd 127 1/9/2008 12:30:27 PM1/9/2008 12:30:27 PM

Chapter 6

128 Harley Hahn’s Guide to Unix and Linux

 To manipulate your work environment, you can use the following shortcut keys:

In KDE, to change from one desktop to another:
 <Ctrl-Tab>, <Ctrl-Shift-Tab>

In Gnome, to change from one workplace to another:
 <Ctrl-Alt-Left>, <Ctrl-Alt-Right>, <Ctrl-Alt-Up>, <Ctrl-Alt-Down>

Within a desktop or workspace, to change from one task to another:
 <Alt-Tab>, <Alt-Shift-Tab>

Within your GUI, to change to a text-based virtual console:
 <Ctrl-Alt-F1>... <Ctrl-Alt-F6>

From a text-based virtual console, change to another virtual console:
 <Alt-F1>... <Alt-F7> (<Alt-F7> changes to the GUI

To copy text within the GUI:
 Select with mouse, then middle-click

To copy text between virtual terminals:
 Select with mouse, then right-click

Within GUI-based programs, to copy, cut and paste data:
 <Ctrl-C>, <Ctrl-X>, <Ctrl-V>

C H A P T E R 6 E X E R C I S E S

REVIEW QUESTIONS

1. What is a time slice? What is a typical length for a time slice?

2. What is the Unix CLI? What is the GUI?

3. What is a runlevel? At this very moment, Fester Bestertester is sitting at the back
of a lecture hall listening to a boring lecture on animal husbandry. To keep himself
awake, Fester is playing a GUI-based game on his Linux laptop. What is the runlevel
on Fester’s computer? Across the campus, a Unix system administrator has brought
down the system and rebooted, so he can solve an important hardware problem. What
is the runlevel on the admin’s computer?

4. Which person acts as superuser on your particular Unix system?

5. What is a virtual console? How do you switch from one virtual console to another?

HINT

Unix has the best system of user interfaces that has ever existed.

33614_06_093_130.indd 12833614_06_093_130.indd 128 1/9/2008 12:30:27 PM1/9/2008 12:30:27 PM

The Unix Work Environment

129

APPLYING YOUR KNOWLEDGE

1. The who command (which we will discuss in Chapter 8), displays a list of all the
userids that are currently logged into the system. If a userid is logged in more than
once, who will show that. Log in on each of your virtual consoles, one by one. Then
switch to your GUI, open a terminal window, and enter the who command. What do
you see?

2. Being able to switch from one desktop to another and being able to copy and paste
quickly are important skills. Within your GUI, open two terminal windows, each in its
own desktop. In the fi rst desktop, enter the command date (to display the time and
date) into the terminal window. Copy that command into the clipboard. Now change
to the second desktop and paste the command into the other terminal window. Now
repeat the exercise using two text-based virtual consoles. Which set of copy and paste
procedures is more comfortable to you? Why?

FOR FURTHER THOUGHT

1. Some Linux distributions are set up so that a root userid is not created during the
installation process. In such cases, your regular password serves as the superuser
password. Why would a distribution be set up in this way? What are the advantages?
What are the disadvantages?

2. Why do so many people believe they can think about more than one thing at a time?
What effect do fast, multitasking computer systems like Unix have on such beliefs? Is
this healthy or unhealthy? Do you, personally, think it is okay to talk on the phone or
text message while you are driving? What about when other people do it?

Chapter 6 Exercises

hah33614_c06_093_130.indd 129hah33614_c06_093_130.indd 129 5/20/2009 2:16:31 PM5/20/2009 2:16:31 PM

33614_06_093_130.indd 13033614_06_093_130.indd 130 1/9/2008 12:30:28 PM1/9/2008 12:30:28 PM

131

C H A P T E R 7

Using the Keyboard with Unix

The First Unix Terminals

In Chapter 6, we talked about the differences between the GUI (graphical user interface)
and the CLI (command line interface). Starting with this chapter, and for the rest of the
book, we will be concentrating on the CLI, the traditional way to use Unix.
 There are several ways in which you can use the CLI. When you work with your own
computer, you can use a virtual console or a terminal window (including the Konsole
program). We discussed the details in Chapter 6. When you work with a remote host,
you can connect via the ssh program, which will act as a terminal emulator for you.
Regardless of how you get to a Unix command line, once you are there, it always works
the same way (more or less).
 If you are using a GUI-based system, I would like you to be familiar with several topics
from Chapter 6 before you read this chapter: virtual consoles, terminal windows, and how
to select and paste. With a GUI, understanding these ideas is crucial to using the CLI well.

THE FIRST UNIX TERMINALS
When Unix was fi rst developed by Ken Thompson and Dennis Ritchie (see Chapter 2), they
used Teletype ASR33 terminals (see Chapter 3). The Teletype ASR33 was an electromechanical
device, originally developed to send and receive text messages. It had a keyboard for input
and a built-in printer for output. It also had a paper tape punch, which could store data by
punching holes on paper tape, as well as a paper tape reader, which could read data from
punched tape.
 The ASR33’s capabilities made it suitable to use as a computer terminal. In fact,
from the mid-1960s to the mid 1970s, virtually all non-IBM computer systems used an
ASR33 for the console. This was true of the PDP minicomputers used by Thompson and
Ritchie, so it was natural that these devices should become the very fi rst Unix terminals
(see box).
 The keyboard of the ASR33 was originally designed to send and receive messages, not
to control the operation of a computer. As such, Thompson and Ritchie had to adapt
Unix to work with the ASR33 keyboard. What is interesting is that the basic system they
devised worked so well, it is still used today.

33614_07_131_160.indd 13133614_07_131_160.indd 131 1/9/2008 12:31:00 PM1/9/2008 12:31:00 PM

Chapter 7

132 Harley Hahn’s Guide to Unix and Linux

 As you would expect, the keyboard of the Teletype contained keys for the 26 letters of
the alphabet, the digits 0-9, as well as the most common punctuation symbols. However,
there were also a few special keys that were used to provide the functions necessary to
send and receive messages (see Figure 7-1). The most important such keys were <Esc>,
<Ctrl>, <Shift>, <Tab> and <Return>.
 The <Ctrl> (Control) key was especially useful because, like the <Shift> key, it could
be combined with other keys to form new combinations. For example, by holding down
the <Ctrl> key and pressing one of the letters or numbers, you could send a signal such
as <Ctrl-A>, <Ctrl-B>, <Ctrl-C>, and so on.
 What Thompson and Ritchie did was to incorporate the use of these keys into their
basic design of the operating system. To do this, they wrote Unix so that certain signals
could be used to control the operation of a program as it was running. For example,
the signal called intr (interrupt) was used to terminate a program. To send the intr
signal, you pressed <Ctrl-C>.
 In technical terms, when there is an equivalence between two things, we say that there
exists a MAPPING between them. When we create such an equivalence, we say that we
MAP one thing onto the other. For example, if we say that A is mapped onto B, it means
that, when we use A, it is the same as using B.
 The idea of mapping is an important concept, one that you will meet again and again
as you use computers. In this case, we can say that, within Unix, the <Ctrl-C> character is
MAPPED onto the intr signal. This is the same as saying that when we press <Ctrl-C>,
it has the effect of sending the intr signal.
 In a moment, we’ll talk about the Unix signals in detail. In fact, my main goal in this
chapter is to explain the important signals and their keyboard mappings. First, however,
I want to take a moment to talk about nomenclature.

THE TELETYPE ASR33
The ASR33, manufactured by the Teletype Corporation, was introduced in 1963. There were
three Teletype 33 models: the RO, KSR and ASR. Of the three Teletype 33s, the ASR was by far
the most popular.
 The RO (Receive-Only) had a printer but no keyboard. As such, it could receive messages,
but not send them.
 The KSR (Keyboard Send-Receive) had both a printer and a keyboard, and could send and
receive messages. The outgoing messages were typed by hand on the keyboard.
 The ASR (Automatic Send-Receive) had a printer, a keyboard, and a paper tape punch/reader.
Like the KSR, the ASR could send and receive messages. However, with the ASR the outgoing
text could be generated in two ways. It could be typed at the keyboard by hand, or it could be
read automatically from pre-punched paper tape (hence the name “Automatic”). It was these
combination of features that made the ASR33 useful as a computer terminal.
 The Teletype ASR 33 terminal weighed 56 pounds, including a 12-pound stand. If you
had bought one from DEC in 1974, it would have cost you $1,850, plus a $120 installation
fee and $37/month maintenance. In 2008 dollars, that’s $8,400 for the machine, $550 for the
installation, and $170/month for maintenance.
 You can see photos of an ASR33 in Chapter 3. Figures 3-1 and 3-2 show the machine. Figure 3-3
is a close-up of the paper tape punch/reader.

33614_07_131_160.indd 13233614_07_131_160.indd 132 1/9/2008 12:31:01 PM1/9/2008 12:31:01 PM

Using the Keyboard with Unix

133Teletypes and the Unix Culture

TELETYPES AND THE UNIX CULTURE
As you use Unix, you will fi nd that many conventions are based on the technology of the
1970s, the time during which the fi rst versions of Unix were developed. In particular, the
world of Unix abounds with ideas that are based on the characteristics of the early terminals.
This is why I have made a point of talking about Teletypes (the original terminals) and
VT100s (the most popular terminals), both in this chapter and in Chapter 3.
 In this section, I’d like to take a quick detour to mention two such conventions that
you will encounter a great deal.
 The fi rst convention to which I want to draw your attention is the abbreviation “tty”
(pronounced “tee-tee-why”). During the many years that Teletype machines were in use,
they were referred to as TTYs. This custom was adopted into Unix and, even though it has
been a long time since Teletypes were used, the word “tty” is often used as a synonym for
a Unix terminal. In particular, you will see this term a lot in Unix documentation and in
the names of programs and commands. Here are some examples:

• Within a Unix system, each terminal has its own name. The command to display the
name of your terminal is tty. (Try it and see what you get.)

• The stty (“set tty”) command can be used to display or change the settings of your
terminal.

• The getty (“get tty”) program is used to open communication with a terminal and
start the login process.

 The second convention I want to mention relates to the idea of printing. Teletype
terminals had two ways to output data. They could print data on a continuous roll of

RETURNLINE FEED

SHIFTSHIFT RUB OUTCTRL

RETURNLINE FEED

SHIFTSHIFT RUB OUTCTRL

FIGURE 7-1: Keyboard of the Teletype ASR33

For our purposes, the most interesting keys on the Teletype ASR33 keyboard are as follows. In the second
row from the top, the RETURN key is on the far right. The LINE FEED key is to the left of RETURN. In
the second row from the bottom, the RUB OUT key is third from the right. The CTRL key is on the far
left. In the bottom row, the two SHIFT keys on either end. Note that there is no backspace key.

33614_07_131_160.indd 13333614_07_131_160.indd 133 1/9/2008 12:31:01 PM1/9/2008 12:31:01 PM

Chapter 7

134 Harley Hahn’s Guide to Unix and Linux

8½ inch paper for a human to read*, and they could punch data on 1-inch wide paper
tape for a machine to read. If you take a look at Figure 3-2 in Chapter 3, you can see
both the roll of printer paper (in the center) and the roll of paper tape (to the left).
 Because output was printed, it became the custom within Unix to use the word PRINT
to describe the outputting of information. At the time, this made sense because output
was, literally, printed on paper. What is interesting, however, is that, even when more
modern terminals became available and data was displayed on monitors, the word “print”
was still used, and that is still the case today.
 Thus, within Unix documentation, whenever you read about printing data, it almost
always refers to displaying data. For example, the tty I mentioned above displays the
internal name of your terminal. If you look up this command in the Linux version of the
online Unix manual (see Chapter 9), you will see that the purpose of tty is to “print the
fi le name of the terminal connected to standard input”.
 Here is another example. As you work within the Unix fi le system, the directory in
which you are working at the current time is called your “working directory”. (We’ll cover
these ideas in Chapter 23.) The command to display the name of your working directory
is pwd, which stands for “print working directory”.
 At this point, it only makes sense to ask: If “print” means “display”, what term do we
use when we really mean print?
 There are two answers to this question. First, in some cases, “print” is used to refer to
real printing and the meaning is clear by context.
 At other times, you will see the term “line printer” (itself an anachronism) or the
abbreviation “lp”. When you see this, you can consider it a synonym for “printer”. For
example, the two most important commands to print fi les are named lp and lpr. (lp
comes from System V; lpr comes from Berkeley Unix.)

TERMCAP, TERMINFO AND curses
As I explained in Chapter 3, Unix was designed as a system in which people used terminals
to access a host computer. One of the most important problems that Unix developers had
to overcome was that each type of terminal had its own characteristics and used its own
set of commands. For example, although all display terminals have a command to clear
the screen, the command may not be the same for all terminals.
 So, what do you do if you are writing a program and at a particular point, you need to
clear the screen of the user’s terminal? How would you know what command to send to
the terminal, when the actual command depends on what type of terminal is being used?
 It doesn’t make sense to require every program to know every command for every type
of terminal. This would be an enormous burden for software developers.** Moreover,
what would happen when a new terminal was introduced? How could it be made to work
properly with existing programs?

 *In case you are curious, Teletypes printed output on continuous rolls of 8½ inch paper, which could be up to 5 inches
in diameter. The machine printed 10 characters/inch, with a maximum line length of 72 characters. The vertical spacing was
6 lines/inch. The printing was in one color, normally black.
 **Even as long ago as 1980, most terminals supported well over 100 different commands.

33614_07_131_160.indd 13433614_07_131_160.indd 134 1/9/2008 12:31:01 PM1/9/2008 12:31:01 PM

Using the Keyboard with Unix

135

 The solution was to collect descriptions of all the different types of terminals into a
database. Then, when a program wanted to send a command to a terminal, it could be
done in a standardized manner by using the information in the database. (We’ll talk more
about how it works in a moment.)
 The fi rst system of this nature was created by Bill Joy, one of the fathers of Berkeley Unix
(see Chapter 2). In 1977, when Joy was a graduate student and he put together 1BSD, the
fi rst offi cial version of Berkeley Unix, he included a system for managing the display screen
of various types of terminals. In mid-1978, he released 2BSD with a more elaborate version
of this system, which he named TERMCAP (“terminal capabilities”). The fi rst important
program to use Termcap was the vi editor (see Chapter 22), also written by Joy.
 Using Termcap from within a program was a lot of work. To make it easier, another
Berkeley student, Ken Arnold, developed a programming interface he called curses. (The
name refers to “cursor addressing”.) curses was designed to carry out all the functions that
were necessary to manage a screen display, while hiding the details from the programmer.
 Once a programmer learned how to use curses, he could write programs that would
work with any type of terminal, even those that had yet to be invented. All that was
required was that the terminal should have an entry in the Termcap database. The fi rst
program to use Termcap was a popular text-based game called Rogue (see box).
 In order to work effectively, the Termcap database had to contain technical information
for every variation of every terminal that might be used with Unix, and all this data was

THE FIRST USE OF CURSES AND TERMCAP: THE GAME OF ROGUE
The fi rst program to use curses and Termcap to control the display screen was Rogue, a
single-player, text-based fantasy game in the genre of Dungeons & Dragons.
 To play Rogue, you would take on the role of an adventurer in an enormous dungeon. At the
beginning of the game, you are at the top level of the dungeon. Your goal is to fi ght your way to
the bottom of the dungeon, where you can pick up the Amulet of Yendor. You must then return
to the top, bringing the amulet with you. Along the way, you encounter monsters, traps, secret
doors and treasures.
 At the time Rogue was developed, there was another single-player fantasy game, Adventure,
that was very, very popular among programmers. (In fact, I remember playing it on an old Texas
Instruments print terminal, connected to a Unix computer over a slow phone line.) Adventure
was the same each time you played it but, with Rogue, the dungeon and its contents were
generated randomly. This meant that the game was always different. In addition, because Rogue
used curses, it was able to draw simple maps, something Adventure was not able to do.
 The authors of Rogue were Michael Toy , Glenn Wichman and, later, Ken Arnold. The fi rst
version of the game was written for Berkeley Unix and, in 1980, Rogue was included with
4.2BSD. 4.2BSD was so popular that, within a short time, Rogue was available to students
around the world.
 If you were to look at the fi rst version of Rogue, you would fi nd it incredibly primitive.
However, it was much more sophisticated than any previous computer game and, at the time,
was considered to be very cool. Eventually, Rogue was ported to a variety of other systems,
including the PC, Macintosh, Amiga and Atari ST.
 Today, Rogue is still around and, in its modern incarnation, is played by people around the
world. If you are interested in taking a look at one of the more interesting legacies from the early
days of Unix, search for “Rogue” on the Internet.

Termcap, Terminfo and curses

33614_07_131_160.indd 13533614_07_131_160.indd 135 1/9/2008 12:31:01 PM1/9/2008 12:31:01 PM

Chapter 7

136

contained in a single fi le. Over the years, as many new terminals became available, the
Termcap fi le grew so large as to become unwieldy to maintain and slow to search.
 At the time, curses was being enhanced by the programmers at Bell Labs for System III
and, later, for System V Release 1 (see Chapter 2). To improve the performance of curses,
the Bell Labs programmers replaced Termcap with a new facility called TERMINFO
(“terminal information”). Terminfo stored its data in a series of fi les, one for each terminal
type. The fi les were organized into 26 directories named a through z, all of which were
kept in a single Terminfo directory. (This will make sense after you read Chapter 23.) The
Terminfo design was so fl exible that it is still used today. For example, within Linux, the
information for the generic VT100 terminal is stored in the fi le named:

/usr/share/terminfo/v/vt100

The location of the master Terminfo directory can vary from one system or another. In
case you want to look for it on your system, the most common names are:

/usr/share/terminfo/
/usr/lib/terminfo/
/usr/share/lib/terminfo/
/usr/share/misc/terminfo

The biggest problem with Terminfo was that AT&T, which owned Bell Labs, would not
release source code (see Chapter 2). This meant that, although System V had Terminfo
and a better version of curses, the hacker community did not have access to it. They
had to make do with the older, less powerful Termcap-based facility.
 To overcome this limitation, in 1982, a programmer named Pavel Curtis began
to work on a free version of curses, which he called ncurses (“new curses”).
ncurses had very limited distribution until it was taken over by another programmer,
Zeyd Ben-Halim, in 1991. In late 1993, Ben-Halim was joined by Eric Raymond, and
together they began to work on ncurses in earnest.
 Throughout the early 1990s, ncurses had a lot of problems. However, in time, as
other people joined the effort, the problems were solved and ncurses and Terminfo
emerged as an enduring standard.
 Today, Terminfo has replaced Termcap permanently. However, to maintain
compatibility with very old programs, some Unix systems still have a Termcap fi le, even
though it is obsolete and its use is deprecated*.
 Would you like to see what Termcap or Terminfo information looks like? The Termcap
database is easy to display because it consists of plain text, stored as one long fi le. If your
system has a Termcap fi le, you can display it by using the following command:

less /etc/termcap

 *If something is deprecated, it means that, although you can use it, you shouldn’t, because it is obsolete.
 You will often see the term “deprecated” in computer documentation, especially in the programming world, where things
change quickly. When you see such a note, you should take it as a warning that the feature may be eliminated in future versions
of the product.

Harley Hahn’s Guide to Unix and Linux

33614_07_131_160.indd 13633614_07_131_160.indd 136 1/9/2008 12:31:01 PM1/9/2008 12:31:01 PM

Using the Keyboard with Unix

137

The less program displays a fi le, one screenful at a time. We will talk about less in
detail in Chapter 21. For now, I’ll tell you that, once less starts:

• To move forward one screenful, press <Space>.
• To move backward one screenful, press .
• To quit, press <Q>.
• To display help, press <H>.
• To jump to the Termcap entry for the VT100, type /^vt100 and press <Return>.

(The / (slash) character means “search”, and the ̂ (caret) character means “at the
beginning of a line”.)
 Terminfo data is compiled (that is processed into a non-textual format), which
means that you can’t look at it directly. Instead, you must use a special program, called
infocmp, to read the data and render it into plain text. (If your system doesn’t recognize
the infocmp command, it probably means that ncurses is not installed.)
 To use infocmp, just specify the name of the terminal whose information you want to
see. For example, to display the Terminfo data for the VT100 terminal, use the command:

infocmp vt100 | less

The | (vertical bar) character sends the output of the command to less, in order to
display the output one screenful at a time.
 To display the Terminfo data for whatever terminal you are currently using, use the
command name without a terminal name:

infocmp | less

If you are running Linux on a PC, you will see one of two possibilities. From a terminal
window, such as the Konsole program (see Chapter 6), you will have a terminal of type
xterm, an X Terminal. From a virtual console (also see Chapter 6), you will have a
terminal of type linux, which is like a VT220, the color version of the VT100.

HOW DOES UNIX KNOW WHAT TYPE OF TERMINAL YOU ARE USING?
As you can see from the preceding discussion, it is important that Unix know what type
of terminal you are using. Before the late 1990s, that could be a problem. There were a lot
of different terminals and, it was up to you to tell the system exactly which type you were
using. Doing so required you to learn how to use various technical commands.
 Today that is not necessary for two reasons. First, many people use Unix on their own
PC. When you do so, the “terminal” is built into the computer, and Unix knows about it
as a matter of course.
 When you connect to a remote host — over a local network, the Internet, or via a
phone line — you use a terminal emulation program, not a real terminal. These days,
such programs are able to tell the remote host what terminal they are emulating, so you
don’t have to worry about the details.
 Although it would be possible for a program to emulate any type of terminal, in
practice there are only four types you will see today. The two most common are the

How Does Unix Know What Type of Terminal You Are Using?

33614_07_131_160.indd 13733614_07_131_160.indd 137 1/9/2008 12:31:01 PM1/9/2008 12:31:01 PM

Chapter 7

138 Harley Hahn’s Guide to Unix and Linux

VT100 and xterm. The VT100 is the well-known text-based terminal we discussed
at length in Chapter 3. xterm is an X Terminal, the standard graphics terminal also
discussed in Chapter 3. To a lesser extent, you may see two other terminals emulated: the
VT220, a color version of the VT100; and the 3270, used with IBM mainframes. (If you
use Linux, you may see a terminal type of “linux”. This is essentially a VT220.)
 To keep track of what type of terminal you are using, Unix uses what is called a
ENVIRONMENT VARIABLE. A environment variable is an entity with a name and a value,
which is always available to the shell and to any programs you may run. In particular, there
is a global environment TERM whose value is set to the type of terminal you are using.
 At any time, you can display the value of any environment variable by using the
command echo, followed by a $ (dollar sign) character and the name of the variable.
For example, to see the value of the TERM variable, enter:

echo $TERM

This will show you the type of terminal you are using right now.
 We will discuss environment variables in more detail in Chapter 12. For now, if you
are curious, here is a command you can use to display the values of all the environment
variables within your shell.

printenv

The name of this command, printenv, stands for “print environment variables”. You
will remember that, earlier in the chapter, I explained that it is the custom in Unix to use
the word “print” as a synonym for “display”.

THE MODIFIER KEYS; THE <CTRL> KEY
The <Ctrl> key (the name stands for “Control”) was a feature on the early Teletype
terminals I mentioned at the beginning of the chapter. In the picture of a Teletype keyboard
in Figure 7-1, the <Ctrl> key is the leftmost key in the second row from the bottom. As
the name implies, this key was used to control the operation of the Teletype. When Unix
was created, the <Ctrl> key was adopted by the Unix developers and integrated into the
system in several important ways, which we will discuss in a moment.

HINT

You will remember that, as I explained in Chapter 4, Unix distinguishes between lower- and
uppercase letters. For example, in Unix, the name harley is completely different than the
name Harley.
 Because lowercase is easier to type, it is the custom to use it almost exclusively for names,
including userids, commands, and fi les. This is why, for example, although you may see the
userid harley, you will never see Harley or HARLEY.
 The main exception to this rule is with respect to environment variables. It is the tradition
that, within the shell, environment variables are given uppercase names, such as TERM. This
allows us to tell at a glance that what we are looking at is, indeed, an environment variable.

33614_07_131_160.indd 13833614_07_131_160.indd 138 1/9/2008 12:31:01 PM1/9/2008 12:31:01 PM

Using the Keyboard with Unix

139

 To use the <Ctrl> key, you hold it down (like the <Shift> key) and press another key,
usually a letter. For example, you might hold down <Ctrl> and press the <A> key.
 There are 26 such combinations based on the alphabet — <Ctrl>+<A> through
<Ctrl>+<Z> — as well as a couple of others that you might run into. Because it is awkward
to write “Ctrl” over and over again, the Unix community uses a shorthand notation: the
character ̂ (the caret). When you see this character next to another character, it means
“hold down the <Ctrl> key”. For example, ̂ A means hold down <Ctrl> and press the <A>
key. You might also see the notation <Ctrl-A> or C-a, which means the same thing.
 By convention, we always write a <Ctrl> combination using an uppercase letter. For
instance, we write ^A, never ^a. Using uppercase letters makes such combinations easy
to read: compare, for example, ̂ L to ̂ l. However, it’s not a real uppercase letter so, when
you use a <Ctrl> combination, do not press the <Shift> key.
 To get used to this notation, take a look at the following example. This is part of the
output from an stty command we will meet later in the chapter.

erase kill werase rprnt flush lnext
^H ^U ^W ^R ^O ^V

susp intr quit stop eof
^Z/^Y ^C ^\ ^S/^Q ^D

The output of the stty command tells us which keys to press to send certain signals.
The details aren’t important for now. What I want you to notice is the notation. In this
example, we see that to send the erase signal you use ̂ H. That is, you hold down <Ctrl>
and press <H>. For the kill signal, you use ^U; for werase, you use ^W; and so on.
 The <Ctrl> key is an example of what are called MODIFIER KEYS. These are keys that
you hold down while you press another key. For example, when you type ^H, the <Ctrl>
key “modifi es” the <H> key.
 On a standard PC keyboard, the modifi er keys are <Shift>, <Ctrl> and <Alt>. <Shift>
is used for two purposes: to type uppercase letters, and to type the top character on a
two-character key. For example, to type the & (ampersand) character on a U.S. keyboard,
you press <Shift-7>. <Ctrl> is used to type special signals, in the way I explained above.
The <Alt> key is the newest of the modifi er keys. Since it was not around when Unix was
developed, it is not a part of the standard Unix keyboard. Thus, you don’t need it to use
the standard Unix CLI (command line interface). However, as we discussed in Chapter 6,
the <Alt> key is used by the GUI.

THE UNIX KEYBOARD SIGNALS
The original Unix design assumed that people used terminals to connect to a host
computer. More than three decades later, that is still the case, even when you are running
Unix on your own PC*. Over the years, there have been many different types of terminals
with many different types of keyboards, and Unix has been able to work with them all.

 *As we discussed in Chapter 6, when you run Unix on your own computer, each virtual console and each terminal window
is a separate terminal, all of which are connected to the same host computer.

The Unix Keyboard Signals

33614_07_131_160.indd 13933614_07_131_160.indd 139 1/9/2008 12:31:02 PM1/9/2008 12:31:02 PM

Chapter 7

140 Harley Hahn’s Guide to Unix and Linux

This is because Unix uses a system of keyboard mappings that is so fl exible, it can be
made to work with any particular keyboard.
 To control the operation of programs as they run, Unix uses a set of keyboard signals.
Although the signals are standard, the actual keys you press to send the signals can be
changed as necessary. That is what creates the fl exibility. For example, there is a signal
called intr (interrupt) that tells a process to abort. If you enter a command that takes a
long time to fi nish, you can stop it by sending it the intr signal.
 The concept of the intr signal is built into the defi nition of Unix. What is not built
into Unix is the actual key that you press to send this signal. In theory, you could use any
valid key or key combination, and it can vary from one terminal to another.
 With most terminals, ̂ C (Ctrl-C) is mapped to the intr signal. In other words, to
stop a program, you would press ^C. With a few terminals, the <Delete> key is mapped
to the intr signal. With one of these terminals, you would press <Delete> to abort a
program. In either case, if you don’t like the keyboard mapping, you can change it.
 Normally, you wouldn’t change the Unix keyboard mappings, but you can, and that is
what makes the system so adaptable. In the next few sections I will describe the important
keyboard signals and how you use them. I will then show you how to fi nd out which keys
are used on your particular terminal, and how you can change them if you want.
 Understanding the keyboard signals and how to use them is one of the basic skills you
need to use the Unix CLI.

SIGNALS TO USE WHILE TYPING: erase, werase, kill
There are three keyboard signals you can use as you are typing: erase, werase and
kill. erase deletes the last character you typed; werase deletes the last word you
typed; kill deletes the entire line.
 To send the erase signal, you press either the <Backspace> or <Delete> key, depending
on your keyboard and its mappings. Take a look at the large key in the top right-hand corner
of the main part of your keyboard. In almost all cases, this will be the key that is mapped to
erase. As you are typing, you can erase the last character you typed by pressing this key.
 With most terminals and with a PC, you would use the <Backspace> key. With a
Macintosh, you would use the <Delete> key. If you are using a Sun computer whose
keyboard has both keys next to one another, use the <Delete> key (the one on top).

HINT

With most keyboards, you press <Backspace> to send the erase signal. With a Macintosh,
you press <Delete>. The important thing is that you use whichever key works on your
particular keyboard.
 You may remember that, in Chapter 4, I mentioned that some keyboards have an <Enter> key
while others have a <Return> key. It’s the same idea. Unix only cares about the signal that is sent
when you press the key. As long as you press the right key, Unix doesn’t care what it is named.
 Throughout this book, when I refer to the <Backspace> key, I mean either <Backspace> or
<Delete>, whichever is used on your system. Similarly, when I refer to the <Return> key, I mean
either <Return> or <Enter>, whichever is on your keyboard.

33614_07_131_160.indd 14033614_07_131_160.indd 140 1/9/2008 12:31:02 PM1/9/2008 12:31:02 PM

Using the Keyboard with Unix

141

 Here is an example of how to use the erase signal. Say that you want to enter the
date command (to display the time and date), but you spell it wrong, datx. Before
you press the <Return> key, press <Backspace> (or <Delete>) to erase the last letter and
make your correction:

datx<Backspace>e

On your screen, the x will disappear when you press <Backspace>. If you want to delete
more than one character, you can press <Backspace> as many times as you want.
 The next signal, werase, tells Unix to erase the last word you typed. The werase
key is usually ̂ W. This key is useful when you want to correct one or more words you have
just typed. Of course, you can always press <Backspace> repeatedly, but ^W is faster when
you want to erase whole words.
 Here is an example. You are a spy and you want to use the less program to display
the contents of three fi les named data, secret and top-secret. The command
to use is:

less data secret top-secret

You type the command but, before you press the <Return> key, you notice that another
spy is standing behind you, casually looking over your shoulder. You decide that you had
better not display the secret and top-secret fi les. Press ^W twice to erase the last
two words:

less data secret top-secret^W^W

On your screen, fi rst the word top-secret and then the word secret will disappear.
You can then press <Return> to run the command.
 The third signal to use while typing is kill. The kill key is usually ̂ X or ^U,
depending on how your system is set up. This signal tells Unix to erase the entire line.
 For example, let’s say that you are just about to display the contents of the three fi les I
mentioned above. You type the command but, before you press <Return>, someone runs
in the room and tells you they are giving away free money at the bank. Thinking quickly,
you erase the command by pressing ^X (or ^U):

less data secret top-secret^X

On your screen, the entire line disappears. You can now log out and run to the bank. (Of
course, you would never leave your terminal logged in, even to rush out to get free money.)
 For reference, Figure 7-2 summarizes the keyboard signals to use when typing.

Signals to Use While Typing: erase, werase, kill

SIGNAL KEY PURPOSE
erase <Backspace>/<Delete> erase last character typed

werase ^W erase last word typed

kill ^X/^U erase entire line

FIGURE 7-2: Keyboard signals to use while typing

33614_07_131_160.indd 14133614_07_131_160.indd 141 1/9/2008 12:31:02 PM1/9/2008 12:31:02 PM

Chapter 7

142 Harley Hahn’s Guide to Unix and Linux

THE STRANGENESS OF <BACKSPACE> AND <DELETE>
As I mentioned earlier, Unix was designed to use the basic keys that were available on the
early Teletype terminals: the letters of the alphabet, numbers, punctuation, the <Shift>
keys, a <Return> key, and the <Ctrl> key. Indeed, to this day, you can still use the Unix
CLI with only these basic keys.
 Modern keyboards have other keys, such as <Backspace>, <Alt>, <PageUp>,
<PageDown>, the function keys, the cursor control (arrow) keys, and so on. The
most interesting of these keys is the <Backspace> key (<Delete> on a Macintosh). To
understand why this key is so interesting, we need to take a trip back in time to revisit our
old friend, the Teletype ASR33, the very fi rst Unix terminal. Along the way, we’ll prepare
ourselves to solve The Case of the Mysterious ^H.
 As you will remember, the Teletype had more than a keyboard and printer; it also had
a paper tape punch and a paper tape reader. The punch was used to punch holes in the
tape, and the reader was used to read holes and interpret them as data.
 Paper tape was 1-inch wide and came in rolls 1,000 feet long. Each position on the
tape could store 1 byte (8 bits) of data by punching holes in any of 8 positions. The tape
could hold 10 bytes per inch. When the tape was read, the presence or absence of holes
was interpreted as a binary (base 2) number: a hole was a one; no hole was a zero. (If you
don’t understand binary arithmetic, don’t worry about it.)
 By now you may be asking yourself, why is this important to a modern-day Unix
system? The answer is: the physical confi guration of the paper tape in 1970 had a direct
infl uence on how the <Backspace> key works today on your computer. Here is why.
 Imagine you are using a Teletype machine, and you are typing information that is
being punched onto paper tape. Each time you type a character, the machine punches
a combination of holes onto the tape. These holes correspond to the ASCII code (see
Chapter 19) for the character you typed. You are doing fi ne until you accidentally make a
mistake. Now what do you do?
 With a modern PC, you would simply press the <Backspace> key. The cursor on your
monitor would then move back one position, and the character you just typed would
be erased from the screen. However, life isn’t so simple when you have just punched the
wrong pattern of holes in a piece of paper.
 The solution had two parts and involved special Teletype commands. First, you would
press <Ctrl-H> which would send a BS (backspace) command to the paper tape punch.
This caused the punch to move back to the previous line where the error occurred. Then
you pressed the <Rubout> key which sent the DEL command. This caused the punch to
make holes in every one of the 8 positions.

HINT

The kill keyboard signal does not stop programs. It only erases the line you are typing. To
stop a program, use the intr signal, which will be either ^C or <Delete>.

33614_07_131_160.indd 14233614_07_131_160.indd 142 1/9/2008 12:31:02 PM1/9/2008 12:31:02 PM

Using the Keyboard with Unix

143

 The reason this worked is that the paper tape reader was programmed to skip over any
characters that had all 8 holes punched. In the language of base 2, we would say that the
paper tape reader ignored any binary patterns consisting of all ones.
 Thus, by overpunching a character with 8 holes — that is, by turning whatever binary
code happened to be there into 8 ones — you effectively erased the character. This is why
the key to do this was named “Rubout”. (You can imagine making a mistake with a pencil
and rubbing it out with an eraser.)
 Thus, to the early Unix developers, there were two different operations that went into
erasing a mistake: backspacing with ̂ H and rubbing out with <Rubout>. The question
they faced was, which key should be mapped to the erase signal, ^H or <Rubout>?
They chose ^H.
 Within a short time, computer companies started to make terminals with a <Backspace>
key. For convenience, this key was programmed to be the same as pressing ^H so, when
you made a typing mistake, you could erase it by pressing either <Backspace> or ̂ H, both
of which were mapped to the erase signal.
 In later years, the name of the <Rubout> key was changed to <Delete>, which only
made sense. Eventually, some Unix companies (notably Sun Microsystems) decided to
add an actual <Delete> key to their keyboards. Like the old <Rubout> key, <Delete>
generated the DEL code (the one that was originally used to “erase” a character on
paper tape). These same companies then decided to use the DEL code, instead of ^H,
for backspacing.
 Thus, it came to pass that, with some keyboards, you pressed <Backspace> to erase a
character while, with others, you pressed <Delete>. In the fi rst case, <Backspace> was the
same as ̂ H, the key that, on a Teletype, sent the BS code. In the second case, <Delete> was
the same as <Rubout>, the key that, on a Teletype, sent the DEL code.
 To make matters more confusing, there was a problem when Unix documentation
was written. There was an easy way to represent the BS code, ^H, but there was no easy
way to represent the DEL code. To solve this problem, the designation ^? was chosen to
represent DEL.
 Unlike ̂ H, however, ̂ ? is not a real key combination. That is, you can’t hold down the
<Ctrl> key and press ? (question mark). ^? is simply a two-character abbreviation that
means “whichever key on your keyboard that sends the code that used to be called DEL”.
 To make things even more confusing, in later years some Unix systems were confi gured
so that the <Backspace> key works the same as ^? (DEL), not ^H (BS). In such cases, ^?,
not ^H, is mapped to erase.
 So here is the situation. If you have a <Backspace> key on your keyboard, it will be
mapped to erase. This is the case with PCs. If you do not have a <Backspace> key, you will
have a <Delete> key that will be mapped to erase. This is the case with Macintoshes.
 If you are using a Sun computer with both a <Backspace> and <Delete> key, the
<Backspace> key will be the same as ^H, and the <Delete> key will be the same as ^?.
One of these keys will be mapped to erase. Try both and see which one works.
 In order to get around the ^H/^? confusion, some Unix systems defi ne an extra signal
called erase2. This is the case with FreeBSD, for example.

The Strangeness of <Backspace> and <Delete>

33614_07_131_160.indd 14333614_07_131_160.indd 143 1/9/2008 12:31:02 PM1/9/2008 12:31:02 PM

Chapter 7

144 Harley Hahn’s Guide to Unix and Linux

 erase2 has the same effect as erase. That is, it erases the last character you typed.
The difference is that ^H maps to one of the signals — erase or erase2 — and ^?
maps to the other. In this way, your <Backspace> key will always work properly, regardless
of whether it sends ^H or ^?.

THE CASE OF THE MYSTERIOUS ^H
You are using your PC to connect to a remote Unix host over a network. You are typing and,
all of a sudden, someone throws a red and white Betty Boop doll at your head. This startles
you and, when you look back at the screen, you notice you have made a typing mistake.
 You press <Backspace> a few times but, instead of erasing the last few characters, you see:

^H^H^H

You look at the screen with amazement. Why did the <Backspace> display ^H instead of
erasing? After all, isn’t ^H mapped to the erase signal?
 The answer is, on your computer, <Backspace> is the same as ^H, and ^H is mapped
to erase. This is why, on your machine, <Backspace> works fi ne.
 On the remote host, however, ^? is mapped to erase. When you press the
<Backspace> key, you are sending ^H which, on the remote host, is meaningless. That is
why, on the remote host, <Backspace> does not work.
 You have four choices. First, you can use other keys to fi x your typing mistakes. Instead
of using <Backspace> to erase one character at a time, you can use ^W to erase an entire
word, or ^X/^U to erase the entire line.
 Second, you can look for a key that will send ^? to the remote host. On many systems,
<Ctrl-Backspace> will do the job. Try it and see if it works. (If you are using a Macintosh,
try <Option-Backspace>.)
 Third, you can change the confi guration of the program you are using to make the
connection. Most communication programs will let you control whether <Backspace>
sends ^H or a ^?. If your program lets you do this, you can confi gure it so that, whenever
you connect to this particular host, <Backspace> sends ^? instead of ^H.

HINT

When the fi rst IBM PC was introduced in August 1981, it came with a brand new keyboard.
This keyboard (which is almost the same as the one we use today), had several new keys, such as
<Insert>, <Delete>, <PageUp>, <PageDown>, and so on.

 It is important to realize that the <Delete> key on the PC keyboard is not the same as the
<Delete> key on the old terminals, or on the Macintosh or Sun computers. It is a completely
different key.
 If you have a PC, you can prove this to yourself. Type something at the Unix command line,
but don’t press the <Return> key. Now press <Backspace> a few times. Notice that the last few
characters are erased. This is because, on your computer, <Backspace> is the same as either ^H
or ^?, whichever one happens to be mapped to erase.
 Now press <Delete> (the key next to <Insert>). It does not erase the previous character,
because it is not mapped to the erase signal.

33614_07_131_160.indd 14433614_07_131_160.indd 144 1/9/2008 12:31:02 PM1/9/2008 12:31:02 PM

Using the Keyboard with Unix

145

 Finally, you can change the mapping on the remote host itself so ^H, not ^? maps to
the erase signal. Once you do this, <Backspace> will work just fi ne. This is usually the
best solution, especially if you are going to use the remote host a lot.
 To make the change, all you need to do is place one specifi c command in the initialization
fi le that gets executed each time you log in to the remote host. Here is the command.

stty erase ^H

(We will discuss the stty command in more detail later in the chapter.)
 The name of the fi le in which you put this command varies depending on what shell
you are using. If you use Bash (the default shell for Linux systems) or the Korn Shell, put
the command in your .profile fi le. If you use the C-Shell, put the command in your
.login fi le. In both cases, the “.” (period) is part of the fi le name. (We’ll discuss these
fi les in Chapter 14.)

STOPPING A PROGRAM: intr
There are several signals that you can use to stop or pause a program. These signals are
intr, quit, stop and susp. We will discuss each one in turn. Interestingly enough,
as you will see, the stop signal isn’t the one that stops a program.
 On most systems, the intr key is ^C. On some systems, you use the <Delete> key
instead. Try both and see which one works for you.
 The intr (interrupt) signal actually has two uses. First, you can use it to stop a
program dead in its tracks. For example, say you enter a command that is taking so long
to fi nish that you decide to stop waiting. Just press ^C. The remote command will abort,
and you will be back at the shell prompt.
 Some programs are programmed to ignore the intr signal. In such cases, there will
always be a well-defi ned way to end the program (some type of “quit” command). By
ignoring the intr signal, the program keeps you from causing damage by pressing ^C
inadvertently. We say that the program TRAPS the intr signal.
 For example, consider what happens if you are editing a fi le with the vi text editor
(Chapter 22) and you press ^C. vi traps the intr signal and does not stop. In order to stop
the program you need to use the vi quit command. If vi had not trapped the intr signal,
pressing ^C would abort the program, and you would lose all the data that was not yet saved.
 Note: You may sometimes see the intr key referred to as the “break” key. If you use a
PC, you may know that ^C acts as a break key under Microsoft Windows for command
line programs. As you can see, this idea (along with many others) was taken from Unix.
 The second use for the intr signal arises when you are typing a Unix command at
the shell prompt. If you are typing a command and you change your mind, you can press
^C instead of <Return>. Pressing ^C will cancel the command completely.
 Be sure that you do not confuse the intr key (^C/<Delete>) with the kill key
(^U/^X). When you are typing a command, intr cancels the command, while kill
erases all the characters on the line. Effectively, this has the same result: whatever you
were typing is discarded, and you can enter a new command.
 However, only intr will stop a program. In spite of its name, kill will not kill.

Stopping a Program: intr

33614_07_131_160.indd 14533614_07_131_160.indd 145 1/9/2008 12:31:02 PM1/9/2008 12:31:02 PM

Chapter 7

146 Harley Hahn’s Guide to Unix and Linux

ANOTHER WAY TO STOP A PROGRAM: quit
Aside from intr (^C), there is another keyboard signal, quit that will stop a program.
The quit key is usually ^\ (<Ctrl-Backslash>).
 What is the difference between intr and quit? Not much. In the olden days, quit
was designed for advanced programmers who needed to abort a test program. When you
pressed ^\, it not only stopped the program, but it also told Unix to make a copy of the
contents of memory at that instant. This information was stored in a CORE FILE, that
is, a fi le with the name of core (the old name for computer memory). A programmer
could then use special tools to analyze the core fi le to fi gure out what went wrong.
 Today, programmers have better tools to debug programs and, on most systems,
the quit signal does not generate a core fi le, although core fi les are still used within
some programming environments to help debugging. If you are not actively debugging
a program and a fi le named core mysteriously appears in one of your directories, it
means that a program you were running aborted with a serious error*. Unless you really
want the fi le, you can erase it. In fact, you should erase it, because core fi les are rather
large and there is no reason to waste the space.

WHAT’S IN A NAME?

Core fi le
In the early days of computing, computer memory was constructed from electro-mechanical
relays and, later, vacuum tubes. In 1952, a new technology called CORE MEMORY was fi rst
used in an experimental version of the IBM 405 Alphabetical Accounting Machine. (The 405,
which was IBM’s high-end tabulator, was a very old device, dating back to 1934.)
 The new type of memory was constructed using tiny, round, hollow magnetic devices called
CORES, measuring about 0.25 inch (6.4 mm) in diameter (see Figure 7-3). A large number
of cores were arranged in a lattice with several electrical wires running through each core. By
changing the current in the wires, it was possible to modify the magnetic properties of individual
cores to either “off” or “on”. This made it possible to store and retrieve binary data.
 Over the years, magnetic core memory was improved and, by the 1960s, it was the mainstay
of the IBM’s fl agship System/360. Eventually, technology advanced, and magnetic core memory
was replaced by semiconductors (transistors) and integrated circuits, leading to today’s fast,
high-density memory chips. However, because the fi rst modern computers used core memory,
the word CORE became a synonym for “memory”, a term that has survived to this day.
 In the olden days, debugging was a particularly diffi cult process, especially when a program
aborted unexpectedly. One technique programmers used was to have the operating system print
a copy of the contents of memory used by a program at the time the program aborted. This was
called a CORE DUMP , and was printed on paper. A core dump could take up many pages of
paper and took great skill to interpret.**
 When Unix was developed, this technique was continued. However, instead of printing a
core dump on paper, Unix saved the data in a special fi le with the name of core. If you were

 *The most common cause is a segmentation fault. This occurs when a program attempts to access memory that is not
allocated to the program, for example, by the improper use of a pointer. (A pointer is a variable that points to something else.)
 ** As an undergraduate at the University of Waterloo, Canada, I worked as a systems programmer at the Computing Center,
which maintained two, large IBM mainframes. From time to time, I would watch the more experienced system programmers
use a large, multi-page core dump to track down an elusive bug. To my young, untutored eye, the process of reading a core
dump was both mysterious and awe-inspiring.

33614_07_131_160.indd 14633614_07_131_160.indd 146 1/9/2008 12:31:03 PM1/9/2008 12:31:03 PM

Using the Keyboard with Unix

147

PAUSING THE DISPLAY: stop, start
When a program writes a line of output to the bottom of your screen and all the other
lines move up one position, we say they SCROLL upward. If a program produces output
too fast, data will scroll off the top of the screen before you can read it.
 If you want to see an example of this, use one of the following commands. The dmesg
command, which we met in Chapter 6, shows you all the messages that were displayed when
the system booted. Alternatively, you can use the cat command to display the Termcap fi le:

dmesg
cat /etc/termcap

(cont’d...) testing a program, you could force it to abort and create a core fi le by pressing ^\
(the quit key). Although the old-time Unix programmers had to learn how to interpret core
fi les, they are rarely used today because much better debugging tools are available.

Pausing the Display: stop, start

FIGURE 7-3: Magnetic core memory

A close-up photo of the fi rst magnetic core memory, used in an experimental version of the IBM 405
Alphabetical Accounting Machine in 1952. The individual cores were tiny, having a diameter of about
0.25 inch (6.4 mm). Over the years, core memory was improved and, during the 1960s, it was the
mainstay of IBM’s fl agship line of computers, the IBM System/360. Eventually, core memory was
replaced by semiconductors, which were themselves replaced by modern integrated circuits.

33614_07_131_160.indd 14733614_07_131_160.indd 147 1/9/2008 12:31:03 PM1/9/2008 12:31:03 PM

Chapter 7

148 Harley Hahn’s Guide to Unix and Linux

The cat command, which we will meet in Chapter 16, concatenates data and sends it to
the default output location, or “standard output”. In this case, cat copies data from the
fi le /etc/termcap to your display. However, the copying is so fast that most of the
data scrolls off the screen before you can read it, which is the purpose of this example.
 In such cases, you have three choices. First, if the lost data is not important, you can ignore
it. Second, you can restart the program that generates the data and have it send the output
to a so-called paging program like less (Chapter 21) that will display the output one
screenful at a time. This is what we did earlier in the chapter when we used the command:

less /etc/termcap

With dmesg, we would use a different command that makes use of the | (vertical bar)
character. This is called the “pipe symbol”, and we will discuss it in Chapter 15. The idea
is to reroute the output of dmesg to less.

dmesg | less

Finally, you can press the ̂ S key to send the stop signal. This tells Unix to pause the
screen display temporarily. Once the display is paused, you can restart it by pressing ̂ Q to
send the start signal. To remember, just think of “S” for Stop and “Q” for Qontinue.
 Using ^S and ^Q can be handy. However, you should understand that ^S only tells
Unix to stop displaying output. It does not pause the program that is executing. The
program will keep running and will not stop generating output.
 Unix will store the output so that none will be lost and, as soon as you press ̂ Q, whatever
output remains will be displayed. If a great many lines of new data were generated while
the screen display was paused, they will probably whiz by rapidly once you press ^Q.
 By the way, you might be wondering, why were ̂ S and ̂ Q chosen to map to the start
and stop signals? It does seem like an odd choice. The answer is, on the Teletype ASR33,
<Ctrl-Q> sent the XON code, which turned on the paper tape reader; <Ctrl-S> sent the
XOFF code, which turned it off.

THE END OF FILE SIGNAL: eof
From time to time, you will work with programs that expect you to enter data from the
keyboard. When you get to the point where there is no more data, you indicate this by
pressing ^D which sends the eof (end of fi le) signal.
 Here is an example: In Chapter 8, I discuss the bc program which provides the services
of a built-in calculator. Once you start bc, you enter one calculation after another. After

HINT

If your terminal ever locks up mysteriously, try pressing ^Q. You may have pressed^S
inadvertently and paused the display.
 When everything seems to have stopped mysteriously, you will never cause any harm by

pressing ^Q.

33614_07_131_160.indd 14833614_07_131_160.indd 148 1/9/2008 12:31:03 PM1/9/2008 12:31:03 PM

Using the Keyboard with Unix

149

each calculation, bc displays the answer. When you are fi nished, you press ^D to tell bc
that there is no more data. Upon receiving the eof signal, the program terminates.

THE SHELL AND THE eof SIGNAL
In Chapter 2, I explained that the shell is the program that reads your Unix commands
and interprets them. When the shell is ready to read a command, it displays a prompt.
You type a command and press <Return>. The shell processes the command and then
displays a new prompt. In some cases, your command will start a program, such as a
text editor, that you will work with for a while. When you end the program, you will be
returned to the shell prompt.
 Thus, in general terms, a Unix session with the CLI (command line interface) consists
of entering one command after another.
 Although the shell may seem mysterious, it is really just a program. And from the
point of view of the shell, the commands you type are just data that needs to be processed.
Thus, you can stop the shell by indicating that there is no more data. In other words, you
can stop the shell by pressing ^D, the eof key.
 But what does stopping the shell really mean? It means that you have fi nished your
work and, when the shell stops, Unix logs you out automatically. This is why it is possible
to log out by pressing ^D. You are actually telling the shell (and Unix) that there is no
more work to be done.
 Of course, there is a potential problem. What if you press ^D by accident? You will be
logged out immediately. The solution is to tell the shell to trap the eof signal. How you do
this depends on what shell you are using. Let’s take each shell in turn — Bash, the C-Shell,
and the Korn Shell — and you can experiment with your particular shell.

BASH: TRAPPING THE eof SIGNAL
Bash is the default shell with Linux. To tell Bash to ignore the eof signal, you use an
environment variable named IGNOREEOF. (Notice there are two Es in a row, so be
careful when you spell it.) Here is how it works.
 IGNOREEOF is set to a particular number, which indicates how many times Bash
will ignore ^D at the beginning of a particular line before logging you out. To set
IGNOREEOF, use a command like the following. (You can use any number you want
instead of 5.)

IGNOREEOF=5

To test it, press ^D repeatedly, and count how many ^Ds are ignored until you are
logged out.
 When IGNOREEOF is set and you press ̂ D, you will see a message telling you that you
can’t log out by pressing ^D. If you are working in the login shell (that is, the shell that
was started automatically when you logged in), you will see:

Use "logout" to leave the shell.

Bash: Trapping the eof Signal

33614_07_131_160.indd 14933614_07_131_160.indd 149 1/9/2008 12:31:03 PM1/9/2008 12:31:03 PM

Chapter 7

150 Harley Hahn’s Guide to Unix and Linux

If you are working in a subshell (that is, a shell that you started after you logged in),
you will see:

Use "exit" to leave the shell.

If, for some reason, you want to turn off the IGNOREEOF feature, just set it to 0:

IGNOREEOF=0

To display the current value of IGNOREEOF, use:

echo $IGNOREEOF

To set IGNOREEOF automatically each time you log in, put the appropriate command in
your .profile fi le (see Chapter 14).

KORN SHELL: TRAPPING THE eof SIGNAL
The Korn shell is the default shell on various commercial Unix systems. In addition, the
default shell for FreeBSD is almost the same as the Korn shell.
 To tell the Korn Shell to ignore ̂ D, you set a shell option named ignoreeof. (Notice
there are two es in a row, so be careful when you spell it.) To do this, use the command:

set -o ignoreeof

Once you do, if you press ^D, you will see a message telling you that you can’t log out by
pressing ^D:

Use "exit" to leave shell.

If, for some reason, you want to turn off the ignoreeof option, use:

set +o ignoreeof

To display the current value of ignoreeof, use:

set -o

This will show you all the shell options and tell you whether or not they are off or on.
 To set ignoreeof automatically each time you log in, put the appropriate set
command in your .profile fi le (see Chapter 14).

C-SHELL: TRAPPING THE eof SIGNAL
To tell the C-Shell to ignore ^D, you set a shell variable named ignoreeof. (Notice
there are two es in a row, so be careful when you spell it.) To do this, use the command:

set ignoreeof

Once you do, if you press ^D, you will see a message telling you that you can’t log out
by pressing ^D. If you are working in the login shell (that is, the shell that was started
automatically when you logged in), you will see:

33614_07_131_160.indd 15033614_07_131_160.indd 150 1/9/2008 12:31:03 PM1/9/2008 12:31:03 PM

Using the Keyboard with Unix

151

Use "logout" to logout.

If you are working in a subshell (that is, a shell that you started after you logged in),
you will see:

Use "exit" to leave csh.

(csh is the name of the C-Shell program.)
 If, for some reason, you want to turn off the ignoreeof feature, use:

unset ignoreeof

To display the current value of ignoreeof, use:

echo $ignoreeof

If ignoreeof is set, you will see nothing. If it is not set, you will see:

ignoreeof: Undefined variable.

To set ignoreeof automatically each time you login, put the set command in your
.cshrc fi le (see Chapter 14).

DISPLAYING KEY MAPPINGS: stty -a
So far, I have mentioned a number of keyboard signals, each of which corresponds to
some key on your keyboard. These are shown in Figure 7-4. The key mappings I have
shown are the most common ones, but they are changeable.
 To display the key mappings on your system, use the following command.

stty -a

stty is the “set terminal” command; -a means “show me all the settings”.
 The stty command displays several lines of information about your terminal. The
only lines we are interested in are the ones that show the keyboard signals and the keys to
which they are mapped. Here is an example from a Linux system:

Displaying Key Mappings: stty -a

SIGNAL KEY PURPOSE
erase <Backspace>/<Delete> erase last character typed

werase ^W erase last word typed

kill ^X/^U erase entire line

intr ^C stop a program that is running

quit ^\ stop program & save core fi le

stop ^S pause the screen display

start ^Q restart the screen display

eof ^D indicate there is no more data

FIGURE 7-4: Summary of important keyboard signals

33614_07_131_160.indd 15133614_07_131_160.indd 151 1/9/2008 12:31:03 PM1/9/2008 12:31:03 PM

Chapter 7

152 Harley Hahn’s Guide to Unix and Linux

intr = ^C; quit = ^\; erase = ^?; kill = ^U;
eof = ^D; eol = <undef>; eol2 = <undef>;
start = ^Q; stop = ^S; susp = ^Z; rprnt = ^R;
werase = ^W; lnext = ^V; flush = ^O;

And here is an example from a Free BSD system:

discard = ^O; dsusp = ^Y; eof = ^D; eol = <undef>;
eol2 = <undef>; erase = ^?; erase2 = ^H; intr = ^C;
kill = ^U; lnext = ^V; quit = ^\; reprint = ^R;
start = ^Q; status = ^T; stop = ^S; susp = ^Z; werase = ^W;

Notice that the FreeBSD example has an erase2 signal.
 As you can see, there are several signals I did not cover. Most of these are not important
for day-to-day work, and you can ignore them.

CHANGING KEY MAPPINGS: stty
If you would like to change a key mapping, use the stty command. Just type stty,
followed by the name of the signal, followed by the new key assignment. For example, to
change the kill key to ^U, enter:

stty kill ^U

Important: Be sure to type the <Ctrl> key combination as two separate characters, not as
a real <Ctrl> combination; stty will fi gure it out. For example, in this case, you would
type the ^ (caret) character, followed by the U character. You would not type <Ctrl-U>.
 When you use stty with the name of a <Ctrl> character, it is not necessary to type
an uppercase letter. For instance, the following two commands will both work:

stty kill ^u
stty kill ^U

Just remember to type two separate characters.
 Strictly speaking, you can map any key you want to a signal. For example, you could
map the letter K to the kill signal. Either of these commands will do the job:

stty kill k
stty kill K

HINT

In Chapter 26, we will discuss how to pause and restart programs that are running. At the
time, you will see that you can pause a program by pressing ^Z, which is mapped to the susp
(suspend) signal. Once you pause a program with ^Z, it stops running until you restart it by
entering the fg (foreground) command.
 So if you are ever working and, all of a sudden, your program stops and you see a message
like Suspended or Stopped, it means you have accidentally pressed ^Z.
 When this happens, all you have to do is enter fg, and your program will come back to life.

33614_07_131_160.indd 15233614_07_131_160.indd 152 1/9/2008 12:31:03 PM1/9/2008 12:31:03 PM

Using the Keyboard with Unix

153

Of course, such a mapping would only lead to problems. Every time you pressed the <K>
key, Unix would erase the line you were typing! What an interesting trick this would be
to play on a friend.*
 Normally, we use only <Ctrl> combinations for mappings. In fact, in almost all cases,
it’s better to leave things the way they are, and stick with the standard key assignments.
 Here is one situation, however, where you may want to make a change. Let’s say you
often connect to a remote host over a network and, on that host, the erase key is ^?.
However, your Backspace key sends a ^H. To make life more convenient, you map ^H to
erase. This allows you to press <Backspace> to delete a character.

stty erase ^H

Here is the opposite example. You connect to a remote host on which ^H is mapped to
erase. However, your <Backspace> (or <Delete>) key sends ^?. Use stty to change
the mapping as follows:

stty erase ^?

Remember, the notation ^? does not refer to an actual <Ctrl> key combination. ^? is a
two-character abbreviation for “whichever key on your keyboard sends the DEL code”.
 If you decide to mess around with keyboard mappings, you can use the command I
described above to check them:

stty -a

Alternatively, you enter the stty command by itself:

stty

This will display an abbreviated report, showing only those mappings that have been
changed from the default.

COMMAND LINE EDITING
As you type on the command line, the cursor points to the next available location. Each
time you type a character, the cursor moves one position to the right.
 What do you do when you make a mistake? As we discussed earlier in the chapter, you
press the <Backspace> key, erase one or more characters, and type the new ones.
 However, what happens if you want to fi x a mistake at the beginning of the line, and you
have already typed 20 characters after the mistake? Certainly you can press <Backspace>
21 times, fi x the mistake, and retype the 20 characters. However, there is an easier way.
 With most (but not all) shells, you can simply use the left-arrow key, which I will call
 <Left>. Each time you press this key, it moves your cursor to the left without erasing
anything. You can then make the changes you want and press <Return>.
 Try this example , using the echo command. (echo simply displays the value of
whatever you give it.) Type the following:

 *You didn’t read it here.

Command Line Editing

33614_07_131_160.indd 15333614_07_131_160.indd 153 1/9/2008 12:31:04 PM1/9/2008 12:31:04 PM

Chapter 7

154 Harley Hahn’s Guide to Unix and Linux

echo "This is a test!"

Now press <Return>. The shell will display This is a test! Now type the following,
but do not press <Return>:

echo "Thus is a test!"

Before you press <Return>, you need to change Thus to This. Your cursor should be
at the end of the line, so press <Left> repeatedly until the cursor is just to the right of the
u in Thus. Press <Backspace> once to erase the u, and then type i. You can now press
<Return>, and you should see the correct output.
 This is an example of what is called COMMAND LINE EDITING, that is, changing
what is on the command line before you send it to the shell. Notice that you did not have
to move the cursor to the end of the line before you pressed <Return>.

 All modern shells support some type of command line editing, but the details vary
from one shell to another. For that reason, we will leave the bulk of the discussion to later
in the book, when we talk about each individual shell. For now, I’ll teach you the three
most important techniques. Try them and see if they work with your particular shell.
 First, as you are typing, you can use the <Left> and <Right> arrow keys to move the
cursor within the command line. This is what we did in our example above.
 Second, at any time, you can press <Backspace> to erase the previous character. With
some shells, you can also use the <Delete> key to erase the current character. (The <Delete>
key I am talking about is the one you fi nd on a PC keyboard, next to the <Insert> key.)
 Third, as you enter commands, the shell keeps them in an invisible “history list”. You
can use the <Up> and <Down> arrow keys to move backward and forward within this
list. When you press <Up>, the current command vanishes and is replaced by the previous
command. If you press <Up> again, you get the command before that.
 Thus, you can press <Up> one or more times to recall a previous command. If you go
too far, press <Down> to move down in the list. You can then edit the line to your liking,
and resubmit it by pressing <Return>.

HINT

When you press <Return>, the characters that are on the command line are sent to the shell to
be interpreted. Because the cursor does not generate a character, the shell doesn’t care where the
cursor is when you send it a command.
 This means that, when you are command line editing, you can press the <Return> key from
anywhere in the line. The cursor does not have to be at the end of the line.

WHAT’S IN A NAME?

Destructive backspace, Non-destructive backspace
When you press the <Backspace> key, it moves the cursor one position to the left while erasing
a character. When you press the <Left> arrow key, it moves the cursor to the left without erasing
a character.

33614_07_131_160.indd 15433614_07_131_160.indd 154 1/9/2008 12:31:04 PM1/9/2008 12:31:04 PM

Using the Keyboard with Unix

155

RETURN AND LINEFEED
Earlier in the chapter, we discussed how the way in which Unix handles the <Backspace>
key can be traced back to the original Unix terminal, the Teletype ASR33. More
specifi cally, there were two Teletype codes (BS and DEL) that were involved in erasing
a character on paper tape. The Unix developers chose one of these codes to use for the
erase signal.
 Interestingly enough, they had the same type of choice when it came to deciding what
should happen with the <Return> key. Moreover, the decision they made regarding the
<Return> key turned out to be much more important than the one they made with
the <Backspace> key. This is because the code they chose is used — not only with the
<Return> key — but as a special marker that goes at the end of every line in a text fi le. To
begin our discussion, we need to, once again, go back in time to the Teletype ASR33.
 The Teletype ASR33 had a print head that used a ribbon to print characters on paper.
As characters were printed, the print head moved from left to right. When the print head
got to the end of a line, two things had to happen. First, the paper had to be moved up
one line; second, the print head, which was attached to a “carriage”, had to be returned to
the far left.
 To make the Teletype perform these actions, there were codes embedded in whatever
data was being printed. The data could come from the keyboard, from an incoming
communication line, or from the paper tape reader.
 The fi rst code, CR (carriage return), returned the carriage to its leftmost position. The
second code, LF (linefeed), caused the paper to be moved up one line. Thus, the sequence
CR-LF performed the actions necessary to prepare to print a new line.
 From the keyboard, you would send a CR code by pressing either the <Return>
key or ̂ M. (They were equivalent.) You would send the LF code by pressing either the
<Linefeed> key or ^J. (If you look at Figure 7-1 earlier in the chapter, the <Return>
key is at the far right of the second row from the top. The <Linefeed> key is one position
to the left.)
 When the Unix developers came to use the Teletype as a terminal, they created two
signals based on the CR and LF codes. The CR code became the RETURN signal. The
LF code became the LINEFEED signal.
 So now, let us ask a question: When you type at a Unix terminal, what happens when
you press the <Return> key? Before I can answer that, I need to talk a bit about how Unix
organizes plain text into fi les.

Return and Linefeed

(cont’d...) In a sense, the two actions are similar in that they both move the cursor backwards.
The only difference is whether or not anything is erased. To capture this idea, you will sometimes
see the terms “destructive backspace” and “non-destructive backspace” used.
 A DESTRUCTIVE BACKSPACE occurs when the cursor moves back and characters are
erased. This is what happens when you press the <Backspace> key.
 A NON-DESTRUCTIVE BACKSPACE occurs when the cursor moves back but nothing is
changed. This is what happens when you press the <Left> key.

33614_07_131_160.indd 15533614_07_131_160.indd 155 1/9/2008 12:31:04 PM1/9/2008 12:31:04 PM

Chapter 7

156 Harley Hahn’s Guide to Unix and Linux

THE IMPORTANCE OF NEWLINE
As we have discussed, Unix uses two signals based on the old Teletype: return and linefeed.
From the keyboard, you send return by pressing ^M and linefeed by pressing ^J.
 Since return and linefeed are really the same as ^M and ^J, we usually refer to them as
characters, rather than signals. Here is how they are used in three different situations.
 First: When fi les contain textual data, we usually divide the data into lines. In Unix,
we use a ^J character to mark the end of each line. When we use ^J in this way, we
refer to it as a NEWLINE character, rather than linefeed. Thus, when a program reads
data from a fi le, it knows it has reached the end of a line when it encounters a newline
(that is, a ^J character).
 Second: When you are typing characters at a terminal, you press <Return> at the end
of the line. Doing so sends the return character, that is, ^M.
 Third: When data is displayed, it is sent to your terminal one line at a time. At the
end of each line, the cursor must be moved to the beginning of the next line. As with the
Teletype, this involves two separate actions: a “carriage return” to move the cursor to the
beginning of the line, followed by a “line feed” to move the cursor down one line. For
the “carriage return” Unix sends a return character (that is, ^M). For the “linefeed”, Unix
sends a linefeed character (that is, ^J). Thus, when data is displayed, each line must end
with ^M^J.
 One of the most elegant features of Unix is that data typed at the keyboard is treated
the same as data read from a fi le. For example, say you have a program that reads a series
of names, one per line. Such a program can read the names either from a fi le on your disk
or from the keyboard. The program does not need to be written in a special way to have
such fl exibility. This feature, called “standard input”, is built into Unix. Standard input
allows all Unix programs to read data in the same way, without having to worry about the
source of the data. (We will discuss this idea in Chapter 15.)
 In order for standard input to work properly, every line of data must end with a
newline. However, when you type characters at the keyboard, they come in with a return
at the end of the line, not a newline. This creates a problem.
 Similarly, when Unix programs output data, they can make use of “standard output”.
This allows all programs to write data in the same way, without having to worry about
where the data is going.
 When data is written to a fi le, each line must end with a newline character (that is, ̂ J).
However, when data is written to the terminal, each line must end with return+newline
(^M^J). This creates a second problem.
 These problems are reconciled in two ways. First, as you type, whenever you press
<Return>, Unix changes the return into a newline. That is, it changes the ^M into ^J.
 Second, when data is being written to the terminal, Unix changes each newline to a
return+linefeed. That is, it changes ^J to ^M^J.
 Here is a quick summary to help you make sense of all this:

1. return = ^M.

2. linefeed = newline = ^J.

33614_07_131_160.indd 15633614_07_131_160.indd 156 1/9/2008 12:31:04 PM1/9/2008 12:31:04 PM

Using the Keyboard with Unix

157

3. In general, every line of text must end with a newline.

4. When you press the <Return> key, it sends a return character, which Unix automatically
changes to a newline.

5. To display data on a terminal, each line must end with the sequence of characters:
return+linefeed. Thus, as data is sent from a fi le to the terminal to be displayed, Unix
automatically changes the newline at the end of each line to return+linefeed.

 At fi rst, this may seem a bit confusing. Eventually, you will come to see that it all makes
perfect sense, at which time you will know that you have fi nally started to think in Unix.

AN IMPORTANT USE FOR ^J: stty sane, reset
Unless you are a programmer, it is not really necessary to master all the technical details
regarding return and newline. Just remember to press <Return> at the end of each line
and let Unix do the work.
 However, there are some situations in which understanding these ideas is helpful. On
rare occasions, the settings for your terminal may become so messed up that the terminal
does not work properly. In such cases, there are two commands you can use to reset your
terminal settings to reasonable values: stty sane or reset.
 In rare cases, you may fi nd that when you try to enter one of these commands by
pressing <Return>, the return to newline conversion will not work, and Unix will not
accept the command. If this happens, simply press ^M instead of <Return>. This will
work because the two keys are essentially the same.
 The solution is to press ^J (the same as newline), which is all Unix wants anyway.
Thus, when all else fails, typing one of the following commands may rejuvenate your
terminal. Be sure to type ^J before and after the command. You can try it now if you
want; it won’t hurt anything.

<Ctrl-J>stty sane<Ctrl-J>
<Ctrl-J>reset<Ctrl-J>

You might ask, if that is the case, can you press ^J instead of <Return> to enter a
command at any time? Of course — try it.
 To show you how useful these commands can be, here is a true story.

HINT

Within text fi les, Unix marks the end of each line with a ^J (newline) character. Microsoft
Windows, however, does it differently. Windows marks the end of each line with a ^M^J. (In

Unix terms, that would be return+linefeed.)
 Thus, when you copy text fi les from Unix to Windows, each ^J must be changed to ^M^J.
Conversely, when you copy fi les from Windows to Unix, each ^M^J must be changed to ^J.
 When you use a program to copy fi les between two such computers, the program should
know how to make the changes for you automatically. If not, there are utility programs available
to do the job.

An Important Use for ^J: stty sane, reset

33614_07_131_160.indd 15733614_07_131_160.indd 157 1/9/2008 12:31:04 PM1/9/2008 12:31:04 PM

Chapter 7

158 Harley Hahn’s Guide to Unix and Linux

 I have a friend Susan who was helping someone with a Linux installation. They were
working with a program that allows you to choose which options you want included in
the kernel. The program needed a particular directory that did not exist, so Susan pressed
^Z to pause the program. She now had an opportunity to create the directory.
 However, it happened that the program — in order to keep the display from changing
— had disabled the effect of the return character. This meant that, whenever Susan entered
commands, the output would not display properly.
 (Remember, when Unix writes data to the terminal, it puts return+linefeed at the end
of every line. What do you think happens when only the linefeed works?)
 Susan, however, is nothing if not resourceful. She entered the reset command and,
in an instant, the terminal was working properly. She then created the directory she
needed, restarted the installation program, and lived happily ever after.

THE FABLE OF THE PROGRAMMER AND THE PRINCESS
A long time ago, there lived a young, handsome, charming programmer (you can tell
this is a fable), who won the love of a beautiful princess. However, the night before their
wedding, the princess was kidnapped.
 Fortunately, the princess had the presence of mind to leave a trail of pearls from her
necklace. The programmer followed the trail to a remote corner of the lawless Silicon
Valley, where he discovered that his love was being held captive in an abandoned technical
support center by an evil Vice President of Marketing.
 Thinking quickly, the programmer took a powerful magnet and entered the building.
He tracked down the princess and broke into the room where the VP of Marketing stood
gloating over the terrifi ed girl.
 “Release that girl immediately,” roared the programmer, “or I will use this magnet and
scramble all your disks.”
 The VP pressed a secret button and in the blink of an eye, four more ugly, hulking vice
presidents entered the room.
 “On the other hand,” said the programmer, “perhaps we can make a deal.”
 “What did you have in mind?” said the VP.
 “You set me any Unix task you want,” answered the programmer. “If I do it, the princess
and I will go free. If I fail, I will leave, never to return, and the princess is yours.”
 “Agreed,” said the VP, his eyes gleaming like two toady red nuggets encased in suet.
“Sit down at this terminal. Your task will have two parts. First, using a single command,
display the time and date.”
 “Child’s play,” said the programmer, as he typed date and pressed the <Return> key.
 “Now,” said the VP, “do it again.” However, as the programmer once again typed date,
the VP added, “—but this time you are not allowed to use either the <Return> key or ^M.”
 “RTFM, you ignorant buffoon!” cried the programmer, whereupon he pressed ^J,
grabbed the princess, and led her to his waiting Ferrari and a life of freedom.

33614_07_131_160.indd 15833614_07_131_160.indd 158 1/9/2008 12:31:04 PM1/9/2008 12:31:04 PM

Using the Keyboard with Unix

159

C H A P T E R 7 E X E R C I S E S

REVIEW QUESTIONS

1. Why is it a Unix convention to use the abbreviation “tty” to refer to terminals?

2. Why is it a Unix convention to use the word “print” to refer to displaying data on a
monitor?

3. What does the term “deprecated” mean?

4. How does Unix know which terminal you are using?

5. Which key do you press to erase the last character you typed? The last word? The
entire line?

APPLYING YOUR KNOWLEDGE

1. By default, the erase key is the <Backspace> key (or on a Macintosh, the <Delete>
key). Normally, this key is mapped to ^H or, less often, ^?. Use the stty command
to change the erase key to the uppercase letter “X”. Once you do this, you can
erase the last character you typed by pressing “X”. Test this. What happens when you
press a lowercase “x”? Why? Now use stty to change the erase key back to the
<Backspace> (or <Delete>) key. Test to make sure it worked.

FOR FURTHER THOUGHT

1. One way to logout is to press ^D (which sends the eof signal) at the shell prompt.
Since you might do this by accident, you can tell the shell to ignore the eof signal. Why
is this not the default? What does this tell you about the type of people who use Unix?

2. In Chapter 1, I mentioned that the fi rst version of Unix was developed by Ken
Thompson, so he could run a program called Space Travel. In this chapter, I explained
that the fi rst program to use Termcap (terminal information database) and curses
(terminal manager interface) was a text-based fantasy game called Rogue, written by
Michael Toy and Glenn Wichman. Creating a new operating system and experimenting
with a brand new set of interfaces are both extremely time-consuming, diffi cult tasks.
What do you think motivated Thompson and, later, Toy and Wichman to take on such
challenging work for what seem to be such trivial reasons? If you were managing a
group of programmers, what motivations do you think they would respond to (aside
from money)?

Chapter 7 Exercises

33614_07_131_160.indd 15933614_07_131_160.indd 159 1/9/2008 12:31:05 PM1/9/2008 12:31:05 PM

33614_07_131_160.indd 16033614_07_131_160.indd 160 1/9/2008 12:31:05 PM1/9/2008 12:31:05 PM

161

C H A P T E R 8

Programs to Use Right Away

Finding a Program on Your System: which, type, whence

When you enter a command at the shell prompt, you are actually telling the shell to run
the program by that name. For example, when you enter the date command, you are
asking the shell to run the date program*.
 Unix has literally thousands of different programs, which means there are thousands of
different commands you can enter. Many of these programs require that you understand
some theory. For instance, before you can use the fi le system commands you need to learn
about the fi le system. Other programs are so complex as to require a great deal of time
to master. This is the case, for example, with the two principal Unix text editors, vi and
Emacs. These are very useful programs, but extremely complicated. In fact, in this book,
I devote an entire chapter to vi.
 There are, however, programs that require no special knowledge and are not especially
diffi cult to use. These are the programs that you can use right away and, in this chapter,
we’ll take a look at some of them.
 Of the many, many Unix programs, I have chosen a few that I feel are particularly
useful, interesting, or fun. I have two goals. First, I want you to know about the
programs, as they really are useful, interesting or fun. Second, after talking so much
about general principles earlier in the book, I want to give you a chance to get used to
the Unix CLI (command line interface). Traditionally, one of the ways in which people
learn Unix is by having a good time while they are learning. Let’s, you and I, carry on
that tradition.

FINDING A PROGRAM ON YOUR SYSTEM: which,type, whence
As we discussed in Chapter 2, Unix is not a specifi c operating system. It is a family of
operating systems: Linux, FreeBSD, Solaris, AIX, and on and on. Moreover, even Linux
itself is not one system. The name “Linux” refers to any Unix system that uses the Linux
kernel, and there are literally hundreds of different Linux distributions.

 *Strictly speaking, this is not the entire story. Some commands are “built into” the shell, which means they are not actually
separate programs.
 At this point, however, the distinction between separate programs and built-in programs is not important.

33614_08_161_188.indd 16133614_08_161_188.indd 161 1/9/2008 12:31:31 PM1/9/2008 12:31:31 PM

Chapter 8

162 Harley Hahn’s Guide to Unix and Linux

 Although the various Unixes have a lot in common, they don’t all come with the exact
same set of programs. For example, there are programs you will fi nd in the Berkeley Unixes
(FreeBSD, NetBSD and OpenBSD) that you won’t fi nd in Linux systems. Moreover, even
when you compare two computers that are running the same version of Unix, you may
fi nd different programs. This is because, during a Unix installation, there is a lot of choice
as to which programs should be installed, and not everyone makes the same choices.
 It is true that basic Unix is basic Unix, and most systems have all of the important
programs. Still, no matter what type of Unix you are using, there may be programs in this
chapter (or elsewhere in the book) that are not available on your system.
 For this reason, there are two important questions I would like to consider now:
How do you know if a particular program is available on your system? If it isn’t, is there
anything you can do about it?
 The easiest way to see if you have access to a program is to type its name at the shell
prompt. (Remember, the job of the shell is to interpret your commands.) If the program
exists on your system, something will happen. If not, the shell will tell you that it can’t
fi nd that program. Don’t worry about experimenting in this way. If you enter a non-
existent command, it won’t cause a problem. All that will happen is that you will see an
error message.
 A more precise way to check if a program is available is to use the which command.
The purpose of which is to have the shell answer the question: If I were to enter a
specifi c command, which program would be run? If there is an answer to this question,
the program is installed on your system and you can use the command. If not, the
command is not available.
 To use which, type the command followed by the names of one or more programs,
for example:

which date
which date less vi emacs

Here is the output for the fi rst command:

/bin/date

In this case, which is telling you that, if you were to enter the date command, the shell
would run the program stored in the fi le /bin/date. If you don’t understand the Unix
fi le system (which we will discuss in Chapter 23), this name will not make sense to you
just yet. Don’t worry about it. The important thing is that which has found a program
to run, which tells you that date is a valid command on your system.
 What happens if you ask which about a program that does not exist? For example:

which harley

There are two possibilities depending on your version of which. First, nothing may
happen. That is, there will be no output. This means which could not fi nd the program
you specifi ed. This is a characteristic of many Unix programs: if they don’t have anything
to say, they don’t say it. (If only more people had the same philosophy.)

33614_08_161_188.indd 16233614_08_161_188.indd 162 1/9/2008 12:31:33 PM1/9/2008 12:31:33 PM

Programs to Use Right Away

163Finding a Program on Your System: which, type, whence

 The second possibility is that you will see an error message. Here is a typical one:

/usr/bin/which: no harley in (/usr/local/bin:/usr/bin:
 /bin:/usr/X11R6/bin:/home/harley/bin)

What which is telling you is that it can’t fi nd a program named harley anywhere in
your search path. We’ll talk about search paths when we discuss the various shells. For
now, the important thing is to realize that, because which cannot fi nd a program named
harley, you can’t use the harley command on your system.
 So what do you do if you want to try one of the programs in this chapter, and it
doesn’t seem to be on your system? As obvious as it might seem, the fi rst thing to
check is your spelling. Smart people make spelling mistakes all the time, and you and
I are no exception*.
 If you have spelled the command correctly and it just can’t be found, you have several
choices. First, you can forget about it. This chapter has a variety of programs to try and
most of them will be available on your system.
 Second, if you have access to other Unix systems, you can try them to see if they have
the command.
 Third, if you are using a shared system, you can ask the system manager if he or she
could please install the program on your system. System managers are very busy people
but, for a knowledgeable person, it doesn’t take long to install a new program, so if you
are polite and charming you may get what you want.
 Finally, if you are using your own Unix computer, you can install the program for
yourself. The details of how to do so vary with one type of Unix to another and are, alas,
beyond the scope of this chapter. Perhaps you can fi nd a local nerd who might be able to
help you with your particular system.
 If you use Bash for your shell (see Chapter 12), there is an alternative to the which
command, type , for example:

type date

If you use the Korn shell (see Chapter 13), you can use the whence command:

whence date

The type and whence commands will sometimes display more detailed information
than which. This can be useful in certain circumstances. However, for practical purposes,
which will be fi ne most of the time.
 Before we leave this section let me ask you, what do you think would happen if you use
the which command on itself. In other words, which which is which? When you have a
moment, give it a try:

which which

 *In fact, seeing as you and I are smarter than most other people, we probably make more spelling mistakes because our
minds work so quickly.

33614_08_161_188.indd 16333614_08_161_188.indd 163 1/9/2008 12:31:33 PM1/9/2008 12:31:33 PM

Chapter 8

164 Harley Hahn’s Guide to Unix and Linux

If you use Bash, try:

type which
which type
type type

HOW DO YOU STOP A PROGRAM?
Most Unix commands carry out one task and then stop automatically. For example, in
the next section, we will meet the date command. All it does is display the time and date.
It then stops and returns you to the shell prompt.
 Other commands are more complex. When you start them, they put you in an
environment in which you interact with the program itself by entering one command
after another. When you are fi nished working with the program, you enter a special
command to quit the program, at which point the program stops and you are returned to
the shell prompt.
 An example of this type of command is bc, a calculator program we will discuss later
in the chapter. When you use bc, you start it and then enter one calculation at a time for
as long as you want. When you are fi nished, you must tell bc that you are ready to quit.
To do so, you enter the quit command.
 With such programs, there will always be a special command that you can use to quit
the program. The command will often be q or quit. To fi nd out for sure, you can read
the documentation for the program in the online Unix manual (which we will discuss
in Chapter 9).
 Aside from a special quit command, you can often stop a program simply by telling it
there is no more data. To do so, press ̂ D (<Ctrl-D>), the eof key (see Chapter 7). This
is often the easiest way to stop a program. For example, when you are using bc, just enter
^D and the program stops.
 If all else fails, you may be able to stop a program by pressing the intr key, which will
be either ̂ C or <Delete> (again, see Chapter 7).

DISPLAYING THE TIME AND DATE: date
The date command is one of the most useful of all the Unix commands. Simply enter:

date

and Unix will display the current time and date. Here is some sample output. Notice that
Unix uses a 24-hour clock.

Sun Dec 21 10:45:54 PST 2008

HINT

Most programs that have their own interactive environment come with some type of built-in
help. To access the help facility, try typing help or h or ? (a question mark).

33614_08_161_188.indd 16433614_08_161_188.indd 164 1/9/2008 12:31:33 PM1/9/2008 12:31:33 PM

Programs to Use Right Away

165

If you live in a place that uses daylight savings time, Unix knows how to spring forward
and fall back at the appropriate times. The example here shows Pacifi c Standard Time. In
the summer, it would be Pacifi c Daylight Time.
 Notice that date gives both the time and date, so this is the command to use when
you want to know what time it is. There is a time command, but it does not display the
time. It measures how long it takes to run a program.
 Internally, Unix does not really run on local time. All Unix systems use Coordinated
Universal Time (UTC), which is the modern name for Greenwich Mean Time (GMT).
Unix silently converts between UTC and your local time zone as necessary. The details
about your local time zone are specifi ed at the time Unix is installed.
 Sometimes it is handy to see what time it is in UTC. To display the time in UTC, enter:

date -u

You will see a time and date like this:

Sun Dec 21 18:45:54 UTC 2008

This time, by the way, is the UTC equivalent of the time in the previous example.
 For more information, see Appendix H, in which I explain all about time zones, 24-hour
time, and UTC. I also show you how to convert from one time zone to another, illustrating
it all with a few practical examples.

DISPLAYING A CALENDAR: cal
One of the nice things about Unix is that it was not designed by a committee. When a
Unix programmer decided he wanted a new tool, he could write it himself and add it to
the system. A good example of this is the cal command, which displays a calendar.
 To display the calendar for the current month, enter:

cal

To display a calendar for a particular year, just specify the year. For example:

cal 1952

When you specify a year, be sure to type all four numbers. For example, if you enter cal 52,
you will get the calendar for 52 A.D. If you want 1952, you need to use cal 1952. You can
use any year between 1 and 9999.

HINT

When you display a full-year calendar, the output is so long it may not fi t on your screen.
 If the top part of the calendar scrolls out of sight before you get a chance to read it, you can
display the output one screenful at a time, by sending it to the less program. For example:

cal 1952 | less

(We will talk about less in Chapter 21.)

Displaying a Calendar: cal

33614_08_161_188.indd 16533614_08_161_188.indd 165 1/9/2008 12:31:33 PM1/9/2008 12:31:33 PM

Chapter 8

166 Harley Hahn’s Guide to Unix and Linux

 To display a calendar for a particular month, specify that month as a number between
1 and 12 (1 = January), as well as the year. For example, to display the calendar for
December 1952, enter:

cal 12 1952

You will see:

 December 1952
Su Mo Tu We Th Fr Sa
 1 2 3 4 5 6
 7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30 31

If you want a specifi c month, you must always specify both the month and the year. For
instance, if you want a calendar for July 2009, you must enter:

cal 7 2009

If you enter:

cal 7

you will get a calendar for the year for 7 A.D.
 If, instead of displaying dates, you want to see the numbers of the days of the year,
from 1 to 365 (Jan 1 = 1; Jan 2 = 2; and so on), the cal program can oblige. Just type -j
after the name date. Here is an example.

cal -j 12 2009

The output is:

 December 2009
Sun Mon Tue Wed Thu Fri Sat
 335 336 337 338 339
340 341 342 343 344 345 346
347 348 349 350 351 352 353
354 355 356 357 358 359 360
361 362 363 364 365

Suppose you want to fi gure out whether or not a particular year is a leap year. A non-Unix
person would check if the year is divisible by 4 and, if so, say that it is a leap year*. However,
as a Unix person, you have an alternative. All you have to do is display the numbers of the

 *The only exception is that centenary years are leap years only if they are divisible by 400. For example, 2000 was a leap year,
while 900 was not.

33614_08_161_188.indd 16633614_08_161_188.indd 166 1/9/2008 12:31:33 PM1/9/2008 12:31:33 PM

Programs to Use Right Away

167

days for December of that year. If December ends on day 366, you have found a leap year.
Otherwise, it’s not a leap year. Try these commands and see for yourself:

cal -j 12 2000
cal -j 12 2008
cal -j 12 1776

By the way, the -j stands for Julian, the name of our modern calendar that has 365 or 366
days per year. For more information, see the box.

THE UNIX REMINDER SERVICE: calendar
The cal program we just discussed displays a calendar. Unix does have a command named
calendar but it is completely different. The calendar program offers a reminder
service based on a fi le of important days and messages that you create yourself.
 All you need to do is make a fi le named calendar. The cal program will look for
this fi le in the current directory. (We will discuss the current directory in Chapter 24.)
Within this fi le, you put lines of text in which each line contains a date, followed by a tab
character, followed by a reminder note. For example:

THE JULIAN AND GREGORIAN CALENDARS
The idea that we should have 365 days during regular years and 366 days during leap years is
derived from the Julian Calendar, which was introduced by Julius Caesar in 46 B.C.*
 But how long, exactly, is an average year? If three out of four years have 365 days and the
fourth year has 366 days, a year would be an average of 365.25 days. However, nature is not
always cooperative, and this value is too long by a matter of 11 minutes, 10 seconds. By the
sixteenth century, this small error had accumulated into about 10 days, which meant that the
calendar everyone was using did not match the motions of the sun and stars.
 To solve the problem, Pope Gregory XIII decreed in 1582 that the world should modify
its calendar so that not all centenary years (1600, 1700, 1800, and so on) should be leap years.
Only the centenary years that are divisible by 400 (such as 1600 or 2000) would be leap years.
This scheme is called the Gregorian or New Style Calendar. To calibrate the current calendar,
Gregory further decreed that 10 days should vanish mysteriously.
 If we want to be especially precise, we can say that the modern (Gregorian) calendar is based
on a cycle of 400 years, with an average year being 365.2425 days. (An interesting fact is that,
under this calendar, one nanocentury is approximately seconds.)
 The Pope delivered his decree in 1582. By 1587, the Catholic European countries had
implemented the change. The Protestant countries, however, did not follow for some years, the
last holdout being Great Britain, which did not make the change until 1752.
 As Great Britain changed, so did the American colonies but, by this time, the error had
increased to 11 days. Thus, if you enter the command:

cal 9 1752

you will see that between September 2 and September 14, 1752, there is a gap of 11 days. This
gap is necessary for the sun and stars to work properly (at least in Great Britain and America).

 *Actually, the calendar was developed by a graduate student, but Caesar put his name on the paper.

The Unix Reminder Service: calendar

33614_08_161_188.indd 16733614_08_161_188.indd 167 1/9/2008 12:31:33 PM1/9/2008 12:31:33 PM

Chapter 8

168 Harley Hahn’s Guide to Unix and Linux

October 21<Tab>Tammy’s birthday
November 20<Tab>Alex’s birthday
December 3<Tab>Linda’s birthday
December 21<Tab>Harley’s birthday

Since tabs are invisible, you won’t see them when you look at the fi le:

October 21 Tammy’s birthday
November 20 Alex’s birthday
December 3 Linda’s birthday
December 21 Harley’s birthday*

Once your calendar fi le is set up, you can enter the calendar command whenever
you want:

calendar

When you do, the program will check your calendar fi le and display all the lines that
have today’s or tomorrow’s date. If “today” is a Friday, calendar will display three days
worth of reminders.
 The intention is that, from time to time, you should add lines to your calendar fi le,
until your life is completely organized. Of course, before you can create such a fi le, you
must know how to use a text editor program. The most important text editors are vi
(Chapter 22) and Emacs.
 If you want to run the calendar command automatically each time you log in, put
it in your .profile fi le (Bash or Korn Shell), or your .login fi le (C-Shell). See the
individual shell chapters for details.
 Some Unix systems come with a built-in calendar fi le that contains a lot of
interesting entries. So, even if you don’t want to create your own fi le, you may want to run
the calendar command from time to time, just to see what happens. Try it right now.
 For more information about calendar and the format of the information fi le,
take a look at the entry for calendar in the online Unix manual (see Chapter 9). The
command to use is:

man calendar

INFORMATION ABOUT YOUR SYSTEM: uptime, hostname, uname
There are several commands you can use to display information about your system. To
start, the uptime command displays information about how long your system has been
up (that is, running continuously):

uptime

Here is some typical output:

 *Gifts are accepted until the end of January.

33614_08_161_188.indd 16833614_08_161_188.indd 168 1/9/2008 12:31:33 PM1/9/2008 12:31:33 PM

Programs to Use Right Away

169

11:10AM up 103 days, 6:13, 3 users,
 load averages: 1.90, 1.49, 1.38

In this case, the system has been up for 103 days, 6 hours and 13 minutes, and there are
3 userids currently logged in. The last three numbers show the number of programs that
have been waiting to execute, averaged over the last 1, 5 and 15 minutes respectively.
These numbers give you an idea of the load on the system. The higher the load, the more
the system is doing.
 To fi nd out the name of your computer, use the hostname command. This can come
in handy if you are in the habit of logging in to more than one computer. If you forget
what system you are using, just enter:

hostname

The uname command shows you the name of your operating system. For example, you
might enter:

uname

and see:

Linux

To fi nd out more details about your operating system, use -a (all information):

 uname -a

Here is some sample output:

Linux nipper.harley.com 2.6.24-3.358 #1
Mon Nov 9 09:04:50 EDT 2008 i686 i686 i386 GNU/Linux

The most important information here is that we are using the Linux kernel, in this case,
version 2.6.24-1.358.

INFORMATION ABOUT YOU: whoami, quota
The whoami command displays the userid you used to log in. This command is handy if
you have a variety of userids and you forget which one you are currently using. Similarly,
if you come upon a computer that someone has left logged in, whoami will show you
the current userid. Just enter:

whoami

The whoami command is also useful if you are suddenly struck by amnesia and forget
your name. Looking at your userid may give you a clue.
 If your system doesn’t have a whoami command, try entering the following as three
separate words:

who am i

Information About You: whomai, quota

33614_08_161_188.indd 16933614_08_161_188.indd 169 1/9/2008 12:31:33 PM1/9/2008 12:31:33 PM

Chapter 8

170 Harley Hahn’s Guide to Unix and Linux

The last command to show you information about yourself is quota. On shared systems,
the system manager will sometimes impose a limit as to how much disk storage space
each user is allowed to use. To check your limit, enter:

quota

Note: Unix measures disk space in KB or kilobytes; 1 KB = 1024 bytes (characters).

INFORMATION ABOUT OTHER USERS: users, who, w
In the olden days, Unix computers were shared and, most of the time, a system would
have multiple users logged in simultaneously. Indeed, very large Unix computers could
support tens — or even several hundred — users at the same time. To fi nd out who was
currently logged in, there were several commands you could use. These commands are
still useful today if you are sharing a system with other users.
 The simplest command is users. Just enter:

users

and you will see a list of all the userids that are currently logged in, for example:

alex casey harley root tammy

You will remember from Chapter 4 that, within a Unix system, only userids have a real
identity. Real people — that is, users — are represented by their userids. Thus, you won’t
see the names of real people, only userids.
 The users command is useful if you use a shared system. I can tell you from my
experience that being aware that other people are using the same system as you is a
pleasant feeling, especially when you are working by yourself, late at night, in an offi ce
or terminal room. Just knowing that there is someone else out there makes you feel
connected. Unfortunately, many people have no idea what this feels like because their
only experience is that everyone has his or her own computer. They don’t know what it
feels like to share a system.
 You might ask, is there any point in using the users command if you use Unix on
your own computer? Most of the time the answer is no: it’s not all that exciting to see that
you are the only person logged in. However, when you use multiple terminal windows or
virtual consoles (see Chapter 6), you are logged in to each one separately and, if you run
the users command, your userid will show up more than once. Similarly, if you log into
virtual consoles using several different userids, they will all show up. So, at the very least,
if you get lonely, you can pretend there are other people on the system.
 The next command is the who command that we discussed in Chapter 4. This
command shows more information than does users. For each userid, who will show
you the name of the terminal, the time that the userid logged in and, if appropriate, the
remote computer from which the userid has connected to your system.
 Here is the output from a who command that was run on a system to which people
connect remotely:

33614_08_161_188.indd 17033614_08_161_188.indd 170 1/9/2008 12:31:33 PM1/9/2008 12:31:33 PM

Programs to Use Right Away

171

tammy tty1 Nov 10 21:25
root tty2 Nov 11 15:12
casey pts/0 Nov 11 10:07 (luna)
harley pts/1 Nov 11 10:52 (nipper.harley.com)
alex pts/2 Nov 11 14:39 (thing.taylored-soft.com)

In this example, userid tammy is logged in using terminal tty1, and root (the
superuser) is logged in on terminal tty2. These are virtual consoles on the main
computer. As I mentioned in Chapter 7, the name tty is often used as an abbreviation
for “terminal”. In this example, it happens that a user named Tammy is the system
administrator, and she is currently logged in twice: once using her personal userid and
once as superuser.
 To continue, we see that another userid, casey is logged in from a computer named
luna, which is on the local network. Finally, two other userids, harley and alex, are
logged in remotely via the Internet.
 If you want to fi nd out even more information about the userids on your system,
you can use the w command. The name stands for “Who is doing what?” Here is some
sample output:

8:44pm up 9 days, 7:02, 3 users,
 load average: 0.11, 0.02, 0.00
USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT
tammy console - Wed9am 2days 2:38 0.00s -bash
harley pts/1 - 12:21 0:00 0.01s w
alex ttyp0 luna 13:11 20:18 43.26s 1.52s vi birdlist

The fi rst part of the output shows the system statistics, which we saw earlier in the chapter
in our discussion of the uptime command. In this case, the system has been up for 9
days, 7 hours and 2 minutes, and there are 3 userids currently logged in. The last three
numbers show the number of programs that have been waiting to execute, averaged over
the last 1, 5 and 15 minutes respectively. These numbers give you an idea of the load on
the system. The higher the load, the more the system is doing.
 Following the fi rst line, we see eight columns of information, as follows.

USER: The userids that are currently logged into the system. In this case, they are tammy,
harley and alex.

TTY: The names of the terminals used by the various userids.

FROM: The name of the remote computer from which the userid has logged in. In our
example, tammy and harley logged in directly on the host computer. alex, however,
has logged in from another computer named luna.

LOGIN@: The time that the userid logged in.

IDLE: How long it has been since the user last pressed a key. This is called IDLE TIME. In
this case, tammy has been idle for about 2 days, and alex has been idle for 20 minutes

Information About Other Users: users, who, w

33614_08_161_188.indd 17133614_08_161_188.indd 171 1/9/2008 12:31:33 PM1/9/2008 12:31:33 PM

Chapter 8

172 Harley Hahn’s Guide to Unix and Linux

and 18 seconds. If you are waiting for a time-consuming job to fi nish and you are not
typing while you are waiting, the w command will show you being idle.

JCPU: The processor time used by all processes since login. The “J” stands for “jobs”.

PCPU: The processor time used by the current process. The “P” stands for “process”.

Processor time is expressed either in seconds (for example, 20s) or in minutes and
seconds (for example, 2:16). These numbers were more valuable in the days when
computers were expensive and processor time was considered a valuable commodity.

WHAT: The command that is currently running. In our example, tammy is running the
Bash shell; alex is using the vi editor (see Chapter 22) to edit a fi le named birdlist;
and harley is running the w command.

 Putting this all together, we can infer that tammy has been logged in at the console,
with a shell prompt, without doing anything for about 2 days. Perhaps this is the system
administrator, who likes to stay logged in at all times. We also see that alex is editing a fi le
but has not done anything for over 20 minutes. Perhaps he or she has been taking a break.
 Notice that, whenever you run the w command, you will see yourself running the w
command. In our example, this is the case with harley.
 By default, the w command shows you information about all the userids logged into
the system. If you want information about just one userid, you can enter the name along
with the command. For example, let’s say you have just logged in and you enter the
users command to see who else is logged in. You see:

alex casey harley tammy weedly

If you want to see what weedly is doing, enter:

w weedly

LOCKING YOUR TERMINAL TEMPORARILY: lock
As I mentioned in Chapter 4, it is a bad idea to walk away from your computer while you are
logged in. Someone can come along and, by entering commands under the auspices of your
userid, cause a lot of trouble. For example, a mischievous person might delete all your fi les,
send rude email to the system manager in your name, download pornography, and so on.
 However, if you do need to step away from your terminal for just a moment, it is
irritating to have to log out and in again. This is especially true if you are using one or more

WHAT’S IN A NAME?

CPU
In the days of the large mainframe computers, the “brain” of the computer — what we would
now call the processor — was big enough to require a large box, which was called the central
processing unit or CPU.
 Today, even though most people don’t use mainframe computers, we still use the term CPU
as a synonym for “processor”.

33614_08_161_188.indd 17233614_08_161_188.indd 172 1/9/2008 12:31:33 PM1/9/2008 12:31:33 PM

Programs to Use Right Away

173

terminal windows to log in to remote hosts or you have a whole working environment set
up just the way you like it.
 Instead, you can use the lock command. This tells Unix that you want to lock your
terminal temporarily. The terminal will remain locked until you enter a special password.
To use this command, just enter:

lock

Unix will display:

Key:

Enter the password that you want to use to unlock the terminal. This password can be
anything you want; it has nothing to do with your login password. If fact, it is better to
not use your login password. Unix will not echo the password as you type, just in case
someone else is looking at your screen. After you enter the password, Unix will display:

Again:

This is asking you to retype the password, to ensure that you did not make a mistake.
 As soon as you have entered and re-entered the special password, Unix will freeze your
terminal. Nothing will happen, no matter what anyone types on the terminal, until you
enter the password. (Don’t forget to press the <Return> key.) As soon as you enter the
password, Unix will reactivate your terminal and you can go back to work.

 If you are working in a place where you must share computers and there are people
waiting, it is considered bad form to lock your terminal and leave for more than a very short
time, say, to eat dinner. Since Unix was developed in an environment based on sharing,
the lock command has a built-in limitation: the terminal will unlock automatically
after a specifi c amount of time.
 By default, lock will freeze a terminal for 15 minutes. However, if you want to override
this default, some versions of lock will let you specify an alternate time limit when you
enter the command. After the name of the command, leave a space, and then type - (a
hyphen), followed by a number. For example, to lock your terminal for 5 minutes, enter:

lock -5

You might ask, what happens if someone locks a terminal and then leaves for good?
Eventually, the command will time out and unlock. If the terminal needs to be reactivated
before the lock times out, the system manager can enter the root (superuser) password.
lock will always accept the root password, sort of like a master key.
 Remember though, if you lock your terminal and don’t come back, someone will come
along eventually and fi nd your terminal reactivated and logged in under your userid.
Whatever trouble they cause under your userid will be your responsibility.

HINT

If you are logged into one or more remote hosts, you should lock each session separately.

Locking Your Terminal Temporarily: lock

33614_08_161_188.indd 17333614_08_161_188.indd 173 1/9/2008 12:31:34 PM1/9/2008 12:31:34 PM

Chapter 8

174 Harley Hahn’s Guide to Unix and Linux

ASKING UNIX TO REMIND YOU WHEN TO LEAVE: leave
As you know, working on a computer can be engrossing, and it is easy to lose track of the
time. To help you fulfi ll your worldly obligations, just enter the command:

leave

As the name implies, you can use leave to remind you when it is time to leave. You can
also use it to remind you when it is time to take a break. For example, if you like to get up
and stretch every so often, you can ask for a reminder in, say, 20 minutes.
 When you enter the command, leave will ask you for a time:

When do you have to leave?

Enter the time that you want to leave in the form hhmm (hours followed by minutes). For
example, if you want to leave at 10:33, enter 1033.
 You can enter times using either a 12-hour or 24-hour system. For instance, 1344
means 1:44 PM. If you enter a number of hours that is 12 or fewer, leave assumes that
it is within the next 12 hours. For instance, if it is 8:00 PM and you enter 855, leave
will interpret it to mean 8:55 PM, not 8:55 AM.
 An alternate way to enter the leave command is to enter the time right on the
command line. After the name of the command, leave a space and type the time. For
example, to leave at 10:30, enter:

leave 1030

If you need to leave after a certain time interval, type a + (plus sign) followed by the
number of minutes. For example, if you need to leave in 15 minutes, use:

leave +15

Be sure not to leave a space after the + character.

 Once you have entered the leave command, Unix checks periodically to see how much
time is left. When it is fi ve minutes before the time you specifi ed, Unix will display:

You have to leave in 5 minutes.

When there is one minute left, you will see:

Just one more minute!

When the time is up, Unix displays:

Time to leave!

HINT

When you log out, Unix discards a pending leave command. Thus, if you use leave, but
then log out and in again, you will have to run the program again.

33614_08_161_188.indd 17433614_08_161_188.indd 174 1/9/2008 12:31:34 PM1/9/2008 12:31:34 PM

Programs to Use Right Away

175

From that point on, Unix will keep nagging you with reminders, once a minute, until
you log off:

You’re going to be late!

Finally, after ten such reminders, you will see:

You’re going to be late!
That was the last time I’ll tell you. Bye.

Perhaps this program should have been named mother.

A BUILT-IN CALCULATOR: bc
One of the most useful (and least appreciated) Unix programs is bc, a full-fl edged,
programmable scientifi c calculator. Many people do not bother learning how to use bc.
“I spit on bc,” they sneer. “Nobody uses it.” Don’t be misled. Once you learn how to use
bc, you will fi nd it invaluable for quick calculations.

HINT

You can run the leave command automatically when you log in, by putting the command in
your initialization fi le (.profi le for Bash or the Korn Shell and .login for the C-Shell).
 This means that, each time you log in, you will be asked for the time (or length of time) you
want to work. This way, you don’t have to keep an eye on the clock: Unix will do it for you.
 If you use leave in this way and you don’t want it to run for the current session, just press
<Return> at the fi rst prompt and the program will abort.

HINT

The leave program is handy when you need to do something in a short time, and you need
a reminder. For example, let’s say that, as you are working, you like to get up and stretch every
15-20 minutes. However, you get too immersed in your work to remember to take a break.
Simply enter the command:

leave +20

In 15 minutes (5 minutes early), leave will get your attention with a warning. Over the next
5 minutes, leave will display several more warnings.
 After your break, enter the command again, and you’ll get another reminder in 15 minutes*.

 *The distinguished doctor Janet G. Travell (1901-1997), who held the offi ce of Personal Physician to U.S. Presidents John
Kennedy and Lyndon Johnson, was an expert on the pain and dysfunction of skeletal muscles, as well as on the treatment of
chronic pain.
 While working on her classic book, Myofascial Pain and Dysfunction: The Trigger Point Manual, Dr Travell found that, in
order to maintain her comfort and well-being, she needed to take a short break every 15-20 minutes. During this break, she
would stand up, move around, and stretch.
 You will fi nd that, while you are working, taking such a break will make you feel a lot more comfortable, especially if you
suffer from headaches, backaches or eyestrain. Just use the command leave +20 to remind you when to move around and
stretch. Once you start this practice, you will feel an improvement in your comfort level within hours. (Another example of how
using Unix is good for your well-being.)

A Built-In Calculator: bc

33614_08_161_188.indd 17533614_08_161_188.indd 175 1/9/2008 12:31:34 PM1/9/2008 12:31:34 PM

Chapter 8

176 Harley Hahn’s Guide to Unix and Linux

 If you use a desktop environment (Chapter 5), you will most likely fi nd some type of
GUI-based calculator program to use. These programs look nice — they actually draw a
picture of a calculator on your screen — but, for minute-to-minute work or for extensive
calculation, bc is much better. Moreover, bc is text-based, which means you can use it
from the command line at any terminal.
 To explain bc, I will start with a short technical summary. If you don’t understand
all the mathematical and computer terms, don’t worry. In the next few sections, I will
explain how to use bc for basic calculations (which is easy) along with a few examples.
 The technical summary: bc is a fully programmable mathematical interpreter, which
offers extended precision. Each number is stored with as many digits as necessary, and you
can specify a scale of up to 100 digits to the right of the decimal point. Numeric values can
be manipulated in any base from 2 to 16, and it is easy to convert from one base to another.
 You can use bc either by entering calculations from the keyboard, which are interpreted
immediately, or by running programs stored in fi les. The programming syntax of bc is
similar to the C programming language. You can defi ne functions and use recursion.
There are arrays, local variables, and global variables. You can write your own functions
and store them in a fi le. You can then have bc load and interpret them automatically.
 bc comes with a library that contains the following functions: sin, cos, arctan, ln,
exponential and Bessel function. (Everybody who knows what a Bessel function is, raise
your hand...)
 For more information, you can display the online manual description of the bc by
using the command:

man bc

(We will discuss the online Unix manual in Chapter 9.)

USING bc FOR CALCULATIONS
Most of the time, you will use bc for routine calculations, which is simple. To start the
program, enter:

bc

If you want to use the built-in library of mathematical functions (see below), start the
program using the -l (library) option:

bc -l

Once you start bc there is no specifi c prompt; just enter one calculation after another.
Each time you press <Return>, bc evaluates what you have typed and displays the answer.
For example, if you enter:

122152 + 70867 + 122190

bc will display:

315209

33614_08_161_188.indd 17633614_08_161_188.indd 176 1/9/2008 12:31:34 PM1/9/2008 12:31:34 PM

Programs to Use Right Away

177

You can now enter a new calculation. If you want to enter more than one calculation on
the same line, separate them with semicolons*. bc will display each result on a separate
line. For example, if you enter:

10+10; 20+20

you will see:

20
40

When you are fi nished working with bc, stop the program by telling it there is no more
data. To do this, press ^D, the eof key (see Chapter 7). Alternatively, you can enter the
quit command.
 Figure 8-1 shows the basic operations available with bc. Addition, subtraction,
multiplication, division and square root are straightforward and work as you would
expect. Modulo calculates the remainder after a division. For example, 53%10 is 3.
Exponentiation refers to taking a number to a power. For example, 3^2 means “3 to the
power of 2”, which is 9. The power must be a whole number but can be negative. If you
use a negative power, enclose it in parentheses, for example, 3^(-1).
 bc follows the general rules of algebra: multiplication, division and modulo take
precedence over addition and subtraction; exponentiation has precedence over everything.
To change the order of evaluation, use parentheses. So, 1+2*3 is 7, where (1+2)*3 is 9.
 Aside from the basic operations, bc has a number of useful functions in a special
library. These functions are shown in Figure 8-2.
 If you want to use the functions in this library, you need to start bc using the command:

 bc -l

When you use this command, bc automatically sets the scale factor to 20 (see below).

OPERATOR MEANING
+ addition

- subtraction

* multiplication

/ division

% modulo

^ exponentiation

sqrt(x) square root

FIGURE 8-1: bc: Basic operations

 *As you will see in Chapter 10, when you are working at the shell prompt, you can type more than one Unix command on
the same line, by separating the commands with semicolons.

Using bc for Calculations

33614_08_161_188.indd 17733614_08_161_188.indd 177 1/9/2008 12:31:34 PM1/9/2008 12:31:34 PM

Chapter 8

178 Harley Hahn’s Guide to Unix and Linux

 As I mentioned earlier, bc can compute to arbitrary precision. That is, it will use as
many digits as necessary to perform a calculation. For instance, you can ask it to add two
100-digit numbers. (I tested this.)
 However, by default, bc will assume you are working with whole numbers. That is,
bc will not keep any digits to the right of the decimal point. If you want to use fractional
values, you need to set a scale factor to tell bc how many digits you want to keep to the right
of the decimal point. To do this, set the value of scale to the scale factor you want.
 For example, to ask for three digits to the right of the decimal point, enter:

scale=3

From now on, all subsequent calculations will be done to three decimal places. Any extra
digits will be truncated.
 If at any point you want to check what the scale factor is, simply enter:

scale

and bc will display the current value.
 When you start bc, the value of scale is set automatically to 0. One of the most
common mistakes is to start calculations without setting a scale factor. For instance, let’s
say that you have just started bc, and you enter:

150/60

bc displays:

2

You now enter:

35/60

bc displays:

0

Finally, you fi gure out what the problem is. Your results are being truncated, so you need
to set an appropriate scale factor:

scale=3

FUNCTION MEANING

s(x) Sine of x; x is in radians

c(x) Cosine of x; x is in radians

a(x) Arctangent of x; x is in radians

ln(x) Natural logarithm of x

j(n,x) Bessel function of integer order n of x

FIGURE 8-2: bc: Mathematical functions

33614_08_161_188.indd 17833614_08_161_188.indd 178 1/9/2008 12:31:34 PM1/9/2008 12:31:34 PM

Programs to Use Right Away

179

Now bc will display what you want to see. (Try it.)
 Remember, when you use the mathematical library, bc automatically starts with a
scale factor of 20. For this reason, many people always start bc by using bc -l, even if
they do not want to use the mathematical library. (I do this all the time.)

USING VARIABLES WITH bc
bc is a lot more than a calculator. It is actually a full-featured mathematical programming
language. Like all programming languages, bc allows you to set and use variables.
 A variable is a quantity with a name and a value. Within bc, variable names consist of
a single lowercase letter; that is, there are 26 variables, from a to z. (Make sure that you
do not use uppercase letters; these are used when working with bases — see below.)
 To set the value of a variable, use an = (equal sign) character. For example, to set the
value of the variable x to 100, enter:

x=100

To display the value of a variable, just enter its name. For example:

x

bc will display the current value of that variable. By default, all variables are assumed to
be zero unless you set them otherwise.
 You will fi nd that using variables is straightforward and adds a lot of power to your
work with bc. Here is an example that illustrates the basic principles.
 The Maharaja of Gaipajama has been impressed with your facility in Unix. As a token
of his esteem, he offers you twice your weight in rubies, worth $1,000 a pound, and one
third of your weight in diamonds, worth $2,000 a pound. (The Maharaja of Gaipajama
buys his gems wholesale.)
 You weigh 160 pounds. How much is the Maharaja’s gift worth? To solve this problem,
start bc and enter:

w=160
r=(w*2)*1000
d=(w/3)*2000
r+d

The answer is displayed:

426000

Thus, your gift is worth $426,000.
 But wait: once the Maharaja realizes how much his promise will cost him, he says, “Did I
say I would give you gems based on your weight in pounds? I should have said kilograms.”
 Since 1 kilogram is 2.2 pounds, you make a quick calculation to convert the value of
the w variable to kilograms:

w=w/2.2

Using Variables With bc

33614_08_161_188.indd 17933614_08_161_188.indd 179 1/9/2008 12:31:34 PM1/9/2008 12:31:34 PM

Chapter 8

180 Harley Hahn’s Guide to Unix and Linux

Now you re-enter the calculations for the value of rubies and diamonds:

r=(w*2)*1000
d=(w/3)*2000
r+d

The new answer is displayed:

192000

Thus, by adhering to the metric system, the Maharaja* has saved $234,000. At the same
time, he has allowed you to demonstrate how to set a new value for a variable, based on
its old value, in this case, w=w/2.2.

USING bc WITH DIFFERENT BASES
As you would assume, bc normally uses base 10 arithmetic. (If you don’t know what
a base is, you can skip this section with impunity.) However, there will be times when
you may want to calculate using another base. For example, in computer science, it is
sometimes necessary to use base 16 (hexadecimal), base 8 (octal) or base 2 (binary). (We
will discuss these number systems in Chapter 21.)
 bc allows you to specify different bases for input and for output. To do so, there are
two special variables that you can set: ibase is the base that will be used for input;
obase is the base that will be used for output.
 For example, if you want to display answers in base 16, enter:

obase=16

If you want to enter numbers in base 8, use:

ibase=8

In the last section, I said that, by default, variables have a value of zero until you set them.
ibase and obase are exceptions: they are automatically initialized to 10 so you can
work in base 10. If you want to work in another base, you can set either of the variables
to any value from 2 to 16.
 You should appreciate that the values of ibase and obase do not affect how bc
manipulates numbers internally. Their only effect is to specify how numbers should be
translated during input or output.
 To work with bases larger than 10, bc represents the values of 10, 11, 12, 13, 14 and 15
as the uppercase letters A, B, C, D, E and F, respectively. Always remember to use uppercase;
if you use lowercase, bc will think you are referring to variables, and the result will not be
what you intended.
 For convenience, you can use these uppercase letters regardless of what input base you
have set. For instance, even if you are working in base 10, the expression A+1 will have
the value 11.

 *For more information about the Maharaja of Gaipajama, see Cigars of the Pharaoh by Hergé.

33614_08_161_188.indd 18033614_08_161_188.indd 180 1/9/2008 12:31:34 PM1/9/2008 12:31:34 PM

Programs to Use Right Away

181

 As with all variables, you can fi nd out the current values of ibase and obase by
entering the names by themselves:

ibase; obase

However, you must be careful. Once you set obase, all output will be displayed in that
base, and you may have trouble interpreting what you see. For instance, if you enter:

obase=16
obase

you will see:

10

This is because all output is to be displayed in base 16 and, in base 16, the value of “16”
is expressed as 10.
 Similarly, once you change ibase, you must be careful what you type as input. For
example, say that you set:

ibase=16

You now want to set obase to base 10, so you enter:

obase=10

However, you have forgotten that input is now in base 16, and 10 in base 16 is really “16”.
Thus, you have just set obase to base 16.
 To avoid such errors, use the letters A though F, which retain the same value
regardless of the ibase value. Thus, if things become confusing, you can always reset
the bases by entering:

obase=A; ibase=A

Here are two examples of changing bases. In the fi rst, you want to add two hexadecimal
(base 16) numbers, F03E and 3BAC. Enter:

obase=16
ibase=16
F03E + 3BAC

bc displays the answer:

12BEA

In the second example, you want to convert the hexadecimal number FFC1 to binary
(base 2). Reset the bases:

obase=A; ibase=A

Using bc With Different Bases

33614_08_161_188.indd 18133614_08_161_188.indd 181 1/9/2008 12:31:34 PM1/9/2008 12:31:34 PM

Chapter 8

182 Harley Hahn’s Guide to Unix and Linux

Then enter:

obase=2; ibase=16
FFC1

bc displays the answer:

1111111111000001

REVERSE POLISH NOTATION
Originally, the bc program was based on a program called dc (desk calculator). dc is
among the oldest Unix programs, even older than the C programming language. In fact, the
original version of dc was written in 1970 using the programming language B, the ancestor
of C. In a moment, we’ll talk more about the relation of bc to dc. For now, though, I’d like
to teach you a bit about dc — a very interesting tool in its own right — because, like bc, it
is a program you can use right away.
 Let’s start with a technical description: dc is an interactive, arbitrary precision
calculator that emulates a stack machine using Reverse Polish notation.
 Obviously, dc is not the type of program that will appeal to everyone: if you have no
interest in mathematics or computer science, please feel free to skip this discussion. However,
if you are technically inclined, dc is important for you to understand for several reasons.
 First, as I mentioned, dc uses what is called Reverse Polish notation. Although the idea
may mean nothing to you now, it is an important concept you should appreciate if you
are studying mathematics, engineering or computer science.
 Second, to learn about dc, you need to understand the idea of a stack (which I will
explain), a concept that is important to computer scientists and programmers.
 Finally, the type of thinking that is required to use dc is the same type of thinking
that is required to use Unix. Thus, taking a few moments to learn about dc and — if
you are so inclined — teaching yourself how to use it, will bring you that much closer to
becoming a Unix person.
 We will start our discussion of dc with an explanation of Reverse Polish notation. In
the next section, we will move on to the concept of a stack. Once you understand these
two fundamental ideas, you will be able to teach yourself how to use dc by using the
online documentation.

HINT

bc is a lot more than a calculator program. It is a sophisticated mathematical programming
system with its own built-in programming language. In this chapter, I have explained only the
most basic features. However, if you have some time, I suggest that you explore bc and learn
more about what it can do for you.
 The best way to do so is to read the online manual page for bc. The command to do so is:

man bc

(We will discuss the online Unix manual in Chapter 9.)

33614_08_161_188.indd 18233614_08_161_188.indd 182 1/9/2008 12:31:34 PM1/9/2008 12:31:34 PM

Programs to Use Right Away

183

 In 1920, a Polish mathematician named Jan Lukasiewicz (1878-1956) observed that
the way in which we write arithmetical expressions can be made more compact by placing
the operators before the operands. In doing this, we are able to write complex expressions
without using parentheses or brackets. A short example will illustrate the idea.
 Say you want to add 34 to 25 and then multiply the sum by 15. Using standard notation,
you would write:

(34 + 25) * 15

Because the operators — in this case + (the plus sign) and * (the multiplication sign) — are
placed in between the operands, we call this INFIX NOTATION.
 Lukasiewicz’s system uses PREFIX NOTATION in which we write the operators fi rst
followed by the operands. For example:

* + 34 25 15

To evaluate prefi x notation, we process the elements, one at a time, from left to right. In
this example, we start with the * operator, which tells us to perform a multiplication as
soon as we get two numbers. We then encounter the + operator, which tells us to perform
an addition as soon as we get two numbers.
 Next, we see two numbers in a row, 34 and 25, so we perform the addition operation,
which gives us a sum of 59. Remembering the 59, we keep going and encounter the number
15. We can now perform the multiplication, 59*15, to get the fi nal answer 885.
 In honor of Lukasiewicz — who was a renowned mathematician, logician and
philosopher — prefi x notation is often referred to as POLISH NOTATION*. For computer
scientists, Polish notation is important because it is compact, straightforward, and can be
evaluated effi ciently.
 In 1957, the Australian computer scientist Charles Hamblin wrote two papers in which
he proposed using a variation of Polish notation with a stack-based computing system.
(We’ll talk about stacks in the next section.) The variation he described was to put the
operators after the operands, using what is called POSTFIX NOTATION.
 To illustrate postfi x notation, let’s reconsider the expression above. In postfi x notation
it would look like this:

34 25 + 15 *

To evaluate, we process the elements from left to right. First, we see the two numbers 34 and
25, which we must remember. Next, we see the + operator, which tells us to add the last two
available numbers. In this case, we add 34 and 25 to get 59, which we must remember.
 Next, we see the number 15, which we also remember. Finally, we see the * operator,
which tells us to multiply two numbers. In this case, the numbers are 59 and 15, which
we multiply to get the fi nal answer 885.

 *Jan Lukasiewicz was born on December 21, 1878 in the city of Lwow in Galicia, the largest and most northern province of
Austria. Galicia was created as a result of the First Partition of Poland in 1772. Although, technically, Lukasiewicz was Austrian,
he was an ethnic Pole by birth and the town of Lwow was dominated by Poles. Today, Lwow is known by the name of Lviv and
is the largest city in Western Ukraine.
 Here is something interesting: As a young man, my grandfather Irving Hahn (1895-1986) lived in Lwow where he
apprenticed to be a barber. Moreover, my birthday is December 21.

Reverse Polish Notation

33614_08_161_188.indd 18333614_08_161_188.indd 183 1/9/2008 12:31:35 PM1/9/2008 12:31:35 PM

Chapter 8

184 Harley Hahn’s Guide to Unix and Linux

 Postfi x notation is particularly suitable for automated computation because
expressions can be evaluated in a straightforward manner, from left to right, by
remembering numbers and applying operators as they are encountered. With infi x
notation, the parentheses and other types of precedence — for instance, multiplication
must be done before addition — often require that operations be delayed until other
operations are completed. This is not the case with postfi x notation.
 In honor of Lukasiewicz, postfi x notation is often referred to as REVERSE POLISH
NOTATION or RPN. Over the years, both Polish notation and Reverse Polish notation
have been used in a variety of computer systems. For example, Polish (prefi x) notation
is used in the Lisp programming language and the Tcl scripting language. Reverse Polish
(postfi x) notation is used in the Forth programming language and the PostScript page
description language.
 Perhaps the most well-known use of RPN is as the basis for the HP calculators that have
been used for years by scientists and engineers. The fi rst such calculator was the HP 9100,
which was introduced in 1968.
 Since then, RPN calculators have become very popular because, once you understand
RPN, it is much faster and easier to use than the traditional infi x notation. For example,
when you use an RPN calculator, the results of each computation are displayed immediately.
This means that you see the partial results as you enter the calculation, making it much
easier to catch errors. This is not the case with a calculator that uses traditional infi x
notation. If you enter an expression that uses the standard rules of precedence, the results
cannot be displayed until the entire calculation is fi nished.
 In 1970, a researcher at Bell Labs, Robert Morris , inspired by the HP calculator, used
RPN to develop a Unix-based, interactive calculator program, which he called dc (desk
calculator). dc was a wonderful tool, but it did require users to learn how to use RPN.
 A few years later, Morris and another researcher, Lorinda Cherry , wrote another
program called bc, which allowed users to write calculations using the more traditional
infi x notation. bc worked by converting its input to RPN and then calling upon dc to do
the actual work. In other words, bc was a “front-end” to dc. This allowed people to use
whichever system they preferred: postfi x notation with dc or infi x notation with bc.
 Years later, as part of the GNU Project (see Chapter 2), bc was completely rewritten
as an independent program. Because many types of modern Unix (including Linux and
FreeBSD) use the GNU utilities, chances are that, when you use bc today, you are using
a standalone program that does not depend upon dc. dc, of course, is still available on
its own.

THE STACK-BASED CALCULATOR: dc
Consider the following example of RPN (postfi x) notation:

34 25 + 15 *

dc evaluates this expression in the manner I described in the last section, one element at
a time, reading from left to right. Each time dc encounters a number, the value of that

33614_08_161_188.indd 18433614_08_161_188.indd 184 1/9/2008 12:31:35 PM1/9/2008 12:31:35 PM

Programs to Use Right Away

185

number must be remembered. Each time dc encounters an operator, the appropriate
operation must be performed and the result must be remembered.
 The question arises, how does dc keep track of the various quantities that must be
remembered? The answer is, by using what we call a stack.
 Within computer science, there are a variety of different DATA STRUCTURES used to
hold data. Each type of data structure is capable of storing and retrieving data according
to its own set of precise rules. The most common types of data structures are lists, linked
lists, associative arrays, hash tables, stacks, queues, deques (double-ended queues), as well
as a variety of tree-based structures. In this section, we’ll concentrate on stacks because
that’s what dc uses.
 A STACK is a data structure in which data elements are stored and retrieved, one at a
time, according to a procedure called “last in, fi rst out” or LIFO. Here is how it works.
 The stack starts out empty. To store a data element, you PUSH it onto the stack. The
data now resides on the TOP of the stack. You can push as many data elements as you
like onto the stack, one at a time. Each time you do so, all the elements on the stack are
pushed down one level. Thus, at any time, the top of the stack contains the data that was
most recently pushed onto the stack. You can retrieve data from the stack only by taking
it off the top. When you do, we say that you POP the stack.
 In other words, when you pop the stack, you retrieve the last value pushed on the
stack. This is why stacks are described as LIFO (last-in, fi rst-out).
 For a concrete example of a stack, imagine a spring-loaded column of plates in a
cafeteria. The plates are pushed onto the “stack”, one at a time. When you want a plate,
you must pop the top one off the stack. You have no access to any of the other plates. If,
for some reason, you wanted the bottom plate, you would have to pop off all the others,
one at a time.
 The dc program uses a stack in just this manner to interpret arithmetic expressions
that are expressed in RPN. To do so, dc follows a simple procedure: Read the expression
from left to right, one element at a time. If a numeric value is encountered, push it onto
the stack. If an operator is encountered, pop the appropriate number of elements off the
stack, perform the operation, and push the answer onto the stack.
 To illustrate this, let’s consider the previous example:

34 25 + 15 *

Here is a step-by-step description of what dc does to interpret this expression:

1. Read the value 34 and push it onto the stack.
 The stack contains: 34

2. Read the value 25 and push it onto the stack.
 The stack contains: 25 34

3. Read the + (addition sign). In order to perform addition, two values are needed so...

4. Pop 25 and 34 off the stack and add them. Push the result (59) onto the stack.
 The stack contains: 59

The Stack-Based Calculator: dc

33614_08_161_188.indd 18533614_08_161_188.indd 185 1/9/2008 12:31:35 PM1/9/2008 12:31:35 PM

Chapter 8

186 Harley Hahn’s Guide to Unix and Linux

5. Read the value 15 and push it onto the stack.
 The stack contains: 15 59

6. Read the * (multiplication sign). In order to perform multiplication, two values are
needed so...

7. Pop 15 and 59 off the stack and multiply them. Push the result (885) onto the stack.
 The stack contains: 885.

If you don’t get the hang of RPN right away, don’t worry about it. You can always
fi gure it out by practicing with dc. In fact, the best way to really understand RPN is
by experimenting.
 In our example, I showed you the contents of the stack at each step of the way. With
dc, you don’t see the stack. However, at any time you can display the top of the stack by
using the p (print) command*. To show how this works, start dc and enter the following
two lines. (Don’t forget to press <Return> at the end of each line.)

34 25 + 15 *
p

After you enter the fi rst line, dc performs the calculation. However, you don’t see anything.
Once you enter the second line (the p command), dc displays the value of the element at
the top of the stack, in this case, 885, which is the result of the previous calculation.
 If you would like to see the entire stack, use the f command:

f

Why doesn’t dc automatically print the value of the top of the stack each time you enter
a new line? The answer is that if dc printed something every time you entered a line,
it would clutter up your screen. Instead, dc (like most Unix programs) is as silent as
possible. It is up to you to look at the top of the stack as the need arises.
 To help you get started with dc, Figure 8-3 contains a summary of the most important
dc commands. Aside from this summary, the best way to teach yourself how to use dc is
to read the online manual (see Chapter 9) and experiment. The command to look at the
dc manual page is:

man dc

The number of digits that dc keeps after the decimal point is called the “precision”. The
default is 0 digits. To change this, push the number of digits you want onto the stack and
then enter the k command. This value can be as large as you want. For example, to change
the precision to 14 digits, use:

14 k

 *As I explained in Chapter 7, because the old Unix terminals printed their output on paper, the term “print” is often used
as a synonym for “display”. Thus, the dc print command displays the value on the top of the stack. This convention is used with
many Unix programs.

33614_08_161_188.indd 18633614_08_161_188.indd 186 1/9/2008 12:31:35 PM1/9/2008 12:31:35 PM

Programs to Use Right Away

187

To display the current precision, use the K (uppercase “K”) command. This will push the
current precision onto the top of the stack. You can then use the p command to display
the actual value:

K p

Finally, to stop dc you can either press ^D to indicate that there is no more data, or you
can use the q (quit) command .

COMMAND MEANING
q Quit

p Print top of stack

n Pop stack and print value

f Print entire contents of stack

c Clear (empty) the stack

d Duplicate top value of stack

r Reverse (swap) top two values on stack

+ Pop two values, add, push sum

- Pop two values, subtract, push difference

* Pop two values, multiply, push product

/ Pop two values, divide, push quotient

% Pop two values, divide, push remainder

~ Pop two values, divide, push quotient, push remainder

^ Pop two values, second to power of fi rst, push result

v Pop one value, take square root, push result

k Pop one value, use it to set precision

FIGURE 8-3: dc: The most important commands

HINT

If you like mathematical or scientifi c thinking, you should fi nd it fun to play around with dc. As
you do, you will fi nd that dc is more than a diversion. In order to learn how to use the program,
you will need to master the ideas of Reverse Polish notation and how to use a stack, both of
which are diffi cult concepts. However, once you do master these ideas, you will fi nd that dc is
an effi cient, well-designed tool that is easy to use.
 If you look back at the very end of Chapter 1, you will see that I made two general comments
about Unix: Unix is easy to use, but diffi cult to learn. Start by learning the basics, then learn
whatever you want, in whatever order you want.
 Can you see that dc fi ts into the exact same paradigm? It is easy to use, but diffi cult to learn.
And, to start, you learn the basics (by reading this chapter), and then experiment on your own
as you see fi t.
 So, if you take the time to practice with dc, you will not only be learning how to use an
interesting tool, you will be training your mind to think in the way Unix minds should think.

The Stack-Based Calculator: dc

33614_08_161_188.indd 18733614_08_161_188.indd 187 1/9/2008 12:31:35 PM1/9/2008 12:31:35 PM

Chapter 8

188 Harley Hahn’s Guide to Unix and Linux

C H A P T E R 8 E X E R C I S E S

REVIEW QUESTIONS

1. Describe three different ways that are used to stop a program.

2. Which program do you use to display the time? The date?

3. What is the difference between the cal and calendar programs?

4. How do you display the name of the computer you are using? Your operating system?
Your userid?

APPLYING YOUR KNOWLEDGE

1. Mickey Mouse was born on November 18, 1928. Display the calendar for that month.
What day of the week was Mickey born on? What number day within the year was it
(Jan 1 = 1, Dec 31 = 366)?

2. The element lutetium is a very heavy, rare, silvery white metal. It is considered to be
the most expensive metal in the world. The Maharaja of Gaipajama wants you to
babysit with his son. The fee will be 1 gram of lutetium for every 2 hours, and he wants
you to work for 5 hours. Assume that gold costs $25.42 (U.S.) per gram, and 1 gram
of lutetium is worth 6 grams of gold. Use the bc program to calculate how much your
babysitting fee worth in U.S. dollars. The answer must be accurate to 2 decimal places.
(Once you are fi nished, look up the Maharaja of Gaipajama on the Internet.)

FOR FURTHER THOUGHT

1. At the beginning of the chapter, I made the comment, “Traditionally, one of the ways
in which people learn Unix is by having a good time while they are learning.” This is
usually not the case with other operating systems, such as Microsoft Windows. Why?

2. The users, who and w programs all display information about the userids that are
currently logged into the system. Do we need three different programs?

33614_08_161_188.indd 18833614_08_161_188.indd 188 1/9/2008 12:31:35 PM1/9/2008 12:31:35 PM

189

C H A P T E R 9

Documentation: The Unix
Manual and Info

The Unix Tradition of Teaching Yourself

Within the world of Unix, there are many different documentation systems, each with its
own characteristics. Some are used widely; some serve a particular niche. In general, all such
systems have two common goals: to make it easy for programmers to document their work,
and to make it easy for users to learn how to use the tools created by the programmers.
 In this chapter, I am going to teach you how to use the two most important Unix
documentation systems: the online Unix manual, a facility that comes with every Unix
system; and Info, the offi cial documentation system of the GNU project.
 Both of these tools are designed to be used with the Unix CLI (command line interface).
The reason is that graphical programs are self-documenting, in the sense that they almost
always have their own built-in help facility. Thus, when you want help with a GUI-based
program, you don’t use the online manual or Info. You look within the program itself,
usually by pulling down a Help menu.

THE UNIX TRADITION OF TEACHING YOURSELF
As we discussed in Chapter 2, Unix was developed in the early 1970s in New Jersey, at
Bell Labs (then a part of AT&T). Soon after Unix was created, it became popular with
programmers and researchers, fi rst within Bell Labs and later in the computer science
departments at a handful of research universities.
 As Unix grew in popularity, more and more people needed to learn how to use the
system. However, the Bell Labs programmers were busy people who did not have the time,
nor the inclination, to teach new users how to use Unix. Moreover, the prevailing culture
encouraged anyone to create new tools and share them with other users. Thus, from one
month to the next, the amount of material that one might need to learn increased, as did
the number of new users.
 In response to these needs, the Unix developers adopted a two-part solution. First, they
created an online manual, built into Unix itself, which contained information regarding
every Unix tool. Since the Unix manual was itself part of Unix, it was available to all users
all the time. This meant, for example, when a user at a far-away location had a question
in the middle of the night, he or she would be able to turn to the manual for help.

33614_09_189_222.indd 18933614_09_189_222.indd 189 1/9/2008 12:32:18 PM1/9/2008 12:32:18 PM

Chapter 9

190 Harley Hahn’s Guide to Unix and Linux

 The second part of the solution was to encourage a work environment in which all
Unix users — both new and experienced — were expected to try to answer their own
questions before they asked for help. To be precise, what we might call the Unix tradition
requires you to teach yourself and try to solve your own problems. However, if you have
tried your best and you still have a problem, other Unix people will be glad to help you.
The converse of this is that, once you are experienced, you are expected to help others.
 This Unix tradition was important for two reasons. First, it provided an effi cient way for
Unix to spread. Since people would only ask for help if they really needed it, experienced
people were not called upon to waste their time helping others unnecessarily. Second, by
making people responsible for teaching themselves, the Unix developers encouraged the
type of independent thinking and personal creation that caused Unix to fl ourish. In fact,
the Unix tradition bred a generation of users who were smart, independent, and willing to
help others (when necessary), all working within an atmosphere of cooperative creativity.
 For example, if a programmer wanted a new tool, he was encouraged to create it for
himself. Once the program was fi nished, it would be added to the general Unix system.
The programmer would then write the relevant documentation, which would be added
to the online manual. The new tool would be announced to the general Unix community,
with the understanding that anyone who wanted to learn how to use it would read the
online manual, experiment, and teach himself. If a user found a bug or had a serious
problem, he or she was free to contact the author of the program.
 Thus, you can see the Unix tradition is based on two main ideas: Try your best to
teach yourself before you ask for help; when others ask you for help, give willingly of
your time. These ideas proved to be so important that they become embodied in a single,
very odd word: RTFM.

RTFM
The word RTFM is unique in several ways. First, it is the longest verb in the English language
without vowels. Second, it is usually spelled with all uppercase letters. Finally, because RTFM
has no vowels, the word is pronounced as four distinct letters (“R-T-F-M”), even though it
is not an acronym.

WHAT’S IN A NAME?

Online
In the old days, the word ONLINE was used to describe the idea of being connected to a
specifi c computer system. For example, when you were logged into a system, we would say you
were online.
 When we talk about the online Unix manual, we are using the word in this way. The manual
is “online” because it is available to all the users of a particular Unix system.
 Today, we also use the term “online” to indicate that a resource or a person is connected to
the Internet, not to a specifi c computer system. For example, once you are connected to the Net,
you can use online banking, online bill paying, and even participate in an online relationship.
 Thus, as a Unix user, you are online in two different ways: you are logged into a particular
Unix system, and you are connected to the Internet.

33614_09_189_222.indd 19033614_09_189_222.indd 190 1/9/2008 12:32:19 PM1/9/2008 12:32:19 PM

Documentation: The Unix Manual and Info

191RTFM

 As I mentioned, RTFM is a verb. (I’ll explain its origin in a moment.) We use it to
embody the idea that, before you ask for help or information, you must try to solve the
problem or fi nd the information for yourself.
 The word RTFM can be used in two ways. First, you can tell someone not to bother
you for help until he has tried to help himself. For example, if someone says, “Can you
show me how to use the whatis command?” you might reply, “RTFM.” In this case,
RTFM means, “Don’t ask for help until you have checked with the online Unix manual.”
 Second, you can also use RTFM to indicate you have tried to solve a problem on your
own before asking for help. For example, you might email a message to a friend: “Can you
help me get my Linux system to share fi les with a Windows PC? I have RTFM’d for two days
now, and I still can’t get it to work without having to reboot Windows every few hours.”
 Since the early days, the idea of RTFM has been an integral part of the Unix culture.
Today, its use is also widespread on the Internet, especially within Usenet and the open
source community. (See Chapter 2 for a discussion of the open source movement.) As the
use of RTFM has expanded, so has its meaning. Today, the doctrine of RTFM requires you to
look for information — not only in the online Unix manual — but on the Internet as well.
 Thus, it is a good idea not to ask for help until you have at least used a search engine, such
as Google, to look for relevant Web sites. With respect to Usenet, if you are a newcomer to a
discussion group, it is expected that you will read the FAQ (frequently asked question list)
for that group before you send in your fi rst posting. This too is considered RTFMing.

HINT

When you are looking for solutions to Unix problems, don’t forget Usenet, the worldwide
system of discussion groups.
 The easiest way to search Usenet is to use the Google Usenet archive, called Google Groups. I
have often found answers to even the most obscure questions by searching the Usenet archive.
 If after all your searching, you can’t fi nd what you want, you can post a request in the
appropriate discussion group. If you do, be sure to mention that you have already RTFM’d.

WHAT’S IN A NAME?

RTFM, RTFM’d
RTFM is a verb, indicating the idea that, when you need information or you are working on a
problem, you should spend some time trying to fi nd what you need on your own before you
ask someone else for help.
 When we talk about already having performed such actions, we use the past participle of the
verb, which is spelled RTFM’d, not RTFMed. Thus, you might say, “I have RTFM’d for the last
two hours, and I can’t fi gure out how to connect my cat to the Internet.”
 Like many technical words, RTFM started life as an acronym. In the early days of Unix,
RTFM stood for “Read the fucking manual,”* referring, of course, to the online Unix manual.
Today, however, RTFM is not an acronym, but a legitimate word in its own right.

 * Sometimes you will see RTFM explained by using the euphemism “Read the fi ne manual”. However, as you know, it is my
practice within this book to explain things as they really are. In this case, as you can see, the original meaning of RTFM used
profanity, and I think you should know the truth. Thanks for not being offended.

33614_09_189_222.indd 19133614_09_189_222.indd 191 1/9/2008 12:32:19 PM1/9/2008 12:32:19 PM

Chapter 9

192 Harley Hahn’s Guide to Unix and Linux

WHAT IS THE UNIX MANUAL? man
The UNIX MANUAL, often referred to as the ONLINE MANUAL or, more simply, the
MANUAL, is a collection of fi les, each of which contains documentation about one
specifi c Unix command or topic. The manual is available on every Unix system, where
it is accessible to any user at any time. To use the manual, you enter a simple command
(which we will discuss in a moment). The information you requested is then presented
to you, one screenful at a time.
 In the olden days (of mainframe computers), most computer systems came with a
large amount of highly technical, printed documentation, which was kept in a central
location, such as a computer room or a terminal room. Not only was the documentation
awkward to use, it was often out of date, and it was common to have to deal with a stack
of printed updates. For this reason, the old-time computer manuals were stored in large,
unwieldy holders that could be opened to insert new pages, but were generally awkward
to use or to move from one place to another.
 Unix was different. From the beginning, the documentation was always online,
which meant that it was convenient for any user to read whatever he needed, whenever
he wanted, on his own terminal. Moreover, because the online manual was stored as a
collection of disk fi les, it was a simple matter to add new material by adding a new fi le, or
update existing material by modifying a fi le. In the very early days, Unix systems did have
a printed manual as well as the online manual. However, the information in the printed
manual was the same as what was already available online.
 Accessing the Unix manual is easy. All you need to do is type the word man, followed by
the name of the command you want to know about. Unix will display the documentation
for that command.
 For example, to display the documentation about the cp (copy a fi le) command, enter:

man cp

Suppose you want to learn about the man command itself. Just enter:

man man

(cont’d...) This is not unusual. The same can be said for many other technical words, such as
radar (“radio detection and ranging”), laser (“light amplifi cation by stimulated emission of
radiation”), and scuba (“self-contained underwater breathing apparatus”); as well as various
proper nouns, such as Nato (“North Atlantic Treaty Organization”), and collective nouns, such
as yuppie (“young urban professional”).
 The biggest difference between RTFM and other such words is that RTFM is normally spelled
with uppercase letters. This only makes sense as RTFM is much more important to our culture
than radar, laser, scuba, Nato or yuppies.

HINT

The man command is the single most important Unix command, because you can use it to
learn about any other command.

33614_09_189_222.indd 19233614_09_189_222.indd 192 1/9/2008 12:32:19 PM1/9/2008 12:32:19 PM

Documentation: The Unix Manual and Info

193

 If you want to learn about more than one command name, just enter all the names on
the same line. For example:

man cp mv rm

Unix will display the documentation for each command in turn. These three commands,
by the way, are used to copy, rename [move], and delete [remove] fi les. We will meet them
more formally in Chapter 25.

MAN PAGES
In the very early days, Unix users used slow terminals that printed output on paper. Since
there were no monitors, when someone wanted to learn about a command, he or she
would have to print the relevant pages of the online manual. This wasn’t as inconvenient
as it might sound because, at the time, there weren’t that many entries in the manual, and
many of them were designed to fi t on a single page.
 Today, the Unix manual has a large number of entries, many of which are much longer
than a printed page. Still, it is the custom to refer to a single entry, no matter how long
it is, as a PAGE or, more formally, as a MAN PAGE. For example, the documentation for
Bash, the default Linux shell (which we will meet in Chapter 12), runs to well over 4,500
lines. Still, it is considered to be a single man page.
 Consider this example of word usage. You are in a Unix bar, quaffi ng down a glass of
caffeinated chocolate milk, and you happen to overhear two programmers talking. The fi rst
one says, “I can’t decide what to get my girlfriend for Valentine’s Day. Do you have any ideas?”
to which the other programmer replies, “Why not print her a copy of the Bash man page?”

DISPLAYING MAN PAGES
Virtually all the entries in the online manual are longer than the number of lines on your
screen. If an entry were displayed all at once, most of it would scroll off the screen so fast
that you would not be able to read the text.
 This is a common situation for which Unix has a good solution: send the output to a
program that displays the output more carefully, one screenful at a time. There are three

WHAT’S IN A NAME?

The Manual
Unix manuals have always been important. Indeed, at one time, when Unix was primarily a
product of AT&T’s Bell Labs, successive versions of Unix were named after the current edition
of the manual: Unix Sixth Edition, Unix Seventh Edition, and so on.
 Although there are many Unix books and references, when a Unix person refers to “the
manual”, you can assume that he or she is talking about the one and only online Unix manual.
For example, say you are reading an email message from your system administrator describing
a new program he has just installed on the system. At the end of the message, he says, “For more
information, check the manual.” You can assume, without asking, that he wants you to use the
man command to read the appropriate entry in the online manual.
 To a Unix user, there is never any doubt as to which manual is The Manual.

Displaying Man Pages

33614_09_189_222.indd 19333614_09_189_222.indd 193 1/9/2008 12:32:19 PM1/9/2008 12:32:19 PM

Chapter 9

194 Harley Hahn’s Guide to Unix and Linux

such programs, called paging programs, that are commonly used on Unix systems. Their
names are less, more and pg. The best — and most widely used — paging program
is less, which we will talk about in detail in Chapter 21. For now, I will give you a brief
overview, so you will know enough to be able to read the online manual.
 If you want to practice as you are reading, enter one of the following commands, each of
which displays information about a particular shell: Bash, the Korn shell, or the C-Shell:

man bash
man ksh
man csh

My suggestion is to display the man page for the shell that you plan on using or that most
people use on your system. If you are not sure, just pick one — it’s only for practice.
 The job of a paging program is to display data one screenful at a time. After each
screenful, the program pauses and displays a prompt at the bottom left-hand corner of
the screen. The prompt differs depending on what paging program is being used.
 The less and pg programs display a colon:

:

On some systems, less displays a message instead of the colon. For example:

byte 1357

In this case, less is telling you that it has just displayed character number 1357. (Each
byte holds one character.) As you page through the fi le, this number will increase, giving
you a rough idea of how far you are from the beginning.
 The more program displays a prompt that contains the word “More”. For example,
you might see:

--More--(10%)

This means that there is more to come and that you are 10 percent of the way through
the page.
 Once you see the prompt, you can display the next screenful of information by pressing
the <Space> bar. (With pg, you press <Return>.) When you are fi nished reading, press
q (the letter “q”) to quit.
 As you are reading a man page, there are many commands you can use. Normally,
however, you won’t need them. Most of the time, you will simply press <Space>, reading
one screenful after another. When you reach the end of the page, or when you fi nd what
you want, you will press q to quit.
 From time to time, you may want to use some of the other commands, so I’m going
to take a moment to describe the ones that I fi nd most useful. These commands are
summarized in Figure 9-1. As I mentioned, there are many others, more than you will
ever need. Note: The commands in Figure 9-1 are for systems that use less. If your
system uses more or pg, there will be some differences. If you have a problem, use the
h command for help.

33614_09_189_222.indd 19433614_09_189_222.indd 194 1/9/2008 12:32:20 PM1/9/2008 12:32:20 PM

Documentation: The Unix Manual and Info

195

 With any program, the most important command is the one that displays the help
information. In this case, all you need to do is press h (the letter “h”). When you do, the
man page information will be replaced by a summary of all the paging commands. When
you are fi nished reading the help information, press q to quit and return to the man page.
Note: The summary is quite long and, just as with the man page itself, you will have to
press <Space> to work your way through the information. However, the most important
commands will be near the top of the summary.
 The commands I am about to discuss are for the less paging program, because it is
used with most Unix systems. If your man command uses either more or pg, all you have
to do is press h, to get the help summary for that particular paging program. My suggestion
is that, as you read, follow along at your computer, trying the various commands.
 To start, if you are looking for a specifi c pattern, press the / (slash) character, type the
pattern, and then press <Return>. For example:

/output<Return>

GENERAL COMMANDS
q quit

h display help information

READING A MAN PAGE

<Space> display next screenful

<PageDown> display next screenful

f display next screenful

<PageUp> display previous screenful

b display previous screenful

SEARCHING

/pattern search down for specifi ed pattern

?pattern search up for specifi ed pattern

/ search down for previous pattern

n search down for previous pattern

? search up for previous pattern

N search up for previous pattern

MOVING AROUND WITHIN A MAN PAGE

<Return> move down one line

<Down> move down one line

<Up> move up one line

g go to top of page

G go to bottom of page

FIGURE 9-1: Reading a man page: Important commands

Displaying Man Pages

33614_09_189_222.indd 19533614_09_189_222.indd 195 1/9/2008 12:32:20 PM1/9/2008 12:32:20 PM

Chapter 9

196 Harley Hahn’s Guide to Unix and Linux

This example tells the paging program to skip forward to the next line that contains the
word “output”. Once you have specifi ed a pattern, you can search for it again by entering
the / character by itself:

/<Return>

If you search for a pattern, but it’s not the line you want, you can keep searching for the same
pattern, over and over, until you fi nd what you do want. Just keep pressing /<Return>*.
 Alternatively, you can press n (next) to search for the same pattern, either once or
more than once.
 To search backward, use ? instead of /. For example:

?output<Return>

To search backward for the same pattern, use ? by itself:

?<Return>

Alternatively, you can press N (next) to search backward for the same pattern.
 To move down one screenful, as you already know, you press <Space>. You can also
press f (for forward). To move up one screenful, press b (for backward). Alternatively,
you can move down and up by pressing <PageDown> and <PageUp>.
 To move down one line at a time, press the <Return> key or the <Down> key (that
is, the down-arrow key). To move up one line at a time, press the <Up> key (that is, the
up-arrow key).
 To jump to the top of the page, press g (“go to top”). To jump to the bottom of the
page, press G (“go to bottom”).

TWO USEFUL MAN PAGE TECHNIQUES
The way in which you read man pages – so far as we have discussed it – is conceptually
simple. You use the man command to display information about a particular topic. You
then look at the information, one screenful at a time, until you fi nd what you want.
 This is the common way to read man pages using the standard Unix CLI (command
line interface). However, if you put the man command together with the Unix working
environment, you can access man pages in a more sophisticated way.
 As we discussed in Chapter 6, you can use the CLI in two ways, with a terminal window
or with a virtual console. My suggestion is to learn how to use two terminal windows at the
same time, one for doing your work and the other for displaying man pages. For example,
let’s say you are working within one terminal window, editing a fi le with the vi text editor
(see Chapter 22). You need some help, so you decide to look at the vi man page. If you do
so by displaying the page in a second terminal window, you can look at both the man page
and the original window at the same time. You can see this in Figure 9-2.
 To become a skillful Unix user, you need to master the skill of using more than one
window at a time. More precisely, you must be able to answer the questions: When should

 *This feature is taken from the vi editor, which we will meet in Chapter 22.

33614_09_189_222.indd 19633614_09_189_222.indd 196 1/9/2008 12:32:20 PM1/9/2008 12:32:20 PM

Documentation: The Unix Manual and Info

197

I use a single window? When should I use two windows? When should I use more than
two windows? When do I want to forget about windows and use virtual consoles?
 The answers to these questions aren’t obvious, and you will fi nd your skills growing
with your experience. The trick is to never allow yourself to get into a rut. For example,
don’t always use one window, or don’t always use two windows in the exact same way.
 To further add to your bag of tricks, I’d like to teach you one more tool to use while
reading a man page.
 As you are reading a man page, if you type an ! (exclamation mark), you can follow it
with a shell command. The man program will send the command to the shell, which will
run it for you. When the command is fi nished, you can press <Return> to go back to the
man program.
 To see how this works, display a man page and type:

!date<Return>

In this case you are entering the date command from within the man program. The
result is that you see the time and date. Once the date command is fi nished, simply
press <Return> and you will be back where you were within the man program.

FIGURE 9-2: Displaying a man page in its own terminal window

By displaying a man page in its own terminal window, you can use it as a reference while you are
working in another window. In this example, the man page for the vim, a version of the vi editor is on
the left. On the right is a terminal window in which vim is running.

Two Useful Man Page Techniques

33614_09_189_222.indd 19733614_09_189_222.indd 197 1/9/2008 12:32:20 PM1/9/2008 12:32:20 PM

Chapter 9

198 Harley Hahn’s Guide to Unix and Linux

 As you might imagine, being able to enter a shell command whenever you want can be
very useful. What is particularly handy is that you can use this technique to display one
man page while you are reading another, without having to switch to a separate window.
Here is how it works.
 Let’s say that you are reading the man page about the man command:

man man

As you are reading the page, you see that there are several other related commands, among
them whatis (which we will discuss later in this chapter). At this point, you decide that
you’d like to pause what you are doing and read about whatis. Just enter:

!man whatis<Return>

When you are fi nished reading about whatis, press q to quit. You will then be asked to
press <Return> and, once you do, you will be back in the original man program, reading
about the man command.

ALTERNATIVES TO man: xman AND THE WEB
As I have explained you can use the man command to display pages from the online Unix
manual. Aside from this command, there are two alternatives I want you to know about.
 First, the man pages for most Unix systems are available as Web pages on the Internet.
This means that, whenever you want, you can use your browser to fi nd and display a
specifi c page. The advantage to reading man pages on the Web is that they will often have
links that allow you to jump from one page to another. Regular man pages (using the man
command) are plain text with a bit of highlighting, not hypertext with links.
 The easiest way to fi nd the man page you want on the Web is to use a search engine
such as Google to search for “man” followed by the name of a command, for example:

"man whatis"

Be sure to include the quotation marks.

WHAT’S IN A NAME?

Bang
As a Unix user, you will, from time to time, use the ! (exclamation mark) character in a special
way. Usually it will change the mode of what you are doing, so you can pause the current program
and send a command to the shell. (See Chapter 6 for a discussion of the idea of modes.)
 As an example, as you are reading a man page, you can display the time and date by entering:

!date<Return>

When the ! character is used in this way – as a command and not as a punctuation symbol – it
is given a special name. We call it a BANG CHARACTER or, more simply, a BANG. Thus, a Unix
person might say, “If you are reading a man page and you want to display the time and date, just
type ‘bang-d-a-t-e’ and press <Return>.”
 The name “bang” is a slang term that has been used within the printing and typesetting
professions for a long time. Its origins are unknown.

33614_09_189_222.indd 19833614_09_189_222.indd 198 1/9/2008 12:32:20 PM1/9/2008 12:32:20 PM

Documentation: The Unix Manual and Info

199

 Alternatively, you can fi nd a more general resource by searching for “man pages”
followed by the name of your type of Unix, for example:

"man pages" Linux
"man pages" FreeBSD
"man pages" Solaris

Again, don’t forget the quotation marks.

 An alternative to using Web-based man pages is xman, a GUI-based program that
acts as a man page browser. (The “x” indicates that the program is written for X-Window
based GUIs; see Chapter 5.) If xman is available on your system, it is well worth your
while to take a few moments to experiment and learn how to use it.
 To start xman, type the following at the command line:

xman&

Using the & (ampersand) character tells the shell to start running the program on its own
in the background.
 When xman starts, it displays a simple window with three large buttons labeled Help,
Quit, and Manual Page (see Figure 9-3). It is much easier for you to read the instructions
than for me to explain the full complexity of the program, so I’ll restrict myself to giving
you only two hints.
 First, to start, click on the Help box and read the instructions. when the focus is on an
xman window, you can press ̂ S (<Ctrl-S>) to display a small search box. This makes it
easy to fi nd what you want (see Figure 9-3). Try it, so you can see what I mean.

HOW THE UNIX MANUAL IS ORGANIZED
The best way to think about the online manual is to imagine a gargantuan reference book
that lives somewhere inside your Unix system. The book is like an encyclopedia in that it
contains many entries, in alphabetical order, each of which covers a single topic.
 You can’t turn the pages of this book; hence, there are no page numbers and no formal
table of contents or index. However, there are several layers of organization that are
appropriate to an electronic book.
 Traditionally, the entire manual is divided into eight sections, numbered 1 through 8.
These classic divisions are shown in Figure 9-4. From one system to another, the actual
names may vary but, for the most part, all Unix manuals tend to follow the same general

HINT

When you get a moment, fi nd some Web sites that offer the man pages for the type of Unix or
Linux you are using. Choose one site that you particularly like, and save the URL (Web address)
so you can access it quickly whenever you want.
 My suggestion is to save the URL as a button on the Links bar within your browser. That way,
it will always be visible and easy to use. However, you can also save the URL as an icon on your
desktop or as an entry in your Bookmarks/Favorites list. See what works best for you.

How the Unix Manual Is Organized

33614_09_189_222.indd 19933614_09_189_222.indd 199 1/9/2008 12:32:20 PM1/9/2008 12:32:20 PM

Chapter 9

200 Harley Hahn’s Guide to Unix and Linux

organization. Although the manual on your system may be a bit different, it should be
close enough so that, when you read the following discussion, it will make sense to you.
 The most important part of the manual is section 1. This section contains the man
pages for the bulk of the Unix commands. In fact, unless you are a programmer or a
system administrator, you can probably get by with just this section of the manual.
 If you are a programmer, you will also be interested in Sections 2 and 3. Section 2
contains the man pages for system calls, used within programs to request the kernel
to perform a specifi c action. Section 3 documents library functions, sometimes called
subroutines. These are standardized tools, not involving the kernel directly, that are used
within programs to perform specifi c tasks.
 Section 4 discusses special fi les, a type of fi le that usually represents a physical device.
You will also fi nd information about device drivers (programs that act as an interface to
a device). This section is used primarily by programmers.

FIGURE 9-3: xman program

xman is a GUI-based program for browsing man pages. In the top right, you see the initial window.
To get started, click on “Help”. In the bottom left, you see the search box, which you can display at any
time by pressing <Ctrl-S>.

1. Commands

2. System calls

3. Library functions

4. Special fi les

5. File formats

6. Games

7. Miscellaneous information

8. System administration

FIGURE 9-4: Eight sections of the online Unix manual

33614_09_189_222.indd 20033614_09_189_222.indd 200 1/9/2008 12:32:20 PM1/9/2008 12:32:20 PM

Documentation: The Unix Manual and Info

201

 Section 5 describes the important fi le formats used by the system, including
confi guration fi les. This section is used by both programmers and admins.
 Section 6 contains man pages for whatever games are installed on the system. In the
olden days, there were lots of text-based games and diversions that users could use from
the command line. An example is the the game of Rogue that we discussed in Chapter 7.
In those days, Section 6 was an important part of the manual. Today, most systems omit
the text-based games and, more often than not, this section of the manual will be empty.
To be sure, there are many GUI-based games but, as I mentioned at the beginning of the
chapter, such programs have their own built-in help, so they don’t need man pages.
 This doesn’t mean there are no Unix text-based games. There are many of them,
including a variety of wonderful diversions, and you can install them on your system if
you want. If you are using a shared system and the system administrator has not installed
the games (or if he has removed them), Section 6 of the manual may be empty. This is
because most admins do not want to handle complaints from users who can read about
the games, but can’t use them (sort of like Moses standing on Mount Pisgah, gazing down
wistfully at the Promised Land).
 Section 7, the Miscellaneous Information section, contains a grab-bag of information.
The contents of Section 7 vary greatly from one system to another, so there’s not a lot I
can say about it, except that, like most of the other sections, it is primarily of interest to
programmers and admins.
 Finally, Section 8 contains the man pages for all the special commands that system
administrators use to carry out their work. In other words, these are the commands that
can be used only by the superuser. (See Chapter 4 for a discussion of system administration
and the superuser.)
 If you use a shared system, you probably won’t care about Section 8 of the manual,
because someone else is doing the system administration. However, if you are running
Unix on your own computer, you are the admin and, from time to time, you will need to
use some of the commands from this section of the manual.

 The idea of organizing the Unix manual into these specifi c eight sections was derived
from the earliest Unix implementations and has, for the most part, remained intact over
the years. However, the modern manuals cover much more material than their venerable
ancestors. Thus, on your system, you may see different, more comprehensive sections,
possibly with different names.
 You may also fi nd that a particular section contains specialized sub-sections. For
example, on some Linux systems, if you look within Section 3 (Library functions), you
will fi nd several sub-sections: Section 3c, for standard C functions; Section 3f for Fortran
functions; Section 3m for mathematical functions; Section 3s for standard I/O functions;
and Section 3x for special functions.

HINT

Except for Section 1 (Commands) and Section 6 (Games), the bulk of the Unix manual is of
interest only to programmers and system administrators.

How the Unix Manual Is Organized

33614_09_189_222.indd 20133614_09_189_222.indd 201 1/9/2008 12:32:20 PM1/9/2008 12:32:20 PM

Chapter 9

202 Harley Hahn’s Guide to Unix and Linux

SPECIFYING THE SECTION NUMBER WHEN USING THE man COMMAND
So far, we have seen how to use the Unix manual by typing man followed by the name of
a command. For example, to learn about the kill command (see Chapter 26), which
can stop a runaway program, you would enter:

man kill

This command displays the man page for kill from Section 1 of the manual.
 However, it happens that there is also an entry for kill in Section 2 of the manual
(System Calls). If this is what you really want, you can specify the section number before
the name of the command:

man 2 kill

This tells Unix that you are only interested in a particular section of the manual.
 If you are using a type of Unix that is derived from System V (see Chapter 2), the form
of the command is a bit different: you have to type -s before the section number. This is
the case, for example, with Solaris:

man -s 2 kill

If a section is divided into subsections, you can be as specifi c as you want.
 For example, on some systems there is an entry for kill in Section 3f, the part of the
manual that documents Fortran subroutines. To display this man page, enter:

man 3f kill

As I mentioned earlier, you can ask for more than one part of the manual at a time. For
instance, if you want to see all three entries for kill, you can enter:

man 1 kill 2 kill 3f kill

When you do not specify a section number, Unix starts at the beginning of the manual
(Section 1) and works its way through until it fi nds the fi rst match. Thus, the following
two commands have the same result:

man kill
man 1 kill

 To orient you to the various parts of the manual, each section and subsection contains
 a page called intro that acts as a brief introduction. A good way to become familiar
with the contents of a section is to read its intro page.
 Here are some examples of commands that display such pages:

HINT

Most of the time, you will be interested in Section 1 of the manual (Commands), so it
is not necessary to specify a section number. You only need to use a section number when
you are looking for information related to programming (sections 2, 3, 4, 5 and 7) or system
administration (sections 4, 7 and 8).

33614_09_189_222.indd 20233614_09_189_222.indd 202 1/9/2008 12:32:21 PM1/9/2008 12:32:21 PM

Documentation: The Unix Manual and Info

203

man intro
man 1 intro
man 1c intro
man 6 intro

As you know, man will assume, by default, that you want to reference Section 1; thus, the
fi rst two examples are equivalent.

HOW MAN PAGES ARE REFERENCED
When you read about Unix, you will often see the name of a command followed by a
number in parentheses. This number tells you what section of the manual to look in for
information about that particular command.
 For example, here is part of a sentence taken from a BSD (Berkeley) version of the
man page for the chmod command (which you will meet in Chapter 25). For now, don’t
worry about what the sentence means, just look at the reference:
 “...but the setting of the fi le creation mask, see umask(2), is taken into account...”
 The citation “umask(2)” tells us that the man page for umask can be found in
Section 2 of the manual. To read it, you would use:

man 2 umask

Since we know that Section 2 describes system calls, we can guess that we would only care
about this reference if we were writing a program.
 At the end of the same chmod man page, however, are the following two lines:

SEE ALSO
ls(1), chmod(2), stat(2), umask(2), chown(8)

Here is a reference to fi ve other commands related to chmod. As you can see, three of the
references are in Section 2 and are for programmers. The last reference is in Section 8 and
is for system administrators.
 The fi rst reference, however, refers to a command, ls whose man page lies in Section 1.
Since Section 1 describes general commands, there is a good chance that this reference will
be of interest. To display this man page, we can use either of the following commands:

man ls
man 1 ls

(By the way, the purpose of ls is to display the names of fi les. We will meet this
command in Chapter 24.)

HINT

If you are a beginner, the best way to learn about the online manual is by using the following
two commands:

man intro
man man

How Man Pages Are Referenced

33614_09_189_222.indd 20333614_09_189_222.indd 203 1/9/2008 12:32:21 PM1/9/2008 12:32:21 PM

Chapter 9

204 Harley Hahn’s Guide to Unix and Linux

THE FORMAT OF A MANUAL PAGE
Each man page explains a single topic, most often a command, system call or library
function. Some pages are short, while others are quite long. For example, the man pages
that describe the various shells are long enough to be reference manuals in their own
right. To see what I mean, try one of the following commands:

man bash
man ksh
man csh

For convenience, every man page, regardless of size, is organized according to a standard
format, in which the page is divided into a number of parts, each with its own heading.
The most common headings are shown in Figure 9-5. Interestingly enough, these headings
are the same ones that were used many years ago in the original Unix manual as it was
developed at Bell Labs. (Of course, the content has changed radically since then.)
 Not all man pages have each of these headings,; some man pages have headings not in
this list. For example, I have encountered Examples, Reporting Bugs, Copyright,
History and Standards. However, regardless of the actual design, the basic format
is the same from one man page to another. Indeed, every man page I have ever seen has
started with the same three headings: Name, Synopsis and Description.
 To help you, Figure 9-6 contains a sample man page. This man page is actually from
an older Unix system, and it’s likely that the equivalent page on your system will be a lot
longer. I have used this particular example, however, because it is short enough to print,
easy to understand, and contains all the important elements of a typical man page.
 Note: As you read the man page in Figure 9-6, remember that the word “print” usually
refers to displaying text on your terminal, not actual printing (see Chapter 7).
 To begin our discussion, let’s take a quick tour of each of the basic headings. As I
mentioned, you may see other headings from time to time, but once you get a bit of
experience you won’t have any trouble understanding the variations.

NAME: This is a one-line summary of the command or feature. Be aware that some
summaries are vague; if you are confused, you may have to do a bit more RTFMing.

SYNOPSIS: This section shows the syntax of the command. This is the official
explanation of how to enter the command. I describe command syntax in detail in
Chapter 10, so we’ll leave most of the discussion till then. For now, I just want to draw
your attention to one point.

HINT

When you are looking for information or working on a problem, and you see a reference to a
command in Section 1 of the manual, you should take the time to follow up the reference. Even
if the information is not exactly what you need at the moment, it will come in handy later.
 If you see references to other sections, however, you can ignore them, unless the information
looks particularly interesting.

33614_09_189_222.indd 20433614_09_189_222.indd 204 1/9/2008 12:32:21 PM1/9/2008 12:32:21 PM

Documentation: The Unix Manual and Info

205

In general, when you enter a command, you type a name, followed by options,
followed by parameters. We’ll discuss the technical details in Chapter 10, so don’t
worry about them for now. All I want you to understand is that you will see two
variations of how the Synopsis section shows the options.

First, you may simply see the word OPTION. In this case, the actual options are
listed and explained in the Description section below. Here is an example, taken
from the Linux man page for the ls command:

ls [OPTION]... [FILE]...

This convention is used with the man pages that come with the GNU utilities (see
Chapter 2). Since the GNU utilities are used with virtually all Linux systems, this is
what you will see on many of the Linux man pages.

Here are two more examples. The fi rst is taken from the FreeBSD manual; the
second is from the Solaris manual.

ls [-ABCFGHLPRTWabcdfghiklmnopqrstuwx1] [file...]
ls [-aAbcCdeEfFghHilLmnopqrRstux1@] [file...]

In this case, the actual options are specifi ed. (This is also the case with the sample man
page you see in Figure 9-6.) As with the example above, the details are explained in the
Description section. The job of the Synopsis is to provide a quick summary
of the command.

DESCRIPTION: This section is the largest one and usually takes up the bulk of the man
page. Its purpose is to explain most of the details you need to know, including how
to use the options. On some systems, the full explanation is divided into two separate
sections: Description and Options.

As you read, it helps to remember that you are looking at a reference manual, not a
teaching guide. Be prepared to fi nd that many descriptions are diffi cult to understand
until you know what you are doing. This is normal. If you have trouble, keep reading

HEADING MEANING

Name name and purpose of the command

Synopsis syntax of the command

Description full description (may be long)

Environment environment variables used by the command

Author name of the programmer

Files list of fi les important to this command

See also where to look for related information

Diagnostics possible errors and warnings

Bugs mistakes, shortcomings, warnings

FIGURE 9-5: Standard headings used in a man page

The Format of a Manual Page

33614_09_189_222.indd 20533614_09_189_222.indd 205 1/9/2008 12:32:21 PM1/9/2008 12:32:21 PM

Chapter 9

206 Harley Hahn’s Guide to Unix and Linux

MAN(1) USER COMMANDS MAN(1)

NAME
 man - display reference manual pages; find reference pages by keyword

SYNOPSIS
 man [-] [section] title ...
 man -k keyword ...
 man -f filename ...

DESCRIPTION
 Man is a program which gives information from the programmer's manual. It

can be asked for one-line descriptions of commands specified by name, or
for all commands whose description contains any of a set of keywords. It
can also provide on-line access to the sections of the printed manual.

 When given the option -k and a set of keywords, man prints out a one-
line synopsis of each manual section whose listing in the table of
contents contains one of those keywords.

 When given the option -f and a list of names, man attempts to locate
manual sections related to those files, printing out the table of
contents lines for those sections.

 When neither -k or -f is specified, man formats a specified set of manual
pages. If a section specifier is given man looks in that section of the
manual for the given titles. Section is either an Arabic section number
(3 for instance), or one of the words "new","local", "old" or "public".
A section number may be followed by a single letter classifier (for
instance, 1g, indicating a graphics program in section 1). If section is
omitted, man searches all sections of the manual, giving preference to
commands over subroutines in system libraries, and printing the first
section it finds, if any.

 If the standard output is a teletype, or if the flag - is given, man
pipes its output through more(1) with the option -s to crush out useless
blank lines and to stop after each page on the screen. Hit a space to
continue, a control-D to scroll 11 more lines when the output stops.

FILES
 /usr/man standard manual area
 /usr/man/man?/* directories containing source for manuals
 /usr/man/cat?/* directories containing preformatted pages
 /usr/man/whatis keyword database

SEE ALSO
 apropos(1), more(1), whatis(1), whereis(1), catman(8)

BUGS
 The manual is supposed to be reproducible either on a photo-typesetter

or on an ASCII terminal. However, on a terminal some information
(indicated by font changes, for instance) is necessarily lost.

FIGURE 9-6: Sample page from the Unix manual

33614_09_189_222.indd 20633614_09_189_222.indd 206 1/9/2008 12:32:21 PM1/9/2008 12:32:21 PM

Documentation: The Unix Manual and Info

207

until you run out of patience: some of what you read will stick. When you learn more,
you can try again.

Realize also that there are some descriptions (such as those for the various shells)
that you will probably never understand completely. If this bothers you, remind
yourself that the people who do understand everything in the Unix manual are much
less attractive and socially adept than you.

FILES: This section shows the names of the files that are used by this command. If the
information in this section makes no sense to you, you can ignore it. (We will discuss
file names in detail in Chapter 23.)

SEE ALSO: This is an important section. It shows you other places to look in the manual
for more information. In particular, you will see commands that are related in some
way to the command under discussion. Following up these references is a good way to
learn. Concentrate on the references to the Section 1 man pages.

ENVIRONMENT: Before I can explain this section, I need to lay a bit of groundwork
with respect to the idea of variables.

A variable is an entity with a name and a value. Within Unix, there are certain
variables whose values are available to all programs and shell scripts. (A shell script is a
fi le containing a list of commands that can be executed automatically.) Such variables
are known by several different names depending on the context: environment variables,
global variables, or shell variables (see Chapter 12). By convention, environment
variables and global variables are given names consisting of all uppercase letters.

This section of the man page describes the environment variables that are used
by the program. For example, the man page for the date command refers to an
environment variable named TZ, which shows what time zone should be used.

AUTHOR: The name of the person or persons who worked on the program. You will
often see this section when you are looking at a man page for one of the GNU utilities.
This is because the Free Software Foundation, which runs the GNU Project (see
Chapter 2), likes to give credit to programmers.

DIAGNOSTICS: This section can contain two types of information. First, there may be
an explanation of possible error messages. Second, there may be a list of error codes
that a command can return upon completion.

Error codes are important for programmers who want to call upon a command from
a program or shell script and then test to see if the command completed successfully.
If the command was successful, the error code will have the value 0 (zero). Otherwise,
the error code will be non-zero.

BUGS: All programs have two kinds of bugs: the ones you know about and the ones
you don’t know about. The original developers of Unix recognized that no program
is perfect and users deserve to know about the imperfections. Thus, many man pages
contain a section devoted to documenting known problems.

The Format of a Manual Page

33614_09_189_222.indd 20733614_09_189_222.indd 207 1/9/2008 12:32:21 PM1/9/2008 12:32:21 PM

Chapter 9

208 Harley Hahn’s Guide to Unix and Linux

Some commercial Unix vendors have decided that a section named Bugs gives
the paying customers the wrong idea. Thus, you may see this section living under an
assumed name, such as Notes or Limitations. Don’t be fooled, bugs are bugs
and, if you use the program, you have a right to know about them.

A QUICK WAY TO FIND OUT WHAT A COMMAND DOES: whatis
When you enter the man command, Unix displays the entire manual page. Sometimes,
however, you only want a quick description. In such cases, you have an alternative.
 As I explained above, the Name section of a man page contains a one-line description.
If all you want to see is this single line, type man -f, followed by the names of one or
more commands. For example:

man -f time date

In this form of the man command, the -f is called an option. (We will discuss options in
Chapter 10.) The letter f stands for the word “fi les”. Each man page is stored in a separate
fi le; when you use the -f option, you are telling man which fi les to look at.
 As a convenience, you can use the command whatis as a synonym for man -f. For
example, if you want to display the time, but you are not sure whether to use time or
date, enter either of these commands:

whatis time date
man -f time date

You will see something like this:

date (1) - print or set the system date and time
time (1) - run programs & summarize system resource usage
time (3) - get date and time
time (7) - time a command

You can ignore the last two lines as they do not refer to Section 1 of the manual. Looking
at the fi rst two lines, you see that the command you want is date. The time command
actually measures how long it takes for a program or command to execute.
 As you know, when you enter the man command, you can specify a particular section
number (such as man 1 date). With man -f or whatis, you cannot be so specifi c.
Unix will always search the entire manual.
 Thus, a good way to fi nd out what your manual contains is to enter:

whatis intro

You will see quick summaries of each of the intro pages. (Try it.)
 Note: For the whatis command to work properly, the man pages must be preprocessed
in a certain way. This involves collecting all the one-line descriptions and storing them
in specifi c fi les. It is these fi les that whatis searches, not the actual manual (that would
be far too slow). If the preprocessing has not been carried out, whatis will not return
useful information. If this is the case on your system, talk to your system administrator.

33614_09_189_222.indd 20833614_09_189_222.indd 208 1/9/2008 12:32:21 PM1/9/2008 12:32:21 PM

Documentation: The Unix Manual and Info

209

SEARCHING FOR A COMMAND: apropos
When you want to learn about a specifi c command, you can use man to display the man
page for that command. What if you know what you want to do, but you are not sure
which command to use?
 The solution is to use man with the -k option. This searches for commands whose
NAME sections contain specifi ed keywords. (The letter k stands for “keyword”.) For
example, say you want to fi nd all the entries in the manual that have something to do
with the manual itself. Enter:

man -k manual

As a convenience, you can use the single word apropos as a synonym for man -k:

apropos manual

Note: When you pronounce apropos, the accent is on the last syllable, and the “s”
is silent: a-pro-poe’. This is because the name comes from a French expression and, in
French, an “s” at the end of the word is normally not pronounced*.
 The apropos command searches through all the one-line command descriptions,
looking for those that contain the same string of characters you specifi ed. To make the
command more powerful, Unix does not distinguish between upper- and lowercase.
 Here is some sample output from the previous example.

catman (8) - create the cat files for the manual
man (1) - displays manual pages online
man (5) - macros to format entries in reference manual
man (7) - macros to typeset manual
route (8c) - manually manipulate the routing tables
whereis (1) - locate source, binary, or manual for program

Notice there are two commands of interest, man and whereis, as they are the only
ones in Section 1. Notice also that the route command was cited because the characters
“manual” happened to appear in its description.
 You might ask, why don’t apropos and whatis appear in this list? After all, both
commands help you access the online manual. To answer this question, enter:

whatis apropos whatis

You will see that the word “manual” does not appear in these descriptions:

apropos (1) - locate commands by keyword lookup
whatis (1) - display command description

The lesson here is: The apropos command is not magic – all it can do is search blindly
for character strings – so if you can’t fi nd what you want, try asking in a different way.

 *French people are good at spelling, but bad at pronouncing.

Searching for a Command: apropos

33614_09_189_222.indd 20933614_09_189_222.indd 209 1/9/2008 12:32:21 PM1/9/2008 12:32:21 PM

Chapter 9

210 Harley Hahn’s Guide to Unix and Linux

FOO, BAR AND FOOBAR
There are two marvelous words you will see from time to time: FOO and BAR. These words
are used as generic identifi ers by programmers. You will see them, not only throughout
the world of Unix and Linux, but on the Web and in Usenet discussion groups.
 The idea is that whenever you want to refer to something without a name, you can call
it “foo”; when you want to refer to two things without a name, you call them “foo” and
“bar”. Nobody knows for sure how this tradition got started, but it is used a lot.
 For example, here is an excerpt from the Linux man page for the exec command.
(Don’t worry about the meaning.)
 “...Most historical implementations were not conformant in that foo=bar exec cmd
did not pass foo to cmd...”
 From time to time, you will also see the word FOOBAR used in the same way. For
example, the following is a question written by a well-known Unix professor for one of
his fi nal exams. (Again, don’t worry about the meaning.)
 “...Give a Unix command, and the equivalents in sed and awk to achieve the
following: Print the fi le named foobar to standard output, but only lines numbered 4

HINT

Most commands are actually programs. For example, the man command is really a program
named “man”. However, some of the most basic commands, called builtin commands, are
carried out by the shell itself. These commands will be documented within the man page for the
shell. They will not have their own separate entries in the manual.
 If you are looking for a command that you know exists, but you cannot fi nd it under its own
name, check the man page for your shell:

man bash
man ksh
man csh

If you are a Bash user, there is a special man page that will list all the builtin commands:

man builtin

WHAT’S IN A NAME?

Apropos
In Unix, the apropos command is a synonym for man -k. The word comes from the French
expression à propos meaning “related to”. In English, “apropos” is a preposition meaning
“concerning” or “with reference to”. For example, you might read the following passage in
a novel:
 “...Amber raised her eyebrows and reached over to touch the tall, handsome programmer
lightly on the lips. As she shook her long blond hair, she felt a frisson of desire travel through her
lean, lissome body. ‘Apropos to your proposal,’ she cooed seductively, batting her eyelashes, ‘I’d
love to be the Mistress of Ceremonies at your Unix bachelor party. But does Christine know about
the invitation?’...”

33614_09_189_222.indd 21033614_09_189_222.indd 210 1/9/2008 12:32:21 PM1/9/2008 12:32:21 PM

Documentation: The Unix Manual and Info

211

through 20 inclusive. Print all the lines in fi le foobar, but only columns numbered 10
through 25 inclusive...”

THE INFO SYSTEM
INFO is an online help system, separate from the Unix manual, which is used to document
the GNU utilities (explained in Chapter 2). Since many types of Unix – including virtually
all Linux systems – use the GNU utilities, most people fi nd it useful to understand how to
use both the online manual and Info. Indeed, you will fi nd that many of the Linux man
pages refer you to Info for more information.
 Superfi cially, Info is a bit like the online manual. Information is stored in fi les, one
topic per fi le, just like man pages. The fi les are called INFO FILES and, to read them, you
use the info program. Just type info followed by the name of a command.
 Consider the following two examples. The fi rst displays the man page for the date
command. The second display the Info fi le for the same command:

man date
info date

Like the online manual, info will show you information one screenful at a time. As is the
case with the manual, you press <Space> to move from one screenful to the next, and you
press q to quit. However, as you will see in a moment, that is where the similarity ends.
 If you have trouble starting Info, you can check to see if it is on your system by looking
for the info program. Any of the following commands will do the job (see Chapter 7):

which info
type info
whence info

Alternatively, you can look for an info man page:

man info

WHAT’S IN A NAME?

Foo, Bar, Foobar
In the world of Unix and on the Internet, the words foo, bar and foobar are commonly used as
generic terms to represent unnamed items within a discussion or exposition. Where do these
strange words come from?
 The word “foobar” derives from the acronym FUBAR, which was popular during World War II.
FUBAR means “fouled up beyond all recognition”*.
 The word “foo” seems to have a more robust history. No doubt foo owes much of its popularity
to foobar. Nevertheless, foo seems to have been used on its own even earlier. For example, in a 1938
cartoon, Daffy Duck holds up a sign that reads “Silence is Foo” (which is absolutely correct). Some
authorities speculate that foo might have roots in the Yiddish “feh” and the English “phoo”.

 *Actually, the F in fubar doesn’t really stand for “fouled”. However, I thought it might be offensive to use the word “fuck”
twice in the same chapter (see the discussion on RTFM).
 I’m sure you understand.

The Info System

33614_09_189_222.indd 21133614_09_189_222.indd 211 1/9/2008 12:32:21 PM1/9/2008 12:32:21 PM

Chapter 9

212 Harley Hahn’s Guide to Unix and Linux

If your system does not have the info program or an info man page, you can assume
that you don’t have Info (which means you can skip the rest of this chapter secure in the
knowledge that your life is not passing you by).
 As you know, all Unix and Linux commands have a man page. However, many
commands do not have an Info fi le. For this reason, if you try to display the Info fi le for
a command that doesn’t have one, Info will simply show you the man page instead. For
example, the man command does not have an Info fi le. See what happens when you enter:

info man

There are three main differences between Info and the online manual. First, Info fi les
contain not just information, but links to other Info fi les. Thus, reading an Info page is
similar to reading a Web page in the sense that you can use a link to jump to another fi le.*
This is not the case with man pages.
 Second, as you are looking at an Info fi le, there are a lot of commands you can use,
many more than are available with the online manual. This makes for a much more
powerful environment. For this reason, some people prefer to look at man pages using
info instead of man.
 Finally, as I described earlier in the chapter, the online manual was designed by the
original Unix developers at Bell Labs. Their goal was to keep things simple, for the
programmers who would create documentation and for the users who read it. Info was
created by the developers of the Emacs text editor. The chief architect was Richard Stallman,
the founder of the Free Software Foundation and the GNU Project (see Chapter 2).
 Stallman trained at the MIT Artifi cial Intelligence Lab in the early 1970s, where
there was a much different environment than Bell Labs. One of the most important
differences was that MIT tended to build large, complex powerful systems, while the
Unix programmers (who had a much smaller budget) valued simplicity. Compare, for
example, Multics vs. Unix (see Chapter 1).
 Although Stallman was not your typical MIT programmer, he did tend to write
programs that were very powerful, idiosyncratic, and had a great many esoteric commands.
To a large extent, you can see these characteristics within both Emacs and Info.
 So, as you read the rest of this chapter and as you practice with Info, remember that it
was brought to you by the same people who created Emacs. If you feel a bit confused, take
solace in the fact that so does everyone else the fi rst time they try to use Info.
 As complex as Info is, it is actually part of something larger called TEXINFO, the
offi cial documentation system for the GNU project. Texinfo is a sophisticated set of tools
that allows you to use a single information fi le to generate output in a variety of formats:
Info format, plain text, HTML, DVI, PDF, XML and Docbook.
 For our purposes, all we need to know is that GNU documentation starts life as Texinfo
fi les, which are then used to generate Info fi les. For this reason, you will sometimes see
Info referred to as Texinfo. For example, if you ask someone a question and he asks, “Have
you checked with Texinfo?” he is telling you to use Info.

 *Unlike Web pages, Info fi les contain only plain text with very little formatting and no pictures. Thus, as you use Info, you
can see what it was like to use the Web in its early days, when it was a primitive, text-based system.

33614_09_189_222.indd 21233614_09_189_222.indd 212 1/9/2008 12:32:22 PM1/9/2008 12:32:22 PM

Documentation: The Unix Manual and Info

213

 Since Info is so complex, we can’t cover everything, nor would we want to. Instead,
I will confi ne myself to three main goals, showing you: how to use Info to display what
you want, how to maneuver around the Info system, and how to display the Info help
information. Once you have these three skills, you can RTFM as necessary, and teach
yourself whatever you need to know.

INFO AND TREES
You may remember that, in Chapter 8, we discussed the idea of data structures, a basic
concept of computer science. A data structure is an entity used to store and retrieve data
according to a set of precise rules. At the time, I mentioned that the most common types
of data structures are lists, linked lists, associative arrays, hash tables, stacks, queues,
deques (double-ended queues), as well as a variety of tree-based structures.
 In Chapter 8, we discussed stacks, so you could understand how the dc calculator
handles reverse Polish notation. In this section, we are going to discuss trees, because that
is the data structure Info uses to store and retrieve Info fi les. Once you understand trees,
you can make sense out of the commands you use to control Info. If you don’t understand
what a tree is, you can certainly use Info, but it won’t be fun and it won’t be easy.

WHAT’S IN A NAME?

Texinfo
When you fi rst look at the name Texinfo, you might think that it should be Textinfo. After all,
it is the name of a text-based information system. Actually, the spelling of Texinfo is correct: it
comes from TeX, a typesetting system created by the eminent computer scientist Donald Knuth
(pronounced “kuh-NOOTH”).
 The name TeX comes from the Greek word techni, from which we get the English word
“technical”. Techni refers to an art, a craft or, more generally, the end result of someone’s effort.
Thus, the letters TeX are not the English letters T-E-X; they are actually the Greek letters Tau,
Epsilon and Chi, the fi rst three letters of techni. If you want to be pedantically accurate, you
should pronounce the Chi as the “ch” in the Scottish word “loch” or the name “Bach”. Most
computer people, however, pronounce the Chi as a “K”.
 So how should you pronounce Texinfo? You have four choices.
 First, if you like being pedantically accurate you should say “Te[ch]info”, where [ch] is the
funny sound I described above.
 If you are a programmer and you want to look like an insider, say “Tekinfo”.
 If you want to fi t in with the non-technical crowd, say “Texinfo”, which is what most people
do who read the word literally.
 Finally, if you want to be a leader within your social circle, tell everyone that it is obvious the
name should really be “Textinfo”. Explain that the second “t” must have been left out accidentally,
and it is about time someone fi xed the mistake. (Actually, you might be correct: just because
someone invents something, doesn’t mean he has the right to give it a foolish name just to show
how clever he is.)*

 *In my time, I have met both Donald Knuth, who named TeX, and Richard Stallman, who named GNU. If you put them in
a room together, probably the only point they would agree on is that both TeX and GNU are good names.

Info and Trees

33614_09_189_222.indd 21333614_09_189_222.indd 213 1/9/2008 12:32:22 PM1/9/2008 12:32:22 PM

Chapter 9

214 Harley Hahn’s Guide to Unix and Linux

 When a computer scientist talks about a tree, he is referring to a family of complex
data structures. So, to make life simple, let’s start with a simple metaphor.
 Let’s say you decide to go on a hike. You start at the trailhead and fi nd there are
several possible paths to follow. You choose one of them. You follow that path until
you come to a fork, at which point you have a choice of several new paths. Again,
you make a choice and keep walking until you come to another fork and are forced
to make another choice. And so on. Once in a while, you follow a path that leads to
a dead end. When this happens, you need to go back to a previous fork and make a
different choice.
 In the language of computer science, we call each fork a NODE. The main node (the
trailhead in our example) is called the ROOT. The path that joins one node to another
is called a BRANCH. When a branch leads to a dead end, it is a special type of node we
call a LEAF.
 Here is the technical defi nition: To a computer scientist, a TREE is a collection of
nodes, leaves, and branches, organized in such a way that there is, at most, one branch
between any two nodes.*
 Although all of this sounds a bit complicated, it is similar to what we see when we look
at a real tree. As an example, look at the sample tree in Figure 9-7. Notice that, unlike a
real tree, a computer tree is usually drawn with the root at the top.
 Within computer science, there are a variety of different types of trees, each with its
own characteristics. The type of tree I have just described is the data structure Info uses
to store information.
 Each Info fi le is broken into parts and stored as a series of nodes. As you read a fi le,
you move from one node to another. This allows you to read an entire fi le from beginning
to end, one node at a time. As you are looking at a particular node, we say that you are
VISITING that node. Many nodes also contain LINKS that allow you to jump to other,
related fi les (just like links on a Web page).Using Info requires three basic skills. You need
to understand how to:

 1. Use the info command to start Info.
 2. Move from one node to the next, in order to read through an entire fi le.
 3. Use links to jump from one fi le to another.

We will now discuss each of these skills in turn.

STARTING INFO: info
To start the Info system, you use the info command. There are two variations. First, if
you want to display information about a specifi c command, type info followed by the
name of the command. For example:

 *The ideas behind computer trees are taken from a part of mathematics called graph theory. Mathematical trees are similar
to computer trees. However, the terminology is different.
 Within graph theory, a node is called a “vertex” (plural “vertices”), and a branch is called an “edge”. Thus, if you ever meet
a graph theorist, you can expect him to say things like, “Strictly speaking, the Info system uses a data structure that isn’t a real
tree. Since some vertices are joined by more than one edge, you should really describe it as a connected graph in which tree-like
objects are embedded.” (Now you see why Unix people tend to not invite graph theorists to parties.)

33614_09_189_222.indd 21433614_09_189_222.indd 214 1/9/2008 12:32:22 PM1/9/2008 12:32:22 PM

Documentation: The Unix Manual and Info

215

info date
info bc
info info

If you are not sure which command you want to learn about, or if you want to browse the
system, enter the info command by itself:

info

When you start Info in this way, it displays a special node called the DIRECTORY NODE.
The Directory Node contains a list of major topics, so you can consider it to be the main
menu for the entire Info system.

LEARNING ABOUT INFO
Info has a fair amount of help information you can read to get started. Before you do, be
sure to read to the end of this chapter.
 The place to begin your journey is the info man page. Either of the following
commands will do the job:

info --help | less
man info

1

2 3 4

5 6 7 8

9 10 11 12

FIGURE 9-7: Example of a tree

A tree is a data structure consisting of a number of nodes that are joined by branches. The top (main)
node is called the root of the tree. Terminal nodes (dead-ends) are called leaves. In this example, the
Node 1 is the root. Nodes 4, 5, 7, 9, 10, 11 and 12 are leaves. The Info system uses trees in which each
node holds information, and each branch is a link from one node to another.

Learning About Info

33614_09_189_222.indd 21533614_09_189_222.indd 215 1/9/2008 12:32:22 PM1/9/2008 12:32:22 PM

Chapter 9

216 Harley Hahn’s Guide to Unix and Linux

Notice that, in the fi rst command, there are two hyphens and no spaces before the word
help. We will discuss what this means in Chapter 10.
 Once you have read the man page, you can display a short introductory Info fi le, by
entering the command:

info info

Next, you should read the Info tutorial. To do so, start Info and press the h (help) key. It
may be a bit confusing, but if you have read this chapter, you’ll do okay.
 Once you have fi nished the tutorial, take a moment to display the Info command
summary and skim the list of commands. You can display this summary by pressing the
? (question mark) key.

 As you are using Info, you are always looking at a node. If you want to leave that node
and return to the last node you were reading, press l (the letter “L”).
 For example, say you are reading the node that contains help for the date command.
You press ? to display the command summary (a new node). To return to the date
node, all you need to do is press l. Don’t press q, or you will quit Info completely and end
up back at the shell prompt.
 As you read the command summary, you will see <Ctrl> keys referred to using the
notation C-x, instead of ^X or <Ctrl-X>. (This is an Emacs convention.)
 You will also see the notation M-x. The M- stands for Meta key, a very important
concept in Emacs. For now, I’ll just say that to use the Meta key, you can either hold down
the <Alt> key while you press the second key; or press <Esc>, let it go, and then press the
second key.
 For example, let’s say you want to press M-x. You can use either <Alt-X>, or press
<Esc> followed by <X>.

READING AN INFO FILE
There are a great many commands you can use within the Info system. I have summarized
the most important commands in Figure 9-8, and I will discuss them in the next few sections.
As you read, it will help a lot if you start Info and follow along by testing the commands as
we discuss them. When you are fi nished reading, you can use Figure 9-8 as a reference.
 Each Info fi le is structured as a small tree consisting of a linear series of nodes. The
purpose of each fi le is to cover one main idea, such as how to use a particular command;
each node covers a single topic. When you start reading a fi le, you are placed at the root of
the tree for that fi le. Within Info, the root of a tree is called the TOP NODE.

HINT

At any time, from within any Info fi le, you can display the built-in tutorial (by pressing
h) or the command summary (by pressing ?). As you read these fi les, don’t worry about
understanding everything. Just learn the basic commands, and add to your repertoire as the
need arises.
 When it comes to Info, no one knows (or needs to know) everything.

33614_09_189_222.indd 21633614_09_189_222.indd 216 1/9/2008 12:32:22 PM1/9/2008 12:32:22 PM

Documentation: The Unix Manual and Info

217

 As a general rule , the Top Node contains a summary of the topic under discussion, as
well as a list of the topics covered in the fi le. The list is in the form of a menu.
 You can read the fi le in two ways. First, you can read the nodes in order, one after the
other, from the Top Node to the last node. Alternatively, you can use the menu to jump
directly to a particular node, if you want to read about a specifi c topic.
 The simplest way to read a fi le is to start with the Top Node and read the entire fi le
straight through. All you have to do is press <Space>, which will display one screenful of

General Commands
q quit

z start help tutorial

? display command summary

Reading a node

<PageDown> display next screenful

<Space> display next screenful

<Space> (at bottom of node) go to next node

<PageUp> display previous screenful

<Backspace> display previous screenful

<Delete> display previous screenful

<Backspace> (at top of node) go to previous node

<Delete> (at top of node) go to previous node

Moving around within a node
b jump to beginning of current node

<Up> move cursor up one line

<Down> move cursor down one line

<Right> move cursor one position right

<Left> move cursor one position left

Jumping around from one to another within a fi le
n jump to next node in fi le

p jump to previous node in fi le

t jump to Top Node (fi rst node in fi le)

Jumping from one fi le to another

<Tab> move cursor down to next link

M-<Tab> move cursor up to previous link

<Return> follow a link to a new node or fi le

l jump to previous (last viewed) node

d jump to Directory Node (main menu)

FIGURE 9-8: Info: Important Commands

Reading an Info File

33614_09_189_222.indd 21733614_09_189_222.indd 217 1/9/2008 12:32:22 PM1/9/2008 12:32:22 PM

Chapter 9

218 Harley Hahn’s Guide to Unix and Linux

information after another. When you get to the end of a node, pressing <Space> will take
you to the beginning of the next node in the tree. Thus, you can traverse the entire tree by
starting at the Top Node and pressing <Space> repeatedly.
 To move backwards one screenful at a time, press either <Backspace> or <Delete>. If
you are at the beginning of a node and you press one of these keys, you will be taken to
the previous node. (Try it.)
 As a convenience, you can also use <PageDown> and <PageUp> to move within
a node. However, unlike the other keys, <PageDown> and <PageUp> will move only
within a node, they will not move to the next or previous mode. Thus, they are handy
when you want to move up and down without leaving the current node.
 As a convenience, you can jump to the beginning of the current node whenever you
want by pressing the b key.

TOP
NODE

TOP
NODE

TOP
NODE

TOP
NODE

DIRECTORY
NODE

INFO FILE A

INFO FILE B

INFO FILE C

INFO FILE D

FIGURE 9-9: Info tree

Here is a highly simplifi ed rendition of how Info fi les are stored as nodes in a tree. At the root of the tree1
is the Directory Node. In our example, the Directory Node has links to four Info fi les, which I have called
A, B, C and D. Each fi le is stored as a sequence of nodes. The fi rst node in the sequence is called the Top
Node. Notice that fi le C has links to the Top Nodes of fi les B and D.

33614_09_189_222.indd 21833614_09_189_222.indd 218 1/9/2008 12:32:22 PM1/9/2008 12:32:22 PM

Documentation: The Unix Manual and Info

219

 Finally, for small movements, you can use the arrow (cursor) keys. <Down> moves
the cursor down one line; <Up> moves the cursor up one line. Similarly, <Right> and
 <Left> move the cursor one position to the right or left respectively.
 To help you visualize how Info nodes and fi les are connected, take a look at Figure 9-9,
which shows how the Info tree is organized. At fi rst, the organization may seem complicated.
However, taking a moment to understand the connections will make your work with Info a
lot easier.

JUMPING FROM ONE NODE TO ANOTHER

As you are reading an Info fi le, there are several commands you can use to jump from one
node to another, either within the same fi le or in a completely different fi le.
 To jump to the next node in the current fi le, press n; to jump to the previous node,
press p. To jump to the Top Node (the beginning) of the current fi le, press t.
 Many nodes, especially Top Nodes, contain a list of topics in the form of a menu. Each
topic is actually a link, which you can follow. Some links jump to another node within the
fi le; other links jump to a completely different fi le.
 You will recognize links because they have a specifi c format: an asterisk (*), followed
by the name of the topic, followed by a colon (:). After the colon, you will see a short
description of the topic. Sometimes, there will also be an informative comment.
 Here are two examples taken from the Info tutorial I discussed above. The examples
were designed to show what typical menu items look like*:

* Foo: Help-FOO. A node you can visit for fun.
* Bar: Help-BAR. A second way to get to the same place.

 The actual link is the part of the menu item between the asterisk and the colon
(inclusive). It is similar to a link on a Web page. To follow a link, just move your cursor to
it and press <Return>.
 The easiest way to do so is to press <Tab>, which moves down to the next link in the
node; or M-<Tab>**, which moves up to the previous link in the node. Alternatively, you
can use the arrow keys (<Down>, <Up>, <Right> and <Left>).
 Regardless of how you get to a link, once you are there, all you have to do is press
<Return> to make the jump.

HINT

The simplest way to read an Info fi le is to start at its Top Node and press <Space> repeatedly. In
this way, you will work your way through the fi le, one node at a time.

 *These examples, taken directly from the Info tutorial, show how the words “Foo” and “Bar” are used as generic names. See
the discussion earlier in the chapter.
 ** As I explained earlier, M- refers to the Meta key. To use M-<Tab>, you can use either <Alt-Tab>, or press <Esc> followed
by <Tab>.

Jumping From One Node to Another

33614_09_189_222.indd 21933614_09_189_222.indd 219 1/9/2008 12:32:22 PM1/9/2008 12:32:22 PM

Chapter 9

220 Harley Hahn’s Guide to Unix and Linux

 Aside from following a link, there are two other ways to jump. As we discussed earlier,
each Info fi le is organized as a simple tree consisting of a sequence of nodes. The entire
Info system, in fact, is actually one huge tree, with branches that reach – directly and
indirectly – to every fi le and every node in the system. You can jump to the root of this
very large tree – the Directory Node – by pressing d. Since the Directory Node acts as the
main menu for the entire system, the d command is worth memorizing.
 The last way to jump is to press l (the letter “L”) to leave the current node and return
to the last node you visited. For example, let’s say you have followed a link to jump from
fi le A to fi le B. If you press l, you will jump back to fi le A.
 The l command is useful, because you can press it repeatedly to retrace all of your
steps throughout the tree. This allows you to move backwards, one step at a time. Like the
d command, the l command is worth memorizing.

C H A P T E R 9 E X E R C I S E S

REVIEW QUESTIONS

1. What are the two principle Unix documentation systems? What commands do you
use to access each system?

2. When you are reading a man page, how do you enter a single shell command?

3. When you are looking at an Info node, which commands do you use to display the
help tutorial, display the command summary, display the next screenful, jump to the
beginning of the current node, jump to the next node, jump to the Top Node, jump
to the Directory Node?

HINT

Although the Info system is complicated, there are only seven really important commands:

1. <Space>: display next screenful
2. <Backspace>: display previous screenful
3. <Tab>: move cursor down to next link
4. <Return>: follow a link
5. d: jump to the Directory Node
6. l: jump to last node you visited

7. q: quit

If you memorize these seven commands and commit yourself to learning more as the need
arises, you will do just fi ne.

33614_09_189_222.indd 22033614_09_189_222.indd 220 1/9/2008 12:32:23 PM1/9/2008 12:32:23 PM

Documentation: The Unix Manual and Info

221

APPLYING YOUR KNOWLEDGE

1. Use the man command to display the man page for your default shell (man sh). Once
the page is displayed, perform the following operations: display the next screenful of
information; jump to the end of the page; jump to the beginning of the page; search
for the word “variable”; search forward several times for the next occurrence of the
same word; search backwards several times for the same word; display a command
summary; quit.

2. If you are using Linux or FreeBSD, use the info command to display information
about the Info system itself (info info). Once the fi rst node is displayed, perform
the following operations: display the next screenful of information; jump to the end
of the current node; jump to the beginning of the current node; jump to the Top
Node; jump to the Directory Node; display a command summary; quit.

FOR FURTHER THOUGHT

1. The doctrine of RTFM requires people to try to help themselves by reading the
documentation before asking for help. What are two advantages of this guideline?
What are two disadvantages?

Chapter 9 Exercises

33614_09_189_222.indd 22133614_09_189_222.indd 221 1/9/2008 12:32:23 PM1/9/2008 12:32:23 PM

33614_09_189_222.indd 22233614_09_189_222.indd 222 1/9/2008 12:32:23 PM1/9/2008 12:32:23 PM

223

C H A P T E R 1 0

Command Syntax

Entering More Than One Command at a Time

As you use the Unix CLI (command line interface), you enter one command after another.
When you enter a command, the entire line you type is called the COMMAND LINE.
When you press <Return> at the end of the line, the contents of the command line are
sent to the shell to be processed.
 As you enter a command, there are two things to understand. First, you must type the
command properly according to certain rules. How to do so is the subject of this chapter.
Second, you must understand what happens as the shell processes the command. This is
an important topic, which we will discuss later in the book when we talk about the shell.
 There are literally hundreds of commands, and as long as you work with Unix, you
will never stop learning new ones. For that reason, you need to be able to teach yourself
from the online manual as the need arises. In order to use the manual well, you need to
understand the formal rules that describe how a command must be entered.

ENTERING MORE THAN ONE COMMAND AT A TIME
In most cases, you will type only one command on the command line. However, you
should know that it is possible to enter more than one command at a time. All you need
to do is separate the commands with semicolons.
 Here is an example. You are on the phone planning a party with one of your friends.
You want to display today’s date, as well as the calendar for the current month. The
commands to do this are date and cal (see Chapter 8). Of course, you can enter the
two commands separately:

date
cal

However, you can do it all in one line by using a semicolon as a command separator:

date; cal

Notice that you do not need a semicolon at the end of the command line.

33614_10_223_238.indd 22333614_10_223_238.indd 223 1/9/2008 12:32:45 PM1/9/2008 12:32:45 PM

Chapter 10

224 Harley Hahn’s Guide to Unix and Linux

 Here is another example using the cp command to copy a fi le (see Chapter 25), the
 ls command to list information about a fi le (Chapter 24), and the rm command to erase
(remove) a fi le (also Chapter 25).
 Your goal is to make two copies of a fi le named data. The copies will be called
backup1 and backup2. After you make the copies, you want to erase the original fi le.
You then list all your fi les to see what you have. The commands look like this:

cp data backup1
cp data backup2
rm data
ls

Don’t worry about the details. We will cover these commands later in the book. The
important point here is that, instead of typing the commands on four separate lines, we
can enter them on one line by separating them with semicolons:

cp data backup1; cp data backup2; rm data; ls

You might ask, what’s the point of entering all the commands on one line? After all, you
have to type the same number of characters either way.
 The answer is that, in the long run, you will use Unix more effectively if you learn
how to think ahead more than one step at a time, much like a chess player does as he
decides on his next move. Although this may not seem like a big deal now, it will become
important as you become more experienced.
 In Chapters 15 through 19, I will show you how to put together commands and tools
to form complex command lines. To do this well, you need to develop your skills as a Unix
problem solver. For now, I’d like you to start thinking in this way by seeing how many
opportunities you can fi nd to enter multiple commands on the same command line.

WHAT HAPPENS WHEN YOU ENTER A COMMAND?
To enter a command, you type the name of the command, possibly followed by other
information. For example, consider the following ls command line.

ls -l -F file1

This command has four parts: the name of the command, ls, followed by -l, -F and
file1. (I’ll be more specifi c in a moment about what these other parts are called.)
 When you press the <Return> key, the shell processes your command. The actual
details are a bit complex, and we will leave the discussion to later chapters. For now, here
is a simplifi ed description that works well for most people most of the time.

HINT

The difference between a good Unix user and a great Unix user is the ability to solve problems
as they arise by putting together tools and ideas quickly, creatively, and with a minimum of fuss.
In fact, some people would say that this is the essence of using Unix well.

33614_10_223_238.indd 22433614_10_223_238.indd 224 1/9/2008 12:32:46 PM1/9/2008 12:32:46 PM

Command Syntax

225Command Syntax

 The shell processes a command line by assuming that the fi rst part of the line is
the name of a command you want to run. The shell then searches for and executes the
program by that name. For example, if you were to enter the previous ls command, the
shell would fi nd and run the ls program.
 If you enter the name of a command that the shell can’t fi nd, it will display an error
message. For example, let’s say you enter:

harley

Although it’s hard to believe, Unix doesn’t have a harley command, so you will see:

harley: not found

When the shell does fi nd the program you want, it runs it. At that time, the shell sends
a copy of the entire command line to the program. It is up to the program to fi gure out
what to do with all the information. In the example above, it would be up to the ls
program to fi gure out what to do with -l, -F and file1.

COMMAND SYNTAX
A Unix command must be typed just so, according to well-defi ned rules. Putting a
punctuation mark in the wrong place or spelling a word incorrectly can invalidate the
entire command. Most of the time, you will see an error message and the command will
be ignored. However, in the worst case, a mistyped command will execute incorrectly
and cause problems. Thus, it is important that you learn how to enter commands
correctly. The formal description of how a command should be entered is called its
COMMAND SYNTAX or, more informally, its SYNTAX.
 How do you learn the syntax for a command? It’s easy. Once you understand the general
rules and conventions, you can teach yourself how to use any command by looking up its
syntax in the manual or in the Info system (see Chapter 9).
 If you are a beginner, you know that there are many commands that, right now, are
beyond your capabilities. Indeed, there are some commands you will never understand
(or never need to understand). Regardless, my goal is that, by the time you fi nish this
chapter, you should be able to understand the syntax of any command you happen to
encounter, even if you don’t understand the command itself*.
 As a general rule, Unix command syntax can be expressed as follows: You type the
name of the command, followed by any “options”, followed by any “arguments”:

command-name options arguments

 *This is not as odd as it sounds. For example, when you learn a foreign language, it doesn’t take long to get to the point
where you can read sentences you can’t understand. The same is true for Unix. By the time you fi nish this chapter, you will be
able to understand the syntax of any Unix command. However, until you get more experience, most commands will still be a
mystery to you.
 My goal is to make sure you have a fi rm grasp of the basic principles, such as command syntax. This will allow you to
fi ll in the gaps by practicing regularly and taking the time to teach yourself. For example, whenever you have a question, I
encourage you to take a moment to use the manual or the Web to fi nd yourself an answer. (If this sounds like fun to you, you
are a lucky person.)

33614_10_223_238.indd 22533614_10_223_238.indd 225 1/9/2008 12:32:46 PM1/9/2008 12:32:46 PM

Chapter 10

226 Harley Hahn’s Guide to Unix and Linux

Options allow you to control how a command should do its job, while arguments specify
the data you want the command to use.
 Consider the example:

ls -l -F file1 file2 file3

The command name is ls. The options are -l and -F. The arguments are file1,
file2 and file3.

 Now, let’s move on to the details.

OPTIONS
When you type a command, you use OPTIONS to modify how the command should do
its job. When you read Unix documentation, you will sometimes see options referred to
as SWITCHES or FLAGS, so you should know those words as well.
 As the name implies, the use of options is optional. Most commands have at least a
few, but some commands have so many that you wonder how anyone can ever know
them all. The answer is no one does. Even experienced people depend on the manual to
look up obscure options.
 Within the command line, options come directly after the command name. An option
consists of either a hyphen followed by a single letter, or two hyphens followed by a word.
For example:

ls -l -F file1 file2 file3
ls --help

In the fi rst command, there are two options, -l and -F. In the second command, there
is one option, --help.
 The job of an option is to allow you to control the actions of the command. In our
example, for instance, the -l option tells the ls command to display the “long” listing.
Normally, the ls command lists only the names of fi les. When you use the -l option, ls
lists extra information about each fi le, as well as the names.
 Occasionally, you will see an option that is a number, such as:

ls -1 file1 file2 file3

You will have to be careful. For example, in this case, do not confuse -l (the lowercase
letter “L”) with -1 (the number 1).
 When you use more than one single-character option, you can combine them by using
a single hyphen. Moreover, you can specify options in any order. Thus, all of the following
commands are equivalent:

ls -l -F file1
ls -F -l file1
ls -lF file1
ls -Fl file1

33614_10_223_238.indd 22633614_10_223_238.indd 226 1/9/2008 12:32:46 PM1/9/2008 12:32:46 PM

Command Syntax

227

As with all Unix commands, you must make sure that you use upper- and lowercase
exactly. For example, the ls command has both -F and -f options and they are different.
However, as a general rule, most options are lowercase. (As I explained in Chapter 4,
almost everything in Unix is lowercase.)

At this point, an interesting question arises: When you talk about an option, how do you
pronounce the hyphen?
 In the olden days, it was pronounced as “minus”, probably because it is easier to say
than “hyphen”. For example, an older person would pronounce ls -l as “L-S-minus-L”.
 Within the Linux culture, however, it has become common for people to refer to
the hyphen as “dash”, especially among younger users. Thus, a Linux person would
probably pronounce ls -l as “L-S-dash-L”. Similarly, “ls --help” would be pronounced
“L-S-dash-dash-HELP”.
 The distinction between “minus” and “dash” is not important when you type a
command. However, when you are talking, what you say out loud can have important
social implications.
 For example, let’s say your teacher calls upon you during class, and asks you, “How
do you tell the ls command to display a long fi le listing?” For most students, the answer
would be, “Use the dash-L option.” However, if you think your teacher learned Unix
before the mid-1990s, show respect for an elderly person by saying, “Use the minus-L
option.” (Remember, one day you will be old yourself.)

DASH OPTIONS AND DASH-DASH OPTIONS
When it comes to options, the single dash format is the older one. It dates back to the
earliest Unix system (see Chapter 2), when programmers desired brevity on the command
line. Many of the command names were only two or three letters, and all of the options
were only a single letter.
 Years later, when the GNU utilities were being developed (see Chapter 2), the designers
wanted to be able to use longer options. However, the longtime conventions dictated that
all options should only be one letter, and that options could be combined as I explained
above. For example, what do you think would happen if the shell encountered the
following command?

ls -help

Since multiple options can be combined, -help would refer to four separate options,
-h, -e, -l and -p.

HINT

When you look up a command in the manual, you will see an explanation for each individual
option. However, the man page will not tell you that single-character options can be combined.
For example, -l -F can be combined into -lF. This is basic Unix, and it is assumed that you
already know it.

Dash Options and Dash-Dash Options

33614_10_223_238.indd 22733614_10_223_238.indd 227 1/9/2008 12:32:46 PM1/9/2008 12:32:46 PM

Chapter 10

228 Harley Hahn’s Guide to Unix and Linux

 Of course, it would be possible to modify the rules, but that would be a drastic change
that would invalidate many existing programs, and force too many people to change
their habits. Instead, it was decided that longer options would be allowed, as long as they
were preceded by two hyphens, instead of one. In that way, the system could be expanded
without compromising what already existed.
 Since Linux uses the GNU utilities, you will see both types of options if you are a
Linux user. With most other systems, you will see only single-character options.
 The chief purpose of what we might call the dash-dash options is to use longer option
names, which makes them easier to understand and remember. On the other hand, longer
options are slower to type and a lot easier to misspell. For this reason, many commands
give you a choice by giving the same option a short and a long name. This allows you to
use whichever one you want.
 For example, the ls command (which lists fi le information) has a -r option, which
causes the command to list the fi les in reverse order. With Linux, the command also has
a --reverse option, which does the same thing. Thus, the following two commands
are equivalent:

ls -r
ls --reverse

Within the world of dash-dash options, there are two options that you will often
encounter when you use the GNU utilities. If you are a Linux user, these options are
worth memorizing.
 First, many commands will display a summary of the command’s syntax if you use the
 --help. Typically, you would use this option by itself. For example:

ls --help
date --help
cp --help

In many cases, the summary is so large that most of it will scroll off your screen before
you can read it. If this happens, send the output to the less program, which will display
the information once screenful at a time. To do so, type a | (vertical bar) followed by
less. For example:

ls --help | less
date --help | less
cp --help | less

(See Chapter 21 for a discussion of less.)
 The second common dash-dash option is --version:

ls --version
date --version
cp --version

33614_10_223_238.indd 22833614_10_223_238.indd 228 1/9/2008 12:32:46 PM1/9/2008 12:32:46 PM

Command Syntax

229

This option displays information about what version of this particular program is
installed on your system. Normally, this is not information that you would need.
However, if you are having a problem, it sometimes helps to know what version of the
program you are running.

ARGUMENTS
I mentioned earlier that the general syntax of a Unix command can be expressed as follows:
the name of the command, followed by any options, followed by any arguments:

command-name options arguments

We have already talked about command names and options, so let us move on to discuss
how to use arguments.
 ARGUMENTS are used on the command line to pass information to the program you
want to run. Consider this example, which we looked at earlier during our discussion
of options:

ls -l -F file1 file2 file3

The command is ls, the options are -l and -F, and the arguments are file1, file2
and file3.
 The meaning of an argument will vary from one command to another. Typically,
the arguments specify the data upon which the program will perform an action. In our
example, we are specifying the names of three fi les.
 Consider another example:

man date

The command name is man, there are no options, and the argument is date. In this
command, we are telling man to display the man page for date.
 One last example:

passwd weedly

Here we are using the passwd (change password) command with one argument,
weedly. In this case, we are indicating that we want to change the password for userid
weedly (see Chapter 4).

HINT

The rules for typing options are the same for virtually all Unix commands: each option starts
with either one or two hyphens; single-character options may be combined. However, there are
a few exceptions.
 Some commands use options without a hyphen. Other commands will accept a hyphen, but
don’t require it. Finally, some commands will not allow you to combine single-character options.
 Fortunately, the exceptions are rare. However, if you have any problems with a command,
check with the man page. It is the defi nitive reference.

Arguments

33614_10_223_238.indd 22933614_10_223_238.indd 229 1/9/2008 12:32:46 PM1/9/2008 12:32:46 PM

Chapter 10

230 Harley Hahn’s Guide to Unix and Linux

 Actually, the computer term “argument” is borrowed from mathematics, where
it indicates an independent variable. For example, in the equation f(x) = 5x + 17, the
argument is x. In this sense, an argument is something upon which a command or a
function operates.
 In English, the word “argument” comes from the Latin word arguere, which means to
clarify or to make clear.

WHITESPACE
When you enter a command, you must make sure to separate each option and argument.
To do so, you must type at least one space or tab between each separate part. For example,
here are several ways of entering the same command. Notice that I have explicitly indicated
where I pressed the <Space> bar and <Tab> key:

ls<Space>-l<Space>-F<Space>file1
ls<Tab>-l<Tab>-F<Tab>file1
ls<Space><Tab>-l<Space>-F<Tab><Tab><Tab>file1

Normally, of course, you would put a single space between each part of the command.
In fact, with some shells, you can only use spaces, because tabs have a special function
(called command completion). However, the idea of using spaces and tabs as separators
is important enough to have its own name: whitespace.
 This idea will come up repeatedly as you use Unix, so let me give you a formal defi nition.
Within a command line, WHITESPACE refers to one or more consecutive spaces or (with
some shells) tabs. In other situations, whitespace may refer to one or more consecutive
spaces, tabs or newlines. (See Chapter 4 for a discussion of the newline character.)
 If you are a Windows or Macintosh user, you will have seen fi le names that contain
spaces. For example, Windows systems use folders (directories) with names like
“Program Files”, “My Documents”, and so on. Within Unix, spaces in the command line
are considered to be whitespace. As such, you should never use spaces in the name of a
fi le. Similarly, you will never see a Unix command with a space in its name.

WHAT’S IN A NAME?

Argument
The general syntax of a Unix command is:

command-name options arguments

The word “option” only makes sense because command line options give you a choice as to
how the command should execute. However, what about the word “argument”? Obviously,
it does not indicate an intellectual confl ict or “a connected series of statements intended to
establish a proposition”*.

 ** If you don’t recognize this quotation as coming from the Monty Python sketch “The Argument Clinic”, you have a
signifi cant gap in your cultural training. My advice is to take a moment right now and correct this defi ciency. (Hint: Use the
Web to search for: "monty python" "argument clinic".)

33614_10_223_238.indd 23033614_10_223_238.indd 230 1/9/2008 12:32:46 PM1/9/2008 12:32:46 PM

Command Syntax

231

ONE OR MORE; ZERO OR MORE
In the next section, I will discuss the formal method for describing commands. Before I do,
however, I need to defi ne two important expressions: “one or more” and “zero or more”.
 When you see the expression ONE OR MORE, it means that you must use at least one
of something. Here is an example.
 In Chapter 9, I explained that you can use the whatis command to display a short
description of a command, based on its entry in the online manual. When you use
whatis, you must specify one or more command names as arguments. For instance:

whatis man cp
whatis man cp rm mv

The fi rst example has two arguments; the second example has four arguments. Because
the specifi cations for this command call for “one or more” names, we must include at
least one — it is not optional.
 The expression ZERO OR MORE, on the other hand, means that you can use one or
more of something, but it is also okay to leave it out.

HINT

When you choose names that have more than one part, you should never use a space in the
middle of the name. However, you can use a hyphen (-) or an underscore (_).
 For example, the following are all valid names:

program-files
program_files
my-documents
my_documents

My personal preference is to use hyphens, because they are more readable than underscores.
 (Reminder: Unix distinguishes between upper- and lowercase. Also, most of the time, we use
only lowercase for names.)

WHAT’S IN A NAME?

Whitespace
The term “whitespace” refers to consecutive spaces and tabs that are used to separate two
items. The name derives from the earliest Unix terminals that printed on paper. As you typed a
command, there was real white space between each word.
 The Unix shell (command processor) was designed to be fl exible; it didn’t care how much
space there might be between parts of the command line, as long as the parts were separated.
Thus, the term “whitespace” came to mean any number of spaces and tabs.
 Later, for certain applications, the term was extended to mean any number of spaces, tabs or
newlines. (You will remember from Chapter 4 that a newline is the character generated when
you press the <Return> key.)

One or More; Zero or More

33614_10_223_238.indd 23133614_10_223_238.indd 231 1/9/2008 12:32:46 PM1/9/2008 12:32:46 PM

Chapter 10

232 Harley Hahn’s Guide to Unix and Linux

 For instance, I said earlier that the ls command, along with the -l option, lists
information about the fi les you specify. The exact format of the command requires you
to specify zero or more fi le names. Here are three examples:

ls -l
ls -l file1
ls -l file1 file2 data1 data2

Whenever you see a specifi cation that requires zero or more of something, you should
ask, “What happens if I don’t use any?” Frequently, there is a DEFAULT — an assumed
value — that will be used.
 With ls, the default is the set of fi les in your “working directory” (explained in
Chapter 24). Thus, if you do not specify any fi le names — as in the fi rst example — ls
lists information about all the fi les in your working directory. When you specify one or
more fi le names, ls displays information only about those particular fi les.

THE FORMAL DESCRIPTION OF A COMMAND: SYNTAX
A good approach to learning a new command is to answer the following three questions:

• What does the command do?
• How do I use the options?
• How do I use the arguments?

To learn what a command does, use the man command to look it up the command in
the online manual (see Chapter 9) and read the summary. If you need more information,
take a look at the full description.
 When you check the man page, you will see the command syntax: the exact, formal
specifi cation for using the command. Informally, you can think of the syntax as the
“offi cial” description of how to use the command.
 Within Unix, command syntax follows seven rules. The fi rst fi ve rules are the most
basic, so let’s start with those. We’ll cover the other two rules in a moment.

HINT

Whenever you are told that you can use zero or more of something, ask, “What is
the default?”

1. Items in square brackets are optional.

2. Items not in square brackets are obligatory.

3. Anything in boldface must be typed exactly as written.

4. Anything in italics must be replaced by an appropriate value.

5. An argument followed by an ellipsis (...) may be repeated any number of times.

hah33614_c10_223_238.indd 232hah33614_c10_223_238.indd 232 5/20/2009 2:18:12 PM5/20/2009 2:18:12 PM

Command Syntax

233

Here is an example to show how it all works. The following is the syntax for the ls
command on one particular Unix system:

ls [-aAcCdfFgilLqrRstu1] [filename...]

From looking at the syntax, what can we say about this command?

• The command has 18 different options. You can use -a, -A, -c, -C and so on. Since
the options are optional, they are enclosed in square brackets. In other words, you can use
zero or more options.

• There is one argument, fi lename. This argument is optional, as it too is enclosed in
square brackets.

• The name of the command and the options are printed in boldface. This means that
they must be typed exactly as they appear.

• The argument is in italics. This means that you must replace it with an appropriate
value. (In this case, the name of a fi le or a directory.)

• The argument is followed by “...”, which means that you can use more than one argument
(to specify the name of more than one fi le). Since the argument is itself optional, we can
be precise and say that you must specify zero or more fi le names.

 Based on this syntax, here are some valid ls commands. Remember, single-hyphen
options can be typed separately or grouped together with a single hyphen:

ls -l
ls file1
ls file1 file2 file3 file4 file5
ls -Fl file1 file2
ls -F -l file1 file2

Here are some invalid ls commands. The fi rst command is invalid because it uses an
unknown option (-z):

ls -lz file1 file2

The next command is invalid because the option comes after an argument:

ls file1 -l file2

This example is tricky, and it shows why you must follow the syntax exactly.
 As a general rule, options must come before arguments (although there can be
exceptions, which I will mention in a moment). Since the word file1 does not begin
with a hyphen, ls assumes it is an argument, as is anything else that follows. Thus, ls
thinks you are specifying the names of three fi les: file1, -l and file2. Of course,
there is no fi le named -l, so the results of this command will not be what you intended.
 The last two syntax rules cover more complicated situations.

The Formal Description of a Command: syntax

33614_10_223_238.indd 23333614_10_223_238.indd 233 1/9/2008 12:32:47 PM1/9/2008 12:32:47 PM

Chapter 10

234 Harley Hahn’s Guide to Unix and Linux

The following example (a simplifi ed version of the Linux man command) illustrates
this rule:

man [-P pager] [-S sectionlist] name...

In this case, if you want to use the -P option, it must be immediately followed by the
argument pager. Similarly, if you want to use the -S option, it must be immediately
followed by the argument sectionlist.
 As you can see, this type of syntax is an exception to the general guideline that all
options come before the arguments. In this case, it is possible for the pager argument to
come before the -S option.
 Finally, here is the last syntax rule.

This is illustrated by the next example, which shows the syntax of the Linux version of
the who command:

who [-abdHilmpqrstTu] [file | arg1 arg2]

In this case, the syntax tells us that we can use either a single argument named fi le or two
arguments named arg1 and arg2.
 Here are two examples. The fi rst specifi es fi le; the second specifi es arg1 and arg2:

who /var/run/utmp
who am i

Don’t worry about the details*. What I want you to notice is how the vertical bar is used
to specify alternatives when you have more than one choice.

6. If you see a single option grouped with an argument, the option and argument
must be used together.

7. Two or more items separated by a | (vertical bar) character, indicates that you are
to choose one item from a list.

 *If you read the man page for who, you will see that the fi rst argument (fi le) is the location of the fi le from which who draws
its information. You can specify your own fi le instead of the default. This is not something you would normally do, but the idea
is straightforward.
 The other two arguments (arg1 and arg2) are more interesting. You may recall from Chapter 8 that you can display the
name of the userid that is currently logged in by entering:

who am i

Interestingly enough, the who command will respond in this way no matter what you type, as long as you specify two arguments.
For example, you can type:

who are you
who goes there

Or, if you are brave:

who is god

Why do you think the command was programmed in this way?

33614_10_223_238.indd 23433614_10_223_238.indd 234 1/9/2008 12:32:47 PM1/9/2008 12:32:47 PM

Command Syntax

235

LEARNING COMMAND SYNTAX FROM THE UNIX MANUAL
When you read printed material (such as this book), it is easy to see which words are in
boldface and which are in italics. However, when you look at the online manual on your
monitor, you may not see the special typefaces.
 On some systems, you will see boldface and italics; on others, you will not. On systems
that don’t show italics, you will often see underlining instead. Regardless, you will have to
get used to your particular system so you can deduce, from context, exactly which words
are arguments. Most of the time, this is not diffi cult.
 A typical man page will explain each possible option and argument. However, within
the syntax summary, some versions of the manual use a simplifi ed form in which the
individual options are not listed. Rather, they are represented by the word “options”. Here
is an example. Earlier I showed the syntax for one version of the ls command:

ls [-aAcCdfFgilLqrRstu1] [filename...]

Using the simplifi ed system, the syntax would be:

ls [options] [filename...]

Not to worry. Whether or not you see the options in the syntax summary, they will all be
enumerated — and explained — within the detailed command description.

HOW CAN YOU LEARN SO MANY OPTIONS?
You will have noticed that in the example we have been using, the ls command has 18
different options. Actually, some versions of the ls command have even more options,
many of which are the so-called dash-dash options. The question arises, how can you
learn so many options?
 The answer is you don’t. Nobody remembers all the options for every command,
even for the commands they use regularly. The best idea is to memorize only the most
important options. When you need to use other options, look them up — that is what the
online manual is for.
 One of the characteristics of Unix programmers is that they tend to write programs
with many options, most of which you can safely ignore. Moreover, it is not uncommon
to fi nd that different versions of Unix offer different options for the same command.
 The ls command we have been using is from one particular type of Unix. Other
systems will have ls commands that have a different number of options. However, the
most important options — the ones you will use most of the time — rarely vary much
from one system to another.
 In this book, I explain many Unix commands. As I do, I will make a point to describe
only the most important options and arguments, the ones you will need most of the
time. If you are learning about a command, and you are curious as to all the possible
options and arguments, all you have to do is take a moment to check with the manual on
your system.
 Consider the syntax for the man command as I described it in Chapter 9:

How Can You Learn So Many Options?

33614_10_223_238.indd 23533614_10_223_238.indd 235 1/9/2008 12:32:47 PM1/9/2008 12:32:47 PM

Chapter 10

236 Harley Hahn’s Guide to Unix and Linux

man [section] name...
man -f name...
man -k keyword...

Since this command can be used in three different ways, it is easiest to show its syntax
using three different descriptions.
 The fi rst way to use man is with an optional section number and one or more name
values. The second way is to use the -f option and one or more name values. The third
way is to use the -k option and one or more keyword values.
 These are not the only options that man uses, just the most important ones. On some
systems, man has a large number of options. However, for most day-to-day work, -f and
-k are the only ones you will need. If you want to know more about what is available on
your system, just check the manual.
 To conclude this chapter, here is one fi nal example. As I explained in Chapter 9, you
can use the whatis command instead of man -f, and the apropos command instead
of man -k. The syntax for these two commands is:

whatis name...
apropos keyword...

The syntax shows us that, to use either of these commands, you enter the command name
(whatis or apropos) followed by one or more arguments.

HINT

Some commands have minor differences from one version of Unix to another. In this book, I
generally use the GNU/Linux version of the command. Most of the time, this will be fi ne, as the
most important options and arguments tend to be the same in most types of Unix.

 However, if you have a problem, the defi nitive source for how a program works on your
system is your online manual, not this book (or any book).

33614_10_223_238.indd 23633614_10_223_238.indd 236 1/9/2008 12:32:47 PM1/9/2008 12:32:47 PM

Command Syntax

237

C H A P T E R 1 0 E X E R C I S E S

REVIEW QUESTIONS

1. How do you enter more than one command on the same line?

2. The syntax of a Unix command can be expressed in the form: command-name
options arguments. What are options? What are arguments?

3. What are dash options and dash-dash options? What is each type used for?

4. What is whitespace?

5. When you learn the syntax of a new program, what are the three basic questions you
should ask?

APPLYING YOUR KNOWLEDGE

1. It is often desirable to enter more than one command on the same line. Create a short
summary of your system’s status by typing the following three commands on a single
line: date (time and date), users (userids that are logged in), and uptime (how
long your system has been up).

2. Write the syntax for the following program. The command name is foobar. There
are three options -a, -b and -c. The -c option takes an optional argument named
value. Finally, there must be one or more instances of an argument named file.

FOR FURTHER THOUGHT

1. Many of the GNU utilities (used with Linux and FreeBSD) support both the traditional,
abbreviated - (dash) options, as well as the longer -- (dash-dash) options. Why did
the GNU developers feel it was necessary to introduce a new style of options? What
are the advantages? What are the disadvantages?

Chapter 10 Exercises

33614_10_223_238.indd 23733614_10_223_238.indd 237 1/9/2008 12:32:47 PM1/9/2008 12:32:47 PM

33614_10_223_238.indd 23833614_10_223_238.indd 238 1/9/2008 12:32:47 PM1/9/2008 12:32:47 PM

239

C H A P T E R 1 1

The Shell

What Is a Shell?

As you know, the shell is the program that reads and interprets your commands. From
the very beginning, the shell was designed to be a regular program, one that requires no
special privileges to do its job. In this sense, it is like any other program that might run
on a Unix system.
 Because of this basic design, it is possible for anyone with the requisite programming
skill to design his own shell, which he can then share with other Unix users. Over the years,
this is exactly what has happened and, today, there are a large number of shells in use. Your
Unix system will have at least a few, and you can use whichever one you want. You can even
switch back and forth from one shell to another. If you want to try a shell that is not installed
on your system, there are a variety of shells you can download from the Internet for free.
 In this chapter, I will answer several questions: What is the shell, and why is it important?
What are the most popular shells? Which shell should you use? In the following chapters,
I will teach you how to use the most important shells: Bash, the Korn shell, the C-Shell,
and the Tcsh.

WHAT IS A SHELL?
Once you start using Unix , you will hear a lot of talk about the shell. Just what is this
“shell” thing, anyway? There are several answers.
 The short technical answer is that a SHELL is a program that acts as a user interface
and script interpreter, allowing you to enter commands and, indirectly, to access the
services of the kernel.
 To be a bit less technical, let me give you a more elaborate, two-part description of a
shell. First, a shell is a COMMAND PROCESSOR: a program that reads and interprets the
commands that you enter. Every time you type a Unix command, the shell reads it and
fi gures out what to do. Most shells also offer facilities to make your minute-to-minute work
more convenient. For instance, you can recall, edit and re-enter previous commands.
 In addition to being a command interpreter, a shell also supports some type of
programming language. Using this language, you can write programs, called SHELL
SCRIPTS, for the shell to interpret. These scripts can contain regular Unix commands,

33614_11_239_254.indd 23933614_11_239_254.indd 239 1/9/2008 12:33:30 PM1/9/2008 12:33:30 PM

Chapter 11

240 Harley Hahn’s Guide to Unix and Linux

as well as special shell programming commands. Each type of shell has its own specifi c
programming language and rules. As a general rule, however, shells within the same
“family” use similar programming languages. (We will talk about the two main families
of shells later in the chapter.)
 Just between you and me, none of these explanations really captures the je ne sais quoi
— that certain something — that surrounds the idea of the shell. You see, the shell is your
main interface into Unix. Since there are a variety of shells, you have a choice as to which
interface you use and, your choice affects how Unix feels to you as you use it.
 As you can imagine, there are all kinds of arguments among the cognoscenti as to which
shells are best and which shells should be avoided at all costs. Until you are an experienced
Unix user, however, it doesn’t really matter which shell you use. The differences, though
important, are not signifi cant to beginners: you might as well use whichever shell is the
default on your system. Once you get more experience, you can choose the shell you like
the best and then use it to create a highly customized work environment for yourself.
 At that point — once you know how to deliberately manipulate your work environment
— you will begin to understand the mysterious feeling people have for the shell. You can’t
see it and you can’t touch it, but it is always there, waiting to serve your every need in the
way that works best with your individual thinking process. (If you are a pantheist, this
will make perfect sense.)

THE BOURNE SHELL FAMILY: sh, ksh, bash
The shell is a program and, like all programs, it is known by the name of the command
you type to run it. The very fi rst shell was written in 1971 by one of the original creators
of Unix, Ken Thompson, two years after Unix was invented. (See Chapter 2 for the history

HINT

Becoming profi cient with the shell you are currently using is far more important than spending
a lot of time trying to choose the “right” shell, or trying to convince a busy admin to install a
new shell on your system.
 “If you can’t use the shell you love, love the shell you use.” — Harley Hahn

WHAT’S IN A NAME?

Shell
There are three ways to think about the name “shell”. First, a Unix shell provides a well-defi ned
interface to protect the internals of the operating system. In this sense, a shell acts like the shell
of an oyster, shielding its vulnerable parts from the harsh realities of the outside world.
 Alternatively, you can visualize a seashell that winds around and around in a spiral. When
you use a Unix shell, you can pause what you are doing and start another shell or another
program whenever you want. Thus, you can put as many programs as you want on hold, each
one “inside” its predecessor, just like the layers of the real seashell.
 My advice, however, is to refrain from asking the question, What does the name “shell”
mean? Instead, think of the word “shell” as a brand new technical term (like RTFM or foo), and
let its meaning come solely from your experience with Unix over the years.

33614_11_239_254.indd 24033614_11_239_254.indd 240 1/9/2008 12:33:30 PM1/9/2008 12:33:30 PM

The Shell

241The Bourne Shell Family: sh, ksh, bash

of Unix.) In keeping with the tradition of giving programs short names, Thompson
named the shell sh.
 Let’s pretend that you are an early user in the early 1970s. Here is how you would use
the sh program. To start, you log into the system by typing your userid and password
(see Chapter 4). Once your password is validated and the various startup procedures
have been carried out, Unix runs the sh program on your behalf, which begins your
work session.
 The sh program displays a shell prompt (see Chapter 4) and waits for input. Each time
you enter a command, sh does whatever is necessary to process it; once the command is
fi nished, sh displays a new shell prompt and waits for another command. Eventually, you
tell sh there is no more input data by pressing ̂ D to send the eof [end of fi le] signal (see
Chapter 7). Upon trapping this signal (again, see Chapter 7), sh terminates and you are
logged out, ending your work session.
 Today, using the shell is basically the same experience as it was in 1971. To be sure,
modern shells are a lot more powerful than the original sh program, but they still act as
your interface by reading one command after another and terminating when there is no
more data. (This is why the shell is called the CLI, command line interface.)
 The very fi rst shell, which we might call the Thompson shell, was used from 1971 to
1975, being distributed with Unix First Edition (Version 1) through Unix Sixth Edition
(Version 6). In 1975, a new shell was written by a group of Bell Labs programmers led
by John Mashey . This new shell was released in 1976 as part of a special version of Unix
called the Programmer’s Workbench or PWB. Because the Mashey Shell (also called the
 PWB Shell) was designed to replace the original shell, it was also named sh.
 The advantage of keeping the same name for a new shell is that, as a user, you don’t
have to do anything special when the new shell is introduced. One day, you run the sh
program and you get the old shell; the next day, you run the sh program and you get the
new shell. As long as the new shell is compatible with the old shell, everything works fi ne.
You can do everything you did in the old shell and, if you want, you can take advantage
of the enhanced features of the new shell.
 When a new program relates to an old program in this way, we say that the new program
is BACKWARDS COMPATIBLE with the old program. For example, the Mashey Shell
was backwards compatible with the original Thompson Shell.
 Because the shell was designed to be a regular program, anyone who had enough
expertise could change an existing shell to their liking, or even write their own shell*. In
1976, another Bell Labs programmer, Steve Bourne, started work on a brand new shell.
Because it was designed to replace the older Thompson shell, the BOURNE SHELL was
also named sh.
 Both the Mashey and Bourne shells offered important improvements, particularly in
the area of programming and, within a short time, both shells had gained a signifi cant
following within Bell Labs. However, although they were both backwards compatible
with the existing sh program, they were incompatible with one another. This led to an

 *John Mashey once described to me what it was like at Bell Labs in those days. “At one point, our department of 30 people
probably had 10 different fl avors of shell. After all, we were all programmers, and the source was all there, and it was an ordinary
user program, so anyone who felt like it ‘fi xed’ things. This got crazy, and we got it under control later...”

33614_11_239_254.indd 24133614_11_239_254.indd 241 1/9/2008 12:33:30 PM1/9/2008 12:33:30 PM

Chapter 11

242 Harley Hahn’s Guide to Unix and Linux

internal debate as to which shell should become the standard Unix shell. The result of this
debate was important, for it changed the course of Unix for years to come.
 At three successive Unix user meetings, Mashey and Bourne each discussed their shells.
In between the meetings, they both worked hard to enhance their shells by adding new
functionality. To settle the problem once and for all, a committee was formed to study the
issue; they chose the Bourne shell.
 Thus, with the release of Unix Seventh Edition (Version 7), the Bourne shell became
the default shell for all Unix users. In fact, the Bourne shell was so stable and so well-
designed that, for many years, it was the standard Unix shell. From time to time,
new versions of the shell were released and, each time, the shell kept its backwards
compatibility and the name sh. The Bourne shell became so widely used that, today, all
compatible shells — older and newer — are considered to be members of the BOURNE
SHELL FAMILY.
 In 1982, another Bell Labs scientist, David Korn, created a replacement for the Bourne
shell, called the KORN SHELL or ksh. The new shell was based on tools that Korn and
other researchers had been building over the last several years. As such, it represented
a vast improvement over the standard Bourne shell. In particular, the new Korn shell
offered a history fi le, command editing, aliasing, and job control (all of which we will
discuss later in the book).
 Korn ensured that the ksh program was backwards compatible with the current sh
program, and within a short time, the Korn shell became the de facto standard within Bell
Labs. With the next release of Unix, the Korn shell was distributed to the world at large,
and it soon became a permanent replacement for the Bourne shell. Since then, there have
been two new major releases of the Korn shell: Ksh88 in 1988, and Ksh93 in 1993.
 In the early 1990s, a great deal of pressure grew to standardize Unix (see Chapter 2). This
pressure led to two different movements, one controlled by organizations and committees,
the other arising from popular demand. Each movement had its own solution to the
question: How can we standardize the Unix shell once and for all?
 The “offi cial” movement created a large set of specifi cations called POSIX (pronounced
“pause-ix”), a blueprint for standardizing operating systems. For practical purposes, you
can think of POSIX as an organized attempt by commercial interests to standardize Unix.

 An important part of the POSIX standard was the specifi cation for the basic features
of a shell. Over the years, this standard has had several names including IEEE 1003.2

WHAT’S IN A NAME?

POSIX
The project to standardize Unix was initiated under the mantle of an organization called the
IEEE. At fi rst, the project was called IEEE-IX, but since this was such a bad name, the IEEE
tried to come up with something better. They had trouble doing so and, at the last minute,
Richard Stallman, founder of the Free Software Foundation (see Chapter 2), suggested the name
POSIX. Stallman chose the name as an acronym for “Portable Operating System Interface”. The
adventitious “X” was added to make the name look more Unix-like.

33614_11_239_254.indd 24233614_11_239_254.indd 242 1/9/2008 12:33:31 PM1/9/2008 12:33:31 PM

The Shell

243

and ISO/IEC 9945-2*. For companies, governments and other organizations, the 1003.2
standard was an important benchmark in that it gave anyone who worked on shell
development a well-defi ned baseline target for which to aim. For example, the Ksh93
shell was designed to conform to the 1003.2 standard.
 The 1003.2 standard, however, was not readily available to individuals. Indeed, it cost
money to get a copy of the technical details**. Among most Unix programmers, the
prevailing ethic was not to follow one universal standard such as POSIX, but to create free
software that could be modifi ed and enhanced by anyone. As we discussed in Chapter 2,
the free software movement led to the development of the Free Software Foundation and
to the creation of Linux. The Korn shell, however, could not be distributed with Linux.
The problem was that the Korn shell, being part of Unix, was a commercial product that
belonged to AT&T. As such, it was not available to the general public.
 In 2000, AT&T fi nally allowed the Korn shell to become an open source product, but
it was too late. In the 1990s, a number of free, open source shells were created, the most
important of which were the FreeBSD shell, Pdksh, the Zsh, and Bash. All of these shells
complied with the 1003.2 standard, making them adequate replacements for the Korn shell.
 The FREEBSD SHELL, as the name implies, is the default shell for FreeBSD. In keeping
with tradition, it is known as sh, the standard name for a member of the Bourne shell
family. (In other words, if you are using FreeBSD and you run the sh program, you get
the FreeBSD shell.)
 PDKSH is a modern clone of the Korn shell. Pdksh was written to provide a Korn shell
without restrictive licensing terms; hence the name “public domain Korn shell”. The best
way to think of Pdksh is as a modern Korn shell that is free in both senses of the word
(no cost + open source). The original Pdksh was written in 1987 by a programmer named
Eric Gisin, who based his work on a public domain version of the Unix Seventh Edition
Bourne shell written by Charles Forsyth†. Over the years, many people contributed
to Pdksh. Since the mid-1990s, however, the shell has stabilized and remained mostly
unchanged. This is because (1) it works well, and (2) most people in the open source
community are using Bash (see below). Still, many Linux systems do include Pdksh as one
of the installed shells so, if it is available on your system, you may want to give it a try.
 The next important member of the Bourne shell family is the Zsh, pronounced “zee-
shell” (even in England and Canada, where the letter Z is normally pronounced “zed”).
The name of the Zsh program is zsh.
 The ZSH was developed by Paul Falstad in 1990, when he was an undergraduate at
Princeton University. His philosophy was to “take everything interesting that I could

 *If you like acronyms, here they are: IEEE is the Institute of Electrical and Electronics Engineers. ISO is the International
Organization for Standardization. (The name ISO is not an acronym. It comes from the Greek word isos meaning “equal”.)
Finally, IEC is the International Electrotechnical Commission.
 **This is still the case with the ISO. With the IEEE, however, you can view the 1003.2 standard online as part of a larger
specifi cation called IEEE 1003.1. On the Net, go to www.unix.org and look for a link to the “Single UNIX Specifi cation”. The
part you want is called “Shell & Utilities”.
 †In the 1970s, I was an undergraduate at the University of Waterloo (Canada) studying math and computer science. For
a short time, I actually shared an apartment with Charles Forsyth. He was quiet, easy going, a bit odd, and very, very smart.
Perhaps the best way I can describe him is that, as a young programmer in the mid-1970s, he seemed like the type of guy who
would, one day, write his own shell.

The Bourne Shell Family: sh, ksh, bash

33614_11_239_254.indd 24333614_11_239_254.indd 243 1/9/2008 12:33:31 PM1/9/2008 12:33:31 PM

http://www.unix.org

Chapter 11

244 Harley Hahn’s Guide to Unix and Linux

get my hands on from every other shell”. As he explained, “I wanted a shell that can do
anything you want”. The result is a shell that offers all of the important features of the
other Unix shells, as well as new capabilities that are not widely available. For example,
you can tell the Zsh to notify you when a particular userid has logged in.
 So where does the name come from? When Falstad was working on the shell, there was
a teaching assistant, Zhong Shao, whose Unix userid was zsh. Falstad fi gured that would
be a good name for a shell, and appropriated it for his new creation.
 Within a short time of being released, the Zsh developed a cult following around the
world and became popular among programmers and advanced Unix users. Today, the
Zsh status is much like that of Pdksh: it works, it’s stable, and it’s a great shell. However,
since the mid-1990s, new development has slowed to a crawl.
 Of all the members of the Bourne shell family, the most important, by far, is BASH.
Bash was originally created by Brian Fox (1987) and later (starting in 1990) maintained
by Chet Ramey, all under the auspices of the Free Software Foundation. Today, Bash is
supported by a community of programmers around the world. The name of the actual
program, as you might guess, is bash.
 Bash extends the capabilities of the basic Bourne shell in a manner similar to the Korn
shell. Bash is not only a command processor with a powerful scripting language; it supports
command line editing, command history, a directory stack, command completion,
fi lename completion, and a lot more (all of which will make sense to you eventually).
 Bash is free software, distributed by the Free Software Foundation. It is the default
shell for Linux, as well as Unix-based Macintoshes, and is available for use with Microsoft
Windows (running under a Unix-like system called Cygwin). In fact, every important
Unix system in the world either comes with Bash or has a version of Bash that can be
downloaded for free from the Internet. For all these reasons, Bash is the most popular
shell in history, being used by millions of people around the world.

THE C-SHELL FAMILY: csh, tcsh
As I described above, the original Bourne shell was introduced in 1977. A year later, in
1978, Bill Joy, a graduate student at U.C. Berkeley developed a brand new shell, which he
based on the Unix Sixth Edition sh program, the predecessor of the Bourne shell.
 However, Joy did more than copy the existing functionality: he added many
important improvements, including aliases, command history, and job control. In
addition, he completely revamped the programming facilities, changing the design of

WHAT’S IN A NAME?

Bash
The name Bash stands for “Bourne-again shell”, a name that is an acronym and a pun. The idea
is that — literally and spiritually — Bash is based on a resurrected (“born again”) version of the
standard Unix shell.
 Notice that, although we talk about the Korn shell or the C-Shell or the Zsh, we never say the
Bash Shell. We always say “Bash”.

33614_11_239_254.indd 24433614_11_239_254.indd 244 1/9/2008 12:33:31 PM1/9/2008 12:33:31 PM

The Shell

245

the scripting syntax so that it resembled the C programming language. For this reason,
he called his new shell the C-SHELL, and he changed the name of the program from
sh to csh.
 During the late 1970s and throughout the 1980s, the C-Shell became very popular. You
might wonder, why should this be the case when there were already other good shells?
There were several reasons.
 First, the C-Shell offered major improvements over the standard Unix shell. Second,
the C-Shell was included as part of the BSD Unix distribution (see Chapter 2), which itself
was very popular. Finally, the C-Shell was created by Bill Joy, one of the most important
Unix programmers of all time. Joy’s tools, such as the vi editor , were extremely well-
designed and tended to be used by a lot of people. (For a discussion of Joy’s contributions
to Unix, see Chapter 2.)
 For a long time, the C-Shell was the shell of choice of Unix users at universities and
research organizations, where it was usually the default shell. I fi rst used Unix in 1976,
and the C-Shell is the shell I started with. To this day, it is still close to my heart.
 There were, however, two important problems with the C-Shell. One was solvable;
the other, unfortunately, was not, and it led to the C-Shell falling out of favor among
experienced users.
 First, because of BSD’s licensing terms, the C-Shell could not be distributed and
modifi ed freely, which was a big issue for many programmers. For this reason, in the
late 1970s, a programmer named Ken Greer from Carnegie-Mellon University, began
work on a completely free version of the csh, which he called tcsh. In the early 1980s,
the responsibility for the TCSH (pronounced “Tee sea-shell”) was passed on to a small
number of programmers led by Paul Placeway at Ohio State.
 The Tcsh was wonderful. Not only was it free (it was distributed in the public domain),
but it enhanced the C-Shell by offering a number of advanced features, such as fi lename
completion and command line editing. The Tcsh was attractive to a great many users
and, over time, a large group of volunteers formed to maintain and extend it.
 However, there was a problem that could not be solved: both the C-Shell and the Tcsh
were not as good for programming as the Bourne family shells. Although the C-like syntax
was fi ne for writing C programs, it wasn’t as suitable for writing shell scripts, especially
when it came to I/O (input/output). Moreover, both the C-Shell and the Tcsh had a
number of design fl aws, too esoteric to mention, which bothered the type of programmers
who care about esoterica.
 By the 1990s, all the popular shells were available on all Unix systems, and a general
debate arose as to which shell was the best. Like a young lady whose dress was a bit too
meretricious for her own good, the C-Shell began to lose its reputation without knowing
why. Among hard-core Unix users and their wannabes, it became trendy to say, “I like
using the C-Shell for regular work, but I use the Bourne shell for programming.”
 A watershed occurred in 1995, when Tom Christiansen, a highly respected Unix
programmer and one of the fathers of the Perl programming language, wrote a widely
circulated essay entitled “Csh Programming Considered Harmful”. The title was taken
from a very well-known computer paper, “Go To Statement Considered Harmful”, a short

The C-Shell Family: csh, tcsh

33614_11_239_254.indd 24533614_11_239_254.indd 245 1/9/2008 12:33:31 PM1/9/2008 12:33:31 PM

Chapter 11

246 Harley Hahn’s Guide to Unix and Linux

essay by the Dutch programmer Edsger Dijkstra*. In 1968, Dijkstra’s paper had changed
the world of programming, leading to the popularization of what became known as
structured programming. In 1995, Christiansen’s paper, though not as seminal, led to the
eventual abandonment of both the C-Shell and the Tcsh for programming.
 Today, the C-Shell and the Tcsh are not used nearly as widely as they once were and,
since the mid-1990s, Tcsh development has slowed to a virtual standstill. Still, the C-SHELL
FAMILY is held in high regard by many advanced Unix users and, for that reason, I have
devoted a chapter of this book to show you how to use the shell, should you wish to do so.
 On some systems, csh and tcsh are two separate programs. On many Unix systems,
however, tcsh has completely replaced csh. That is, if you run csh, you will actually
get tcsh. You can tell if this is the case on your system by looking at the csh man page
(see Chapter 9).
 Even today, the C-Shell is still important. Indeed, when you read about other shells,
you will often see that they contain features taken from the C-Shell that Bill Joy designed
so many years ago. For example, on the Web site for the Zsh, you will read, “Many of the
useful features of bash, ksh and tcsh were incorporated into zsh.”

 *Communications of the ACM (CACM), Vol. 11, No. 3, March 1968, pp 147-148. When you get a moment, read this
paper. (It’s easy to fi nd on the Internet.) As you do, think about the fact that this short, 14-paragraph essay changed the
world of programming more than any single act before or since. If you are intrigued, take a look at Dijkstra’s seminal book,
A Discipline of Programming (Prentice-Hall PTR, 1976).
 By the way, the title of Dijkstra’s paper (and hence, Christiansen’s) was actually made up by Niklaus Wirth , not Dijkstra. Wirth,
the creator of the Algol W, Pascal and Modula-2 programming languages, was editor of CACM at the time.

WHAT’S IN A NAME?

C-Shell, Tcsh
The name C-Shell comes from the fact that Bill Joy designed the shell’s programming facilities
to work like those of the C programming language. I imagine that Joy liked the name “C-Shell”
because it sounds like “sea shell”, and everyone likes sea shells.
 But what about the Tcsh?
 When Ken Greer wrote the original Tcsh for Unix, he was also using an operating system
called TENEX on a PDP-10 computer from DEC. The TENEX command interpreter used very
long command names because they were easy to understand. The commands, however, were a
bother to type, so TENEX had a facility, called “command completion” to do a lot of the work.
All you had to do was type a few letters and press the <Esc> key. The command interpreter
would then expand what you had typed into the full command.
 Greer added this feature to the new C-Shell, and when it came time to name the shell, he
called it tcsh, the “t” referring to TENEX.

WHAT’S IN A NAME?

C, C++, C#
Both the C-Shell and the Tcsh are named after the C programming language. But how did such
an odd name arise for a language?
 In 1963, a programming language called CPL was developed in England as part of a
project involving researchers from Cambridge and the University of London. CPL stood for

33614_11_239_254.indd 24633614_11_239_254.indd 246 1/9/2008 12:33:31 PM1/9/2008 12:33:31 PM

The Shell

247

WHICH SHELL SHOULD YOU USE?
There are tens and tens of different Unix shells, of which we have discussed the most
important ones: the Bourne shell, the Korn shell, the FreeBSD shell, Pdksh, the Zsh, Bash,
the C-Shell, and the Tcsh.
 For reference, Figure 11-1 shows each of these shells along with the name of its program.*
To run the shell, if it exists on your system, just type in the name, for example:

bash
ksh
tcsh

On some Unix systems, the various shells are all installed under their own names. The sh
program is different from ksh or bash, and csh is different from tcsh. So if you want
to use an old Bourne shell, you type sh; if you want to use Bash, you type bash. Similarly,
you can use either csh (the standard C-Shell) or tcsh (the enhanced C-Shell).
 On many systems, however, the newer shells have replaced the old ones, and you won’t
fi nd the Bourne shell or the C-Shell. Instead, if you type sh, you will get either Bash or
the Korn shell; and if you type csh, you will get the Tcsh. To see if this is the case on your
system, just look at the man page for the shell in question. For example, on Linux systems,

 *There are two other common names you might encounter that look like regular shells but are not: ssh and rsh. The ssh
program is the “Secure Shell”, used to connect to a remote computer. The rsh program is the “Remote Shell” — an old program
whose use is deprecated — used to run a single command on a remote computer.

Which Shell Should You Use?

(cont’d...) “Combined Programming Language” and was based on Algol 60, one of the fi rst
well-designed, modern programming languages.
 Four years later, in 1967, a programmer at Cambridge named Martin Richards created BCPL,
“Basic CPL”. BCPL itself gave rise to yet another language, known by the single letter, B.
 The B language was taken to Bell Labs, where Ken Thompson and Dennis Ritchie made
modifi cations and renamed it NB. In the early 1970s, Thompson (the original Unix developer)
used NB to rewrite the basic part of Unix for its second edition. Up until then, all of Unix had
been written in assembly language. Not long afterwards, the NB language was extended and
renamed C. C soon became the language of choice for writing new Unix utilities, applications
and even the operating system itself.
 People asked, where did the name C come from? Was it the next letter after B in the alphabet,
or was it the second letter of BCPL? This question had philological implications of cosmic
importance: would the successor to C be named D or P?
 The question proved to be moot when, in the early 1980s, Bjarne Stroustrup (also of Bell
Labs) designed the most popular extension of C, an object-oriented language, which he called
C++, pronounced “C-plus-plus”. (In the C language, ++ is an operator that adds 1 to a variable.
For instance, to add 1 to the variable total, you can use the command total++.)
 In 2002, Microsoft created a special version of C++ as part of their .NET initiative. They
called the new language C#, which is pronounced “C sharp” (like the music term). If you want,
you can imagine two small “++” designations, one on top of the other, to form the “#” symbol.
 Thus, when you see the names C, C++ or C#, you can recognize them as examples of those
wonderful programming puns that make people scratch their heads and wonder if Man is really
Nature’s last word.

33614_11_239_254.indd 24733614_11_239_254.indd 247 1/9/2008 12:33:31 PM1/9/2008 12:33:31 PM

Chapter 11

248 Harley Hahn’s Guide to Unix and Linux

if you ask for the sh man page, you get the bash man page; if you ask for the csh man
page, you get the tcsh man page.
 To display the man page for a particular shell, use the man command (Chapter 9) with
the name of the appropriate program. For example:

man sh
man csh

Since shells are so complex, the man page will actually be the size of a small manual.
Don’t be overwhelmed: a lot of what you see is reference material for advanced users.
 So, which shell should you use? If you are a beginner, it really doesn’t matter, as all
shells have the same basic functionality. However, as you begin to progress as a Unix user,
the details do begin to matter and you need to make a commitment.
 If you like to go with the fl ow, stick with the default and use whatever you get on your
system when you type sh. Most likely this will be Bash with Linux, the FreeBSD shell
with FreeBSD, and the Korn shell with a commercial Unix system.

SHELL NAME OF THE PROGRAM

Bash bash or sh

Bourne Shell sh

C-Shell csh

FreeBSD Shell sh

Korn Shell ksh or sh

Pdksh ksh

Tcsh tcsh or csh

Zsh zsh

FIGURE 11-1: The Unix shells

There are a large number of Unix shells. This table shows the most popular shells, along with the names
of the actual shell programs.

NAME OF SHELL SIZE OF MAN PAGE RELATIVE COMPLEXITY

Bourne Shell 38,000 bytes 1.0

FreeBSD Shell 57,000 bytes 1.5

C-Shell 64,000 bytes 1.7

Korn Shell 121,000 bytes 3.2

Tcsh 250,000 bytes 6.6

Bash 302,000 bytes 7.9

Zsh 789,000 bytes 20.8

FIGURE 11-2: Relative complexity of various shells

One way to estimate the complexity of a program is to look at the size of its documentation. Here are
statistics showing the relative complexity of the most popular Unix shells.

33614_11_239_254.indd 24833614_11_239_254.indd 248 1/9/2008 12:33:31 PM1/9/2008 12:33:31 PM

The Shell

249

 If you are adventurous, however, there are many shells for you to try. For example,
although the C-Shell is no longer a default shell, many people do enjoy using it, and you
may fi nd that tcsh or csh is already available on your system. If you want to go further
afi eld, just search the Internet for Unix or Linux shells, and I guarantee you’ll fi nd something
new to try. (If you are adventurous and you can’t make up your mind, try the Zsh.)

 In a moment, I am going to show you how to change your shell. Before I do, I’d like
to answer an interesting question: How complex are each of the shells? A complicated
program will have a lot of capability, but it will also demand more of your time to
master. Moreover, like many Unix programs, the shells have a lot of esoteric features and
options that you will never really need. These extra facilities are often a distraction.
 One crude way to measure the complexity of a program is by looking at the length
of the documentation. The table in Figure 11-2 shows the approximate number of bytes
(characters) in the manual pages for each of the shells. For comparison, I have normalized
the numbers, assigning the smallest number a value of 1.0. (Of course, these numbers
change from time to time as new versions of the documentation are released.)
 From these numbers, it is easy to see that the C-Shell and FreeBSD shell provide a
nice middle ground between the older, less capable Bourne shell and the other, more
complex shells.
 Of course, one can argue that none of this matters, because all modern shells are
backwards compatible, either with the Bourne shell or with the C-Shell. If you don’t want
the added features, you can ignore them and they won’t bother you.
 However, documentation is important. The manual pages for the more complex shells
take a long time to read and are very diffi cult to understand. In fact, even the manual page
for the Bourne shell is too large for a normal human being to peruse comfortably. So take
another look at the numbers in Figure 11-2, and think about the following questions:
 Assuming that the FreeBSD shell, Bash, and the Zsh have most of the modern features
knowledgeable Unix users require, what can you say about the type of person who chooses
to use FreeBSD and the FreeBSD shell?
 What about a person who chooses to use Bash because it is the default on his system?
 And what sort of person, do you think, enjoys downloading, installing and learning
about a tool as complex as the Zsh (which is not the default on any system)?

CHANGING YOUR SHELL TEMPORARILY
Whenever you log in, a shell will be started for you automatically. This shell is called your
LOGIN SHELL. An important question to answer is, which particular shell is your login
shell? Is it Bash, the Korn shell, the C-Shell, the Tcsh?

HINT

For day-to-day work, you can use whichever shell takes your fancy, and you can change whenever
you like.
 However, if you write shell scripts, you should stick with the standard Bourne shell programming
language to ensure that your scripts are portable enough to be used on other systems.

Changing Your Shell Temporarily

33614_11_239_254.indd 24933614_11_239_254.indd 249 1/9/2008 12:33:31 PM1/9/2008 12:33:31 PM

Chapter 11

250 Harley Hahn’s Guide to Unix and Linux

 Unless you have changed the default, your login shell will be whichever shell is assigned
to your userid. If you use Linux, your login shell will probably be Bash. If you use a
commercial Unix, your login shell will probably be the Korn shell. If you use FreeBSD, it
will probably be the Tcsh.
 If you use a shared system, your system administrator will have set your login shell. As
you know, on your own computer, you are the admin (see Chapter 4), so unless you have
changed the default shell, it will be whatever was set automatically when you installed
the system.
 There are two ways in which you might change your shell. You may want to use a
different shell temporarily, perhaps to experiment with it. Or, you may fi nd that you like
a new shell better than your current shell, and you want to make a permanent change.
 Let’s say, for example, you decide to try the Zsh. You download it from the Internet and
install it on your system. From time to time, you change to the Zsh temporarily just for
fun. Eventually, you come to like the Zsh so much that you want it to be your permanent
login shell. In this section, I’ll show you how to change your shell temporarily. In the next
section, I’ll show you how to do it permanently.
 To start, remember that a shell is just a program that you can run like any other
program. This means that, at any time, you can pause your current shell and start another
one simply by running the new shell. For example, let’s say you have just logged in, and
your login shell is Bash. You enter a few commands, and then you decide you want to try
the Tcsh (assuming it is available on your system). Just enter:

tcsh

Your current shell (Bash) is paused and the new shell (the Tcsh) starts. You can now do
whatever you want using the Tcsh. When you are ready to switch back to Bash, just press
^D (see Chapter 7) to indicate that there is no more data. The Tcsh shell will now end,
and you will be returned to your original Bash shell. It’s that easy.
 If you want to experiment, you can see what shells are available on your system by
using the following command:

less /etc/shells

We’ll discuss this command in the next section.
 If you are experimenting, and you get confused as to which shell you are using, you
can use the following command at any time to show you the name of the current shell:

 echo $SHELL

HINT

It is possible to start a new shell, and then another new shell, and then another new shell, and
so on. However, when it comes time to end your work session, you can only log out from the
original login shell.
 Thus, if you have started one or more new shells, you must work your way back to the login
shell before you can log out.

33614_11_239_254.indd 25033614_11_239_254.indd 250 1/9/2008 12:33:31 PM1/9/2008 12:33:31 PM

The Shell

251

THE PASSWORD FILE: CHANGING YOUR LOGIN SHELL: chsh
Unix uses two fi les to keep track of all the userids in the system. The fi rst fi le
/etc/passwd — the PASSWORD FILE — contains basic information about each
userid. The second fi le /etc/shadow — the SHADOW FILE — contains the actual
passwords (encrypted, of course).
 When you log in, Unix retrieves information about your userid from these fi les. In
particular, the /etc/passwd fi le contains the name of your login shell. Thus, to change
your login shell, all you need to do is make a simple change in the /etc/passwd fi le.
However, you don’t do this directly. It would be too risky, as screwing up the /etc/passwd
fi le can wreak havoc with your system. Instead, you use a special command, which I will
explain in a moment.
 Before I do, I want to say a word about fi le names. The way in which I have written
the names of the two fi les I just mentioned is called a “pathname”. A pathname shows
the exact location of a fi le within the fi le system. We will discuss this idea in detail when
we talk about the Unix fi le system in Chapter 23. For now, all you need to know is that
the pathname /etc/passwd refers to the passwd fi le within the /etc directory. A
directory is what a Windows or Mac user would call a folder. (This idea, like many others,
was taken from Unix.)
 When you change your shell, you need to specify the name of the shell program
as a pathname. The pathnames of the available shells are stored in a fi le named
 /etc/shells*. To display this fi le, use the less command (which we will meet
formally in Chapter 21).

less /etc/shells

Here is some typical output:

/bin/sh
/bin/bash
/bin/tcsh/bin/csh

From this output, you can see that (in this case) there are four available shells: sh, bash,
tcsh and csh.
 To change your login shell, you use the chsh (change shell) command. The syntax* is:

chsh [-s shell] [userid]

where userid is the userid for which you want to make the change; shell is the pathname
of the new login shell.
 Notes: (1) You can only change the shell for your own userid. To change the shell
for another userid, you must be superuser. (2) On some systems, chsh will not allow
you to change to a shell unless it is listed in the /etc/shells fi le. On other systems,
chsh will allow you to make such a change, but it will give you a warning. Thus, if you

 *The /etc/shells fi le is used with Linux and FreeBSD, but not with certain commercial Unix systems such as AIX
and Solaris.

The Password File: Changing Your Login Shell: chsh

33614_11_239_254.indd 25133614_11_239_254.indd 251 1/9/2008 12:33:32 PM1/9/2008 12:33:32 PM

Chapter 11

252 Harley Hahn’s Guide to Unix and Linux

download and install a shell on your own, it behooves you to put the pathname of the
shell in the /etc/shells fi les.
 By default, chsh assumes that you want to change your own login shell, so you don’t
have to specify the userid. For example, to change your login shell to /bin/tcsh, use:

chsh -s /bin/tcsh

If you leave out the -s option and the name of the shell, chsh will prompt you (ask you)
for it. For example, say you are logged in as harley, and you enter:

chsh

You see:

Changing shell for harley.
New shell [/bin/bash]:

At this point chsh is telling you two things. First, you are about to change the login shell
for userid harley. Second, the current login shell is /bin/bash.
 You now have two choices. If you enter the pathname of a new shell, chsh will make
the change for you. For example, to change your login shell to the Tcsh, enter:

/bin/tcsh

If you simply press <Enter> without typing anything, chsh will not make a change. This
is a good way to see the name of your current login shell.
 With Linux, the chsh command has another option that is useful. To display a list of
all the available shells, you can use the -l (list) option:

 chsh -l

Some Unix systems don’t have a chsh command. Instead, you change your login shell
by using a variation of the passwd command (which we discussed in Chapter 4). For
example, with AIX, you use passwd -s; with Solaris, you use passwd -e. For more
details, see your passwd man page.
 If you are a system administrator, and you are called upon to change someone else’s
login shell, you can use the usermod -s. Again, see the man page for details.

HINT

When you change your login shell, you modify the /etc/passwd fi le. Thus, whatever
change you make will not take effect until the next time you log in (just as when you change
your password).

 *Throughout this book, I will be teaching you how to use a great many commands. Each time I describe a new command,
I will begin by showing you its syntax. When I do, I will only show you the most important options and arguments. If you need
more information, you can always get it from the man page (see Chapter 9).
 As I explained in Chapter 10, some commands have minor differences from one version of Unix to another. In this book, I
generally use the GNU/Linux version of a command. Most of the time, this will be fi ne, as the important options and arguments
tend to be the same in most types of Unix. If you have a problem, however, I want you to remember that the defi nitive source
for how a program works on your system is your online manual.

33614_11_239_254.indd 25233614_11_239_254.indd 252 1/9/2008 12:33:32 PM1/9/2008 12:33:32 PM

The Shell

253

C H A P T E R 1 1 E X E R C I S E S

REVIEW QUESTIONS

1. What is a shell?

2. What are the two principal shell families? Name the most commonly used shells in
each family.

3. What does “backwards compatible” mean? Give an example of a shell that is backwards
compatible with another shell.

4. What is POSIX? How is it pronounced?

5. How do you change your shell temporarily? How do you change your shell
permanently?

APPLYING YOUR KNOWLEDGE

1. Check which shells are available on your system. Display the name of your default
shell.

2. Change your default shell to another shell. Log out and log in again. Check to make sure
your default shell has been changed. Change your default shell back to what it was. Log
out and log in again. Check to see that your default shell was changed back correctly.

FOR FURTHER THOUGHT

1. Over the years, many different Unix shells have been created. Why is this necessary?
Why not just have one main shell that can be enhanced from time to time?

2. Program A has been replaced by program B. What are the advantages if program B is
backwards compatible with program A? What are the disadvantages?

HINT

In certain situations, if your system is in critical shape and you need to log in as superuser
(root) to make repairs, some shells may not be able to run properly. For this reason, the login
shell for root must be the type of shell that will always run, no matter what.

 Thus, unless you really know what you are doing, do not change the login shell for userid
root. If you do, you run the risk that, one day, you will have a broken system with no way to
log in.

Chapter 11 Exercises

33614_11_239_254.indd 25333614_11_239_254.indd 253 1/9/2008 12:33:32 PM1/9/2008 12:33:32 PM

33614_11_239_254.indd 25433614_11_239_254.indd 254 1/9/2008 12:33:32 PM1/9/2008 12:33:32 PM

255

C H A P T E R 1 2

Using the Shell:
 Variables and Options

Many people do not take the time to learn how to use the shell well. This is a mistake.
To be sure, the shell — like all complex Unix programs — has many features you do not
really need to understand. However, there are a number of fundamental ideas that are of
great practical value. Here is my list:

• Interactive Shells
• Processes
• Environment Variables
• Shell Variables
• Shell Options
• Metacharacters
• Quoting
• External Commands
• Builtin Commands
• Search Path
• Command Substitution
• History List
• Autocompletion
• Command Line Editing
• Aliases
• Initialization Files
• Comments

If you look at this list and feel overwhelmed, I understand. You may even feel like asking,
“Do I really need to learn all this stuff?”
 The answer is yes, and it will take a bit of time, but don’t worry. First of all, I will spread
the material over three chapters, so you won’t get too much at once. Second, I will make
sure that we cover the topics in a way that each one leads to the next, so you won’t feel
confused. (In fact, we will be covering the topics in the order you see in the list.) Finally,
as you come to appreciate the beauty of the shell, and it all starts to make sense, you will
fi nd yourself having a good time as we move from one idea to the next.

Using the Shell: Variables and Options

33614_12_255_276.indd 25533614_12_255_276.indd 255 1/9/2008 12:33:59 PM1/9/2008 12:33:59 PM

Chapter 12

256

 As you know, there are two shell families: the Bourne family (Bash, Korn shell) and
the C-Shell family (C-Shell, Tcsh). When you learn how to use a shell, some of the details
vary depending on which shell you are using, and that will be refl ected in what I will be
teaching you. Nevertheless, a basic aspect of being skilled with Unix is understanding and
appreciating how each of the shell families approaches certain problems.
 Thus, as you study the next three chapters, I’d like you to read all the sections and
look at all the examples, regardless of which shell you use. Some people only study the
shell they happen to be using at the time, but that is a mistake. My goal is for you to be
comfortable with all the major shells. The way to do this is by paying attention to the
basic principles, not by memorizing the esoteric details of one particular shell.
 As you read this chapter, you will need to know what shell you are currently using. If
 you are not sure, you can display the name of the shell that started when you logged in by
using the following command (which will make sense later in the chapter):

 echo $SHELL

If you have temporarily changed to a different shell (see Chapter 11), you will, of course,
know what shell you are using.
 One last point before we start. Chapter 11 covers shells in general. If you have not
already read that chapter, please take a few moments to look at it before you continue.

INTERACTIVE AND NON-INTERACTIVE SHELLS
An INTERACTIVE program is one that communicates with a person. When you run an
interactive program, the input comes from your keyboard or your mouse, and the output
is sent to your monitor. For example, when you use a word processor or a Web browser,
you are using an interactive program.
 A NON-INTERACTIVE program runs independently of a person. Typically, it will
get its input from a fi le and write its output to another fi le. For example, when you
compile a program (process it so it can be run), you are using a non-interactive program,
the compiler.
 At times, the lines between interactive and non-interactive programs can blur a bit.
For instance, an interactive program might send output to a fi le or to a printer. Similarly,
a non-interactive program might ask you to enter a bit of data at the keyboard, or might
display a message on your monitor when something important happens.
 Still, for practical purposes, it is usually simple to classify a program as being interactive
(working with you) or non-interactive (working by itself). In general, interactive
programs get their input from a person (keyboard, mouse) and send their output to a
person (monitor, speakers). Non-interactive programs use input that comes from a non-
human source (say, a fi le), and send their output to a non-human source (another fi le).
So, the question arises, what is the shell: interactive or non-interactive?
 The answer is, it can be both. You will recall from Chapter 11 that the shell can act as
both a user interface and a script interpreter. To use the CLI (command line interface)
you open a terminal window or use a virtual terminal (see Chapter 6). When you see
the shell prompt, you enter a command. The shell processes your command and then

Harley Hahn’s Guide to Unix and Linux

33614_12_255_276.indd 25633614_12_255_276.indd 256 1/9/2008 12:34:00 PM1/9/2008 12:34:00 PM

Using the Shell: Variables and Options

257

displays another prompt. As you work in this way, the shell is your user interface, and we
say that you are using an INTERACTIVE SHELL.
 Alternatively, you can create a set of commands, called a SHELL SCRIPT, which you
save in a fi le. When you run your script, the shell reads the commands from the fi le and
processes them one at a time without your input. When this happens, we say that you are
using a NON-INTERACTIVE SHELL.
 It is important to understand that, in each case, you are using the same type of shell. This
is possible because shells are designed to work either interactively or non-interactively.
 When you log in, a shell is started on your behalf and set to be interactive. Similarly,
when you manually start a new shell from the command line (say, by typing bash or
tcsh), the new shell is also set to be interactive.
 On the other hand, when you run a shell script, a new shell is started automatically and
given the task of interpreting your script. This new shell is set to be non-interactive. Once the
job is done — that is, when the script is fi nished — the non-interactive shell is terminated.
 So how does a shell know if it should be interactive or non-interactive? It depends on
the options it is given when it starts. We will discuss shell options later in the chapter.

THE ENVIRONMENT, PROCESSES AND VARIABLES
In Chapter 6, during the discussion of multitasking, I introduced the idea that, within a
Unix system, every object is represented by either a fi le or a process. In simple terms, fi les
hold data or allow access to resources; processes are programs that are executing. Thus,
a shell that is running is a process. Similarly, any program that is started from within the
shell is also a process.
 As a process runs, it has access to what is called the ENVIRONMENT, a table of
variables, each of which is used to hold information. To make sense out of this idea, we
need to start with a basic question: What are variables and what can we do with them?

The Environment, Processes and Variables

WHAT’S IN A NAME?

Shell
In everyday life, we use the word “shell” in two different ways, which can be confusing. We can talk
about the idea of the shell in general, or we can refer to an instance of a shell that is running.
 For example, you are a young man who is invited to a sorority party where there are a lot
of cheerleaders. Someone introduces you to the prettiest girl in the room and to break the ice
you ask her, “What shell do you use?” After talking to you for a few minutes she says, “Football
players bore me. I like a man who understands the shell. Why don’t you come over to my place
and help me fi ne tune my kernel?” In this example, you and the girl are talking about the shell
in general.
 The next day, you are sitting in a lecture in your Unix class and the professor says, “...After you
log in, a shell is started to act as your user interface. If you type the bash command, a new shell
is started. When you run a shell script, another shell is started...” In this case, the professor is not
talking about the shell as a general concept. He is talking about actual shells that are running.
 To make sure that you understand the distinction, see if the following sentence makes sense
to you: “Once you learn how to use the shell, you can start a new shell whenever you want.”

33614_12_255_276.indd 25733614_12_255_276.indd 257 1/9/2008 12:34:00 PM1/9/2008 12:34:00 PM

Chapter 12

258 Harley Hahn’s Guide to Unix and Linux

 Let’s start with a defi nition. A VARIABLE is an entity used to store data. Every variable
has a name and a value. The NAME is an identifi er we use to refer to that variable; the
VALUE is the data that is stored within the variable.
 Here is an example. As we discussed in Chapter 7, Unix uses a variable named TERM
to store the name of the type of terminal you are using. The idea is that any program
that needs to know your terminal type can simply look at the value of TERM. The most
common values for TERM are xterm, linux, vt100 and ansi.
 When you name your own variables, you have a lot of leeway: there are only two
simple rules. First, a variable name must consist of uppercase letters (A-Z), lowercase
letters (a-z), numbers (0-9), or the underscore character (_). Second, a variable name
must start with a letter or an underscore; it cannot begin with a number. Thus, the
variable names TERM, path and TIME_ZONE are valid; the name 2HARLEY is not.
 When you use a Unix shell, there are two different types of variables. They are called
“shell variables” and “environment variables”, and we will talk about them throughout the
chapter. As a general rule, there are only four different things you can do with variables.
You can create them, check their value, change their value, or destroy them.
 Informally, it can help to think of a variable as a small box. The name of the variable is
on the box. The value of the variable is whatever is inside the box. For example, you might
imagine a box named TERM that contains the word xterm. In this case, we say that the
variable TERM has the value xterm.
 With most programming languages, variables can contain a variety of different
types of data: characters, strings, integers, fl oating-point numbers, arrays, sets, and
so on. With the shell, however, variables almost always store only one type of data, a
CHARACTER STRING, that is, a sequence of plain-text characters. For instance, in our
example the TERM variable stores a string consisting of 5 characters: x, t, e, r and m.
 When you create a variable, you will often give it a value at the same time, although
you don’t have to. If you don’t, we say the variable has a NULL value, which means it has
no value. This is like creating a box with a name, but not putting anything inside the box.
If a variable has a null value, you can always give it a value later, should the need arise.
 Now let’s see how variables, the environment and processes fi t together. Consider the
following scenario. You are at a shell prompt and you start the vi text editor (Chapter 22).
In technical terms, we say that one process, the shell, starts another process, vi. (We’ll talk
about the details in Chapter 26.)
 When this happens, is called the PARENT PROCESS or PARENT; the second process is the
CHILD PROCESS or CHILD. In this case, the parent is the shell and the child is vi.
 At the time the child process is created, it is given an environment which is a copy of
the parent’s environment. We say that the child INHERITS the parent’s environment.
This means that all the ENVIRONMENT variables that were accessible to the parent are
now accessible to the child.
 For instance, in our example, when vi (the child) is created, it inherits the environment
of the shell (its parent). In particular, vi is now able to examine the value of the TERM
variable in order to discover what type of terminal you are using. This enables vi to
format its output properly for your particular terminal.

33614_12_255_276.indd 25833614_12_255_276.indd 258 1/9/2008 12:34:00 PM1/9/2008 12:34:00 PM

Using the Shell: Variables and Options

259

ENVIRONMENT VARIABLES AND SHELL VARIABLES
If you are a programmer, you will understand the difference between global and local
variables. In programming, a LOCAL VARIABLE exists only within the scope in which
it was created. For example, let’s say you are writing a program and you create a variable
count to use only within a function named calculate. We would say that count
is a local variable. More specifi cally, we would say that count is LOCAL to the function
calculate. This means that, while calculate is running, the variable count exists.
Once calculate stops running, the variable count ceases to exist.*
 A GLOBAL VARIABLE, on the other hand, is available everywhere within a program.
For example, let’s say you are writing a program to perform statistical operations upon a
long list of numbers. If you make the list a global variable, it is available to all parts of the
program. This means, for example, that if one function or procedure makes a change to
the list, other parts of the program will see that change.
 The question arises: when you use a Unix shell, are there global and local variables
similar to those used by programmers?
 The answer is yes. All shells use global and local variables, and you need to know how
they work. First, there are the environment variables we have already discussed. Since
environment variables are available to all processes, they are global variables and, indeed,
we often refer to them by that name.**
 Second, there are SHELL VARIABLES that are used only within a particular shell and
are not part of the environment. As such, they are not passed from parent to child and,
for this reason, we call them local variables.
 As a general rule, local (shell) variables are used in one of two ways. First, they may
hold information that is meaningful to the shell itself. For example, within the C-Shell
and Tcsh, the ignoreeof shell variable is used to control whether or not the shell
should ignore the eof signal when you press ^D (see Chapter 7).
 Second, shell variables are used in shell scripts in the same way that local variables are
used in ordinary programs: as temporary storage containers. Thus, when you write shell
scripts, you create shell variables to use as temporary storage as the need arises.
 So far, this is all straightforward. Shell variables are local to the shell in which they are
created. Environment variables are global, because they are accessible to any process that
uses the same environment.
 In practice, however, there is a problem. This is because, when it comes to shells, the line
between local and global variables is blurry. For that reason, I want to spend a few minutes
explaining exactly how the shell handles variables. Moreover, there are signifi cant differences
between the Bourne and C-Shell families, so we’ll have to talk about them separately. These

Environment Variables and Shell Variables

 *In this chapter, we will be talking about simple variables that store only one value at a time. If you plan to write shell
scripts, you should know that both Bash and the Korn shell allow you to also use one-dimensional arrays. (An array is a variable
that contains a list of values.) For more details, see the Bash man page (look in the “Arrays” section) or the Korn shell man page
(look in the “Parameters” section).
 **In a strict programming sense, environment variables are not completely global, because changes made by a child process
are not propagated back to the parent.
 There is a good reason for this limitation. Allowing child processes to change environment variables for parent processes
would be a massive source of confusion, bugs, and security holes.

33614_12_255_276.indd 25933614_12_255_276.indd 259 1/9/2008 12:34:00 PM1/9/2008 12:34:00 PM

Chapter 12

260 Harley Hahn’s Guide to Unix and Linux

concepts are so important, however, that I want you to make sure you understand how
variables work with both families, regardless of which shell you happen to use right now.
 Before I start, let me take a moment to explain how variables are named. There is a
tradition with some programming languages that global variables are given uppercase
names and local variables are given lowercase names. This tradition is used with the
 C-Shell family (C-Shell, Tcsh). Environment variables have uppercase names, such as
HARLEY; shell variables have lowercase names, such as harley.
 The Bourne shell family (Bash, Korn shell) is different: both shell variables and
environment variables are traditionally given uppercase names. Why this is the case will
become clear in a moment.
 With most programming languages, a variable is either local or global. With the shell,
there is a strange problem: some variables have meaning as both local and global variables.
In other words, there are some variables that are useful to the shell itself (which means
they should be shell variables), as well as to processes that are started by the shell (which
means they should be environment variables).
 The Bourne shell family handles this problem by mandating that every variable is either
local only, or both local and global. There is no such thing as a purely global variable. For
example, you might have two variables A and B, such that A is a shell variable, and B is
both a shell variable and an environment variable. You cannot, however, have a variable
that is only an environment variable. (Take a moment to think about this.)
 So what happens when you create a variable? Within the Bourne shell family, you are only
allowed to create local variables. That is, every new variable is automatically a shell variable.
If you want a variable to also be an environment variable, you must use a special command
called export. The export command changes a shell variable into a shell+environment
variable. When you do this, we say that you EXPORT the variable to the environment.
 Here is an example. (Don’t worry about the details, we’ll go over them later in chapter.)
To start, we will create a variable named HARLEY and give it a value of cool:

HARLEY=cool

At this point, HARLEY is only a shell variable. If we start a new shell or run a command,
the new processes will not be able to access HARLEY because it is not part of the
environment. Let us now export HARLEY to the environment:

export HARLEY

HARLEY is now both a shell variable and an environment variable. If we start a new shell
or run a command, they will be able to access HARLEY.
 So now you see why the Bourne shell family uses only uppercase letters for both shell
variables and environment variables. Using uppercase makes the name stand out and,
because there is no such thing as a pure environment variable, there is no easy way to
distinguish between local and global. (Take another moment to think this through.)
 As you can see, the way in which the Bourne shell family handles variables is bewildering,
especially to beginners. In fact, the system used by these shells dates back to the fi rst Bourne
shell, developed in 1976 by Steve Bourne at Bell Labs (see Chapter 11). Two years later, in

33614_12_255_276.indd 26033614_12_255_276.indd 260 1/9/2008 12:34:00 PM1/9/2008 12:34:00 PM

Using the Shell: Variables and Options

261

1978, when Bill Joy was developing the C-Shell at U.C. Berkeley (also see Chapter 11), he
decided to improve how variables were organized. To do so, he created a much simpler system
in which there is a clear distinction between environment variables and shell variables.
 In the C-Shell family, environment variables are created by the setenv command
(described later) and are given uppercase names, such as TERM. Shell variables are
created by the set command (also described later) and are given lowercase names, such
as user.* For practical purposes, that’s all there is to it.
 However, the simplicity of the C-Shell system leaves one nagging problem. As I
mentioned, there are certain variables that have meaning both within the shell and within
all the child processes. The Bourne shell family avoids this problem by letting you use
variables that are both local and global. The C-Shell family does not allow this.
 Instead, the C-Shell family recognizes a handful of special quantities that need to be
both local and global. The solution is to have a few special shell variables that are tied to
environment variables. Whenever one of these variables changes, the shell automatically
updates the other one.
 For example, there is a shell variable named home that corresponds to the environment
variable named HOME. If you change home, the shell will make the same change to HOME.
If you change HOME, the shell will change home.
 Of all the dual-name variables, only fi ve are important for everyday use (see Figure 12-1).
The TERM and USER variables should make sense to you now. The PATH variable will be
explained later in the chapter. PWD and HOME will make sense after we have discussed the
Unix fi le system (Chapter 23) and directories (Chapter 24).

Environment Variables and Shell Variables

 *For a long time, it has been fashionable to disparage the C-Shell, especially when comparing it to modern Bourne shells,
such as Bash. I talked about this cultural belief in Chapter 11, when we discussed the essay Csh Programming Considered
Harmful by Tom Christiansen.
 The Bourne shells, however, inherited a number of serious design fl aws that, in order to maintain backwards compatibility,
cannot be changed. Consider, for example, the confusing way in which the Bourne shells handle local and global variables. The
C-Shell, though it has its faults, refl ects the insights of Bill Joy, a brilliant programmer who, in his youth, had an amazing fl air
for designing high-quality tools.
 When it comes to choosing your own personal shell, don’t let people infl uence you unduly. The modern version of the C-
Shell (the Tcsh) is an excellent tool that, for interactive use, can hold its own against Bash and the Korn shell. (Perhaps it’s time
for someone to write a new essay called Don’t Bash the C-Shell.)

SHELL
VARIABLE

ENVIRONMENT
VARIABLE MEANING

cwd PWD your current/working directory

home HOME your home directory

path PATH directories to search for programs

term TERM type of terminal you are using

user USER current userid

FIGURE 12-1: C-Shell family: Connected shell/environment variables

With the C-Shell family, a few shell variables are considered to be the same as corresponding environment
variables. When one variable of the pair is changed, the shell automatically changes the other one.
For example, when home is changed, the shell automatically changes HOME, and vice versa. See text
for details.

33614_12_255_276.indd 26133614_12_255_276.indd 261 1/9/2008 12:34:00 PM1/9/2008 12:34:00 PM

Chapter 12

262 Harley Hahn’s Guide to Unix and Linux

DISPLAYING ENVIRONMENT VARIABLES: env, printenv
Although it is possible to create your own environment variables and shell variables,
you won’t need to do so unless you write programs. Most of the time, you will use the
default variables.
 But what are the default variables? To display them, you use the env command:

env

On many systems, there is another command you can use as well, printenv:

printenv

When you use env or printenv, there may be so many environment variables that
they scroll off the screen. If so, use less to display the output one page at a time:

env | less
printenv | less

When you display your environment variables, you will notice that they are not in
alphabetical order. If you want to sort the output, use the sort command (see Chapter 19)
as follows:

env | sort | less
printenv | sort | less

This construction is called a “pipeline”. We will talk about it in Chapters 15 and 16.
 For reference, Figure 12-2 shows the most important environment variables and
what they mean. The actual variables you see on your computer will vary depending
on which operating system and which shell you are using. However, you should have
most of the variables in the table. Don’t worry if you don’t understand everything:
by the time you learn enough to care about using an environment variable, you will
understand its purpose.

WHAT’S IN A NAME?

cwd, PWD
Figure 12-1 shows the pairs of C-Shell variables that are connected to one another. As you can
see, with one exception, every shell variable has the same name as its corresponding environment
variable (disregarding lower and uppercase). The exception is cwd and PWD.
 These variables contain the name of your working directory, which is sometimes called the
current directory (see Chapter 24). Hence, the name cwd: current/working directory.
 The PWD variable is named after the pwd command, which displays the name of the working
directory. Interestingly enough, pwd is one of the original Unix commands. It stands for “print
working directory”, and it dates from the time that computer output was actually printed on
paper (see Chapters 3 and 7).

33614_12_255_276.indd 26233614_12_255_276.indd 262 1/9/2008 12:34:00 PM1/9/2008 12:34:00 PM

Using the Shell: Variables and Options

263Displaying Environment Variables: env, printenv

SHELLS VARIABLE MEANING

B K • • CDPATH directories searched by the cd command

B K • T COLUMNS width (in characters) of your screen or window

B K C T EDITOR default text editor

B K • • ENV name of environment fi le

B K • • FCEDIT history list: editor for fc command to use

B K • • HISTFILE history list: name of fi le used to store command history

B K • • HISTSIZE history list: maximum number of lines to store

B K C T HOME your home directory

• • • T HOST name of your computer

B • • • HOSTNAME name of your computer

B • • T HOSTTYPE type of host computer

B • • • IGNOREEOF number of eof signals (^D) to ignore before ending shell

B K C T LOGNAME current userid

B • • T MACHTYPE description of system

B K C T MAIL fi le to check for new mail

B K C T MAILCHECK how often (in seconds) the shell checks for new mail

B K • • MAILPAT fi les to check for new mail

B K • • OLDPWD your previous working directory

B • • T OSTYPE description of operating system

B K C T PAGER default program for displaying data (should be less)

B K C T PATH directories to search for programs

B K • • PS1 your shell prompt (customize by changing this variable)

B K • • PS2 special shell prompt for continued lines

B K C T PWD your working [current] directory

B K • • RANDOM random number between 0 and 32,767

B K • • SECONDS time (in seconds) since the shell was invoked

B K C T SHELL pathname of your login shell

B K C T TERM type of terminal you are using

B K • • TMOUT if you don’t type a command, seconds until auto-logout

• K C T TZ time zone information

B K C T USER current userid

B K C T VISUAL default text editor (overrides EDITOR)

FIGURE 12-2: The most important environment variables

By default, Unix systems use a large number of environment variables. What you will fi nd on your
system depends on which operating system and which shell you are using.

The leftmost column shows which shells support each variable: B = Bash; K = Korn Shell; C = C-Shell;
T = Tcsh. A dot indicates that a shell does not support that option.

33614_12_255_276.indd 26333614_12_255_276.indd 263 1/9/2008 12:34:01 PM1/9/2008 12:34:01 PM

Chapter 12

264

DISPLAYING SHELL VARIABLES: set
To display all the shell variables along with their values, you use the set command with
no options or arguments:

set

This command is simple and will work for all shells. There is, however, an important
point you need to remember.
 With the C-Shell family, the shell variables you see will all have lowercase names. By
defi nition, they are local variables.
 With the Bourne shell family, the shell variables all have uppercase names. However,
you can’t tell if a particular variable is a local or global variable just by looking at its name.
If it is a shell variable only, it is local; if it is a shell variable and an environment variable, it
is both local and global. (Remember, in the Bourne shell family, there are no purely global
variables.) This means that when you use set to list your variables, there is no easy way
to know which ones have not been exported to the environment.

 Obviously, this is confusing. However, it doesn’t matter a lot because shell variables
aren’t used much with the Bourne shell family. To be sure, when you write shell scripts
you will create local (shell) variables as you need them. But for day-to-day interactive
work, it is the environment variables that are important, not the shell variables.
 In the C-Shell family, things are different. There are a large number of shell variables,
many of which are used to control the behavior of the shell. Earlier, I mentioned several of
these variables: cwd, home, term and user. For reference, Figure 12-3 shows you these
four, as well as the others I consider to be the most important. For a comprehensive list, see
Appendix G. (In fact, you might want to take a moment right now to sneak a quick look
at Appendix G, just to see how many shell variables the C-Shell family actually uses.)
 This leaves us with one last question. If the C-Shell family uses shell variables to
control the behavior of the shell, what does the Bourne shell family use? The answer is:
an elaborate system called “shell options”, which we will talk about later in the chapter.
First, however, we need to cover a few more basic concepts related to using variables.

DISPLAYING AND USING THE VALUE OF A VARIABLE: echo, print
If you want to display the values of all your environment variables at once, you can use
the env or printenv command. If you want to display all your shell variables, you can
use set. There will be many times, however, when you want to display the value of a
single variable. In such cases, you use the echo command.

Harley Hahn’s Guide to Unix and Linux

HINT

Strange but true: The only way to determine which Bourne shell variables are not exported is to
compare the output of set to the output of env. If a variable is listed by set but not by env,
it is a shell variable. If the variable is listed by set and by env, it is both a shell variable and an
environment variable.

33614_12_255_276.indd 26433614_12_255_276.indd 264 1/9/2008 12:34:01 PM1/9/2008 12:34:01 PM

Using the Shell: Variables and Options

265

 The job of the echo command is to display the value of anything you give it. For
example, if you enter:

echo I love Unix

Displaying and Using the Value of a Variable: echo, print

SHELLS SHELL VARIABLE MEANING

• T autologout if you don’t type a command, time (in minutes) until auto-logout

C T cdpath directories to be searched by cd, chdir, popd

• T color cause ls -F command to use color

C T cwd your working [current] directory (compare to owd)

C T fi lec autocomplete: enable

C T history history list: maximum number of lines to store

C T home your home directory

C T ignoreeof do not quit shell upon eof signal (^D)

• T implicitcd typing directory name by itself means change to that directory

• T listjobs job control: list all jobs whenever a job is suspended; long = long format

• T loginsh set to indicate a login shell

C T mail list of fi les to check for new email

C T noclobber do not allow redirected output to replace a fi le

C T notify job control: notify immediately when background jobs fi nished

• T owd your most recent [old] working directory (compare to cwd)

C T path directories to search for programs

C T prompt your shell prompt (customize by changing this variable)

• T pushdsilent directory stack: pushd and popd do not list directory stack

• T pushdtohome directory stack: pushd without arguments assumes home directory

• T rmstar force user to confi rm before executing rm * (remove all fi les)

• T rprompt special prompt for right side of screen (hint: set to %~ or %/)

• T savedirs directory stack: before logout, save directory stack

C T savehist history list: before logout, save this number of lines

C T shell pathname of your login shell C T term type of terminal you are using

C T user current userid

C T verbose debug: echo each command, after history substitution only

• T visiblebell use a screen fl ash instead of an audible sound

FIGURE 12-3: C-Shell family: The most important shell variables

With the C-Shell family, there are a great many shell variables that are used by the shell for special
purposes. Here are the ones I consider to be the most useful. A more comprehensive list can be found
in Appendix G.

The leftmost column shows which shells support each option: C = C-Shell; T = Tcsh. A dot indicates
that a shell does not support that option.

33614_12_255_276.indd 26533614_12_255_276.indd 265 1/9/2008 12:34:01 PM1/9/2008 12:34:01 PM

Chapter 12

266 Harley Hahn’s Guide to Unix and Linux

You will see:

I love Unix

(Which, by now, should be true.)
 To display the value of a variable, you use a $ (dollar sign) character followed by
the name of the variable enclosed in brace brackets (usually referred to as braces). For
example, to display the value of TERM, you would enter:

echo ${TERM}

Try it on your system and see what you get. If there is no ambiguity, you can leave out
the braces.

echo $TERM

This will be the case most of the time, but I’ll show you an example in a moment where
you would need the braces.
 When we talk about using variables in this way, we pronounce the $ character as
“dollar”. Thus, you might hear someone say, “If you want to display the value of the TERM
variable, use the command echo-dollar-term.”
 The notation $NAME is important so I want you to remember it. When you type a
variable name alone, it is just a name; when you type a $ followed by a name (such as
$TERM), it refers to the value of the variable with that name. Thus, the echo command
above means, “Display the value of the variable TERM.”
 Consider the following example, similar to the previous one but without the $
character. In this case, the echo command will simply display the characters TERM, not
the value of the TERM variable:

echo TERM

You can use echo to display variables and text in any way you want. For example, here is
a more informative message about the type of your terminal:

echo The terminal type is $TERM

If your terminal type is, say, xterm, you will see:

The terminal type is xterm

Within the shell, some punctuation characters called “metacharacters” have special
meanings (we’ll discuss this in Chapter 13). To keep the shell from interpreting
 metacharacters, you enclose them in double quotes. This tells the shell to take the characters
literally. For example, to display the value of TERM within angled brackets. You might try:

echo The terminal type is <$TERM>.

The < and > characters, however, are metacharacters used for “redirection” (see Chapter
15), and the command won’t work. (Try it.) Instead, you need to use:

echo "The terminal type is <$TERM>."

33614_12_255_276.indd 26633614_12_255_276.indd 266 1/9/2008 12:34:01 PM1/9/2008 12:34:01 PM

Using the Shell: Variables and Options

267

When you use the echo command, you have a lot of fl exibility. For example, you can
display more than one variable:

echo $HOME $TERM $PATH $SHELL

If you want to use a variable such that it is not separated from its neighbors, you must use
braces to delimit it. For example, say that the variable ACTIVITY has the value surf.
The command:

echo "My favorite sport is ${ACTIVITY}ing."

will display:

My favorite sport is surfing.

BOURNE SHELL FAMILY: USING VARIABLES: export, unset
With the Bourne shell family, it is easy to create a variable. All you do is type a name,
followed by an = (equal sign) character, followed by a value. The value must be a string
of characters. The syntax is:

NAME=value

Bourne Shell Family: Using Variables: export, unset

HINT

When you use the echo command to display punctuation, use double quotes to tell the shell
not to interpret the punctuation as metacharacters.

HINT

If you write shell scripts, you will fi nd yourself using the echo command a lot. Take a moment
to check out the man page (man echo), where you will fi nd a variety of options and features
you can use to control the format and content of the output.

HINT FOR KORN SHELL USERS

All shells let you use the echo command to display text and variables. With the Korn shell, you
can also use the print command:

print "The terminal type is $TERM."

The developer of the Korn shell, David Korn, (see Chapter 11) created print to replace echo.
He did this because the two main versions of Unix at the time, System V and BSD (see Chapter 2),
used echo commands that had slightly different features. This meant that shell scripts that used
echo were not always portable from one system to another.
 To solve the problem, Korn designed print to work the same on all systems. This is not
as much of an issue today as it was in Korn’s day. Still, if you are writing a Korn shell script
that you know will be run on more than one computer, it is prudent to use print instead
of echo.

33614_12_255_276.indd 26733614_12_255_276.indd 267 1/9/2008 12:34:01 PM1/9/2008 12:34:01 PM

Chapter 12

268 Harley Hahn’s Guide to Unix and Linux

As I mentioned earlier, a variable name can use letters, numbers or an underscore (_).
However, a variable name cannot start with a number.
 Here is an example you can try (use your own name if you want). Be careful not to put
spaces around the equal sign:

HARLEY=cool

When you create a variable in this way, we say that you SET it. Thus, we can say that the
previous example sets the variable HARLEY and gives it a value of cool.
 If you want to use a value that contains whitespace (spaces or tabs; see Chapter 10),
put the value in double quotes:

WEEDLY="a cool cat"

Once a variable exists, you can use the same syntax to change its value. For example, once
you have created HARLEY, you can change its value from cool to smart by using:

HARLEY=smart

Within the Bourne shell family, every new variable is automatically a shell variable. (See
the discussion earlier in the chapter.) To export a variable to the environment, you use the
export command. Type export followed by the name of one or more variables. The
following example exports HARLEY and WEEDLY:

export HARLEY WEEDLY

Both HARLEY and WEEDLY have now been changed from shell variables to
shell+environment variables.
 As we discussed in Chapter 10, you can enter multiple commands on the same line by
separating them with a semicolon. Because it is common to create a variable and export
it immediately, it makes sense to enter the two commands together, for example:

PAGER=less; export PAGER

This is faster than entering two separate commands and you will see this pattern used
a lot, especially in Unix documentation and in shell scripts. However, there is an even
better way. The export command actually lets you set a variable and export it at the
same time. The syntax is:

export NAME[=value]...

Here is a simple example:

export PAGER=less

Look closely at the syntax. Notice that export allows you to specify one or more variable
names, each of which may have a value. Thus, you can do a lot with one command:

export HARLEY WEEDLY LITTLENIPPER
export PAGER=less EDITOR=vi PATH="/usr/local/bin:/usr/bin:/bin"

33614_12_255_276.indd 26833614_12_255_276.indd 268 1/9/2008 12:34:01 PM1/9/2008 12:34:01 PM

Using the Shell: Variables and Options

269

As I mentioned, when you create a variable, we say that you set it. When you delete a
variable, we say that you UNSET it. You will rarely have to unset a variable, but if the need
arises, you can do so with the unset command. The syntax is simple:

unset NAME...

Here is an example:

unset HARLEY WEEDLY

C-SHELL FAMILY: USING VARIABLES: setenv, unsetenv, set, unset
As we have discussed, the C-Shell family — unlike the Bourne shell family — has a
clear separation between environment variables and shell variables. In other words,
the C-Shell clearly distinguishes between global and local variables. For this reason,
you will fi nd that working with variables is easier with the C-Shell family than with the
Bourne shell family.
 To set (create) and unset (delete) environment variables, you use setenv and
unsetenv. To set and unset shell variables, you use set and unset.
 The syntax of the setenv command is as follows:

setenv NAME [value]

where NAME is the name of the variable; value is the value to which you want to set the
variable. Notice we do not use an = (equal sign) character.
 Here are some examples in which we create environment variables. If you want to
experiment, remember that, once you have created environment variables, you can
display them using the env or printenv commands.

C-Shell Family: Using Variables: setenv, unsetenv, set, unset

HINT

As a rule, the very best Unix users tend to think fast. As such, they favor commands that are as
easy to type as possible. For this reason, the preferred way to set and export a variable is with a
single command:

export PAGER=less

Although many people use two commands to set and export a variable, using a single command
to do a double job marks you as a person of intelligence and distinction.

HINT

Interestingly enough, within the Bourne shell family, there is no easy way to remove a variable
from the environment. Once a variable is exported, the only way to un-export it is to unset it.
 In other words, the only way to remove a Bourne shell variable from the environment is to
destroy it.*

 *Riddle: How is a Bourne shell variable like the spotted owl?

33614_12_255_276.indd 26933614_12_255_276.indd 269 1/9/2008 12:34:01 PM1/9/2008 12:34:01 PM

Chapter 12

270 Harley Hahn’s Guide to Unix and Linux

setenv PATH /usr/local/bin:/usr/bin:/bin
setenv HARLEY cool
setenv WEEDLY "a cool cat"
setenv LITTLENIPPER

The fi rst three commands set a variable and give it a specifi ed value. In the third example,
we use double quotes to contain whitespace (the two spaces). In the last example, we specify
a variable name (LITTLENIPPER) without a value. This creates the variable with a null
value. We do this when we care only that a variable exists, but we don’t care about its value.
 To unset an environment variable, you use the unsetenv command. The syntax is:

unsetenv NAME

where NAME is the name of the variable.
 For example, to unset (delete) the variable HARLEY, you would use:

unsetenv HARLEY

To set a shell variable, you use a set command with the following syntax:

set name[=value]

where name is the name of a shell variable; value is the value to which you want to set
the variable.
 Here are several examples:

set term=vt100
set path=(/usr/bin /bin /usr/ucb)
set ignoreeof

 The fi rst example is straightforward. All we do is set the value of the shell variable
term to vt100.
 The second example illustrates an important point. When you are using variables
with the C-Shell family, there are times when you enclose a set of character strings in
parentheses, rather than double quotes. When you do so, it defi nes a set of strings that
can be accessed individually. In this case the value of path is set to the three character
strings within the parentheses.
 In the last example, we specify a shell variable without a value. This gives the variable
a null value. In this case, the fact that the variable ignoreeof exists tells the shell to
ignore the eof signal. This requires us to use the logout command to end the shell.
(See Chapter 7.)
 Once a shell variable exists, you can delete it by using the unset command. The
syntax is:

unset variable

where variable is the name of a variable.
 As an example, if you want to tell the shell to turn off the ignoreeof feature, you
would use:

33614_12_255_276.indd 27033614_12_255_276.indd 270 1/9/2008 12:34:01 PM1/9/2008 12:34:01 PM

Using the Shell: Variables and Options

271

unset ignoreeof

Make sure you understand the difference between setting a variable to null and deleting
the variable. Consider the following three commands:

set harley=cool
set harley
unset harley

The fi rst command creates a shell variable named harley and gives it a value of cool.
The second command sets the value of harley to null. The fi nal command deletes the
variable completely.

SHELL OPTIONS: set -o, set +o
As we discussed earlier, with the C-Shell family, we control various aspects of the shell’s
behavior by using shell variables. With the Bourne shell family, we use SHELL OPTIONS. For
instance, it is shell options that control whether a shell is interactive or non-interactive.
 Shell options act like on/off switches. When you turn on an option, we say that you
SET it. This tells the shell to act in a certain way. When you turn off an option, we say that
you UNSET it. This tells the shell to stop acting in that way.
 For example, the shell supports a facility called “job control” to let you run programs
in the background. (We’ll talk about this in Chapter 26.) To turn on job control, you
set the monitor option. If you want to turn off job control, you unset the monitor
option. By default, monitor is turned on for interactive shells.

 There are two ways in which shell options can be set or unset. First, at the time a
shell is started, options can be specifi ed in the usual manner, by specifying one or more
options with the command (see Chapter 10). For example, the following command starts
a Korn shell with the monitor option set (turned on):

ksh -m

In addition to the standard command-line options, there is another way to turn shell options
on and off, using a variation of the set command. Here is the syntax. To set an option, use:

set -o option

To unset an option, you use:

Shell Options: set -o, set +o

HINT

The words “set” and “unset” have different meanings depending on whether we are talking
about shell options or variables.
 Shell options are either off or on; they do not need to be created. Thus, when we set a shell
option, we turn it on. When we unset an option, we turn it off.
 Variables are different. When we set a variable, we actually create it. When we unset a variable,
we delete it permanently.

33614_12_255_276.indd 27133614_12_255_276.indd 271 1/9/2008 12:34:01 PM1/9/2008 12:34:01 PM

Chapter 12

272 Harley Hahn’s Guide to Unix and Linux

set +o option

where option is the “long name” of an option (see Figure 12-4).
 For example, say the shell is running and you want to set the monitor option. Use:

set -o monitor

To unset the monitor option, use:

set +o monitor

Be careful that you type o, the lowercase letter “o”, not a zero. (Just remember, o stands
for “option”.)
 At fi rst, it will seem strange to use -o to turn an option on and +o to turn it off.
However, I promise you, it will make sense eventually.*
 Every time a shell starts, the various options are either set or unset by default, according
to whether the shell is interactive or non-interactive. The programmers who designed the
shell knew what they were doing and, in most cases, the shell options are just fi ne the way
they are. This means that you will rarely have to change a shell option.
 However, if you do, you can use Figure 12-4 for reference: it shows the shell options that
are the most useful with interactive shells. As with the environment variables we discussed
earlier, don’t worry if you don’t understand everything. This list is for reference. By the time
you learn enough to care about using an option, you will understand its purpose.
 Aside from what you see in Figure 12 -4, there are many other shell options, most of
which are useful with non-interactive shells (that is, when you are writing shell scripts).
In addition, if you use Bash, there is a special command called shopt (“shell options”)
that gives you access to yet more options.
 I have collected the full set of shell options, plus some hints about shopt in Appendix G.
Although you don’t need to understand all this material right now, I’d like you to take a
moment to look at Appendix G, just so you know what’s available.

 *Here is the short explanation. As you know from Chapter 10, the standard form of an option is a - (hyphen) character
followed by a single letter. It happens that most of the time when you modify shell options, you will want to set them — that is,
turn them on — not unset them. For this reason, the common syntax (-o) is used for “set”, and the less common syntax (+o)
is used for “unset”.
 Over time, as you gain experience, this type of reasoning will start to make sense to you. As that happens, something
changes in your brain and using Unix becomes much easier. (Unfortunately, this same change also makes it harder to meet
cheerleaders at sorority parties.)

HINT

For defi nitive information about shell options, see your shell man page:

man bash
man ksh

With Bash, search for “SHELL BUILTIN COMMANDS”. With the Korn shell, search for “Built-in
Commands” or “Special Commands”.

33614_12_255_276.indd 27233614_12_255_276.indd 272 1/9/2008 12:34:02 PM1/9/2008 12:34:02 PM

Using the Shell: Variables and Options

273

DISPLAYING SHELL OPTIONS
The Bourne shell family uses shell options to control the operation of the shell. To display
the current value of your shell options, use either set -o or set +o by themselves:

set -o
set +o

Using set -o displays the current state of all the options in a way that is easy to read.
Using set +o displays the same information in a compact format that is suitable for
using as data to a shell script or a program.
 If the output is too long for your screen, send it to less, which will display it one
screenful at a time:

set -o | less
set +o | less

Displaying Shell Options

SHELLS OPTION LONG NAME MEANING

B K -a allexport export all subsequently defi ned variables and functions

B • -B braceexpand enable brace expansion (generate patterns of characters)

B K -E emacs command line editor: Emacs mode; turns off vi mode

B K -h hashall hash (remember) locations of commands as they are found

B • -H histexpand history list: enable !-style substitution

B • history history list: enable

B K -I ignoreeof ignore eof signal ^D; use exit to quit shell (see Chapter 7)

• K markdirs when globbing, append / to directory names

B K -m monitor job control: enable

B K -C noclobber do not allow redirected output to replace a fi le

• K nolog history list: do not save function defi nitions

B K -b notify job control: notify immediately when background job is fi nished

• K trackall aliases: substitute full pathnames for commands

B K -V vi command line editor: vi mode; turns off Emacs mode

• K viraw in vi mode: process each character as it is typed

FIGURE 12-4: Bourne Shell family: Summary of options for interactive shells

This table summarizes the shell options that are useful with an interactive shell. For more information,
see the man page for your particular shell.

The leftmost column shows which shells support each option: B = Bash; K = Korn Shell. A dot indicates
that a shell does not support that option. Notice that some options, such as history, have a long
name but not a short option name.

Notes: (1) Although Bash supports the emacs and vi options, it does not use -E and -V. (2) The
Korn shell uses -h, but does not support the long name hashall.

33614_12_255_276.indd 27333614_12_255_276.indd 273 1/9/2008 12:34:02 PM1/9/2008 12:34:02 PM

Chapter 12

274 Harley Hahn’s Guide to Unix and Linux

If you would like to practice setting and unsetting options, try doing so with the
ignoreeof option. As we discussed in Chapter 7, you can terminate a shell by pressing
^D (the eof key). However, if the shell happens to be your login shell, you will be
logged out.
 Unfortunately, it is all too easy to press ̂ D by accident and log yourself out unexpectedly.
To guard against this you can set the ignoreeof option. This tells the shell not to end
a shell when you press ^D. Instead, you must enter exit or logout. To set this option,
use the following command:

set -o ignoreeof

To unset the option, use:

set +o ignoreeof

Try experimenting by setting, unsetting and displaying the options. Each time you make a
change, display the current state of the options, then press ^D and see what happens.

MACHINE-READABLE, HUMAN-READABLE

When a program displays complex output in a way that it can be used as data for another
program, we say that the output is MACHINE-READABLE. Although this term conjures
up the image of a robot reading like a person, all it means is that the output is formatted
in a way that is suitable for a program to process. For example, you might have a table of

HINT

Unless you are an advanced user, the only options you need to concern yourself with are
ignoreeof, monitor and noclobber, and either emacs or vi.
 The monitor option enables job control, which I discuss in Chapter 26. The noclobber
option prevents you from accidentally removing a fi le when you redirect the standard output
(see Chapter 15). The emacs and vi options are used to specify which built-in editor you want
to use to recall and edit previous commands. This is explained later in the chapter.
 These options are best set from within your environment fi le, an initialization fi le that is
executed automatically each time a new shell is started. We will discuss this fi le in Chapter 14.

WHAT’S IN A NAME?

set
You will notice that, in just this one chapter, we have used the set command in several different
ways, each with its own syntax. We have used set to display shell variables, to create shell
variables, to turn shell options on and off, and to display shell options.
 If you take a careful look, you can see that we are actually dealing with four different
commands that happen to have the same name. Apparently, there is something about the name
set that makes programmers want to use it a lot.
 This is not as odd as it sounds. Did you know that, in English, the word “set” has more
distinct meanings than any other word in the language? Check with a dictionary. I promise you
will be amazed.

33614_12_255_276.indd 27433614_12_255_276.indd 274 1/9/2008 12:34:02 PM1/9/2008 12:34:02 PM

Using the Shell: Variables and Options

275

census data formatted as lists of numbers separated by commas, instead of organized into
columns. Although this would be awkward for you or me to read, it would be suitable
input for a program.
 When output is designed to be particularly easy to read, we sometimes say that it is
HUMAN-READABLE. This term is not used much, but you will encounter it within the
man pages for the GNU utilities which, as we discussed in Chapter 2, are used with many
types of Unix, including Linux. In fact, many commands have options that are designed
specifi cally to produce human-readable output.
 As an example, in the previous section, I mentioned that the set -o command
displays output in a way that is easy to read, while set +o displays output suitable for
using as data for a shell script. Another way to say this is that set -o produces human-
readable output, while set +o produces machine-readable output.
 Of course, not everyone is the same. Just because something is supposed to be human-
readable, doesn’t mean you personally will like it better than the machine-readable
counterpart. For example, I happen to like the output of set +o better than the output
of set -o.*

C H A P T E R 1 2 E X E R C I S E S

REVIEW QUESTIONS

1. What is the difference between an interactive shell and a non-interactive shell?

2. The environment is a table of variables available to the shell and to any program
started by that shell. What type of variables are stored within the environment? Give
three examples. What type of variables are not part of the environment?

3. With the Bourne shell family (Bash, Korn shell), what command do you use to make
a shell variable part of the environment?

4. How do you display the values of all your environment variables? Your shell variables?
A single variable?

5. Explain the terms “machine-readable” and “human-readable”.

APPLYING YOUR KNOWLEDGE

1. The environment variable USER contains the name of the current userid. Show three
different ways to display the value of this variable.

Chapter 12 Exercises

 *But then, I also like putting peanut butter on avocado.

33614_12_255_276.indd 27533614_12_255_276.indd 275 1/9/2008 12:34:02 PM1/9/2008 12:34:02 PM

Chapter 12

276 Harley Hahn’s Guide to Unix and Linux

2. Create an environment variable named SPORT and give it the value “surfi ng”. Display
the value of the variable. Start a new shell. Display the variable again to show that it
was passed to the new shell as part of the environment. Change the value of SPORT
to “running”, and display the new value. Now quit the shell and return to the original
shell. Display the value of SPORT. What do you see and why?

3. Within the Bourne shell family (Bash, Korn shell), the ignoreeof option tells the
shell not to log you out when you press ^D (the eof key). Start either Bash or a
Korn shell. Check if ignoreeof is turned on or off. If it is off, turn it on. Press ^D
to confi rm that you do not log out. Then turn ignoreeof off. Press ^D again to
confi rm that you do indeed log out.

FOR FURTHER THOUGHT

1. Environment variables are not true global variables, because changes made by a child
process are not propagated back to the parent. Supposing this was not the case. Show
how a hacker might use this loophole to cause trouble on a multiuser system on which
he has an account.

2. The C-Shell family has a clear separation between environment variables and shell
variables. The Bourne shell family is not so clear, because a newly created variable is,
by default, a shell variable. If it is exported, it becomes both a local and an environment
variable. What are the advantages and disadvantages of each system? Which system
do you think is better, and why? Why do you think the Bourne shell family has such a
confusing way of dealing with variables?

33614_12_255_276.indd 27633614_12_255_276.indd 276 1/9/2008 12:34:02 PM1/9/2008 12:34:02 PM

277

C H A P T E R 1 3

Using the Shell:
Commands and Customization

Metacharacters

In Chapter 11, we discussed the shell in general. In Chapter 12 we built on that foundation
and discussed interactive shells, processes, environment variables, shell variables, and
shell options. In this chapter, we will cover the rest of the fundamental concepts.
 The time you spend reading this chapter will repay you well for two reasons. First,
the ideas we are going to cover are crucial to using the shell well. Second, as you begin to
integrate your knowledge of the shell, you will fi nd that the skills you are about to learn
will save you a lot of time in your day-to-day work.

METACHARACTERS
Using your keyboard, you can type letters, numbers, and a variety of other characters, such
as punctuation and arithmetic symbols. In addition, you can use the <Space>, <Tab> and
<Return> keys to generate the space, tab and newline characters (see Chapter 7).
 Collectively, we refer to the letters and numbers as the ALPHANUMERIC characters.
Using alphanumeric characters is straightforward: you type what you want, and what
you see is what you get. However, when you use the shell, many of the other symbols
have special meanings. We call such characters METACHARACTERS, and you need to be
aware of how they work.
 For example, as we discussed in Chapter 10, you can enter multiple commands on the
same line by separating them with a semicolon. Because it has a special meaning to the
shell, the semicolon is a metacharacter.
 In a more abstract way, when you press <Space>, <Tab> or <Return>, you also are
using metacharacters. The space and tab characters are used as whitespace to separate the
various parts of a command (Chapter 10), while the newline character is used to mark
the end of a line (Chapter 7).
 If you try to memorize the purpose of all the metacharacters right now, it will be
diffi cult because what you are memorizing won’t make sense. Since each metacharacter is
used to implement a particular service offered by the shell, it makes sense to learn about
a metacharacter as you learn about the service it provides.

33614_13_277_326.indd 27733614_13_277_326.indd 277 1/9/2008 12:34:37 PM1/9/2008 12:34:37 PM

Chapter 13

278 Harley Hahn’s Guide to Unix and Linux

For example, I explained earlier that the $ (dollar) character is used when you want to
refer to the value of a variable (such as $TERM). As such, $ is a metacharacter. But how

CHARACTER ENGLISH NAME UNIX NICKNAME
& ampersand —

' apostrophe quote, single quote

* asterisk star

@ at sign at

` backquote backtick

\ backslash —

{ } brace brackets braces, curly brackets

^ circumfl ex carat

: colon —

, comma —

$ dollar sign dollar

<Return> enter, return newline

= equal sign equals

! exclamation mark bang

> greater-than sign greater-than

- hyphen, minus sign dash, minus (see Hint)

< less-than sign less-than

number sign hash, pound (see Hint)

() parentheses —

% percent sign percent

. period dot

+ plus sign plus

? question mark —

" quotation mark double quote

; semicolon —

/ slash forward slash

<Space> space —

[] square brackets brackets

<Tab> tab —

~ tilde —

_ underscore —

| vertical bar pipe

FIGURE 13-1: Non-alphanumeric characters used with Unix

Here are all the non-alphanumeric characters we use with Unix. As part of the Unix tradition, most of
the characters have nicknames that we use when we talk. For example, the exclamation mark is called
a “bang”; $TERM is pronounced “dollar term”; and so on. If you want to sound like a Unix pro, use
the nicknames.

33614_13_277_326.indd 27833614_13_277_326.indd 278 1/9/2008 12:34:38 PM1/9/2008 12:34:38 PM

Using the Shell: Commands and Customization

279

much sense would it have made to you if, when I told you that, you didn’t yet understand
about variables?
 I am going to give you a list of all the metacharacters, but I don’t expect you to
understand them all now. You will learn about them later, one by one. For now, I just
want to make sure that you recognize them when you see them, so you don’t accidentally
use them the wrong way.
 For example, if you were to enter the following command, the shell would see the
semicolon and interpret what you typed as two commands:

echo The search path is $PATH; the shell is $SHELL.

However, if you recognize that the semicolon is a metacharacter, you can tell the shell to
leave it alone:

echo "The search path is $PATH; the shell is $SHELL."

When we protect metacharacters in this way, we say that we “quote” them.
 We’ll talk about quoting in a moment. Before we do, however, I’d like to introduce you
to the full cast of metacharacters. To start, take a look at Figure 13-1. This shows all the
non-alphanumeric characters that we use with Unix, not all of which are metacharacters.
Then look at Figure 13-2, where you will see the metacharacters along with a short
description of how they are used. For reference, I have included the chapter number in
which we discuss each particular metacharacter.
 Within Figure 13-2, you will notice that several of the metacharacters are used for
fi lename expansion, which is also known as “globbing”. Globbing has a whole set of rules
for using metacharacters, and we will discuss it in detail in Chapter 24.

QUOTING AND ESCAPING
From time to time, you will want to use a metacharacter literally, with no special meaning.
For example, you may want to use a semicolon as a semicolon, not as a command
separator. Or you may want to use the | (vertical bar) but not have it act as a pipe*. In
such cases, you must tell the shell to interpret the character literally. When you do so, we
say that you QUOTE the character.

Quoting and Escaping

HINT

Two of the non-alphanumeric characters in Figure 13-1 have different names depending on
how long ago you started to use Unix. This is because traditions changed in the mid-1990s as
Linux began to be popular.
 Hyphen(-): Young people call the hyphen “dash”; old people call it “minus”.
 Number sign(#): Young people call the number sign “hash”; old people call it “pound”.
 If you are a student, this is important when you are talking to professors who are over 30.
Remember to say “minus” and “pound”, and you will make an old person comfortable.

 *As Freud once said, “Sometimes a vertical bar is just a vertical bar.”

33614_13_277_326.indd 27933614_13_277_326.indd 279 1/9/2008 12:34:38 PM1/9/2008 12:34:38 PM

Chapter 13

280 Harley Hahn’s Guide to Unix and Linux

 There are three ways to quote characters: using a backslash, using a pair of single
quotes, or using a pair of double quotes.
 The most straightforward way to quote a metacharacter is to put a backslash (\) in
front of it. This tells the shell to ignore any special meaning the character might have.
For example:

echo It is warm and sunny\; come over and visit

In this example, we put a backslash in front of the ; (semicolon) character. If we hadn’t,
the shell would have interpreted the ; as a metacharacter, which would have led it to

CHARACTER CHAPTER NAME PURPOSE
{ } 24 braces brace expansion: generate a pattern of characters

| 15 pipe command line: create a pipeline

< 15 less-than command line: redirect input

> 15 greater-than command line: redirect output

() 15 parentheses command line: run commands in a subshell

14 hash, pound command line: start of comment, ignore rest of line

; 10 semicolon command line: used to separate multiple commands

` 13 backquote command line: command substitution

~ 24 tilde fi lename expansion: insert name of home directory

? 24 question mark fi lename expansion: match any single character

[] 24 brackets fi lename expansion: match from a set of characters

* 24 star fi lename expansion: match zero or more characters

! 13 bang history list: event marker

& 26 ampersand job control: run command in background

\ 12 backslash quoting: escape the next character

' 12 quote, single quote quoting: suppress all substitutions

" 12 double quote quoting: suppress most substitutions

{ } 12 braces variables: delimit a variable name

$ 12 dollar variables: substitute the value of a variable

<Return> 7 newline whitespace: mark the end of a line

<Tab> 10 tab whitespace: separate words within the command line

<Space> 10 space whitespace: separate words within the command line

FIGURE 13-2: Metacharacters used with the shell

Many of the non-alphanumeric characters have a special meaning within the shell. These are the
metacharacters. This table shows all the metacharacters, along with their Unix nicknames. Eventually,
you will learn the exact rules for using each of the metacharacters. Note that braces are used in two
different ways.

For reference, I have specifi ed the chapter in which each particular metacharacter is discussed.

33614_13_277_326.indd 28033614_13_277_326.indd 280 1/9/2008 12:34:38 PM1/9/2008 12:34:38 PM

Using the Shell: Commands and Customization

281

assume that you meant to type two separate commands, echo and come. Of course, this
would produce an error.

When you use a backslash to quote a single character, we call the backslash an “escape
character”. This is an important concept, so I want to spend a moment discussing it.
 You may remember that, when we talked about runlevels in Chapter 6, we discussed
the idea of a mode. Specifi cally, when a computer system, a program, or a device can be
in one of several states, we use the term MODE to refer to a particular state. In Chapter 6,
for example, I explained that your Unix or Linux system could boot in single-user mode
or multiuser mode. Similarly, when we discuss the vi text editor in Chapter 22, you will
see that, at any time, vi, is either in input mode or command mode.
 When a program is in a specifi c mode and we do something to change to another
mode, we say that we ESCAPE from one mode to another. When we change modes by
pressing a particular key, we call it an ESCAPE CHARACTER*. When you are typing a
command for the shell, the backslash is an escape character, because it tells the shell to
change from one mode (pay attention to metacharacters) to another mode (don’t pay
attention to metacharacters). I want you to remember the idea of an escape character,
because you will encounter it again and again, especially if you are a programmer.
 Within Unix, the word “escape” is used in two ways. Most commonly, we talk about
escaping from one mode to another. For example, when you use the vi text editor, you
press the <Esc> key to escape from insert mode to command mode.
 With the shell, we use the word “escape” a bit differently, as a synonym for quote. For
example, consider this example:

echo It is warm and sunny\; come over and visit

We can say we are using a backslash to escape the semicolon. This is the same as saying we
are using a backslash to quote the semicolon**.
 If we had just the backslash to escape metacharacters, it would be enough, as we can
use the backslash more than once in the same line. Consider the following command:

HINT

When you want to quote a single character, be careful to use the backslash (\), not a regular
slash (/). The regular slash has a completely different purpose. It is used within pathnames
(see Chapter 23).

 *Now you know why there is an <Esc> or <Escape> key on your keyboard. It was designed to be used by programs to
change from one mode to another.
 **To be precise, when we talk about escaping from one mode to another, we are using “escape” as an intransitive verb, that
is, a verb that does not take an object. When we talk about escaping (quoting) a character, we are using “escape” as a transitive
verb, a verb that takes an object.
 Unless you went to school before the Beatles were popular, your English teacher may have forgotten to teach you grammar. If
so, you won’t know the difference between transitive and intransitive verbs, so here is another example to pique your interest.
 When you say, “Feel the fabric and tell me if it is soft,” you are using a transitive verb. The verb is “feel”; the object is “fabric”.
 When you say, “Do you feel lucky?”, you are using an intransitive verb. The verb is “feel”, and there is no object. (To be
precise, “feel” is a copula verb, and “lucky” is a predicate adjective, acting as a subjective completion.)
 Although you might fi nd it hard to believe, stuff like this is important, especially if you want to be a writer.

Quoting and Escaping

33614_13_277_326.indd 28133614_13_277_326.indd 281 1/9/2008 12:34:38 PM1/9/2008 12:34:38 PM

Chapter 13

282 Harley Hahn’s Guide to Unix and Linux

echo It is warm (and sunny); come over & visit

This command won’t work properly, because of all the metacharacters: (,), ; and &. To
make the command work, we need to escape all four characters:

echo It is warm \(and sunny\)\; come over \& visit

We now have a valid command, one that will work just fi ne. However, it is much too
hard to read. As an alternative, the shell allows us to use single quotes to quote a string of
characters. Thus, instead of the example above, we can use:

echo 'It is warm (and sunny); come over & visit'

In this case, we have quoted everything between the single quotes. Of course, this includes
all the characters, not just the metacharacters, but it doesn’t hurt to quote alphanumeric
characters. (Stop a moment, and think about why this should be the case.)
 Thus, we have (so far) two ways to quote metacharacters: we can use a backslash to
quote single characters or single quotes to quote a string of characters. If the need arises,
you can combine both types of quoting in the same command:

echo It is warm '(and sunny);' come over \& visit

Most of the time, the backslash and single quotes will be all that you need. However, there
will be situations when it will be more convenient to use a third type of quoting using
double quotes. Here is an example.
 From time to time, you may want to use the $ character within a quoted string, usually
to refer to the value of a variable. For example, the following command displays your
userid and terminal type within angled brackets:

echo My userid is <$USER>; my terminal is <$TERM>

In this form, the command doesn’t work, because the metacharacters <, ; and > have
a special meaning. (The $ is okay; we want it to be a metacharacter.) The solution is to
quote only those metacharacters we want to be taken literally:

echo My userid is \<$USER\>\; my terminal is \<$TERM\>

This works, but it is much too complicated. We could, of course, use single quotes instead
of backslashes:

echo 'My userid is <$USER>; my terminal is <$TERM>'

This is easier to read, but it quotes all the metacharacters, including the $. This means
that we will literally see $USER and $TERM, rather than the values of the variables. For
situations like this, we use double quotes because all the $ metacharacters retain their
special meaning. For example:

echo "My userid is <$USER>; my terminal is <$TERM>"

33614_13_277_326.indd 28233614_13_277_326.indd 282 1/9/2008 12:34:38 PM1/9/2008 12:34:38 PM

Using the Shell: Commands and Customization

283

Because we used double quotes, the <, ; and > characters are all quoted, but the $ is not.
(Try it for yourself.)
 Aside from $, double quotes also preserve the meaning of two other metacharacters,
\ (backslash) and ` (backquote). We’ll talk about the backquote later. For now, all you
have to know is that it has a special meaning that is preserved within double quotes, but
not within single quotes.
 To summarize:

• Use a backslash to quote a single character. (When you do this, we say that you escape
that character.)

• Use single quotes to quote a string of characters.

• Use double quotes to quote a string of characters, but to keep the special meaning of
$ (dollar), ` (backquote) or \ (backslash).

STRONG AND WEAK QUOTES
From the previous discussion, you can see that single quotes are more powerful than
double quotes. For this reason, we sometimes refer to single quotes as STRONG QUOTES
and double quotes as WEAK QUOTES. Here is an easy way to remember the names:
single quotes are so strong, they only need a single symbol; double quotes are weaker, so
they need a double symbol.
 Actually, the backslash is the strongest quote of all (although we don’t give it a special
name). A backslash will quote anything, so if your single quotes ever fail you, try a
backslash. For example, one day you may have to escape a single quote:

echo Don\'t let gravity get you down

The backslash is so powerful, it can even quote a newline character. (Take a moment to
think about that.)
 Let’s say you type \<Return> at the end of a line. This generates \ followed by newline
(see Chapter 7). The cursor will move to the next line but, since the newline character has
lost its special meaning, it will not signal the end of a line. This means that whatever you
type will be a continuation of the previous line.
 Try this example, pressing <Return> at the end of each line:

echo This is a very, very long \
line that goes on and on for a \
very, very long time.

If you do it just right, you will type one long command, and you will see one long line
of output.
 Unlike the backslash, single and double quotes will not quote a newline. This being
the case, what do you think happens if you press <Return> within a string that is quoted
by a single or double quote? For example, say that you type the following:

Strong and Weak Quotes

33614_13_277_326.indd 28333614_13_277_326.indd 283 1/9/2008 12:34:38 PM1/9/2008 12:34:38 PM

Chapter 13

284 Harley Hahn’s Guide to Unix and Linux

echo 'This line ends without a second quote

When you press <Return> at the end of the line, the newline is not quoted, so it retains its
special meaning: that is, it marks the end of the line. However, there is a problem because
the single quote is unmatched.
 If you are using the C-Shell or the Tcsh, you will get an error message telling you there
is an unmatched ' character.
 If you are using Bash or the Korn shell, the shell will simply wait for you to enter
more input hoping that, eventually, you will type the second quote. (Bourne shells
are more optimistic than C-Shells.) Once you type the second quote the shell will put
everything together into one very long command with a newline in the middle.
 As an exercise, type the following two lines, and see what your shell does:

echo 'This line ends without a matching quote
and here is the missing quote'

Can you explain what happened and why?

COMMANDS THAT ARE BUILT INTO THE SHELL: type
When you enter a command, the shell breaks the command line into parts that it analyzes.
We say that the shell PARSES the command. The fi rst part of each command is the name;
the other parts are options or arguments (see Chapter 10).
 After parsing the command, the shell decides what to do with it. There are two possibilities.
Some commands are internal to the shell, which means the shell interprets them directly.
These are the INTERNAL COMMANDS, often called BUILTIN COMMANDS or, more
simply, BUILTINS. All the other commands are EXTERNAL COMMANDS, separate
programs that must be run on their own.
 When you enter a builtin command, the shell simply runs the command itself,
within its own process. When you enter an external command, the shell searches for the
appropriate program and then runs it in a separate process. As an analogy, let’s say you
call the customer service line for a large company. If the person who takes your call can
answer your question, he does so himself (an internal command). Otherwise, he transfers
you to the appropriate person (an external command).*
 There are two ways to fi nd out if a command is built into the shell. First, you can try
to display a man page for the command. External commands have their own man page;
builtins do not. Builtin commands are documented either within the man page for the
shell, or on a special man page for all the builtin commands.
 A faster way to check if a command is a builtin is to use the type command. The
syntax is:

type command...

 *To be a bit more precise, here is how an external command is handled. The shell forks to create a child process and then
waits. The child process execs to run the actual program. When the program is done, the child process dies. Control then returns
to the parent, which causes the child to vanish. The parent then displays a shell prompt, inviting you to enter another command.
(For more details, see the discussion about processes in Chapter 12.)

33614_13_277_326.indd 28433614_13_277_326.indd 284 1/9/2008 12:34:38 PM1/9/2008 12:34:38 PM

Using the Shell: Commands and Customization

285

For instance:

type date time set

The exact output depends on which shell you are using. For example, here is what I saw
when I used this command with Bash:

date is /bin/date
time is a shell keyword
set is a shell builtin

Here is what I saw with the Korn shell, Tcsh and C-Shell:

date is a tracked alias for /bin/date
time is a reserved shell keyword
set is a special builtin

Although the output differs a bit, the results are the same: date is an external command;
the others are builtins.
 At this point, it is not important to understand what is meant by a “tracked alias”.
It is a technical distinction you can ignore. Similarly, we do not need to distinguish
between builtins and keywords: they are both built into the shell. (Keywords are special
internal commands used for writing shell scripts.) The important thing is to realize that
date is an external command residing in its own fi le (/bin/date on one system,
/usr/bin/date on the other).
 Unix and Linux systems come with literally hundreds of external commands, but
how many builtins are there? That depends on the shell you are using. As an interesting
reference, Figure 13-3 shows the number of builtin commands for the shells we discussed
in Chapter 11.

SHELL BUILTIN COMMANDS

Bourne Shell 18

Korn Shell 47

C-Shell 55

Bash 69

Tcsh 87

FreeBSD Shell 97

Zsh 129

FIGURE 13-3: Number of builtin commands for various shells

There are hundreds of different Unix commands, most of which are external; that is, they exist as
separate programs. Each shell, however, has a certain number of internal commands, the builtins, that
it can run directly. The table in this fi gure shows the number of builtin commands, including keywords,
for each shell. As an interesting comparison, I have also included the old version of the Bourne Shell as
used by the early Unix users at Bell Labs.

Commands That Are Built Into the Shell: type

33614_13_277_326.indd 28533614_13_277_326.indd 285 1/9/2008 12:34:39 PM1/9/2008 12:34:39 PM

Chapter 13

286 Harley Hahn’s Guide to Unix and Linux

LEARNING ABOUT BUILTIN COMMANDS
Part of the Unix tradition is that when someone creates a tool, he should document that
tool for other users. Specifi cally, it is expected that, when a programmer writes a new
command, he will furnish a man page for that command. Because the format of the
online manual is well-established (see Chapter 9), it is not hard for a programmer to
create a man page once the programming is done. In fact, virtually all Unix programs are
distributed with a man page that acts as the offi cial documentation.
 This system works fi ne when it comes to external commands. Because each external
command is a program in its own right, it comes with its own man page. But what about
the builtin commands? As we discussed, builtins are not separate programs; they are part
of the shell. Since there are so many builtin commands (see Figure 13-3), it is unrealistic
to expect the programmers who work on the shell to create a separate man page for
every builtin.
 Instead, all the builtin commands are documented within the man page for the shell.
For example, the Korn shell builtins are documented in the Korn shell man page. Thus, for
information about the builtins for a particular shell, you need to look at the appropriate
man page. You can use one of the following commands:

man bash
man ksh
man tcsh
man csh

Bear in mind, however, that man pages for shells are quite long, and you may have to
search a bit to fi nd what you want.
 Some Unix/Linux systems have a separate man page for builtin commands. To see if
this is the case on your system, you can use the apropos command (see Chapter 9):

apropos builtin

If your system has such a page, that is the place to look for a quick list of all the builtins.
For Linux and FreeBSD, you can use:

man builtin

For Solaris, use:

man shell_builtins

Linux also has a help command you can use to display information from the builtin
man page in several ways. The syntax is:

help [-s] [command...]

where command is the name of a command.

33614_13_277_326.indd 28633614_13_277_326.indd 286 1/9/2008 12:34:39 PM1/9/2008 12:34:39 PM

Using the Shell: Commands and Customization

287

 To start, you can display a one-line summary of all the builtin commands by entering
help by itself. If the output is too long, you can send it to less (Chapter 21) to display
the information one screenful at a time:

help
help | less

This is the command to use when you want to display a compact list of all the builtins, for
example, when you are looking for a particular command.
 You can also use help to display information about one or more specifi c commands,
for example:

help set
help pwd history kill
help help

(As you can see, help itself is a builtin command.)
 Finally, if you only want to take a look at the syntax for a command, you can use the
-s (syntax) option:

help -s help
help -s pwd history kill

EXTERNAL COMMANDS AND THE SEARCH PATH
If a command is not built into the shell — and most commands are not — the shell
must fi nd the appropriate program to execute. For example, when you enter the date
command, the shell must fi nd the date program and run it for you. Thus, date is an
example of an external command.
 How does the shell know where to look for external commands? It checks the PATH
environment variable (see Chapter 12). As with all variables, PATH contains a string of
characters, in this case a series of directory names, which we call the SEARCH PATH.

HINT

When you write a shell script, you use special builtin commands — for, if, while, and so on
— to control the fl ow of your script. These commands are sometimes called KEYWORDS.
 As you are working on a Bash script, the fastest way to check the syntax of a keyword is by
using the help command. For example, to check syntax for all the Bash keywords, use:

help -s case for function if select time while until

If you need more information, leave out the -s option:

help case for function if select time while until | less

Notice that I have used less to make sure the output doesn’t scroll off the screen.

External Commands and the Search Path

33614_13_277_326.indd 28733614_13_277_326.indd 287 1/9/2008 12:34:39 PM1/9/2008 12:34:39 PM

Chapter 13

288 Harley Hahn’s Guide to Unix and Linux

 We won’t discuss directories in detail until Chapter 24. For now, all I want you to
know is that programs are stored in fi les, and every fi le resides in a directory*. The
search path is the list of directories that contain the programs for all the external
commands. Thus, one of the directories in the search path will contain the fi le that
holds the date program.
 If you would like to see your search path, just display the value of the PATH variable:

echo $PATH

Here is some typical output:

/bin:/usr/bin:/usr/ucb:/usr/local/bin:/home/harley/bin

In this case, the search path consists of fi ve directories:

/bin
/usr/bin
/usr/ucb
/usr/local/bin
/home/harley/bin

Your search path may be a bit different from this example but, for the most part, Unix
systems tend to use standard names for the directories that hold external commands. For
example, every Unix system I have ever seen has had a /bin and a /usr/bin directory,
and many have /usr/ucb.
 The names will make more sense after we discuss directories in Chapter 24. For now,
I’ll just mention the name bin is used to indicate that a directory holds programs.
 In our example, the fi rst three directories — /bin, /usr/bin and /usr/ucb
— hold programs that are used by all the users on the system. The fi rst two directories
are found on all Unix systems and are set up automatically when Unix is installed. The
/usr/ucb directory is found on some systems. Its job is to hold programs derived
from Berkeley Unix (see Chapter 2). (The name ucb is an abbreviation for University of
California at Berkeley.)
 The next two directories are for customization: /usr/local/bin is set up by the
system manager to hold programs that he or she has installed specifi cally for local use;
 /home/harley/bin refers to a directory named bin within the home directory
of userid harley. You can make such a directory for yourself, and use it to hold your
own programs.
 When the shell needs to fi nd an external command, it checks each directory in the
search path in the order they are specifi ed. In our example, the shell would start by
looking in /bin. If it couldn’t fi nd what it wanted, it would then look in /usr/bin,
and so on down the line.
 When the shell fi nds the external command, it stops the search and executes the
program. If none of the directories contains the command, the shell will give up and

 *To relate this to your experience, you can think of a Unix directory as being similar to a Windows or Macintosh folder.
There are, however, subtle, but important, differences.

33614_13_277_326.indd 28833614_13_277_326.indd 288 1/9/2008 12:34:39 PM1/9/2008 12:34:39 PM

Using the Shell: Commands and Customization

289

display an error message. For example, if you enter the command weedly, you will see
a message similar to:

weedly: command not found

MODIFYING YOUR SEARCH PATH
On most systems, you don’t have to defi ne the search path yourself, because the PATH
variable is set for you. However, in certain circumstances, which we will discuss in a
moment, you may want to modify the search path, so I’m going to show you how to do so.
The basic idea is to put the command that modifi es the PATH variable in an initialization
fi le that is executed automatically whenever you log in. (We’ll talk about initialization
fi les in Chapter 14.)
 To start, let’s talk about how to set the PATH variable to a particular value. We’ll deal
with the Bourne shell family separately from the C-Shell family, because the commands
are a bit different.
 With the Bourne shell family (Bash, Korn shell), you set PATH by using the export
command (Chapter 12). Using export makes PATH an environment variable, which
means it is available to the shell and all subsequent processes. Here is a typical command
that will do the job:

export PATH="/bin:/usr/bin:/usr/ucb:/usr/local/bin"

The command itself is straightforward: it sets the value of PATH to a character string
consisting of a list of several directory names. As you can see, the names are separated by
colons, and there are no spaces on either side of the equal sign.
 To set the value of PATH yourself, you put this command (or one like it) in your
“login fi le”, an initialization fi le that is executed automatically each time you log in.
To make a change to the search path, you simply modify the login fi le. (All of this is
explained in Chapter 14.)
 With the C-Shell family (C-Shell, Tcsh), we use a somewhat different command,
because we set the path shell variable rather than the PATH environment variable:

set path=(/bin /usr/bin /usr/ucb /usr/local/bin)

As you may remember from Chapter 12, whenever you change path, the shell resets
PATH automatically. Thus, this command results in the same setting for PATH as did the
earlier Bourne shell command.
 Notice, however, the difference in syntax. In the Bourne shell command, we set the
value of an environment variable (PATH) to a long string of characters. In the C-Shell
command, we set the value of a shell variable (path) to a list of names. In C-Shell syntax,
a list consists of one or more elements, separated by spaces and enclosed in parentheses.
 A moment ago, I mentioned that the Bourne shell command to set PATH would go
in your login fi le. The C-Shell command to set path goes in your “environment fi le”, a
different initialization fi le that is executed automatically every time a new shell starts.
(Again, this is all explained in Chapter 14, where you will fi nd examples.)

Modifying Your Search Path

33614_13_277_326.indd 28933614_13_277_326.indd 289 1/9/2008 12:34:39 PM1/9/2008 12:34:39 PM

Chapter 13

290 Harley Hahn’s Guide to Unix and Linux

 On most systems, the command to defi ne the PATH variable is already set up for you,
so you don’t have to use commands like the ones we have been discussing. However, you
may want to modify the default search path for your own use. For example, if you write
your own shell scripts and programs, which you keep in your own personal bin directory
($HOME/bin), you will want to add the name of this directory to your search path.
 Here are two commands to show you how to do it. The fi rst command is for the
Bourne shell family; the second is for the C-Shell family.

export PATH="$PATH:$HOME/bin"
set path = ($path $HOME/bin)

Take note of the syntax. It means “Change the value of the search path to be the old value
followed by $HOME/bin.” In other words, we append the name $HOME/bin to the end
of the existing search path.
 Alternatively, you may want to insert the new directory name at the beginning of the
search path. The commands are:

export PATH="$HOME/bin:$PATH"
set path = ($HOME/bin $path)

As these examples show, it is possible to modify a variable based on its current value. This
is an important idea, so don’t just memorize the pattern. Take a moment to make sure
you understand exactly what is happening.
 Now that you know how to add your own directory to a search path, the question
arises: should you put a directory of your own at the beginning or at the end of the list?
It all depends on what you want.
 If you put your personal directory at the end of the search path, the shell will check
your directory last. If you put your directory at the beginning of the search path, the shell
will check it fi rst. For example, say that you write a program named date, which you put
in $HOME/bin. You now enter:

date

If you put your directory at the beginning of the search path, the shell will run your date
program, not the standard version. In this way, you can effectively replace any external
command with a program of your own. Alternatively, if you put your directory at the end
of the search path, the shell will run the standard date program, not your version. This
keeps you from inadvertently replacing a program with a fi le of the same name. It is up
to you to choose what works best for you.
 As a programmer, there is one more directory name you may also wish to add to your
search path. If you specify a dot (.) character, it adds your “working directory” to the
search path. (Your working directory is the one in which you are currently working. We’ll
talk about it in Chapter 24.)
 Here is an example that will help you clarify the concept. The following commands
add both $HOME/bin and your working directory to the end of the current path (in

33614_13_277_326.indd 29033614_13_277_326.indd 290 1/9/2008 12:34:39 PM1/9/2008 12:34:39 PM

Using the Shell: Commands and Customization

291

that order). The fi rst command is for the Bourne shell family; the second is for the C-
Shell family:

export PATH="$PATH:$HOME/bin:."
set path = ($path $HOME/bin .)

This tells the shell that — when it looks for a program — the last directory to check is the
one in which you are currently working.
 A detailed discussion of search paths is beyond the scope of this book (and not all that
necessary). Normally, you can just accept the search path that is set up for you by default,
possibly with minor changes.

HOW A HACKER CAN USE THE SEARCH PATH
It’s fi ne to put the working directory (.) in your own search path, but never do so for the
superuser (root) or for any other userid with special privileges. Doing so can create a
security hazard. For example...
 You are a system administrator and, for convenience, you have put the working
directory at the beginning of the root search path. One of your users — who is really
a hacker* — asks you for help, so you log in as root and change to the user’s home
directory (a common occurrence). You then enter the ls command to list the contents
of the user’s directory (also a common occurrence).
 What you don’t know is that the hacker has created an alternate version of ls, which
he has placed in his home directory. The spurious ls acts like the real thing but — when
run by root — it has the side effect of creating a secret fi le with special privileges. Later,
the hacker can use that fi le, called a BACK DOOR, to gain superuser access for himself.
 Here is how it happens: The moment you change to the user’s home directory, it
becomes your working directory. When you enter the ls command, the shell looks in
the working directory, fi nds the hacker’s version of ls, and runs it. The next thing you
know, the hacker has taken over your system, and your life is exposed as a total sham.
 Actually, this is an old hacker’s trick: fi nding a way to run a doctored program as root
to create a back door that can be used later. The moral of the story? Think carefully before
you modify the search path for any userid that is used for system administration.

HINT

Unless you are an expert, play it safe by putting your personal directories at the end of the
search path.

 *Of course, I am referring to a bad hacker — that is, a cracker — not a good hacker. For a discussion of good and bad
hackers, see Chapter 4.

HINT

Make sure that the search paths used by all the system administration userids (including root)
do not contain the working directory, or any other directory to which users might have access.

How a Hacker Can Use the Search Path

33614_13_277_326.indd 29133614_13_277_326.indd 291 1/9/2008 12:34:39 PM1/9/2008 12:34:39 PM

Chapter 13

292 Harley Hahn’s Guide to Unix and Linux

THE SHELL PROMPT
As you know, the shell displays a prompt whenever it is ready for you to enter a command.
Should you so desire, it is possible to change this prompt. In fact, there is wide latitude in
how prompts can be displayed, and some people have developed elaborate prompts that
display colors, as well as various types of information. Let’s start simple, and then move
on to more complex customizations.
 Originally, all shells had a two-character prompt: a single character followed by a space.
The Bourne shell used a $ (dollar) character; the C-Shell used a % (percent) character.
Today, the tradition is maintained. Thus, if you use a member of the Bourne shell family
(Bash, Korn shell), the simplest shell prompt you will see is:

$ date

I have typed the date command after the prompt so you can see the space that follows
the $. The space is part of the prompt.
 If you use the C-Shell or the Tcsh, the simplest shell prompt looks like this:

% date

Although tradition dictates that the % character be used for the C-Shell family, many
Tcsh users use a > (greater-than) character instead as a reminder that they are using an
extended C-Shell:

> date

The fi nal tradition concerns the superuser. When you are logged in as root, your prompt
will always be a # (hash) character, regardless of which shell you are using. The intention
is that you should always remember you are superuser, so you can be extra careful:

date

Before we move on, take a look at Figure 13-4 in which the basic prompts are summarized.
There are only a few conventions, and I want you to memorize what they mean so,

SHELL PROMPT CHARACTER

Bash $

Korn Shell $

C-Shell %

Tcsh % or >

Superuser #

FIGURE 13-4: Standard shell prompts

By convention, the standard shell prompt consists of a single character, followed by a space. The Bourne
Shell family uses a $ (dollar) character; the C-Shell family uses a % (percent) character. The only
exception is that the Tcsh sometimes uses a > (greater-than) character. When you are logged in as
superuser, you will see a # (hash) character, regardless of what shell you are using.

33614_13_277_326.indd 29233614_13_277_326.indd 292 1/9/2008 12:34:39 PM1/9/2008 12:34:39 PM

Using the Shell: Commands and Customization

293

whenever you see a shell prompt, you can answer two questions instantly: (1) Are you
logged in as superuser? (2) If not, what type of shell are you using?

MODIFYING THE SHELL PROMPT
As I explained in the last section, it is possible to modify your shell prompt by changing
the value of a variable. With the Bourne shell family, you change an environment variable
named PS1*. With the C-Shell family, you change a shell variable named prompt.
 Let’s start with a simple example. Here is a command, suitable for the Bourne shell
family, that sets the prompt to a $ (dollar) character followed by a space:

export PS1="$ "

Similarly, here is a command, suitable for the C-Shell family, that uses the standard %
(percent) character:

set prompt = "% "

If you are a Tcsh user, you should use the customary > (greater-than) character instead:

set prompt = "> "

Before we move on, I want to make sure you understand these commands by reviewing
the basic concepts we covered in Chapter 12.
 There are two types of variables, global and local: the global variables are called
“environment variables”. The local variables are called “shell variables”.
 All Bourne shells store the value of their prompt in an environment variable named
PS1. To change the value of an environment variable, you use export. Hence, the
export command above. Please pay attention to the syntax. In particular, you must not
put a space before or after the = (equal sign) character.
 All C-Shells store the value of their prompt in a shell variable named prompt. Within
a C-Shell, you use set to modify a shell variable. Hence, the two set commands.
 At this point, you might be wondering, is it signifi cant that the Bourne shells use an
environment (global) variable to hold the prompt, while the C-Shells use a shell (local)
variable? In general, it’s not all that important, as long as you make sure to use the
appropriate command (export or set) if you want to change your shell prompt. The
distinction is important, however, when we talk about initialization fi les, which help us
set the prompt automatically each time we log in. We’ll get to that in Chapter 14.
 To continue, so far we have made only simple changes to the shell prompt. However,
by manipulating the appropriate variable, you can set your shell prompt to be whatever
you want. For example, you might set the prompt to display a cute message:

 * The name PS1 means “prompt for the shell, number 1”. There are three other such variables — PS2, PS3 and PS4
— but you won’t ever need to change them, so don’t worry about them. If you are curious about the details, see the man page
for your shell.

Modifying the Shell Prompt

33614_13_277_326.indd 29333614_13_277_326.indd 293 1/9/2008 12:34:39 PM1/9/2008 12:34:39 PM

Chapter 13

294 Harley Hahn’s Guide to Unix and Linux

export PS1="Enter a command please, Harley$ "
set prompt = "Enter a command please Harley% "

Actually, cute shell prompts lose their appeal fast. Here is something more useful: a
prompt that shows you the name of the shell as a reminder. (Choose the command for
your particular shell.)

export PS1="bash$ "
export PS1="ksh$ "
set prompt = "csh% "
set prompt = "tcsh> "

Here are the prompts that are generated by these commands:

bash$
ksh$
csh%
tcsh>

This type of prompt is particularly handy for the superuser. For example, say that your
root userid uses Bash as a default shell. If you set the prompt as follows:

export PS1="bash# "

The prompt will be:

bash#

The # will remind you that you are superuser, and the name will remind you which shell
you are using.
 Aside from using words and characters, there are three other ways to enhance your
shell prompt. You can:

• Insert the value of a variable into the prompt.

• Use an escape character to make use of a variety of special codes.

• Insert the results of a command into the prompt. (This is called command substitution.)

Each of these techniques is important in its own right, and has a usefulness that goes
far beyond modifying a shell prompt. For this reason, I am going to discuss each idea
separately so you can understand the general principles.

USING THE VALUE OF A VARIABLE
As we discussed in Chapter 12, to use the value of a variable, you type a $ (dollar) character
followed by the name of the variable enclosed in brace brackets. For example:

echo "My userid is ${USER}."

33614_13_277_326.indd 29433614_13_277_326.indd 294 1/9/2008 12:34:39 PM1/9/2008 12:34:39 PM

Using the Shell: Commands and Customization

295

For convenience, you can omit the braces if they are not necessary to separate a variable
name from other characters. For example:

echo "My userid is $USER."

Using the value of a variable within your shell prompt is straightforward. For example, to
insert your userid into the prompt, you can use:

export PS1="${USER}$ "
set prompt = "${USER}% "

(The fi rst command is for a Bourne shell; the second is for a C-Shell.)
 If your userid were harley (which would be way cool), these commands would
generate the following prompts:

harley$
harley%

Which environment variables might you want to use in a shell prompt? You can fi nd a list
of the most important environment variables in Figure 12-2 in Chapter 12. In principle,
you can use any variables you want. However, most of them are not suitable to use in a
shell prompt. To help you narrow down your choices, Figure 13-5 shows the variables
I think are most useful or interesting for shell prompts. To experiment, just use one of
the following commands, whichever works with your shell, substituting a variable from
Figure 13-5.

export PS1="${VARIABLE}$ "
set prompt = "${VARIABLE}% "

Most people like to use either LOGNAME, PWD, SHELL or USER. However, to me, the
most interesting variables to see over and over are RANDOM and SECONDS. However,
they are available only with Bash and the Korn shell. If you want to experiment, here are
the commands:

export PS1='Your lucky number is ${RANDOM} $ '
export PS1='Working time: ${SECONDS} seconds $ '

HINT

When you use the value of a variable, it is a good habit to use brace brackets, even when it is
not necessary.
 Doing so enhances the readability of your commands, especially within shell scripts.
Moreover, because the braces insulate your variables, they help avoid mysterious syntax
problems that might otherwise baffl e you.

Using the Value of a Variable

33614_13_277_326.indd 29533614_13_277_326.indd 295 1/9/2008 12:34:39 PM1/9/2008 12:34:39 PM

Chapter 13

296 Harley Hahn’s Guide to Unix and Linux

WHICH QUOTES TO USE WHEN QUOTING VARIABLES
Take a careful look at two examples from the previous section:

export PS1='Your lucky number is ${RANDOM} $ '
export PS1="${USER}$ "

Did you notice that one command uses single quotes and the other uses double quotes?
This difference illustrates a subtle, but important, point I want you to understand,
especially if you want to write shell scripts.
 The reason we use two different types of quotes is that, of the two variables in question,
one of them changes and the other doesn’t. To be precise, the value of RANDOM is a
random number that is different every time you look at it. The value of USER is your
userid, which is always the same.
 We quote ${USER} with double quotes to allow the $ character to be interpreted as a
metacharacter. This means that the value of USER is fi xed at the moment the command
is processed, which is fi ne because the value of USER never changes.
 We quote ${RANDOM} using single quotes, which enables us to preserve the
meaning of the $ character for later use. This technique ensures that the value of
RANDOM is not evaluated until the actual prompt is created. In this way, when it comes
time to display a new prompt, the shell uses whatever value RANDOM happens to have
at that moment.
 At this point, it may help to recall our discussion about strong and weak quoting from
earlier in the chapter. To summarize:

SHELLS VARIABLE MEANING

B K C T HOME your home directory

• • • T HOST name of your computer

B • • • HOSTNAME name of your computer

B • • T HOSTTYPE type of host computer

B K C T LOGNAME current userid

B K C T PWD your working [current] directory

B K • • RANDOM random number between 0 and 32,767

B K • • SECONDS time (in seconds) since current shell started

B K C T SHELL pathname of your login shell

B K C T USER current userid

FIGURE 13-5: Environment variables that are useful within a shell prompt

One way to enhance your shell prompt is to include the value of a variable that is either useful or
interesting. Figure 12-2 in Chapter 12 contains a list of all the important environmental variables.
This table shows you the ones that are suitable for a shell prompt.

The leftmost column shows which shells support each variable: B = Bash; K = Korn Shell; C = C-Shell;
T = Tcsh. A dot indicates that a shell does not support that option.

33614_13_277_326.indd 29633614_13_277_326.indd 296 1/9/2008 12:34:40 PM1/9/2008 12:34:40 PM

Using the Shell: Commands and Customization

297

• Single quotes ('...'), also known as strong quotes, quote everything. Within single
quotes, no characters have special meanings.

• Double quotes ("..."), also known as weak quotes, quote everything except the three
metacharacters $ (dollar), ` (backquote) and \ (backslash). Within double quotes,
these three characters retain their special meaning.

Thus, when you use '${VARIABLE}' within a command, all the characters are
taken literally, and the meaning of $ is preserved to be used later. When you use
"${VARIABLE}", the $ is interpreted as a metacharacter and the entire expression is
replaced at that moment with the value of VARIABLE.
 So when you need to quote a variable, just ask yourself: “Will the value of the variable
change before I use it?” If the answer is yes, use strong quotes (that is, single quotes) to
keep the $ characters from being interpreted until you need them. Otherwise, use weak
quotes (double quotes) to allow the $ characters to be interpreted right away.

SPECIAL CODES THAT USE AN ESCAPE CHARACTER
So far, I have explained that your shell prompt can contain any characters you want, as
well as the value of one or more variables. In this section, we’ll discuss how to enhance
your prompt by using special codes.
 Of the four shells we have been discussing, only Bash and the Tcsh allow you to use
such codes. The codes allow you to insert various types of information into your prompt:
the name of your working directory, your userid, the hostname of your computer, and so
on. If you want to spend time being creative, you can even incorporate colors, underlining
and boldface, although most people don’t bother.
 For reference, Figure 13-6 shows the most useful codes. The full list is documented on
the man page for your particular shell. If you are very ambitious and you have extra time
on your hands, you may want to learn how to use colors and other such effects in your
prompt. If so, you’ll fi nd the help you need by searching the Web. (Hint: Using such codes
is complicated, so don’t worry if you don’t understand it right away.)
 You will notice that each of the Bash and Tcsh codes in Figure 13-6 consists of an
escape character followed by another character. (As we discussed earlier in the chapter,
an escape character tells the shell to change from one mode to another.) With Bash, the
shell prompt escape character is \ (backslash); with the Tcsh, it is % (percent).
 As I mentioned, only Bash and the Tcsh use special codes. However, with the other
shells, there is still a need to place such information within the shell prompt. In a few
cases, it can be done by using commands and variables. For completeness, this is shown
in Figure 13-6. (Compare to Figure 13-5.) You will notice that some of these variables are
used within an expression containing backquotes. This syntax is explained later, in the
section on command substitution.
 Most of the shell prompt codes are easy to understand. However I will mention that
the codes for your working directory will make sense once you understand directories
(Chapter 24), and the codes for history event numbers will make sense once you learn
about using the history list (later in this chapter.)

Special Codes That Use an Escape Character

33614_13_277_326.indd 29733614_13_277_326.indd 297 1/9/2008 12:34:40 PM1/9/2008 12:34:40 PM

Chapter 13

298 Harley Hahn’s Guide to Unix and Linux

 To show you how it all works, here are a couple of examples. To insert your userid into
a prompt, you would use \u for Bash and %n for the Tcsh. Thus, the following two Bash
commands have the same effect:

export PS1="\u$ "
export PS1="${USER}$ "

If your userid were harley, your prompt would be:

harley$

Similarly, the following two Tcsh commands have the same effect:

set prompt = "%n> "
set prompt = "${USER}> "

The codes in Figure 13-6 are straightforward so, when you get time, feel free to experiment.
If you like, you can use more than one code at a time. For example, to display the date and
time in the Bash prompt, you use:

export PS1="\d \@$ "

MEANING BASH TCSH KORN SHELL C-SHELL

working directory: ~ notation \w %~ • •

working directory: basename
only

\W • • •

working directory: full pathname • %/ $PWD •

hostname of your computer \h %m `hostname` `hostname`

current userid \u %n $LOGNAME $LOGNAME

name of the shell \s • `basename $SHELL` `basename $SHELL`

time: AM/PM notation \@ %@ • •

time: 24-hour notation \A %T • •

date \d • • •

day of week • %d • •

day of month • %D • •

month • %w • •

year • %Y • •

history list: event number \! %! ! !

FIGURE 13-6: Special codes, commands, and variables to use within shell prompts

Bash and the Tcsh allow you to use special codes to insert information into your shell prompt. The table
shows the most useful codes. For a full list, see the Bash or Tcsh man page. A dot indicates that a shell
does not support a particular function.

The Korn Shell and C-Shell do not support such codes. However, for completeness, the table shows
several ways in which a few of the codes can be simulated by using variables.

33614_13_277_326.indd 29833614_13_277_326.indd 298 1/9/2008 12:34:40 PM1/9/2008 12:34:40 PM

Using the Shell: Commands and Customization

299

In the Tcsh prompt, you use:

set prompt = "%d %w %D %@> "

COMMAND SUBSTITUTION
In this section we will talk about one of the most fascinating and powerful features
offered by the shell: command substitution. COMMAND SUBSTITUTION allows you
to embed one command within another. The shell fi rst executes the embedded command
and replaces it by its output. The shell then executes the overall command.
 Obviously, we are dealing with a complex idea, so I’ll start with a few examples. I’ll then
show you a practical application: how to use command substitution within a shell prompt
to display useful information that would otherwise be unavailable as part of a prompt.
 Let’s begin with the basic syntax. You embed a command within another command by
enclosing the fi rst command in ` (backquote) characters. For example:

echo "The time and date are `date`."

In this example, the date command is enclosed by backquotes. This tells the shell to
execute the overall command in two stages. First, evaluate the date command and
substitute its output into the larger command. Then execute the larger command (in this
case, echo).
 Let’s say it happens to be 10:30 am on Monday, December 21, 2008, and you are in the
Pacifi c time zone. The output of the date command would be:

Mon Dec 21 10:30:00 PST 2008

During the fi rst stage, the shell substitutes this value for date, changing the original
command to:

echo "The time and date are Mon Dec 21 10:30:00 PST 2008."

During the second stage, the shell executes the modifi ed echo command to produce the
following output:

The time and date are Mon Dec 21 10:30:00 PST 2008.

Although I have broken down my explanation into two parts, it all happens so quickly
that, to you, it will look as if the shell is displaying the fi nal output instantly.
 Here is another example. The environment variable $SHELL contains the pathname
of your shell program. For example, say you are using Bash and you enter:

echo $SHELL

You will see the following output (or something similar):

/bin/bash

This means that your shell is the bash program, which resides in the /bin directory.
(We will discuss directories and pathnames in Chapter 24.)

Command Substitution

33614_13_277_326.indd 29933614_13_277_326.indd 299 1/9/2008 12:34:40 PM1/9/2008 12:34:40 PM

Chapter 13

300 Harley Hahn’s Guide to Unix and Linux

 The full specifi cation /bin/bash is called a pathname. In this case, however, we
don’t care about the entire pathname, just the last part (bash). To isolate the last
part of any pathname, we use basename , a command whose purpose is to read a
full pathname and output the last part of it. For example, the output of the following
command is bash:

basename /bin/bash

More generally, to display the name of your shell program without the rest of the
pathname, you can use:

basename $SHELL

Now consider how this might be used as part of the shell prompt using command
substitution. Say you want to display the name of your shell as part of the prompt. All
you need to do is insert the output of the basename command within the command
that sets the prompt:

export PS1="`basename ${SHELL}`$ "
set prompt = "`basename ${SHELL}`% "
set prompt = "`basename ${SHELL}`> "

The fi rst command is for Bash or the Korn shell; the second is for the C-Shell; the third
is for the Tcsh.
 As you can see, command substitution is used to create functionality that would
otherwise not exist. For instance, in the last section, we discussed using special codes to
insert information into your shell prompt. However, these codes are available only with Bash
and the Tcsh. What about the other shells? The solution is to use command substitution.
 For example, in Figure 13-6, you can see that the codes to insert the hostname (name
of your computer) into the shell prompt are \h for Bash and %m for the Tcsh. With the
other shells, we can use command substitution instead.
 The basic approach is always the same. Start by asking the question: What command
will do the fi rst part of the job? Then fi gure out the best way to substitute the output of
this command into another command that will do the second part of the job.
 In this case, you would ask yourself: What command displays the name of your
computer? The answer is hostname (see Chapter 8). More specifi cally, depending
on your version of Unix or Linux, you may or may not need the -s option. See which
variation works best on your system:

hostname
hostname -s

Now all you have to do is substitute the output of hostname into the command to set
the prompt. (Leave out the -s if you don’t need it.)

export PS1="`hostname -s`$ "
set prompt = "`hostname -s`% "

33614_13_277_326.indd 30033614_13_277_326.indd 300 1/9/2008 12:34:40 PM1/9/2008 12:34:40 PM

Using the Shell: Commands and Customization

301

The fi rst command will work with a Bourne shell (Bash, Korn shell); the second one will
work with a C-Shell (C-Shell, Tcsh).
 One last example. In the same way that Bash and the Tcsh have codes to display your
hostname within a shell prompt, they also have codes to display your userid (\u and %n
respectively). However, as you know, there are no codes for the other shells.
 One solution is to use the $USER variable within the shell prompt, as we did earlier
in the chapter. Alternatively, you can use command substitution with the whoami
command (Chapter 8):

export PS1="`whoami`$ "
set prompt = "`whoami`% "

To conclude this section, let me remind you of something we discussed earlier. When
you use single quotes (strong quotes), nothing between the two quotes retains a special
meaning. When you use double quotes (weak quotes), three metacharacters do retain
their special meaning: $ (dollar), ` (backquote) and \ (backslash). Now you understand
why the backquote is included in this list.

TYPING COMMANDS AND MAKING CHANGES
Once you have used Unix for a while, you will know how frustrating it is to have to
type an entire command over because you need to make a tiny change. This is especially
bothersome if you are prone to making spelling mistakes (as I am). As a convenience,
the shell has several features that make it easy to enter commands: the history list,
command line editing, autocompletion, and aliasing. We’ll cover these features one at
a time throughout the rest of the chapter. The details vary from one shell to another so,
when you need help, remember that the man page for your particular shell is always the
defi nitive reference.
 As long as there have been shells, people have been arguing about which ones are
best. In my opinion, you can talk all you want about this feature or that, but the shells
that make it easy to type (and retype) commands get my vote. As a general rule, the best
features are available only in Bash and the Tcsh, which is why knowledgeable users prefer
to use one of these two shells.
 To start, let me remind you of the ideas we discussed in Chapter 7, with respect to
correcting mistakes and editing the command line. We will then move on to new material.

• To erase the last character you typed, you would press <Backspace>. This will send the
 erase signal. (With some computers, such as a Macintosh, you would use <Delete>
instead of <Backspace>.)

HINT

The backquote character is used only for command substitution. Be careful not to confuse it
with the single quote or double quote. In spite of its name and appearance, the backquote has
nothing to do with quoting. This is probably why many Unix people use the name “backtick”
instead of “backquote”.

Typing Commands and Making Changes

33614_13_277_326.indd 30133614_13_277_326.indd 301 1/9/2008 12:34:40 PM1/9/2008 12:34:40 PM

Chapter 13

302 Harley Hahn’s Guide to Unix and Linux

• To erase the last word you typed, you would press ̂ W (<Ctrl-W>) to send the
 werase signal.

• To erase the entire line, you would press ̂ X or ̂ U (depending on your system) to send
the kill signal.

• To display all the key mappings on your system, you would use the stty command.

With most (but not all) shells, you can also use the <Left> and <Right> cursor control
keys to move around the command line. For example, let’s say you mean to enter the
date command but, instead, you type:

dakte

Your cursor is at the end of the line. Just press <Left> twice to move two positions to the
left. Then press <Backspace> to erase the k. You can now press <Return> to enter the
command. Note that you can press <Return> from anywhere in the line. You do not need
to be at the end of the line.
 In addition to changing the current line, you can press <Up>, to recall a previous
command, which you can then modify and reenter. You can press <Up> more than once to
fi nd old commands, and you can press <Down> to go back to more recent commands.
 You can use <Left>, <Right>, <Up> and <Down> in this way with Bash and the Tcsh,
but not with the Korn shell and C-Shell. With Bash, you get a bonus: not only can you use
<Backspace> to erase a character to the left, you can use <Delete> to erase a character
to the right. This is a big deal once you get used to it. (Note: If <Delete> doesn’t work on
your system, you can use ^D instead.)

THE HISTORY LIST: fc, history
As you enter commands, the shell saves them in what is called your HISTORY LIST. You
can access the history list in a variety of ways to recall previous commands, which you
can then modify and reenter. For example, when you press <Up> and <Down> to recall
commands, you are actually moving backwards and forwards through the history list.
 <Up> and <Down>, however, allow you to see only one command at a time. A more
powerful feature enables you to display all or part of the history list and then select
a particular command. How this works depends on your shell. As a general rule, the
Bourne shell family (Bash, Korn shell) uses the fc command, and the C-Shell (C-Shell,
Tcsh) family uses the history and ! commands. Most people fi nd the C-Shell system
easier and, for this reason, Bash allows you to use either system. Here are the details.

HINT

Using <Left> and <Right> to move within the command line and <Up> and <Down> to recall
previous commands is so handy that I urge you to practice until you fi nd yourself using these
keys without thinking about it.
 When it comes to entering commands, your motto should be: Reuse; don’t retype.

33614_13_277_326.indd 30233614_13_277_326.indd 302 1/9/2008 12:34:40 PM1/9/2008 12:34:40 PM

Using the Shell: Commands and Customization

303

 Within the history list, each command is called an EVENT, and each event is given an
internal number called an EVENT NUMBER. The power of the history list is that it is
easy to recall a command based on its event number. For example, you might tell the shell
to recall command #24.
 With the Bourne shell family, you display the history list by using the fc command
with the -l (list) option. (I’ll explain the name fc in a moment).

fc -l

With the C-Shell family, you use the history command:

history

The output of these commands consists of one event per line, prefaced by its event
number. The event numbers are not part of the commands; they are displayed only for
your convenience. Here is an example:

20 cp tempfile backup
21 ls
22 who
23 datq
24 date
25 vi tempfile
26 history

If your history list is so long that it scrolls off the screen, use the less command:

history | less

Notice that every command you enter is added to the history list, including commands
with mistakes, as well as the history or fc commands themselves.
 You can recall and execute a specifi c command by referencing its event number. With
a Bourne shell, you type fc with the -s (substitute) option, followed by the number. For
example, to re-execute command number 24, use:

fc -s 24

With a C-Shell, it is even easier. Just type a ! (bang) character followed by the number.
Note that you do not use a space after the !:

!24

A special case occurs when you want to repeat the very last command you entered.
With a Bourne shell, you re-execute the previous command by using fc -s without a
number:

fc -s

With a C-Shell, you type two ! characters in a row:

!!

The History List: fc, history

33614_13_277_326.indd 30333614_13_277_326.indd 303 1/9/2008 12:34:40 PM1/9/2008 12:34:40 PM

Chapter 13

304 Harley Hahn’s Guide to Unix and Linux

Both types of shells allow you to make small changes before you re-execute the command.
With fc, the syntax is:

fc -s pattern=replacement number

With the C-Shell family, the syntax is:

!number:s/pattern/replacement/

In both cases, pattern and replacement refer to strings of characters, and number refers to
an event number.
 For example, in the previous example, event number 25 is a command that starts the
vi editor with a fi le called tempfile:

25 vi tempfile

Say that you want to run the command again, but with a fi le named data instead. That
is, you want to recall event number 25, change tempfile to data, and then re-execute
the command. With a Bourne shell you would use:

fc -s tempfile=data 25

With a C-Shell, you would use:

!25:s/tempfile/data/

Once again, if you want to use the most recent command, the commands are simpler. For
example, say that you want to run the date command, but by accident, you enter datq,
which displays an error message:

$ datq
datq: Command not found.

You want to change the q to an e and re-execute the command. With fc -s, if you leave
out the event number, the default is the previous command:

fc -s q=e

With a C-Shell, you use the syntax:

^pattern^replacement

For example:

^q^e

I know it looks odd, but it’s quick and easy, and you will use it a lot, especially when
you have a long command that needs a tiny change. For example, suppose you want to
make a copy of a fi le named masterdata and call it backup. Using the cp command
(Chapter 25) you type:

33614_13_277_326.indd 30433614_13_277_326.indd 304 1/9/2008 12:34:40 PM1/9/2008 12:34:40 PM

Using the Shell: Commands and Customization

305

cp masterxata backup

You get an error message because, when you typed the fi rst fi lename, you accidentally
pressed x instead of d. To fi x the mistake and re-run the command, just enter:

^x^d

HISTORY LIST: SETTING THE SIZE
The shell stores the history list in a fi le. This fi le can be saved automatically when you log
out and can be restored when you log in. This is important, because it means that a record
of what you do will be saved from one work session to the next.
 With the Bourne shell family, the history fi le is saved and restored automatically. With
the C-Shell family, your fi le will not be saved unless you set the savehist shell variable
(see below).
 The important thing to realize is that, when you examine your history list you are, in
effect, looking back in time, possibly across separate work sessions. As with life in general,
you will fi nd that it is counterproductive to remember too much. For this reason, the shell
lets you limit the size of your history list by setting a variable.
 With the Bourne shell family, you set the HISTSIZE environment variable. For
example, to specify that you want your history list to hold 50 commands (large enough
for most people), use:

HINT

When you use Bash, you get two important advantages over the other shells.
 First, with respect to the history list commands, you get the best of both worlds. You can use
either the fc command, or the history/! system, whichever you like better.
 If you are not sure which one to use, start with the history/! system.
 Second, Bash supports an extra feature using ̂ R. (Think of it as the “recall” key”.) Press ^R
and then start typing a pattern. Bash will recall the most recent command that contains that
pattern. For example, to recall the most recent ls command, press ^R and then ls.
 If this is not the command you want, simply press ^R again to get the next most recent
command that contains the pattern. In our example, you would press ^R again to get another
ls command.
 When you see the command you want, you can press <Return> to run it, or you can make a
change and press <Return>.

WHAT’S IN A NAME?

fc
The Bourne shells (Bash, Korn shell) use the fc command to display and modify commands
from the history list. fc is a powerful command with complicated syntax that can take awhile
to master.
 The name fc stands for “fi x command”. This is because, when you make a typing mistake,
you can use fc to fi x the command and then re-execute it.

History List: Setting the Size

33614_13_277_326.indd 30533614_13_277_326.indd 305 1/9/2008 12:34:40 PM1/9/2008 12:34:40 PM

Chapter 13

306 Harley Hahn’s Guide to Unix and Linux

export HISTSIZE=50

With the C-Shell family, you set the history shell variable:

set history = 50

If you want to keep a longer record of your work, just set the variable to a larger number. If
you don’t set the size, it’s okay. The shell will use a default value that will probably be fi ne.
 As I mentioned above, if you want the C-Shell or Tcsh to save your history list when
you log out, you must set the savehist shell variable. As with history, you must
specify how many commands you want to save. For example, to save the last 30 commands
from one work session to the next, use

set savehist = 30

HISTORY LIST EXAMPLE: AVOID DELETING THE WRONG FILES
As we will discuss in Chapter 25, you use the rm (remove) command to delete fi les.
When you use rm, you can specify patterns to represent lists of fi les. For example, the
pattern temp* stands for any fi lename that begins with temp followed by zero or more
characters; the pattern extra? refers to any fi lename that starts with extra followed
by a single character.
 The danger with rm is that once you delete a fi le it is gone for good. If you discover
that you have made a mistake and erased the wrong fi le — even the instant after you press
<Return> — there is no way to recover the fi le. (We will now pause for a moment, to
allow Macintosh users to regain their composure.)*
 Let’s say you want to delete a set of fi les with the names temp, temp_backup,
extra1 and extra2. You are thinking about entering the command:

rm temp* extra?

However, you have forgotten that you also have an important fi le called temp.important.
If you enter the preceding command, this fi le will also be deleted.
 A better strategy is to fi rst use the ls (list fi les) command using the patterns that you
propose to use with rm:

HINT

If you want to set the size of your history list, the place to put the command is in an initialization
fi le, so that the variable will be set automatically each time you log in. We will discuss how to
do this in Chapter 14.

 *Believe it or not, the fact that the Unix rm command deletes fi les permanently is actually a good thing. Experienced Unix
users rarely lose a fi le by accident, because they have trained themselves to think carefully before they act. Moreover, they learn
to take responsibility for their actions, because they cannot depend on the operating system to compensate for their weaknesses.
As you would imagine, such intelligence and self-reliance infl uence all aspects of life, which is why Unix people are, as a whole,
so accomplished and fulfi lled as human beings.
 (We will now pause for a moment, once again, to allow Macintosh users to regain their composure.)

33614_13_277_326.indd 30633614_13_277_326.indd 306 1/9/2008 12:34:40 PM1/9/2008 12:34:40 PM

Using the Shell: Commands and Customization

307

ls temp* extra?

This will list the names of all the fi les that match these patterns. If this list contains a fi le
you have forgotten, such as temp.important, you will not enter the rm command as
planned. If, however, the list of fi les is what you expected, you can go ahead and remove
the fi les by changing the ls to rm and re-executing the command. With a Bourne shell,
you would use:

fc -s ls=rm

With a C-Shell:

^ls^rm

You may ask, why reuse the previous command? Once you have confi rmed that the patterns
match the fi les I want, why not simply type the rm command using those same patterns?
 You could, but when you reuse the ls command, you are guaranteed to get exactly
what you want. If you retype the patterns, you may make a typing mistake and, in spite of
all your precautions, still end up deleting the wrong fi les. Also, in many cases, it is faster
to modify the previous command than it is to type a brand new one.
 If you like this idea, you can make the process even easier by using an alias. I’ll show
you how to do so later in the chapter.

DISPLAYING EVENT NUMBER & WORKING DIRECTORY IN YOUR SHELL PROMPT
Earlier in the chapter, we discussed how to put various types of information into your
shell prompt: your userid, the name of your shell, and so on. In this section, I’ll show you
how to display two items that change from time to time: the event number and the name
of your working directory. Putting these items in your shell prompt helps you keep track
of what you are doing.
 To display the current value of the event number, you use a special code. The codes
vary from one shell to another, so I have summarized them in Figure 13-7. Here are some
examples that show how to do it for the four major shells. In the examples, I have placed
the event number within square brackets*, which looks nice when it is displayed.

export PS1="bash[\!]$ "
export PS1="ksh[!]$ "
set prompt = "csh[\!]% "
set prompt = "tcsh[%\!]> "

Let’s say, for example, the current event number is 57. The four prompts as defi ned above
would look like this:

bash[57]$
ksh[57]$

 *It happens that, with the C-Shell and Tcsh, a ! character followed by a right square bracket causes a problem. Thus, in
these examples, I used a backslash to quote the !. The reason for this is obscure, so don’t worry about it.

Displaying Event Number & Working Directory in Your Shell Prompt

33614_13_277_326.indd 30733614_13_277_326.indd 307 1/9/2008 12:34:41 PM1/9/2008 12:34:41 PM

Chapter 13

308 Harley Hahn’s Guide to Unix and Linux

csh[57]%
tcsh[57]>

As you might expect, the event number can be combined with other codes or with
variables to construct a more elaborate prompt. For example, here are several prompts
that display the name of the shell, the working directory (see Chapter 24), and the event
number. (For information on displaying the name of your working directory in a shell
prompt, see Figure 13-6.)
 For readability, I have inserted some spaces, placed the name of the working directory
in parentheses, and placed the event number in square brackets.
 To start, here is the prompt for Bash. We use \w to display the working directory and
\! to display the event number:

export PS1="(\w) bash[\!]$ "

The same prompt for the Korn shell is a bit trickier. Because the Korn shell has no code
to display the name of the working directory, we use the PWD variable. However, because
PWD changes from time to time, we must use strong quotes, rather than weak quotes. (See
the discussion earlier in the chapter.)

export PS1='($PWD) ksh[!]$ '

Alternatively, we could use weak quotes, as long as we make sure to use a backslash to
quote the $ character:

export PS1="(\$PWD) ksh[!]$ "

Finally, here is the command to use with the Tcsh. We use %~ to display the working
directory and %! to display the event number.

set prompt = "(%~) tcsh[%\!]> "

What about the C-Shell? As you can see from Figure 13-6, there is no easy way to display
the name of the working directory in a C-Shell prompt, so I have no example to show
you. However, there is a more complicated way to do it using what are called “aliases”.
We’ll talk about this idea later in the chapter.

SHELL CODE

Bash \!

Korn Shell !

C-Shell !

Tcsh %!

FIGURE 13-7: Displaying the history list event number in your shell prompt

To display the current value of the history list event number in your shell prompt, use the code for your
particular shell. See text for examples.

33614_13_277_326.indd 30833614_13_277_326.indd 308 1/9/2008 12:34:41 PM1/9/2008 12:34:41 PM

Using the Shell: Commands and Customization

309

AUTOCOMPLETION
One of the ways in which the shell makes it easier for you to enter commands is by
helping you complete words as you type. This feature is called AUTOCOMPLETION.
 For example, you are entering a command and you need to type the name of a very
large fi le, such as:

harley-1.057-i386.rpm

If there are no other fi les with similar names, why should you have to type the entire
name? You should be able to type just a few letters and let the shell do the rest for you.
 With autocompletion, the shell carefully looks at everything you type. At any time,
you can press a special key combination, and the shell will do its best to complete the
current word for you. If it can’t complete the word, the shell will beep. I’ll give you an
example just to show you the concept, and then we’ll go over the details.
 Let’s say you have four fi les:

haberdashery
hardcopy
harley-1.057-i386.rpm
hedgehog

If you type harl and press the autocomplete key combination, there is no ambiguity.
Since there is only one fi le that begins with harl, the shell will fi ll in the rest of the
name for you.
 However, what happens if you type har and then press the autocomplete key? There
are two fi lenames that begin with har, so the shell beeps to indicate that what you have
typed is ambiguous.
 At this point, you have two choices. You can type a bit more and try again. Or, if you
are not sure what to type, you can press a second autocomplete key combination and
have the shell display a list of all possible matches.
 With our example, if you type har and press the second key combination, the shell
will display:

hardcopy
harley-1.057-386i.rpm

You can then type either a d or an l, and tell the shell to fi nish the job.
 As you can see, to use the basic autocomplete facility, you only need to remember two
different keys combinations. For historical reasons, these keys differ from one shell to
another, so I have listed them in Figure 13-8. The fi rst key combination tells the shell to
try to complete the current word. The second key combination tells the shell to display a
list of all possible completions that match what you have already typed.
 To let you see how autocompletion works, I’ll show you some examples that you can
try at your own computer. Before we begin, however, I want to make sure autocompletion
is turned on for your shell. For Bash, the Korn shell and the Tcsh, this is always the case.

Autocompletion

33614_13_277_326.indd 30933614_13_277_326.indd 309 1/9/2008 12:34:41 PM1/9/2008 12:34:41 PM

Chapter 13

310 Harley Hahn’s Guide to Unix and Linux

However, for the C-Shell, you need to turn on autocompletion by setting the filec
variable. The command to do so is:

set filec

The best place to put this command is in an initialization fi le, so the variable will be set
automatically each time you start a new shell. I’ll show you how to do this in Chapter 14.
 To return to our examples, in order to experiment with autocompletion, we will need
a few fi les that have similar names. To create them, we will use the touch command. The
fi les will be xaax, xabx, xacx and xccx*. Here is the command:

touch xaax xabx xacx xccx

(We’ll talk about the touch command in Chapter 25. For right now, all you need to
know is this is the easiest way to create empty fi les.)
 We will now use the ls -l command, which lists fi le names along with other
information, to demonstrate autocompletion. To start, let me show you what happens when
you complete a fi lename. Type the following and then stop, without pressing <Return>:

ls -l xc

Now, look at Figure 13-8 and press the “Complete Word” key combination for your
particular shell. That is, with Bash or the Tcsh, press <Tab>; with the C-Shell, press
<Esc>; with the Korn shell, press <Esc> twice.
 Since there is no ambiguity, the shell will complete the fi lename for you. You will see:

ls -l xccx

You can now press <Return> to enter the command.
 This type of autocompletion is called FILENAME COMPLETION. There are several
other types, which we will discuss later.
 Now, let’s see what happens when the shell cannot complete a fi le name. Type the
following and then stop, without pressing <Return>:

ls -l xa

SHELL COMPLETE THE WORD DISPLAY ALL POSSIBILITIES

Bash <Tab> <Tab><Tab>

Korn Shell <Esc><Esc> <Esc>=

C-Shell <Esc> ^D

Tcsh <Tab> ^D

FIGURE 13-8: Autocomplete keys

The basic autocompletion features use two different keys combinations. The fi rst one tells the shell
to try to complete the word you are currently typing. If this doesn’t work, you can use the second key
combination to have the shell display all possible completions that match your pattern.

 *In case you are wondering, I named these fi les after four of my ex-girlfriends.

33614_13_277_326.indd 31033614_13_277_326.indd 310 1/9/2008 12:34:41 PM1/9/2008 12:34:41 PM

Using the Shell: Commands and Customization

311

Once again, press the “Complete Word” key combination for your shell (<Tab>, <Esc>
or <Esc><Esc>). This time, the shell will beep, because there is no single fi lename that
matches what you have typed. (In fact, there are three.) Type the letter b and then stop,
without pressing <Return>. You will see:

ls -l xab

Now press the key combination again. This time, the shell will be able to make the
completion for you, as there is only one fi lename that matches xab (xabx). Press
<Return> to enter the command.
 One fi nal example. Type the following and then stop, without pressing <Return>:

ls -l xa

This time, look at Figure 13-8 and press the “Display Possibilities” key combination for
your particular shell. That is, with Bash, press <Tab> twice; with the Korn shell, press
<Esc>=; and with the C-Shell or the Tcsh, press ^D (Ctrl-D). This tells the shell to list all
possible matches.
 The shell will display the matches and then retype your command for you, so you can
complete it. You will see:

xaax xabx xacx
ls -l xa

You can now complete the command however you want and press <Return>.
 Finally, when you are fi nished experimenting, you need to clean up after yourself by
removing the four practice fi les:

rm xaax xabx xacx xccx

Here is one last example. At any time, the directory in which you are currently working
is called your “working directory” (see Chapter 24). From time to time, you will want to
change your working directory and, to do so , you will type the cd (change directory)
command, followed by the name of a directory. There will be times when you fi nd
yourself typing long directory names, especially if you are a system administrator. When
this happens, you are better off using autocompletion.
 For example, let’s say you are using a Linux system, and you want to change to the
following directory:

/usr/lib/ImageMagick-5.5.7/modules-Q16/filters

You could type cd followed by the very long directory name. However, it is a lot easier
to type the minimum number of characters and use autocompletion. In this case, with
Bash, you could type:

cd /us<Tab>/li<Tab>/Im<Tab>/mo<Tab>/fi<Tab><Return>

If you use a different shell, the autocomplete key would be different, but the idea is the
same: Why type a long name if the shell will do it for you?

Autocompletion

33614_13_277_326.indd 31133614_13_277_326.indd 311 1/9/2008 12:34:41 PM1/9/2008 12:34:41 PM

Chapter 13

312 Harley Hahn’s Guide to Unix and Linux

AUTOCOMPLETION: BEYOND THE BASICS
In Chapter 11, when I explained where the names C-Shell and Tcsh came from, I mentioned
that the creator of the original Tcsh, Ken Greer, had been working on a PDP-10 computer
using the TENEX command interpreter (similar to a shell).
 TENEX used very long command names because they were easy to understand, but it
was a lot of bother to type the full commands. A facility called “command completion”
was used to do a lot of the work. All you had to do was type a few letters and press the
<Esc> key. The command interpreter would then expand what you had typed into the
full command. Greer added this feature to the new C-Shell he was writing and, when it
came time to name the shell, he called it the Tcsh, the “T” referring to TENEX.
 In the last section, we used autocompletion to help us type the names of fi les, and
this is how you will use it most of the time. However, as you can see from the Tcsh story,
autocompletion is an old idea. Moreover, it can be used to complete more than just
fi lenames. In fact, modern shells offer autocompletion for a variety of different types
of names.
 The details vary from shell to shell, and they are complex. In fact, most shells, particularly
Bash and the Zsh (mentioned in Chapter 11), give you many more autocomplete features
than you would ever use in three lifetimes. Most of the time, the techniques that we
discussed in the last section will be all you need. In this section, I’ll explain a bit more. If
you want more details, display the man page for your particular shell and search for the
word “completion”.
 In general, there are fi ve types of autocompletion. Not all shells support every type,
although all modern shells offer fi lename completion, which is the most important type
of autocompletion. For reference, Figure 13-9 shows which types of autocompletion you
can use with the various shells.
 We have already discussed fi lename completion. COMMAND COMPLETION
(Bash, Tcsh only) is similar. When you are typing the beginning of a line, you can use
autocompletion to help you type the name of a command. This can be an external
command, a builtin command, an alias, or a function.

SHELLS AUTOCOMPLETION COMPLETES NAMES OF...

B K C T Filename completion Files and directories

B • • T Command completion Commands, including pathnames

B • • T Variable completion Variables

B • C T Userid completion Userids on your system

B • • • Hostname completion Computers on your local network

FIGURE 13-9: Types of autocompletion

Autocompletion allows you to type part of a name and have the shell complete it for you. In general,
there are fi ve different types of autocompletion, each of which completes a different type of name. See
text for details.

The leftmost column shows which shells support which type of autocompletion: B = Bash; K = Korn
Shell; C = C-Shell; T = Tcsh. A dot indicates that a shell does not support that feature.

33614_13_277_326.indd 31233614_13_277_326.indd 312 1/9/2008 12:34:41 PM1/9/2008 12:34:41 PM

Using the Shell: Commands and Customization

313

 For example, say you are using Bash or the Tcsh, and you want to enter the whoami
command to display your userid (see Chapter 8). You start by typing:

whoa

You then press <Tab> and the shell will complete the command for you.
 VARIABLE COMPLETION (Bash, Tcsh) comes into play whenever you start a word
with a $ character. The shell assumes you are about to type the name of a variable.
 For example, you are using Bash and you want to display the value of an environment
variable, but you forget its name. All you remember is that it begins with the letter H. Type
the following:

echo $H<Tab><Tab>

With the Tcsh, you would type $H followed by ^D (Ctrl-D):

echo $H^D

The shell lists all the variables whose names begin with H. For example:

HISTCMD HISTFILESIZE HOME HOSTTYPE
HISTFILE HISTSIZE HOSTNAME

You recognize the variable you want as HOSTTYPE, so you type enough of the name so
that it can be recognized and (with Bash) press <Tab> to fi nish the job:

echo $HOST<Tab>

With the Tcsh, you would use:

echo $HOST<Esc><Esc>

USERID COMPLETION (also called USER NAME COMPLETION) is available with
Bash, the C-Shell and the Tcsh. It works like variable completion, except that you
must start the word with a ~ (tilde) character. This is because the syntax ~userid is an
abbreviation for userid’s home directory.
 Finally, HOSTNAME COMPLETION, available only with Bash, will complete the
names of computers on your local network. Hostname completion is used when you
start a word with the @ (at sign) character. You will do this, for example, if you are typing
an email address.

Autocompletion: Beyond the Basics

HINT

Autocompletion is particularly useful when you have an idea of what you want to type, but you
can’t remember the full name.
 For example, if you are using Bash, and you want to enter a command that begins with lp
but you can’t remember which one, just type lp<Tab><Tab>. (With the Tcsh, use lp^D.)
 Similarly, you can list the names of all your variables by typing $<Tab><Tab> (or $^D).
Try it.

33614_13_277_326.indd 31333614_13_277_326.indd 313 1/9/2008 12:34:41 PM1/9/2008 12:34:41 PM

Chapter 13

314 Harley Hahn’s Guide to Unix and Linux

USING AUTOCOMPLETION FOR FUN AND PROFIT
You may remember The Fable of the Programmer and the Princess from Chapter 7. In this
story, a handsome young programmer is able to rescue a beautiful princess by entering
a command without pressing the <Return> key or ^M. (He uses ^J.) Here is something
even cooler: how to use autocompletion to make a few bucks and (assuming you are a
guy) impress women at the same time.
 The next time you are at a gathering of Linux users, look around at all the geeks and
fi nd one who looks like he has a bit of money. Since this is a Linux geek, you know he will
be using Bash. Offer a small bet (say, fi ve dollars) that you can list the names of all his
environment variables without pressing the <Return> key. When he takes the bet, enter:

env^M

He will now see how you tricked him, so offer to double the bet. This time, you promise
not to use <Return> or ^M. When he takes the bet, enter:

env^J

You are now ready to move in for the kill. Offer to triple the bet and, this time, you promise
not to use <Return>, ^M or ^J. And, to make it harder, you won’t even type a command.
 By now, you will have attracted the attention of a lot of other Linux geeks who will
want in on the action. Make them put their cash on the table and, once you have gathered
all the bets you can, type:

$<Tab><Tab>

As you scoop up the money and walk away, look back at the geeks and say, “Haven’t you
guys ever heard of RTFM?”

COMMAND LINE EDITING: bindkey
In the past few sections, we talked about several interrelated topics: making changes as
you type a command, using the history list, and using autocompletion. As you read these
sections, you may have noticed two things. First, the three newer shells — Bash, Korn
shell, and the Tcsh — offer signifi cantly more features than the older C-Shell. Second,
there seems to be an underlying thread tying all of this together.
 This is indeed the case. The general principle at work here is called COMMAND LINE
EDITING, and it is available only with the newer shells, not with the C-Shell. Command
line editing is a powerful facility that allows you to use a large variety of commands to
manipulate what you type on the command line, including the ability to use the history
list and autocompletion.
 You will remember my telling you several times that there are two main Unix text
editors: vi (pronounced “vee-eye”) and Emacs. Eventually, you must learn how to use at
least one of the editors well. Indeed, I have devoted an entire chapter to vi (Chapter 22).

33614_13_277_326.indd 31433614_13_277_326.indd 314 1/9/2008 12:34:41 PM1/9/2008 12:34:41 PM

Using the Shell: Commands and Customization

315

 Both vi and Emacs offer a large, powerful set of commands that allow you to view
and modify text fi les. These commands are so well-designed that they are suitable for
editing any type of text in any situation. In particular, the shell lets you use either the vi
commands or Emacs commands (your choice) to view and modify what you type on the
command line as well as your history list.
 It happens that the vi commands are very different from the Emacs commands, so
the shell lets you use only one set at a time. By default, the shell assumes you want to use
Emacs commands. We call this EMACS MODE. However, you can change to vi if you
want. If you do, we say that the shell is in vi MODE.
 The way in which you change from one command editing mode to another depends on
your shell. With Bash and the Korn shell, you set a shell option, either emacs or vi. (Shell
options are explained in Chapter 12.) Thus, you would use one of the following commands:

set -o emacs
set -o vi

With the Tcsh, you use the bindkey command. You can do so with either the -e
(Emacs) or -v (vi) option:

bindkey -e
bindkey -v

The best place to put either of these commands is in an initialization fi le, so the command
will be executed automatically each time you log in. I will show you how to do so in
Chapter 14.
 When it comes to editing regular text fi les, vi is the best choice for beginners. This
is because, while vi is diffi cult to learn, Emacs is very diffi cult to learn. So, if you are a
beginner, when the time comes to learn how to edit fi les, I will recommend that you start
with vi, not Emacs.
 However, when it comes to editing the history list and command line, Emacs is actually
easier to use than vi. The reason is that, most of the time, you only need to move up and
down within the history list or make small changes to the command line. With Emacs,
this is straightforward. The vi editor is more complicated, because it has two different
modes — command mode and insert mode — and before you can use vi, you need to
learn how to switch back and forth from one mode to another. (We’ll go into the details
in Chapter 22.) For this reason, all the shells use Emacs mode as the default.
 When I taught you how to use <Up> and <Down> to move within the history list, and
how to make basic changes to your command line (earlier in the chapter), I was actually
showing you simple Emacs commands. Thus, you have already been using Emacs for
command line editing, even though you didn’t realize it at the time. In fact, if your shell
had been in vi mode, you would have found that the cursor movement keys would not
have worked the way you expected.
 Both vi and Emacs offer a very large number of ways to manipulate your history list
and command line. However, none of this helps you at all until you learn how to use one

Command Line Editing: bindkey

33614_13_277_326.indd 31533614_13_277_326.indd 315 1/9/2008 12:34:41 PM1/9/2008 12:34:41 PM

Chapter 13

316 Harley Hahn’s Guide to Unix and Linux

of the editors. For this reason, I’m not going to explain the details of advanced command
line editing. If you are so inclined, you can experiment with the vi or Emacs commands
once you learn how to use them. At that time, come back to this chapter, and read the rest
of this section. (For vi, that will be after you read Chapter 22.)
 To teach yourself command line editing, start by using set or bindkey to put
your shell in either vi or Emacs mode. Now, imagine you are working with an invisible
fi le that contains the history list. At any time, you can copy one line from this fi le to
your command line, where you can modify the text as you wish. Whenever you press
<Return> to run a command, the contents of the command line are added to the bottom
of the invisible fi le (that is, to the history list).
 Keeping this image in mind, it is easy to experiment. All you have to do is use the vi
or Emacs commands in a way that makes sense. Start by practicing the basic maneuvers:
moving through the invisible fi le, searching for patterns, making replacements, and so
on. You will fi nd that, once you are comfortable with vi or Emacs, command line editing
is straightforward and intuitive.
 If you need a reference, take a look at the man page for your particular shell and search
for information about command editing. You may fi nd the instructions a bit confusing,
but be patient. Rearranging your brain cells takes time.

ALIASES: alias, unalias
An ALIAS is a name that you give to a command or list of commands. You can use
aliases as abbreviations, or you can use them to create customized variations of existing
commands. For example, let’s say you often fi nd yourself entering the command:

ls -l temp*

If you give it an alias of lt, you can enter the command more simply by typing:

lt

To create an alias, you use the alias command. The syntax varies slightly depending on
which shell you use. For the Bourne shell family (Bash, Korn shell), the syntax is:

alias [name=commands]

Be sure not to put a space on either side of the equals sign (the same as when you create
a variable).
 For the C-Shell family (C-Shell, Tcsh), the syntax is almost the same. The only
difference is you leave out the equals sign:

alias [name commands]

In both cases, name is the name of the alias you want to create, and commands is a list
of one or more commands.
 An an example, let’s create the alias I mentioned above. The fi rst command is for a
Bourne shell; the second command (which leaves out the equals sign) is for a C-Shell:

33614_13_277_326.indd 31633614_13_277_326.indd 316 1/9/2008 12:34:41 PM1/9/2008 12:34:41 PM

Using the Shell: Commands and Customization

317

alias lt='ls -l temp*'
alias lt 'ls -l temp*'

Notice that I have enclosed the command in single quotes. This is because the command
contains both spaces and a metacharacter (*). In general, strong quotes (single quotes)
work better than weak quotes (double quotes), because they preserve the meaning of the
metacharacters until the alias is executed.
 Here is an example that creates an alias for a list of two commands. Again, the fi rst
command is for a Bourne shell; the second is for a C-Shell:

alias info='date; who'
alias info 'date; who'

Once you have created this alias, you can enter info whenever you want to run these
two commands.
 Here is my favorite alias. It creates an abbreviation for the alias command itself:

alias a=alias
alias a alias

Once you create this alias, you can create more by using a instead of having to type the
whole word alias. For example, once you defi ne this alias, you could enter:

a info='date; who'
a info 'date; who'

If you want to change the meaning of an alias, just redefi ne it. For example, if info is an
alias, you can change it whenever you want simply by using another alias command:

alias info='date; uname; who'
alias info 'date; uname; who'

To check the current value of an alias, enter the alias command with a name only. For
example, to display the meaning of the alias info, use:

alias info

To display all your aliases at once, enter the alias command with no arguments:

alias

To remove an alias, you use the unalias command. The syntax is:

unalias name

where name is the name of an alias. For example, to remove the alias we just defi ned, you
would use:

unalias info

Aliases: alias, unalias

33614_13_277_326.indd 31733614_13_277_326.indd 317 1/9/2008 12:34:42 PM1/9/2008 12:34:42 PM

Chapter 13

318 Harley Hahn’s Guide to Unix and Linux

If you want to remove all your aliases at once (say, if you are experimenting), use the
unalias command with either the -a option (for a Bourne shell), or with a * character
(for a C-Shell):

unalias -a
unalias *

Do you remember the type command, we discussed earlier in this chapter? (You specify
the name of a command, and type tells you what type of command it is.) You can use
type to fi nd out if a particular command is an alias. For example, say you defi ne the
info alias as shown above. You then enter:

type info

You will see a message similar to this one:

info is aliased to 'date; who'

As you might imagine, you are likely to develop a whole set of aliases that you use all the
time. However, it is bothersome to have to retype the alias commands every time you log
in. Instead, you can put all your favorite alias defi nitions in an initialization fi le, which
causes them to be executed automatically whenever you start a new shell. I’ll show you
how to do this in Chapter 14.

SUSPENDING AN ALIAS TEMPORARILY
One very common use for aliases is to make it easy to use the same options every time
you run a particular command.
 For example, the ls command (which we will discuss in Chapter 24) lists the contents
of a directory. When you use ls by itself, you get a “short” listing; when you use ls with
the -l option, you get a “long” listing.
 Suppose you fi nd that, almost all the time, you use l with the -l option. To save
yourself having to type the option every time, you defi ne the following alias:

alias ls="ls -l"
alias ls "ls -l"

(The fi rst defi nition is for the Bourne shell family; the second is for the C-Shell family.)
 Now, you can simply enter the command by itself. You don’t have to type the option:

ls

This will produce a long listing, just as if you entered:

ls -l

When you use such aliases, you may fi nd that, from time to time, you want to run the original
command, not the alias. For example, you may want to run ls without the -l option.

33614_13_277_326.indd 31833614_13_277_326.indd 318 1/9/2008 12:34:42 PM1/9/2008 12:34:42 PM

Using the Shell: Commands and Customization

319

 To suspend an alias temporarily — for one command only — type a \ (backslash)
character at the beginning of the command name:

\ls

This tells the shell to run the actual command, not an alias. In our example, the shell will
ignore the ls alias, and you will get the (default) short listing.

ALIAS EXAMPLE: AVOID DELETING THE WRONG FILES
In this section, I will show you how to combine an alias with a command recalled from
the history list to produce an exceptionally handy tool.
 Earlier in the chapter, we discussed an example in which we were thinking about using
the rm (remove) command to delete all the fi les whose names match a particular pattern.
The example we discussed was:

rm temp* extra?

To make sure we don’t make a mistake, we should check the pattern we are using before we
perform the actual deletion. We do this by using the same pattern with the ls command:

ls temp* extra?

If ls lists the fi les we want, we proceed with the deletion. Otherwise, we can try again
with a different pattern, until we get what we want. In this way, we ensure that rm does
exactly what we want it to do. This is important because once Unix deletes a fi le it is
gone forever.
 So let’s say the ls command fi nds the fi les we want to delete. We could simply enter
the rm command using the same pattern. However, what if we make a typing mistake? We
might end up deleting a wrong fi le after all. A better idea is to let the shell do the work for
us. To do so, we recall the ls command from the history list, change ls to rm, and then
execute the modifi ed command.
 With a member of the Bourne shell family (Bash, Korn shell), we use:

fc -s ls=rm

To make this command easy to use, we defi ne an alias named del:

alias del='fc -s ls=rm'

With a member of the C-Shell family (C-Shell, Tcsh), we would normally use:

^ls^rm

However, for technical reasons I won’t go into, this won’t work within an alias. Instead, we
need to use the following command:

rm !ls:*

Alias Example: Avoid Deleting the Wrong Files

33614_13_277_326.indd 31933614_13_277_326.indd 319 1/9/2008 12:34:42 PM1/9/2008 12:34:42 PM

Chapter 13

320 Harley Hahn’s Guide to Unix and Linux

Obviously, this is tricky. (Unix is full of tricky commands.) Informally, we are asking
the shell to extract the arguments from the most recent ls command, and use them to
run an rm command. The effect is to run the rm command with the same arguments
as the ls command.
 To make this command easy to use, we defi ne an alias. Notice that we quote the ! to
preserve its meaning. (Does this make sense to you?)

alias del 'rm \!ls:*'

Once we have defi ned a del alias, we can use the following procedure to delete fi les that
match a particular pattern. The nice thing is that the procedure is the same regardless of
which shell we are using.
 First, we enter an ls command with the pattern that describes the fi les you wish to
delete. For example:

ls temp* extra?

If the pattern displays the names we expect, we enter:

del

That’s all there is to it.
 If the pattern does not work, we re-enter the ls command with a different pattern
until we get what we want. Then we use del. In this way, it is impossible for us to delete
the wrong fi les because of a mismatched pattern.
 If you make a habit of using ls with a del alias in this way, I promise you that, one
day, you will save yourself from a catastrophe. In fact, I have mathematical proof — using
mathematical induction and hypergeometric functions — that this one trick alone is
worth the price of this book. (Unfortunately, the explanation of the proof is beyond the
scope of the book.)

ALIAS EXAMPLE: REUSING COMMANDS FROM THE HISTORY LIST
Earlier in the chapter, I explained that the Bourne shell family and the C-Shell family
use different commands to access the history list. In particular, the Bourne shells (Bash,
Korn shell) use the fc command, while the C-Shells (C-Shell, Tcsh) use the history
and ! commands.
 The original history list facility was written for the C-Shell. It was a breakthrough at
the time and, in fact, it is still useful and easy to use. Later, the Korn shell introduced a
much more powerful system using the fc command. Unfortunately, the syntax of fc
was designed poorly and the details of the command itself are awkward to remember and
to use. However, by using aliases, we can make fc look like the C-Shell system.
 To start, we defi ne an alias named history that uses fc with the -l (list) option to
display lines from the history list:

alias history="fc -l"

33614_13_277_326.indd 32033614_13_277_326.indd 320 1/9/2008 12:34:42 PM1/9/2008 12:34:42 PM

Using the Shell: Commands and Customization

321

To make it even easier, we can abbreviate history to h:

alias h=history

This is one of my favorite aliases, and I use it with every shell, even the C-Shell and Tcsh.
After all, who wants to type the word history over and over?*
 Next, we defi ne an alias r (recall) to take the place of fc -s, the command that
recalls and re-executes a line from the history list:

alias r="fc -s"

Now, whenever we want, it is easy to re-execute the last command we entered. We just
use the r alias:

r

If we want to make a change, we simply specify an old pattern and a new pattern. For
example, suppose we just typed the command:

vi tempfile

This starts vi to edit a fi le named tempfi le. We decide to run the command again to edit
a fi le named data. All we need to type is:

r tempfile=data

Working with a specifi c line in the history list is just as easy. Just specify the event number
(line number). For example, let’s say your history list looks like this:

20 cp tempfile backup
21 diff backup backup1
22 whoami
23 date
24 vi tempfile
25 vi data

You are wondering what time it is, so you want to re-execute the date command, event
number 23:

r 23

Next, you want to re-execute command 20. However, fi rst you want to change tempfile
to data:

r 20 tempfile=data

 *For that matter, who wants to type the word alias over and over? This is why I suggest you create an alias for the alias
command itself:

alias a=alias

Alias Example: Reusing Commands From the History List

33614_13_277_326.indd 32133614_13_277_326.indd 321 1/9/2008 12:34:42 PM1/9/2008 12:34:42 PM

Chapter 13

322 Harley Hahn’s Guide to Unix and Linux

If you specify one or more characters, the shell will re-execute the most recent command
that starts with those characters. For example, to re-execute the last command that began
with a di (in this case, number 21, the diff command), use:

r di

If you want to re-execute the date command, you can specify the last command that
begins with d:

r d

With a little practice, such substitutions can save you a lot of time and effort.
 To fi nish this section, let me give you some specifi c advice with respect to using the
history, h and r aliases with your particular shell.
 Bash: As I explained earlier in the chapter, Bash comes with both the fc command
and the history and !! commands. However, you should create the h and r aliases
for yourself:

alias h=history
alias r="fc -s"

 Korn shell: The Korn shell uses fc, and it comes with the history and r aliases
already defi ned, so you don’t need to create them. For convenience, however, you should
add the h alias:

alias h=history

 C-Shell and Tcsh:As I explained earlier in the chapter, both these shells come
with a history command as well as an easy way to modify and re-use commands from
the history list. For convenience, all you need to add is the h alias:

alias h history

The beauty of these aliases is twofold: First, they make it easy to use the history list;
second, they allow you to access the history list the same way regardless of which shell
you are using.

ALIAS EXAMPLE: DISPLAYING NAME OF WORKING DIRECTORY IN SHELL PROMPT
The goal of this section is to solve a specifi c problem that pertains only to the C-Shell.
However, we will be covering several concepts that are generally useful so, regardless of
which shell you happen to use, I want you to read this section and think about the ideas
that emerge from the discussion.
 Earlier in the chapter, we talked about how to display the name of your working
directory in your shell prompt. At the end of that discussion, I mentioned that the C-Shell
does not have an easy way to do this. There is a complicated way to do so, however, that
uses aliases, and that is what we are going to discuss here.

33614_13_277_326.indd 32233614_13_277_326.indd 322 1/9/2008 12:34:42 PM1/9/2008 12:34:42 PM

Using the Shell: Commands and Customization

323

 The discussion will involve directories, which we will cover in Chapter 24. For now, all
you need to know is that directories hold fi les, and your “working directory” is the one
in which you are currently working. You can change your working directory whenever
you want and, when you do, it’s handy to see the name of the new directory in your shell
prompt, so you can keep track of where you are.
 Displaying the name of your working directory in this way is easy with Bash (use \w),
the Korn shell (use $PWD), and the Tcsh (use %~). Here are some sample commands that do
the job. For readability, they display the name of the working directory in parentheses:

export PS1="(\w) bash$ "
export PS1='($PWD) ksh$ '
set prompt = "(%~) tcsh> "

The reason these commands work is that the shells automatically update the code or
variable within the shell prompt whenever your working directory changes.
 To be sure, the C-Shell has a PWD variable. However, if you put it in your shell prompt,
you will fi nd that the variable is not updated automatically. This is because the C-Shell is
older than the other three shells, and it does not have this capability.
 The approach to solving this problem is to use an alias that redefi nes the shell prompt
every time you change your working directory. To start, we need to answer the question:
Which command do we use to change our working directory? The answer is the cd
(change directory) command.
 We’ll talk about cd in detail in Chapter 24. For now, I’ll tell you that, to change to a
new directory, you type cd followed by the name of the directory. For example, if you
want to change to the bin directory, you would enter:

cd bin

You may remember from Chapter 12 that, at all times, the C-Shell maintains the name
of your working directory in two different variables: cwd (a shell variable) and PWD (an
environment variable). Whenever you use cd to change your working directory, these
two variables are updated.
 Thus, our plan is to create an alias to redefi ne cd so that it does two things: (1) Change
the working directory according to whatever you specify, then (2) Use either the cwd
or PWD variable to redefi ne the shell prompt to refl ect the new working directory. The
following alias does the job:

alias cd 'cd \!* && set prompt="($PWD)% "'

To understand how this works, you need to know that && separates two commands. The
meaning of && is to run the fi rst command and then, if it terminates normally, to run the
second command. If the fi rst command fails, the second command is not executed. In other
words, if, for some reason, the cd command fails, there’s no point in updating the prompt.
 Our cd alias starts by executing the command:

cd \!*

Alias Example: Displaying Name of Working Directory in Shell Prompt

33614_13_277_326.indd 32333614_13_277_326.indd 323 1/9/2008 12:34:42 PM1/9/2008 12:34:42 PM

Chapter 13

324 Harley Hahn’s Guide to Unix and Linux

The notation \!* refers to whatever arguments were typed on the original command
line. In this way, the original arguments from the command line are passed to the cd
command inside the alias. (This is a programming thing, so if this doesn’t make sense to
you, don’t worry about it.)
 If the fi rst command terminates normally, the PWD variable will be updated by the
shell automatically. We can then run the second command:

set prompt="($PWD)% "

This command changes the shell prompt to display the name of the working directory in
parenthesis, followed by a % character, followed by a space. That’s all there is to it.
 The reason the whole thing works is that alias expansion is done before the shell parses
and interprets the command line. For example, say we have defi ned the cd alias above
and we enter:

cd bin

The fi rst thing the shell does is expand the alias. Internally, the command line changes to:

cd bin && set prompt="($PWD)% "

Then the cd command is executed, followed by the set command.
 Once you have the basic alias defi ned, you can make it more elaborate. For example,
why not have the prompt display more than the working directory and a % character?
 The following alias defi nes a more complex prompt in which we display the working
directory in parentheses, a space, the name of the shell, the event number in square
brackets, a % character, and a space:

alias cd 'cd \!* && set prompt = "($PWD) csh[\\!]% "'

A typical prompt defi ned in this way would look like this:

(/export/home/harley) csh[57]%

This is the type of alias you would put in an initialization fi le, so that your prompt will be
updated for you automatically. We’ll cover initialization fi les in Chapter 14.
 One fi nal comment. You will notice in the last example that the ! character is quoted
twice (by two backslashes). The fi rst backslash quotes the ! when it is parsed the fi rst
time, as part of the alias command. The second backslash quotes the ! when it is
parsed the second time, as part of the set command.
 This is a concept I want to make sure you understand: when something is being parsed
more than once, you may need to quote it more than once. Please take a moment to think
about this until it makes sense to you.

33614_13_277_326.indd 32433614_13_277_326.indd 324 1/9/2008 12:34:42 PM1/9/2008 12:34:42 PM

Using the Shell: Commands and Customization

325

C H A P T E R 1 3 E X E R C I S E S

REVIEW QUESTIONS

1. What is an alphanumeric character? What is a metacharacter? Name three
metacharacters and explain what they are used for.

2. Within the world of Unix, some characters have nicknames. For example, an apostrophe
is usually referred to as a “quote” or a “single quote”. What are the nicknames Unix
people use for the following characters: asterisk, enter/return, exclamation mark,
period, quotation mark, vertical bar?

3. What are the three different ways to quote characters? How do they differ?

4. What is a builtin command? Where do you fi nd the documentation for a builtin
command?

5. What is the search path? How can you display your search path?

6. What is the history list? The simplest, most common use of the history list is to re-
execute the previous command. How do you do this? Using Bash or the Tcsh, how
would you recall, edit, and then execute the previous command?

7. What is autocompletion? How many different types of autocompletion are
there? Explain briefl y what each type of autocompletion does. Which type of
autocompletion is the most important?

APPLYING YOUR KNOWLEDGE

1. How do you modify the Bash shell prompt to display your userid, the working
directory, and the current time? How do you do the same for the Tcsh prompt?

2. What is command substitution? Use command substitution to create a command that
displays “These userids are logged in right now:” followed by a list of the userids.

3. Enter the command:

 echo "I am a very smary person."

 Using a history list tool, change this command to correct the spelling of “smart”.

4. Your working directory contains the following fi les (only):

 datanew dataold important phonenumbers platypus

 Using autocompletion, what are the minimum number of characters you need to type
to reference each of the fi les?

Chapter 13 Exercises

33614_13_277_326.indd 32533614_13_277_326.indd 325 1/9/2008 12:34:42 PM1/9/2008 12:34:42 PM

Chapter 13

326 Harley Hahn’s Guide to Unix and Linux

FOR FURTHER THOUGHT

1. In this chapter, we have discussed several tools that help you enter commands quickly:
the history list, autocompletion and aliases. These tools are complicated and take time
to master. Some people can’t be bothered to put in the time because, to them, it is not
worth the effort. Other people embrace such tools with alacrity. What type of person
has a strong need to enter commands as quickly as possible?

2. What are the advantages of creating a great many specialized aliases? What are the
disadvantages?

33614_13_277_326.indd 32633614_13_277_326.indd 326 1/9/2008 12:34:42 PM1/9/2008 12:34:42 PM

327

C H A P T E R 1 4

Using the Shell:
Initialization Files

Initialization Files and Logout Files

This is the last of four chapters that deal with the shell. Chapter 11 discussed the shell in
general; Chapters 12 and 13 covered the basic concepts needed to use the shell well.
 In this chapter, we will discuss the last major topic, initialization fi les. You will like this
chapter because, as you read it, everything you have already learned will come together.
As it does, you will begin to appreciate the beauty of the shell.

INITIALIZATION FILES AND LOGOUT FILES
The Unix shells were designed by programmers who knew the value of letting users
customize their working environments. Toward this end, all shells allow you to specify
commands to be executed automatically on your behalf. Your job is to use these
commands to set up your working environment exactly how you want it. Here is how
it works.
 To start, you create two special fi les, called INITIALIZATION FILES. In the fi rst fi le,
the LOGIN FILE, you put all the commands you want executed every time you log in. In
the second fi le, the ENVIRONMENT FILE, you put the commands you want executed
every time a new shell starts.
 For example, you might use your login fi le to set specifi c variables each time you login.
If you use a multiuser system, you might also run the users command to show you who
else is logged in. And you might use your environment fi le to set specifi c shell options and
defi ne certain aliases every time a new shell starts.
 Once you create your initialization fi les, the shell will look for them and run the
commands automatically at the appropriate times. If your needs change, just change
the fi les.
 To provide a bit more customization, some shells also support a LOGOUT FILE.
The logout fi le holds commands that are run automatically whenever you log out. For
example, you might run the date command whenever you log out, to display the current
time and date.

33614_14_327_344.indd 32733614_14_327_344.indd 327 1/9/2008 12:35:03 PM1/9/2008 12:35:03 PM

Chapter 14

328 Harley Hahn’s Guide to Unix and Linux

 Taken together, the login fi le, environment fi le, and logout fi le give you the power
to cause any commands you want to be executed automatically at three different times:
when you log in, whenever a new shell starts, and when you log out.
 Can you see the elegance of this design? The ability to run commands at these three
specifi c times gives you the control you need to set up your work environment exactly
the way you want. If you are a beginner, the power of these fi les will not be obvious.
However, once you have used Unix for a year or two, and you are good at setting
variables, creating shell scripts, and defi ning aliases and functions, you will appreciate
how important the initialization fi les are to your overall Unix experience. (We talked
about aliases in Chapter 13; functions are beyond the scope of the book.)
 The names of the three fi les differ from one shell to another. For example, with
the C-Shell, the login fi le is called .login; the environment fi le is .cshrc; and the
termination fi le is .logout. Figure 14-1 shows the standard names used with the
various shells. Look closely and you will see that the Bourne shell family (Bash, Korn
shell) uses a different pattern of fi lenames than the C-Shell family (C-Shell, Tcsh).

HINT

In the olden days, there was a cool program named fortune. Each time you ran the program
it would display a joke or pithy saying, selected at random from a large collection of interesting
diversions. Many people put a fortune command in their logout fi le, so they would see
something interesting each time they logged out.
 Unfortunately, the fortune command is not included with most of today’s Unix/Linux
systems. However, it is readily available on the Net, and you might want to download and
install it. If you do, you will fi nd that fortune is an excellent command to put in your
logout fi le.

SHELL LOGIN FILE ENVIRONMENT FILE LOGOUT FILE

C-Shell .login .cshrc .logout

Tcsh .login .tcshrc, .cshrc .logout

Bourne Shell .profi le — —

Korn Shell .profi le $ENV —

Bash (default) .bash_profi le, .bash_login .bashrc .bash_logout

Bash (POSIX) .profi le $ENV .bash_logout

FIGURE 14-1: Names of the initialization and logout fi les

Unix shells allow you to customize your working environment by placing commands in special fi les that
are run automatically at certain times. There are two initialization fi les, the login fi le (run when you
log in) and the environment fi le (run whenever a new shell starts). Some shells also allow you to use
a logout fi le (run when you log out). As you can see from the table, the names of these fi les vary from
one shell to another. The original Bourne shell, which I included for interest, used only a login fi le
called .profi le.

Notes: (1) The Korn Shell and Bash (in POSIX mode), do not use a standard name for the environment
fi le. Instead, you set the ENV variable to the name of whichever fi le you want to use. (2) If your
shell does not support a logout fi le, it is still possible to use one by trapping the EXIT signal. (See
text for details.)

33614_14_327_344.indd 32833614_14_327_344.indd 328 1/9/2008 12:35:04 PM1/9/2008 12:35:04 PM

Using the Shell: Initialization Files

329Names of Initialization and Logout Files

 You will notice that all the initialization and logout fi les have names that begin with
a . (dot) character. Such fi les are called “dotfi les”, and we will discuss them later in the
chapter and again in Chapter 24. For now, you only need to know three things. First, a dot
(that is, a period) is a legitimate character in a fi lename. Second, a dot at the beginning of
a name has a special meaning. Third, when you talk about a dotfi le, you pronounce the
“dot”. For example, when you talk about the .login fi le, you say “dot-login”; when you
talk about .profile, you say “dot-profi le”.

NAMES OF INITIALIZATION AND LOGOUT FILES
The names used by the C-Shell family for initialization and logout fi les are straightforward.
The login fi le is .login; the environment fi le is .cshrc for the C-Shell and .tcshrc
for the Tcsh; and the logout fi le is .logout. For backwards compatibility, if the Tcsh
can’t fi nd a fi le named .tcshrc, it will look for one named .cshrc, which only
makes sense.
 The names used by the Bourne shell family take a bit of explanation. To start,
we need to recall an important idea from Chapter 11. In the early 1990s, a set of
specifi cations called POSIX 1003.2 was created to describe a “standard” Unix shell. For
the most part, the POSIX standard was modeled after the Bourne shell family. Indeed,
today’s modern Bourne shells (Bash, Korn shell, FreeBSD shell) all conform to the
1003.2 standard.
 The POSIX standard mandates that a shell should support both a login fi le and an
environment fi le, but not necessarily a logout fi le. The name of the login fi le should be
 .profile. However, to retain fl exibility, the name of the environment fi le is not fi xed.
Instead, an environment variable named ENV should hold the name of the environment
fi le. For example, if you are a Korn shell user, you might set the value of ENV to .kshrc.
(We’ll talk about fi lenames later.)
 If you look at Figure 14-1, you will see that the Korn shell follows the POSIX
specifi cation: The name of the login fi le is .profile, and the name of the environment
fi le is stored in the ENV variable.
 Bash is different because it was created by very clever programmers (see Chapter 11)
who designed it to run in two different modes: default mode, for power and fl exibility*,
and POSIX mode for compatibility. In default mode, Bash supports enhancements over
the POSIX standard; in POSIX mode, Bash strictly adheres to the 1003.2 standard.
 In general, the Bash default mode is just fi ne, and that is what most people use most
of the time. However, if you ever have a need for a POSIX-compliant shell, say, to run a
special shell script, you can always run Bash in POSIX mode**.

 *Of all the major shells, the only one that offers more fl exibility than Bash is the Zsh (see Chapter 11).
 **There are two ways to run Bash in POSIX mode. First, you can start it with the --posix option. This technique will
work on all systems:
bash --posix
 The second choice is simpler, but only works on some systems.
 Some Unix systems are set up so that both the bash command and the sh command will start Bash. (This is generally the
case with Linux.) On such systems, the bash command starts the shell in default mode, while the sh command starts the shell
in POSIX mode.

33614_14_327_344.indd 32933614_14_327_344.indd 329 1/9/2008 12:35:04 PM1/9/2008 12:35:04 PM

Chapter 14

330 Harley Hahn’s Guide to Unix and Linux

 In default mode — which is what you and I would normally use — Bash looks for a
login fi le named either .bash_profile or .bash_login (use whichever one you
want), and an environment fi le named .bashrc.
 In POSIX mode, Bash follows the same rules as the Korn shell. The login fi le is named
 .profile, and the name of the environment fi le is stored in the ENV variable.
 In both modes — the default mode and the POSIX mode — Bash uses a logout fi le
named .bash_logout.
 You should now be able to understand all of Figure 14-1, which means we can turn
our attention to a very important question: What types of commands should you put in
your initialization fi les and in your logout fi le?
 Before I lay the groundwork for answering that question, I want to make two quick
digressions, one to explain about dotfi les and rc fi les, the other to talk about what you
need to know in order to create and edit a fi le.

DOTFILES AND rc FILES
When you look at the fi lenames in Figure 14-1, you will notice two odd things. First, all
the names begin with a dot; second, the names of the environment fi les end with rc.
 Files whose names start with a period are called DOTFILES or HIDDEN FILES. We
will discuss them in Chapter 24 but, to help you now, here is a summary in advance.
 There are many fi les that, for one reason or another, you want to ignore most of the
time. Usually, these are confi guration fi les that are used silently by some program or
other. A good example of this are the shell initialization fi les we have been discussing.
 As we will discuss in Chapter 24, the command you use to list your fi les is ls. As a
convenience, ls will not list any names that begin with a dot unless you use the -a (all
fi les) option. Thus, when you use ls in the usual manner, you won’t see the names of any
of your dotfi les.
 This is why all the initialization and logout fi les have names that begin with a dot.
Once you set up the fi les the way you want, there is no reason to think about them unless
you want to make a change. In particular, you don’t want to look at their names every
time you list your fi les.
 If you ever do want to list all your fi les, including the dotfi les, just use ls -a. To see
how it works, take a moment to try both commands:

ENVIRONMENT FILE PRONUNCIATION
.cshrc “dot-C-shell-R-C”

.tcshrc “dot-T-C-shell-R-C”

.bashrc “dot-bash-R-C”

FIGURE 14-2: Pronouncing the names of rc fi les

Many Unix programs use initialization fi les whose names start with a dot (period) and end with
the letters rc. The dot keeps the names from being displayed when you list your fi les; the rc is a
abbreviation for “run commands”. (See text for a full explanation.) This table lists the names of the
most common shell environment fi les, along with the most common pronunciation for each name. Can
you see the pattern?

33614_14_327_344.indd 33033614_14_327_344.indd 330 1/9/2008 12:35:04 PM1/9/2008 12:35:04 PM

Using the Shell: Initialization Files

331

ls
ls -a

Moving on, you will notice that the environment fi les have names that end with the
letters rc: .bashrc, .cshrc and .tcshrc. This is a common convention used by
Unix programs for naming initialization fi les. For example, the vi and ex editors (which
are related) use an initialization fi le named .exrc; and the generic Unix email program,
mail, uses an initialization fi le called .mailrc.
 As you work with Unix over the years, you will encounter a great many rc fi les. As a
general rule, such fi les are used to hold initialization commands and, almost always, they
will be dotfi les to hide them from the ls command.

USING A SIMPLE TEXT EDITOR
In order to be a skillful Unix user, you must be able to edit (modify) text quickly. This is
especially true if you are a programmer. Specifi cally, your login fi le, environment fi le, and
logout fi le all contain text and, in order to create or modify these fi les, you need to be able
to use a text editor program.
 The two main Unix text editors are vi and Emacs and, eventually, you will need to
master one of them. However, both vi and Emacs are complex. In fact, within this book,
I have devoted an entire chapter to vi (Chapter 22). Reading this chapter, or teaching
yourself Emacs, will take some time, so I have some alternatives for you. If you use a
desktop environment such as Gnome or KDE (see Chapter 5), there will be a simple
GUI-based editor you can use to create and modify small text fi les. If you use the CLI
(command line interface), there will probably be a simple text-based editor you can use
until you learn vi or Emacs.

WHAT’S IN A NAME?

rc Files
Many Unix programs use confi guration fi les whose names end in rc, for example, .bashrc,
.tcshrc and .exrc. The designation rc stands for “run commands”: commands that are
run automatically each time a particular program starts.
 The name derives from the CTSS operating system (Compatible Time Sharing System),
developed at MIT in 1963. CTSS had a facility called “runcom” that would execute a list of
commands stored in a fi le. Some of the early Unix programmers had used CTSS and, when they
created confi guration fi les, they chose names that ended in rc.
 This was the start of a long-standing tradition among Unix programmers of naming
initialization fi les by using dotfi les whose names end in rc. For example, if you wrote a
program called foo, you would probably name the initialization fi le .foorc. That is why,
earlier in the chapter, I suggested that, if you are a Korn shell user, you should name your
environment fi le .kshrc.
 When we talk about such fi les, we pronounce rc as two separate letters. For example,
.foorc is “dot-foo-R-C”. For reference, Figure 14-2 shows the pronunciations for the most
common environment fi les. Knowing how to pronounce such names is important when you
talk to other Unix people.

Using a Simple Text Editor

33614_14_327_344.indd 33133614_14_327_344.indd 331 1/9/2008 12:35:04 PM1/9/2008 12:35:04 PM

Chapter 14

332 Harley Hahn’s Guide to Unix and Linux

 Let’s start with the desktop environment. There are two ways to access the GUI-based
editor. First, you can start it from within the menu system. You will most likely fi nd it
listed under “Accessories”. Second, you can start the program from a command line. Just
open a terminal window (see Chapter 6), wait for the shell prompt, and enter the name of
the program. With KDE, the GUI-based text editor is kedit; with Gnome, it is gedit.
 Most Linux systems will have KDE or Gnome, but even if you don’t use Linux, try
running gedit anyway. It’s part of the GNU utilities (Chapter 2) and, as such, you
will fi nd it on many different systems. For example, you can run gedit from a Solaris
terminal window under JDS (the Java Desktop System).
 If you don’t have access to a GUI-based editor, there is a good chance your system will
have a simple text-based editor. The most common ones are Pico and Nano. (They are
pretty much the same; Nano is the GNU version of Pico.) To check if your system has one
of these editors, see if you can display one of the man pages. If so, you can use the man
page to teach yourself the basics:

man pico
man nano

Once you fi gure out how to use one of the simple text editors — either a GUI-based text
editor or Nano/Pico — you can use it to create and edit your initialization and logout
fi les. However, remember what I said: such programs are only for beginners. In the long
run, you need to learn either vi or Emacs.

LOGIN SHELLS AND NON-LOGIN SHELLS
In Chapter 12, we talked about interactive and non-interactive shells. You use an interactive
shell when you enter commands at the shell prompt; you use a non-interactive shell when
you run a shell script. In order to understand how to use initialization fi les, we need to
go a bit further in our analysis, because there are two different types of interactive shells.
 Whenever you log in, the shell that starts is called a LOGIN SHELL. All other
interactive shells are called NON-LOGIN SHELLS. The distinction is important because
initialization fi les are processed differently for login shells than for non-login shells. Let’s
consider a few common situations.

1. Virtual consoles and terminal windows

When you use a desktop environment, such as Gnome or KDE, there are two ways to get
to a shell prompt: you can open a terminal window, or you can change to a virtual console
(see Chapter 6). When you use a virtual console — say, by pressing <Ctrl-Alt-F1> — you
are required to log in. When you do, a login shell starts. On the other hand, if you simply
open a terminal window, a non-login shell starts (because you did not log in).

2. Starting a new shell

At any time, you can start a new shell by entering its name. For example, say you are using
Bash, and you want to try the Tcsh. Just enter the tcsh command. The new shell is a
non-login shell (because you did not log in).

33614_14_327_344.indd 33233614_14_327_344.indd 332 1/9/2008 12:35:04 PM1/9/2008 12:35:04 PM

Using the Shell: Initialization Files

333

3. Using a remote host

To connect to a remote Unix host, you use the ssh (Secure Shell) program. Once ssh
makes the connection for you, you must log in. Doing so starts a login shell.

WHEN ARE INITIALIZATION FILES EXECUTED?
Now that you understand the difference between a login shell and a non-login shell, we
can discuss what happens when a new shell starts. The important question to answer is:
Which initialization fi les are executed and when?
 There are two general rules, with minor variations. Let’s start with the rules.

 1. A login shell executes your login fi le and your environment fi le.
 2. A non-login shell only executes your environment fi le.

Here are the specifi c details, starting with the members of the Bourne shell family. As a
shortcut, I will use $ENV to represent the fi le whose name is stored in the $ENV environment
variable. For example, for the Korn shell, you might set the value of $ENV to be .kshrc.

Bash (default mode)
• Login shell: .bash_profile
• Non-login shell: .bashrc

Bash (POSIX mode)
• Login shell: .profile, then $ENV
• Non-login shell: $ENV

Korn shell
• Login shell: .profile, then $ENV
• Non-login shell: $ENV

Before we move on to the C-Shell family, let me make a few comments. First, you will
notice that we can divide all the Bourne shells into two groups. Two of the three shells
follow the POSIX convention of using .profile and $ENV. The exception is Bash in
default mode. This is an important insight because, once you have used shells for a while,
you will see that there is something different about Bash.
 Bash refl ects the attitudes of the young programmers who came of age in the mid- to
late 1990s, during the growth of Linux and the open source movement (see Chapter 2).
Emotionally, the open source programmers felt a bit like outlaws, rebelling against
commercial Unix conventions, such as proprietary software and restrictive licensing
agreements. For this reason, they opted to create an enhanced shell that was more than
just a clone of the standard POSIX shell*. This is why, as a Bash user, you will encounter
many situations in which Bash behaves differently than other shells.
 For example, it is only the Bash login shell that executes a login fi le and not an
environment fi le. With all other shells, a login shell executes both the login fi le and

 *To be sure, the Bash programmers were not complete iconoclasts. They did create POSIX mode for situations that require
strict conformity to community standards.

When Are Initialization Files Executed?

33614_14_327_344.indd 33333614_14_327_344.indd 333 1/9/2008 12:35:04 PM1/9/2008 12:35:04 PM

Chapter 14

334 Harley Hahn’s Guide to Unix and Linux

the environment fi le, in that order. This means that Bash users must put a special
command in their login fi le to force it to execute the environment fi le. (I’ll show you
how to do this.)
 Moving on, let’s take a look at how the members of the C-Shell family use
initialization fi les:

C-Shell
• Login shell: .cshrc, then .login
• Non-login shell: .cshrc

Tcsh
• Login shell: .tcshrc, then .login
• Non-login shell: .tcshrc

(For backwards compatibility, if the Tcsh can’t fi nd .tcshrc, it will look for .cshrc.)
 This pattern is straightforward, except for one interesting anomaly. In the C-Shell
family, login shells execute the environment fi le fi rst. In the Bourne shell family, login
shells execute the login fi le fi rst. To understand why this is the case, we need to talk a bit
about the history of initialization fi les.

A QUICK HISTORY OF SHELL INITIALIZATION FILES
(In this section, I am going to talk a bit about the history of the shell. For more details,
see Chapter 11.)

 The original Unix shell was written by Ken Thompson and used at Bell Labs in the
early 1970s. This shell did not make use of a standardized initialization fi le. In the mid-
1970s, Bell Labs programmers wrote two new replacement shells: the Mashey shell (also
known as the PMB shell) and the Bourne shell. A programmer named Dick Haight added
support for an initialization fi le (.profile) to the Mashey shell. Later, the same feature
was added to the Bourne shell.
 The .profile fi le was executed only once, when you logged in. In 1987, when Bill
Joy developed the C-Shell at U.C. Berkeley, he enhanced the initialization process by
using two fi les instead of one. The fi rst fi le, .cshrc, ran every time a new shell started.
The second fi le, .login, ran only when a login shell started. Thus, it made sense to
execute .login after .cshrc, as its job was to run only those extra commands that
were necessary at login time.
 In 1982, David Korn of Bell Labs developed another replacement for the Bourne
shell, the Korn shell. Korn adopted Bill Joy’s idea of using two initialization fi les, what
we now call an environment fi le (.cshrc) and a login fi le (.login). Because Korn
worked at Bell Labs, which was a Bourne shell shop, he used the name .profile for
the login shell. When it came time to name the environment fi le, Korn decided to let
the users choose the name for themselves, by setting the ENV variable to the name of
the environment shell. In this way, you could have more than one environment fi le for
different purposes.

33614_14_327_344.indd 33433614_14_327_344.indd 334 1/9/2008 12:35:04 PM1/9/2008 12:35:04 PM

Using the Shell: Initialization Files

335

 However, once he made this decision, Korn had to ensure that the login fi le executed
before the environment fi le. Otherwise, there would be no way for a user to set the
ENV variable.
 That is why, to this day, Bourne family shells run the login fi le fi rst, and the C-Shell
family shells run the environment fi le fi rst. In practice, this is usually not a big deal, but
it is something to remember if you ever have a mysterious initialization problem that
seems insolvable.

WHAT TO PUT IN YOUR INITIALIZATION FILES
We can now consider the questions I posed a while back: What should you put in your
login fi le? What should you put in your environment fi le? Here are the answers.
 Your login fi le has two jobs: to set up your environment and to initialize your
work session. Thus, your login fi le should contain commands to (1) create or modify
environment variables, and (2) perform all one-time actions.
 The login fi le, then, is where you set variables such as PATH, PAGER, and so on, and
use umask to set your fi le creation mask (Chapter 25). If the login fi le is for a remote
host, you may also need to use stty to modify key mappings (Chapter 7). Finally, you
may want to display a personal message or other information each time you log in.
 As we discussed earlier in the chapter, the environment is automatically inherited by
all child processes, including new shells. Thus, you only need to set environment variables
(such as PATH) once, in your login fi le. It makes no sense to set an environment variable
in your environment fi le, where it will be reset every time a new shell starts.
 Your environment fi le has a different job: to set up whatever customizations cannot
be stored in the environment, in particular, shell options, aliases and functions. Because
these settings are not stored in the environment, they must be recreated every time a new
shell starts.

DISPLAYING, CREATING AND EDITING YOUR INITIALIZATION FILES
You may already have one or more initialization fi les. On a shared system, such fi les are
often created by the system administrator. On your own system, they may be generated
automatically at the time your account was created. If you already have such fi les, you can
modify them to suit your needs. If not, you can create the fi les yourself.
 Initialization fi les are kept in your home directory (your personal directory; see
Chapter 23). As we discussed earlier, all initialization fi les are dotfi les, which means their
names start with a . (period). For reference, Figure 14-1, earlier in the chapter, contains
the names of the standard initialization fi les.
 As we discussed earlier, you display the names of all your dotfi les by using the ls -a
command. (Without the -a option, ls won’t show dotfi les.) If the list is too long, you
can send it to less:

ls -a
ls -a | less

Displaying, Creating and Editing Your Initialization Files

33614_14_327_344.indd 33533614_14_327_344.indd 335 1/9/2008 12:35:04 PM1/9/2008 12:35:04 PM

Chapter 14

336 Harley Hahn’s Guide to Unix and Linux

Once you see which initialization fi les you have, you can look at their contents by using
less. One of the following commands should do the job:

less .bash_login
less .bash_logout
less .bash_profile
less .bashrc
less .cshrc
less .kshrc
less .login
less .logout
less .profile
less .tcshrc

To create or modify a dotfi le, you need to use a text editor. If you already know vi or
Emacs, great. If not, you can — for now — use one of the simpler editors we discussed
earlier, kedit or gedit. Because these are GUI-based editors, you must use them from
within a desktop manager. You can’t use them from a virtual terminal or from a CLI
connected to a remote host.
 Starting from your GUI, open a terminal window and enter the name of the editor,
followed by the name of the fi le you want to create or edit. With KDE, use kedit; with
Gnome, use gedit. For example:

kedit .bash_profile
gedit .bash_profile

A new window will open. If the fi le already exists, it will be loaded, allowing you to modify
the contents. If the fi le does not exist, you will have an empty window, allowing you to
create the fi le.

COMMENTS IN SHELL SCRIPTS
The initialization fi les we have been discussing are actually shell scripts: programs that
are written in the language of the shell and executed by the shell. In a moment, we will
take a look at some sample scripts. Before we do, I want to explain an important point
regarding shell scripts and programs in general.
 Take a look at the initialization fi les in Figure 14-3, 14-4, 14-5 and 14-6. Although they are
quite different from one another, you will notice they have one thing in common: many of
the lines begin with a # (hash or pound) character. Such lines are called COMMENTS.
 As a script is executed, the shell ignores all the comments. This allows you to put in notes
to help you remember the logic and understand the script. If you have never programmed
before, you might think comments should not be necessary when you write scripts for your
own use. Surely, when you read a script at a future date, you will remember the logic behind
the various commands. After all, you are the one who wrote the script in the fi rst place.
 The truth is, although your reasoning may be clear right now, when you read a shell
script, or any program, even a few days later, you will have trouble remembering what you

33614_14_327_344.indd 33633614_14_327_344.indd 336 1/9/2008 12:35:05 PM1/9/2008 12:35:05 PM

Using the Shell: Initialization Files

337

were thinking at the time. This is why all experienced programmers put lots of comments
in everything they write.
 Moreover, the time may come when someone else will need to read your scripts. In
such cases, comments are invaluable. My advice is to document what you are doing, as
you are doing it. Pretend that everything you write will have to be understood by another
person. Later, you will be that person and, believe me, you will never be sorry you took
the time to put in comments*.
 Within a shell script, the actual defi nition of a comment is a # character and everything
that follows it to the end of the line. Thus, a comment can take up all or part of a line.
Consider the following example:

Display the time, date, and current users
date; users

The fi rst line is a comment; the second line contains two commands with no comments.
When the shell executes these two lines, it will ignore the comment and run the commands
on the second line. Now consider:

date; users # Display time, date, and current users

In this case, we have a single line, containing two commands followed by a comment.
When the shell executes this line, it will run the date command and users command,
and ignore everything else on the line. Thus, when you write shell scripts, you have two
ways to put in a comment: at the end of a line, or on a line by itself.
 In the following few sections, we will take a closer look at the sample initialization
fi les. As we do, think about how diffi cult it would be to understand these fi les if there
were no comments.

BOURNE SHELL FAMILY: SAMPLE INITIALIZATION FILES
In the next two sections, we will discuss four sample initialization fi les. What you are about
to see will tie together everything you have learned in the last three chapters: interactive
shells, environment variables, shell variables, shell options, metacharacters, quoting, the
search path, command substitution, the history list, command line editing, aliases, and
comments. My intention is for you to adapt these fi les for your own use, making whatever
changes and additions are necessary to serve your needs.

 *When I was a computer science grad student at the University of California at San Diego, I was a teaching assistant for a
course in systems programming, a very technical type of programming. At the same time, there was another teaching assistant
named Peter.
 Although Peter and I got along, there was one point on which we disagreed categorically. I felt we should teach the students
to use lots of comments in their programs. Peter didn’t like comments, and he didn’t teach his students to use them. He said the
comments got in the way of his reading the programs (which we had to grade).
 After graduating, I went on to medical school and became a professional writer. To date, I have written 32 books which have
sold over 2,000,000 copies and been translated into many languages. I live in Southern California with a beautiful, intelligent
woman, in a house with an ocean view. We have loving families and we share wonderful friends and a variety of interests and
accomplishments. Peter, on the other hand, most likely turned out to be a total failure.
 The moral, I think, is obvious.

Bourne Shell Family: Sample Initialization Files

33614_14_327_344.indd 33733614_14_327_344.indd 337 1/9/2008 12:35:05 PM1/9/2008 12:35:05 PM

Chapter 14

338 Harley Hahn’s Guide to Unix and Linux

 In this section, we will discuss initialization fi les that are suitable for a member of the
Bourne shell family (Bash, Korn shell). In the next section, we will discuss initialization
fi les for the C-Shell family. Regardless of which shell you happen to use right now, I’d like
you to take a look at both sections. Over the course of your life with Unix and Linux, you
will fi nd yourself using a variety of systems, and it will help you to be familiar with the
initialization fi les for both shell families.
 Our goal in this section is to take a close look at a sample login fi le and a sample
environment fi le. You will fi nd the login fi le in Figure 14-3. I will remind you that this is
the fi le that is executed automatically each time you log in. With Bash, your login fi le will
be named .bash_profile or .bash_login. With the Korn shell, or Bash in POSIX
mode, it will be .profile.
 The environment fi le is in Figure 14-4. This fi le is executed every time a new shell
starts. With Bash, your environment fi le is named .bashrc. With the Korn shell or Bash
in POSIX mode, you can name the environment fi le anything you want by setting the ENV
variable. My suggestion is to use .kshrc for the Korn shell and .bashrc for Bash.
 With the Bourne shell family, the login fi le is run fi rst, before the environment fi le, so we
will discuss the login fi le fi rst. (With the C-Shell family, the environment fi le is run fi rst.)
 By now, you should understand most of the commands, variables and options used in
the sample fi les. I’ll go over each section for you and, for reference, I’ll tell you the chapter
in which you can fi nd more information should you need it.
 Section 1 of the login fi le defi nes the environment variables. We set the size of the
history list to 50 lines, the default paging program to less, and the default text editor to
vi. We also add a specifi c directory to the end of the search path. (Chapter 12: variables;
Chapter 13: history list, search path; Chapter 17: paging programs.)
 Sections 2A and 2B defi ne the shell prompt by setting the PS1 environment variable.
Section 2A is for Bash; section 2B is for the Korn shell. Use either 2A or 2B, but not both.
(Chapter 12: variables; Chapter 13: shell prompt.)
 Section 3 sets the fi le creation mask to control the default permissions for newly
created fi les (Chapter 25: fi le permissions, umask).
 Section 4 is used only for login fi les on a remote host. You do not need this section
when you are using Unix or Linux on your own computer. The stty command sets
the key mapping for the erase signal. I have given you two possible commands: use
whichever one works best with your keyboard. (Chapter 7: erase signal, stty.)
 Section 5 displays a welcome message. You can change this to whatever you want.
(Chapter 8: date; Chapter 12: echo, command substitution.)
 Section 6 displays interesting information about the system. (Chapter 4: last;
Chapter 8: whoami, users, uptime; Chapter 12: echo, command substitution;
Chapter 15: pipeline; Chapter 16: head.)
 Sections 7A and 7B make sure the environment fi le is run. Section 7A is for Bash.
It checks to see if a fi le named .bashrc exists. If so, it tells the shell to run the fi le.
Section 7B is for the Korn shell. It sets the value of the ENV environment variable to the
name of the environment fi le. Use either 7A or 7B, but not both. (Chapter 12: variables;
Chapter 14: environment fi les.)

33614_14_327_344.indd 33833614_14_327_344.indd 338 1/9/2008 12:35:05 PM1/9/2008 12:35:05 PM

Using the Shell: Initialization Files

339

 Section 8 is for the Korn shell only. By default, the Korn shell does not support a
logout fi le, the fi le that is executed automatically each time you log out. However, you can
simulate a logout fi le by trapping the EXIT signal, which is generated when you log out.

======================================
Bourne Shell family: Sample login fi le
======================================

1. Environment variables
export HISTSIZE=50
export PAGER=less
export PATH="${PATH}:${HOME}/bin"
export VISUAL=vi

2A. Shell prompt - Bash
export PS1="(\w) `basename ${SHELL}`[\!]$ "

2B. Shell prompt - Korn Shell
export PS1="(\$PWD) `basename ${SHELL}`[!]$ "

3. File creation mask
umask 077

4. Terminal settings (for remote host only)
stty erase ^H
stty erase ^?

5. Display welcome message
echo "Welcome Harley."
echo "Today is `date`."
echo

6. System information
echo "Last three logins:"; last `logname` | head -3
echo
echo "Current users: `users`"
echo
echo "System uptime:"; uptime
echo

7A. Environment fi le - Bash
if [-f ${HOME}/.bashrc]
then source ${HOME}/.bashrc
fi

7B. Environment fi le - Korn Shell
export ENV=${HOME}/.kshrc

8. Logout fi le - Korn Shell
trap '. ${HOME}/.logout; exit' EXIT

FIGURE 14-3: Bourne Shell family: Sample login fi le

The login fi le is executed automatically each time you log in. Here is a sample login fi le suitable for
Bash or the Korn shell. Use this fi le as a template and adapt it for your own use. See text for details.

Bourne Shell Family: Sample Initialization Files

33614_14_327_344.indd 33933614_14_327_344.indd 339 1/9/2008 12:35:05 PM1/9/2008 12:35:05 PM

Chapter 14

340 Harley Hahn’s Guide to Unix and Linux

Here, we specify that when the EXIT signal occurs, the fi le named .logout should be
executed. (Chapter 7: trapping a signal; Chapter 14: logout fi les.)
 With the Bourne shell family, the environment fi le is simpler than the login fi le,
because the login fi le does most of the work. All the environment fi le needs to do is re-
create whatever is lost when a new shell is started: shell options, aliases and functions.
Take a look at Figure 14-4, where you will see a sample environment fi le.
 Section 1 sets the shell options. The ignoreeof option requires us to use a
logout or exit command to log out. By trapping the eof signal, we keep ourselves
from logging out accidentally by pressing ^D one too many times. (With Bash, you
can set the IGNOREEOF environment variable instead of using the shell option.) The
second shell option sets Emacs for our command line editor. Strictly speaking, you
don’t need to set this option, as Emacs is the default. However, I like to set it explicitly
as a reminder. Finally, we set the noclobber option to protect us from accidentally
deleting the contents of a fi le when we redirect standard output. (Chapter 7: trapping
the eof signal; Chapter 12: shell options, command line editing; Chapter 15: redirecting
standard output.)
 Section 2 sets the aliases. They include an abbreviation for the alias and date
commands; several variations of the ls command; the del alias to help us avoid deleting
the wrong fi les; and the r and h aliases to help us use the history list. (Chapter 8: date;
Chapter 12: history list, aliases; Chapter 24: ls.)
 Section 3 is reserved for any shell functions we may want to defi ne. A function allows
you to create your own customized commands by writing a small program. Learning to

==
Bourne Shell family: Sample environment fi le
==

1. Shell options
set -o ignoreeof
set -o emacs
set -o noclobber

2. Aliases
alias a=alias
alias d=date
alias del='fc -s ls=rm'
alias h=history
alias l='ls -F'
alias la='ls -a'
alias ll='ls -l'
alias r='fc -s'

#3. Functions
functions go here

FIGURE 14-4: Bourne Shell family: Sample environment fi le

The environment fi le is executed automatically whenever a new shell starts. Here is a sample
environment fi le suitable for Bash or the Korn shell. Use this fi le as a template and adapt it for your
own use. See text for details.

33614_14_327_344.indd 34033614_14_327_344.indd 340 1/9/2008 12:35:05 PM1/9/2008 12:35:05 PM

Using the Shell: Initialization Files

341

write such programs is beyond the scope of this book. However, if you do use functions,
this is the place to defi ne them.

C-SHELL FAMILY: SAMPLE INITIALIZATION FILES
In this section, we will discuss two sample initialization fi les for the C-Shell family (C-Shell
and Tcsh). What you are about to read here will tie together everything you have learned in
the last three chapters. My intention is to explain the contents of these sample fi les so you
can adapt them for your own use by making whatever changes and additions are necessary
to serve your needs.
 We’ll start with the environment fi le in Figure 14-5. I will remind you that this is the fi le
that is executed automatically whenever a new shell starts. With the C-Shell, this fi le is named
.cshrc. With the Tcsh, it can be named either .tcshrc or .cshrc. After discussing the
environment fi le, we will move on to Figure 14-6, which contains a sample login fi le: the fi le
that is executed whenever you log in. With both shells, this fi le is named .login.
 We are starting with the environment fi le because, in the C-Shell family, it is run fi rst,
before the login fi le. (With the Bourne shell family, the login fi le is run fi rst.)

=======================================
C-Shell family: Sample environment fi le
=======================================

1. Shell variables
set fi lec # only necessary for C-Shell
set history = 50
set ignoreeof
set noclobber
set path = (${path} ${HOME}/bin)
set savehist = 30

2A. Shell prompt - C-Shell
set prompt = "($PWD) `basename ${SHELL}` [\!]% "
alias cd 'cd \!* && set prompt = "($PWD) `basename ${SHELL}` [\\!]% "'

2B. Shell prompt - Tcsh
set prompt = "`basename ${SHELL}` [\!]> "
set rprompt = "(%~)"

3. Aliases
alias a alias
alias d date
alias del 'rm \!ls:*'
alias h history
alias l 'ls -F'
alias la 'ls -a'
alias ll 'ls -l'

FIGURE 14-5: C-Shell family: Sample environment fi le

The environment fi le is executed automatically whenever a new shell starts. Here is a sample
environment fi le suitable for the C-Shell or the Tcsh. Use this fi le as a template and adapt it for your
own use. See text for details.

C-Shell Family: Sample Initialization Files

33614_14_327_344.indd 34133614_14_327_344.indd 341 1/9/2008 12:35:05 PM1/9/2008 12:35:05 PM

Chapter 14

342 Harley Hahn’s Guide to Unix and Linux

 By now, you should understand most of the commands, variables and options used in
the sample fi les. I’ll go over each section for you and, for reference, I’ll tell you the chapter
in which you can fi nd more information should you need it.
 The job of the environment fi le is to recreate whatever is lost when a new shell is
started: shell options, the shell prompt, and aliases.
 Section 1 defi nes the shell variables. We set the size of the history list, add a specifi c
directory to the end of the search path, and turn on fi le completion. (With the Tcsh,
fi le completion is turned on by default. With the C-Shell, however, it is not, so if you
want fi lename completion, you must set the filec variable.) We also set ignoreeof
to trap the eof signal. This forces us to use the logout command to log out, which
keeps us from logging out accidentally by pressing ^D one too many times. We also set
noclobber to protect us from accidentally deleting the contents of a fi le when we
redirect standard output. Finally, we set savehist to save the history list when we log
out. (Chapter 7: trapping the eof signal; Chapter 12: variables; Chapter 13: history list,
search path, autocompletion; Chapter 15: redirecting standard output.)

=================================
C-Shell family: sample login fi le
=================================

1. Environment variables
setenv PAGER less
setenv VISUAL vi

2. Command line editor - Tcsh
bindkey -e

3. File creation mask
umask 077

4. Terminal settings (for remote host only)
stty erase ^H
stty erase ^?

5. Display welcome message
echo "Welcome Harley."
echo "Today is `date`."
echo

6. System information
echo "Last three logins:"; last `whoami` | head -3
echo
echo "Current users: `users`"
echo
echo "System uptime:"; uptime
echo

FIGURE 14-6: C-Shell family: Sample login fi le

The login fi le is executed automatically each time you log in. Here is a sample login fi le suitable for the
C-Shell or the Tcsh. Use this fi le as a template and adapt it for your own use. See text for details.

33614_14_327_344.indd 34233614_14_327_344.indd 342 1/9/2008 12:35:05 PM1/9/2008 12:35:05 PM

Using the Shell: Initialization Files

343

 Sections 2A and 2B defi ne the shell prompt by setting the prompt shell variable.
Section 2A is for the C-Shell; section 2B is for the Tcsh. Use either 2A or 2B, but not both.
You will notice that the C-Shell prompt contains the name of the working directory.
Because this quantity is not updated automatically, we defi ne an alias that will reset the
shell prompt whenever we use the cd (change directory) command. This is not necessary
for the Tcsh. With the Tcsh, we set the right-hand prompt (rprompt) to display the
name of the working directory. (Chapter 12: variables; Chapter 13: shell prompt.)
 Section 3 sets the aliases. They include an abbreviation for the alias and date
commands; several variations of the ls command; the del alias to help us avoid deleting
the wrong fi les; and the r and h aliases to help us use the history list. (Chapter 8: date;
Chapter 12: history list, aliases; Chapter 24: ls.)
 With the C-Shell family, the login fi le is simpler than the environment fi le, because the
environment fi le does most of the work. (This is the opposite of the Bourne shell family.)
Take a look at Figure 14-6, where you will see a sample login fi le.
 Section 1 of the login fi le defi nes the environment variables. We set the default paging
program to less and the default text editor to vi. (Chapter 12: variables; Chapter 21:
paging programs.)
 Section 2 sets Emacs for our command line editor. Strictly speaking, you don’t need
to set this option, as Emacs is the default. However, I like to set it explicitly as a reminder.
Since the C-Shell does not support command line editing, we only need this section for
the Tcsh. (Chapter 12: command line editing, bindkey.)
 Section 3 sets the fi le creation mask to control the default permissions for newly
created fi les (Chapter 25: fi le permissions, umask).
 Section 4 is used only for login fi les on a remote host. You do not need this section
when you are using Unix or Linux on your own computer. The stty command sets
the key mapping for the erase signal. I have given you two possible commands. Use
whichever one works best with your keyboard. (Chapter 7: erase signal, stty.)
 Section 5 displays a welcome message. You can change this to whatever you want.
(Chapter 8: date; Chapter 12: echo, command substitution.)
 Section 6 displays interesting information about the system. (Chapter 4: last;
Chapter 8: whoami, users, uptime; Chapter 12: echo, command substitution;
Chapter 15: pipeline; Chapter 16: head.)

C-Shell Family: Sample Initialization Files

33614_14_327_344.indd 34333614_14_327_344.indd 343 1/9/2008 12:35:05 PM1/9/2008 12:35:05 PM

Chapter 14

344 Harley Hahn’s Guide to Unix and Linux

C H A P T E R 1 4 E X E R C I S E S

REVIEW QUESTIONS

1. What is an initialization fi le? Name the two types of initialization fi les. What is a
logout fi le?

2. What is a dotfi le? What is an rc fi le?

3. What is a login shell? What is a non-login shell? Why is the distinction important?

4. You have a list of favorite aliases you like to use, so you decide to put the defi nitions
in one of your initialization fi les. Which fi le will they go in, the login fi le or the
environment fi le? Why? What else goes in this fi le?

APPLYING YOUR KNOWLEDGE

1. Look carefully in your home directory to see if you already have a login fi le and an
environment fi le. (You can use the command ls -a to list your dotfi les.) If so, take
a look at what is inside each fi le. (Either use the less command or open the fi les in
your text editor.)

2. Create (or modify) a login fi le for yourself using the sample fi le in either Figure 14-3
or 14-6 as a template. If you have an existing fi le, save a copy under a different name as
soon as you open it within your text editor, before you make any modifi cations. That
way, if you make a mistake, you will be able to change back to the original version.

3. Create (or modify) an environment fi le for yourself using the sample fi le in either
Figure 14-4 or 14-5 as a template. If you have an existing fi le, make a backup copy as
described in the previous exercise.

4. Create a logout fi le for yourself. If you are not sure what to put in it, use the echo
command to say goodbye to yourself. The name you use for this fi le depends on which
shell you are using (see Figure 14-1). If you are using the Korn shell, you will have to
trap the exit signal (explained in the chapter and in Figure 14-3).

FOR FURTHER THOUGHT

1. The POSIX standard mandates that a shell should support a login fi le and an
environment fi le, but not necessarily a logout fi le. This implies that the logout fi le is
less important than the other two fi les. Why should this be the case?

2. On many systems, when a new account is created the new userid will automatically
be given a default login fi le and, sometimes, a default environment fi le. Why is this a
good idea? Would you advise a new user to modify these fi les or leave them alone?

33614_14_327_344.indd 34433614_14_327_344.indd 344 1/9/2008 12:35:05 PM1/9/2008 12:35:05 PM

345

C H A P T E R 1 5

Standard I/O,
Redirection And Pipes

From the beginning, the Unix command line has always had a certain something that
makes it different from other operating systems. That “something” is what we might call
the Unix toolbox: the large variety of programs that are a part of every Unix and Linux
system, and the simple, elegant ways in which you can use them.
 In this chapter, I will explain the philosophy behind the Unix toolbox. I will then show you
how to combine basic building blocks into powerful tools of your own. In Chapter 16, we will
survey the most important of these programs, to introduce you to the resources available for
your day-to-day work. By the time you fi nish these two chapters, you will be on your way to
developing the most interesting and enjoyable computer skills you will ever use.

THE UNIX PHILOSOPHY
In the 1960s, the Bell Labs researchers who would become the fi rst Unix developers were
working on an operating system called Multics (see Chapter 1). One of the problems
with Multics was that it was too unwieldy. The Multics design team had tried to make
their system do too many things in order to please too many people. When Unix was
designed — at fi rst, in 1969, by only two people — the developers felt strongly that it was
important to avoid the complexity of Multics and other such operating systems.
 Thus, they developed a Spartan attitude in which economy of expression was
paramount. Each program, they reasoned, should be a single tool with, perhaps, a few
basic options. A program should do only one thing, but should do it well. If you needed
to perform a complex task, you should — whenever possible — do so by combining
existing tools, not by writing new programs.
 For example, virtually all Unix programs generate some type of output. When a
program displays a large amount of output, the data may come so fast that most of it will
scroll off the screen before you can read it. One solution is to require that every program
be able to display output one screenful at a time when necessary. This is just the type of
solution that the original Unix developers wanted to avoid. Why should all programs
need to incorporate the same functionality? Couldn’t there be a simpler way to ensure
that output is presented to users in a way that is easy for them to read?

The Unix Philosophy

33614_15_345_372.indd 34533614_15_345_372.indd 345 1/9/2008 12:35:30 PM1/9/2008 12:35:30 PM

Chapter 15

346 Harley Hahn’s Guide to Unix and Linux

 For that matter, why should every program you run have to know where its output was
going? Sometimes you want output to be displayed on the screen; other times you want
to save it in a fi le. There may even be times when you want to send output to another
program for more processing.
 For these reasons, the Unix designers built a single tool whose job was to display data, one
screenful at a time. This tool was called more, because after displaying a screenful of data,
the program displayed the prompt --More-- to let the user know there was more data.
 The tool was simple to use. A user would read one screenful of data and then press
<Space> to display the next screen. When the user was fi nished, he would type q to quit.
 Once more was available, programmers could stop worrying about how the output of
their programs would be displayed. If you were a programmer, you knew that whenever
a user running your program found himself with a lot of output, he would simply send
it to more. (You’ll learn how to do this later in the chapter.) If you were a user, you knew
that, no matter how many programs you might ever use, you only needed to learn how to
use one output display tool.
 This approach has three important advantages, even today. First, when you design a Unix
tool, you can keep it simple. For example, you do not have to endow every new program
with the ability to display data one screenful at a time: there is already a tool to do that.
Similarly, there are also tools to sort output, remove certain columns, delete lines that do
not contain specifi c patterns, and on and on (see Chapter 16). Since these tools are available
to all Unix users, you don’t have to include such functionality in your own programs.
 This leads us to the second advantage. Because each tool need only do one thing, you
can, as a programmer, concentrate your effort. When you are designing, say, a program
to search for specifi c patterns in a data fi le, you can make it the best possible pattern
searching program; when you are designing a sorting program, you can make it the best
possible sorting program; and so on.
 The third advantage is ease of use. As a user, once you learn the commands to control
the standard screen display tool, you know how to control the output for any program.
 Thus, in two sentences, I can summarize the Unix philosophy as follows:

• Each program or command should be a tool that does only one thing and does it well.
• When you need a new tool, it is better to combine existing tools than to write new ones.

We sometimes describe this philosophy as:

• “Small is beautiful” or “Less is more”.

THE NEW UNIX PHILOSOPHY
Since Unix is well into its fourth decade, it makes sense to ask if the Unix philosophy has,
in the long run, proven to be successful. The answer is, yes and no.
 To a large extent, the Unix philosophy is still intact. As you will see in Chapter 16, there
are a great many single-purpose tools, which are easy to combine as the need arises.
 Moreover, because the original Unix developers designed the system so well, programs
that are over 30 years old can, today, work seamlessly with programs that are brand new.
Compare this to the world of Windows or the Macintosh.

33614_15_345_372.indd 34633614_15_345_372.indd 346 1/9/2008 12:35:31 PM1/9/2008 12:35:31 PM

Standard I/O, Redirection and Pipes

347

 However, the original philosophy has proven inadequate in three important ways.
First, too many people could not resist creating alternative versions of the basic tools. This
means that you must sometimes learn how to use more than one tool to do the same job.
 For example, over the years, there have been three screen display programs in common
use: more, pg and less. These days, most people use less, which is the most powerful
(and most complex) of the three programs. However, more is simpler to use, and you will
fi nd it on all systems, so you really should know how to use it. My guess is that, one day,
you will log in to a system that uses more to display output and, if you only know less,
you will be confused. On the other hand, just understanding more is not good enough
because, on many systems, less is the default (and less is a better program). The
bottom line: you need to learn how to use at least two different screen display programs.
 The second way in which the Unix philosophy was inadequate had to do with the
growing needs of users. The idea that small is beautiful has a lot of appeal, but as users
grew more sophisticated and their needs grew more demanding, it became clear that
simple tools were often not enough.
 For instance, the original Unix text editor was ed. (The name, which stands for
“editor”, is pronounced as two separate letters, “ee-dee”). ed was designed to be used with
terminals that printed output on paper. The ed program had relatively few commands;
it was simple to use and could be learned quickly. If you had used Unix in the early days,
you would have found ed to be an unadorned, unpretentious tool: it did one thing (text
editing) and it did it well*.
 As editors go, ed was, at best, mildly sophisticated. Within a few years, however,
terminals were improved and the needs of Unix users became more demanding. To
respond to those needs, programmers developed new editors. In fact, over the years,
literally tens of different text editors were developed.
 For mainstream users, ed was replaced by a program called ex. (The name, which
stands for “extended editor” is pronounced as two separate letters, “ee-ex”.) Then, ex itself
was extended to create vi (“visual editor”, pronounced “vee-eye”). As an alternative to
the ed/ex/vi family, an entirely different editing system called Emacs was developed.
 Today, vi and Emacs are the most popular Unix text editors, but no one would ever
accuse them of being simple and unadorned. Indeed, vi (Chapter 22) and Emacs are
extremely complex.
 The third way in which the original Unix philosophy has proved inadequate has to
do with a basic limitation of the CLI (command line interface). As you know, the CLI is
text-based. This means it cannot handle graphics and pictures, or fi les that do not contain
plain text, such as spreadsheets or word processor documents.
 Most command-line programs read and write text, which is why such programs are
able to work together: they all use the same type of data. However, this means that when
you want to use other types of data — non-textual data — you must use other types of
programs. This is why, as we discussed in Chapters 5 and 6, you must learn how to use
both the CLI and GUI environments.

The New Unix Philosophy

 *The ed editor is still available on all Unix and Linux systems. Give it a try when you get a moment. Start by reading the
man page (man ed).

33614_15_345_372.indd 34733614_15_345_372.indd 347 1/9/2008 12:35:31 PM1/9/2008 12:35:31 PM

Chapter 15

348 Harley Hahn’s Guide to Unix and Linux

 For these reasons, you must approach the learning of Unix carefully. In 1979, when
Unix was only a decade old, the original design was still intact, and you could learn most
everything about all the common commands. Today, there is so much more Unix to learn,
you can’t possibly know it all, or even most of it. This means you must be selective about
which programs and tools you want to learn. Moreover, as you teach yourself how to use
a tool, you must be selective about which options and commands you want to master.
 As you read the next two chapters, there is something important I want you to remember.
By all means, you should work in front of your computer as you read, and enter new
commands as you encounter them. This is how you learn to use Unix. However, I want
you to do more than just memorize details. As you read and as you experiment, I want you
to develop a sense of perspective. Every now and then, take a moment to pull back and ask
yourself, “Where does the tool I am learning right now fi t into the big picture?”
 My goal for you is that, in time, you will come to appreciate what we might call the
new Unix philosophy:
• “Small is beautiful, except when it isn’t.”

STANDARD INPUT, STANDARD OUTPUT AND STANDARD ERROR
If there is one single idea that is central to using Unix effectively, it is the concept of
standard input and output. Understand this one idea, and you are one giant step closer
to becoming a Unix master.
 The basic idea is simple: Every text-based program should be able to accept input from
any source and write output to any target.
 For instance, say you have a program that sorts lines of text. You should have your choice
of typing the text at the keyboard, reading it from an existing fi le, or even using the output
of another program. Similarly, the sort program should be able to display its output on
the screen, write it to a fi le, or send it to another program for more processing.
 Using such a system has two wonderful advantages. First, as a user, you have enormous
fl exibility. When you run a program, you can defi ne the input and output (I/O) as you see
fi t, which means you only have to learn one program for each task. For example, the same
program that sorts a small amount of data and displays it on the screen, can also sort a
large amount of data and save it to a fi le.
 The second advantage to doing I/O in this way is that it makes creating new tools a
lot easier. When you write a program, you can depend on Unix to handle the input and
output for you, which means you don’t need to worry about all the variations. Instead,
you can concentrate on the design and programming of your tool.

HINT

Whenever you learn how to use a new program, do not feel as if you must memorize every
detail. Rather, just answer three questions:

1. What can this program do for me?

2. What are the basic details? That is, what works for most people most of the time?

3. Where can I look for more help when I need it?

hah33614_c15_345_372.indd 348hah33614_c15_345_372.indd 348 5/20/2009 2:20:49 PM5/20/2009 2:20:49 PM

Standard I/O, Redirection and Pipes

349

 The crucial idea here is that the source of input and the target of output are not
specifi ed by the programmer. Rather, he or she writes the program to read and write
in a general way. Later, at the time the program runs, the shell connects the program to
whatever input and output the user wants to use*.
 To implement this idea, the developers of Unix designed a general way to read data called
STANDARD INPUT and two general ways to write data called STANDARD OUTPUT and
STANDARD ERROR. The reason there are two different output targets is that standard
output is used for regular output, and standard error is used for error messages. Collectively,
we refer to these facilities as STANDARD I/O (pronounced “standard eye-oh”).
 In practice, we often speak of these three terms informally as if they were actual objects.
Thus, we might say, “To save the output of a program, write standard output to a fi le.”
What we really mean is, “To save the output of a program, tell the shell to set the output
target to be a fi le.”
 Understanding the concepts of standard input, standard output, and standard error
are crucial to using Unix well. Moreover, these same concepts are also used to control I/O
with other programming languages, such as C and C++.

REDIRECTING STANDARD OUTPUT
When you log in, the shell automatically sets standard input to the keyboard, and standard
output and standard error to the screen. This means that, by default, most programs will
read from the keyboard and write to the screen.
 However — and here’s where the power of Unix comes in — every time you enter
a command, you can tell the shell to reset standard input, standard output or standard
error for the duration of the command.
 In effect, you can tell the shell: “I want to run the sort command and save the output to
a fi le called names. So for this command only, I want you to write standard output to that
fi le. After the command is over, I want you to reset standard output back to my screen.”
 Here is how it works: If you want the output of a command to go to the screen, you
don’t have to do anything. This is automatic.
 If you want the output of a command to go to a fi le, type > (greater-than) followed by
the name of the fi le, at the end of the command. For example:

 *Historically, the idea of using abstract I/O devices was developed to allow programmers to write programs that were
independent of specifi c hardware. Can you see how, philosophically, this idea is related to the layers of abstraction we discussed
in Chapter 5, and to the terminal description databases (Termcap and Terminfo) we discussed in Chapter 7?

HINT

You will often see standard input, standard output, and standard error abbreviated as STDIN,
 STDOUT and STDERR. When we use these abbreviations in conversation, we pronounce them
as “standard in”, “standard out”, and “standard error”.
 For example, if you were creating some documentation, you might write, “The sort
program reads from stdin, and writes to stdout and stderr.” If you were reading this sentence
to an audience, you would pronounce the abbreviations as follows: “The sort program reads
from standard in, and writes to standard out and standard error.”

Redirecting Standard Output

33614_15_345_372.indd 34933614_15_345_372.indd 349 1/9/2008 12:35:31 PM1/9/2008 12:35:31 PM

Chapter 15

350 Harley Hahn’s Guide to Unix and Linux

sort > names

This command will write its output to a fi le called names. The use of a > character is apt,
because it looks like an arrow showing the path of the output.
 When you write output to a fi le in this way, the fi le may or may not already exist. If the
fi le does not exist, the shell will create it for you automatically. In our example, the shell
will create a fi le called names.
 If the fi le already exists, its contents will be replaced, so you must be careful. For
instance, if the fi le names already exists, the original contents will be lost permanently.
 In some cases, this is fi ne, because you do want to replace the contents of the fi le,
perhaps with newer information. In other cases, you may not want to lose what is in
the fi le. Rather, you want to add new data to what is already there. To do so use >>, two
greater-than characters in a row. This tells the shell to append any new data to the end of
an existing fi le. Thus, consider the command:

sort >> names

If the fi le names does not exist, the shell will create it. If it does exist, the new data will
be appended to the end of the fi le. Nothing will be lost.
 When we send standard output to a fi le, we say that we REDIRECT it. Thus, in the
previous two examples, we redirect standard output to a fi le called names.
 Now you can see why there are two types of output: standard output and standard
error. If you redirect the standard output to a fi le, you won’t miss the error messages, as
they will still be displayed on your monitor.
 When you redirect output, it is up to you to be careful, so you do not lose valuable
data. There are two ways to do so. First, every time you redirect output to a fi le, think
carefully: Do you want to replace the current contents of the fi le? If so, use >. Or, would
you rather append new data to the end of the fi le. If that is the case, use >>.
 Second, as a safeguard, you can tell the shell to never replace the contents of an existing
fi le. You do this by setting the noclobber option (Bash, Korn shell) or the noclobber
shell variable (C-Shell, Tcsh). We’ll discuss this in the next section.

PREVENTING FILES FROM BEING REPLACED OR CREATED BY REDIRECTION
In the previous section, I explained that when you redirect standard output to a fi le, any
data that already exists in the fi le will be lost. I also explained that when you use >> to
append output to a fi le, the fi le will be created if it does not already exist.
 There may be times when you do not want the shell to make such assumptions on
your behalf. For example, say you have a fi le called names that contains 5,000 lines of
data. You want to append the output of a sort command to the end of this fi le. In other
words, you want to enter the command:

sort >> names

However, you make a mistake and accidentally enter:

sort > names

33614_15_345_372.indd 35033614_15_345_372.indd 350 1/9/2008 12:35:31 PM1/9/2008 12:35:31 PM

Standard I/O, Redirection and Pipes

351

What happens? All of your original data is wiped out. Moreover, it is wiped out quickly.
Even if you notice the error the moment you press <Return>, and even if you instantly
press ^C to abort the program (by sending the intr signal; see Chapter 7), it is too late.
The data in the fi le is gone forever.
 This is why. As soon as you press <Return>, the shell gets everything ready for the
sort program by deleting the contents of your target fi le. Since the shell is a lot faster
than you, by the time you abort the program the target fi le is already empty.
 To prevent such catastrophes, you can tell the shell not to replace an existing fi le when
you use > to redirect output. In addition, with the C-Shell family, you can also tell the
shell not to create a new fi le when you use >> to append data. This ensures that no fi les
are replaced or created by accident.
 To have the shell take such precautions on your behalf, you use what we might call
the noclobber facility. With the Bourne shell family (Bash, Korn shell), you set the
noclobber shell option:

set -o noclobber

To unset this option, use:

set +o noclobber

With the C-Shell family (C-Shell, Tcsh), you set the noclobber shell variable:

set noclobber

To unset this variable, use:

unset noclobber

(See Chapter 12 for a discussion of options and variables; see Appendix G for a summary.)
 Once noclobber is set, you have built-in protection. For example, let’s say you
already have a fi le called names and you enter:

sort > names

You will see an error message telling you that the fi le names already exists. Here is such
a message from Bash:

bash: names: cannot overwrite existing file

Here is the equivalent message from the Tcsh:

names: File exists.

In both cases, the shell has refused to carry out the command, and your fi le is safe.
 What if you really want to replace the fi le? In such cases, it is possible to override
noclobber temporarily. With a Bourne shell, you use >| instead of >:

sort >| names

With a C-Shell, you use >! instead of >:

Preventing Files From Being Replaced or Created by Redirection

33614_15_345_372.indd 35133614_15_345_372.indd 351 1/9/2008 12:35:31 PM1/9/2008 12:35:31 PM

Chapter 15

352 Harley Hahn’s Guide to Unix and Linux

sort >! names

Using >| or >! instead of > tells the shell to redirect standard output even if the fi le exists.
 As we discussed earlier, you can append data to a fi le by redirecting standard output
with >> instead of >. In both cases, if the output fi le does not exist, the shell will create it.
However, if you are appending data, it would seem likely that you expect the fi le to already
exist. Thus, if you use >> and the fi le does not exist, you are probably making a mistake.
Can noclobber help you here?
 Not with a Bourne shell. If you append data with Bash or the Korn shell and the
noclobber option is set, it’s business as usual. The C-Shell and Tcsh know better. They
will tell you that the fi le does not exist, and refuse to carry out the command.
 For example, say you are a C-Shell or Tcsh user; the noclobber shell variable is set;
and you have a fi le named addresses, to which you want to append data. You enter
the command:

sort >> address

You will see an error message:

address: No such file or directory

At which point you will probably say, “Oh, I should have typed addresses, not
address. Thank you, Mr. C-Shell.”
 Of course, there may be occasions when you are appending data to a fi le, and you
really do want to override noclobber. For example, you are a C-Shell user and, for
safety, you have set noclobber. You want to sort a fi le named input and append the
data to a fi le named output.
 If output doesn’t exist, you want to create it. The importaznt thing is, if output
does exist, you don’t want to lose what is already in it, which is why you are appending
(>>), not replacing (>). If noclobber wasn’t set, you would use:

sort >> output

Since noclobber is set, you must override it. To do so, just use >>! instead of >>:

sort >>! output

This will override the automatic check for this one command only.

REDIRECTING STANDARD INPUT
By default, standard input is set to the keyboard. This means that, when you run a program
that needs to read data, the program expects you to enter the data by typing it, one line at
a time. When you are fi nished entering data, you press ^D (<Ctrl-D>) to send the eof
signal (see Chapter 7). Pressing ^D indicates that there is no more data.
 Here is an example you can try for yourself. Enter:

sort

33614_15_345_372.indd 35233614_15_345_372.indd 352 1/9/2008 12:35:31 PM1/9/2008 12:35:31 PM

Standard I/O, Redirection and Pipes

353

The sort program is now waiting for you to enter data from standard input (the
keyboard). Type as many lines as you want. For example, you might enter:

Harley
Casey
Weedly
Linda
Melissa

After you have pressed <Return> on the last line, press ^D to send the eof signal. The
sort program will now sort all the data alphabetically and write it to standard output.
By default this is the screen, so you will see:

Casey
Harley
Linda
Melissa
Weedly

There will be many times, however, when you want to redirect standard input to read
data from a fi le, rather than from the keyboard. Simply type < (less-than), followed by
the name of the fi le, at the end of the command.
 For example, to sort the data contained in a fi le called names, use the command:

sort < names

As you can see, the < character is a good choice as it looks like an arrow showing the path
of the input.
 Here is an example you can try for yourself. As I mentioned in Chapter 11, the basic
information about each userid is contained in the fi le /etc/passwd. You can display a
sorted version of this fi le by entering the command:

sort < /etc/passwd

As you might imagine, it is possible to redirect both standard input and standard output
at the same time, and this is done frequently. Consider the following example:

sort < rawdata > report

This command reads data from a fi le named rawdata, sorts it, and writes the output to
a fi le called report.

FILE DESCRIPTORS; REDIRECTING STANDARD ERROR
WITH THE BOURNE SHELL FAMILY
Although the following discussion is oriented towards the Bourne shell family, we will be
talking about important ideas regarding Unix I/O. For that reason, I’d like you to read this
entire section, regardless of which shell you happen to be using right now.

File Descriptors; Redirecting Standard Error With The Bourne Shell Family

33614_15_345_372.indd 35333614_15_345_372.indd 353 1/9/2008 12:35:31 PM1/9/2008 12:35:31 PM

Chapter 15

354 Harley Hahn’s Guide to Unix and Linux

 As I explained earlier, the shell provides two different output targets: standard output
and standard error. Standard output is used for regular output; standard error is used for
error messages. By default, both types of output are displayed on the screen. However,
you can separate the two output streams should the need arise.
 If you choose to separate the output streams, you have a lot of fl exibility. For
example, you can redirect standard output to a fi le, where it will be saved. At the same
time, you can leave standard error alone, so you won’t miss any error messages (which
will be displayed on the screen). Alternatively, you can redirect standard output to one
fi le and standard error to another fi le. Or you can redirect both types of output to the
same fi le.
 Alternatively, you can send standard output or standard error (or both) to another
program for further processing. I’ll show you how to do that later in the chapter when we
discuss pipelines.
 The syntax for redirecting standard error is different for the two shell families. We’ll
talk about the Bourne shell family fi rst, and then move on to the C-Shell family. To prepare
you, however, I need to take a moment to explain one aspect of how Unix handles I/O.
 Within a Unix process, every input source and every output target is identifi ed by a
unique number called a FILE DESCRIPTOR. For example, a process might read data
from fi le #8 and write data to fi le #6. When you write programs, you use fi le descriptors
to control the I/O, one for each fi le you want to use.
 Within the Bourne shell family, the offi cial syntax for redirecting input or output is
to use the number of a fi le descriptor followed by < (less-than) or > (greater-than). For
example, let’s say a program named calculate is designed to write output to a fi le
with fi le descriptor 8. You could run the program and redirect its output to a fi le named
results by using the command:

calculate 8> results

By default, Unix provides every process with three pre-defi ned fi le descriptors, and most
of the time that is all you will need. The default fi le descriptors are 0 for standard input,
1 for standard output, and 2 for standard error.
 Thus, within the Bourne shell family, the syntax for redirecting standard input is to
use 0< followed by the name of the input fi le. For example:

command 0< inputfile

where command is a command, and inputfi leis the name of a fi le.
 The syntax for redirecting standard output and standard error are similar. For
standard output:

command 1> outputfile

For standard error:

command 2> errorfile

where command is a command, and outputfi le and errorfi le are the names of fi les.

33614_15_345_372.indd 35433614_15_345_372.indd 354 1/9/2008 12:35:31 PM1/9/2008 12:35:31 PM

Standard I/O, Redirection and Pipes

355

 As a convenience, if you leave out the 0 when you redirect input, the shell assumes you
are referring to standard input. Thus, the following two commands are equivalent:

sort 0< rawdata
sort < rawdata

Similarly, if you leave out the 1 when you redirect output, the shell assumes you are
referring to standard output. Thus, the following two commands are also equivalent:

sort 1> results
sort > results

Of course, you can use more than one redirection in the same command. In the
following examples, the sort command reads its input from a fi le named rawdata,
writes its output to a fi le named results, and writes any error messages to a fi le
named errors:

sort 0< rawdata 1> results 2> errors
sort < rawdata > results 2> errors

Notice that you can leave out the fi le descriptor only for standard input and standard
output. With standard error, you must include the 2. This is shown in the following
simple example, in which standard error is redirected to a fi le named errors:

sort 2> errors

When you redirect standard error, it doesn’t affect standard input or standard output. In
this case, standard input still comes from the keyboard, and standard output still goes to
the monitor.
 As with all redirection, when you write standard error to a fi le that already exists, the
new data will replace the existing contents of the fi le. In our last example, the contents of
the fi le errors would be lost.
 If you want to append new output to the end of a fi le, just use 2>> instead of 2>.
For example:

sort 2>> errors

Redirecting standard error with the C-Shell family is a bit more complicated. Before we
get to it, I need to take a moment to discuss an important facility called subshells. Even
if you don’t use the C-Shell or Tcsh, I want you to read the next section, as subshells are
important for everyone.

SUBSHELLS
TTo understand the concept of a subshell, you need to know a bit about Unix processes. In
Chapter 26, we will discuss the topic in great detail. For now, here is a quick summary.
 A PROCESS is a program that is loaded into memory and ready to run, along with
the program’s data and the information needed to keep track of that program. When a

Subshells

33614_15_345_372.indd 35533614_15_345_372.indd 355 1/9/2008 12:35:32 PM1/9/2008 12:35:32 PM

Chapter 15

356 Harley Hahn’s Guide to Unix and Linux

process needs to start another process, it creates a duplicate process. The original is called
the PARENT; the duplicate is called the CHILD.
 The child starts running and the parent waits for the child to die (that is, to fi nish).
Once the child dies, the parent then wakes up, regains control and starts running again,
at which time the child vanishes.
 To relate this to your minute-to-minute work, think about what happens when you
enter a command. The shell parses the command and fi gures out whether it is an internal
command (one that is built-in to the shell) or an external command (a separate program).
When you enter a builtin command, the shell interprets it directly within its own process.
There is no need to create a new process.
 When you enter an external command, the shell fi nds the appropriate program and
runs it as a new process. When the program terminates, the shell regains control and
waits for you to enter another command. In this case, the shell is the parent, and the
program it runs on your behalf is the child.
 Consider what happens when you start a brand new shell for yourself. For instance, if
you are using Bash and you enter the bash command (or if you are using the C-Shell,
and you enter the csh command, and so on).
 The original shell (the parent) starts a new shell (the child). Whenever a shell starts
another shell, we call the second shell a SUBSHELL. Thus, we can say that, whenever you
start a new shell (by entering bash or ksh or csh or tcsh), you cause a subshell to
be created. Whatever commands you now enter will be interpreted by the subshell. To
end the subshell, you press ^D to send the eof signal (see Chapter 7). At this point, the
parent shell regains control. Now, whatever commands you enter are interpreted by the
original shell.
 When a subshell is created, it inherits the environment of the parent (see Chapter 12).
However, any changes the subshell makes to the environment are not passed back to the
parent. Thus, if a subshell modifi es or creates environment variables, the changes do not
affect the original shell.
 This means that, within a subshell, you can do whatever you want without affecting the
parent shell. This capability is so handy, that Unix gives you two ways to use subshells.
 First, as I mentioned above, you can enter a command to start a brand new shell
explicitly. For example, if you are using Bash, you would enter bash. You can now
do whatever you want without affecting the original shell. For instance, if you were to
change an environment variable or a shell option, the change would disappear as soon
as you entered ^D; that is, the moment that the new shell dies and the original shell
regains control.
 There will be times when you want to run a small group of commands, or even a single
command, in a subshell without having to deal with a whole new shell. Unix has a special
facility for such cases: just enclose the commands in parentheses. That tells the shell to
run the commands in a subshell.
 For example, to run the date command in subshell, you would use:

(date)

33614_15_345_372.indd 35633614_15_345_372.indd 356 1/9/2008 12:35:32 PM1/9/2008 12:35:32 PM

Standard I/O, Redirection and Pipes

357

Of course, there is no reason to run date in a subshell. Here, however, is a more realistic
example using directories.
 In Chapter 24, we will discuss directories, which are used to contain fi les. You can
create as many directories as you want and, as you work, you can move from one directory
to another. At any time, the directory in which you are currently working is called your
working directory.
 Let’s say you have two directories named documents and spreadsheets, and
you are currently working in the documents directory. You want to change to the
spreadsheets directory and run a program named calculate. Before you can
run the program, you need to set the environment variable DATA to the name of a fi le
that contains certain raw data. In this case, the fi le is named statistics. Once the
program has run, you need to restore DATA to its previous value, and change back to
the documents directory. (In other words, you need to reset the environment to its
previous state.)
 One way to do this is start a new shell, then change your working directory, change
the value of DATA, and run the calculate program. Once this is all done, you can exit
the shell by pressing ^D. When the new shell ends and the old shell regains control, your
working directory and the variable DATA will be in their original state.
 Here is what it looks like, assuming you use Bash for your shell. (The cd command,
which we will meet in Chapter 24, changes your working directory. Don’t worry about
the syntax for now.)

bash
cd ../spreadsheets
export DATA=statistics
calculate
^D

Here is an easier way, using parentheses:

(cd ../spreadsheets; export DATA=statistics; calculate)

When you use a subshell in this way, you don’t have to worry about starting or stopping
a new shell. It is done for you automatically. Moreover, within the subshell, you can do
anything you want to the environment without having permanent effects. For example,
you can change your working directory, create or modify environment variables, create
or modify shell variables, change shell options, and so on.
 You will sometimes see the commands within the parentheses called a GROUPING,
especially when you are reading documentation for the C-Shell family. In our example,
for instance, we used a grouping of three commands. The most common reason to use a
grouping and a subshell is to prevent the cd (change directory) command from affecting
the current shell. The general format is:

(cd directory; command)

Subshells

33614_15_345_372.indd 35733614_15_345_372.indd 357 1/9/2008 12:35:32 PM1/9/2008 12:35:32 PM

Chapter 15

358 Harley Hahn’s Guide to Unix and Linux

REDIRECTING STANDARD ERROR WITH THE C-SHELL FAMILY
Within the Bourne shell family, redirecting standard error is straightforward. You use 2>
followed by the name of a fi le. With the C-Shell family (C-Shell, Tcsh), redirecting standard
error is not as simple, because of an interesting limitation, which I’ll get to in a moment.
 With the C-Shell family, the basic syntax for redirecting standard error is:

command >& outputfile

where command is a command, and outputfi le is the name of a fi le.
 For example, if you are using the C-Shell or Tcsh, the following command redirects
standard error to a fi le named output:

sort >& output

If you want to append the output to the end of an existing fi le, use >>& instead of >&. In
the following example, the output is appended to a fi le named output:

sort >>& output

If you have set the noclobber shell variable (explained earlier in the chapter) and you
want to override it temporarily, use >&! instead of >&. For example:

sort >&! output

In this example, the contents of the fi le will be replaced, even if noclobber is set.
 So what is the limitation I mentioned? When you use >& or >$!, the shell redirects
both standard output and standard error. In fact, within the C-Shell family, there is no
simple way to redirect standard error all by itself. Thus, in the last example, both the
standard output and standard error are redirected to a fi le named output.
 It happens that there is a way to redirect standard error separately from standard
output. However, in order to do it, you need to know how to use subshells (explained in
the previous section). The syntax is:

(command > outputfile) >& errorfile

where command is a command, and outputfi le and errorfi le are the names of fi les.
 For example, say you want to use sort with standard output redirected to a fi le named
output, and standard error redirected to a fi le named errors. You would use:

(sort > output) >& errors

In this case, sort runs in a subshell and, within that subshell, standard output is redirected.
Outside the subshell, what is left of the output — standard error — is redirected to a
different fi le. The net effect is to redirect each type of output to its own fi le.
 Of course, if you want, you can append the output by using >> and >>&. For example,
to append standard output to a fi le named output, and append standard error to a fi le
named errors, use a command like the following:

(sort >> output) >>& errors

33614_15_345_372.indd 35833614_15_345_372.indd 358 1/9/2008 12:35:32 PM1/9/2008 12:35:32 PM

Standard I/O, Redirection and Pipes

359

COMBINING STANDARD OUTPUT AND STANDARD ERROR
All shells allow you to redirect standard output and standard error. But what if you want
to redirect both standard output and standard error to the same place?
 With the C-Shell family, this is easy, because when you use >& (replace) or >>&
(append), the shell automatically combines both output streams. For example, in the
following C-Shell commands, both standard output and standard error are redirected to
a fi le named output:

sort >& output
sort >>& output

With the Bourne shell family, the scenario is more complicated. We’ll talk about the
details, and then I’ll show you a shortcut that you can use with Bash.
 The basic idea is to redirect one type of output to a fi le, and then redirect the other
type of output to the same place. The syntax to do so is:

command x> outputfile y>&x

where command is a command, x and y are fi le descriptors, and outputfi le is the name
of a fi le.
 For example, in the following sort command, standard output (fi le descriptor 1) is
redirected to a fi le named output. Then standard error (fi le descriptor 2) is redirected
to the same place as fi le descriptor 1. The overall effect is to send both regular output and
error messages to the same fi le:

sort 1> output 2>&1

Since, fi le descriptor 1 is the default for redirected output, you can leave out the fi rst
instance of the number 1:

sort > output 2>&1

Before we move on, I’d like to talk about an interesting mistake that is easy to make. What
happens if you reverse the order of the redirections?

sort 2>&1 > output

Although this looks almost the same as the example above, it won’t work. Here is why:
 The instruction 2>&1 tells the shell to send the output of fi le descriptor 2 (standard
error) to the same place as the output of fi le descriptor 1 (standard output). However, in
this case, the instruction is given to the shell before standard output is redirected. Thus,
when the shell processes 2>&1, standard output is still being sent to the monitor (by
default). This means that standard error ends up being redirected to the monitor, which
is where it was going in the fi rst place.
 The net result is that standard error goes to the monitor, while standard output goes
to a fi le. (Take a moment to think about this, until it makes sense.)
 To continue, what if you want to redirect both standard output and standard error, but
you want to append the output to a fi le? Just use >> instead of >:

Combining Standard Output and Standard Error

33614_15_345_372.indd 35933614_15_345_372.indd 359 1/9/2008 12:35:32 PM1/9/2008 12:35:32 PM

Chapter 15

360 Harley Hahn’s Guide to Unix and Linux

sort >> output 2>&1

In this case, using >> causes both standard output and standard error to be appended to
the fi le named output.
 You might ask, is it possible to combine both types of output by starting with standard
error? That is, can you redirect standard error to a fi le and then send standard output to
the same place? The answer is yes:

sort 2> output 1>&2
sort 2>> output 1>&2

The commands are different from the earlier examples, but they have the same effect.
 As you can see, the Bourne shell family makes combining two output streams
complicated. Can it not be made simpler? Why not just send both standard output and
standard error to the same fi le directly? For example:

sort > output 2> output

Although this looks as if it might work, it won’t, because, if you redirect to the same fi le
twice in one command, one of the redirections will obliterate the other one.
 And now the shortcut. You can use the above technique with all members of the
Bourne shell family, in particular, with Bash and the Korn shell. With Bash, however,
you can also use either &> or >& (choose the one you like best) to redirect both standard
input and standard error at the same time:

sort &> output
sort >& output

This allows you to avoid having to remember the more complicated pattern. However,
if you want to redirect both standard output and standard error and append the output,
you will need to use the pattern we discussed above:

sort >> output 2>&1

By now, if you are normal, you are probably getting a bit confused. Don’t worry. Everything
we have been discussing in the last few sections is summarized in Figures 15-1 and 15-2
(later in the chapter). My experience is that, with a bit of practice, you’ll fi nd the rules for
redirection easy to remember.

THROWING AWAY OUTPUT
Why would you want to throw away output?
 Occasionally, you will run a program because it performs a specifi c action, but you
don’t really care about the output. Other times, you might want to see the regular output,
but you don’t care about error messages. In the fi rst case, you would throw away standard
output; in the second case, you would throw away standard error.
 To do so, all you have to do is redirect the output and send it to a special fi le named
/dev/null. (The name is pronounced “slash-dev-slash-null”, although you will

33614_15_345_372.indd 36033614_15_345_372.indd 360 1/9/2008 12:35:32 PM1/9/2008 12:35:32 PM

Standard I/O, Redirection and Pipes

361

sometimes hear “dev-null”.) The name /dev/null will make sense after you read
about the Unix fi le system in Chapter 23. The important thing about /dev/null is
that anything you send to it disappears forever*. When Unix people gather, you will
sometimes hear /dev/null referred to, whimsically, as the BIT BUCKET.
 For example, let’s say you have a program named update that reads and modifi es
a large number of data fi les. As it does its work, update displays statistics about what
is happening. If you don’t want to see the statistics, just redirect standard output to
/dev/null:

update > /dev/null

Similarly, if you want to see the regular output, but not any error messages, you can
redirect standard error. With the Bourne shell family (Bash, Korn shell), you would use:

update 2> /dev/null

With the C-Shell family (C-Shell, Tcsh) you would use:

update >& /dev/null

As I explained earlier, the above C-Shell command redirects both standard output and
standard error, effectively throwing away all the output. You can do the same with the
Bourne shell family as follows:

update > /dev/null 2>&1

So what do you do if you are using a C-Shell and you want to throw away the standard
error, but not the standard output? You can use a technique we discussed earlier when we
talked about how to redirect standard error and standard output to different fi les. In that
case, we ran the command in a subshell as follows:

(update > output) >& errors

Doing so allowed us to separate the two output streams. Using the same construction, we
can throw away standard error by redirecting it to the /dev/null. At the same time, we
can preserve the standard output by redirecting it to /dev/tty:

(update > /dev/tty) >& /dev/null

The special fi le /dev/tty represents the terminal. We’ll discuss the details in Chapter 23.
For now, all you need to know is that, when you send output to /dev/tty, it goes to
the monitor. In this way, we can make the C-Shell and Tcsh send standard output to the
monitor while throwing away standard error.**

 *Said a widower during a lull,
 “My late wife was exceedingly dull.
 If I killed her, they’d trail me
 And catch me and jail me,
 So I sent her to /dev/null.”

 **If you are thinking, “We shouldn’t have to go to such trouble to do something so simple,” you are right. This is certainly
a failing of the C-Shell family. Still, it’s cool that we can do it.

Throwing Away Output

33614_15_345_372.indd 36133614_15_345_372.indd 361 1/9/2008 12:35:32 PM1/9/2008 12:35:32 PM

Chapter 15

362 Harley Hahn’s Guide to Unix and Linux

REDIRECTION: SUMMARIES AND EXPERIMENTING
Redirecting standard input, standard output, and standard error is straightforward. The
variations, however, can be confusing. Still, my goal is that you should become familiar
with all the variations — for both shell families — which will take a bit of practice. To
make it easier, I can help you in two ways.
 First, for reference, Figures 15-1 and 15-2 contain summaries of all the redirection
metacharacters. Figure 15-1 is for the Bourne shell family; Figure 15-2 is for the C-Shell
family. Within these summaries you will see all the features we have covered so far. You
will also see a reference to piping. This refers to using the output of one program as the
input to another program, which we discuss in the next section.
 The second bit of help I have for you is in the form of an example you can use to
experiment. In order to experiment with standard output and standard error, you will
need a simple command that generates both regular output as well as an error message.
The best such command I have found is a variation of ls.
 The ls (list) command displays information about fi les, and we will meet it formally
in Chapter 24. With the -l (long) option, ls displays information about fi les.
 The idea is to use ls -l to display information about two fi les, a and b. File a
will exist, but fi le b will not. Thus, we will see two types of output: standard output
will display information about fi le a; standard error will display an error message saying
that fi le b does not exist. You can then use this sample command to practice redirecting
standard output and standard error.
 Before we can start, we must create fi le a. To do that, we use the touch command.
We’ll talk about touch in Chapter 25. For now, all you need to know is that if you use
touch with a fi le that does not exist, it will create an empty fi le with that name. Thus, if
a fi le named a does not exist, you can create one by using:

touch a

We can now use ls to display information about both a (which exists) and b (which
doesn’t exist):

ls -l a b

Here is some typical output:

b: No such file or directory
-rw------- 1 harley staff 0 Jun 17 13:42 a

The fi rst line is standard error. It consists of an error message telling us that fi le b does
not exist. The second line is standard output. It contains the information about fi le a.
(Notice that the fi le name is at the end of the line.) Don’t worry about the details. We’ll
talk about them in Chapter 24.
 We are now ready to use our sample command to experiment. Take a look at Figures
15-1 and 15-2, and choose something to practice. As an example, let’s redirect standard
output to a fi le named output:

33614_15_345_372.indd 36233614_15_345_372.indd 362 1/9/2008 12:35:32 PM1/9/2008 12:35:32 PM

Standard I/O, Redirection and Pipes

363

ls -l a b > output

When you run this command, you will not see standard output, as it has been sent to the
fi le output. However, you will see standard error:

b: No such file or directory

To check the contents of output, use the cat command. (We’ll talk about cat in
Chapter 16.)

cat output

In this case, cat will display the contents of output, the standard output from the
previous command:

-rw------- 1 harley staff 0 Jun 17 13:42 a

Here is one more example. You are using Bash and you want to practice redirecting
standard output and standard error to two different fi les:

ls -l a b > output 2> errors

Since all the output was redirected, you won’t see anything on your screen. To check
standard output, use:

cat output

METACHARACTERS ACTION
< Redirect stdin (same as 0<)

> Redirect stdout (same as 1>)

>| Redirect stdout; force overwrite

>> Append stdout (same as 1>>)

2> Redirect stderr

2>> Append stderr

2&>1 Redirect stderr to stdout

>& or &> Redirect stdout+stderr (Bash only)

| Pipe stdout to another command

2>&1 | Pipe stdout+stderr to another command

FIGURE 15-1: Bourne Shell family: Redirection of standard I/O

Most command-line programs use standard I/O for input and output. Input comes from standard
input (stdin); regular output goes to standard output (stdout); error messages go to standard error
(stderr).

With the Bourne Shell family, you control standard I/O by using fi le descriptors (stdin=0, stdout=1;
stderr=2) with various metacharacters. In cases where there is no ambiguity, you can leave out the fi le
descriptor. To prevent the accidental overwriting of an existing fi le, set the noclobber shell option.
If noclobber is set, you can force overwriting by using >|. See text for details.

Redirection: Summaries and Experimenting

33614_15_345_372.indd 36333614_15_345_372.indd 363 1/9/2008 12:35:32 PM1/9/2008 12:35:32 PM

Chapter 15

364 Harley Hahn’s Guide to Unix and Linux

To check standard error, use:

cat errors

As you are experimenting, you can delete a fi le by using the rm (remove) command. For
example, to delete the fi les output and errors, use:

rm output errors

When you are fi nished experimenting, you can delete the fi le a by using:

rm a

Now that you have a good sample command (ls -l a b) and you know how to display
the contents of a short fi le (cat fi lename), it’s time to practice.
 My suggestion is to create at least one example for each type of output redirection in
Figures 15-1 and 15-2*. Although it will take a while to work through the list, once you
fi nish you will know more about redirection than 99 44/100 percent of the Unix users in
the world.

 *Yes, I want you to practice with at least one shell from each of the two shell families. If you are not sure which shells to
choose, use Bash and the Tcsh.
 If you normally use Bash, try the examples, then enter the tcsh command to start a Tcsh shell, then try the examples
again. If you normally use the Tcsh, use that shell fi rst, and then enter the bash command to start a Bash shell.
 Regardless of which shell you happen to use right now, you never know what the future will bring. I want you to understand
the basic shell concepts — environment variables, shell variables, options, and redirection — for any shell you may be called
upon to use.

METACHARACTERS ACTION
< Redirect stdin

> Redirect stdout

>! Redirect stdout; force overwrite

>& Redirect stdout+stderr

>&! Redirect stdout+stderr; force overwrite

>> Append stdout

>>! Append stdout; force fi le creation

>>& Append stdout+stderr

>>&! Append stdout+stderr; force fi le creation

| Pipe stdout to another command

|& Pipe stdout+stderr to another command

FIGURE 15-2: C-Shell family: Redirection of standard I/O

With the C-Shell family, you control standard I/O by using various metacharacters. To prevent the
accidental overwriting of an existing fi le or the creation of a new fi le, set the noclobber shell
variable. If noclobber is set, you can force overwriting or fi le creation by using a ! character. Note
that, unlike the bourne shell family (Figure 15-1), there is no simple way to redirect stderr without also
redirecting stdout. See text for details.

33614_15_345_372.indd 36433614_15_345_372.indd 364 1/9/2008 12:35:32 PM1/9/2008 12:35:32 PM

Standard I/O, Redirection and Pipes

365

PIPELINES
Earlier in the chapter, when we discussed the Unix philosophy, I explained that one goal
of the early Unix developers was to build small tools, each of which would do one thing
well. Their intention was that, when a user was faced with a problem that could not be
solved by one tool, he or she would be able to put together a set of tools to do the job.
 For example, let’s say you work for the government and you have three large fi les that
contain information about all the smart people in the country. Within each fi le, there is
one line of information per person, including that person’s name. Your problem is to fi nd
out how many such people are named Harley.
 If you were to give this problem to an experienced Unix person, he would know exactly
what to do. First, he would use the cat (catenate) command to combine the fi les. Then
he would use the grep command to extract all the lines that contain the word Harley.
Finally, he will use the wc (word count) command with the -l (line count) option, to
count the number of lines.
 Let’s take a look at how we might put together such a solution based on what
we have discussed so far. We will use redirection to store the intermediate results in
temporary fi les, which we delete when the work is done. Skipping lightly over the
details of how these commands work (we will discuss them later in the book), here are
the commands to do the job. To help you understand what is happening, I have added
a few comments:

cat file1 file2 file3 > tempfile1 # combine files
grep Harley < tempfile1 > tempfile2 # extract lines
wc -l < tempfile2 # count lines
rm tempfile1 tempfile2 # delete temp files

HINT

To experiment with redirection, we used a variation of the ls command:

ls -l a b > output
ls -l a b > output 2> errors

To make your experiments easier, you can create an alias with a simple name for this command
(see Chapter 13). With a Bourne shell (Bash, Korn shell), you might use:

alias x='ls -l a b'

With a C-Shell (C-Shell, Tcsh):

alias x 'ls -l a b'

Once you have such an alias, your test commands become a lot simpler:

x > output
x > output 2> errors
x >& output

This is a technique worth remembering.

Pipelines

33614_15_345_372.indd 36533614_15_345_372.indd 365 1/9/2008 12:35:32 PM1/9/2008 12:35:32 PM

Chapter 15

366 Harley Hahn’s Guide to Unix and Linux

Take a look at this carefully. Before we move on, make sure that you understand how,
by redirecting standard output and standard input, we are able to pass data from one
program to another by saving it in temporary fi les.
 The sequence of commands used above will work. However, there is a drawback: the glue
that holds everything together — redirection using temporary fi les — makes the solution
diffi cult to understand. Moreover, too much complexity makes it easy to make a mistake.
 In order to make such solutions simpler, the shell allows you to create a sequence of
commands such that the standard output from one program is sent automatically to
the standard input of the next program. When you do so, the connection between two
programs is called a PIPE, and the sequence itself is called a PIPELINE.
 To create a pipeline, you type the commands you want to use separated by the
| (vertical bar) character (the pipe symbol). As an example, the previous set of four
commands can be replaced by a single pipeline:

cat file1 file2 file3 | grep Harley | wc -l

To understand a pipeline, you read the command line from left to right. Each time you see
a pipe symbol, you imagine the standard output of one program becoming the standard
input of the next program.
 The reason pipelines are so simple is that the shell takes care of all the details, so you
don’t have to use temporary fi les. In our example, the shell automatically connects the
standard output of cat to the standard input of grep, and the standard output of grep
to the standard input of wc.
 With the Bourne shell family, you can combine standard output and standard error
and send them both to another program. The syntax is:

command1 2>&1 | command2

where command1 and command2 are commands.
 In the following example, both standard output and standard error of the ls command
are sent to the sort command:

ls -l file1 file2 2>&1 | sort

With the C-Shell family, the syntax is:

command1 |& command2

For example:

ls -l file1 file2 |& sort

When we talk about pipelines, we often use the word PIPE as a verb, to refer to the sending
of data from one program to another. For instance, in the fi rst example, we piped the
output of cat to grep, and we piped the output of grep to wc. In the second example,
we piped standard output and standard error of ls to sort.
 When you think about an example such as the ones above, it’s easy to imagine an image
of a pipeline: data goes in one end and comes out the other end. However, a better metaphor

33614_15_345_372.indd 36633614_15_345_372.indd 366 1/9/2008 12:35:33 PM1/9/2008 12:35:33 PM

Standard I/O, Redirection and Pipes

367

is to think of an assembly line. The raw data goes in at one end. It is then processed by one
program after another until it emerges, in fi nished form, at the other end.
 When you create a pipeline, you must use programs that are written to read text from
standard input and write text to standard output. We call such programs “fi lters”, and
there are many of them. We will talk about the most important fi lters in Chapters 16-19.
If you are a programmer, you can create your own tools by writing fi lters of your own.
 In practice, you will fi nd that most of your pipelines use only two or three commands
in a row. By far, the most common use for a pipeline is to pipe the output of some
command to less (see Chapter 21), in order to display the output of the command one
screenful at a time. For example, to display a calendar for 2008, you can use:

cal 2008 | less

(The cal program is explained in Chapter 8.)
 One of the basic skills in mastering the art of Unix is learning when and how to solve a
problem by combining programs into a pipeline. When you create a pipeline, you can use
as many fi lters as you need, and you will sometimes see pipelines consisting of fi ve or six or
more programs put together in an ingenious manner. Indeed, when it comes to constructing
pipelines, you are limited only by your intelligence and your knowledge of fi lters*.

SPLITTING A PIPELINE: tee
There may be times when you want the output of a program to go to two places at once.
For example, you may want to send output to both a fi le and to another program at the
same time. To show you what I mean, consider the following example:

cat names1 names2 names3 | grep Harley

The purpose of this pipeline is to display all the lines in the fi les names1, names2
and names3 that contain the word “Harley”. (The details: cat combines the three fi les;

 *This should give no cause for concern. After you read Chapters 16-19, you will understand how to use the most important
fi lters. Moreover, as one of my readers, you are obviously of above average intelligence.

HINT

When you use a command that uses a pipe or that redirects standard I/O, it is not necessary
to put spaces around the <, > or | characters. However, it is a good idea to use such spaces. For
example, instead of:

ls -l a b >output 2>errors
cat f1 f2 f3|grep Harley|wc -l

It is better to use:

ls -l a b > output 2> errors
cat f1 f2 f3 | grep Harley | wc -l

Using spaces in this way minimizes the chances of a typing error and makes your commands
easier to understand. This is especially important when you are writing shell scripts.

Splitting a Pipeline: tee

33614_15_345_372.indd 36733614_15_345_372.indd 367 1/9/2008 12:35:33 PM1/9/2008 12:35:33 PM

Chapter 15

368 Harley Hahn’s Guide to Unix and Linux

grep extracts all the lines that contain the characters “Harley”. These two commands are
discussed in Chapters 16 and 19 respectively.)
 Let’s say you want to save a copy of the combined fi les. In other words, you want to
send the output of cat to a fi le and you want to send it to grep at the same time.
 To do so, you use the tee command. The purpose of tee is to read data from standard
input and send a copy of it to both standard output and to a fi le. The syntax is:

tee [-a] file...

where fi le is the name of the fi le where you want to send the data.
 Normally, you would use tee with a single fi le name, for example:

cat names1 names2 names3 | tee masterlist | grep Harley

In this example, the output of cat is saved in a fi le called masterlist. At the same
time, the output is also piped to grep.
 When you use tee, you can save more than one copy of the output by specifying
more than one fi le name. For example, in the following pipeline, tee copies the output
of cat to two fi les, d1 and d2:

cat names1 names2 names3 | tee d1 d2 | grep Harley

If the fi le you name in a tee command does not exist, tee will create it for you. However,
you must be careful, because if the fi le already exists, tee will overwrite it and the original
contents will be lost.
 If you want tee to append data to the end of a fi le instead of replacing the fi le, use the
-a (append) option . For example:

cat names1 names2 names3 | tee -a backup | grep Harley

This command saves the output of cat to a fi le named backup. If backup already
exists, nothing will be lost because the output will be appended to the end of the fi le.
 The tee command is especially handy at the end of a pipeline when you want to look
at the output of a command and save it to a fi le at the same time. For example, let’s say
you want to use the who command (Chapter 8) to display information about the userids
that are currently logged in to your system. However, you not only want to display the
information, you also want to save it to a fi le status. One way to do the job is by using
two separate commands:

who
who > status

However, by using tee, you can do it all at once:

who | tee status

Pay particular attention to this pattern: I want you to remember it:

command | tee file

33614_15_345_372.indd 36833614_15_345_372.indd 368 1/9/2008 12:35:33 PM1/9/2008 12:35:33 PM

Standard I/O, Redirection and Pipes

369

Notice that you don’t have to use another program after tee. This is because tee sends
its output to standard output which, by default, is the screen.
 In our example, tee reads the output of who from standard input and writes it to
both the fi le status and to the screen. If you fi nd that the output is too long, you can
pipe it to less to display it one screenful at a time:

who | tee status | less

THE IMPORTANCE OF PIPELINES
On October 11, 1964, Doug McIlroy, a Bell Labs researcher wrote a 10-page internal
memo in which he offered a number of suggestions and ideas. The last page of the memo
contained a summary of his thoughts. It begins:

“To put my strongest concerns into a nutshell:

“We should have some ways of connecting programs like [a] garden hose — screw in
another segment when it becomes necessary to massage data in another way...”

In retrospect, we can see that McIlroy was saying that it should be easy to put together
programs to solve whatever problem might be at hand. As important as the idea was, it
did not bear fruit until well over half a decade later.
 By the early 1970s, the original Unix project was well underway at Bell Labs (see
Chapter 2). At the time, McIlroy was a manager in the research department in which
Unix was born. He was making important contributions to a variety of research areas,
including some aspects of Unix. For example, it was McIlroy who demanded that Unix
manual pages be short and accurate.
 McIlroy had been promoting his ideas regarding the fl ow of input and output for some
time. It wasn’t until 1972, however, that Ken Thompson (see Chapter 2) fi nally added
pipelines to Unix. In order to add the pipe facility, Thompson was forced to modify most
of the existing programs to change the source of input from fi les to standard input.
 Once this was done and a suitable notation was devised, pipelines became an integral
part of Unix, and users became more creative than anyone had expected. According to
McIlroy, the morning after the changes were made, “...we had this orgy of one liners.
Everybody had a one liner. Look at this, look at that...”

WHAT’S IN A NAME?

tee
In the world of plumbing, a “tee” connector joins two pipes in a straight line, while providing
for an additional outlet that diverts water at a right angle. For example, you can use a tee to
allow water to fl ow from left to right, as well as downwards. The actual connector looks like
an uppercase “T”.

 When you use the Unix tee command, you can imagine data fl owing from left to right as it
moves from one program to another. At the same time, a copy of the data is sent down the stem
of the “tee” into a fi le.

The Importance of Pipelines

33614_15_345_372.indd 36933614_15_345_372.indd 369 1/9/2008 12:35:33 PM1/9/2008 12:35:33 PM

Chapter 15

370 Harley Hahn’s Guide to Unix and Linux

 In fact, the implementation of pipelines was the catalyst that gave rise to the Unix
philosophy. As McIlroy remembers, “...Everybody started putting forth the Unix philosophy.
Write programs that do one thing and do it well. Write programs to work together. Write
programs that handle text streams, because that is a universal interface...”
 Today, well over thirty years later, the Unix pipe facility is basically the same as it was
in 1972: a remarkable achievement. Indeed, it is pipelines and standard I/O that, in large
part, make the Unix command line interface so powerful. For this reason, I encourage
you to take the time to learn how to use pipelines well and to practice integrating them
into your day-to-day work whenever you get the chance.
 To help you start your journey on the Unix version of the yellow-brick road, I have
devoted Chapters 16-19 to fi lters, the raw materials out of which you can fashion ingenious
solutions to practical problems.
 Before we move on to talk about fi lters, however, there is one last topic I want to cover:
conditional execution.

CONDITIONAL EXECUTION
There will be times when you will want to execute a command only if a previous command
has fi nished successfully. To do so, use the syntax:

command1 && command2

At other times, you will want to execute a command only if a previous command has not
fi nished successfully. The syntax in this case is:

command1 || command2

This idea — executing a command only if a previous command has succeeded or failed
— is called CONDITIONAL EXECUTION.
 Conditional execution is mostly used within shell scripts. However, from time to time,
it can come in handy when you are entering commands. Here are some examples.
 Let’s say you have a fi le named people that contains information about various
people. You want to sort the contents of people and save the output to a fi le named
contacts. However, you only want to do so if people contains the name “Harley”
somewhere in the fi le.
 To start, how can we see if a fi le contains the name “Harley”? We use the grep command
(see Chapter 19) to display all the lines in the fi le that contain “Harley”. The command is:

grep Harley people

If grep is successful, it will display the lines that contain “Harley” on standard output.
If grep fails, it will remain silent. In our case, if grep is successful, we then want to run
the command:

sort people > contacts

If grep is unsuccessful, we don’t want to do anything.
 Here is a command line that uses conditional execution to do the job:

33614_15_345_372.indd 37033614_15_345_372.indd 370 1/9/2008 12:35:33 PM1/9/2008 12:35:33 PM

Standard I/O, Redirection and Pipes

371

grep Harley people && sort people > contacts

Although this command line works, it leaves us with a tiny problem. If grep fi nds any
lines in the fi le that meet our criteria, it will display them on the screen. Most of the time
this would make sense but, in this case, we don’t really want to see any output. All we want
to do is run grep and test whether or not it was successful.
 The solution is to throw away the output of grep by redirecting it to /dev/null:

grep Harley people > /dev/null && sort people > contacts

Occasionally, you will want to execute a command only if a previous command fails. For
example, suppose you want to run a program named update that works on its own for
several minutes doing something or other. If update fi nishes successfully, all is well.
If not, you would like to know about it. The following command displays a warning
message, but only if update fails:

update || echo "The update program failed."

C H A P T E R 1 5 E X E R C I S E S

REVIEW QUESTIONS

1. Summarize the Unix philosophy.

2. In Chapter 10, I gave you three questions to ask yourself each time you learn the
syntax for a new program: What does the command do? How do I use the options?
How do I use the arguments? Similarly, what are the three questions you should ask
(and answer) whenever you start to learn a new program?

3. Collectively, the term “standard I/O” refers to standard input, standard output, and
standard error. Defi ne these three terms. What are their abbreviations? What does it
mean to redirect standard I/O? Show how to redirect all three types of standard I/O.

4. What is a pipeline? What metacharacter do you use to separate the components of a
pipeline? What program would you use at the end of a pipeline to display output one
screenful at a time?

5. What program do you use to save a copy of data as it passes through a pipeline?

HINT

If you ever need to abort a pipeline that is running, just press ^C to send the intr
signal (see Chapter 7).
 This is a good way to regain control when one of the programs in the pipeline has
stopped, because it is waiting for input.

Chapter 15 Exercises

33614_15_345_372.indd 37133614_15_345_372.indd 371 1/9/2008 12:35:33 PM1/9/2008 12:35:33 PM

Chapter 15

372 Harley Hahn’s Guide to Unix and Linux

APPLYING YOUR KNOWLEDGE

1. Show how to redirect the standard output of the date command to a fi le named
currentdate.

2. The following pipeline counts the number of userids that are currently logged into
the system. (The wc -w command counts words; see Chapter 18.)

 users | wc -w

 Without changing the output of the pipeline, modify the command to save a copy of
the output of users to a fi le named userlist.

3. The password fi le (/etc/passwd) contains one line for each userid registered with
the system. Create a single pipeline to sort the lines of the password fi le, save them to
a fi le called userids, and then display the number of userids on the system.

4. In the following pipeline, the find command (explained in Chapter 25) searches all
the directories under /etc looking for fi les owned by userid root. The names of
all such fi les are then written to standard output, one per line. The output of find is
piped to wc -l to count the lines:

 find /etc -type f -user root -print | wc -l

 As find does its work, it will generate various error messages you don’t want to see.
Your goal is to rewrite the pipeline to throw away the error messages without affecting
the rest of the output. Show how to do this for the Bourne Shell family. For extra
credit, see if you can devise a way to do it for the C-Shell family. (Hint: Use a subshell
within a subshell.)

FOR FURTHER THOUGHT

1. An important part of the Unix philosophy is that, when you need a new tool, it is
better to combine existing tools than to write new ones. What happens when you try
to apply this guideline to GUI-based tools. Is that good or bad?

2. With the Bourne shell family, it is simple to redirect standard output and standard
error separately. This makes it easy to save or discard error messages selectively. With
the C-Shell family, separating the two types of output is much more complex. How
important is this? The C-Shell was designed by Bill Joy, a brilliant programmer in his
day. Why do you think he created such a complicated system?

3. As a general rule, the world of computers changes quickly. Why do you think so many
of the basic Unix design principles work so well even though they were created over
30 years ago?

33614_15_345_372.indd 37233614_15_345_372.indd 372 1/9/2008 12:35:33 PM1/9/2008 12:35:33 PM

C H A P T E R 1 6

Filters:
Introduction and Basic Operations

373

In Chapter 15, we discussed how the Unix philosophy led to the development of many
programs, each of which was a tool designed to do one thing well. We also talked about
how to redirect input and output, and how to create pipelines in which data is passed
from one program to the next.
 In the next four chapters (16, 17, 18 and 19), we will continue the discussion by
taking a look at a number of very useful Unix programs called “fi lters”. (I’ll give you
the exact defi nition soon.) Using these programs with the techniques we discussed
in Chapter 15, you will be able to build fl exible, customized solutions to solve a wide
variety of problems.
 We’ll start our discussion by talking about some general topics to help you understand
the importance of fi lters and how they are used. We will then move on to discuss the most
important Unix fi lters. Although some of the fi lters are related, they are independent
tools that do not have to be learned in a particular order. If you want to learn about one
specifi c fi lter, you can jump right to that section. However, if you have the time, I’d prefer
that you read all four chapters in order, from beginning to end, as I will be developing
various important ideas along the way. If you want to see a list of the fi lters before we
start, take a look at Figure 16-1, which you will fi nd later in this chapter.
 In Chapter 20, we will discuss a very important facility called regular expressions,
which are used to specify patterns. Regular expressions can increase the power of
fi lters signifi cantly, so you should consider the next four chapters and Chapter 20 as
being complementary.

VARIATIONS OF COMMANDS AND OPTIONS
The purpose of Chapters 16, 17, 18 and 19 is to discuss the basic Unix fi lters. All of these
programs are available with most versions of Unix and Linux. If one of the programs is
not available on your system, it may be because the program is not installed by default
and you need to install a particular package. For example, with some Linux distributions,
you won’t be able to use the strings program (Chapter 19), unless you have installed
the binutils (binary fi le utilities) package.

Variations of Commands and Options

33614_16_373_394.indd 37333614_16_373_394.indd 373 1/9/2008 12:35:59 PM1/9/2008 12:35:59 PM

Chapter 16

374 Harley Hahn’s Guide to Unix and Linux

 As you know , the details of a particular program can vary from one system to another.
In this chapter, I will describe the GNU version of each command. Since Linux and
FreeBSD use the GNU utilities (see Chapter 2), if you are a Linux or FreeBSD user,
what you read in these four chapters should work unchanged on your system. If you use
another type of Unix, there may be differences, but they will be small.
 For example, later in this chapter, I will discuss three options you can use with the cat
command. If you use Linux or FreeBSD, these options will work exactly as I show you. If
you use Solaris, one of the options (-s) has a different meaning.
 As we discuss each fi lter, I will introduce you to the most important options for that
program. You should understand that most programs will have other options we will not
discuss. In fact, almost all the GNU utilities have a lot of options, many more than you
will normally need.
 As you read this chapter, please remember that, whenever you want to learn about
a program, you can read the defi nitive documentation for your system by using the man
command to access the online manual and, if you are using the GNU utilities, the info
command to access the Info system. (This is all explained in Chapter 9.) In particular, you can
use the man command to display a list of all the options available with a specifi c command.
For example, to learn about the cat command (discussed in this chapter), you can use:

man cat
info cat

Before we start, let me mention two more points that apply to the GNU utilities (used
with Linux and FreeBSD). First, as we discussed in Chapter 10, most of the GNU utilities
have two types of options. There are short options, consisting of a dash (hyphen) followed
by a single character, and long options consisting of two dashes followed by a word. In
Chapter 10, we called these the “dash” and “dash-dash” options, because that is how most
people talk about them.
 As a general rule, the most important options are the short ones. In most cases, the long
options are either synonyms for shorter options or more esoteric options you probably
won’t need. For this reason, in this book, I generally only talk about the short options.
 However, there is one long option you should remember. With the GNU utilities, most
commands recognize an option named --help. You can use this option to display the
syntax for almost any command, including a summary of the command’s options. For
example, to display the syntax and the options for the cat command, you can use:

cat --help

FILTERS
In Chapter 15, you saw how a series of programs can be used in sequence to create a
pipeline, almost like an assembly line. Consider, for example, the following command, in
which data passes through four programs in sequence: cat, grep, sort and less.

cat new old extra | grep Harley | sort | less

33614_16_373_394.indd 37433614_16_373_394.indd 374 1/9/2008 12:36:00 PM1/9/2008 12:36:00 PM

Filters: Introduction and Basic Operations

375

In this pipeline, we combine three fi les named new, old and extra (using cat),
extract all the lines that contain Harley (using grep), and then sort these results (using
sort). We then use less to display the fi nal output one screenful at a time.
 Don’t worry about the details of how to use cat, grep and sort. We’ll talk about all
that later. For now, all I want is for you to appreciate how useful a program can be if it is
designed so that it can be used within a pipeline.
 We call such programs fi lters. For example, cat, grep and sort are all fi lters. Such
programs read data, perform some operation on the data, and then write the results.
More precisely, a FILTER is any program that reads and writes textual data, one line at a
time, reading from standard input and writing to standard output. As a general rule, most
fi lters are designed as tools, to do one thing well.
 Interestingly enough, the fi rst and last programs in a pipeline do not have to be fi lters.
In our example, for instance, we use less to display the output of sort. We will discuss
less in detail in Chapter 21. For now, I’ll tell you that when less displays output, it
allows you to look at all the data one screenful at a time, scroll backwards and forwards,
search for a specifi c pattern, and so on. Clearly, less does not write to standard output
one line at a time, which means it is not a fi lter.
 Similarly, the fi rst command in this particular pipeline, cat (which combines fi les),
does not read from the standard input. Although cat can be used as a fi lter, in this
situation it reads its input from fi les, not from standard input. Thus, in our example, cat
is not a fi lter.

SHOULD YOU CREATE YOUR OWN FILTERS?
If you are a programmer, it is not hard to make your own fi lters. All you have to do is
write a program or shell script that reads and writes textual data, one line at a time, using
standard I/O. Any program that does this is a fi lter and, hence, can be used in a pipeline.
 Before you run off to design your own programs, however, let me remind you that
every Unix and Linux system comes with hundreds of programs, many of which are
fi lters. Indeed, over the last thirty-fi ve years, some of the smartest programmers in history
have been creating and perfecting Unix fi lters.
 This means that, if you think of a great idea for a new fi lter, chances are someone else
had the same idea a long time ago and the fi lter already exists. In fact, most of the tools
we will discuss in this chapter are over thirty years old! Thus, when you have a problem, it
behooves you to fi nd out what is already available, before you take the time to write your
own program. That is why I spent so much time teaching you about the online manual
and the Info system (Chapter 9), as well as the man, whatis, apropos and info
commands (also Chapter 9).

Should You Create Your Own Filters?

HINT

When you fi nd yourself creating a specifi c pipeline to use over and over, you can defi ne it
permanently by creating an alias in your environment fi le. (See Chapter 14.) This will allow you
to use the pipeline whenever you want, without having to type it every time.

33614_16_373_394.indd 37533614_16_373_394.indd 375 1/9/2008 12:36:00 PM1/9/2008 12:36:00 PM

Chapter 16

376 Harley Hahn’s Guide to Unix and Linux

 The art of using Unix well does not necessarily lie in being able to write programs
to create new tools, although that certainly is handy. For most people, using Unix well
means being able to solve problems by putting together tools that already exist.

THE PROBLEM SOLVING PROCESS
If you watch an experienced Unix person use fi lters to build a pipeline, the technique
looks mysterious. Out of nowhere, it seems, he or she will know exactly which fi lters to
use, and exactly how to combine them in just the right way. Eventually, you will be able
to do the same. All it takes is knowledge and practice. At fi rst, however, it helps to break
down the process into a series of steps, so let’s take a moment to do just that.
 Your goal is to fi gure out how to solve the problem at hand by combining a number of
fi lters into a single pipeline. If necessary, you can use more than one command line, or even
a simple shell script containing a list of commands. However, the smartest Unix people
solve most of their problems with a single command line, so start with that as your goal.
 Right now, there isn’t a lot you can do until you actually learn how to use some of the
Unix fi lters. So as you read this section, think of it as general-advice-that-will-eventually-
make-sense-to-you. What I am about to explain is a roadmap that shows you where you
will be going. Concentrate on the general ideas and, later, when you get stuck, you can
unstick yourself by coming back and reading this section again.
 So: you have a problem you want to solve using fi lters and a pipeline. How do you go
about doing so? Here are the steps.

1. Frame the problem.

Start by thinking. Find a quiet place, close your eyes, and think about how you can break
your problem into parts, each of which can be carried out by a separate program. At this
point, you don’t need to know which tools you will be using to perform the various tasks.
All you need to do is think.
 When experienced Unix people think about a problem, they turn it over in their mind,
looking at it from different points of view, until they fi nd something that looks like it
might work. Then they look for the tools to do the job. Then they experiment, to see
how it works. If you watch them work, you will notice they never get frustrated. (Take a
moment to think about that.)

2. Choose your tools.

There are hundreds of Unix programs — many of which are fi lters — and, to use Unix
well, you need to know which programs are the best for whatever problem you happen
to encounter. This, of course, sounds impossible. How can you memorize the function of
hundreds of programs, let alone the details?
 Actually, you will fi nd that most Unix problems can be solved by selecting fi lters from a
relatively small toolbox of around thirty programs. Over the years, these are the programs
that have proven to be the most versatile and the most useful, and these are the programs
we will be discussing in the next four chapters. For reference, Figure 16-1 (later in this
chapter) contains a list of these important fi lters.

33614_16_373_394.indd 37633614_16_373_394.indd 376 1/9/2008 12:36:00 PM1/9/2008 12:36:00 PM

Filters: Introduction and Basic Operations

377

3. Talk to other people.

Once you have thought about how to frame your problem and you have an idea what
tools you might use, look for people you can ask for suggestions. It’s true that you should
read the manual before you ask for help (see Chapter 9) but, traditionally, Unix has
always been taught by word of mouth. To mature as a Unix person, you must see how
other, more experienced people solve problems.

4. Select options.

Once you have studied your problem and chosen your tools, you should take a few
moments to look at the documentation in the online manual (Chapter 9). Do this for
each program you are thinking of using. Your goal is to check out the options, looking for
the ones that are relevant to what you are trying to do.
 It will always be the case that you can safely ignore most options. However, it is always
a good idea to at least skim the description of the options in case there is one you need for
this particular problem. Otherwise, you run the risk of doing a lot of extra work because
you didn’t know that a particular option was available. The smartest, most knowledgeable
people I know check the online manual several times a day.

THE SIMPLEST POSSIBLE FILTER: cat
A fi lter reads from standard input one line at a time, does something, and then writes the
results to standard output one line at a time. What would be the simplest possible fi lter?
The one that does nothing at all.
 The name of this fi lter is cat (you will see why in a moment), and all it does is copy
data from standard input to standard output, without doing anything special or changing
the data in any way.
 Here is a simple example you can perform for yourself. Enter the command:

cat

The cat program will start and wait for data from standard input. Since, by default,
standard input is the keyboard, cat is waiting for you to type something.
 Type whatever you want. At the end of each line, press the <Return> key. Each time
you press <Return>, the line you have just typed is sent to cat, which will copy it to the
standard output, by default, your screen. The result is that each line you type is displayed
twice, once when you type it, and once by cat. For example:

this is line 1
this is line 1

HINT

When it comes to solving problems using redirection, fi lters and pipelines, the three most
important skills are thinking, RTFMing*, and asking other people for their opinions.

 *RTFM is explained in the glossary and in Chapter 9.

The Simplest Possible Filter: cat

33614_16_373_394.indd 37733614_16_373_394.indd 377 1/9/2008 12:36:00 PM1/9/2008 12:36:00 PM

Chapter 16

378 Harley Hahn’s Guide to Unix and Linux

this is line 2
this is line 2

When you are fi nished, press ^D (<Ctrl-D>), the eof key. This tells Unix that there is no
more input (see Chapter 7). The cat command will end, and you will be returned to a
shell prompt.
 By now, you are probably asking, what use is a fi lter that does nothing? Actually, there
are several uses and they are all important.
 Since cat doesn’t do anything, there is no point using it within a pipeline. (Take a
moment to think about this until it makes sense.) However, cat can be handy all by
itself when you combine it with I/O redirection. It can also be useful at the beginning of
a pipeline when you need to combine more than one fi le. Here are some examples.
 The fi rst use of cat is to combine it with redirection to create a small fi le quickly.
Consider the following command:

cat > data

The standard input (by default) is the keyboard, but the standard output has been
redirected to a fi le named data. Thus, every line that you type is copied directly to this
fi le as soon as you press the <Return> key. You can type as many lines as you want and,
when you are fi nished, you can tell cat there is no more data by pressing ^D.
 If the fi le data does not already exist, Unix will create it for you. If the fi le does exist,
its contents will be replaced. In this way, you can use cat to create a new fi le, or replace
the contents of an existing fi le. Experienced users do this a lot, when all they want to do
is create or replace a small fi le.
 The reason I say a “small fi le” is that the moment you press <Return>, the line you just
typed is copied to standard output. If you want to change the line, you have to stop cat,
restart it, and type everything all over again.
 I fi nd that using cat in this way is a great way to create or replace a small fi le quickly,
say 4-5 lines at most. Using cat is faster (and more fun) than starting a text editor, such
as vi or Emacs, typing the text, and then stopping the text editor. Of course, it is easy
to make mistakes so, if I want to type more than 5 lines, I’ll use an editor, which lets me
make changes as I type.
 The second use for cat is to append a small number of lines to an existing fi le. To do
this, you use >> to redirect the standard output, for example:

cat >> data

Now, whatever you type is appended to the fi le data. (As I explained in Chapter 15,
when you redirect output with >>, the shell appends the output.)
 The third use for cat is to display a short fi le. Simply redirect the standard input to
the fi le you want to display. For example:

cat < data

In this case, the input comes from the fi le data, and the output goes to the screen (by
default). In other words, you have just displayed the fi le data. Of course, if the fi le is

33614_16_373_394.indd 37833614_16_373_394.indd 378 1/9/2008 12:36:00 PM1/9/2008 12:36:00 PM

Filters: Introduction and Basic Operations

379

longer than the size of your screen, some of the lines will scroll off the screen before you
can read it. In such cases, you would not use cat to display the fi le; you would use less
(Chapter 21) to display the fi le one screenful at a time.
 The fourth use for cat is to display the last part of any fi le. Let’s say you use the previous
command to display the fi le named data. If data is a short fi le that will fi t on the screen,
all is well. However, if data is longer than the size of the monitor, all but the last part will
scroll off the screen. Usually, this will happen fast and all you will be left with is the last part
of the fi le — as much as will fi t on your screen — which is exactly what you want.
 If you’d like to try this for yourself, you can use cat to display one of the confi guration
fi les I discussed in Chapter 6. For example, try this command:

cat < /etc/profile

Notice how, when you display a long fi le, cat leaves you looking at the last part of it.
 As a convenience, if you leave out the < character, cat will read directly from the
fi le. (We’ll talk about this in the next section.) So, if you want to experiment with the
confi guration fi les from Chapter 6, the commands to use are:

cat /boot/grub/menu.lst
cat /etc/hosts
cat /etc/inittab
cat /etc/passwd
cat /etc/profile
cat /etc/samba/smb.conf

(Notes: 1. If you are not using Linux, your system may not have all of these fi les. 2. On
most systems, you will need to be superuser to display the menu.lst fi le.)
 As you experiment with these commands, you will see that, if the fi le is short, cat will
show it all to you quickly. If the fi le is long, most of the fi le will scroll by so quickly you
won’t be able to read it. What you will see, as we discussed, is the last part of the fi le (as
much as will fi t on your screen).
 Later in the chapter, we will meet another program, called tail, which can be used to
display the end of a fi le quickly. Much of the time, tail works better than cat. However,
in some cases, cat is actually a better choice. This is because tail displays the number of
lines you specify, with 10 being the default; cat shows you as many lines as will fi t on your
screen. To see what I mean, try using tail on some of the fi les listed above. For example:

tail /etc/profile

Moving on, the fi fth use of cat is to copy a fi le by redirecting both the standard input
and output. For example, to copy the fi le data to another fi le named newdata, enter:

cat < data > newdata

Of course, Unix has a better command to use for copying fi les. It’s called cp, and we’ll
talk about it in Chapter 25. However, it is interesting to know that cat can do the job if
it needs to.

The Simplest Possible Filter: cat

33614_16_373_394.indd 37933614_16_373_394.indd 379 1/9/2008 12:36:01 PM1/9/2008 12:36:01 PM

Chapter 16

380 Harley Hahn’s Guide to Unix and Linux

 There is even more that cat can do, which we’ll get to in the next section. Before we
do, let’s take a moment to refl ect on something truly remarkable. We started with the
simplest possible fi lter, cat, a fi lter that — by defi nition — does nothing. However, by
using cat with I/O redirection, we were able to make it sit up and perform a variety of
tricks. (This is all summarized in Figure 16-2, later in the chapter.)
 Putting cat through its paces in this way provides us with a good example of the
elegance of Unix. What seems like a simple concept — that data should fl ow from
standard input to standard output — turns out to bear fruit in so many unexpected ways.
Look how much we can do with a fi lter that does nothing. Imagine what is yet to come!

INCREASING THE POWER OF FILTERS
By making one signifi cant change to a fi lter, it is possible to increase its usefulness enormously.
The enhancement is to be able to specify the names of one or more input fi les.
 As you know, the strict defi nition of a fi lter requires it to read its data from the standard
input. If you want to read data from a fi le, you must redirect the standard input from that
fi le, for example:

cat < data

However, what if we also had the option of reading from a fi le whose name we could
specify as an argument? For example:

cat data

This is indeed the case with cat, and the last two commands are equivalent. Thus, to
display a short fi le quickly, all you need to do is type cat followed by the name of a fi le,
such as in the last example. Experienced Unix users often use cat in this way, as a quick
way to display a short fi le. (For longer fi les, you would use less; see Chapter 21.)
 At fi rst, such a small change — leaving out the < character — seems insignifi cant,
but this is not the case. It is true that we have made the command line simpler, which
is convenient, but there is a price to pay. The cat program itself must now be more
complex. It not only must be able to read from the standard input, it must also be able to
read from any fi le. Moreover, by extending the power of cat, we have lost some of the
beauty and simplicity of a pure fi lter.
 Nevertheless, many fi lters are extended in just this way, not because it makes it easy
to read from one fi le, but because it makes it possible to read from multiple fi les. For
example, here is an abbreviated version of the syntax for the cat command:

cat [file...]

where fi le is the name of a fi le from which cat will read its input.

HINT

Part of the charm of Unix is, all of a sudden, having a great insight and saying to
yourself, “So that’s why they did it that way.”

33614_16_373_394.indd 38033614_16_373_394.indd 380 1/9/2008 12:36:01 PM1/9/2008 12:36:01 PM

Filters: Introduction and Basic Operations

381

 Notice the three dots after the fi le argument. This means that you can specify more
than one fi le name. (See Chapter 10 for an explanation of command syntax.)
 Thus — and here is the important point — in extending the power of cat to
read from any fi le, we have also allowed it to read from more than one fi le. When we
specify more than one fi le for input, cat will read all the data from each of the fi les in
turn. As it reads, it will write each line of text, in the order it was encountered, to the
standard output. This means we can use cat to combine the contents of as many fi les
as we want.
 This is a very important concept, so take a moment to consider the following
examples carefully:

cat name address phone
cat name address phone > info
cat name address phone | sort

The fi rst example combines the contents of multiple fi les (name, address and phone)
and displays it on your screen; the second example combines the same fi les and writes
the data to another fi le (info); the third example pipes the data to a program (sort)
for further processing.
 As I mentioned, many other fi lters, not just cat, can also read input from multiple
fi les. Technically, this is not necessary. If we want to operate on data from more than one
fi le, we can collect the data with cat and then pipe it to whichever fi lter we want. For
example, let’s say we wanted to combine the data from three fi les and then sort it. There
is no need for sort to be able to read from multiple fi les. All we need to do is combine
the data using cat, and then pipe it to sort:

cat name address phone | sort

This is appealing in one sense. By extending cat to read from fi les as well as standard
input, we have lost some of the elegance of the overall design. However, by using cat to
feed other fi lters, we can at least retain the purity of the other fi lters.
 However, as in many aspects of life, utility has won out over beauty and purity. It is
just too much trouble to combine fi les with cat every time we want to send such data to
a fi lter. Thus, most fi lters allow us to specify multiple fi le names as arguments.
 For example, the following three commands all sort the data from more than one
fi le. The fi rst command displays the output on your screen; the second command saves
the output to a fi le; the third command pipes the output to another program for further
processing. (Don’t worry about the details for now.)

sort name address phone
sort name address phone > info
sort name address phone | grep Harley

At this point, I’d like you to consider the following philosophical question. By defi nition,
a fi lter must read its data from standard input. Does this mean that a program that can
read its data from a fi le is not really a fi lter?

Increasing the Power of Filters

33614_16_373_394.indd 38133614_16_373_394.indd 381 1/9/2008 12:36:01 PM1/9/2008 12:36:01 PM

Chapter 16

382 Harley Hahn’s Guide to Unix and Linux

 There are two possible answers, both of which are acceptable. First, we can decide that
when a program like cat or sort reads from standard input, it is acting like a fi lter, but
when it reads from a fi le, it is not acting as a fi lter. This approach maintains the purity of
the system. However, it also means that a great many programs may or may not be fi lters,
depending on how they are used.
 Alternatively, we can broaden the defi nition of a fi lter to allow it to read from either
standard input or from a fi le. This defi nition is practical, but it sacrifi ces some of the
beauty of the original design.

A LIST OF THE MOST USEFUL FILTERS
At this point, we have discussed the basic ideas related to fi lters. In the rest of the chapter —
and in Chapters 17, 18 and 19 — I will discuss a variety of different fi lters, one after another.
As a preview, Figure 16-1 shows a list of what I consider to be the most useful Unix fi lters.
 Regardless of which type of Unix or Linux you are using, you will fi nd that most of
what you read in these four chapters will work on your system. This is because the basic
details of the fi lters we will be covering are the same from one system to another. Indeed,
most of these fi lters have worked the same way for over thirty years!
 Before we continue, though, let me remind you that, at any time, you can check the
defi nitive reference for how a program works on your system by using the man command
to display the man page for that program. If you are using the GNU utilities — which is
the case with Linux and FreeBSD — (see Chapter 2) you can use the info command to
access the Info system. For example:

man cat
info cat

With most of the GNU utilities, you can display the syntax of a command and a summary
of its options by using the --help option. For example:

cat --help

For a discussion of how to use man and info, see Chapter 9. For a discussion of syntax,
see Chapter 10.

COMBINING FILES: cat

Related fi lters: rev, split, tac

 The cat program copies data, unchanged, to the standard output. The data can come
from the standard input or from one or more fi les. The syntax is:

cat [-bns] [file...]

where fi le is the name of a fi le.
 We have already covered several ways in which you can use the cat program. However,
by far, the most important use for cat is to combine multiple fi les. Here are some typical
examples that combine three fi les. Of course, you can use as many fi les as you want.

33614_16_373_394.indd 38233614_16_373_394.indd 382 1/9/2008 12:36:01 PM1/9/2008 12:36:01 PM

Filters: Introduction and Basic Operations

383

FILTER CHAPTER SEE ALSO PURPOSE
awk — perl Programming language: manipulate text

cat 16 split, tac, rev Combine fi les; copy standard input to standard output

colrm 16 cut, join, paste Delete specifi ed columns of data

comm 17 cmp, diff, sdiff Compare two sorted fi les, show differences

cmp 17 comm, diff, sdiff Compare two fi les

cut 17 colrm, join, paste Extract specifi ed columns/fi elds of data

diff 17 cmp, comm, sdiff Compare two fi les, show differences

expand 18 unexpand Change tabs to spaces

fold 18 fmt, pr Format long lines into shorter lines

fmt 18 fold, pr Format paragraphs to make them look nice

grep 19 look, strings Select lines containing a specifi ed pattern

head 16 tail Select lines from beginning of data

join 19 colrm, cut, paste Combine columns of data, based on common fi elds

look 19 grep Select lines that begin with a specifi ed pattern

nl 18 wc Create line numbers

paste 17 colrm, cut, join Combine columns of data

perl — awk Prog. language: manipulate text, fi les, processes

pr 18 fold , fmt Format text into pages or columns

rev 16 cat, tac Reverse order of characters in each line of data

sdiff 17 cmp, comm , diff Compare two fi les, show differences

sed 19 tr Non-interactive text editing

sort 19 tsort, uniq Sort data; check if data is sorted

split 16 cat Split a large fi le into smaller fi les

strings 19 grep Search for character strings in binary fi les

tac 16 cat, rev Combine fi les while reversing order of lines of text

tail 16 head Select lines from end of data

tr 19 sed Change or delete selected characters

tsort 19 sort Create a total ordering from partial orderings

unexpand 18 expand Change spaces to tabs

uniq 19 sort Select duplicate/unique lines

wc 18 nl Count lines, words and characters

FIGURE 16-1: The Most Useful Unix Filters

This table shows the most important Unix fi lters, most of which are over thirty years old. You can solve
many different types of problems using the fi lters from this list. Most often, you will need only a single
fi lter; you will rarely need more than four.

awk and perl are complex programming languages you can use to write programs to act as fi lters
within a pipeline. For more information, start with the online manual (man awk, man perl), and
then look on the Web, where you will fi nd a great deal of information.

Combining Files: cat

33614_16_373_394.indd 38333614_16_373_394.indd 383 1/9/2008 12:36:01 PM1/9/2008 12:36:01 PM

Chapter 16

384 Harley Hahn’s Guide to Unix and Linux

cat name address phone
cat name address phone > info
cat name address phone | sort

These patterns are worth memorizing, as you will use them a lot. For reference, they are
summarized in Figure 16-2.
 In the fi rst example, cat reads and combines the contents of three fi les (in this case,
name, address and phone), and displays the output on your screen. Normally, you
would only use such a command if the fi les were so short that the combined output would
not scroll off the screen. More likely, you would pipe the output to less (Chapter 21) to
display the output one screenful at a time. For example:

cat name address phone | less

The second example combines the same three fi les, but redirects standard output to
another fi le (in this case, info). If the fi le does not exist, the shell will create it. If the fi le
does exist, it will be replaced, which means that the data originally in the fi le will be lost
forever. (See Chapter 15 for a discussion of redirection and fi le replacement.)
 The third example combines the same fi les and pipes the output to another program
for further processing, in this case, sort (Chapter 19).
 When you use cat to combine, there is a common mistake you must be sure to avoid:
do not redirect output to one of the input fi les. For example, say you want to append the
contents of address and phone to the fi le name. You might think, all you have to do
is combine all three fi les and save the result in name:

cat name address phone > name

SYNTAX PURPOSE

cat > fi le Read from keyboard, create new fi le or replace existing fi le

cat >> fi le Read from keyboard, append to existing fi le

cat < fi le Display an existing fi le

cat fi le Display an existing fi le

cat < fi le1 > fi le2 Copy a fi le

cat fi le1 fi le2 fi le3 | less Combine multiple fi les, display one screenful at a time

cat fi le1 fi le2 fi le3 > fi le4 Combine multiple fi les, save output in a different fi le

cat fi le1 fi le2 fi le3 | program Combine multiple fi les, pipe output to another program

FIGURE 16-2: The Many Uses of the cat Program

The cat program is the simplest possible fi lter. It reads from standard input and writes to standard
output without modifying the data. In spite of its simplicity, cat can perform a surprising number of
tasks, which are summarized in the table. The power of such a simple fi lter comes from the richness of
the Unix I/O redirection and pipeline capabilities.

Most of the time, cat is used to combine fi les, either to be displayed (by piping the output to less), to
be saved in another fi le (by redirecting standard output to that fi le), or to be piped to another program
for further processing. See text for details.

33614_16_373_394.indd 38433614_16_373_394.indd 384 1/9/2008 12:36:01 PM1/9/2008 12:36:01 PM

Filters: Introduction and Basic Operations

385

This will not work, because of the way the shell handles redirection. Before a program
can redirect standard output to a fi le, the shell must make sure that the fi le exists and is
empty. In this case, if name does not exist, the shell will create it. If name does exist, the
shell will empty it. In our example, by the time cat is ready to read from name, the fi le
is already empty.
 When you enter a command like the one above, you will see a message similar to:

cat: name: input file is output file

It looks like a warning message but, actually, it is already too late. Even pressing ^C (to
abort the command) won’t do any good. By the time you see this message, the contents
of name have been deleted.
 The safe way to append the contents of address and phone to the fi le name is to use:

cat address phone >> name

Notice we do not use our output fi le as an input fi le. Rather, we append the contents of
all the other fi les to the output fi le.
 To conclude our discussion of cat, here are the most useful options:

• The -n (number) option will place a line number in front of each line.

• The -b (blank) option is used with -n and tells cat not to number blank lines.

• The -s (squeeze) option replaces more than one consecutive blank line with a single
blank line.

SPLITTING FILES: split

Related fi lters : cat

 We have just discussed how to use cat to combine two or more fi les into one large
fi le. What if you want to do the opposite: split a large fi le into smaller fi les? To do so, you
use the split program. The syntax is:

split [-d] [-a num] [-l lines] [file [prefix]]

where num is the number of characters or digits to use as a suffi x when creating fi le
names; lines is the maximum number of lines for each new fi le; fi le is the name of an
input fi le; and prefi x is a name to use when creating fi le names.

WHAT’S IN A NAME?

cat
The main use of the cat program is to combine the contents of multiple fi les into a single
output stream. For this reason, it would be natural to assume that cat stands for “concatenate”.
Actually, this is not the case.
 The name cat comes from the archaic word “catenate”, which means “to join in a chain”. As
all classically educated Unix users know, catena is the Latin word for chain.

Splitting Files: split

33614_16_373_394.indd 38533614_16_373_394.indd 385 1/9/2008 12:36:01 PM1/9/2008 12:36:01 PM

Chapter 16

386 Harley Hahn’s Guide to Unix and Linux

 The split program was developed in the early 1970s, when large text fi les could
create problems. In those days disk storage was limited and processors were slow.* Today,
large hard disks are ubiquitous, and computers are extremely fast. As a result, we rarely
have problems storing and manipulating large text fi les. Still, there will be times when
you will want to break a large fi le into pieces and, when you do, split can save you a
lot of time. For example, you may want to email a very large fi le to someone whose email
account has a limit on the size of received messages.
 By default, split creates fi les that are 1,000 lines long. For example, say that you
have a fi le named data with 57,984 lines, which you want to break into smaller fi les. You
would use the command:

split data

This creates 58 new fi les: 57 fi les containing 1,000 lines each, and 1 last fi le containing the
remaining 984 lines.
 If you want to change the maximum size of the fi les, use the -l (lines) option. For
example, to split the fi le data (with 57,984 lines) into fi les containing 5,000 lines, you
would use:

split -l 5000 data

This command creates 12 new fi les: 11 fi les containing 5,000 lines (55,000 lines in all),
and 1 last fi le containing 2,984 lines (the remainder).

 By now you are probably wondering, what are the names of all these new fi les? If
split is going to create fi les automatically, it should use names that make sense.
However, it must also be careful not to replace any of your existing fi les accidentally.
 By default, split uses names that start with the letter x, followed by a 2-character
suffi x. The suffi xes are aa, ab, ac, ad, and so on. For instance, in the last example, where
split created 12 new fi les, the names (by default) would be:

HINT

When you use options that require large numbers, you do not type a comma (or, in Europe, a
period) to break the number into groups of three. For example, you would use:

split -l 5000 data

You would not use:

split -l 5,000 data

If you do use a comma, it will cause a syntax mistake and you will get an error message such as:

split: 5,000: invalid number of lines

 *In 1976, when I was a fi rst-year graduate student working with Unix, I wrote a C program to mathematically manipulate
the data in a fi le that, by today’s standards, was relatively small. At the time, however, the fi le was considered large, and the
computer did not have nearly enough memory to hold all the data. As a result, my program had to be very complex, as it had
to be able to process data in small pieces, which were swapped in and out of memory as necessary.

33614_16_373_394.indd 38633614_16_373_394.indd 386 1/9/2008 12:36:01 PM1/9/2008 12:36:01 PM

Filters: Introduction and Basic Operations

387

xaa xab xac xad xae xaf xag xah xai xaj xak xal

If split requires more than 26 fi les, the names after xaz are xba, xbb, xbc, and so
on. Since there are 26 letters in the alphabet, this allows for up to 676 (26x26) new fi le
names, xaa through xzz.
 If you don’t like these names, there are two ways to change them. First, if you use the
-d (digits) option, split uses 2-digit numbers starting with 00 at the end of the fi le
name, rather than a 2-letter suffi x. For example, the following command uses the same
fi le data (containing 57,984 lines) we used above:

split -d -l 5000 data

The 12 new fi les are named:

x00 x01 x02 x03 x04 x05 x06 x07 x08 x09 x10 x1l

If you don’t want your fi le names to start with x, you can specify your own name to be
used as a prefi x, for example:

split -d -l 5000 data harley

The new fi les are named:

harley00 harley01 harley02 harley03 harley04 harley05
harley06 harley07 harley08 harley09 harley10 harley11

When you use split with the -d option, you can create up to 100 fi les (10x10), using
the suffi xes 00 to 99. Without -d, you can create up to 676 fi les (26x26), using the
suffi xes aa to zz. If you need more fi les, you can use the -a option followed by the
number of digits or characters you want in the suffi x. For example:

split -d -a 3 data

The new fi le names will use 3-digit suffi xes:

x000 x001 x002 x003...

Similarly, you can use -a without the -d option:

split -a 3 data

In this case, the new fi le names use 3-letter suffi xes:

xaaa xaab xaac xaad...

In this way, you can use split to break up very large input fi les without running out
of fi le names.
 By default, split creates 1,000-line fi les. However, as I mentioned, you can create
any size fi les you want, even small ones. Here is a typical, everyday example I am sure you
can relate to.

Splitting Files: split

33614_16_373_394.indd 38733614_16_373_394.indd 387 1/9/2008 12:36:01 PM1/9/2008 12:36:01 PM

Chapter 16

388 Harley Hahn’s Guide to Unix and Linux

 You are working for a powerful U.S. senator who is running for President of the United
States. It is two weeks before the election and the campaign is suffering. The senator is
desperate and, because you know Unix, you are promoted to be the new Chief of Staff.
 Your fi rst day on the job, you are given a very large text fi le, named supporters, in
which each line contains the name and phone number of a potential voter. Your job is to
organize volunteers around the country to call all the people on the list and urge them to
vote for your candidate. You decide there is only enough time for each volunteer to call
40 people. You log into your Unix system and enter the command:

split -d -l 40 supporters voter

You now have a set of fi les, named voter00, voter01, voter02, and so on. Each of
these fi les (except, possibly, the last one) contains exactly 40 names. You order your staff to
email each volunteer one fi le, along with instructions to call all 40 names on his or her list.
 Because of your hard work and superior Unix skills, your candidate is elected. Within
a week, you are appointed to a position of great power and infl uence.

COMBINING FILES WHILE REVERSING LINES: tac

Related fi lters : cat, rev

 As we have discussed, cat is the most basic of all the fi lters, as well as one of the most
useful fi lters. The tac program is similar to cat with one major difference: tac reverses
the order of the lines of text before writing them to standard output. (The name tac is
cat spelled backwards.)
 The syntax for tac is:

tac [file...]

Like cat, tac reads from standard input and writes to standard output, and tac can
combine input fi les. For instance, you have a fi le named log. You want to reverse the
order of all the lines in log and write the results to a new fi le named reverse-log.
The command to use is:

tac log > reverse-log

For example, let’s say log contains:

Oct 01: event 1 took place
Oct 02: event 2 took place
Oct 03: event 3 took place
Oct 04: event 4 took place

After running the tac command above, reverse-log would contain:

Oct 04: event 4 took place
Oct 03: event 3 took place
Oct 02: event 2 took place
Oct 01: event 1 took place

33614_16_373_394.indd 38833614_16_373_394.indd 388 1/9/2008 12:36:01 PM1/9/2008 12:36:01 PM

Filters: Introduction and Basic Operations

389

At this point, you might be wondering if tac is nothing more than a curiosity. Perhaps it
was written simply because someone thought the name was cute (being cat backwards).
However, would you ever actually need this program?
 The answer is you don’t need tac all that often. However, when you do need it, it is
invaluable. For example, say you have a program that writes notes to a log fi le (a common
occurrence). The oldest notes will be at the beginning of the fi le; the newest notes will be
at the end of the fi le. The fi le, which is named log, is now 5,000 lines long, and you want
to display the notes from newest to oldest.
 Without tac, there is no simple way to display the lines of a long fi le in reverse
order. With tac, it’s easy. Just use tac to reverse the lines and pipe the output to
less (Chapter 21):

tac log | less

If you need to combine fi les, you can do that as well, for example:

tac log1 log2 log3 | less

This command reverses the lines in three fi les, combines them, and then pipes the
output to less.

REVERSING THE ORDER OF CHARACTERS: rev

Related fi lters : cat, tac

 The tac program reverses the lines within a fi le, but what if you want to reverse the
characters within each line? In such cases, you use rev. The syntax is rev:

rev [file...]

where fi le is the name of a fi le.
 Here is an example. You have a fi le named data that contains:

12345
abcde
AxAxA

You enter:

rev data

The output is:

54321
edcba
AxAxA

Suppose you want to reverse the order of the characters in each line and reverse the lines
in the fi le. Just pipe the output of rev to tac, for example:

Reversing the Order of Characters: rev

33614_16_373_394.indd 38933614_16_373_394.indd 389 1/9/2008 12:36:02 PM1/9/2008 12:36:02 PM

Chapter 16

390 Harley Hahn’s Guide to Unix and Linux

rev data | tac

The output is:

AxAxA
edcba
54321

What do you think would happen if you used tac fi rst?

tac data | rev

To complete this section, let’s consider one more example. You have a fi le named
pattern that contains the following 4 lines:

 X
 XX
 XXX
XXXX

Consider the output from the following four commands (the $ is the shell prompt):

$cat pattern
 X
 XX
 XXX
XXXX

$tac pattern
XXXX
 XXX
 XX
 X

$rev pattern
X
XX
XXX
XXXX

$rev pattern | tac
XXXX
XXX
XX
X

Does it all make sense to you?

33614_16_373_394.indd 39033614_16_373_394.indd 390 1/9/2008 12:36:02 PM1/9/2008 12:36:02 PM

Filters: Introduction and Basic Operations

391

SELECT LINES FROM THE BEGINNING OR END OF DATA: head, tail
When you have more data than you can understand easily, there are two programs that
allow you to select part of the data quickly: head selects lines from the beginning of the
data; tail selects lines from the end of the data.
 Most of the time, you will use head and tail to display the beginning or end of a fi le.
For this reason, I will defer the principal discussion of these commands until Chapter 21,
where we will talk about the fi le display commands. In this section, I will show you how
to use head and tail as fi lters within a pipeline.
 When you use head and tail as fi lters, the syntax is simple:

head [-n lines]
tail [-n lines]

where lines is the number of lines you want to select. (In Chapter 21, we will use a more
complex syntax.)
 By default, both head and tail select 10 lines of data. For example, let’s say you
have a program called calculate that generates many lines of data. To display the fi rst
10 lines, you would use:

calculate | head

To display the last 10 lines, you would use:

calculate | tail

If you want to select a different number of lines, use a hyphen (-) followed by that
number. For example, to select 15 lines, you would use:

calculate | head -n 15
calculate | tail -n 15

You will often use head and tail at the end of a complex pipeline to select part of the
data generated by the previous commands. For example, you have four fi les: data1,
data2, data3 and data4. You want to combine the contents of the fi les, sort
everything, and then display the fi rst and last 20 lines.
 To combine the fi les, you use the cat program (discussed earlier in the chapter). To
perform the sort, you use the sort program (Chapter 19):

cat data1 data2 data3 data4 | sort | head -n 20
cat data1 data2 data3 data4 | sort | tail -n 20

Sometimes you will want to send the output of head or tail to another fi lter. For
example, in the following pipeline, we use head to select 300 lines from the beginning
of the sort output, which we then send to less (Chapter 21) to be displayed one
screenful at a time:

cat data1 data2 data3 data4 | sort | head -n 300 | less

Select Lines From the Beginning or End of Data: head, tail

33614_16_373_394.indd 39133614_16_373_394.indd 391 1/9/2008 12:36:02 PM1/9/2008 12:36:02 PM

Chapter 16

392 Harley Hahn’s Guide to Unix and Linux

Similarly, it is often handy to save the output of head or tail to a fi le. The following
example selects the last 10 lines of output and saves it to a fi le named most-recent:

cat data1 data2 data3 data4 | sort | tail > most-recent

DELETING COLUMNS OF DATA: colrm

Related fi lters: cut, paste

 The colrm (“column remove”) program reads from the standard input, deletes
specifi ed columns of data, and then writes the remaining data to the standard output.
The syntax is:

colrm [startcol [endcol]]

where startcol and endcol specify the starting and ending range of the columns to be
removed. Numbering starts with column 1.
 Here is an example: You are a tenured professor at a college in California, and you need
a list of grades for all the students in your PE 201 class (“Intermediate Surfi ng”). This list
should not show the students’ names.
 You have a master data fi le, named students, which contains one line of information
about each student. Each line has a student number, a name, the fi nal exam grade, and the
course grade:

012-34-5678 Ambercrombie, Al 95% A
123-45-6789 Barton, Barbara 65% C
234-56-7890 Canby, Charles 77% B
345-67-8901 Danfield, Deann 82% B

To construct the list of grades, you need to remove the names, which are in columns 14
through 30, inclusive. Use the command:

HINT

Originally, head and tail did not require you to use the -n option; you could simply
type a hyphen followed by a number. For example, the following commands all display
15 lines of output:

calculate | head -n 15
calculate | tail -n 15
calculate | head -15
calculate | tail -15

Offi cially, modern versions of head and tail are supposed to require the -n option,
which is why I have included it. However, most versions of Unix and Linux will accept
both types of syntax so — as long as your mother isn’t watching — you can usually
leave out the -n.

33614_16_373_394.indd 39233614_16_373_394.indd 392 1/9/2008 12:36:02 PM1/9/2008 12:36:02 PM

Filters: Introduction and Basic Operations

393

colrm 14 30 < students

The output is:

012-34-5678 95% A
123-45-6789 65% C
234-56-7890 77% B
345-67-8901 82% B

As a quick review of piping and redirection, let me show you two more examples. First, if
the list happens to be very long, you can pipe it to less, to display the data one screenful
at a time:

colrm 14 30 < students | less

Second, if you want to save the output, you can redirect it to a fi le:

colrm 14 30 < students > grades

If you specify only a starting column, colrm will remove all the columns from that point
to the end of the line. For example:

colrm 14 < students

displays:

012-34-5678
123-45-6789
234-56-7890
345-67-8901

If you specify neither a starting nor ending column, colrm will delete nothing.

C H A P T E R 1 6 E X E R C I S E S

REVIEW QUESTIONS

1. What is a fi lter? Why are fi lters so important?

2. You need to solve a diffi cult problem using fi lters and a pipeline. What four steps
should you follow? What are the three most important skills you need?

3. Why is cat the simplest possible fi lter? In spite of its simplicity, cat can be used for
a variety of purposes. Name four.

4. What is the difference between tac and rev?

Chapter 16 Exercises

33614_16_373_394.indd 39333614_16_373_394.indd 393 1/9/2008 12:36:02 PM1/9/2008 12:36:02 PM

Chapter 16

394 Harley Hahn’s Guide to Unix and Linux

APPLYING YOUR KNOWLEDGE

1. A scientist ran an experiment that generated data that accumulated in a sequence of
fi les: data1, data2, data3, data4 and data5. He wants to know how many
lines of data he has altogether. The command wc -l reads from standard input and
counts the number of lines. How would you use this command to count the total
number of lines in the fi ve fi les?

2. You have a text fi le named important. What commands would you use to display
the contents of this fi le in the following four different ways? (a) As is. (b) Reverse the
order of the lines. (c) Reverse the order of the characters within each line. (d) Reverse
both the lines and characters. For (b), (c), and (d), which command performs the
opposite transformation? How would you test this?

3. In Chapter 6, we discussed the Linux program dmesg, which displays the messages
generated when the system was booted. Typically, there are a great many such messages.
What command would you use to display the last 25 boot messages?

FOR FURTHER THOUGHT

1. Figure 16-1 lists the most important Unix fi lters. Not counting awk and perl,
which are programming languages, there are 19 different fi lters in the list. For most
problems, you will need only a single fi lter; you will rarely need more than four. Why
do you think this is the case? Can you think of any tools that, in your opinion, are
missing from the list?

2. The split program was developed in the early 1970s, when large text fi les could
create problems, because disk space was relatively slow storage and very expensive.
Today, disks are fast and cheap. Do we still need a program like split? Why?

33614_16_373_394.indd 39433614_16_373_394.indd 394 1/9/2008 12:36:02 PM1/9/2008 12:36:02 PM

395

C H A P T E R 1 7

Filters:
Comparing and Extracting

In Chapter 16, we spent a lot of time talking about fi lters: programs that read and write
textual data one line at a time, reading from standard input and writing to standard
output. One of the observations that came out of our discussion was that, as a general
rule, fi lters are designed as tools whose job is to do one thing and do it well. In the next
three chapters, we will talk about many specifi c fi lters and, as you read and think about
the examples, you will fi nd this observation to be particularly important.
 In this chapter, we will be discussing fi lters that are designed to compare fi les and to
extract parts of fi les. At fi rst, you might think these are dull topics, and I don’t blame you.
After all, there are enough details in this chapter to choke a good-sized horse. As you read
the details, however, and as you start to see the intelligence of the design behind the fi lters,
you will come to appreciate how interesting they actually are. In fact, the fi lters we will
be discussing in this chapter are not only interesting, but they are among the most useful
and important programs in the Unix toolbox.

COMPARING FILES
Over the years, Unix programmers have created a variety of tools to help you answer the
questions: Do two fi les contain the exact same data? If not, how does the data differ from
one fi le to the next? Comparing two fi les is more complicated than you might think,
because there are various ways to compare and to display the results.
 In the next few sections, we will discuss the most important of these tools. In particular,
I’ll explain what they do, what types of fi les they compare, and which of their options are
the most useful. Along the way, I’ll show you examples and give you important tips. My
goal is simple: whenever the need to compare fi les arises, you should be able to analyze
the situation quickly, decide which program and which options to use, and be able to
interpret the results.
 Figure 17-1 summarizes the most important fi le comparison programs (the ones we
will be covering). For completeness, I have also included related programs for sorting and
selecting data from fi les. We will discuss these programs in Chapter 19.

Comparing Files

33614_17_395_420.indd 39533614_17_395_420.indd 395 1/9/2008 12:36:26 PM1/9/2008 12:36:26 PM

Chapter 17

396 Harley Hahn’s Guide to Unix and Linux

COMPARING ANY TWO FILES: cmp

Related fi lters: comm, diff, sdiff

 You use cmp in only one situation: to see if two fi les are identical. The syntax is:

cmp file1 file2

where fi le1 and fi le2 are the names of fi les.
 The cmp program compares the two fi les, one byte at a time, to see if they are the
same. If the corresponding bytes in both fi les are exactly the same, the fi les are identical,
in which case cmp does not do anything. (No news is good news.) If the fi les are not
identical, cmp displays a suitable message.
 For example, let’s say you have two versions of a program: calculate-1.0 and
calculate-backup. You want to see if they are exactly the same. Use:

cmp calculate-1.0 calculate-backup

If the fi les are the same, you will see nothing. If the fi les don’t match, you will see a
message similar to the following:

calculate-1.0 calculate-backup differ: byte 31, line 4

As you can see in Figure 17-1, there are several other programs you can use to compare
fi les (comm, diff, diff3 and sdiff). All of these programs work with text fi les.

FILTER PURPOSE CHAPTER TYPE OF FILES NUMBER OF FILES
cmp Compare two fi les 17 binary or text Two

comm Compare two sorted fi les, show differences 17 text: sorted Two

diff Compare two fi les, show differences 17 text Two

sdiff Compare two fi les, show differences 17 text Two

cut Extract specifi ed columns/fi elds of data 17 text One or more

paste Combine columns of data 17 text One or more

sort Sort data 19 text One or more

uniq Select duplicate/unique lines 19 text: sorted One

grep Select lines containing specifi ed pattern 19 text One or more

look Select lines beginning with specifi ed pattern 19 text: sorted One

FIGURE 17-1: Programs to compare, sort, and select data from fi les

Unix has a variety of programs to compare fi les, the most important of which are comm, cmp, diff,
and sdiff (which can be thought of as a variation of diff). Closely related are the programs that
sort fi les (sort), select lines of text (uniq), and extract parts of a fi le (cut, grep, look).

This table summarizes these programs by showing the type of data they use (binary or text; sorted or
unsorted), the number of fi les they use; and their primary purpose. See text for details. (The sorting
and selecting programs are discussed in Chapter 19. Binary and text fi les are discussed in Chapters 19
and 23.)

33614_17_395_420.indd 39633614_17_395_420.indd 396 1/9/2008 12:36:27 PM1/9/2008 12:36:27 PM

Filters: Comparing and Extracting

397

That is, they expect lines of text: data in which each line contains zero or more regular
characters (letters, numbers, punctuation, whitespace) ending with a newline.
 Since cmp compares fi les one byte at a time, it doesn’t care what type of data the fi les
contain. Thus, you can use cmp to compare any type of fi le, text or binary. For instance,
the example above compared two binary fi les that contain executable programs. You
could also compare two music fi les, two pictures, two word processing documents, and
so on. (We will discuss text fi les and binary fi les in Chapters 19 and 23.)

COMPARING SORTED TEXT FILES: comm

Related fi lters : cmp, diff, sdiff

 The comm program compares two sorted text fi les, line by line. You use comm when
you have two similar fi les, and you want to fi nd the differences. The syntax is:

comm [-123] file1 file2

where fi le1 and fi le2 are the names of sorted text fi les.
 The nice thing about comm is that it allows you to visualize the differences in the two
fi les. It does so by displaying its output in three columns: the fi rst column contains the
lines that are only in the fi rst fi le; the second column contains the lines that are only in
the second fi le; the third column contains the lines that are in both fi les. Let me show you
an example.
 Two close friends, Frick and Frack*, are wondering how many other friends they have
in common. They each make a list of their own friends, type the list into a fi le, and then
use the sort command (Chapter 19) to sort the fi le. They then use comm to compare
the two fi les.
 The sorted list of Frick’s friends is in a fi le called frick:

Alison Wonderland
Barbara Seville
Ben Dover
Chuck Wagon
Noah Peel

The sorted list of Frack’s friends is in a fi le called frack:

Alison Wonderland
Barbara Seville
Candy Barr
Chuck Wagon
Noah Peel
Sue Perficial

Comparing Sorted Text Files: comm

 *Frick and Frack were the stage names of two well-known comedy ice skaters, Werner Groebli and Hans Mauch. Groebli
and Mauch came to the United States from their native Switzerland in 1937 and, for decades, performed widely as part of the
original Ice Follies. Their most famous trick was the “cantilever spread-eagle” (look for photos on the Web).

33614_17_395_420.indd 39733614_17_395_420.indd 397 1/9/2008 12:36:27 PM1/9/2008 12:36:27 PM

Chapter 17

398 Harley Hahn’s Guide to Unix and Linux

Frick and Frack compare the two lists by using the command:

comm frick frack

The output is:

 Alison Wonderland
 Barbara Seville
Ben Dover
 Candy Barr
 Chuck Wagon
 Noah Peel
 Sue Perficial

Notice the three columns. The fi rst column has only one name (Ben Dover). This shows
that there is only one line that is unique to the fi rst fi le (frick). The second column has
two names (Candy Barr, Sue Perfi cial). This shows that there are two lines that are unique
to the second fi le (frack). The third column has four names (Alison Wonderland,
Barbara Seville, Chuck Wagon, Noah Peel). This shows that there are four lines that are in
both fi les. Thus, Frick and Frack conclude they have four friends in common.
 In this example, the fi les are small — between them, Frick and Frack have a total of
seven friends — and you are probably wondering why they bother to create two fi les, sort
them, run the comm command, and interpret the output. Wouldn’t it be easier for Frick
and Frack to ask one another: Do you know Alison? Do you know Barbara? and so on.
 The answer is of course it would, but this is a contrived example. What if you were
working with sorted fi les that had hundreds or thousands of lines — customer records
or statistical data or a long list of songs for your MP3 player? In such cases, it would be
virtually impossible to compare the lists by hand. You must have a program like comm.
 Indeed, comm is especially useful when you have two versions of a sorted fi le that vary
slightly — perhaps because of a small mistake — and you want to fi nd that variation. For
example, say that you have two very long sorted lists of numbers. Somewhere in the lists,
there is a place where the numbers do not agree. You use comm to compare the fi les and,
in the middle of the output, you see:

 01023331
 01023340
 01023356
01023361
 01023362
 01023378
 01023391
 01023401

This shows you the exact place where the two fi les don’t match.
 To give you control over the output, comm allows you to suppress the output of the
fi rst, second or third columns by using the -1, -2 and -3 options respectively. In our

33614_17_395_420.indd 39833614_17_395_420.indd 398 1/9/2008 12:36:27 PM1/9/2008 12:36:27 PM

Filters: Comparing and Extracting

399

last example, for instance, you could use -3 to suppress the third column, which would
eliminate all the unnecessary output:

01023361
 01023362

Now, all you see are the lines that differ, which is all you want to see. Imagine how much
time this saves you if the fi les contained several thousand numbers.
 If you want to suppress more than one column, just combine the options. For example,
consider the lists of friends of Frick and Frack we discussed above. Let’s say Frack wants
to display only those people who are his friends and not Frack’s friends. All he has to do
is suppress the fi rst and third columns:

comm -13 frick frack

The output shows only those lines that are unique to the second fi le:

Candy Barr
Sue Perficial

COMPARING UNSORTED TEXT FILES: diff

Related fi lters : cmp, comm, sdiff

 The comm program will show you, visually, how two text fi les differ. However, comm has
two limitations. First, the input fi les must be sorted which, in many cases, is not possible. For
example, say you have two different versions of a long fi le, such as a computer program or an
essay, and you want to know how they differ. Since the lines of a program or an essay aren’t
sorted, you can’t use comm. Of course, you could sort the fi les fi rst, but then the output
wouldn’t make any sense: you might fi nd the differences, but you would lose the context.
 Moreover, the output of comm is fi ne when you are comparing small- or even medium-
sized fi les, but it can be confusing when you are working with large fi les. Again, it’s a
matter of context. When you compare large fi les, it is important that the output show you
not only the differences, but their locations, and do so in a way that makes it easy to fi nd
the lines that differ.
 The diff program is designed to overcome these limitations. Thus, you use diff
when you want to (1) compare unsorted fi les or, (2) compare large fi les. More generally,
diff can be used to fi nd the differences in any type of work in which incremental
additions, deletions or changes are made from time to time. For instance, for many years,

HINT

The most common reason why comm does not work as expected is that the input fi les are
not sorted.
 If you need to compare two fi les but you don’t want to sort the lines — say, because it will
mix up the data — you cannot use comm. Instead, you should use diff (discussed later in the
chapter). This is the case when you compare different versions of the source code for a program.

Comparing Unsorted Text Files: diff

33614_17_395_420.indd 39933614_17_395_420.indd 399 1/9/2008 12:36:27 PM1/9/2008 12:36:27 PM

Chapter 17

400 Harley Hahn’s Guide to Unix and Linux

programmers have used diff (or tools like diff) to track the changes between versions
of a program as the program is modifi ed.
 Before we start, I must warn you that the output of diff will look a bit cryptic until
you get used to it. However, you will get used to it. Regardless, diff is a powerful and
useful program, and it is important that you learn how to use it, especially if you are a
programmer.
 The syntax for diff is as follows:

diff [-bBiqswy] [-c|-Clines|-u|-Ulines] file1 file2

where fi le1 and fi le2 are the names of text fi les, and lines is a number of lines of context
to show.
 When you compare two fi les that are identical, diff will display no output (similar
to cmp). If the fi les are not the same, diff will, by default, display a set of instructions
that, if followed, would change the fi rst fi le into the second fi le. Here is an example.
 We have two fi les. The fi le old-names contains:

Gene Pool
Will Power
Paig Turner
Mark Mywords

The fi le new-names contains:

Gene Pool
Will Power
Paige Turner
Mark Mywords

You will notice that the only difference is the spelling of “Paige” in the third line. To
compare the fi les, we use:

diff old-names new-names

The output is:

3c3
< Paig Turner

> Paige Turner

As I explained, the goal of diff is to display the instructions you would need to follow
to change the fi rst fi le into the second fi le. The syntax of the instructions is simple but
terse, and it can take a bit of practice to understand it. However, I do want you to become
familiar with these types of instructions, because they are a standard part of the Unix
culture. In fact, you will encounter this type of syntax a variety of situations, not just
when using diff.

33614_17_395_420.indd 40033614_17_395_420.indd 400 1/9/2008 12:36:27 PM1/9/2008 12:36:27 PM

Filters: Comparing and Extracting

401

 The output of diff uses three different 1-character instructions : c (change), d (delete),
and a (append)*. In the example above, you see only a single c instruction. This means
that, to turn the fi rst fi le into the second, you only need to make one modifi cation, a
simple change.
 To the left and right of each c, d or a character, you will see a list of line numbers.
There may be a single line number (such as the 3 above), or there may be a sequence of
lines (such as 16,18). The numbers to the left refer to lines in the fi rst fi le; the numbers
to the right refer to lines in the second fi le. In our example, the instruction 3c3 tells us to
change line 3 of the fi rst fi le to line 3 of the second fi le.
 Whenever diff requires a change, it shows you the actual lines from each fi le. Lines
from the fi rst fi le are marked by a < (less-than) character. Lines from the second fi le are
marked by a > (greater-than) character. For readability, the two sets of lines are separated
by a line consisting of several hyphens (---).
 Let’s consider another example in which old-names contains:

Gene Pool
Paige Turner
Mark Mywords

And new-names contains:

Gene Pool
Will Power
Paige Turner
Mark Mywords

In this case, the only difference is that the fi rst fi le does not contain the name “Will Power”.
When you use diff with these two fi les, the output is:

1a2
> Will Power

This tells you how to change the fi rst fi le into the second. All you need to do is append
a single line to the fi rst fi le. Specifi cally, you would append line 2 of the second fi le
after line 1 of the fi rst fi le. Notice that diff shows you the actual line that needs to be
appended. The > character tells you that this line is from the second fi le.
 Now, consider a third example in which old-names contains:

Gene Pool
Will Power
Paige Turner
Mark Mywords

 *Why these three instructions? With two fi les that are reasonably similar to one another, you can always turn one into the other
by some combination of change, delete, and append operations. Take a moment to think about this until it makes sense to you.

Comparing Unsorted Text Files: diff

33614_17_395_420.indd 40133614_17_395_420.indd 401 1/9/2008 12:36:27 PM1/9/2008 12:36:27 PM

Chapter 17

402 Harley Hahn’s Guide to Unix and Linux

And new-names contains:

Gene Pool
Will Power
Paige Turner

The difference here is that the second fi le does not contain the name “Mark Mywords”.
When you use diff, the output is:

4d3
< Mark Mywords

In this case, diff is telling you that, to turn the fi rst fi le into the second, you need to
delete line 4 from the fi rst fi le. Again, the actual line is displayed. The < character tells you
the line is from the fi rst fi le. (Remember, the goal of diff is to tell you how to turn the
fi rst fi le into the second fi le.)
 Note: Within a d command, you can generally ignore the number after the d (in this
case, 3). It shows you where diff found a difference in the second fi le.
 To fi nish this part of the discussion, let me show you how diff works with a more
realistic example. Consider the following two fi les, each of which contains some code
from a Perl script. (Don’t worry about what the code does; just concentrate on the output
of the diff command.) The fi rst fi le, command-1.01.pl, contains:

Check for illegal content
in order to prevent spam
If the address contains a URL, abort
 if ($required{"address"} =~ m/(http):\/\//) {
 $error_count += 1;
 }

The second fi le, command-1.02.pl, contains:

If the address contains a URL, abort
 if ($required{"address"} =~ m/(http|https|ftp):\/\//) {
 $error_count += 1;
 &error_exit ("No URLs allowed");
 }

The following diff command compares the two fi les:

diff command-1.01.pl command-1.02.pl

The output is:

1,2d0
< # Check for illegal content
< # in order to prevent spam
4c2

33614_17_395_420.indd 40233614_17_395_420.indd 402 1/9/2008 12:36:27 PM1/9/2008 12:36:27 PM

ftp):\/\//

Filters: Comparing and Extracting

403

< if ($required{"address"} =~ m/(http):\/\//) {

> if ($required{"address"} =~ m/(http|https|ftp):\/\//) {
5a4
> &error_exit ("No URLs allowed");

There are two ways to interpret this output. Literally, it tells us what instructions to follow
to turn the fi rst fi le into the second:

• Delete lines 1 and 2 from the fi rst fi le.

• Change line 4 in the fi rst fi le to line 2 from the second fi le.

• Append line 4 from the second fi le after line 5 in the fi rst fi le.

A better way to interpret the output is to be able to read it and — in an instant —
understand how the two fi les are different in a way that makes sense to you. This, of
course, is why you are learning to use diff in the fi rst place. The key is being able to read
c (change), d (delete), and a (append) commands and instantly grasp their signifi cance.
As you can imagine, this takes practice. However, in time, you will be able to read and
understand such output quickly and easily.

OPTIONS TO USE WITH diff
The diff program is complicated: it has a large number of options and a variety of
ways in which it can generate output. In this section and the next, I’ll discuss the most
important options. For the full details, see the man page for your system (man diff).
 The fi rst few options tell diff to ignore certain differences when comparing. The
-i (case insensitive) option tells diff to ignore any differences between upper- and
lowercase letters. For example, when you use -i, diff considers the following three
lines to be the same:

This is a BIG test.
this is a big test.
THIS IS A BIG TEST.

The -w and -b options allow you to control how diff works with whitespace (spaces
and tabs). These options are handy when you have data that is formatted with spaces or
tabs that you want to ignore. The -w (whitespace) option ignores all whitespace. For
example, with -w, the following two lines are considered to be the same.

XX
X X

The -b option is similar, but it doesn’t ignore all whitespace; it only ignores differences
in the amount of whitespace. For example, if you use -b, the above two lines would not
be considered the same because the second line has whitespace, but the fi rst does not.
However, the following two lines would be the same:

Options to Use With diff

33614_17_395_420.indd 40333614_17_395_420.indd 403 1/9/2008 12:36:27 PM1/9/2008 12:36:27 PM

ftp):\/\//

Chapter 17

404 Harley Hahn’s Guide to Unix and Linux

X X
X X

This is because the two lines both have whitespace; they differ only in the amount of
whitespace. The distinction between -w and -b is subtle, so if you have a whitespace
problem and you are confused, try both options and see which works best with your
particular data.
 The -B (blank lines) option tells diff to ignore all blank lines. For example, let’s say
you have two fi les that contain different versions of an essay you have written. You want
to compare them, but one copy is single-spaced, while the other is double-spaced. If you
use the -B option, diff will ignore the blank lines and look only at the lines of text.
 The rest of the diff options control how diff displays its results. The -q (quiet)
option tells diff to leave out the details when two fi les are not the same. For example,
if you compare two fi les, frick and frack, that are different, and you use -q, all you
will see is:

Files frick and frack differ

As such, comparing two fi les with diff -q is, essentially, the same as using cmp
(discussed earlier in the chapter). The biggest difference is that diff only compares text
fi les, while cmp works with any type of fi le.
 As I mentioned earlier, when diff fi nds that two fi les are the same, it does not display
anything. This is common with many Unix programs: when they have nothing to say,
they say nothing. However, there may be times when you want an explicit notice that two
fi les are identical. In such cases, you can use the -s (same) option. For example, if you
compare the two fi les frick and frack and they are the same, you would normally see
nothing. If you use -s, however, you will see:

Files frick and frack are identical

OUTPUT FORMATS WHEN COMPARING FILES: diff, sdiff
As we discussed earlier, when diff compares two fi les, the default output consists of
instructions (c, d, a) along with line numbers. These instructions, if followed, will turn
the fi rst fi le into the second fi le. This type of output has the advantage of being terse and,
once you get used to it, it actually is readable. In my experience, this is all you need most
of the time.
 The disadvantage of the default format, however, is that by the time you get used
to it, you have made irreversible changes in the gray matter of your brain. The biggest
problem is that when you read the output, there is very little context. All you see are
some line numbers along with the lines to be changed. For this reason, diff has three
options (-c, -u and -y) that will produce more readable types of output. In addition,
there is another program, sdiff, that will compare two fi les side-by-side. Here are
the details.
 Using diff with the -c (context) option will show you the differences between
two fi les in a format that is less terse and more understandable than the default output.

33614_17_395_420.indd 40433614_17_395_420.indd 404 1/9/2008 12:36:27 PM1/9/2008 12:36:27 PM

Filters: Comparing and Extracting

405

Instead of instructions and line numbers, diff will show you the actual lines that differ,
as well as two extra lines above and below. Here is an example.
 You have two fi les to compare. The fi rst fi le, smart-friends contains:

Alba Tross
Dee Compose
Pat D. Bunnie
Phil Harmonic

The second fi le, rich-friends, contains:

Alba Tross
Dee Compose
Mick Stup
Pat D. Bunnie

First, let’s compare the two fi les in the regular manner:

diff smart-friends rich-friends

The output is terse, but somewhat cryptic:

2a3
> Mick Stup
4d4
< Phil Harmonic

Now, let’s use the -c option:

diff -c smart-friends rich-friends

The output is much longer, but easier to understand:

*** smart-friends 2009-02-14 15:33:50.000000000 -0700
--- rich-friends 2009-02-14 15:34:04.000000000 -0700

*** 1,4 ****
 Alba Tross
 Dee Compose
 Pat D. Bunnie
- Phil Harmonic
--- 1,4 ----
 Alba Tross
 Dee Compose
+ Mick Stup
 Pat D. Bunnie

The top two lines give you information about the fi les. The fi rst fi le is marked by * (star)
characters; the second fi le is marked by -<(hyphen) characters. Following these lines,

Output Formats When Comparing Files: diff, sdiff

33614_17_395_420.indd 40533614_17_395_420.indd 405 1/9/2008 12:36:27 PM1/9/2008 12:36:27 PM

Chapter 17

406 Harley Hahn’s Guide to Unix and Linux

you see an excerpt from each fi le, showing exactly what needs to be changed to make the
fi les identical.
 Although this format is easier to understand than the default output, it has an obvious
disadvantage: because diff displays excerpts from both fi les, there is duplicate text,
making for a lot of output. When you consider that our example compared only two
short fi les with simple differences, you can imagine how long the output would be if you
compared two large fi les with many differences. In such cases, the -c output is much
more verbose than the default format.
 As a compromise, you can use the -u (unifi ed output) option. This produces output
similar to -c without repeating duplicate lines. For example, when you use:

diff -u smart-friends rich-friends

The output is:

--- smart-friends 2009-02-14 15:33:50.000000000 -0700
+++ rich-friends 2009-02-14 15:34:04.000000000 -0700
@@ -1,4 +1,4 @@
 Alba Tross
 Dee Compose
+Mick Stup
 Pat D. Bunnie
-Phil Harmonic

The fi nal output option generates a side-by-side format, in which each line of the fi rst fi le
is displayed next to the corresponding line in the second fi le. To use this format, use -y:

diff -y smart-friends rich-friends

The side-by-side output looks like this:

Alba Tross Alba Tross
Dee Compose Dee Compose
 > Mick Stup
Pat D. Bunnie Pat D. Bunnie
Phil Harmonic <

HINT

By default, when you use diff with -c or -u, the output shows two lines of context above and
below every difference.
 If you want to display a different number of context lines, you can do so by using -C
(uppercase “C”) instead of -c, and -U (uppercase “U”) instead of -u. Use -C or -U followed
by the number of extra lines you want, for example:

diff -C5 file1 file2
diff -U3 file1 file2

33614_17_395_420.indd 40633614_17_395_420.indd 406 1/9/2008 12:36:27 PM1/9/2008 12:36:27 PM

Filters: Comparing and Extracting

407

You can see the advantage of this type of output: it is very easy to see differences. For
instance, in our example, it is obvious that three names are common to both fi les, (Alba,
Dee and Pat), one name is only in the second fi le (Mick), and one name is only in the fi rst
fi le (Phil). The disadvantage, of course, is that, with a long fi le, you get a lot of output.
 If you like this type of output, there is a special-purpose program, sdiff (side-by-
side diff), you can use instead of diff -y. For example, the following two commands
produce the same output:

diff -y smart-friends rich-friends
sdiff smart-friends rich-friends

When it is necessary to do a side-by-side comparison, many people prefer to use sdiff,
because it has a lot of specialized options, which affords a great deal of control. The
syntax for sdiff is:

sdiff [-bBilsW] [-w columns] file1 file2

where fi le1 and fi le2 are the names of text fi les, and columns is the width of the columns.
 Using sdiff is straightforward. For example, to compare the two fi les from our
example we would use:

sdiff smart-friends rich-friends

The output is:

Alba Tross Alba Tross
Dee Compose Dee Compose
 > Mick Stup
Pat D. Bunnie Pat D. Bunnie
Phil Harmonic <

As I mentioned, sdiff has a lot of options. We’ll take a look at the most important ones,
some of which are the same as the diff options. To read about the rest of the options,
take a look at the man page on your system (man sdiff).
 To start, there are several options that allow you to reduce the amount of unnecessary
output. First, the -l (lowercase “L”) option displays only the left column wherever the
two fi les have common lines. For example, if you use:

sdiff -l smart-friends rich-friends

The output is:

Alba Tross (
Dee Compose (
 > Mick Stup
Pat D. Bunnie (
Phil Harmonic <

Output Formats When Comparing Files: diff, sdiff

33614_17_395_420.indd 40733614_17_395_420.indd 407 1/9/2008 12:36:28 PM1/9/2008 12:36:28 PM

Chapter 17

408 Harley Hahn’s Guide to Unix and Linux

The -s (same) option reduces the output even further: it tells sdiff not to display any
lines that are the same in both fi les. For example:

sdiff -s smart-friends rich-friends

The output is minimal and easy to understand:

 > Mick Stup
Phil Harmonic <

When you work with fi les that have short lines (as in our example), you will often fi nd
that the default columns used by sdiff are too wide. When this happens, you can use
the -w option to change the width of the columns. Just use -w followed by the number
of characters you want in each column. For example:

sdiff -w 30 smart-friends rich-friends

Of course, you can combine more than one option. My favorite strategy is to start with
the -s and -w 30 options. For example:

sdiff -s -w 30 smart-friends rich-friends

Once I see the output, I adjust the width of the column to suit my data.
 Finally, there are four options similar to those used with diff. The -i option
ignores differences between upper- and lowercase letters; -W ignores all whitespace; -b
ignores differences in the amount of whitespace; and -B ignores blank lines. (Note that
sdiff uses -W, while diff uses -w. The difference is for historical reasons and has
never been changed.)

DIFFS AND PATCHES
Over the years, diff has been a very important tool, used by programmers to keep track
of different versions of their programs. For example, let’s say you are a programmer
and you are working on a C program named Foo. The current version is 2.0; it is stored
in the fi le foo-2.0.c. Right now, you are working on version 2.1, which is stored in
foo-2.1.c. Once version 2.1 is fi nished, you can capture the changes by running the
following command:

diff foo-2.0.c foo-2.1.c > foo-diff-2.1

The output fi le (foo-diff-2.1) now contains a list of instructions that, when
followed, will turn foo-2.0.c into foo-2.1.c.
 In general, a list of instructions that will change one fi le into another is called a DIFF.
Thus, we can say that foo-diff-2.1 contains the diff that changes foo-2.0.c
into foo-2.1.c.
 Programmers create diffs for two reasons: to save storage space when backing up their
work, and to distribute changes to other people.

33614_17_395_420.indd 40833614_17_395_420.indd 408 1/9/2008 12:36:28 PM1/9/2008 12:36:28 PM

Filters: Comparing and Extracting

409

 Suppose Foo is a very large program. It would be prudent to make a backup of every
version, but that would take up a lot of storage space. Instead, you back up a full copy of
the base version (foobar-2.0.c). From then on, you only need to back up the diffs,
which are small: foo-diff-2.1, foo-diff-2.2, and so on. (When you get to 3.0,
you can save another full copy.)
 Let’s say you are at version 2.7 when a catastrophic event causes you to lose the original
fi les. To restore them from the backup, you start by copying the base fi le, foo-2.0.c. You
then use the fi rst diff to recreate foo-2.1.c, the second diff to recreate foo-2.2-c,
and so on, up to foo-2.7.c. In other words, by backing up a base copy and a series
of diffs, you can recreate all the different versions of your program. In fact, using this
technique, you can back up different versions of anything stored in a text fi le: a story, an
essay, a sales presentation, and so on.
 When you use a diff in this way — to recreate one fi le from another — we say that
you APPLY the diff. The program that is used to apply diffs is called patch (the details
of which are beyond the scope of this book). In our example, you would recreate the lost
fi les by copying the base version and all the diffs from the backup, and then using patch
to apply one diff after another.
 The second way in which programmers use diffs is to distribute changes to their
programs. For example, let’s say a lot of people have the source code of version 2.0 of
your Foo program. It took each person a while to download and install the program, but
now they have it. What do you do when you are ready to distribute version 2.1?
 You could ask everyone to download the entire new program. However, that would
take a long time. Instead, you need only distribute the diff, which is small. To change to
version 2.1, all your users need to do is use patch to apply the diff. If, for some reason,
they have a problem with the new version, they can use patch to un-apply the diff, and
go back to version 2.0.
 When programmers use a diff in this way, it is often referred to as a PATCH. Thus, in
our example, we would say that you distributed a patch for version 2.1, and your users
used the patch program to apply the patch.
 The advantage of distributing changes in the form of diffs is that it is much, much
faster to update software by applying patches than by downloading and installing brand
new versions. Indeed, in the early days of the Internet, when downloading was extremely
slow, the only practical way to update large programs was by distributing patches that
users would then apply on their own.
 In the early days of Unix, it was common for programmers to use diff and patch
to maintain, back up, and distribute their programs. However, for a long time, there have
been much better systems to automate such tasks, and relatively few programmers use
diff and patch directly. Instead, they work with a sophisticated VERSION CONTROL
SYSTEM, sometimes referred to as SOURCE CODE CONTROL SYSTEM (SCCS) or
REVISION CONTROL SYSTEM (RCS). Such systems are commonly used by software
developers and engineers to manage the development of large programs, documents,
blueprints, and so on. In fact, without modern version control systems, it would be
impossible for large teams of people to work together on creative projects.

Diffs and Patches

33614_17_395_420.indd 40933614_17_395_420.indd 409 1/9/2008 12:36:28 PM1/9/2008 12:36:28 PM

Chapter 17

410 Harley Hahn’s Guide to Unix and Linux

 However, regardless of the degree of sophistication, all version control systems rely
on the fundamental concepts of creating, distributing and applying diffs. This is why it is
important that you understand the basic ideas.

EXTRACTING COLUMNS OF DATA: cut

Related fi lters : colrm, join, paste

 The cut program is a fi lter that extracts specifi ed columns of data and throws away
everything else. (This is the opposite of colrm, which deletes specifi ed columns of data,
and saves everything else.)
 The cut program has a great deal of fl exibility. You can extract either specifi c columns
of each line or delimited portions of each line (called fi elds). If you are a database expert,
you can consider cut as implementing the projection of a relation. (If you are not a
database expert, don’t worry; your life is still complete.)
 In this section, I will concentrate on how to use cut to extract columns of data. In the
next section, we’ll talk about how to extract fi elds of data.
 The syntax of cut (when you are extracting columns) is:

cut -c list [file...]

where list is a list of columns to extract, and fi le is the name of an input fi le.
 You use the list to tell cut which columns of data you want to extract. Specify one
or more column numbers, separated by commas. Do not put any spaces within the
list. For example, to extract column 10 only, use 10. To extract columns 1, 8 and 10,
use 1,8,10.
 You can also specify a range of column numbers by joining the beginning and end of
the range with a hyphen. For example, to extract columns 10 through 15, use 10-15. To
extract columns 1, 8, and 10 through 15, use 1,8,10-15.
 Here is an example of how to use cut. Say that you have a fi le named info that
contains information about a group of people. Each line contains data pertaining to one
person. In particular, columns 14-30 contain a name and columns 42-49 contain a phone
number. Here is the sample data:

012-34-5678 Ambercrombie, Al 01/01/72 555-1111
123-45-6789 Barton, Barbara 02/02/73 555-2222

WHAT’S IN A NAME?

Diff
The word diff comes from the diff program, which is used to compare two fi les. Among Unix
people, it is common to use “diff” as both a noun and a verb.
 For example, you might hear someone say, “Send me your diffs for the Foo program,”
meaning, “Send me the fi les that contain the updates for the Foo program.”
 You will also hear people use diff as a verb: “If you want to see the changes I made to your
news article, just diff the two fi les.”

33614_17_395_420.indd 41033614_17_395_420.indd 410 1/9/2008 12:36:28 PM1/9/2008 12:36:28 PM

Filters: Comparing and Extracting

411

234-56-7890 Canby, Charles 03/03/74 555-3333
345-67-8901 Danfield, Deann 04/04/75 555-4444

To display the names only, use:

cut -c 14-30 info

You will see:

Ambercrombie, Al
Barton, Barbara
Canby, Charles
Danfield, Deann

To display the names and phone numbers, use:

cut -c 14-30,42-49 info

You will see:

Ambercrombie, Al 555-1111
Barton, Barbara 555-2222
Canby, Charles 555-3333
Danfield, Deann 555-4444

If you like, you can leave out the space after -c. In fact, most people do just that. Thus,
the following command is equivalent to the last one:

cut -c14-30,42-49 info

Returning to our example, you can save the information by redirecting standard output
to a fi le, for example:

cut -c 14-30,42-49 info > phonelist

The cut program is handy to use in a pipeline. Here is an example. You share a multiuser
Linux computer, and you want to make a list of the userids that are currently logged into
the system. Since some userids may be logged in more than once, you want to show how
many times each userid is logged in.
 Start with who (Chapter 8). This command will generate a report with one line for
each userid that is logged in. Here is a typical sample:

harley console Jul 8 10:30
casey ttyp1 Jul 12 17:46
weedly ttyp4 Jul 12 21:22
harley ttyp0 Jul 12 16:45
linda ttyp3 Jul 12 17:41

As you can see, the userid is displayed in columns 1 through 8. Thus, we can extract the
userids by using:

Extracting Columns of Data: cut

33614_17_395_420.indd 41133614_17_395_420.indd 411 1/9/2008 12:36:28 PM1/9/2008 12:36:28 PM

Chapter 17

412 Harley Hahn’s Guide to Unix and Linux

who | cut -c 1-8

The output is:

harley
casey
weedly
harley
linda

Now, let’s do more. Let’s sort the list of userids using sort, and count the number of
duplications using uniq -c. (Both sort and uniq are explained in Chapter 19.)
Putting the whole thing together, we have:

who | cut -c 1-8 | sort | uniq -c

(Notice that there is no problem using options within a pipeline.) The output is:

1 casey
2 harley
1 linda
1 weedly

As an interesting variation of this pipeline, let us ask the question: How can we display the
names of all userids who are logged in exactly twice? The solution is to search the output
of uniq for all the lines that contain “2”*. You can do so using grep (Chapter 19):

who | cut -c 1-8 | sort | uniq -c | grep "2"

The output is:

2 harley

RECORDS, FIELDS AND DELIMITERS; EXTRACTING FIELDS OF DATA: cut
In the last section, I showed you how to use the cut program to extract specifi ed columns
of data. However, cut has another use: it can extract fi elds of data. In order to understand
how this works, we need to discuss a few basic ideas.
 Consider two different fi les. The fi rst fi le contains the following lines:

Ambercrombie Al 123
Barton Barbara 234

 *Strictly speaking, this grep command will fi nd any lines that contain the character “2”. For example, if someone is logged
in 12 times or 20 times that will be found as well. A better solution, which uses the techniques that we will discuss in Chapter
20, is to use the command grep “\<2\>”. This will fi nd only those lines that contain “2” all by itself.

HINT

To rearrange the columns of a table, use cut followed by paste.

33614_17_395_420.indd 41233614_17_395_420.indd 412 1/9/2008 12:36:28 PM1/9/2008 12:36:28 PM

Filters: Comparing and Extracting

413

Canby Charles 345
Danfield Deann 456

The second fi le contains:

Ambercrombie:Al:123
Barton:Barbara:234
Canby:Charles:345
Danfield:Deann:456

In both fi les, each line contains a last name, a fi rst name, and an identifi cation number, in
fact, the same information. However, there is a big difference between the fi les.
 The fi rst fi le is easy for a person to read, because the information is lined up nicely
in columns. The second fi le is more suitable for a program to read, because of the :
(colon) characters that separate the three parts of each line. Using the terminology we
discussed in Chapter 12, we can call the fi rst fi le human-readable and the second fi le
machine-readable.
 You will often encounter machine-readable fi les, similar to our second example, when
you work with data that is designed to be processed by a program. With such data, each
line is referred to as a RECORD; the separate parts of each line are called FIELDS; and the
characters that act as separators are DELIMITERS. In our example, there are 4 records,
each of which has 3 fi elds (last name, fi rst name, identifi cation number). Within each
record, the delimiters are colons.
 Of course, delimiters aren’t always colons. In principle, any character that does not
appear in the actual data can be used as a delimiter. The most common delimiters are
commas, spaces, tabs and whitespace (that is, a combination of tabs and spaces).
 Commas, in fact, are used so frequently as delimiters that there is a special name
to describe data which is delimited by commas. Such data is said to be stored in CSV
(“comma-separated value”) format*.
 Perhaps the most interesting example of a machine-readable fi le that uses delimiters is
the Unix password fi le (/etc/passwd), which we discussed in Chapter 11. The password
fi le contains one line for each userid on the system. Within each line, the various fi elds are
separated by : characters. If a fi eld is empty, you will see two : characters in a row.
 To take a look at the password fi le on your system, use one of the following commands**:

 *Until the last few years, CSV format was the most popular storage format for data that might need to be exchanged between
programs, particularly with spreadsheet programs such as Microsoft Excel. Today, XML (Extensible Markup Language) is more
widely used, because it works with many types of data. CSV format, although it is easy to understand, is much more limited as
it can only be used with plain text.
 For reference (in case you ever need it), here is my version of a comprehensive, technical defi nition of CSV format:
 “CSV format is used to store textual data organized into records, each of which ends with a newline character (or return-
newline with Windows). Within each record, fi elds are delimited by commas. Any whitespace (spaces or tabs) before or after
fi elds is ignored. A fi eld may be enclosed by double quotes, which are ignored. A fi eld must be enclosed in double quotes if it
contains commas, double quotes or newlines, or if it starts or ends with spaces or tabs. Within a fi eld, a double quote character
is represented by two double quotes in a row.”
 **In old versions of Unix, passwords (encrypted, of course) were kept in the password fi le, hence the name. With modern
Unix, the actual passwords are not kept in this fi le. As we discussed in Chapter 11, for security reasons the encrypted passwords
are stored in a different fi le (/etc/shadow) called the shadow fi le.

Records, Fields, and Delimiters; Extracting Fields of Data: cut

33614_17_395_420.indd 41333614_17_395_420.indd 413 1/9/2008 12:36:28 PM1/9/2008 12:36:28 PM

Chapter 17

414 Harley Hahn’s Guide to Unix and Linux

cat /etc/passwd
less /etc/passwd

Now that we have laid the groundwork, let me show you how to use the cut program to
extract fi elds from the lines of a fi le. The syntax is:

cut -c list [file...]
cut -f list [-d delimiter] [-s] [file...]

where list is a list of fi elds to extract, delimiter is the delimiter used to separate fi elds, and
fi le is the name of an input fi le.
 The list of fi elds uses the same format as when you use the -c option. You specify
one or more numbers, separated by commas. Do not put any spaces within the list. For
example, to extract fi eld 10 only, use 10. To extract fi elds 1, 8 and 10, use 1,8,10.
 You can also specify a range of fi elds joining the beginning and end of the range with
a hyphen. For example, to extract fi elds 10 through 15, use 10-15. To extract fi elds 1, 8,
and 10 through 15, use 1,8,10-15.
 Here is an example. Within the password fi le (/etc/passwd), the fi rst fi eld in each
line is the userid. Suppose you want to see a list of all the userids registered with the
system. Remembering that this fi le uses a : for a delimiter, all you need to do is extract
the fi rst fi eld from each line in the password fi le. The command is:

cut -f 1 -d ':' /etc/passwd

If you want to sort the list, just pipe the output to sort (Chapter 19):

cut -f 1 -d ':' /etc/passwd | sort

The following example extracts fi elds number 1, 3, 4 and 5 from the same fi le:

cut -f 1,3-5 -d ':' /etc/passwd | sort

You will notice that I have quoted the delimiter (the :). This is a good habit in order
to make sure that the delimiter is not interpreted incorrectly when the shell parses the
command. In this case, it would have been okay to leave out the quotes, but if your
delimiter is a space, tab or a metacharacter, you must quote it.
 What happens if cut encounters a line that does not contain any delimiters? By
default, such lines are simply passed through and will be written to standard output. If
you want to throw away such lines, you can use the -s (suppress) option.
 One last point. As with the -c option we discussed in the last section, you can leave
out the space after -f and -d. Thus, the following commands are equivalent to our last
two examples:

cut -f1 -d':' /etc/passwd | sort
cut -f1,3-5 -d':' /etc/passwd | sort

Most experienced Unix people leave out the spaces.

33614_17_395_420.indd 41433614_17_395_420.indd 414 1/9/2008 12:36:28 PM1/9/2008 12:36:28 PM

Filters: Comparing and Extracting

415

COMBINING COLUMNS OF DATA: paste

Related fi lters : colrm, cut, join
 The paste program combines columns of data. This program has a great deal of fl exibility.
You can combine several fi les, each of which has a single column of data, into one large table.
You can also combine consecutive lines of data to build multiple columns. In this section, I
will concentrate on the most useful feature of paste: combining separate fi les. If you want
more details on what paste can do for you, check the man page (man paste).
 The syntax of the paste program is:

paste [-d char...] [file...]

where char is a character to be used as a separator, and fi le is the name of an input fi le.
 You use paste to combine columns of data into one large table. If you want, you
can save the table in a fi le by redirecting standard output. Here is an example. You have
four fi les named idnumber, name, birthday and phone. The contents of the fi les
are as follows.
 The fi le idnumber:

012-34-5678
123-45-6789
234-56-7890
345-67-8901

The fi le name:

Ambercromby, Al
Barton, Barbara
Canby, Charles
Danfield, Deann

The fi le birthday:

01/01/85
02/02/86
03/03/87
04/04/88

And fi nally, the fi le phone:

HINT

When you want to extract fi elds from a fi le that has both delimiters and fi xed width columns,
you can use either cut -d or cut -c. In such cases, you will fi nd that working with delimiters
(-d) is a better choice as it is less prone to error.

Combining Columns of Data: paste

33614_17_395_420.indd 41533614_17_395_420.indd 415 1/9/2008 12:36:28 PM1/9/2008 12:36:28 PM

Chapter 17

416 Harley Hahn’s Guide to Unix and Linux

555-1111
555-2222
555-3333
555-4444

You want to build one large fi le named info that combines all this data into a single
table. Within the table, the data from each fi le should be put into its own column. The
command to use is:

paste idnumber name birthday phone > info

The contents of info are:

012-34-5678 Ambercromby, Al 01/01/85 555-1111
123-45-6789 Barton, Barbara 02/02/86 555-2222
234-56-7890 Canby, Charles 03/03/87 555-3333
345-67-8901 Danfield, Deann 04/04/88 555-4444

You will notice that the output is spaced a bit oddly. That is because, by default, paste
puts a tab character between each column entry, and Unix assumes that tabs are set
every 8 positions, starting with position 1. In other words, Unix assumes that tabs are
set at positions 1, 9, 17, 25 and so on. (We will discuss the details of how Unix uses tabs
in Chapter 18.)
 To tell paste to use a different (non-tab) character between columns, use the -d
(delimiter) option followed by an alternative character in single quotes. For example, to
create the same table with a space between columns, use:

paste -d ' ' idnumber name birthday phone

Now your output looks like this:

012-34-5678 Ambercromby, Al 01/01/72 555-1111
123-45-6789 Barton, Barbara 02/02/73 555-2222
234-56-7890 Canby, Charles 03/03/74 555-3333
345-67-8901 Danfield, Deann 04/04/75 555-4444

If you specify more than one delimiter, paste will use each one in turn, repeating if
necessary. For example, the following command specifi es two different delimiters, a |
(vertical bar) and a % (percent sign).

paste -d '|%' idnumber name birthday phone

The output is:

012-34-5678|Ambercromby, Al%01/01/85|555-1111
123-45-6789|Barton, Barbara%02/02/86|555-2222
234-56-7890|Canby, Charles%03/03/87|555-3333
345-67-8901|Danfield, Deann%04/04/88|555-4444

33614_17_395_420.indd 41633614_17_395_420.indd 416 1/9/2008 12:36:28 PM1/9/2008 12:36:28 PM

Filters: Comparing and Extracting

417

Using cut and paste in sequence, you can change the order of columns in a table.
For example, say that you have a fi le named pizza containing information about four
different pizzas you are going to make for a party:

mushrooms regular sausage
olives thin pepperoni
onions thick meatball
tomato pan liver

You want to change the order of the fi rst and second columns. First, save each column to
a separate fi le:

cut -c 1-9 pizza > vegetables
cut -c 11-17 pizza > crust
cut -c 19-27 pizza > meat

Now combine the three columns into a single table, specifying the order that you want:

paste -d ' ' crust vegetables meat > pizza

Since this is a short fi le, you can display it using cat (see the discussion in Chapter 16).

cat pizza

The data now looks like this:

regular mushrooms sausage
thin olives pepperoni
thick onions meatball
pan tomato liver

(Of course, this is a small, contrived example, but think how important this technique would
be if you had to interchange columns in a fi le with hundreds or thousands of lines.)
 Once you have made the changes you want, there are two things left to do. First, use
the rm program (Chapter 25) to delete the three temporary fi les:

rm crust vegetables meat

Second, see if you can think of someone to invite to the party who is willing to eat a liver
and tomato pizza.

HINT

Think of paste as being similar to cat. The difference is that paste combines data
horizontally, while cat combines data vertically.

Combining Columns of Data: paste

33614_17_395_420.indd 41733614_17_395_420.indd 417 1/9/2008 12:36:28 PM1/9/2008 12:36:28 PM

Chapter 17

418 Harley Hahn’s Guide to Unix and Linux

C H A P T E R 1 7 E X E R C I S E S

REVIEW QUESTIONS

1. There are ten important Unix programs to compare, sort and select data from fi les.
What are the ten programs? Why are there so many programs?

2. By default, the comm program compares two fi les and generates three columns of
output. Explain the purpose of each column. How do you suppress a specifi c column?

3. Both the diff and sdiff programs compare fi les. When do you use diff and
when do you use sdiff?

4. You are given a large text fi le. Which program would you use to select: a) duplicate
lines, b) unique lines, c) lines containing a specifi c pattern, d) lines beginning with a
specifi c pattern, e) columns of data?

APPLYING YOUR KNOWLEDGE

1. You are interested in comparing favorite foods with your two friends Claude and
Eustace. Create three fi les named: me, claude, eustace. Each of the fi les contains
fi ve lines in sorted order, each of which has the name of a food. Using only two Unix
commands, display a list of those foods that appear in all three lists. Hint: You may
need to create a temporary fi le.

2. The comm program is used to compare sorted fi les; the diff program compares
unsorted fi les. Give three examples of types of data which you would compare using
comm. Give three examples of types of data where you would use diff. Are there any
instances where either program would work?

3. Each line of the Unix password fi le (/etc/passwd) contains information about a
userid. Within the line, the various fi elds of data are delimited by : (colon) characters.
One of the fi elds contains the name of the shell for that userid. Use the following
command to display and study the format of the password fi le on your system:

 less /etc/password

 (From within less, you can press <Space> to display the page down and q to quit.)
What command would you use to read the password fi le and display a list of the
various shells used on your system? How would you sort the output to make it more
readable? How would you eliminate duplications?

4. CSV format (comma-separated value format) describes a fi le containing machine-
readable data in which fi elds are separated by commas. You have fi ve fi les — data1,
data2, data3, data4, and data5 — each of which contains a single column

33614_17_395_420.indd 41833614_17_395_420.indd 418 1/9/2008 12:36:28 PM1/9/2008 12:36:28 PM

Filters: Comparing and Extracting

419

of data. What command would you use to put the fi ve columns together into one
CSV-formatted fi le named csvdata? What happens if one of the fi les has fewer
lines in it than the other fi les?

FOR FURTHER THOUGHT

1. The purpose of the diff program is to highlight differences by displaying terse
instructions for turning the fi rst fi le into the second fi le. Create two fi les named a and
b. Compare the output of the following commands:

 diff a b
 diff b a

 What patterns do you notice?

2. Why is the output of the diff command so compact? Should it be easier to
understand?

3. You are given a text fi le with 10,000 lines. The fi le contains two columns of data, and
you must change the order of the columns. You can do so quickly and accurately by
using the cut and paste commands. Suppose you did not have these commands?
Using any other tools at your disposal, how might you accomplish the job? Consider
using a text editor, word processor, a spreadsheet program, writing a program of your
own, and so on. Is there anything you can think of that is easier than the Unix cut and
paste programs? Why is this? What qualities do the programs in this chapter have
that make them so useful?

Chapter 17 Exercises

33614_17_395_420.indd 41933614_17_395_420.indd 419 1/9/2008 12:36:29 PM1/9/2008 12:36:29 PM

33614_17_395_420.indd 42033614_17_395_420.indd 420 1/9/2008 12:36:29 PM1/9/2008 12:36:29 PM

421

C H A P T E R 1 8

Filters:
Counting and Formatting

This is the third of four chapters (16-19) in which we discuss fi lters: programs that read
and write textual data, one line at a time, reading from standard input and writing to
standard output. In this chapter, we will talk about how to manipulate text. In particular,
I’ll show you how to work with line numbers; how to count lines, words and characters;
and how to format text in a variety of useful ways.
 Along the way, we’ll digress a bit so I can cover several very interesting topics, including
how Unix handles tabs and spaces, and why you will often see 80-character lines in text
fi les: a story that is a lot more interesting than you might think.

CREATING LINE NUMBERS: nl

Related fi lters : nl

The nl fi lter provides a simple but useful service: it inserts line numbers into text. The
syntax is:

nl [-v start] [-i increment] [-b a] [-n ln|rn|rz] [file...]

where start is the starting number, increment is the increment, and fi le is the name of a fi le.
 The nl program comes in handy in two situations. First, when you want to insert
permanent line numbers into some data, which you will then save. Second, when you
want to insert temporary line numbers into the output of a command to make the output
easier to understand. Let’s start with a simple, but useful example.
 You are going on a blind date, and you want to be sure to make a good impression. To
prepare for the date, you create a fi le named books containing a list of your favorite books:

Crime and Punishment
The Complete Works of Shakespeare
Pride and Prejudice
Harley Hahn's Internet Yellow Pages
Harley Hahn's Internet Insecurity
Harley Hahn's Internet Advisor

Creating Line Numbers: nl

33614_18_421_446.indd 42133614_18_421_446.indd 421 1/9/2008 12:36:56 PM1/9/2008 12:36:56 PM

Chapter 18

422 Harley Hahn’s Guide to Unix and Linux

To number the list, you can use the command:

nl books

The output is:

1 Crime and Punishment
2 The Complete Works of Shakespeare
3 Pride and Prejudice
4 Harley Hahn's Internet Yellow Pages
5 Harley Hahn's Internet Insecurity
6 Harley Hahn's Internet Advisor

This looks good, so you save the numbered list by redirecting the standard output to a fi le
named best-books:

nl books > best-books

You now have a list of favorite books, complete with line numbers, with which to impress
your date.
 The nl program is an old one, dating back to the early days of Unix. Traditionally, nl
is used to insert line numbers into text before printing. For example, let’s say you have
two fi les of scientifi c data: measurements1 and measurements2. You want to print
all the data and, to help you interpret it, you want to number each line on the printout.
However, you don’t want to change the original data.
 The strategy is to use nl to number the lines and then redirect the output to the lpr
program, which sends the data to your default printer. (The two principal Unix programs
to print fi les are lp and lpr.)

nl measurements1 measurements2 | lpr

In this way, you create temporary numbers that are used once and then thrown away.
 In the early days of Unix, terminals printed their output on paper, which was slow,
and it was common to send data to a real printer, which could print a lot faster than a
terminal. Today, it usually makes more sense to display data on your screen. In this case,
all you need to do is pipe the output of nl to less (Chapter 21), which will display the
output one screenful at a time:

nl measurements1 measurements2 | less

Again, the original data is not changed. When you use nl, line numbers are always
temporary, unless you save the output to a fi le.
 By default, nl generates the numbers 1, 2, 3, and so on, which is fi ne. If the need arises,
however, there are a few options you can use to control the numbering. You can change
the starting number by using the -v option, and change the increment by using the -i
option. To show you how it works, here are some examples using a fi le called data that
contains several lines of text.
 The fi rst example starts numbering at 100:

33614_18_421_446.indd 42233614_18_421_446.indd 422 1/9/2008 12:36:57 PM1/9/2008 12:36:57 PM

Filters: Counting and Formatting

423

nl -v 100 data

The output is:

100 First line of text.
101 Second line of text.
102 Third line of text.
103 Fourth line of text.

The next example starts numbering at 1 (the default) with an increment of 5:

nl -i 5 data

The output is:

 1 First line of text.
 6 Second line of text.
11 Third line of text.
16 Fourth line of text.

The third example uses both options to start numbering at 100 with an increment of 5:

nl -i 5 -v 100 data

The output is:

100 First line of text.
105 Second line of text.
110 Third line of text.
115 Fourth line of text.

In addition to -v and -i, the nl program has a variety of formatting options. However,
there are only two you are likely to need. First, by default, if your data has blank lines, nl
will not number them. To force nl to number all lines, use the -b (body numbering)
option followed by the letter a (all lines):

nl -b a file

The -b option has other variations, but they are rarely used. Second, you can control the
format of the numbers by using the -n (number format) option followed by a code:

ln = left-justified, no leading zeros
rn = right-justified, no leading zeros
rz = right-justified, leading zeros

Here is an example:

nl -v 100 -i 5 -b a -n rz file

This command generates numbers starting with 100, using an increment of 5. All lines
are numbered, even blank lines, and the numbers are right-justifi ed with leading zeros.

Creating Line Numbers: nl

33614_18_421_446.indd 42333614_18_421_446.indd 423 1/9/2008 12:36:57 PM1/9/2008 12:36:57 PM

Chapter 18

424 Harley Hahn’s Guide to Unix and Linux

COUNTING LINES, WORDS AND CHARACTERS: wc

Related fi lters : nl

The wc (word count) program counts lines, words and characters. The data may come
from another program or from one or more fi les. The syntax is simple:

wc [-clLw] [file...]

where fi le is the name of a fi le.
 The wc program is very useful, in fact, more useful than you might realize at fi rst. This
is because you can use wc within a pipeline to analyze textual output from any program
you want. For example, let’s say you want to know how many fi les are in a particular
directory. You can count all the fi les by hand, or you can generate a list and then pipe it to
wc to count the lines for you. (I’ll show you an example in a moment.)
 Let’s start with the basics. By default, the output of wc consists of three numbers: the
number of lines, words and characters in the data. For example, wc might report that a
fi le contains exactly 2 lines, 13 words and 71 characters.
 When input comes from a fi le, wc will write the fi le name after the three numbers.
If you specify more than one fi le, wc will display one line of output for each fi le, and
an extra line showing the total count — lines, words and characters — for all the fi les
put together.
 Here is the example. You are writing a romantic poem for your sweetheart for
Valentine’s Day. This is all you have written so far:

There was a young man from Nantucket,
Whose girlfriend had told him to

To count the lines, words and characters in the poem, use:

wc poem

The output is:

2 13 71 poem

In other words, the fi le has 2 lines, 13 words and 71 characters. If you forget which number
is which, just remember: Lines, Words, Characters. (If you are a man, you can remember
the acronym LWC, “Look at Women Carefully”.)
 Here are the technical details:

• A “character” is a letter, number, punctuation symbol, space, tab or newline.

• A “word” is an unbroken sequence of characters, delimited by spaces, tabs or newlines.

• A “line” is a sequence of characters ending with a newline. (The newline character is
discussed in Chapter 7.)

As I mentioned, if you specify more than one fi le at a time, wc will also show you total
statistics. For example:

33614_18_421_446.indd 42433614_18_421_446.indd 424 1/9/2008 12:36:57 PM1/9/2008 12:36:57 PM

Filters: Counting and Formatting

425

wc poem message story

Here is some typical output*:

 2 13 71 poem
15 61 447 message
43 552 3050 story
60 626 3568 total

By convention, output is always displayed in the following order: number of lines, number
of words, number of characters. If you do not want all three numbers, you can use the
options: -l counts lines, -w counts words, and -c counts characters. When you use
options, wc displays only the numbers you ask for. For example, to see only the number
of lines in the fi le story, use:

wc -l story

The output is:

43 story

To see how many words and characters are in the fi le message, use:

wc -wc message

The output is:

61 447 message

The -c (character), -l (line), and -w (word) options have been part of the wc command
for decades and can be used with any type of Unix or Linux. With Linux, there is also
another option, -L. This option displays the length of the longest line in the input. For
example, let’s say you are planning a big party, and you need a list to give to the bouncers
of all the people who are not allowed entry. You have created the fi le do-not-admit,
with the following four lines:

Britney
Paris
Nicole
Lindsay

To display the length of the longest line in this fi le, you would use:

wc -L do-not-admit

In this case, the fi rst and fourth lines have 7 characters, so the output is:

7 do-not-admit

 *These fi les contain real-life data. The poem is the sample poem we used above; the message is an email message from my
editor, dated February 16, 2006, asking when the book would be done; and the story is “Late One Night”, written by me, which
you can fi nd on my Web site www.harley.com.

Counting Lines, Words and Characters: wc

33614_18_421_446.indd 42533614_18_421_446.indd 425 1/9/2008 12:36:57 PM1/9/2008 12:36:57 PM

http://www.harley.com

Chapter 18

426 Harley Hahn’s Guide to Unix and Linux

The -L option comes in handy when you need to decide if a fi le needs some type of
formatting. For example, if a fi le has any lines longer than, say, 70 characters, you might
use fmt to format the text before sending it to pr to prepare for printing (explained later
in the chapter).
 As you gain experience, you will fi nd that there are two main ways to use wc. First,
there are times when you need a quick measure of the size of a fi le. For example, let’s say
you email a text fi le to someone. The fi le is important, and you want to double-check that
it arrived intact. Run the wc command on the original fi le. Then tell the recipient to run
wc on the other fi le. If the two sets of results match, you can feel confi dent the fi le arrived
intact. Similarly, suppose you are writing an essay that must be at least 2,000 words. From
time to time, you can use wc -w to see how close you are getting to your target.
 The second use for wc is different, but just as important: you can pipe the output
of a command to wc and check how many lines of text were generated. Because many
programs generate one item of information per line, you can, by counting the lines, know
how much information was produced. Here are two examples.
 First, the ls program (Chapter 24) lists the names of fi les in a directory. For example,
the following command displays the names of all the fi les in the /etc directory. (We will
discuss directories in Chapter 24.)

ls /etc

The ls program has many options. However, there is no option for counting the number
of fi les. To do so, you pipe the output of ls to wc. Thus, to count the number of fi les in
the /etc directory, you use:

ls /etc | wc -l

(Try it on your system.)
 Here is the second example. In Chapter 8, I showed you how to use who to fi nd out
which userids are logged in to your system. To display the number of userids* logged in,
all you have to do is count the lines of output of the who command:

who | wc -l

If you want to get fancy, you can combine this last pipeline with the echo program
(Chapter 12) and command substitution (Chapter 13) to display a message showing the
number of userids currently logged in:

echo "There are `who | wc -l` userids logged in right now."

For example, if 5 people are logged in, you will see:

There are 5 userids logged in right now.

If you share a multiuser system, this is an interesting command to put in your login fi le
(see Chapter 14).

 *A userid (“user-eye-dee”) is not a person. It is a name used to log in to a Unix system. As we discussed in Chapter 4, Unix
knows only about userids, not users.

33614_18_421_446.indd 42633614_18_421_446.indd 426 1/9/2008 12:36:57 PM1/9/2008 12:36:57 PM

Filters: Counting and Formatting

427

HOW UNIX USES TABS
When you look at your keyboard, you see a <Tab> key. This key is a holdover from the
days when tabs were used on typewriters. Although we don’t use tabs anymore, we still
use the <Tab> key, and Unix still uses tab settings. To understand why, let’s take a moment
and travel back in time to the days when typewriters were the dominant form of life in
the offi ce machine community.
 The word “tab” is an abbreviation for “tabulate”, which means to organize information
into a table. The <Tab> keys on the old typewriters were designed to help line up
information in columns and to indent text at the beginning of paragraphs. Here is an
example showing how it used to work.
 You are using an old typewriter, and you want to type a table with three columns.
The columns should line up at positions 1, 15 and 25. To prepare, you set two small
mechanical markers, called TAB STOPS at positions 15 and 25.
 Once this is done, pressing the <Tab> key will cause the carriage to move horizontally
to the next tab stop. For example, if you are at position 8 and you press <Tab>, the
carriage will move to position 15. If you are at position 19, and you press <Tab>, the
carriage will move to position 25. Thus, setting the tab stops in this way gives you an easy
way to jump directly to positions 15 and 25 without having to press the <Space> bar
repeatedly (and without having to back up if you go too far).
 You are now ready to type your table. To start, you put in a piece of paper and position
the carriage at the beginning of the line. You type the information for the fi rst column
and then press the <Tab> key. This causes the carriage to move to position 15. You
type the information for the second column and press <Tab> again. The carriage now
moves to position 25. You then type the information for the third column. You are now
fi nished typing the fi rst row of your table. You press the carriage return lever all the way
to left, which moves the carriage to the beginning of the next line, leaving you ready to
type the next row.
 Although the original Unix terminals (see Chapter 7) were not typewriters, they did
print on paper and they were able to jump horizontally when they encountered a tab
character. For this reason, Unix was designed so that whenever a terminal encountered
a tab character, it would act like a typewriter by moving the cursor to the next tab stop
on the current line — and, to this day, that is still the case. Unix terminals “display” a tab
character by moving the cursor forward to the next tab stop.
 By default, Unix assumes that there are tab stops every 8 characters, starting with
position 1. Thus, the default Unix tab positions are 1, 9, 17, 25, 33, and so on. When
you are typing text and you press the <Tab> key, Unix inserts an invisible tab character.
Later, when you look at the text, your terminal will “display” the tab character by
creating enough horizontal space to jump to the next tab stop, just like the <Tab> key
on an old typewriter.
 Consider this example. You have a one-line fi le containing the letter “A”, a tab character,
the letters “BBBBB”, another tab character, and the letters “CCC:

A<Tab>BBBBB<Tab>CCC

How Unix Uses Tabs

33614_18_421_446.indd 42733614_18_421_446.indd 427 1/9/2008 12:36:57 PM1/9/2008 12:36:57 PM

Chapter 18

428 Harley Hahn’s Guide to Unix and Linux

If you use the cat command to display this fi le, you will see:

A BBBB CCC

The A is at position 1. The BBBB starts at position 9, and the CCC starts at position 17.
 Of course, you can’t see the tabs: they look like empty space. Thus, as far as your eye is
concerned, the gap between the letters might as well be space characters, which are also
invisible. For instance, in the example above, when you look at the output of the cat
command, you can’t tell if the empty space between A and BBBB is (in this case) 1 tab
or 7 spaces.
 So, the question arises: when you want to indent text or align data into columns,
which is better to use, tabs or spaces? This question has been debated for a long time by
programmers, because they use empty space to indent control-fl ow constructs (if-then-
else, while loops, and so on).
 Some programmers prefer to use tabs for indentation, because they are simpler. For
example, each time you press <Tab>, it inserts a single tab character which automatically
indents the text to the position of the next tab stop. If you use spaces, you need to press
the <Space> bar multiple times, in order to line up the text by hand.
 In addition, tabs are also more fl exible than spaces. For example, if you want to change
the amount of indentation you see on your screen, you need only change the tab stop
settings within your text editor program. If you use spaces, you have to go to each line in
the program and add or delete actual space characters.
 Other programmers argue for using spaces for indentation. Tabs, they say, are clumsy
to use because the amount of space they generate varies. A single tab character, they point
out, can represent 1 to 8 positions of empty space depending on its location within the
line. When you use spaces, what you use is exactly what you get: type 4 spaces, and you
get 4 spaces.
 Moreover, although it is true you can adjust the tab stop settings within most text
editors, much of the time you will be stuck with the default: positions 1, 9, 17, 25, and
so on. This much spacing is too much, as it creates large indentations, making the text
hard to read. By using real spaces, you can indent 2 or 3 or 4 positions — whatever you
want — and it will work exactly the way you want, no matter what text editor or other
programs you use.
 Of course, the need to create horizontal spacing applies to more than computer
programs. Whenever you work with any type of text that requires indentation or that is
organized into columns, you must choose whether to use tabs or spaces.
 I can’t tell you what to use, because everyone has a preference as to what he or
she likes best. Over time, you will fi gure out which choice one works better for you.
(Personally, I prefer spaces to tabs.)* What I can tell you is that — whichever choice
you end up making — there are two Unix programs to make your life easier (expand
and unexpand), which we will cover in a moment. First, however, we need to discuss a
more fundamental question.

 *When I write programs, I indent 4 positions. When I write HTML (Web pages), I indent 2 positions.

33614_18_421_446.indd 42833614_18_421_446.indd 428 1/9/2008 12:36:57 PM1/9/2008 12:36:57 PM

Filters: Counting and Formatting

429

VISUALIZING TABS AND SPACES
When you work with a fi le that contains tabs and spaces, a problem arises. Since tabs and
spaces are invisible, how can you tell where they are?
 This can be important when you are working with programs like expand and
unexpand (which we will discuss in the next two sections). The expand program
changes tabs into spaces; unexpand changes spaces into tabs. If you can’t see the tabs
and spaces, how do you know the commands did what you wanted them to do?
 The simplest solution is to view the fi le from within a text editor or word processor
that lets you turn on an option to view invisible characters. There are two choices.
 With the vi editor (Chapter 22), the command to use is:

:set list

Spaces will still be invisible, but tabs will show up as ^I, the control character that
represents a tab in the ASCII code. To turn off the option, use:

:set nolist

If you know how to use vi, this is an excellent solution to the problem: quick and easy.
In fact, this is how I look at whitespace in fi les.
 If you don’t know vi, you can use the Nano or Pico editors, which I mentioned
in Chapter 14. (They are basically the same editor; Nano is the GNU version of Pico.)
Within Nano/Pico, you view spaces and tabs by pressing <Esc>P (that is, press the <Esc>
key, then press the <P> key). This turns on “Whitespace display mode”. To turn it off, just
press <Esc>P a second time.
 Before you can use <Esc>P, however, you must add the following line to your Nano/
Pico initialization fi le, either .nanorc or .picorc respectively (see Chapter 14):

set whitespace "xy"

where x is the character you want to indicate a tab, and y is the character you want to
indicate a space.
 For example, if you want a tab to show up as a + (plus) character, and a space to show up
as a | (vertical bar) character, put the following line in your Nano/Pico initialization fi le:

set whitespace "+|"

Using vi or Nano/Pico to view spaces and tabs works well. Unfortunately, vi is
complicated (as you will see in Chapter 22), and it will take you a long time to learn how
to use it well. Nano/Pico is a lot simpler but, like vi, it does take time to learn.
 So what about the very simple GUI-based editors, Kedit and Gedit, we discussed in
Chapter 14? As I mentioned, these editors are easy to use. However, they are not very
powerful. In particular, they do not allow you to view invisible characters, so let’s forget
about them for now.
 If your system has Open Offi ce, a collection of open source offi ce applications, there is
another solution. The Open Offi ce word processor makes it easy to view tabs and spaces

Visualizing Tabs and Spaces

33614_18_421_446.indd 42933614_18_421_446.indd 429 1/9/2008 12:36:57 PM1/9/2008 12:36:57 PM

Chapter 18

430 Harley Hahn’s Guide to Unix and Linux

within a fi le. Just pull down the View menu and select “Nonprinting Characters”. You
turn off the feature the same way. Simple and easy.
 Aside from viewing a fi le in a text editor or word processor, there is a way to check
the effects of expand or unexpand indirectly. You can use the wc -c command
(discussed earlier in the chapter) to display the number of characters in the fi le.
 Since each tab is a single character, when you use expand to change tabs to spaces
within a fi le, the number of characters in the fi le will increase. Similarly, when you use
unexpand to change spaces to tabs, the number of characters in the fi le will decrease.
Although using wc -c won’t show you the invisible characters, it will give you an
indication as to whether or not expand or unexpand worked.

CHANGING TABS TO SPACES: expand

Related fi lters: unexpand

As we discussed earlier in the chapter, when you need to indent text or align data into
columns, you can use either tabs or spaces. The choice is yours. Regardless of your
preference, however, there will be times when you will fi nd yourself working with data
that has tabs, which you need to change into spaces. Similarly, there will be times when
you have data with spaces, which you need to change into tabs. In such cases, you can use
the expand program to change tabs to spaces, and the unexpand program to change
spaces to tabs. Let’s start with expand.
 The syntax is:

expand [-i] [-t size | -t list] [file...]

where size is the size of fi xed-width tabs, list is a list of tab stops, and file is the name
of a fi le.
 The expand program changes all the tabs in the input fi le to spaces, while maintaining
the same alignment as the original text. By default, expand uses the Unix convention that
tab stops are set for every 8 positions: 1, 9, 17, 25, 33, and so on. Thus, each tab in the input
will be replaced by 1 to 8 spaces in the output. (Think about that until it makes sense.)
 As an example, consider the following fi le named animals, which contains data
organized into columns. When you display animals, you see the following:

kitten cat
puppy dog
lamb sheep
nerd programmer

As you can see, the fi le contains four lines of data. What you can’t see is that each line
consists of two words separated by a tab:

kitten<Tab>cat
puppy<Tab>dog
lamb<Tab>sheep
nerd<Tab>programmer

33614_18_421_446.indd 43033614_18_421_446.indd 430 1/9/2008 12:36:57 PM1/9/2008 12:36:57 PM

Filters: Counting and Formatting

431

(I have used the designation <Tab> to represent a single tab character.)
 The following command expands each tab to the appropriate number of spaces, saving
the output in a fi le named animals-expanded:

expand animals > animals-expanded

The new fi le now contains the following:

kitten<Space><Space>cat
puppy<Space><Space><Space>dog
lamb<Space><Space><Space><Space>sheep
nerd<Space><Space><Space><Space>programmer

(I have used the designation <Space> to represent a single space character.)
 If you display the new fi le using cat or less, it will look the same as the original
fi le. However, if you use a text editor or word processor to view the invisible characters
(as I described in the previous section), you will see that all the tabs have been changed
to spaces. More specifi cally, within each line, expand has removed the tab and inserted
enough spaces so the following word starts at the next tab stop, in this case, position 9.
 As I mentioned, expand uses the Unix default by assuming that there are 8 positions
between each tab stop. You can change this with the -t (tab stop) option. There are
two variations. First, if all the tab stops are the same distance apart, use -t followed by
that number.
 For example, let’s say you have a large fi le named datathat contains some tabs. You
want to expand the tabs into spaces and save the output in the fi le data-new. However,
you want the tab stops to be set at every 4 characters, rather than every 8 characters; that
is, you want: 1, 5, 9, 13, and so on. Use the command:

expand -t 4 data > data-new

Using this notation, we can say that -t 8 would be the same as the Unix default, tab
stops at every 8 positions; -t 4 creates tab stops at every 4 positions.
 The -t has a second variation. If you want the tab stops to be at specifi c positions,
you can specify a list with more than one number, separated by commas. Within the list,
numbering starts at 0. That is, 0 refers to the fi rst position on the line; 1 refers to the
second position on the line; and so on. For example, to set tab stops at positions 8, 16, 22
and 57, you would use:

expand -t 7,15,21,56 data > data-new

Finally, there is an option to use when you want to expand tabs, but only at the beginning
of a line. In such cases, use the -i (initial) option, for example:

expand -i -t 4 data > data-new

This command expands tabs, but only at the beginning of a line. All other tabs are left
alone. In this case, because of the -t option, the tab stops are considered to be at positions
1, 5, 9, and so on.

Changing Tabs to Spaces: expand

33614_18_421_446.indd 43133614_18_421_446.indd 431 1/9/2008 12:36:57 PM1/9/2008 12:36:57 PM

Chapter 18

432 Harley Hahn’s Guide to Unix and Linux

CHANGING SPACES TO TABS: unexpand

Related fi lters: expand

To change spaces to tabs, you use the unexpand program. The syntax is:

unexpand [-a] [-t size | -t list] [file...]

where size is the size of fi xed-width tabs, list is a list of tab stops, and file is the name
of a fi le.
 The unexpand program works as you would expect, like expand in reverse, replacing
spaces with tabs in such a way that the original alignment of the data is maintained.
 As with expand, the default tab settings are every 8 positions: 1, 9, 17, and so on. To
change this, you use the same two forms of the -t option as with expand: a fi xed interval
(such as -t 4; every 4 positions), or a list of tab stops (such as -t 7,15,21,56). If
you use a list, numbering starts at 0. That is, 0 refers to the fi rst position on the line; 1
refers to the second position on the line; and so on.
 One important difference between expand and unexpand is that, by default,
unexpand only replaces spaces at the beginning of a line. This is because, most of the
time, you would only use unexpand with lines that are indented. You would probably
not want to replace spaces in the middle of a line. If, however, you do want to override
this default, you can use the -a (all) option. This tells unexpand to replace all spaces,
even those that are not at the beginning of a line.
 As an example, let’s say that you are a student at a prestigious West Coast university,
majoring in Contemporary American Culture. You have just attended a lecture about
Mickey Mouse, during which you have taken careful notes. When you get home, you use
a text editor to type your notes into a fi le named rough-notes. It happens that, when
you indent lines, your text editor inserts 4 spaces for each level of indentation:

Mickey Mouse (1928-)
 Major figure in American culture
 Girlfriend is Minnie Mouse
 (Why same last name, if they are not married?)
 Did not speak until 9th film; The Karnival Kid, 1929
 First words were "Hot Dogs"
For exam, be sure I am able to:

HINT

The expand program is useful for pre-processing text fi les with tabs before sending the fi les to
a program that expects columns to line up exactly.
 For example, the following pipeline replaces all the tabs in a fi le named statistics,
which has tab stops at every 4 positions. After the tabs are replaced, the fi rst 15 characters of
each line are extracted, and the result is sorted:

expand -t 4 statistics | cut -c 1-15 | sort

33614_18_421_446.indd 43233614_18_421_446.indd 432 1/9/2008 12:36:58 PM1/9/2008 12:36:58 PM

Filters: Counting and Formatting

433

 Compare Mickey to President Roosevelt & Elvis Presley
 Contrast Mickey with Hamlet (both tortured souls)

You want to change all the initial spaces to tabs and save the data in a fi le called mickey.
The command to use is:

unexpand -t 4 rough-notes > mickey

Once you run this command, the fi le mickey contains:

Mickey Mouse (1928-)
<Tab>Major figure in American culture
<Tab>Girlfriend is Minnie Mouse
<Tab><Tab>(Why same last name, if they are not married?)
<Tab>Did not speak until 9th film; The Karnival Kid, 1929
<Tab>First words were "Hot Dogs"
For exam, be sure I am able to:
<Tab>Compare Mickey to President Roosevelt & Elvis Presley
<Tab>Contrast Mickey with Hamlet (both tortured souls?)

(I have used the designation <Tab> to represent a single tab character.)

FORMATTING LINES: fold

Related fi lters: fmt, pr

With this section, we begin a discussion of three programs that reformat text to make
it easy to read or make it suitable for printing. The fold program works with lines;
the fmt program works with paragraphs; and the pr program works with pages and
columns. We’ll start with fold.
 The fold program performs one simple task: it breaks long lines into shorter lines.
If you have a fi le with overly long lines, fold is wonderful. In an instant, it can break the
lines according to your specifi cations, a task that would otherwise take you a great deal of
time to do by hand. The syntax for fold is:

fold [-s] [-w width] [file...]

where width is the maximum width of the new lines, and file is the name of a fi le.
 By default, fold breaks lines at position 80. There is a reason for this: in the 1970s,
when Unix was developed, 80 was considered to be a round number with respect to lines
of text (see the next section). These days, most people don’t want text that wide, and
80 is usually too long. To change the width, use the -w (width) option, followed by the
maximum line size you want. For example, to read data from a fi le named long-lines,
reformat it into lines that are no longer than 40 characters, and save the output in a fi le
named short-lines, you would use:

fold -w 40 long-lines > short-lines

Formatting Lines: fold

33614_18_421_446.indd 43333614_18_421_446.indd 433 1/9/2008 12:36:58 PM1/9/2008 12:36:58 PM

Chapter 18

434 Harley Hahn’s Guide to Unix and Linux

When fold breaks a line, all it does is insert a return character (see Chapter 7) in the
appropriate place, making two lines out of one. Here is an example to show you how it
works. You have a fi le named alphabet, which has two lines as follows:

abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ

Each line is 26 characters long. The following command breaks the lines in half, by
inserting a return after the 13th character:

fold -w 13 alphabet

The output is:

abcdefghijklm
nopqrstuvwxyz
ABCDEFGHIJKLM
NOPQRSTUVWXYZ

When used in this manner, fold breaks each long line at its maximum length. For
instance, in the last example, fold broke the lines at exactly 13 characters. This is fi ne
when you have data that will not be distorted by such changes. However, most of the
time, you will want to reformat lines that contain words and, with this type of text, you
won’t want fold breaking a line in the middle of a word.
 For example, most word processors store every paragraph as a single long line. When
text is stored in this way, the only breaks come between paragraphs. Suppose you have
copied the following text from a word processor, so that what you see below is actually
one very long line:

"Man cannot survive except through his mind. But the mind
is an attribute of the individual. There is no such thing
as a collective brain. The man who thinks must think and
act on his own."

You want to format this paragraph into 40-character lines. To do so, you use the command:

fold -w 40 speech

However, fold breaks the lines at exactly 40 characters, which means that some of the
lines are broken in the middle of words:

"Man cannot survive except through his m
ind. But the mind is an attribute of th
e individual. There is no such thing as
 a collective brain. The man who thinks
 must think and act on his own."

Instead, you use the -s option to tell fold not to break words:

fold -s -w 40 speech

33614_18_421_446.indd 43433614_18_421_446.indd 434 1/9/2008 12:36:58 PM1/9/2008 12:36:58 PM

Filters: Counting and Formatting

435

The output is:

"Man cannot survive except through his
mind. But the mind is an attribute of
the individual. There is no such thing
as a collective brain. The man who
thinks must think and act on his own."

Although the right margin is a bit ragged, the words are kept intact. If you want to save
the formatted text, just redirect the output:

fold -s -w 40 speech > speech-formatted

THE 80-CHARACTER LINE
For many years, programmers have used 80 characters per line of text, and terminals
have displayed 80 characters per line of output. With the advent of GUIs, which allow
you to resize windows dynamically, the magic number 80 pops up less often as an exact
line length. Nevertheless, it is still the case that many Unix programs use a default of 80
characters/line, for example:

• The fold program (which we discussed in the previous section) breaks lines, by
default, at position 80.

• If you look closely at pages in the online Unix manual (Chapter 9), you can see that
they are formatted for an 80-character line.

HINT

With some programs, you will fi nd yourself using the same options every time you use the
program. To streamline your work, you can defi ne an alias that includes the options (see
Chapter 13), so you won’t need to type them every time.
 As an example, let’s say you always use fold with -s -w 40. You can put one of the
following alias defi nitions in your environment fi le (see Chapter 14). The fi rst defi nition is for
the Bourne Shell family; the second is for the C-Shell family:

alias fold="fold -s -w 40"
alias fold "fold -s -w 40"

Now, whenever you use fold, you will automatically get the -s -w 40 options.
 If, from time to time, you want to run fold without -s -w 40, you can (as we discussed
in Chapter 13) suspend the alias temporarily by typing a \ (backslash) character in front of the
command name. For example, if you want to use fold with -w 60 instead of -s w 40, you
can use the command:

\fold -w 60 long-text > short-text

To run fold with no options, use:

\fold long-text > short-text

The 80-Character Line

33614_18_421_446.indd 43533614_18_421_446.indd 435 1/9/2008 12:36:58 PM1/9/2008 12:36:58 PM

Chapter 18

436 Harley Hahn’s Guide to Unix and Linux

• When you use a terminal emulator program (Chapter 3), the default line width is
usually 80 characters.

Why should this be the case? What’s so special about 80 characters/line? Here’s the story.
 In 1879, the American inventor Herman Hollerith (1860-1929) was working on a
system to handle the information for the upcoming U.S. census of 1880. He borrowed
an idea from the weaving industry which, since the early part of the 19th century, had
been using large cards with holes to control automated looms. Hollerith adapted this
idea and developed a system in which census data was stored on punched cards, one card
per person. Hollerith designed the cards to be the same size as U.S. banknotes*, which
allowed him to use existing currency equipment — such as fi lling bins — to process the
cards. The cards, which came to be known as PUNCH CARDS, had 20 columns, which
was later expanded to 45 columns.
 Hollerith’s system proved to be so useful that, in 1896, he founded the Tabulating
Machine Company (TMC) to manufacture his own machines. In 1911, TMC merged with
two other companies — the Computing Scale Company of America and International
Time Recording Company — to form the Computing Tabulating Recording Company
(CTR). In addition to tabulators and punch cards, CTR also manufactured commercial
scales, industrial time recorders, and meat and cheese slicers. In 1924, CTR formally
changed its name to International Business Machines (IBM).
 By 1929, IBM’s technology had advanced to the point where they were able to increase
the number of columns on punch cards. Using this new technology, the IBM punch card
— which, as you remember, was the size of the old dollar bill — was just large enough
to hold 80 columns, each of which could store a single character. Thus, when the fi rst
IBM computers were developed in the late 1950s, they used punch cards that stored 80
characters/card. As a result, programs and data were stored as 80-character lines and,
within a short time, this became the de facto standard.
 By the 1980s, punch cards were phased out as programmers began to use terminals
and, later, personal computers. However, the 80-character standard persisted, as both
terminals and PCs used screens that displayed 80 characters per line, this being what
programmers (and programs) expected. It was during this era that Unix was developed,
so it was only natural the 80-character line would be incorporated into the Unix culture.
 Now you understand why — over 25 years later, and in spite of the popularity of GUIs
— the 80-character line survives in various nooks and crannies within the world of Unix.

FORMATTING PARAGRAPHS: fmt

Related fi lters: fold, pr

The fmt program formats paragraphs. The goal is to join the lines within a paragraph so
as to make the paragraph as short and compact as possible, without changing the content
or the whitespace. In other words, fmt makes text look nice.

 *In 1862, the U.S. government issued its very fi rst banknote, a $1 bill that measured 7 3/8 inches x 3 1/8 inches. This was
the size of the banknotes in Hollerith’s time and, hence, the size of his punch cards. In 1929, the government reduced the
dimensions of banknotes by about 20 percent, to 6 1/8 inches x 2 5/8 inches, the size which is used today.

33614_18_421_446.indd 43633614_18_421_446.indd 436 1/9/2008 12:36:58 PM1/9/2008 12:36:58 PM

Filters: Counting and Formatting

437

 The syntax is:

fmt [-su] [-w width] [file...]

where width is the maximum width of a line, and fi le is the name of a fi le.
 When fmt reads text, it assumes that paragraphs are separated by blank lines. Thus,
a “paragraph” is one or more contiguous lines of text, not containing a blank line. The
fmt program works by reading and formatting one paragraph at a time according to the
following rules:

• Line width: Make each line as long as possible, but no longer than a specifi c length. By
default, the maximum line width is 75 characters, although you can change it with the
-w option. To do so, use -w followed by the line width you want, for example, -w 50.

• Sentences: Whenever possible, break lines at the end of sentences. Avoid breaking lines
after the fi rst word of a sentence or before the last word of a sentence.

• Whitespace: Preserve all indentations, spaces between words, and blank lines. This can
be modifi ed by using the -u option (see below).

• Tabs: Expand all tabs into spaces as the text is read and insert new tabs, as appropriate,
into the fi nal output.

As an example, let’s say you have a fi le named secret-raw, which contains the following
three paragraphs of text. Notice that the lines are not formatted evenly:

As we all know, real
success comes slowly and
is due to a number of different factors all coming
together
over a period of years.

Although there
is no real shortcut, there is a secret: a secret so
powerful that you can use it to
open doors that might otherwise be closed, and to
influence
people to help you time and again. In fact, I would
go as far as to say that this is the secret that has
a lot to do with my success.

The secret is simple...

You want to format the text using a line length of 50 characters and save the result in a fi le
named secret-formatted. The command to do so is:

fmt -w 50 secret-raw > secret-formatted

The contents of secret-formatted are now as follows:

Formatting Paragraphs: fmt

33614_18_421_446.indd 43733614_18_421_446.indd 437 1/9/2008 12:36:58 PM1/9/2008 12:36:58 PM

Chapter 18

438 Harley Hahn’s Guide to Unix and Linux

As we all know, real success comes slowly and is
due to a number of different factors all coming
together over a period of years.

Although there is no real shortcut, there is a
secret: a secret so powerful that you can use it
to open doors that might otherwise be closed,
and to influence people to help you time and
again. In fact, I would go as far as to say
that this is the secret that has a lot to do
with my success.

The secret is simple...*

The fmt program has several other options, but only two are important. The -u (uniform
spacing) option tells fmt to decrease white space so that there is no more than a single
space between words, and no more than two spaces at the end of a sentence, a style called
FRENCH SPACING**. For example, the fi le joke contains the following text:

A man walks into a drug store and goes up to the
pharmacist. "Do you sell talcum powder?" asks
the man. "Certainly," says
the pharmacist, "just walk
this way." "If I could walk that way," says the
man, "I wouldn't need talcum powder."

You format this with:

fmt -u -w 50 joke

The output is:

A man walks into a drug store and goes up to the
pharmacist. "Do you sell talcum powder?" asks
the man. "Certainly," says the pharmacist, "just
walk this way." "If I could walk that way,"
says the man, "I wouldn't need talcum powder."

Notice there is only a single space at the end of the fi rst sentence. This is because there was
only one space in the original fi le, and fmt does not add spaces, it only removes them.

 *This example is taken from an essay entitled “The Secret of My Success”. If you want to read the entire essay, you can fi nd
it on my Web site www.harley.com.
 **With French spacing, sentences are followed by two spaces instead of one. This style is generally used with monospaced fonts,
where all the characters are the same width. With such fonts, it helps the eye to have an extra space at the end of a sentence.
 The two principal Unix text editors, vi and Emacs, both recognize French spacing, which allows them to detect where
sentences begin and end. This allows vi and Emacs to work with sentences as complete units. For example, you can delete two
sentences, change a single sentence, jump back three sentences, and so on. For this reason, many Unix people form the habit of
using two spaces after a sentence. (I do, even when I type email.)

33614_18_421_446.indd 43833614_18_421_446.indd 438 1/9/2008 12:36:58 PM1/9/2008 12:36:58 PM

http://www.harley.com

Filters: Counting and Formatting

439

 The fi nal option, -s (split only), tells fmt to split long lines, but not to join short
lines. Use this option when you are working with text that has formatting you want to
preserve, for example, when you are writing a computer program.

THE OLDEN DAYS OF PRINTING
In the next two sections, we are going to discuss pr, a program that was created in the
early days of Unix, the 1970s. This was a time when printers were so expensive that no one
had his own and pr was designed to prepare fi les for printing in a shared environment.
However, as you will see, pr has important capabilities that — printing aside — are
useful in their own right for formatting text.
 Before we cover these topics, though, I want to take a moment to lay the foundation
by describing what it was like to print fi les in the early days of Unix.
 Because printers were expensive, they were almost always shared by a group of people.
Whenever a user wanted to print a fi le, he would enter the appropriate commands on his
terminal to format and print the fi le. Or he might run a program that generated printed
output. Each request for printing was called a “print job” and, each time a print job was
generated, it was put into the “print queue” to wait its turn. In this way, one print job after
another would be generated, stored and, ultimately, printed.
 The actual printer would be in a computer room, a common area used by many people,
usually programmers. Output was printed on continuous, fan-fold computer paper,
and the output of a single print job was called a “printout”. As printouts accumulated,
someone — often an “operator”, working in the computer room — would separate the
printouts by tearing the paper at a perforation. He would then put each printout in a bin,
where it would be picked up later by the person who initiated the print request.
 Because of how the system was organized, there had to be a way for the operator
to be able to take a stack of printed paper and divide it into separate print jobs. The
pr program was designed to meet the needs of both the user and the operator by
offering two services. First, pr would format the text into pages; second, pr would
make sure that each page had its own header, margin and page number. In that way,
printed output would not only look nice (for the user), it would be easy to organize (for
the operator).
 Today, many people think of the pr program as being only for printing, which is a
mistake. True, pr can still do what it was designed to do: prepare output to be sent to
a printer (hence the name pr). This is still a useful function, and we will discuss these
aspects of pr in the next section.
 However, pr can do a lot more for you than simply break text into pages and generate
headers, margins and line numbers. It can format text in several very useful ways,
especially when you learn how to combine pr with fold and fmt. For example, you
can use pr to arrange text from a single fi le into columns. You can also merge text from
multiple fi les, each fi le having its own column. So once we fi nish talking about the basic
functions of pr, I’ll show you how to use it in ways that have nothing to do with printing
and everything to do with being effi cient and clever.

The Olden Days of Printing

33614_18_421_446.indd 43933614_18_421_446.indd 439 1/9/2008 12:36:58 PM1/9/2008 12:36:58 PM

Chapter 18

440 Harley Hahn’s Guide to Unix and Linux

FORMATTING TEXT INTO PAGES: pr

Related fi lters: fold, fmt

The primary function of pr is to format text into pages suitable for printing. The pr
program can also format text into columns, as well as merge text from multiple fi les,
which we will talk about in the next section. The basic syntax for pr is below:

pr [-dt] [+beg[:end]] [-h text] [-l n] [-o margin] [-W width] [file...]

where beg is the fi rst page to format, and end is the last page to format; text is text for
the middle of the header; n is the number of lines per page; margin is the size of the left
margin; width is width of the output; and fi le is the name of a fi le.
 It is common to use pr as part of a pipeline to format text before it is sent to a printer.
For example, let’s say you have a program named calculate that generates data which
you want to print. The following pipeline sends the output of calculate to pr to be
formatted, and then to lpr to be printed. (The two principal Unix programs to print
fi les are lp and lpr.)

calculate | pr | lpr

Here is a similar example. You want to combine, format and print the contents of three fi les:

cat data1 data2 data3 | pr | lpr

By default, pr formats a page by inserting a header at the top, a margin on the left, and a
trailer at the bottom. Both the header and trailer take up fi ve lines. The left margin and the
trailer are just for spacing, so they are blank. The header, however, contains information
on its middle line: the date and time the fi le was last modifi ed, the name of the fi le, and
the page number. (These details can vary slightly depending on the version of pr you are
using.) As an example, here is a typical header. Leaving out the blank lines, this is what
you might see if you formatted a fi le named logfile:

2008-12-21 10:30 logfile Page 1

The pr program assumes pages have 66 lines. This is because old printers used 11-inch
paper and printed 6 lines/inch. The header (at the top) and the trailer (at the bottom)
each take up 5 lines, which leaves 56 lines/page for single-spaced text. When pr creates
pages, it processes page 1, page 2, page 3, and so on until all the data is formatted.
 If you want to test pr and see how it works, an easy way is to format a fi le and send
the output to less (Chapter 21). This will allow you to look at the formatted output

HINT

Today, most people do not use text-based tools for printing ordinary fi les. Instead, they use graphical
tools, such as word processors, which make it easy to control the formatting and pagination.
 However, if you are a programmer, you will fi nd that, when the need arises, the traditional
Unix tools (pr, fmt, nl, fold) are excellent for printing source code.

33614_18_421_446.indd 44033614_18_421_446.indd 440 1/9/2008 12:36:58 PM1/9/2008 12:36:58 PM

Filters: Counting and Formatting

441

one screenful at a time. For example, let’s say you are taking a class and you have written
an essay, which you have stored in a fi le named essay. To take a look at how pr would
format the text, you can use:

pr essay | less

If you like what you see, you can then send it to the printer:

pr essay | lpr

Or, you can save it to a fi le:

pr essay > essay-formatted

If your essay was originally written using a word processor, it will have very long lines.
This is because word processors store each paragraph as one long line*. In this case, you
can fi rst break the lines appropriately by using fold -s or fmt, whichever works best
with your particular text:

fmt essay | pr | less
fold -s essay | pr | less

Almost all of the time, you will fi nd that, when you use pr to format pages for printing,
the defaults are just fi ne. However, if the need arises, you can change them by using
several options. The most commonly used option is -d, which tells pr to use double-
spaced text.
 Consider the following example, which formats and prints the text fi le essay. This
simple pipeline starts by using fmt to format the lines of the fi le. The output of fmt is
sent to pr, where it is formatted into pages with double-spaced text. The output of pr is
then sent to the printer:

fmt essay | pr -d | lpr

The result is a spiffy, double-spaced, printed copy of your essay, suitable for editing or for
submitting to your teacher. Note that -d does not modify the original text: all it does is
specify what type of spacing to use when the text is formatted into pages. The original fi le
— essay in this case — is left unchanged.
 If you want to control which pages are formatted, use the syntax:

pr +begin[:end]

where begin is the fi rst page to format, and end is the last page to format.
 For example, to skip pages 1 and 2 — that is, to start from page 3 and continue to the
end of the fi le — use:

fmt essay | pr -d +3 | lpr

 *Word processing documents are stored in a special binary format. Almost all Unix fi lters, however, assume that data is
stored as text. Thus, if you want to work with a word processing document using the Unix programs in this chapter, you must
fi rst save the document as plain text from within the word processor program. For instance, in the examples above, the fi le
essay is the plain text version of a word processing document named essay.doc.

Formatting Text Into Pages: pr

33614_18_421_446.indd 44133614_18_421_446.indd 441 1/9/2008 12:36:58 PM1/9/2008 12:36:58 PM

Chapter 18

442 Harley Hahn’s Guide to Unix and Linux

To format and print pages 3 through 6 only, use:

fmt essay | pr -d +3:6 | lpr

If you want to specify the text for the middle part of the header, use the -h option,
for example:

fmt essay | pr -h "My Essay by Harley" | lpr

To change the total number of lines per page, use -l, followed by a number. For example,
say you want only 40 lines of text per page. Counting the header (5 lines) and the trailer
(also 5 lines) you need a total of 50 lines/page:

fmt essay | pr -l 50 | lpr

To eliminate the header, use the -t option. When you use -t, there will be no breaks between
pages, which means all the lines will be used for text. This is useful when you are formatting
text you do not want to print. For example, you might want to change single-spaced text
into double-spaced text. The following command formats the contents of essay, double-
spaced with no headers, and saves the output to a fi le named essay-double-spaced:

fmt essay | pr -t -d > essay-double-spaced

By default, pr does not insert a left margin. This is fi ne because, most likely, your
printer will be set up to create margins automatically. However, if you want to add
an extra left margin of your own, use the -o (offset) option, followed by the size of
the extra margin in spaces. In addition, you can change the width of the output (the
default is 72 characters), by using the -W option. (Note the uppercase W.) When you
use -W, lines that are too long are truncated, so you must be careful not to lose text.
The following is a particularly useful example that illustrates how you might use these
two options.
 If you are a student, you know there are times when you need your essays to be a bit
longer. For example, you might have an 8-page essay, but your teacher has asked for a
10-page essay. Of course, you could rework your notes, do more research, and rewrite the
essay. Or, you could simply print the essay double-spaced with wide margins.*
 The following example formats the contents of the fi le essay using double-spaced
pages, with a line width of 50 characters, and a left margin of 5 spaces; that is, 45 characters
of text per line. The result is an essay that looks signifi cantly longer than it really is:

fmt -w 45 essay | pr -d -o 5 -W 50 | lpr

If you want to check the output before you print it, use:

fmt -w 45 essay | pr -d -o 5 -W 50 | less

Note: It is necessary to use the option -w 45 with fmt because, by default, fmt produces
lines that are 72 characters long. However, in this case, we have asked pr to limit the
output to 45 characters of text per line. Thus, we need to make sure none of the lines are

 *You did not read this here.

33614_18_421_446.indd 44233614_18_421_446.indd 442 1/9/2008 12:36:58 PM1/9/2008 12:36:58 PM

Filters: Counting and Formatting

443

longer than 45 characters: otherwise, they would be truncated. As an alternative to fmt,
you could use the fold -s program, which yields similar formatting:

fold -s -w 45 essay | pr -d -o 5 -W 50 | lpr

FORMATTING TEXT INTO COLUMNS: pr
As we discussed in the previous section, the purpose of pr is to format text into pages
suitable for printing. In addition to the simple formatting we have discussed, pr can also
format text into columns. The input data can come from a single fi le or from several fi les.
 When you use pr to create columns, the syntax is as follows:

pr [-mt] [-columns] [-l lines] [-W width] [file...]

where columns is the number of output columns, lines is the number of lines per page,
width is the width of the output, and fi le in the name of a fi le.
 Let’s start with a single fi le. To specify the number of output columns, use a - (hyphen)
character followed by a number. For example, for two columns, use -2. To control the
length of the columns, use the -l option. Here is a typical example.
 You are an undergraduate student at a small, but prestigious liberal arts college. Your
academic advisor believes you will have a better chance of being accepted to medical

HINT

Both fold and fmt can be used to format lines of text. How do you know which one to use?
 The fold program does only one thing: break lines. By default, fold breaks lines at a
specifi c column. However, with the -s option, fold breaks lines between words. This leaves
the text a bit ragged on the right, but preserves the words.
 The fmt program formats paragraphs. Like fold, fmt breaks long lines. However, unlike
fold, fmt will also join together short lines.
 Thus, if you need to break lines at a specifi c point, you use fold. If you need to format text
that contains short lines, you use fmt. That much is clear.
 But what about when you need to break lines at word boundaries and the text is already
formatted? In that case, you can use either fold -s or fmt. Note: These two commands will
sometimes yield slightly different output, so try both and see which one works best with your
particular data.

HINT

When you pre-process text with fold or fmt before sending it to pr, it is wise to
specify the exact line width you want, because the three programs have different
defaults:

• fold: 80 characters/line
• fmt: 75 characters/line
• pr: 72 characters/line

Formatting Text Into Columns: pr

33614_18_421_446.indd 44333614_18_421_446.indd 443 1/9/2008 12:36:59 PM1/9/2008 12:36:59 PM

Chapter 18

444 Harley Hahn’s Guide to Unix and Linux

school if you participate in extracurricular activities, so you join the Anti-Mayonnaise
Society. As part of your duties, you agree to work on the newsletter. You have just fi nished
writing an article on why mayonnaise is bad. You have saved the article, as plain text, to a
fi le named article.
 Before you can import the article into your newsletter program, you need to format the
text into two columns, with a page length of 48 lines. The following pipeline will do the job.
Note the use of fmt to format the text into 35-character lines before sending it to pr:

fmt -w 35 article | pr -2 -l 48 > article-columns

The formatted text you need is now stored in a fi le named article-columns.
 Where did the number 35 come from? When you use pr the default line width is 72. There
will be at least one space at the end of each of the two columns, which leaves a maximum of 70
characters of text. Divide this by two to get a maximum of 35 characters/column. (If you use
the -W option to change the line width, you must change your calculations accordingly.)

 By default, pr aligns columns using tabs, not spaces. If you would rather have spaces,
all you have to do is use the expand program (discussed earlier in the chapter) to change
the tabs into spaces. For example, the following command line pipes the output of pr to
expand before saving the data:

fmt -w 35 article | pr -2 -l 40 | expand > article-columns

If you examine the output of this command carefully, you will see that the alignment is
maintained by using spaces, not tabs. (For help in visualizing tabs and spaces within text,
see the discussion earlier in the chapter.)
 The fi nal use for pr is to format multiple fi les into separate columns. Use the -m
(merge) option, and pr will output each fi le in its own column. For example, to format
three fi les into three separate columns, use:

pr -m file1 file2 file3

When you format three fi les in this way, the maximum width of each column is, by
default, 23 characters.* If the input fi les contain lines longer than the column width, pr
will truncate the lines. To avoid this, you must format the text before sending it to pr.
Here is an example.
 You are preparing a newsletter, and you have written three news stories, which you
have saved in the fi les n1, n2 and n3. You want to use pr to format the stories into three

HINT

When you format text into columns, pr will blindly truncate lines that are too long. Thus, if
your text contains lines that are longer than the column width, you must break the lines using
fold -s or fmt before you send the text to pr.

 *The default line width is 72 characters. At the end of each column, there will be at least one space. Since we are creating
three columns, subtract 3 from 72 to get a maximum of 69 characters of text. Dividing by 3 gives us a maximum of 23
characters/column.

hah33614_c18_421_446.indd 444hah33614_c18_421_446.indd 444 1/11/2008 10:21:17 AM1/11/2008 10:21:17 AM

Filters: Counting and Formatting

445

columns, one per story, all on a single page. Before you use pr, you must use fold -s
or fmt to format the text so that none of the lines are longer than 23 characters. The
following commands do the work, saving the output in three fi les f1, f2 and f3:

fmt -w 23 n1 > f1
fmt -w 23 n2 > f2
fmt -w 23 n3 > f3

You can now use pr to format the three articles, each in its own column:

pr -m f1 f2 f3 > formatted-articles

When you merge multiple fi les in this way, it is often handy to use -t to get rid of the
headers:

pr -mt f1 f2 f3 > formatted-articles

This will give you long, continuous columns of text without interruptions.

C H A P T E R 1 8 E X E R C I S E S

REVIEW QUESTIONS

1. What are the three principal options of the wc program, and what does each one do?
What is it about wc that makes it such a useful tool? When you use wc, what is the
defi nition of a “line”?

2. When you use tabs with Unix, what are the default tab positions?

3. The fold, fmt and pr programs can all be used to reformat text. What are principal
differences between these programs?

4. The fold, fmt and pr programs have different default line lengths. What are they?

APPLYING YOUR KNOWLEDGE

1. Use the command less /etc/passwd to look at the password fi le on your system.
Notice that the fi le contains one line per userid, and that each line contains a number
of fi elds, separated by : characters. The fi rst fi eld is the userid. Create a pipeline that
generates a sorted, numbered list of all the userids on your system. Hint: use cut
(Chapter 17), then sort, then nl.

2. The command ls displays a list of all the fi les in your working directory (except
dotfi les). Create a pipeline that counts the number of fi les. Hint: use ls, then wc

Chapter 18 Exercises

hah33614_c18_421_446.indd 445hah33614_c18_421_446.indd 445 1/11/2008 10:21:19 AM1/11/2008 10:21:19 AM

Chapter 18

446 Harley Hahn’s Guide to Unix and Linux

with the appropriate option. Next, create a command that displays output like the
following (where xx is the number of fi les):

 I have xx files in my working directory.

 Hint: Use echo (Chapter 12) with command substitution (Chapter 13), making use
of the pipeline you just created.

3. Go to a Web site of your choice, and copy some text into the clipboard. From the Unix
command line, use the cat program to create a fi le named webtext:

 cat > webtext

 Paste in the text and press ^D. (Copy and paste is discussed in Chapter 6.) You now
have a fi le containing the text from the Web site. Create a pipeline that formats this
text into 40 character lines, changing multiple spaces to single spaces. At the end of
the pipeline, display the text one screenful at a time.

4. Using the webtext fi le from the last example, format the text into pages with two
columns, suitable for printing. Each column should be 30 characters wide, and the
pages should be 20 lines long. The columns should be created with spaces, not tabs.
Display the formatted output one screenful at a time. Once you are satisfi ed that the
output is correct, save it to a fi le named columns.

FOR FURTHER THOUGHT

1. As we discussed in the chapter, 80-column lines were used widely in the world of
computing because, in the 1950s, the fi rst IBM computers used punch cards, which
could hold 80 characters per card. The number 80 was mere serendipity, as the size of
the punch card was taken from the size of the old U.S. dollar bill. This is an example
of how old technology infl uences new technology.

 In a similar manner, when IBM introduced the PC in 1981, the keyboard design was
based on the standard typewriter, which used the so-called QWERTY layout (named
after the six keys at the top left). It is widely accepted that the QWERTY layout is a
poor one, as the most important keys are in particularly awkward locations. Although
there exist much better keyboard layouts, the QWERTY keyboard is still the standard.
Why do you think old technology has such a strong infl uence on new technology.
Why is this bad? Why is this good? (When you get a moment, look up the Dvorak
layout on the Internet. I have been using such a keyboard for years, and I would never
switch back.)

hah33614_c18_421_446.indd 446hah33614_c18_421_446.indd 446 1/11/2008 10:21:19 AM1/11/2008 10:21:19 AM

447

C H A P T E R 1 9

Filters: Selecting, Sorting,
Combining, and Changing

Selecting Lines That Contain a Specifi c Pattern: grep

In this chapter, we conclude our discussion of fi lters by talking about the most interesting
and powerful fi lters in the Unix toolbox: the programs that select data, sort data, combine
data, and change data. These programs are so useful, it behooves us to take the time to
discuss them at length.
 As you know, powerful programs can take a long time to learn, and that is certainly
the case with the fi lters we will be discussing in this chapter. In fact, these programs are so
powerful, you will probably never master all the nuances.
 That’s okay. I’ll make sure you understand the basics, and I’ll show you a great many
examples. Over time, as your skills and your needs develop, you can check the online
manual for more advanced details, and you can use the Web and Usenet to look for help
from other people. Most important, whenever you get a chance to talk to a Unix geek in
person, get him or her to show you their favorite tricks using the fi lters in this chapter.
That is the very best way to learn Unix.
 This is the last of four chapters devoted to fi lters (Chapters 16-19). In Chapter 20, we will
discuss regular expressions, which are used to specify patterns. Regular expressions increase
the power of fi lters and in Chapter 20, you will fi nd many examples that pertain to the fi lters
in this chapter, particularly grep, perhaps the most important fi lter of them all.

SELECTING LINES THAT CONTAIN A SPECIFIC PATTERN: grep

Related fi lters: look, strings

The grep program reads from standard input or from a fi le, and extracts all the lines
that contain a specifi ed pattern, writing the lines to standard output. For example,
you might use grep to search 10 long fi les for all the lines that contain the characters
“Harley”. Or, you might use the sort program (discussed later in the chapter) to sort a
large amount of data, and then pipe that data to grep to extract all the lines that start
with the word “note”.
 Aside from searching for specifi c strings of characters, you can use grep with what
we call “regular expressions” to search for patterns. When you do so, grep becomes a

hah33614_c19_447_496.indd 447hah33614_c19_447_496.indd 447 1/11/2008 10:23:07 AM1/11/2008 10:23:07 AM

Chapter 19

448 Harley Hahn’s Guide to Unix and Linux

very powerful tool. In fact, regular expressions are so important, we will discuss them
separately in Chapter 20, where you will see a lot of examples using grep. (In fact, as you
will see in a moment, the re in the name grep stands for “regular expression”.)
 The syntax for grep is:

grep [-cilLnrsvwx] pattern [file...]

where pattern is the pattern to search for, and fi le is the name of an input fi le.
 Here is a simple example. Most Unix systems keep the basic information about
each userid in a fi le named /etc/passwd (see Chapter 11). There is one line of
information for each userid . To display the information about your userid, use grep
to search the fi le for that pattern. For example, to display information about userid
harley, use the command:

grep harley /etc/passwd

If grep does not fi nd any lines that match the specifi ed pattern, there will be no
output or warning message. Like most Unix commands, grep is terse. When there is
nothing to say, grep says nothing. (Wouldn’t it be nice if everyone you knew had the
same philosophy?)
 When you specify a pattern that contains punctuation or special characters, you
should quote them so the shell will interpret the command properly. (See Chapter 13 for
a discussion of quoting.) For example, to search a fi le named info for all the lines that
contain a colon followed by a space, use the command:

grep ': ' info

WHAT’S IN A NAME?

grep
In the early 1970s, the text editor that was used with the earliest versions of Unix was called
ed. Within ed, there was a command that would search a fi le for all the lines that contained
a specifi ed pattern, and then print those lines on the terminal. (In those days, Unix users used
terminals that printed output on paper.)
 This command was named g, for global, because it was able to search an entire fi le. When
you used g to print all the lines that contained a pattern, the syntax was:

g/re/p

where g stands for “global”; re is a regular expression that describes the pattern you want to
search for; and p stands for “print”.
 It is from this serendipitous abbreviation that the name grep was taken. In other words,
grep stands for:

• Global: Indicating that grep searches through all of the input data.

• Regular Expression: Showing that grep can search for any pattern that can be expressed as a
regular expression (discussed in Chapter 20).

• Print: Once grep fi nds what you want, it prints (displays) it for you. As we discussed in
Chapter 7, for historical reasons, we often use “print” to mean “display”.

33614_19_447_496.indd 44833614_19_447_496.indd 448 1/9/2008 12:37:30 PM1/9/2008 12:37:30 PM

Filters: Selecting, Sorting, Combining, and Changing

449Selecting Lines That Contain a Specifi c Pattern: grep

 As useful as grep is for searching individual fi les, where it really comes into its own is
in a pipeline. This is because grep can quickly reduce a large amount of raw data into a
small amount of useful information. This is a very important capability that makes grep
one of the most important programs in the Unix toolbox. Ask any experienced Unix
person, and you will fi nd that he or she would not want to live without grep. It will take
time for you to appreciate the power of this wonderful program, but we can start with a
few simple examples.
 When you share a multiuser system with other people, you can use the w program
(Chapter 8) to display information about all the users and what they are doing. Here is
some sample output:

8:44pm up 9 days, 7:02, 5 users, load: 0.11, 0.02, 0.00
User tty login@ idle JCPU PCPU what
tammy ttyp0 Wed10am 4days 42:41 37:56 -bash
harley ttyp1 5:47pm 15:11 w
linda ttyp3 5:41pm 10 2:16 13 -tcsh
casey ttyp4 4:45pm 1:40 0:36 vi dogstuff
weedly ttyp5 9:22am 1:40 20 1 gcc catprog.c

Say that you want to display all the users who logged in during the afternoon or evening.
You can search for lines of output that contain the pattern “pm”. Use the pipeline:

w -h | grep pm

(Notice that I used w with the -h option. This suppresses the header, that is, the fi rst two
lines.) Using the above data, the output of the previous command would be:

harley ttyp1 5:47pm 15:11 w
linda ttyp3 5:41pm 10 2:16 13 -tcsh
casey ttyp4 4:45pm 1:40 0:36 vi dogstuff

Suppose we want to display only the userids of the people who logged in during the
afternoon and evening. All we have to do is pipe the output of grep to cut (Chapter 17)
and extract the fi rst 8 columns of data:

w -h | grep pm | cut -c1-8

The output is:

harley
linda
casey

(continue485d...) Among Unix people, it is common to use “grep” as a verb, in both a technical
and non-technical sense. Thus, you might hear someone say, “I lost your address, so I had to
grep all my fi les to fi nd your phone number.” Or, “I grepped my living room twice, but I can’t
fi nd the book you lent me.”

33614_19_447_496.indd 44933614_19_447_496.indd 449 1/9/2008 12:37:30 PM1/9/2008 12:37:30 PM

Chapter 19

450 Harley Hahn’s Guide to Unix and Linux

What about sorting the output? Just pipe it to sort (discussed later in the chapter):

w -h | grep pm | cut -c1-8 | sort

The output is:

casey
harley
linda

THE MOST IMPORTANT grep OPTIONS
The grep program has many options of which I will discuss the most important. To
start, the -c (count) option displays the number of lines that have been extracted, rather
than the lines themselves. Here is an example.
 As we will discuss in Chapter 23, the Unix fi le system uses directories, which are similar
to (but not the same as) the folders used with Windows and the Macintosh. A directory
can contain both ordinary fi les and other directories, called subdirectories. For example,
a directory might contain 20 fi les and 3 subdirectories.
 As you will see in Chapter 24, you use the ls command to display the names of the
fi les and subdirectories contained in a particular directory. For example, the following
command displays the contents of the directory named /etc. (The name /etc will
make sense once you read Chapter 23.)

ls /etc

If you run this command on your system, you will see that /etc contains a lot of entries.
To see which entries are subdirectories, use the -F option:

ls -F /etc

When you use this option, ls appends a / (slash) character to the end of all subdirectory
names. For example, let’s say that, within the output, you see:

motd
rc.d/

This means that motd is an ordinary fi le, and rc.d is a subdirectory.
 Suppose you want to count the number of subdirectories in the /etc directory. All
you have to do is pipe the output of ls -F* to grep -c, and count the slashes:

ls -F /etc | grep -c "/"

On my system, the output is:

92

 *By default, ls lists multiple names on each line, to make the output more compact. However, when you pipe the output
to another program, ls displays each name on a separate line. If you want to simulate this, use the -1 (the number 1) option,
for example:

ls -1 /etc

33614_19_447_496.indd 45033614_19_447_496.indd 450 1/9/2008 12:37:30 PM1/9/2008 12:37:30 PM

Filters: Selecting, Sorting, Combining, and Changing

451

By the way, if you want to count the total entries in a directory, just pipe the output of ls
to wc -l (Chapter 18), for example:

ls /etc | wc -l

On my system, there are 242 entries in the /etc directory.
 The next option, -i, tells grep to ignore the difference between lower- and uppercase
letters when making a comparison. For example, let’s say a fi le named food-costs
contains the following fi ve lines:

pizza $25.00
tuna $3.50
Pizza $23.50
PIZZA $21.00
vegetables $18.30

The following command fi nds all the lines that contain “pizza”. Notice that, according to
the syntax for grep, the pattern comes before the fi le name:

grep pizza food-costs

The output consists of a single line:

pizza $25.00

To ignore differences in case, use -i:

grep -i pizza food-costs

This time, the output contains three lines:

pizza $25.00
Pizza $23.50
PIZZA $21.00

Moving on, there will be times when you will want to know the location of the selected
lines within the data stream. To do so, you use the -n option. This tells grep to write a
relative line number in front of each line of output. (Your data does not have to contain
the numbers; grep will count the lines for you as it processes the input.) As an example,
consider the following command that uses both the -i and -n options with the fi le
food-costs listed above:

grep -in pizza food-costs

HINT

The -i (ignore) options tell grep to ignore differences between upper- and lower case. Later
in the chapter, we will discuss two other programs, look and sort, that have a similar option.
However, with these two programs, you use -f (fold) instead of -i. Don’t be confused.
 (The word “fold” is a technical term indicating that upper- and lowercase letters should be
treated the same. We’ll talk about it later.)

The Most Important grep Options

33614_19_447_496.indd 45133614_19_447_496.indd 451 1/9/2008 12:37:30 PM1/9/2008 12:37:30 PM

Chapter 19

452 Harley Hahn’s Guide to Unix and Linux

The output is:

1:pizza $25.00
3:Pizza $23.50
4:PIZZA $21.00

The -n option is useful when you need to pin down the exact location of certain lines
within a large fi le. For example, let’s say you want to modify all the lines that contain a
specifi c pattern. Once you use grep -n to fi nd the locations of those lines, you can use
a text editor to jump directly to where you want to make the changes.
 The next option, -l (list fi lenames), is useful when you want to search more than one
fi le for a particular pattern. When you use -l, grep does not display the lines that contain
the pattern. Instead, grep writes the names of fi les in which such lines were found.
 For example, say you have three fi les, names, oldnames and newnames. The fi le
names happens to contain “harley”; the fi le newnames contains “Harley”; and the
fi le oldnames contains neither. To see which fi les contain the pattern “Harley”, you
would use:

grep -l Harley names oldnames newnames

The output is:

newnames

Now add in the -i option to ignore differences in case:

grep -il Harley names oldnames newnames

The output is now:

names
newnames

The -L (uppercase “L”) option does the opposite of -l. It shows you the fi les that do not
contain a match. In our example, to list the fi les that do not contain the pattern “Harley”,
you would use:

grep -L Harley names oldnames newnames

The output is:

names
oldnames

The next option, -w, specifi es that you want to search only for complete words. For
example, say you have a fi le named memo that contains the following lines:

We must, of course, make sure that all the
data is now correct before we publish it.
I thought you would know this.

33614_19_447_496.indd 45233614_19_447_496.indd 452 1/9/2008 12:37:30 PM1/9/2008 12:37:30 PM

Filters: Selecting, Sorting, Combining, and Changing

453

You want to display all the lines that contain the word “now”. If you enter:

grep now memo

you will see:

data is now correct before we publish it.
I thought you would know this.

This is because grep selected both “now” and “know”. However, if you enter:

grep -w now memo

You will see only the output you want:

data is now correct before we publish it.

The -v (reverse) option selects all the lines that do not contain the specifi ed pattern. This
is an especially useful option that you will fi nd yourself using a great deal. As an example,
let’s say you are a student and you have a fi le named homework to keep track of your
assignments. This fi le contains one line for each assignment. Once you have fi nished an
assignment, you mark it “DONE”. For example:

Math: problems 12-10 to 12-33, due Monday
Basket Weaving: make a 6-inch basket, DONE
Psychology: essay on Animal Existentialism, due end of term
Surfing: catch at least 10 waves, DONE

To list all the assignments that are not yet fi nished, enter:

grep -v DONE homework

The output is:

Math: problems 12-10 to 12-33, due Monday
Psychology: essay on Animal Existentialism, due end of term

If you want to see the number of assignments that are not fi nished, combine -c with -v:

grep -cv DONE homework

In this case, the output is:

2

On occasion, you may want to fi nd the lines in which the search pattern consists of the
entire line. To do so, use the -x option. For example, say the fi le names contains the lines:

Harley
Harley Hahn
My friend is Harley.
My other friend is Linda.
Harley

The Most Important grep Options

33614_19_447_496.indd 45333614_19_447_496.indd 453 1/9/2008 12:37:30 PM1/9/2008 12:37:30 PM

Chapter 19

454 Harley Hahn’s Guide to Unix and Linux

If you want to fi nd all the lines that contain “Harley”, use:

grep Harley names

If you want to fi nd only those lines in which “Harley” is the entire line, use the -x option:

grep -x Harley names

In this case, grep will select only the fi rst and last lines.
 To search an entire directory tree (see Chapter 23), use the -r (recursive) option. For
example, let’s say you want to search for the word “initialize” within all the fi les in the
directory named admin, including all subdirectories, all fi les in those subdirectories, and
so on. You would use:

grep -r initialize admin

When you use -r on large directory trees, you will often see error messages telling you
that grep cannot read certain fi les, either because the fi les don’t exist or because you
don’t have permission to read them. (We will discuss fi le permissions in Chapter 25.)
Typically, you will see one of the following two messages:

No such file or directory
Permission denied

If you don’t want to see such messages, use the -s (suppress) option. For example, say
you are logged in as superuser, and you want to search all the fi les on the system for the
words “shutdown now”.
 As we will discuss in Chapter 23, the designation / refers to the root (main) directory
of the entire fi le system. Thus, if we start from the / directory and use the -r (recursive)
option, grep will search the entire fi le system. The command is:

grep -rs / 'shutdown now'

Notice I quoted the search pattern because it contains a space. (Quoting is explained
in Chapter 13.)

VARIATIONS OF grep: fgrep, egrep
In the olden days (the 1970s and 1980s), it was common for people to use two other
versions of grep: fgrep and egrep.
 The fgrep program is a fast version of grep that searches only for “fi xed-character”
strings. (Hence the name fgrep.) This means that fgrep does not allow the use of
regular expressions for matching patterns. When computers were slow and memory
was limited, fgrep was more effi cient than grep as long as you didn’t need regular
expressions. Today, computers are fast and have lots of memory, so there is no need to use
fgrep. I mention it only for historical reasons.
 The egrep program is an extended version of grep. (Hence the name egrep.)
The original grep allowed only “basic regular expressions”. The egrep program, which
came later, supported the more powerful “extended regular expressions”. We’ll discuss

33614_19_447_496.indd 45433614_19_447_496.indd 454 1/9/2008 12:37:30 PM1/9/2008 12:37:30 PM

Filters: Selecting, Sorting, Combining, and Changing

455

the differences in Chapter 20. For now, all you need to know is that extended regular
expressions are better, and you should always use them when you have a choice.
 Modern Unix systems allow you to use extended regular expressions by using either
egrep or grep -E. However, most experienced Unix users would rather type grep.
The solution is to create an alias (see Chapter 13) to change grep to either egrep or
grep -E. With the Bourne shell family, you would use one of the following commands:

alias grep='egrep'
alias grep='grep -E'

With the C-Shell family, you would use one of these commands:

alias grep 'egrep'
alias grep 'grep -E'

Once you defi ne such an alias, you can type grep and get the full functionality of
extended regular expressions. To make such a change permanent, all you need to do
is put the appropriate alias command into your environment fi le (see Chapter 14).
Indeed, this is such a useful alias that I suggest you take a moment right now and add it
to your environment fi le. In fact, when you get to Chapter 20, I will assume you are using
extended regular expressions.
 Note: If you use Solaris (from Sun Microsystems), the version of egrep you want is
in a special directory named /usr/xpg4/bin/*, which means you must use different
aliases. The examples below are only for Solaris. The fi rst one is for the Bourne Shell
family; the second is for the C-Shell family:

alias grep='/usr/xpg4/bin/egrep'
alias grep '/usr/xpg4/bin/egrep'

SELECTING LINES BEGINNING WITH A SPECIFIC PATTERN: look

Related fi lters: grep

The look program searches data that is in alphabetical order and fi nds all the lines that
begin with a specifi ed pattern.
 There are two ways to use look. You can use sorted data from one or more fi les, or
you can have look search a dictionary fi le (explained in the next section).
 When you use look to search one or more fi les, the syntax is:

look [-df] pattern file...

where pattern is the pattern to search for, and fi le is the name of a fi le.
 Here is an example. You are a student at a school where, every term, all the students
evaluate their professors. This term, you are in charge of the project. You have a large fi le
called evaluations, which contains a summary of the evaluations for over a hundred

 *The name xpg4 stands for “X/Open Portability Guide, Issue 4”, an old (1992) standard for how Unix systems should
behave. The programs in this directory have been modifi ed to behave in accordance with the XPG4 standard.

Selecting Lines Beginning With a Specifi c Pattern: look

33614_19_447_496.indd 45533614_19_447_496.indd 455 1/9/2008 12:37:31 PM1/9/2008 12:37:31 PM

Chapter 19

456 Harley Hahn’s Guide to Unix and Linux

professors. The data is in alphabetical order. Each line of the fi le contains a ranking (A, B,
C, D or F), followed by two spaces, followed by the name of a professor. For example:

A William Wisenheimer
C Peter Pedant
F Norman Knowitall

Your job is to create fi ve lists to post on a Web site. The lists should contain the names
of the professors who received an A rating, a B rating, and so on. Since the data is in
alphabetical order, you can create the fi rst list (the A professors) by using look to select
all the lines of the fi le that begin with A:

look A evaluations

Although this command will do the job, we can improve upon it. As I mentioned, each
line in the data fi le begins with a single-letter ranking, followed by two spaces. Once you
have the names you want, you can use colrm (Chapter 16) to remove the fi rst three
characters of each line. The following examples do just that for each of the rankings:
they select the appropriate lines from the data fi le, use colrm to remove the fi rst three
characters from each line, and then redirect the output to a fi le:

look A evaluations | colrm 1 3 > a-professors
look B evaluations | colrm 1 3 > b-professors
look C evaluations | colrm 1 3 > c-professors
look D evaluations | colrm 1 3 > d-professors
look F evaluations | colrm 1 3 > f-professors

Unlike the other programs covered in this chapter, look cannot read from the standard
input; it must take its input from one or more fi les. This means that, strictly speaking,
look is not a fi lter.
 The reason for this restriction is that, with standard input, a program can read only
one line at a time. However, look uses a search method called a “binary search” that
requires access to all the data at once. For this reason, you cannot use look within a
pipeline, although you can use it at the beginning of a pipeline.
 When you have multiple steps, the best strategy is to prepare your data, save it in a fi le,
and then use look to search the fi le. For example, let’s say the four fi les frosh, soph,
junior and senior contain the raw, unsorted evaluation data as described above.
Before you can use look to search the data, you must combine and sort the contents of
the four fi les and save the output in a new fi le, for example:

sort frosh soph junior senior > evaluations
look A evaluations

We will discuss the sort program later in the chapter. At that time, you will learn
about two particular options that are relevant to look. The -d (dictionary) option
tells sort to consider only letters and numbers. You use -d when you want look to
ignore punctuation and other special characters. The -f (fold) option tells sort to

33614_19_447_496.indd 45633614_19_447_496.indd 456 1/9/2008 12:37:31 PM1/9/2008 12:37:31 PM

Filters: Selecting, Sorting, Combining, and Changing

457

ignore differences between upper- and lowercase letters. For example, when you use -f,
“Harley” and “harley” are considered the same.
 If you use either of these sort options to prepare data, you must use the same options
with look, so look will know what type of data to expect. For example:

sort -df frosh soph junior senior > evaluations
look -df A evaluations

WHEN DO YOU USE look AND WHEN DO YOU USE grep?
Both look and grep select lines from text fi les based on a specifi ed pattern. For this
reason, it makes sense to ask, when do you use look and when do you use grep?
 Similar questions arise in many situations, because Unix often offers more than one
way to solve a problem. For this reason, it is important to be able to analyze your options
wisely, so as to pick the best tool for the job at hand. As an example, let us compare look
and grep.
 The look program is limited in three important ways. First, it requires sorted input;
second, it can read only from a fi le, not from standard input; third, it can only search for
patterns at the beginning of a line. However, within the scope of these limitations, look
has two advantages: it is simple to use and it is very fast.
 The grep program is a lot more fl exible: it does not require sorted input; it can read
either from a fi le or from standard input (which means you can use it in the middle of a
pipeline); and it can search for a pattern anywhere, not just at the beginning of a line.
 Moreover, grep allows “regular expressions”, which enable you to specify generalized
patterns, not just simple characters. For example, you can search for “the letters har,
followed by one or more characters, followed by the letters ley, followed by zero or more
numbers”. (Regular expressions are very powerful, and we will talk about them in detail
in Chapter 20.)
 By using regular expressions, it is possible to make grep do anything look can do.
However, grep will be slower, and the syntax is more awkward.
 So here is my advice: Whenever you need to select lines from a fi le, ask yourself if
look can do the job. If so, use it, because look is fast and simple. If look can’t do the
job, (which will be most of the time), use grep. As a general rule, you should always use
the simplest possible solution to solve a problem.
 But what about speed? I mentioned that look is faster than grep. How important is
that? In the early days of Unix, speed was an important consideration, as Unix systems were
shared with other users and computers were relatively slow. When you selected lines of text
from a very large fi le, you could actually notice the difference between look and grep.
 Today, however, virtually all Unix systems run on computers which, for practical
purposes, are blindingly fast. Thus, the speed at which Unix executes a single command
— at least for the commands in this chapter — is irrelevant. For instance, any example
in this chapter will run so quickly as to seem instantaneous. More specifi cally, if you
compare a look command to the equivalent grep command, there is no way you are
going to notice the difference in speed.

When Do You Use look and When Do You Use grep?

33614_19_447_496.indd 45733614_19_447_496.indd 457 1/9/2008 12:37:31 PM1/9/2008 12:37:31 PM

Chapter 19

458 Harley Hahn’s Guide to Unix and Linux

 So my advice is to choose your tools based on simplicity and ease of use, not on tiny
differences in speed or effi ciency. This is especially important when you are writing
programs, including shell scripts. If a program or script is too slow, it is usually possible
to fi nd one or two bottlenecks and speed them up. However, if a program is unnecessarily
complex or diffi cult to use, it will, in the long run, waste a lot of your time, which is far
more valuable than computer time.

FINDING ALL THE WORDS THAT BEGIN WITH A SPECIFIC PATTERN: look
I mentioned earlier that you can use look to search a dictionary fi le. You do so when
you want to fi nd all the words that begin with a specifi c pattern, for example, all the
words that begin with the letters “simult”. When you use look in this way, the syntax
is simple:

look pattern

where pattern is the pattern to search for.
 The “dictionary fi le” is not an actual dictionary. It is a long, comprehensive list of
words, which has existed since the early versions of Unix. (Of course, the list has been
updated over the years.) The words in the dictionary fi le are in alphabetical order, one
word per line, which makes it easy to search the fi le using look.
 The dictionary fi le was originally created to use with a program named spell, which
provided a crude way to spellcheck documents. The job of spell was to display a list of
all the words within a document that were not in the dictionary fi le. In the olden days,
spell could save you a lot of time by fi nding possible spelling mistakes.
 Today, there are much better spellcheck tools and spell is rarely used; indeed,
you won’t even fi nd it on most Linux or Unix systems. Instead, people use either the
spellcheck feature within their word processor or, with text fi les, an interactive program
called aspell, which is one of the GNU utilities. If you want to try aspell, use:

aspell -c file

where fi le is the name of a fi le containing plain text. The -c option indicates that you
want to check the spelling of the words in the fi le.
 Although spell is not used anymore, the dictionary fi le still exists, and you can use
it in a variety of ways. In particular, you can use the look program to fi nd all the words
that begin with a specifi c pattern. This comes in handy when you are having trouble
spelling a word. For example, say that you want to type the word “simultaneous”, but you
are not sure how to spell it. Enter:

look simult

You will see a list similar to the following:

HINT

Whenever you have a choice of tools, use the simplest one that will do the job.

33614_19_447_496.indd 45833614_19_447_496.indd 458 1/9/2008 12:37:31 PM1/9/2008 12:37:31 PM

Filters: Selecting, Sorting, Combining, and Changing

459

simultaneity
simultaneous
simultaneously
simultaneousness
simulty

It is now a simple task to pick out the correct word and — if you wish — to copy and
paste it from one window to another. (See Chapter 6 for instructions on how to copy
and paste.)
 We’ll talk about the dictionary fi le again in Chapter 20, at which time I’ll show you
where to fi nd the actual fi le on your system, and how to use it to help solve word puzzles.
 (By the way, a “simulty” is a private grudge or quarrel.)

SORTING DATA: sort

Related fi lters: tsort, uniq

The sort program can perform two related tasks: sorting data, and checking to see if
data is already sorted. We’ll start with the basics. The syntax for sorting data is:

sort [-dfnru] [-o outfile] [infile...]

where outfi le is the name of a fi le to hold the output, and infi le is the name of a fi le that
contains input.
 The sort program has a great deal of fl exibility. You can compare either entire lines
or selected portions of each line (fi elds). The simplest way to use sort is to sort a single
fi le, compare entire lines, and display the results on your screen. As an example, let’s say
you have a fi le called names that contains the following four lines:

Barbara
Al
Dave
Charles

To sort this data and display the results, enter:

sort names

You will see:

HINT

When you are working with the vi text editor (see Chapter 22), you can display a list of words
by using :r! to issue a quick look command. For example:

:r !look simult

This command inserts all the words that begin with “simult” into your editing buffer. You can
now choose the word you want and delete all the others.

Sorting Data: sort

33614_19_447_496.indd 45933614_19_447_496.indd 459 1/9/2008 12:37:31 PM1/9/2008 12:37:31 PM

Chapter 19

460 Harley Hahn’s Guide to Unix and Linux

Al
Barbara
Charles
Dave

To save the sorted data to a fi le named masterfile, you can redirect the standard output:

sort names > masterfile

This last example saves the sorted data in a new fi le. However, there will be many times
when you want to save the data in the same fi le. That is, you will want to replace a fi le with
the same data in sorted order. Unfortunately, you cannot use a command that redirects
the output to the input fi le:

sort names > names

You will recall I explained, in Chapter 15, that when you redirect the standard output, the
shell sets up the output fi le before running the command. In this case, since names is the
output fi le, the shell will empty it before running the sort command. Thus, by the time
sort is ready to read its input, names will be empty. Thus, the result of entering this
command would be to silently wipe out the contents of your input fi le (unless you have
set the noclobber shell variable; see Chapter 15).
 For this reason, sort provides a special option to allow you to save your output to
any fi le you want. Use -o (output) followed by the name of your output fi le. If the output
fi le is the same as one of your input fi les, sort will make sure to protect your data. Thus,
to sort a fi le and save the output in the same fi le, use a command like the following:

sort -o names names

In this case, the original data in names will be preserved until the sort is complete. The
output will then be written to the fi le.
 To sort data from more than one fi le, just specify more than one input fi le name.
For example, to sort the combined contents of the fi les oldnames, names and
extranames, and save the output in the fi le masterfile, use:

sort oldnames names extranames > masterfile

To sort these same fi les while saving the output in names (one of the input fi les), use:

sort -o names oldnames names extranames

The sort program is often used as part of a pipeline to process data that has been
produced by another program. The following example combines two fi les, extracts only
those lines that contain the characters “Harley”, sorts those lines, and then sends the
output to less to be displayed:

cat newnames oldnames | grep Harley | sort | less

By default, sort looks at the entire line when it sorts data. However, if you want, you can
tell sort to examine only one or more fi elds, that is, parts of each line. (We discussed

33614_19_447_496.indd 46033614_19_447_496.indd 460 1/9/2008 12:37:31 PM1/9/2008 12:37:31 PM

Filters: Selecting, Sorting, Combining, and Changing

461

the concept of fi elds in Chapter 17, when we talked about the cut program.) The
options that allow you to use fi elds with sort afford a great deal of control. However,
they are very complex, and I won’t go into the details here. If you ever fi nd yourself
needing to sort with fi elds, you will fi nd the details in the Info fi le (info sort). If
your system doesn’t have Info fi les (see Chapter 9), the details will be in the man page
instead (man sort).

CONTROLLING THE ORDER IN WHICH DATA IS SORTED: sort -dfn
There are a number of options you can use to control how the sort program works
 The -d (dictionary) looks only at letters, numerals and whitespace (spaces and tabs).
Use this option when your data contains characters that will get in the way of the sorting
process, for example, as punctuation.
 The -f (fold) option treats lowercase letters as if they were uppercase. Use this option
when you want to ignore the distinctions between upper- and lowercase letters. For
example, when you use -f, the words harley and Harley are considered to be the
same as HARLEY. (The term “fold” is explained below.)
 The -n (numeric) option recognizes numbers at the beginning of a line or a fi eld
and sorts them numerically. Such numbers may include leading spaces, negative signs
and decimal points. Use this option to tell sort that you are using numeric data. For
example, let’s say you want to sort:

11
2
1
20
10

If you use sort with no options, the output is:

1
10
11
2
20

If you use sort -n, you get:

1
2
10
11
20

The -r (reverse) option sorts the data in reverse order. For example, if you sort the data
in the last example using sort -nr, the output is:

Controlling the Order in Which Data Is Sorted: sort -dfn

33614_19_447_496.indd 46133614_19_447_496.indd 461 1/9/2008 12:37:31 PM1/9/2008 12:37:31 PM

Chapter 19

462 Harley Hahn’s Guide to Unix and Linux

20
11
10
2
1

In my experience, you will fi nd yourself using the -r option a lot more than you might
think. This is because it is useful to be able to list information in reverse alphabetical
order or reverse numeric order.
 The fi nal option, -u (unique), tells sort to check for identical lines and suppress all
but one. For example, let’s say you use sort -u to sort the following data:

Barbara
Al
Barbara
Barbara
Dave

The output is:

Al
Barbara
Dave

HINT

As an alternative to sort -u, you can use uniq (discussed later in the chapter). The uniq
program is simpler but, unlike sort, it does not let you work with specifi c fi elds should that
be necessary.

WHAT’S IN A NAME?

Fold
There are a variety of Unix programs that have an option to ignore the differences between
upper- and lowercase letters. Sometimes, the option is called -i, for “ignore”, which only makes
sense. Much of the time, however, the option is -f, which stands for FOLD: a technical term
indicating that lowercase letters are to be treated as if they were uppercase, or vice versa, without
changing the original data. (The use of the term “fold” in this way has nothing to do with the
fold program, so don’t be confused.)
 The term “fold” is most often used as an adjective: “To make sort case insensitive, use the
fold option.” At times, however, you will see “fold” used as a verb: “When you use the -f option,
sort folds lowercase letters into uppercase.”
 Here is something interesting: the original version of the Unix sort program folded
uppercase letters into lowercase. That is, when you used -f, sort treated all letters as if they
were lowercase. Modern versions of sort fold lowercase into uppercase. That is, they treat all
letters as if they were uppercase. Is the difference signifi cant? The answer is sometimes, as you
will see when we discuss collating sequences.
 No one knows the origin of the term “fold”, so feel free to make up your own metaphor.

33614_19_447_496.indd 46233614_19_447_496.indd 462 1/9/2008 12:37:31 PM1/9/2008 12:37:31 PM

Filters: Selecting, Sorting, Combining, and Changing

463

CHECKING IF DATA IS SORTED: sort -c
As I mentioned earlier, sort can perform two related tasks: sorting data, and checking
to see if data is already sorted. In this section, we’ll talk about checking data. When you
sort in this way, the syntax is:

sort -c[u] [file]

where fi le is the name of a fi le.
 The -c (check) option tells sort that you don’t want to sort the data, you only want
to know if it is already sorted. For example, to see if the data within the fi le names is
sorted, you would use:

sort -c names

If the data is sorted, sort will display nothing. (No news is good news.) If the data is not
sorted, sort will display a message, for example:

sort: names:5: disorder: Polly Ester

In this case, the message means that the data in names is not sorted (that is, there is
“disorder”), starting with line 5, which contains the data Polly Ester.
 You can use sort -c within a pipeline to check data that has been written to
standard output by another program. For example, let’s say you have a program named
poetry-generator that generates a large amount of output. The output is supposed
to be sorted, but you suspect there may be a problem, so you check it with sort -c:

poetry-generator | sort -c

If you combine -c with the -u (unique) option, sort will check your data in two
ways at the same time. While it is looking for unsorted data, it will also look for
consecutive lines that are the same. You use -cu when you want to ensure (1) your
data is sorted, and (2) all the lines are unique. For example, the fi le friends contains
the following data:

Al Packa
Max Out
Patty Cake
Patty Cake
Shirley U. Jest

You enter:

sort -cu friends

Although the data is sorted, sort detects a duplicate line:

sort: friends:4: disorder: Patty Cake

Checking If Data Is Sorted: sort -c

33614_19_447_496.indd 46333614_19_447_496.indd 463 1/9/2008 12:37:31 PM1/9/2008 12:37:31 PM

Chapter 19

464 Harley Hahn’s Guide to Unix and Linux

THE ASCII CODE; COLLATING SEQUENCES
Suppose you use the sort program to sort the following data. What will the output be?

zzz
ZZZ
bbb
BBB
aaa
AAA

On some systems, you will get:

AAA
BBB
ZZZ
aaa
bbb
zzz

On other systems, you will get:

AAA
aaa
BBB
bbb
ZZZ
zzz

How can this be? In the early days of Unix, there was just one way of organizing characters.
Today, this is not the case, and the results you see when you run sort depend on how
characters are organized on your particular system. Here is the story.
 Before the 1990s, the character encoding used by Unix (and most computer systems)
was the ASCII CODE, often referred to as ASCII. The name stands for “American Standard
Code for Information Interchange”.

TYPE OF UNIX COMMAND TO DISPLAY ASCII CODE PAGE

Linux man ascii

FreeBSD less /usr/share/misc/ascii

Solaris less /usr/pub/ascii

FIGURE 19-1: Displaying the ASCII code

You will fi nd a summary of the ASCII code in Appendix D of this book. For online reference, most
Unix systems have a handy page containing the entire ASCII code. Traditionally, this page was stored
in a fi le named ascii in the directory /usr/pub/. In recent years, the Unix fi le system has been
reorganized on some systems, and the ASCII reference fi le has been moved to /usr/share/misc.
On other systems, the fi le has been converted to a page within the online manual. Thus, the way in
which you display the ASCII reference page depends on the system you are using.

33614_19_447_496.indd 46433614_19_447_496.indd 464 1/9/2008 12:37:31 PM1/9/2008 12:37:31 PM

Filters: Selecting, Sorting, Combining, and Changing

465

 The ASCII code was created in 1967. It specifi es a 7-bit pattern for every character,
128 in all. These bit patterns range from 0000000 (0 in decimal) to 1111111 (127 in
decimal). For this reason, the 128 ASCII characters are numbered from 0 to 127.
 The 128 characters that comprise the ASCII code consist of 33 “control characters” and
95 “printable characters”. The control characters were discussed in Chapter 7. The printable
characters, shown below, are the 52 letters of the alphabet (26 uppercase, 26 lowercase), 10
numbers, 32 punctuation symbols, and the space character (listed fi rst below):

 !"#$%&'()*+,-./0123456789:;<=>?
@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_
`abcdefghijklmnopqrstuvwxyz{|}~

The order of the printable characters is the order in which I have listed them. They range
from character #32 (space) to character #126 (tilde). (Remember, numbering starts at 0,
so the space is actually the 33rd character.) For reference, Appendix D contains a table of
the entire ASCII code. You may want to take a moment and look at it now.
 For practical purposes, it is convenient to consider the tab to be a printable character even
though, strictly speaking, it is actually a control character. The tab is character #9, which
places it before the other printable characters. Thus, I offer the following defi nition: the 96
PRINTABLE CHARACTERS are the tab, space, punctuation symbols, numbers, and letters.
 As a convenience, most Unix systems have a reference page showing the ASCII code
to allow you to look at it quickly whenever you want. Unfortunately, the ASCII reference
page is not standardized, so the way in which you display it depends on which system you
are using. See Figure 19-1 for the details.
 With respect to a character coding scheme, the order in which the characters are
organized is called the COLLATING SEQUENCE. The collating sequence is used
whenever you need to put characters in order, for example, when you use the sort
program or when you use a range within a regular expression (discussed in Chapter 20).
 With the ASCII code, the collating sequence is simply the order in which the
characters appear in the code. This is summarized in Figure 19-2. For a more detailed
reference, see Appendix D.
 It is important to be familiar with the ASCII code collating sequence, as it is used by
default on many Unix systems and programming languages. Although you don’t have to
memorize the entire ASCII code, you do need to memorize three basic principles:
• Spaces come before numbers.
• Numbers come before uppercase letters.
• Uppercase letters come before lowercase letters.
Here is an example. Assume that your system uses the ASCII collating sequence. You use
the sort program to sort the following data (in which the third line starts with a space):

hello
Hello
 hello
1hello
:hello

The ASCII Code; Collating Sequences

33614_19_447_496.indd 46533614_19_447_496.indd 465 1/9/2008 12:37:31 PM1/9/2008 12:37:31 PM

Chapter 19

466 Harley Hahn’s Guide to Unix and Linux

The output is:

 hello
1hello
:hello
Hello
hello

LOCALES AND COLLATING SEQUENCES
In the early days of Unix, everyone used the ASCII code and that was that. However, ASCII
is based on English and, as the use of Unix, Linux and the Internet spread throughout the
world, it became necessary to devise a system that would work with a large number of
languages and a variety of cultural conventions.

HINT

When it comes to the order of characters in the ASCII code, all you need to memorize is: Space,
Numbers, Uppercase letters, and Lowercase letters, in that order. Just remember “SNUL”.*

 *If you have trouble remembering the acronym SNUL, let me show you a memory trick used by many smart people. All
you need to do is relate the item you want to remember to your everyday life.
 For example, let’s say you are a mathematician specializing in difference calculus, and you happen to be working with
fourth order difference equations satisfi ed by those Laguerre-Hahn polynomials that are orthogonal on special non-uniform
lattices. To remember SNUL, you would just think of “special non-uniform lattices”.
 See how easy it is to be smart?

NUMBERS CHARACTERS

0-31 control characters (including tab)

32 space character

33-47 symbols: ! " # $ % & ' () * + , - . /

48-57 numbers: 0 1 2 3 4 5 6 7 8 9

58-64 more symbols: : ; < = > ? @

65-90 uppercase letters: A B C ... Z

91-96 more symbols: [\] ̂ _ ̀

97-122 lowercase letters: a b c ... z

123-126 more symbols: { | } ~

127 null control character (del)

FIGURE 19-2: The order of characters in the ASCII code

The ASCII code defi nes the 128 basic characters used by Unix systems. Within the ASCII code, the
characters are numbered 0 through 127. The table in this fi gure summarizes the order of the characters,
which is important when you use a program like sort. For example, when you sort text, a space comes
before “%” (percent), which comes before the number “3”, which comes before the letter “A”, and so on.
For a more detailed reference, see Appendix D.

33614_19_447_496.indd 46633614_19_447_496.indd 466 1/9/2008 12:37:32 PM1/9/2008 12:37:32 PM

Filters: Selecting, Sorting, Combining, and Changing

467

 In the 1990s, a new system was developed, based on the idea of a “locale”, part of
the POSIX 1003.2 standard. (POSIX is discussed in Chapters 11 and 16.) A LOCALE is
a technical specifi cation describing the language and conventions that should be used
when communicating with a user from a particular culture. The intention is that a user
can choose whichever locale he wants, and the programs he runs will communicate with
him accordingly. For example, if a user chooses the American English locale, his programs
should display messages in English, write dates in the format “month-day-year”, use “$”
as a currency symbol, and so on.
 Within Unix, your locale is defi ned by a set of environment variables that identify your
language, your date format, your time format, your currency symbol, and other cultural
conventions. Whenever a program needs to know your preferences, all it has to do is
look at the appropriate environment variables. In particular, there is an environment
variable named LC_COLLATE that specifi es which collating sequence you want to use.
(The variables all have default values, which you can change if you want.)
 To display the current value of all the locale variables on your system — including
LC_COLLATE — you use the locale command:

locale

If you are wondering which locales are supported on your system, you can display them
all by using the -a (all) option:

 locale -a

In the United States, Unix systems default to one of two locales. The two locales are
basically the same, but have different collating sequences, which means that when you run
a program such as sort, your results can vary depending on which locale is being used.
 Since many people are unaware of locales, even experienced programmers can be
perplexed when they change from one Unix system to another and, all of a sudden,
programs like sort do not behave “properly”. For this reason, I am going to take a moment
to discuss the two American locales and explain what you need to know about them. If
you live outside the U.S., the ideas will still apply, but the details will be different.
 The fi rst American locale is based on the ASCII code. This locale has two names.
It is known as either the C locale (named after the C programming language) or the
POSIX locale; you can use whichever name you want. The second American locale is
based on American English, and is named en_US although you will see variations of
this name.
 The C locale was designed for compatibility, in order to preserve the conventions used
by old-time programs (and old-time programmers). The en_US locale was designed
to fi t into a modern international framework in which American English is only one of
many different languages.
 As I mentioned, both these locales are the same except for the collating sequence. The C
locale uses the ASCII collating sequence in which uppercase letters come before lowercase
letters: ABC...XYZabc...z. This pattern is called the C COLLATING SEQUENCE, because
it is used by the C programming language.

Locales and Collating Sequences

33614_19_447_496.indd 46733614_19_447_496.indd 467 1/9/2008 12:37:32 PM1/9/2008 12:37:32 PM

Chapter 19

468 Harley Hahn’s Guide to Unix and Linux

 The en_US locale uses a different collating sequence in which the lowercase letters
and uppercase letters are grouped in pairs: aAbBcCdD...zZ. This pattern is more natural,
as it organizes words and characters in the same order as you would fi nd in a dictionary.
For this reason, this pattern is called the DICTIONARY COLLATING SEQUENCE.
 Until the end of the 1990s, all Unix systems used the C collating sequence, based on
the ASCII code, and this is still the case with the systems that use the C/POSIX locale.
Today, however, some Unix systems, including a few Linux distributions, are designed to
have a more international fl avor. As such, they use the en_US locale and the dictionary
collating sequence.
 Can you see a possible source of confusion? Whenever you run a program that
depends on the order of upper- and lowercase letters, the output is affected by your
collating sequence. Thus, you can get different results depending on which locale
your system uses by default. This may happen, for example, when you use the sort
program, or when you use certain types of regular expressions called “character classes”
(see Chapter 20).
 For reference, Figure 19-3 shows the two collating sequences. Notice that there
are signifi cant differences, not only in the order of the letters, but in the order of the
punctuation symbols.
 As an example of how your choice of locale can make a difference, consider what
happens when you sort the following data (in which the third line starts with a space):

hello
Hello
 hello
1hello
:hello

With the C locale (C collating sequence), the output is:

 hello
1hello
:hello
Hello
hello

With the en_US locale (dictionary collating sequence), the output is:

 hello
:hello
1hello
hello
Hello

So which locale should you use? In my experience, if you use the en_US locale, you
will eventually encounter unexpected problems that will be diffi cult to track down. For
example, as we will discuss in Chapter 25, you use the rm (remove) program to delete

33614_19_447_496.indd 46833614_19_447_496.indd 468 1/9/2008 12:37:32 PM1/9/2008 12:37:32 PM

Filters: Selecting, Sorting, Combining, and Changing

469

fi les. Let’s say you want to delete all your fi les whose names begin with an uppercase letter.
The traditional Unix command to use is:

rm [A-Z]*

This will work fi ne if you are using the C locale. However, if you are using the en_US locale,
you will end up deleting all the fi les whose names begin with any upper- or lowercase letter,
except the letter a. (Don’t worry about the details; they will be explained in Chapter 20.)*
 My advice is to set your default to be the C locale, because it uses the traditional ASCII
collating sequence. In the long run, this will create fewer problems than using the en_US

C LOCALE: C COLLATING SEQUENCE

space character •

symbols ! “ # $ % & ‘ () * + , - . /

numbers 0 1 2 3 4 5 6 7 8 9

more symbols : ; < = > ? @

uppercase letters A B C D E F G H I J K L M
N O P Q R S T U V W X Y Z

more symbols [\] ^ _ `

lowercase letters a b c d e f g h i j k l m
n o p q r s t u v w x y z

more symbols { | } ~

en_US LOCALE: DICTIONARY COLLATING SEQUENCE

symbols ` ^ ~ < = > |

space character •

more symbols _ - , ; : ! ? / . ' " ()
[] { } @ $ * \ & # % +

numbers 0 1 2 3 4 5 6 7 8 9

letters a A b B c C d D e E f F g G
h H i I j J k K l L m M n N
o O p P q Q r R s S t T u U
v V w W x X y Y z Z

FIGURE 19-3: Collating sequences for the C and en_US locales

In the United States, Unix and Linux systems use one of two locales: C/POSIX based on the ASCII
code, or en_US based on American English. The following two charts show the collating sequences
for each of these locales. In the C collating sequence (used with the C locale), the numbers, lowercase
letters, and uppercase letters are separated by symbols. In the dictionary collating sequence (used with
the en_US locale), all the symbols come at the beginning, followed by the numbers and letters.

Note: In both charts, I have used a dot (•) to indicate the space character.

 *There are lots of situations in which the C locale works better than the en_US locale. Here is another one: You are
writing a C or C++ program. In your directory, you have fi les containing code with names that have all lowercase letters, such
as program1.c, program2.cpp, data.h, and so on. You also have extra fi les with names that begin with an uppercase
letter, such as Makefi le, RCS, README. When you list the contents of the directory using the ls program (Chapter 24), all the
“uppercase” fi les will be listed fi rst, separating the extra fi les from the code fi les.

Locales and Collating Sequences

33614_19_447_496.indd 46933614_19_447_496.indd 469 1/9/2008 12:37:32 PM1/9/2008 12:37:32 PM

Chapter 19

470 Harley Hahn’s Guide to Unix and Linux

locale and the dictionary collating sequence. In fact, as you read this book, I assume that
you are using the C locale.
 So how do you specify your locale? The fi rst step is to determine which collating
sequence is the default on your system. If the C locale is already the default on your
system, fi ne. If not, you need to change it.
 One way to determine your default collating sequence is to enter the locale
command and check the value of the LC_COLLATE environment variable. Is it C or
POSIX? Or is it some variation of en_US?
 Another way to determine your default collating sequence is to perform the following
short test. Create a small fi le named data using the command:

cat > data

Type the following three lines and then press ^D to end the command:

AAA
[]
aaa

Now sort the contents of the fi le:

sort data

If you are using the C/POSIX locale, the output will be sorted using the C (ASCII)
collating sequence:

AAA
[]
aaa

If you are using the en_US locale, the output will be sorted using the dictionary
collating sequence:

[]
aaa
AAA

Before you continue, take a moment to look at the collating sequences in Figure 19-3 and
make sure these examples make sense to you.
 If your Unix system uses the C or POSIX locale by default, you don’t need to do
anything. (However, please read through the rest of this section, as one day, you will
encounter this problem on another system.)
 If your system uses the en_US locale, you need to change the LC_COLLATE
environment variable to either C or POSIX. Either of the following commands will do
the job with the Bourne Shell family:

export LC_COLLATE=C
export LC_COLLATE=POSIX

33614_19_447_496.indd 47033614_19_447_496.indd 470 1/9/2008 12:37:32 PM1/9/2008 12:37:32 PM

Filters: Selecting, Sorting, Combining, and Changing

471

With the C-Shell family, you would use:

setenv LC_COLLATE C
setenv LC_COLLATE POSIX

To make the change permanent, all you need to do is put one of these commands into
your login fi le. (Environment variables are discussed in Chapter 12; the login fi le is
discussed in Chapter 14.) For the rest of this book, I will assume that you are, indeed,
using the C collating sequence so, if you are not, put the appropriate command in your
login fi le right now.

FINDING DUPLICATE LINES: uniq

Related fi lters: sort

Unix has a number of specialized fi lters designed to work with sorted data. The most
useful of such fi lters is uniq, which examines data line by line, looking for consecutive,
duplicate lines.
 The uniq program can perform four different tasks:

• Eliminate duplicate lines
• Select duplicate lines
• Select unique lines
• Count the number of duplicate lines

The syntax is:

uniq [-cdu] [infile [outfile]]

where infi le is the name of an input fi le, and outfi le is the name of an output fi le.
 Let’s start with a simple example. The fi le data contains the following lines:

Al
Al
Barbara
Barbara
Charles

HINT

From time to time, you may want to run a single program with a collating sequence that is
different from the default. To do so, you can use a subshell to change the value of LC_COLLATE
temporarily while you run the program. (We discuss subshells in Chapter 15.)
 For example, let’s say you are using the C locale, and you want to run the sort program
using the en_US (dictionary) collating sequence. You can use:

(export LC_COLLATE=en_US; sort data)

When you run the program in this way, the change you make to LC_COLLATE is temporary,
because it exists only within the subshell.

Finding Duplicate Lines: uniq

33614_19_447_496.indd 47133614_19_447_496.indd 471 1/9/2008 12:37:32 PM1/9/2008 12:37:32 PM

Chapter 19

472 Harley Hahn’s Guide to Unix and Linux

(Remember, because input for uniq must be sorted, duplicate lines will be consecutive.)
You want a list of all the lines in the fi le with no duplications. The command to use is:

uniq data

The output is straightforward:

Al
Barbara
Charles

If you want to save the output to another fi le, say, processed-data, you can specify
its name as part of the command:

uniq data processed-data

To see only the duplicate lines, use the -d option:

uniq -d data

Using our sample fi le, the output is:

Al
Barbara

To see only the unique (non-duplicate) lines, use -u:

uniq -u data

In our sample, there is only one such line:

Charles

Question: What do you think happens if you use both -d and -u at the same time? (Try
it and see.)
 To count how many times each line appears, use the -c option:

uniq -c data

With our sample, the output is:

2 Al
2 Barbara
1 Charles

So far, our example has been simple. The real power of uniq comes when you use it
within a pipeline. For example, it is common to combine and sort several fi les, and then
pipe the output to uniq, as in the following two examples:

sort file1 file2 file3 | uniq
cat file1 file2 file3 | sort | uniq

33614_19_447_496.indd 47233614_19_447_496.indd 472 1/9/2008 12:37:32 PM1/9/2008 12:37:32 PM

Filters: Selecting, Sorting, Combining, and Changing

473

Here is a real-life example to show you how powerful such constructions can be.
 Ashley is a student at a large Southern California school. During the upcoming winter
break, her cousin Jessica will be coming to visit from the East Coast, where she goes to a
small, progressive liberal arts school. Jessica wants to meet guys, but she is very picky: she
only likes very smart guys who are athletic.
 It happens that Ashley is on her sorority’s Ethics Committee, which gives her access
to the student/academic database (don’t ask). Using her special status, Ashley logs into
the system and creates two fi les. The fi rst fi le, math237, contains the names of all the
male students taking Math 237 (Advanced Calculus). The second fi le, pe35, contains the
names of all the male students taking Physical Education 35 (Surfi ng Appreciation).
 Ashley’s idea is to make a list of possible dates for Jessica by fi nding all the guys who
are taking both courses. Because the fi les are too large to compare by hand, Ashley (who
is both beautiful and smart) uses Unix. Specifi cally, she uses the uniq program with the
-d option, saving the output to a fi le named possible-guys:

sort math237 pe35 | uniq -d > possible-guys

Ashley then emails the list to Jessica, who is able to check out the guys on Myspace
before her trip.

MERGING SORTED DATA FROM TWO FILES: join

Related fi lters : colrm, cut, paste

Of all the specialized Unix fi lters designed to work with sorted data, the most interesting
is join, which combines two sorted fi les based on the values of a particular fi eld. The
syntax is:

join [-i] [-a1|-v1] [-a2|-v2] [-1 field1] [-2 field2] file1 file2

HINT

If you are using uniq without options, you have an alternative. You can use sort -u instead.
For example, the following three commands all have the same effect:

sort -u file1 file2 file3
sort file1 file2 file3 | uniq
cat file1 file2 file3 | sort | uniq

(See the discussion on sort -u earlier in the chapter.)

 *This is one time where — even for Ashley and Jessica — a “sorted” affair is considered to be a good thing.

HINT

You must always make sure that input to uniq is sorted. If not, uniq will not be able to detect
the duplications. The results will not be what you expect, but there will be no error message to
warn you that something has gone wrong.*

Merging Sorted Data From Two Files: join

33614_19_447_496.indd 47333614_19_447_496.indd 473 1/9/2008 12:37:32 PM1/9/2008 12:37:32 PM

Chapter 19

474 Harley Hahn’s Guide to Unix and Linux

where fi eld1 and fi eld2 are numbers referring to specifi c fi elds; and fi le1 and fi le2 are the
names of fi les containing sorted data.
 Before we get to the details, I’d like to show you an example. Let’s say you have two
sorted fi les containing information about various people, each of whom has a unique
identifi cation number. Within the fi rst fi le, called names, each line contains an ID
number followed by a fi rst name and last name:

111 Hugh Mungus
222 Stew Pendous
333 Mick Stup
444 Mel Collie

In the second fi le, phone, each line contains an ID number followed by a phone number:

111 101-555-1111
222 202-555-2222
333 303-555-3333
444 404-555-4444

The join program allows you to the combine the two fi les, based on their common
values, in this case, the ID number:

join names phone

The output is:

111 Hugh Mungus 101-555-1111
222 Stew Pendous 202-555-2222
333 Mick Stup 303-555-3333
444 Melon Collie 404-555-4444

When join reads its input, it ignores leading whitespace, that is, spaces or tabs at the
beginning of a line. For example, the following two lines are considered the same:

111 Hugh Mungus 101-555-1111
 111 Hugh Mungus 101-555-1111

Before we discuss the details of the join program, I’d like to take a moment to go over
some terminology. In Chapter 17, we discussed fi elds and delimiters. When you have a fi le
in which every line contains a data record, each separate item within the line is called a fi eld.
In our example, each line in the fi le names contains three fi elds: an ID number, a fi rst name
and last name. The fi le phone contains two fi elds: an ID number and a phone number.
 Within each line, the characters that separate fi elds are called delimiters. In our
example, the delimiters are spaces, although you will often see tabs and commas used in
this way. By default, join assumes that each pair of fi elds is separated by whitespace, that
is, by one or more spaces or tabs.
 When we combine two sets of data based on matching fi elds, it is called a JOIN. (The
name comes from database theory.) The specifi c fi eld used for the match is called the

33614_19_447_496.indd 47433614_19_447_496.indd 474 1/9/2008 12:37:32 PM1/9/2008 12:37:32 PM

Filters: Selecting, Sorting, Combining, and Changing

475

JOIN FIELD. By default, join assumes that the join fi eld is the fi rst fi eld of each fi le but,
as you will see in a moment, this can be changed.
 To create a join, the program looks for pairs of lines, one from each fi le, that contain
the same value in their join fi eld. For each pair, join generates an output line consisting
of three parts: the common join fi eld value, the rest of line from the fi rst fi le, and the rest
of the line from the second fi le.
 As an example, consider the fi rst line in each of the two fi les above. The join fi eld has
the value 111. Thus, the fi rst line of output consists of 111, a space, Hugh, a space,
Mungus, a space, and 101-555-1111. (By default, join uses a single space to separate
fi elds in the output.)
 In the example above, every line in the fi rst fi le matches a line in the second fi le.
However, this might not always be the case. For example, consider the following fi les.
You are making a list of your friends’ birthdays and their favorite gifts. The fi rst fi le,
birthdays, contains two fi elds: fi rst name and birthday:

Al May-10-1987
Barbara Feb-2-1992
Dave Apr-8-1990
Frances Oct-15-1991
George Jan-17-1992

The second fi le, gifts, also contains two fi elds: fi rst name and favorite gift:

Al money
Barbara chocolate
Charles music
Dave books
Edward camera

In this case, you have birthday information and gift information for Al, Barbara and
Dave. However, you do not have gift information for Frances and George, and you do not
have birthday information for Edward. Consider what happens when you use join:

join birthdays gifts

Because only three lines have matching join fi elds (the lines for Al, Barbara and Dave),
there are only three lines of output:

Al May-10-1987 money
Barbara Feb-2-1992 chocolate
Dave Apr-8-1990 books

However, suppose you want to see all the people with birthday information, even if they
do not have gift information. You can use the -a (all) option, followed by a 1:

join -a1 birthdays gifts

This tells join to output all the names in fi le #1, even if there is no gift information:

Merging Sorted Data From Two Files: join

33614_19_447_496.indd 47533614_19_447_496.indd 475 1/9/2008 12:37:32 PM1/9/2008 12:37:32 PM

Chapter 19

476 Harley Hahn’s Guide to Unix and Linux

Al May-10-1987 money
Barbara Feb-2-1992 chocolate
Dave Apr-8-1990 books
Frances Oct-15-1991
George Jan-17-1992

Similarly, if you want to see all the people with gift information (from fi le #2), even if they
do not have birthday information, you can use -a2:

join -a2 birthdays gifts

The output is:

Al May-10-1987 money
Barbara Feb-2-1992 chocolate
Charles music
Dave Apr-8-1990 books
Edward camera

To list all the names from both fi les, use both options:

join -a1 -a2 birthdays gifts

he output is:

Al May-10-1987 money
Barbara Feb-2-1992 chocolate
Charles music
Dave Apr-8-1990 books
Edward camera
Frances Oct-15-1991
George Jan-17-1992

When you use join in the regular way (without the -a option) as we did in our fi rst
example, the result is called an INNER JOIN. (The term comes from database theory.)
With an inner join, the output comes only from lines where the join fi eld matched.
 When you use either -a1 or -a2, the output includes lines in which the join fi eld did
not match. We call this an OUTER JOIN.
 I won’t go into the details because a discussion of database theory, however
interesting, is beyond the scope of this book. All I want you to remember is that, if
you work with what are called “relational databases”, the distinction between inner and
outer joins is important.
 To continue, if you want to see only those lines that don’t match, you can use the -v1
or -v2 (reverse) options. When you use -v1, join outputs only those lines from fi le #1
that don’t match, leaving out all the matches. For example:

join -v1 birthdays gifts

The output is:

33614_19_447_496.indd 47633614_19_447_496.indd 476 1/9/2008 12:37:32 PM1/9/2008 12:37:32 PM

Filters: Selecting, Sorting, Combining, and Changing

477

Frances Oct-15-1991
George Jan-17-1992

When you use -v2, you get only those lines from fi le #2 that don’t match:

join -v2 birthdays gifts

The output is:

Charles music
Edward camera

Of course, you can use both options to get all the lines from both fi les that don’t match:

join -v1 -v2 birthdays gifts

The output is now:

Charles music
Edward camera
Frances Oct-15-1991
George Jan-17-1992

Because join depends on its data being sorted, there are several options to help you
control the sorting requirements. First, you can use the -i (ignore) option to tell join
to ignore any differences between upper and lower case. For example, when you use this
option, CHARLES is treated the same as Charles.

 I mentioned earlier that join assumes the join fi eld is the fi rst fi eld of each fi le. You
can specify that you want to use different join fi elds by using the -1 and -2 options.
 To change the join fi eld for fi le #1, use -1 followed by the number of the fi eld you want
to use. For example, the following command joins two fi les, data and statistics
using the 3rd fi eld of fi le #1 and (by default) the 1st fi eld of fi le #2:

join -1 3 data statistics

To change the join fi eld for fi le #2, use the -2 option. For example, the following command
joins the same two fi les using 3rd fi eld of fi le #1 and the 4th fi eld of fi le #2

join -1 3 -2 4 data statistics

To conclude our discussion, I would like to remind you that, because join works with
sorted data, the results you get may depend on your locale and your collating sequences,
that is, on the value of the LC_COLLATE environment variable. (See the discussion
about locales earlier in the chapter.)

HINT

You will often use sort to prepare data for join. Remember: With sort, you ignore
differences in upper and lower case by using the -f (fold) option. With join, you use the -i
(ignore) option. (See the discussion on “fold” earlier in the chapter.)

Merging Sorted Data From Two Files: join

33614_19_447_496.indd 47733614_19_447_496.indd 477 1/9/2008 12:37:32 PM1/9/2008 12:37:32 PM

Chapter 19

478 Harley Hahn’s Guide to Unix and Linux

CREATING A TOTAL ORDERING FROM PARTIAL ORDERINGS: tsort

Related fi lters: sort

Consider the following problem. You are planning your evening activities, and you have
a number of constraints:

• You must clean the dishes before you can watch TV.
• You must eat before you clean the dishes.
• You must shop before you can cook dinner.
• You must shop before you can put away the food.
• You must put away the food before you can cook dinner.
• You must cook dinner before you can eat it.
• You must put away the food before you can watch TV.

As you can see, this is a bit confusing. What you need is a master list that specifi es when
each activity should be done, such that all of the constraints are satisfi ed.
 In mathematical terms, each of these constraints is called a PARTIAL ORDERING,
because they specify the order of some (both not all) of the activities. In our example,
each of the partial orderings specifi es the order of two activities. Should you be able to
construct a master list, it would be a TOTAL ORDERING, because it would specify the
order of all of the activities.
 The job of the tsort program is to analyze a set of partial orderings, each of which
represents a single constraint, and calculate a total ordering that satisfi es all the constraints.
The syntax is simple:

tsort [file]

where fi le is the name of a fi le.
 Each line of input must consist of a pair of character strings separated by whitespace
(spaces or tabs), such that each pair represents a partial ordering. For example, let’s say
that the fi le activities contains the following data:

clean-dishes watch-TV
eat clean-dishes
shop cook
shop put-away-food
put-away-food cook
cook eat
put-away-food watch-TV

HINT

The most common mistake in using join is forgetting to sort the two input fi les. If one or both
of the fi les are not sorted properly with respect to the join fi elds, you will see either no output or
partial output, and there will be no error message to warn you that something has gone wrong.

hah33614_c19_447_496.indd 478hah33614_c19_447_496.indd 478 5/20/2009 2:22:01 PM5/20/2009 2:22:01 PM

Filters: Selecting, Sorting, Combining, and Changing

479

Notice that each line in the fi le consists of two character strings separated by whitespace
(in this case, a single space). Each line represents a partial ordering that matches one of
the constraints listed above. For example, the fi rst line says that you must clean the dishes
before you can watch TV; the second line says you must eat before you can clean the
dishes; and so on.
 The tsort program will turn the set of partial orderings into a single total ordering.
Use the command:

tsort activities

The output is:

shop
put-away-food
cook
eat
clean-dishes
watch-TV

Thus, the solution to the problem is:
1. Shop.
2. Put away your food.
3. Cook dinner.
4. Eat dinner.
5. Clean the dishes.
6. Watch TV.

In general, any set of partial orderings can be combined into a total ordering, as long as
there are no loops. For example, consider the following partial orderings:

study watch-TV
watch-TV study

There can be no total ordering, because you can’t study before you watch TV, if you insist
on watching TV before you study (although many people try). If you were to send this
data to tsort, it would display an error message telling you the input contains a loop.

WHAT’S IN A NAME?

tsort
Mathematically, it is possible to represent a set of partial orderings using what is called a “directed
graph”. If there are no loops, it is called a “directed acyclic graph” or DAG. For example, a tree
(see Chapter 9) is a DAG.
 Once you have a DAG, you can create a total ordering out of the partial orderings by sorting
the elements of the graph based on their relative positions, rather than their values. In fact, this
is how tsort does its job (although we don’t need to worry about the details).
 In mathematics, we use the word “topological” to describe properties that depend on relative
positions. Thus, tsort stands for “topological sort”.

Create a Total Ordering From Partial Ordering: tsort

33614_19_447_496.indd 47933614_19_447_496.indd 479 1/9/2008 12:37:33 PM1/9/2008 12:37:33 PM

Chapter 19

480 Harley Hahn’s Guide to Unix and Linux

SEARCHING FOR CHARACTER STRINGS IN BINARY FILES: strings

Related fi lters: grep

To use the strings program, you need to understand the difference between text fi les
and binary fi les. Consider the following three defi nitions:

1. There are 96 printable characters: tab, space, punctuation symbols, numbers, and
letters. Any sequence of printable characters is called a CHARACTER STRING
or, more informally, a STRING. For example, “Harley” is a string of length 6. (We
discussed printable characters earlier in the chapter.)

2. A fi le that contains only printable characters (with a newline character at the end of
each line) is called a TEXT FILE or ASCII FILE. For the most part, Unix fi lters are
designed to work with text fi les. Indeed, within this chapter, all the sample fi les are
text fi les.

3. A BINARY FILE is any non-empty fi le that is not a text fi le, that is, any fi le that contains
at least some non-textual data. Some common examples of binary fi les are executable
programs, object fi les, images, sound fi les, video fi les, word processing documents,
spreadsheets and databases.

If you are a programmer, you will work with executable programs and object fi les (“pieces”
of programs), all of which are binary fi les. If you could look inside an executable program
or an object fi le, most of what you would see would be encoded machine instructions,
which look like meaningless gibberish. However, most programs do contain some
recognizable character strings such as error messages, help information, and so on.
 The strings program was created as a tool for programmers to display character
strings that are embedded within executable programs and object fi les. For example,
there used to be a custom that programmers would insert a character string into every
program showing the version of that program. This allowed anyone to use strings to
extract the version of a program from the program itself.
 Today, programmers and users have better ways to keep track of such information*
and the strings program is not used much. Still, you can use it, just for fun, to look
“inside” any type of binary fi le. Although there is rarely a practical reason for doing so, it
is cool to check out binary fi les for hidden messages. The syntax is:

strings [-length] [file...]

where length is the minimum length character string to display, and file is the name
of a fi le, most often a pathname.
 As an example, let’s say you want to look inside the sort program. To start, you use
the whereis program to fi nd the pathname — that is, the exact location — of the fi le
that contains the program. (We’ll discuss pathnames and whereis in Chapter 24, so
don’t worry about the details for now.) The command to use is:

 *As we discussed in Chapter 10, most of the GNU utilities (used with Linux and FreeBSD) support the --version
option to display version information.

33614_19_447_496.indd 48033614_19_447_496.indd 480 1/9/2008 12:37:33 PM1/9/2008 12:37:33 PM

Filters: Selecting, Sorting, Combining, and Changing

481

whereis sort

Typical output would be:

sort: /usr/bin/sort /usr/share/man/man1/sort.1.gz

The output shows us the exact locations of the program and its man page. We are only
interested in the program, so to use strings to look inside the sort program, we use:

strings /usr/bin/sort

Such commands usually generate a lot of output. There are, however, three things you
can do to make the output more manageable.
 First, by default, strings will only extract character strings that are at least 4 characters
long. The idea is to eliminate short, meaningless sequences of characters. Even so, you are
likely to see a great many spurious character strings. However, you can eliminate a lot
of them by specifying a longer minimum length. To do so, you use an option consisting
of hyphen (-) followed by a number. For example, to specify that you only want to see
strings that are at least 7 characters long (a good number), you would use:

strings -7 /usr/bin/sort

Next, you can sort the output and remove duplicate lines. To do so, just pipe the output
to sort -iu (discussed earlier in the chapter):

strings -7 /usr/bin/sort | sort -iu

Finally, if there is so much output that it scrolls off your screen before you can read it, you
can use less (Chapter 21) to display the output one screenful at a time:

strings -7 /usr/bin/sort | sort -iu | less

If the idea of looking inside programs for hidden messages appeals to you, here is an
easy way to use strings to explore a variety of programs. The most important Unix
utilities are stored in the two directories /bin and /usr/bin. (We will discuss this in
Chapter 23.) Let’s say you want to look inside some of the programs in these directories.
To start, enter either of the following two cd (change directory) commands. This will
change your “working directory” to whichever directory you choose:

cd /bin
cd /usr/bin

Now use the ls (list) program to display a list of all the fi les in that directory:

ls

All of these fi les are programs, and you can use strings to look at any of them. Moreover,
because the fi les are in your working directory, you don’t have to specify the entire pathname.
In this case, the fi le name by itself is enough. For example, if your working directory is
/bin, where the date program resides, you can look inside the date program by using
the command:

Searching for Character Strings in Binary Files: strings

33614_19_447_496.indd 48133614_19_447_496.indd 481 1/9/2008 12:37:33 PM1/9/2008 12:37:33 PM

Chapter 19

482 Harley Hahn’s Guide to Unix and Linux

strings -7 date | sort -iu | less

In this way, you can look for hidden character strings inside the most important Unix
utilities. Once you are fi nished experimenting, enter the command:

cd

This will change your working directory back to your home directory (explained in
Chapter 23).

TRANSLATING CHARACTERS: tr

Related fi lters: sed

The tr (translate) program can perform three different operations on characters.
First, it can change characters to other characters. For example, you might change
lowercase characters to uppercase characters, or tabs to spaces. Or, you might change
every instance of the number “0” to the letter “X”. When you do this, we say that you
TRANSLATE the characters.
 Second, you can specify that if a translated character occurs more than once in a row,
it should be replaced by only a single character. For example, you might replace one or
more numbers in a row by the letter “X”. Or, you might replace multiple spaces by a single
space. When you make such a change, we say that you SQUEEZE the characters.
 Finally, tr can delete specifi ed characters. For example, you might delete all the tabs
in a fi le. Or, you might delete all the characters that are not letters or numbers.
 In the next few sections, we will examine each of these operations in turn. Before we
start, however, let’s take a look at the syntax:

tr [-cds] [set1 [set2]]

where set1 and set2 are sets of characters*.
 Notice that the syntax does not let you specify a fi le name, either for input or output.
This is because tr is a pure fi lter that reads only from standard input and writes only to
standard output. If you want to read from a fi le, you must redirect standard input; if you
want to write to a fi le (to save the output), you must redirect standard output. This will
make sense when you see the examples. (Redirection is explained in Chapter 15.)
 The basic operation performed by the tr program is translation. You specify two sets
of characters. As tr reads the data, it looks for characters in the fi rst set. Whenever tr
fi nds such characters, it replaces them with corresponding characters from the second set.
For example, say you have a fi le named old. You want to change all the “a” characters to
“A”. The command to do so is:

tr a A < old

 *If you are using Solaris, you should use the Berkeley Unix version of tr. Such programs are stored in the directory
/usr/ucb, so all you have to do is make sure this directory is at the beginning of your search path. (The name ucb stands
for University of California, Berkeley.)
 We discuss Berkeley Unix in Chapter 2, and the search path is in Chapter 13.

33614_19_447_496.indd 48233614_19_447_496.indd 482 1/9/2008 12:37:33 PM1/9/2008 12:37:33 PM

Filters: Selecting, Sorting, Combining, and Changing

483

To save the output, just redirect it to a fi le, for example:

tr a A < old > new

By defi ning longer sets of characters, you can replace more than one character at the same
time. The following command looks for and makes three different replacements: “a” is
replaced by “A”; “b” is replaced by “B”; and “c” is replaced by “C”.

tr abc ABC < old > new

If the second set of characters is shorter than the fi rst, the last character in the second set
is duplicated. For example, the following two commands are equivalent:

tr abcde Ax < old > new
tr abcde Axxxx < old > new

They both replace “a” with “A”, and the other four characters (“b”, “c”, “d”, “e”) with “x”.
 When you specify characters that have special meaning to the shell, you must quote
them (see Chapter 13) to tell the shell to treat the characters literally. You can use either
single or double quotes although, in most cases, single quotes work best. However, if you
are quoting only a single character, it is easier to use a backslash (again, see Chapter 13).
 As a general rule, it is a good idea to quote all characters that are not numbers or
letters. For example, let’s say you want to change all the colons, semicolons and question
marks to periods. You would use:

tr ':;?' \. < old > new

Much of the power of tr comes from its ability to work with ranges of characters. Consider,
for example, the following command which changes all uppercase letters to lowercase.
(What you see below is one long line.)

tr ABCDEFGHIJKLMNOPQRSTUVWXYZ
 abcdefghijklmnopqrstuvwxyz < old > new

The correspondence between upper- and lowercase letters is clear. However, it’s a bother
to have to type the entire alphabet twice. Instead, you can use hyphen (-) to defi ne a
range of characters, according to the following syntax:

start-end

where start is the fi rst character in the range, and end is the last character in the range.
 For example, the previous example can be rewritten as follows:

tr A-Z a-z < old > new

A range can be any set of characters you want, as long as they form a consecutive sequence
within the collating sequence you are using. (Collating sequences are discussed earlier in
the chapter.) For example, the following command implements a secret code you might
use to encode numeric data. The digits 0 through 9 are replaced by the fi rst nine letters of
the alphabet, A through I, respectively. For example, 375 is replaced by CGE.

Translating Characters: tr

33614_19_447_496.indd 48333614_19_447_496.indd 483 1/9/2008 12:37:33 PM1/9/2008 12:37:33 PM

Chapter 19

484 Harley Hahn’s Guide to Unix and Linux

tr 0-9 A-I < old > new

As a convenience, there are several abbreviations you can use instead of ranges. These
abbreviations are called “predefi ned character classes”, and we will discuss them in
detail in Chapter 20 when we talk about regular expressions. For now, all you need
to know is that you can use [:lower:] instead of a-z, [:upper:] instead of
A-Z, and [:digit:] instead of 0-9. For example, the following two commands
are equivalent:

tr A-Z a-z < old > new
tr [:upper:] [:lower:] < old > new

As are these two commands:

tr 0-9 A-I < old > new
tr [:digit:] A-I < old > new

(Note that the square brackets and colons are part of the name.)
 For practical purposes, these three predefi ned character classes are the ones you are
most likely to use with the tr program. However, there are more predefi ned character
classes available if you need them. You will fi nd the full list in Figure 20-3 in Chapter 20.

TRANSLATING UNPRINTABLE CHARACTERS
So far, all our examples have been straightforward. Still, they were a bit contrived. After all,
how many times in your life will you need to change colons, semicolons and question marks
to periods? Or change the letters “abc” to “ABC? Or use a secret code that changes numbers
to letters? Traditionally, the tr program has been used for more esoteric translations,
often involving non-printable characters. Here is a typical example to give you an idea.

HINT

Compared to other fi lters, tr is unusual in that it does not allow you to specify the names of an
input fi le or output fi le directly. To read from a fi le, you must redirect standard input; to write to
a fi le, you must redirect standard output. For this reason, the most common mistake beginners
make with tr is to forget the redirection. For example, the following commands will not work:

tr abc ABC old
tr abc ABC old new

Linux will display a vague message telling you that there is an “extra operand”. Other types of Unix
will display messages that are even less helpful. For this reason, you may, one day, fi nd yourself
spending a lot of time trying to fi gure out why your tr commands don’t work.

 The solution is to never forget: When you use tr with fi les, you always need
redirection:

tr abc ABC < old
tr abc ABC < old > new

33614_19_447_496.indd 48433614_19_447_496.indd 484 1/9/2008 12:37:33 PM1/9/2008 12:37:33 PM

Filters: Selecting, Sorting, Combining, and Changing

485

 In Chapter 7, I explained that, within a text fi le, Unix marks the end of each line by a
newline (^J) character* and Windows uses a return followed by a newline (^M^J). Old
versions of the Macintosh operating system, up to OS 9, used a return (^M) character**.
 Suppose you have a text fi le that came from an old Macintosh. Within the fi le, the
end of each line is marked by a return. Before you can use the fi le with Unix, you need to
change all the returns to newlines. This is easy with tr. However, in order to do so, you
need a way to represent both the newline and return characters. You have two choices.
 First, you can use special codes that are recognized by the tr program: \r for a return,
and \n for newline. Alternatively, you can use a \ (backslash) character followed by the
3-digit octal value for the character. In this case, \015 for return, and \012 for newline.
For reference, Figure 19-4 shows the special codes and octal values you are most likely to
use with tr.
 The octal values are simply the base 8† number of the character within the ASCII code.
For reference, you will fi nd the octal values for the entire ASCII code in Appendix D.
 Let us consider, then, how to use tr to change returns to newlines. Let’s say we have
a text fi le named macfile in which each line ends with a return. We want to change
all the returns to newlines and save the output in a fi le named unixfile. Either of the
following commands will do the job:

 *As we discussed in Chapter 7, when Unix people write the names of control keys, they often use ^ as an abbreviation for
“Ctrl”. Thus, ^J refers to <Ctrl-J>.
 **For many years, the Macintosh operating system (Mac OS) used ^M to mark the end of a line of text. As I mentioned, this
was the case up to OS 9. In 2001, OS 9 was replaced by OS X, which is based on Unix. Like other Unix-based systems, OS X uses
^J to mark the end of a line of text.
 †In general, we count in base 10 (decimal), using the 10 digits 0 through 9. When we use computers, however, there are
three other bases that are important:
 • Base 2 (binary): uses 2 digits, 0-1
 • Base 8 (octal): uses 8 digits, 0-7
 • Base 16 (hexadecimal): uses 16 digits, 0-9 and A-F
 We will talk about these number systems in Chapter 21.

CODE CTRL KEY OCTAL CODE NAME
\b ^H \010 backspace

\t ^I \011 tab

\n ^J \012 newline/linefeed

\r ^M \015 return

\\ — — backslash

FIGURE 19-4: Codes used by the tr program to represent control characters

The tr program is used to translate (change) specifi c characters into other characters. To specify non-
printable characters, you can either use a special code, or a backslash (/) followed by the 3-digit octal
(base 8) value of the character. (You will fi nd the octal values for all the characters in the ASCII code
in Appendix D.)

This table shows the special codes and octal values for the four most commonly used control characters.
There are others, but you are unlikely to need them with tr.

Note: Since the backslash is used an escape character (see Chapter 13), if you want to specify an actual
backslash, you must use two in a row.

Translating Unprintable Characters

33614_19_447_496.indd 48533614_19_447_496.indd 485 1/9/2008 12:37:33 PM1/9/2008 12:37:33 PM

Chapter 19

486 Harley Hahn’s Guide to Unix and Linux

tr '\r' '\n' < macfile > unixfile
tr '\015' '\012' < macfile > unixfile

As you can see, using these codes is simple once you understand how they work. For
example, the following two commands change all the tabs in the fi le olddata to spaces,
saving the output in newdata*:

tr '\t' ' ' < olddata > newdata
tr '\011' ' ' < olddata > newdata

TRANSLATING CHARACTERS: ADVANCED TOPICS
So far, we have discussed how to use tr for straightforward substitutions, where one
character is replaced by another character. We will now turn our attention to more
advanced topics. Before we do, here is a reminder of syntax we will be using:

tr [-cds] [set1 [set2]]

where set1 and set2 are sets of characters.
 The -s option tells tr that multiple consecutive characters from the fi rst set should
be replaced by a single character. As I mentioned earlier, when we do this, we say that we
squeeze the characters. Here is an example.
 The following two commands replace any digit (0-9) with the uppercase letter “X”.
The input is read from a fi le named olddata, and the output is written to a fi le
named newdata:

tr [:digit:] X < olddata > newdata
tr 0-9 X < olddata > newdata

Now these commands replace each occurrence of a digit with an “X”. For example, the
6-digit number 120357 would be changed to XXXXXX. Let’s say, however, you want to
change all multi-digit numbers, no matter long they are, into a single “X”. You would use
the -s option:

tr -s [:digit:] X < olddata > newdata
tr -s 0-9 X < olddata > newdata

This tells tr to squeeze all multi-digit numbers into a single character. For example, the
number 120357 is now changed to X.
 Here is a useful example in which we squeeze multiple characters, without actually
changing the character. You want to replace consecutive spaces with a single space. The
solution is to replace a space with a space, while squeezing out the extras:

tr -s ' ' ' ' < olddata > newdata

 *When you change tabs to spaces, or spaces to tabs, it is often better to use expand and unexpand (Chapter 18). These
two programs were designed specifi cally to make such changes and, hence, offer more fl exibility.

33614_19_447_496.indd 48633614_19_447_496.indd 486 1/9/2008 12:37:33 PM1/9/2008 12:37:33 PM

Filters: Selecting, Sorting, Combining, and Changing

487

The next option, -d, deletes the characters you specify. As such, when you use -d, you defi ne
only one set of characters. For example, to delete all the left and right parentheses, use:

tr -d '()' < olddata > newdata

To delete all numbers, use either of the commands:

tr -d [:digit:] < olddata > newdata
tr -d 0-9 < olddata > newdata

The fi nal option, -c, is the most complex and the most powerful. This option tells tr to
match all the characters that are not in the fi rst set*. For example, the following command
replaces all characters except a space or a newline with an “X”:

tr -c ' \n' X < olddata > newdata

The effect of this command is to preserve the “image” of the text, without the meaning.
For instance, let’s say the fi le olddata contains:

"Do you really think you were designed to spend most of
your waking hours working in an office and going to
meetings?" — Harley Hahn

The previous command will generate:

XX XXX XXXXXX XXXXX XXX XXXX XXXXXXXX XX XXXXX XXXX XX
XXXX XXXXXX XXXXX XXXXXXX XX XX XXXXXX XXX XXXXX XX
XXXXXXXXX X XXXXXX XXXX

To fi nish the discussion of tr, here is an interesting example in which we combine the
-c (complement) and -s (squeeze) options to count unique words. Let’s say you have
written two history essays, stored in text fi les named greek and roman. You want to
count the unique words found in both fi les. The strategy is as follows:

1. Use cat to combine the fi les.
2. Use tr to place each word on a separate line.
3. Use sort to sort the lines and eliminate duplications.
4. Use wc to count the remaining lines.

To place each word on a separate line (step 2), all we need to do is use tr to replace
every character that is not part of a word with a newline. For example, let’s say we have
the words:

As you can see

 *The name -c stands for “complement”, a mathematical term. In set theory, the complement of a set refers to all the
elements that are not part of the set. For example, with respect to the integers, the complement of the set of all even numbers
is the set of all odd numbers. With respect to all the uppercase letters, the complement of the set {ABCDWXYZ} is the set
{EFGHIJKLMNOPQRSTUV}.

Translating Characters: Advanced Topics

33614_19_447_496.indd 48733614_19_447_496.indd 487 1/9/2008 12:37:33 PM1/9/2008 12:37:33 PM

Chapter 19

488 Harley Hahn’s Guide to Unix and Linux

This would change to:

As
you
can
see

To keep things simple, we will say words are constructed from a set of 53 different
characters: 26 uppercase letters, 26 lowercase letters, and the apostrophe (that is, the single
quote). The following three commands — choose the one you like — will do the job:

tr -cs [:alpha:]\' "\n"
tr -cs [:upper:][:lower:]\' "\n"
tr -cs A-Za-z\' "\n"

The -c option changes the characters that are not in the fi rst set; and the -s option
squeezes out repeated characters. The net effect is to replace all characters that are not a
letter or an apostrophe with a newline.
 Once you have isolated the words, one per line, it is a simple matter to sort them. Just
use the sort program with -u (unique) to eliminate duplicate lines, and -f (fold) to
ignore differences between upper and lower case. You can then use wc -l to count the
number of lines. Here, then, is the complete pipeline:

cat greek roman | tr -cs [:alpha:]\' "\n" | sort -fu | wc -l

More generally:

cat file1... | tr -cs [:alpha:]\' "\n" | sort -fu | wc -l

In this way, a single Unix pipeline can count how many unique words are contained in
a set of input fi les. If you want to save the list of words, all you need to do is redirect the
output of the sort program:

cat file1... | tr -cs [:alpha:]\' "\n" | sort -fu > file

NON-INTERACTIVE TEXT EDITING: sed
A text editor is a program that enables you to perform operations on lines of text. Typically,
you can insert, delete, make changes, search, and so on. The two most important Unix
text editors are vi (which we will discuss in Chapter 22), and Emacs. There are also
several other, less important, but simpler text editors which we discussed in Chapter 14:
kedit, gedit, Pico and Nano.
 The common characteristic of all these programs is that they are interactive. That is,
you work with them by opening a fi le and then entering commands, one after another
until you are done. In this section, I am going to introduce you to a text editor called sed,
which is non-interactive.
 With a non-interactive text editor, you compose your commands ahead of time. You
then send the commands to the program, which carries them out automatically. Using a

33614_19_447_496.indd 48833614_19_447_496.indd 488 1/9/2008 12:37:34 PM1/9/2008 12:37:34 PM

Filters: Selecting, Sorting, Combining, and Changing

489

non-interactive text editor allows you to automate a large variety of tasks that, otherwise,
you would have to carry out by hand.
 You can use sed in two ways. First, you can have sed read its input from a fi le. This
allows you to make changes in an existing fi le automatically. For example, you might
want to read a fi le and change all the occurrences of “harley” to “Harley”.
 Second, you can use sed as a fi lter in a pipeline. This allows you to edit the output
of a program. It also allows you to pipe the output of sed to yet another program for
further processing.
 Before we get started, here is a bit of terminology. When you think of data being sent
from one program to another in a pipeline, it conjures up the metaphor of water running
along a path. For this reason, when data fl ows from one program to another, we call it
a STREAM. More specifi cally, when data is read by a program, we call the data an INPUT
STREAM. When data is written by a program, we call the data an OUTPUT STREAM.
 Of all the fi lters we have discussed, sed is, by far, the most powerful. This is because
sed is more than a single-purpose program. It is actually an interpreter for a portable,
shell-independent language designed to perform text transformations on a stream of
data. Hence the name sed is an abbreviation of “stream editor”.
 A full discussion of everything that sed can do is beyond the scope of this book.
However, the most useful operation you can perform with sed is to make simple
substitutions, so that is what I will teach you. Still, I am leaving out a lot, so when you
get a spare moment, look on the Web for a sed tutorial to learn more. If you need a
reference, check the man page on your system (man sed).
 The syntax to use sed in this way is:

sed [-i] command | -e command... [file...]

where command is a sed command, and fi le is the name of an input fi le.
 To show you what it looks like to use sed, here is a typical example in which we
change every occurrence of “harley” to “Harley”. The input comes from a text fi le named
names; the output is written to a fi le named newnames:

sed 's/harley/Harley/g' names > newnames

I’ll explain the details of the actual command in a moment. First, though, we need to talk
about input and output fi les.
 The sed program reads one line at a time from the data stream, processing all the data
from beginning to end, according to a 3-step procedure:

1. Read a line from the input stream.
2. Execute the specifi ed commands, making changes as necessary to the line.
3. Write the line to the output stream.

By default, sed writes its output to standard output, which means sed does not change
the input fi le. In some cases this is fi ne, because you don’t want to change the original
fi le; you want to redirect standard output to another fi le. You can see this in the example
above. The input comes from names, and the output goes to newnames. The fi le
names is left untouched.

Non-Interactive Text Editing: sed

33614_19_447_496.indd 48933614_19_447_496.indd 489 1/9/2008 12:37:34 PM1/9/2008 12:37:34 PM

Chapter 19

490 Harley Hahn’s Guide to Unix and Linux

 Most of the time, however, you do want to change the original fi le. To do so, you must
use the -i (in-place) option. This causes sed to save its output to a temporary fi le. Once
all the data is processed successfully, sed copies the temporary fi le to the original fi le.
The net effect is to change the original fi le, but only if sed fi nishes without an error. Here
is a typical sed command using -i:

sed -i ‘s/harley/Harley/g’ names

In this case, sed modifi es the input fi le names by changing all occurrence of “harley”
to “Harley”.*
 When you use sed -i, you must be careful. The changes you make to the input fi le
are permanent, and there is no “undo” command.

USING sed FOR SUBSTITUTIONS

Related fi lters: tr

The power of sed comes from the operations you can have it perform. The most
important operation is substitution, for which you use the s command. There are two
forms of the syntax:

[/address|pattern/]s/search/replacement/[g]

where address is the address of one or more lines within the input stream, pattern is a
character string, search is a regular expression, and replacement is the replacement text.
 In its simplest form, you use the substitute command by specifying a search string and
a replacement string. For example:

HINT

Before you use sed to change a fi le, it is a good idea to preview the changes by running the
program without the -i option. For example:

sed 's/xx/XXX/g' file | less

This allows you to look at the output, and see if it is what you expected. If so, you can rerun the
command with -i to make the changes*:

sed -i 's/xx/XXX/g' file

 *The -i option is available only with the GNU version of sed. If your system does not use the GNU utilities — for
example, if you use Solaris — you cannot use -i. Instead, to use sed to change a fi le, you must save the output to a temporary
fi le. You then use the cp (copy) program to copy the temporary fi le to the original fi le, and the rm (remove) program to delete
the temporary fi le. For example:

sed 's/harley/Harley/g' names > temp
cp temp names
rm temp

In other words, you must do by hand what the -i option does for you automatically.
 **There is a general Unix principle that says, before you make important permanent changes, preview them if possible.
 We used a similar strategy in Chapter 13 with the history list and with aliases. Both times, we discussed how to avoid
deleting the wrong fi les accidentally by previewing the results before performing the actual deletion.
 This principle is so important that I want you to remember it forever or until you die (whichever comes fi rst).

33614_19_447_496.indd 49033614_19_447_496.indd 490 1/9/2008 12:37:34 PM1/9/2008 12:37:34 PM

Filters: Selecting, Sorting, Combining, and Changing

491

s/harley/Harley/

This command tells sed to search each line of the input stream for the character string
“harley”. If the string is found, change it to “Harley”. By default, sed changes only the
fi rst occurrence of the search string on each line. For example, let’s say the following line
is part of the input stream:

I like harley. harley is smart. harley is great.

The above command will change this line to:

I like Harley. harley is smart. harley is great.

If you want to change all occurrences of the search string, type the suffi x g (for global) at
the end of the command:

s/harley/Harley/g

In our example, adding the g causes the original line to be changed to:

I like Harley. Harley is smart. Harley is great.

In my experience, when you use sed to make a substitution, you usually want to use g to
change all the occurrences of the search string, not just the fi rst one in each line. This is
why I have included the g suffi x in all our examples.
 So far, we have searched only for simple character strings. However, you can make
your search a lot more powerful by using what is called a “regular expression” (often
abbreviated as “regex”). Using a regular expression allows you to specify a pattern, which
gives you more fl exibility. However, regexes can be complex, and it will take you awhile to
learn how to use them well.
 I won’t go into the details of using regular expressions now. In fact, they are so
complicated — and so powerful — that I have devoted an entire chapter to them, Chapter
20. Once you have read that chapter, I want you to come back to this section and spend
some time experimenting with regular expressions and sed. (Be sure to use the handy
reference tables in Figures 20-1, 20-2 and 20-3.)
 For now, I’ll show you just two examples that use regular expressions with sed. To
start, let’s say you have a fi le named calendar that contains information about your
plans for the next several months. You want to change all occurrences of the string “mon”
or “Mon” to the word “Monday. Here is a command that makes the change by using a
regular expression:

sed -i 's/[mM]on/Monday/g' calendar

To understand this command, all you need to know is that, within a regular expression,
the notation [...] matches any single element within the brackets, in this case, either an
“m” or an “M”. Thus, the search string is either “mon” or “Mon”.
 This second example is a bit trickier. Earlier in the chapter, when we discussed the
tr program, we talked about how Unix, Windows, and the Macintosh all use different
characters to mark the end of a line of text. Unix uses a newline (^J); Windows uses a

Using sed for Substitutions

33614_19_447_496.indd 49133614_19_447_496.indd 491 1/9/2008 12:37:34 PM1/9/2008 12:37:34 PM

Chapter 19

492 Harley Hahn’s Guide to Unix and Linux

return followed by a newline (^M^J); and the Macintosh uses a return (^M). (These
characters are discussed in detail in Chapter 7.)
 During the discussion, I showed you how to convert a text fi le in Macintosh format to
Unix format. You do so by using tr to change all the returns to newlines:

tr '\r' '\n' < macfile > unixfile

But what do you do if you have a text fi le in Windows format and you want to use the fi le
with Unix? In other words, how do you change the “return newline” at the end of each line
of text to a simple newline? You can’t use tr, because you need to change two characters
(^M^J)into one (^J); tr can only change one character into another character.
 We can, however, use sed, because sed can change anything into anything. To create
the command, we use the fact that the return character (^M) will be at the end of the line,
just before the newline (^J). All we need to do is fi nd and delete the ^M.
 Here are two commands that will do the conversion. The fi rst command reads its
input from a fi le named winfile, and writes the output to a fi le named unixfile.
The second command uses -i to change the original fi le itself:

sed 's/.$//' winfile > unixfile
sed -i 's/.$//' winfile

So how does this work? Within a regular expression, a . (dot) character matches any
single character; the $ (dollar sign) character matches the end of a line. Thus, the search
string .$ refers to the character just before the newline.
 Look carefully at the replacement string. Notice that it is empty. This tells sed to
change the search string to nothing. That is, we are telling sed to delete the search
string. This has the effect of removing the spurious return character from each line in
the fi le.
 If you have never used regular expressions before, I don’t expect you to feel completely
comfortable with the last several commands. However, I promise you, by the time you
fi nish Chapter 20, these examples, and others like them, will be very easy to understand.

TELLING sed TO OPERATE ONLY ON SPECIFIC LINES
By default , sed performs its operations on every line in the data stream. To change this,
you can preface your command with an “address”. This tells sed to operate only on the
lines with that address. An address has the following syntax:

number[,number] | /regex/

where number is a line number, and regex is a regular expression.

HINT

To delete a character string with sed, you search for the string and replace it with nothing.
 This is an important technique to remember, as you can use it with any program that allows
search and replace operations. (In fact, you will often use this technique within a text editor.)

33614_19_447_496.indd 49233614_19_447_496.indd 492 1/9/2008 12:37:34 PM1/9/2008 12:37:34 PM

Filters: Selecting, Sorting, Combining, and Changing

493

 In its simplest form, an address is a single line number. For example, the following
command changes only the 5th line of the data stream:

sed '5s/harley/Harley/g' names

To specify a range of lines, separate the two line numbers with a comma. For example, the
following command changes lines 5 through 10:

sed '5,10s/harley/Harley/g' names

As a convenience, you can designate the last line of the data stream by the $ (dollar sign)
character. For example, to change only the last line of the data stream, you would use:

sed '$s/harley/Harley/g' names

To change lines 5 through the last line, you would use:

sed '5,$s/harley/Harley/g' names

As an alternative to specifying line numbers, you can use a regular expression or a
character string* enclosed in / (slash) characters. This tells sed to process only those
lines that contain the specifi ed pattern. For example, to make a change to only those lines
that contain the string “OK”, you would use:

sed '/OK/s/harley/Harley/g' names

Here is a more complex example. The following command changes only those lines that
contain 2 digits in a row:

sed '/[0-9][0-9]/s/harley/Harley/g' names

(The notation [0-9] refers to a single digit from 0 to 9. See Chapter 20 for the details.)

USING VERY LONG sed COMMANDS
As I mentioned earlier , sed is actually an interpreter for a text-manipulation programming
language. As such, you can write programs — consisting of as many sed commands as
you want — which you can store in fi les and run whenever you want.
 To do so, you identify the program fi le by using the -f command. For example, to run
the sed program stored in a fi le named instructions, using data from a fi le named
input, you would use:

sed -f instructions input

The use of sed to write programs, alas, is beyond the scope of this book. In this chapter,
we are concentrating on how to use sed as a fi lter. Nevertheless, there will be times when
you will want sed to perform several operations, in effect, to run a tiny program. When
this need arises, you can specify as many sed commands as you want, as long as you
precede each one by the -e (editing command) option. Here is an example.

 *As we will discuss in Chapter 20, character strings are considered to be regular expressions.

Using Very Long sed Commands

33614_19_447_496.indd 49333614_19_447_496.indd 493 1/9/2008 12:37:34 PM1/9/2008 12:37:34 PM

Chapter 19

494 Harley Hahn’s Guide to Unix and Linux

 You have a fi le named calendar in which you keep your schedule. Within the fi le,
you have various abbreviations you would like to expand. In particular, you want to
change “mon” to “Monday”. The command to use is:

sed -i 's/mon/Monday/g' calendar

However, you also want to change “tue” to “Tuesday”. This requires two separate sed
commands, both of which must be preceded by the -e option:

sed -i -e 's/mon/Monday/g' -e 's/tue/Tuesday/g' calendar

By now, you can see the pattern. You are going to need seven separate sed commands,
one for each day of the week. This, however, will require a very long command line.
 As we discussed in Chapter 13, the best way to enter a very long command is to break
it onto multiple lines. All you have to do is type a \ (backslash) before you press the
<Return> key. The backslash quotes the newline, which allows you to break the command
onto more than one line.
 As an example, here is a long sed command that changes the abbreviations for all
seven days of the week. Notice that all the lines, except the last one, are continued. What
you see here is, in reality, one very long command line:

sed -i \
-e 's/mon/Monday/g' \
-e 's/tue/Tuesday/g' \
-e 's/wed/Wednesday/g' \
-e 's/thu/Thursday/g' \
-e 's/fri/Friday/g' \
-e 's/sat/Saturday/g' \
-e 's/sun/Sunday/g' \
calendar

HINT

When you type \<Return> to continue a line, most shells display a special prompt, called the
SECONDARY PROMPT, to indicate that a command is being continued.
 Within the Bourne Shell family (Bash, Korn Shell), the default secondary prompt is a >
(greater-than) character. You can change the secondary prompt by modifying the PS2 shell
variable (although most people don’t).
 Within the C-Shell family, only the Tcsh has a secondary prompt. By default, it is a ? (question
mark). You can change the secondary prompt by modifying the prompt2 shell variable.
 (The commands to modify shell variables are explained in Chapter 12. Putting such
commands in one of your initialization fi les is discussed in Chapter 14.)

33614_19_447_496.indd 49433614_19_447_496.indd 494 1/9/2008 12:37:34 PM1/9/2008 12:37:34 PM

Filters: Selecting, Sorting, Combining, and Changing

495

C H A P T E R 1 9 E X E R C I S E S

REVIEW QUESTIONS

1. Of all the fi lters, grep is the most important. What does grep do? Why is it especially
useful in a pipeline? Explain the meaning of the following options: -c, -i, -l, -L,
-n, -r, -s, -v, -w and -x.

2. What two tasks can the sort program perform? Explain the meaning of the following
options: -d, -f, -n, -o, -r and -u. Why is the -o option necessary?

3. What is a collating sequence? What is a locale? What is the connection between the two?

4. What four tasks can the uniq program perform?

5. What three tasks can the tr program perform? When using tr, what special codes do
you use to represent: backspace, tab, newline/linefeed, return and backslash.

APPLYING YOUR KNOWLEDGE

1. As we will discuss in Chapter 23, the /etc directory is used to hold confi guration
fi les (explained in Chapter 6). Create a command that looks through all the fi les
in the /etc directory, searching for lines that contain the word “root”. The output
should be displayed one screenful at a time. Hint: To specify the fi le names, use the
pattern /etc/*.

 Searching through the fi les in the /etc directory will generate a few spurious error
messages. Create a second version of the command that suppresses all such messages.

2. Someone bets you that, without using a dictionary, you can’t fi nd more than 5 English
words that begin with the letters “book”. You are, however, allowed a single Unix
command. What command should you use?

3. You are running an online dating service for your school. You have three fi les
containing user registrations: reg1, reg2 and reg3. Within these fi les, each line
contains information about a single person (no pun intended).

 Create a pipeline that processes all three fi les, selecting only those lines that contain
the word “female” or “male” (your choice). After eliminating all duplications, the
results should be saved in a fi le named prospects.

 Once this is done, create a second pipeline that displays a list of all the people (male
or female) who have registered more than once. Hint: Look for duplicate lines within
the fi les.

Chapter 19 Exercises

33614_19_447_496.indd 49533614_19_447_496.indd 495 1/9/2008 12:37:34 PM1/9/2008 12:37:34 PM

Chapter 19

496 Harley Hahn’s Guide to Unix and Linux

4. You have a text fi le named data. Create a pipeline that displays all instances of double
words, for example, “hello hello”. (Assume that a “word” consists of consecutive upper-
or lowercase letters.) Hint: First create a list of all the words, one per line. Then pipe
the output to a program that searches for consecutive identical lines.

FOR FURTHER THOUGHT

1. In an earlier question, I observed that grep is the most important fi lter, and I asked
you to explain why it is especially useful in a pipeline. Considering your answer to
that question, what is it about the nature of human beings that makes grep seem so
powerful and useful?

2. Originally, Unix was based on American English and American data processing
standards (such as the ASCII code). With the development of internationalization
tools and standards (such as locales), Unix can now be used by people from a variety
of cultures. Such users are able to interact with Unix in their own languages using
their own data processing conventions. What are some of the tradeoffs in expanding
Unix in this way? List three advantages and three disadvantages.

3. In this chapter, we talked about the tr and sed programs in detail. As you can see,
both of these programs can be very useful. However, they are complex tools that
require a lot of time and effort to master. For some people, this is not a problem.
For many other people, however, taking the time to learn how to use a complex tool
well is an uncomfortable experience. Why do you think this is so? Should all tools be
designed to be easy to learn?

4. Comment on the following statement: There is no program in the entire Unix toolbox
that can’t be mastered in less time than it takes to learn how to play the piano well.

33614_19_447_496.indd 49633614_19_447_496.indd 496 1/9/2008 12:37:34 PM1/9/2008 12:37:34 PM

497

C H A P T E R 2 0

Regular Expressions

Introducing Regular Expressions

Regular expressions are used to specify patterns of characters. The most common use for
regular expressions is to search for strings of characters. As such, regular expressions are
often used in search-and-replace operations.
 As a tool, regular expressions are so useful and so powerful that, literally, there are
entire books and Web sites devoted to the topic. Certainly, mastering the art of using
regular expressions is one of the most important things you can do to become profi cient
with Unix.
 It is possible to create regular expressions that are very complex. However, most of the
time, the regular expressions you require will be simple and straightforward, so all you
need to do is learn a few simple rules and then practice, practice, practice. The goal of this
chapter is to get you started.
 Note: Before we start, there is one thing I want to mention. Within this chapter, I will
be showing you a great many examples using the grep command (Chapter 19). If you
fi nd that some of the regular expression features don’t work with your version of grep,
you may have to use egrep or grep -E instead. In such cases, you can set up an alias to
use one of these variations automatically. You will fi nd the details in Chapter 19, as part of
the discussion of grep and egrep. The reasons for this will be clear when we talk about
extended and basic regular expressions later in the chapter.

INTRODUCING REGULAR EXPRESSIONS
Within this chapter, I will be showing you examples of regular expressions using the
grep command, which we discussed in Chapter 19. Although these are convenient
examples, you should know that regular expressions can be used with many different
Unix programs, such as the vi and Emacs text editors, less, sed, and many more. In
addition, regular expressions can be used with many programming languages, such as
Awk, C, C++, C#, Java, Perl, PHP, Python, Ruby, Tcl and VB.NET.
 The concepts I will be teaching you are typical of regular expressions in general. Once
you master the basic rules, all you will ever need to learn are a few variations as the
need arises. Although the more esoteric features of regular expressions can vary from

33614_20_497_520.indd 49733614_20_497_520.indd 497 1/9/2008 12:37:56 PM1/9/2008 12:37:56 PM

Chapter 20

498 Harley Hahn’s Guide to Unix and Linux

one program to another — for example, Perl has a whole set of advanced features — the
basic ideas are always the same. If you ever have a problem, all you have to do is check the
documentation for the program you are using.
 A REGULAR EXPRESSION, often abbreviated as REGEX or RE, is a compact way of
specifying a pattern of characters. For example, consider the following set of the three
character strings:

harley1 harley2 harley3

As a regular expression, you could represent this set of patterns as harley[123].
 Here is another example. You want to describe the set of character strings consisting
of the uppercase letter “H”, followed by any number of lowercase letters, followed by the
lowercase letter “y”. The regular expression to use is H[[:lower:]]*y.
 As you can see, the power of regular expressions comes from using metacharacters
and abbreviations that have special meanings. We will discuss the details in the following
sections. For reference, the syntax for using regular expressions is summarized in Figures
20-1, 20-2 and 20-3. Take a moment to skim them now, and you can refer back to them,
as necessary, as you read the rest of the chapter.

THE ORIGIN OF REGULAR EXPRESSIONS
The term “regular expression” comes from computer science and refers to a set of rules
for specifying patterns. The name comes from the work of the eminent American
mathematician and computer scientist Stephen Kleene (1909–1994). (His name is
pronounced “Klej-nee”.)
 In the early 1940s, two neuroscientists, Walter Pitts and Warren McCulloch developed
a mathematical model of how they believed neurons (nerve cells) worked. As part of their

METACHARACTER MEANING
. match any single character except newline

^ anchor: match the beginning of a line

$ anchor: match the end of a line

\< anchor: match the beginning of a word

\> anchor: match the end of a word

[list] character class: match any character in list

[^list] character class: match any character not in list

() group: treat as a single unit

| alternation: match one of the choices

\ quote: interpret a metacharacter literally

FIGURE 20-1: Regular expressions: Basic matching

A regular expression is a compact way of specifying a pattern of characters. Within a regular expression,
ordinary characters match themselves, and certain metacharacters have a special meaning. This table
shows the metacharacters that are used to carry out the basic pattern matching functions.

33614_20_497_520.indd 49833614_20_497_520.indd 498 1/9/2008 12:37:57 PM1/9/2008 12:37:57 PM

Regular Expressions

499The Origin of Regular Expressions

model, they used very simple, imaginary machines, called automata. In the mid-1950s,
Kleene developed a way of describing automata mathematically using what he called
“regular sets”: sets that could be described using a small number of simple properties.
Kleene then created a simple notation, which he called regular expressions, that could be
used to describe such sets.
 In 1966, Ken Thompson — the programmer who would later develop Unix — joined
Bell Labs. One of the fi rst things he did was to program a version of the QED text editor,
which he had used at U.C. Berkeley. Thompson extended QED signifi cantly, adding, among
other features, a pattern-matching facility that used an enhanced form of Kleene’s regular
expressions. Until that time, text editors could only search for exact character strings. Now,
using regular expressions, the QED editor could search for patterns as well.

OPERATOR MEANING
* match zero or more times

+ match one or more times

? match zero or one times

{n} bound: match n times

{n,} bound: match n or more times

{0,m} bound: match m or fewer times

{,m} bound: match m or fewer times

{n,m} bound: match n to m times

FIGURE 20-2: Regular expressions : Repetition operators

Within a regular expression, the following metacharacters, called repetition operators, can be used to
match multiple instances of specifi c characters.

Note: Some programs do not support {,m} because it is not standard.

CLASS MEANING SIMILAR TO...
[:lower:] lowercase letters a-z

[:upper:] uppercase letters A-Z

[:alpha:] upper- and lowercase letters A-Za-z

[:alnum:] upper- and lowercase letters, numbers A-Za-z0-9

[:digit:] numbers 0-9

[:punct:] punctuation characters —

[:blank:] space or Tab (whitespace) —

FIGURE 20-3: Regular expressions: Predefi ned character classes

Regular expressions can contain character classes to defi ne a set of characters. For convenience, there
are a number of predefi ned character classes you can use as abbreviations. This table shows the most
important ones. Note that the brackets and colons are part of the name.

The rightmost column shows ranges that are equivalent to some of the predefi ned character classes. You
can use these ranges instead of the class names if your system uses the C collating sequence. To ensure
that this is the case, you can set the environment variable LC_COLLATE to the value C. (See text
for details.)

33614_20_497_520.indd 49933614_20_497_520.indd 499 1/9/2008 12:37:57 PM1/9/2008 12:37:57 PM

Chapter 20

500 Harley Hahn’s Guide to Unix and Linux

 In 1969, Thompson created the fi rst, primitive version of Unix (see Chapters 1 and 2).
Not long afterwards, he wrote the fi rst Unix editor, ed (pronounced “ee-dee”), which he
designed to use a simplifi ed form of regular expressions less powerful than those he had
used with QED. The ed program was part of what was called UNIX Version 1, which was
released in 1971.
 The popularity of ed led to the use of regular expressions with grep and, later,
with many other Unix programs. Today, regular expressions are used widely, not only
within Unix, but throughout the world of computing. (Interestingly enough, the features
Thompson left out when he wrote ed have now been added back in.)

BASIC AND EXTENDED REGULAR EXPRESSIONS
This section is a reference and, on your fi rst reading, it may be a bit confusing. Don’t worry. Later,
after you have read the rest of the chapter and practiced a bit, everything will make sense.

 As we discussed in the previous section, regular expressions became part of Unix when
Ken Thompson created the ed text editor, which was released with UNIX Version 1 in
1971. The original regular expression facility was useful, but limited, and over the years, it
has been extended signifi cantly. This has given rise to a variety of regex systems of varying
complexity, which can be confusing to beginners.
 For practical purposes, you only need to remember a few fundamental ideas. I’d like
to take a moment to discuss these ideas now, so you won’t have a problem later on when
you practice with the examples in this chapter.
 Unix supports two major variations of regular expressions: a modern version and an
older, obsolete version. The modern version is the EXTENDED REGULAR EXPRESSION
or ERE. It is the current standard, and is part of the overall IEEE 1003.2 standard (part of
POSIX; see Chapter 11).
 The older version is the BASIC REGULAR EXPRESSION or BRE. It is a more primitive
type of regular expression that was used for many years, until it was replaced by the
1003.2 standardization. Basic regular expressions are less powerful than extended regular
expressions, and have a slightly more confusing syntax. For these reasons, BREs are now
considered obsolete. They are retained only for compatibility with older programs.
 In this chapter, I will be teaching you extended regular expressions, the default for
modern Unix and Linux systems. However, from time to time, you will encounter an old

HINT

The next time you are at a Unix party and people start talking about regular expressions, you
can casually remark that they correspond to Type 3 Grammars within the Chomsky hierarchy.
Once you have everyone’s attention, you can then explain that it is possible to construct a simple
mapping between any regular expression and an NFA (nondeterministic fi nite automaton),
because every regular expression has fi nite length and, thus, a fi nite number of operators.
 Within moments, you will be the most popular person in the room.*

 *Well, it’s always worked for me.

33614_20_497_520.indd 50033614_20_497_520.indd 500 1/9/2008 12:37:57 PM1/9/2008 12:37:57 PM

Regular Expressions

501

program that accepts only basic regular expressions. In such cases, I want you to know
what you are doing, so here are a few words of explanation.
 The two commands most likely to give you a problem are grep and sed (both of
which are covered in Chapter 19). To see what type of regular expressions they support
on your system, check your man pages:

man grep
man sed

If your system uses the GNU utilities — which is the case with Linux and FreeBSD — you
will fi nd that some commands have been updated to offer a -E option, which allows you
to use extended regular expressions. For example, this is the case with grep. In general,
you can check if a command offers the -E option, either by looking at its man page, or by
using the --help option to display its syntax (discussed in Chapter 10).

 Even though extended regular expressions are the modern standard, and even though
some programs offer the -E option, there will be times when you have no choice but to
use basic regular expressions. For example, you may want to use an older program that,
on your system, only supports basic regular expressions. (The most common example of
this is sed.)
 In such cases, it behooves you to know what to do, so I’m going to take a moment to
explain the difference between basic and extended regular expressions. Of course, this
discussion is a bit premature, because we haven’t, as yet, talked about the technical details
of regexes. However, as I mentioned earlier, if there’s anything you don’t understand on
fi rst reading, you will later, when you come back to it.
 As I mentioned earlier in the chapter, the power of regular expressions comes from
using metacharacters that have special meanings. We will spend a lot of time in this chapter
talking about how to use these metacharacters. (For reference, they are summarized in
Figures 20-1, 20-2 and 20-3.)
 The chief difference between basic and extended regular expressions is that, with
basic regexes, certain metacharacters cannot be used and others must be quoted with a
backslash. (Quoting is discussed in Chapter 13.) The metacharacters that cannot be used
are the question mark, plus sign, and vertical bar:

? + |

The metacharacters that must be escaped are the brace brackets and parentheses:

{ } ()

HINT

With Linux and FreeBSD, some commands offer a -E option to allow you to use extended
regular expressions. Since extended regexes are always preferable, you should get in the habit
of using -E.
 If you use such a command regularly, you can create an alias to force -E to be used automatically.
For an example of how to do this, see the discussion of grep and egrep in Chapter 19.

Basic and Extended Regular Expressions

33614_20_497_520.indd 50133614_20_497_520.indd 501 1/9/2008 12:37:57 PM1/9/2008 12:37:57 PM

Chapter 20

502 Harley Hahn’s Guide to Unix and Linux

For reference, I have summarized these limitations in Figure 20-4. This summary won’t mean
much the fi rst time you look at it, but it will make sense by the time you fi nish the chapter.

MATCHING LINES AND WORDS
As I explained earlier, a regular expression (or regex) is a compact way of specifying a
pattern of characters. To create a regular expression, you put together ordinary characters
and metacharacters according to certain rules. You then use the regex to search for the
character strings you want to fi nd.
 When a regular expression corresponds to a particular string of characters, we say
that it MATCHES the string. For example, the regex harley[123] matches any one
of harley1, harley2 or harley3. For now, you don’t need to worry about the
details, except to realize that harley and 123 are ordinary characters, and [and]
are metacharacters. Another way of saying this is that, within the regular expression,
harley and 123 match themselves, while the [and] (bracket) characters have a special
meaning. Eventually, you will learn all the metacharacters and their special meanings.
 In this section, we’ll cover certain metacharacters, called ANCHORS, that are used
to match locations at the beginning or end of a character string. For example, the regex
harley$ matches the string harley, but only if it comes at the end of a line. This is
because $ is a metacharacter that acts as an anchor by matching the end of a line. (Don’t
worry about the details for now.)
 To begin our adventures with regular expressions, we will start with the basic rule:
All ordinary characters, such as letters and numbers, match themselves. Here are a few
examples, to show you how it works.

EXTENDED REGEX BASIC REGEX MEANING
{ } \{ \} defi ne a bound (brace brackets)

() \(\) defi ne a group (parentheses)

? \{0,1\} match zero or one times

+ \{1,\} match one or more times

| — alternation: match one of the choices

[:name:] — predefi ned character class

FIGURE 20-4: Extended and basic regular expressions

The modern standard for regular expressions is the extended regular expression (ERE), defi ned as
part of the 1003.2 POSIX standard. The extended regular expression replaces the older basic regular
expression (BRE). Whenever you have a choice, you should use EREs.

For reference, this table shows the limitations of basic regular expressions, which can be summarized
as follows:

1. Brace brackets must be quoted with a backslash.
2. Parentheses must be quoted with a backslash.
3. You can’t use ?, but it can be simulated with \{0,1\}.
4. You can’t use +, but it can be simulated with \{1,\}.
5. You can’t use | (vertical bar).
6. You can’t use predefi ned character classes.

33614_20_497_520.indd 50233614_20_497_520.indd 502 1/9/2008 12:37:57 PM1/9/2008 12:37:57 PM

Regular Expressions

503

 Let’s say that you have a fi le named data that contains the following four lines:

Harley is smart
Harley
I like Harley
the dog likes the cat

You want to use grep to fi nd all the lines that contain “Harley” anywhere in the line. You
would use:

grep Harley data

In this case, Harley is actually a regular expression that will cause grep to select lines
1, 2 and 3, but not line 4:

Harley is smart
Harley
I like Harley

This is nothing new, but it does show how, within a regular expression, an H matches
an “H”, an a matches an “a”, an r matches an “r”, and so on. All regexes derive from this
basic idea.
 To expand the power of regular expressions, you can use anchors to specify the location
of the pattern for which you are looking. The ̂ (circumfl ex) metacharacter is an anchor
that matches the beginning of a line. Thus, to search for only those lines that start with
“Harley”, you would use:

grep '^Harley' data

In our example, this command would select lines 1 and 2, but not 3 or 4 (because they
don’t start with “Harley”):

Harley is smart
Harley

You will notice that, in the last command, I have quoted the regular expression. You
should do this whenever you are using a regex that contains metacharacters, to ensure
that the shell will leave these characters alone and pass them on to your program (in this
case, grep). If you are not sure if you need to quote the regular expression, go ahead and
do it anyway. It can’t cause a problem.
 You will notice that, to be safe, I used strong quotes (single quotes) rather than weak
quotes (double quotes). This ensures that all metacharacters, not just some of them, will
be quoted properly. (If you need to review the difference between strong quotes and weak
quotes, see Chapter 13.)
 The anchor to match the end of a line is the $ (dollar) metacharacter. For example, to
search for only those lines that end with “Harley”, you would use:

grep 'Harley$' data

Matching Lines and Words

33614_20_497_520.indd 50333614_20_497_520.indd 503 1/9/2008 12:37:57 PM1/9/2008 12:37:57 PM

Chapter 20

504 Harley Hahn’s Guide to Unix and Linux

In our example, this would select only lines 2 and 3:

Harley
I like Harley

You can combine ^ and $ in the same regular expression as long as what you are doing
makes sense. For example, to search for all the lines that consist entirely of “Harley”, you
would use both anchors:

grep '^Harley$' data

In our example, this would select line 2:

Harley

Using both anchors with nothing in between is an easy way to look for empty lines. For
example, the following command counts all the empty lines in the fi le data:

grep '^$' data | wc -l

In a similar fashion, there are anchors you can use to match the beginning or end of a
word, or both. To match the beginning of a word, you use the 2-character combination
 \<. To match the end of a word, you use \>.
 For example, say you want to search a fi le named data for all the lines that contain
the letters “kn”, but only if they occur at the beginning of a word. You would use:

grep '\<kn' data

To fi nd the letters “ow”, but only at the end of a word, use:

grep 'ow\>' data

To search for complete words, use both \< and \>. For example, to search for “know”,
but only as a complete word, use:

grep '\<know\>' data

This command would select the line:

I know who you are, and I saw what you did.

But it would not select the line:

Who knows what evil lurks in the hearts of men?

As a convenience, on systems that use the GNU utilities — such as Linux and FreeBSD —
you can use \b as an alternate anchor to take the place of both \< and \>. For example,
the following commands are equivalent:

grep '\<know\>' data
grep '\bknow\b' data

33614_20_497_520.indd 50433614_20_497_520.indd 504 1/9/2008 12:37:57 PM1/9/2008 12:37:57 PM

Regular Expressions

505

You can think of \b as meaning “boundary marker”.
 It is up to you to choose which word-boundary anchors you like better. I use \< and
\> because, to my eye, they are easier to see. However, many people prefer \b, because it
is easier to type, and you can use the same anchor at the beginning and end of a word.
 When we use regular expressions, the defi nition of a “word” is more fl exible than in
English. Within a regex, a WORD is a self-contained, contiguous sequence of characters
consisting of letters, numbers, or _ (underscore) characters. Thus, within a regex, all of
the following are considered to be words:

fussbudget Weedly 1952 error_code_5

This same defi nition holds within many Unix programs. For example, grep uses this
defi nition when you use the -w option to match complete words.

MATCHING CHARACTERS; CHARACTER CLASSES
Within a regular expression, the metacharacter . (dot) matches any single character
except newline. (In Unix, a newline marks the end of a line; see Chapter 7.)
 For example, say you want to search a fi le named data for all the lines that contain
the following pattern: the letters “Har”, followed by any two characters, followed by the
letter “y”. You would use the command:

grep 'Har..y' data

This command would fi nd lines that contain, for example:

harley harxxy harlly har12y

You will fi nd the . metacharacter to be very useful, and you will use it a lot. Nevertheless,
there will be times when you will want to be more specifi c: a . will match any character,
but you may want to match particular characters. For example, you might want to
search for an uppercase “H” followed by either “a” or “A”. In such cases, you can specify
the characters you want to fi nd by placing them within square brackets []. Such a
construction is called a CHARACTER CLASS.
 For example, to search the fi le data for all lines that contain the letter “H”, followed
by either “a” or “A”, you would use:

grep 'H[aA]' data

HINT

When you use grep to look for complete words, it is often easier to use the -w (word) option
than it is to use multiple instances of \< and \>, or \b.
 For example, the following three commands are equivalent:

grep -w ‘cat' data
grep '\<cat\>' data
grep '\bcat\b' data

Matching Characters; Character Classes

33614_20_497_520.indd 50533614_20_497_520.indd 505 1/9/2008 12:37:57 PM1/9/2008 12:37:57 PM

Chapter 20

506 Harley Hahn’s Guide to Unix and Linux

Before moving on, I want to make an important point. Strictly speaking, the character class
does not include the brackets. For example, in the previous command, the character class is
aA, not [aA]. Although the brackets are required when you use a character class, they are
not considered to be part of the character class itself. This distinction will be important later
when we talk about special abbreviations called “predefi ned character classes”.
 To continue, here is an example that uses more than one character class in the same
regular expression. This following command searches for lines that contain the word
“license”, even if it is misspelled by mixing up the “c” and the “s”:

grep 'li[cs]en[cs]e' data

A more useful command uses \< and \> or \b to match only whole words:

grep '\<li[cs]en[cs]e\>' data
grep '\bli[cs]en[cs]e\b' data

Those two commands will match any of the following:

licence license lisence lisense

PREDEFINED CHARACTER CLASSES; RANGES
Some sets of characters are so common, they are given names to make them easy to
use. These sets are called PREDEFINED CHARACTER CLASSES, and you can see them
in Figure 20-3, earlier in the chapter. (Stop and take a look now, before you continue,
because I want you to be familiar with the various names and what they mean.)
 Using predefi ned character classes is straightforward except for one odd rule: the
brackets are actually part of the name. Thus, when you use them, you must include a
second set of brackets to maintain the proper syntax. (You will remember, earlier, I told
you that when you use a character class, the outer brackets are not part of the class.)
 For example, the following command uses grep to fi nd all the lines in the fi le named
data that contain the number 21 followed by a single lower- or uppercase letter:

grep '21[[:alpha:]]' data

The next command fi nds all the lines that contain two uppercase letters in a row, followed
by a single digit, followed by one lowercase letter:

grep '[[:upper:]][[:upper:]][[:digit:]][[:lower:]]' data

Aside from predefi ned character classes, there is another way to specify a set of letters
or numbers. You can use a RANGE of characters, where the fi rst and last characters
are separated by a hyphen. For example, to search for all the lines of the fi le data that
contain a number from 3 to 7, you can use:

grep '[3-7]' data

The range 0-9 means the same as [:digit:]. For example, to search for lines that contain
an uppercase “X”, followed by any two digits, you can use either of these commands:

33614_20_497_520.indd 50633614_20_497_520.indd 506 1/9/2008 12:37:57 PM1/9/2008 12:37:57 PM

Regular Expressions

507

grep 'X[0-9][0-9]' data
grep 'X[[:digit:]][[:digit:]]' data

To conclude this section, let us consider one more situation: you want to match characters
that are not within a particular character class. You can do so simply by putting a ̂
(circumfl ex) metacharacter after the initial left bracket. In this context, the ^ acts as a
negation operator.
 For example, the following command searches a fi le named data for all the lines that
contain the letter “X”, as long as it is not followed by “a” or “o”:

grep 'X[^ao]' data

The following two commands search for all the lines that contain at least one non-
alphabetic character:

grep '[^A-Za-z]' data
grep '[^[:alpha:]]' data

LOCALES AND COLLATING SEQUENCES: locale; THE ASCII CODE
At this point, you might be wondering if you can use other ranges instead of predefi ned
character classes. For example, could you use a-z instead of [:lower:]? Similarly,
could you use A-Z instead of [:upper:]; or A-Za-z instead of [:alpha:]; or
a-zA-Z0-9 instead of [:alnum:]?
 The answer is maybe. On some systems it will work; on others it won’t. Before I can
explain to you why this is the case, we need to talk about the idea of “locales”.
 When you write 0-9, it is an abbreviation for 0123...9, which only makes sense.
However, when you write a-z, it does not necessarily mean abcd...z. This is because the
order of the alphabet on your particular system depends on what is called your “locale”,
which can vary from one system to another.
 Why should this be the case? Before the 1990s, the character encoding used by Unix
(and most computer systems) was the ASCII CODE, often referred to as ASCII. The name
stands for “American Standard Code for Information Interchange”.
 The ASCII code was created in 1967. It specifi es a 7-bit pattern for every character, 128
in all. These bit patterns range from 0000000 (0 in decimal) to 1111111 (127 in decimal).
The ASCII code includes all the control characters we discussed in Chapter 7, as well as 56
printable characters: the letters of the alphabet, numbers and punctuation. The printable
characters are as follows. (Note that the fi rst character is a space.)

 !"#$%&'()*+,-./0123456789:;<=>?
@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_
`abcdefghijklmnopqrstuvwxyz{|}~

HINT

The trick to understanding a complex regular expression is to remember that each character
class — no matter how complex it might look — represents only a single character.

Locales and Collating Sequences: locale; The ASCII Code

33614_20_497_520.indd 50733614_20_497_520.indd 507 1/9/2008 12:37:58 PM1/9/2008 12:37:58 PM

Chapter 20

508 Harley Hahn’s Guide to Unix and Linux

The order of the printable characters is the order in which I have listed them above. They
range from character #32 (space) to character #126 (tilde). For reference, you can see a
chart of the entire ASCII code in Appendix D. (Take a moment to look at it now.)
 As a convenience, most Unix systems have a reference page that contains the ASCII
code. This is handy, as it allows you to look at the code quickly whenever you want.
Unfortunately, the ASCII code page is not standardized, so the way in which you display
it depends on which system you are using. See Figure 20-5 for the details.
 As we discussed in Chapter 19, within a character coding scheme, the order in which
the characters are organized is called a collating sequence. The collating sequence is used
whenever you need to put characters in order, for example, when you sort data or when
you use a range within a regular expression.
 When you use Unix or Linux, the collating sequence your system will use depends
on your locale. The concept of a locale is part of the POSIX 1003.2 standard, which
we discussed in Chapter 11 and Chapter 19. As I explained in Chapter 19, your locale
— which is set by an environment variable — tells your programs which language
conventions you want to use. This enables anyone in the world to choose a locale to
match his or her local language.
 On some Unix systems, the locale is set so that the default collating sequence matches
the order of the characters in the ASCII code. In particular, as you can see above, all the
uppercase letters are grouped together, and they come before the lowercase letters. This
sequence is called the C collating sequence (Chapter 19), because it is used by the C
programming language.
 With other Unix systems, including many Linux systems, the locale is set in such a
way that the default collating sequence groups the upper- and lowercase letters in pairs:
AaBbCcDd...Zz. The advantage of this collating sequence is that it is easy to search for
words or characters in the same order as you would fi nd them in a dictionary. Thus, it is
called the dictionary collating sequence (Chapter 19).
 With regular expressions, you can run into problems because Unix expands a-z and
A-Z according to whichever collating sequence is used on your system.
 If you are using the C collating sequence, all the uppercase letters are in a single
group, as are all the lowercase letters. This means that, when you specify all the upper- or
lowercase letters, you can use ranges instead of predefi ned character classes: A-Z instead

TYPE OF UNIX COMMAND TO DISPLAY ASCII CODE PAGE

Linux man ascii

FreeBSD less /usr/share/misc/ascii

Solaris less /usr/pub/ascii

FIGURE 20-5: Displaying the ASCII code

You will fi nd a summary of the ASCII code in Appendix D of this book. For online reference, most
Unix systems have a handy page containing the entire ASCII code. Traditionally, this page was stored
in a fi le named ascii in the directory /usr/pub/. In recent years, the Unix fi le system has been
reorganized on some systems, and the ASCII reference fi le has been moved to /usr/share/misc. On
other systems, the fi le has been converted to a page within the online manual. Thus, the way in which
you display the ASCII reference page depends on the system you are using.

33614_20_497_520.indd 50833614_20_497_520.indd 508 1/9/2008 12:37:58 PM1/9/2008 12:37:58 PM

Regular Expressions

509

of [:upper:]; a-z instead of [:lower:]; A-Za-z instead of [:alpha:]; and A-Za-z0-9
instead of [:alnum:]. You can see this in Figure 20-3.
 If you are using the dictionary collating sequence, the letters will be in a different
order: AaBbCcDd...Zz. This means that the ranges will work differently. For example,
a-z would represent aBbCc...YyZz. Notice that the uppercase “A” is missing. (Can
you see why?) Similarly, A-Z would represent AaBbCc...YyZ. Notice the lowercase
“z” is missing.
 As an example, let’s say you want to search the fi le data for all the lines that contain
an upper- or lowercase letter from “A” to “E”. If your locale uses the C collating sequence,
you would use:

grep '[A-Ea-e]' data

In this case, the regex is equivalent to ABCDEabcde, and it is what most experienced
Unix users would expect. However, if your locale uses the dictionary collating sequence
you would use:

grep '[A-e]' data

Traditionally, Unix has used the C collating sequence, and many veteran Unix users
assume that a-z always refers to the lowercase letters (only), and A-Z always refers to
the uppercase letters (only). However, this is a poor assumption, as some types of Unix,
including many Linux distributions, use the dictionary collating sequence by default, not
the C collating sequence. However, regardless of which collating sequence happens to be
the default for your locale, there is a way to ensure it is the C collating sequence, which is
what most Unix users prefer.
 First, you need to determine which collating sequence is the default on your system.
To do so, create a short fi le named data using the command:

cat > data

Type the following two lines and then press ^D to end the command:

A
a

Now type the following command:

grep '[a-z]' data

If the output consists of both lines of the fi le (A and a), you are using the dictionary
collating sequence. If the output consists of only the a line, you are using the C collating
sequence. (Why is this?)
 If your system uses the C collating sequence, you don’t need to do anything. However,
please read through the rest of this section, as one day, you will encounter this problem
on another system.
 If your system uses the dictionary collating sequence, you will probably want to
change to the C collating sequence. To do this, you set an environment variable named

Locales and Collating Sequences: locale; The ASCII Code

33614_20_497_520.indd 50933614_20_497_520.indd 509 1/9/2008 12:37:58 PM1/9/2008 12:37:58 PM

Chapter 20

510 Harley Hahn’s Guide to Unix and Linux

 LC_COLLATE to either C or POSIX. Either of the following commands will do the job
with the Bourne Shell family:

export LC_COLLATE=C
export LC_COLLATE=POSIX

With the C-Shell family, you would use either of the following:

setenv LC_COLLATE C
setenv LC_COLLATE POSIX

To make the change permanent, all you need to do is put one of these commands into
your login fi le. (The login fi le is discussed in Chapter 14; environment variables are
discussed in Chapter 12.)
 Once your system uses the C collating sequence, you can substitute the appropriate
ranges for the predefi ned character classes, as shown in Figure 20-3. For the rest of this
chapter, I will assume that you are, indeed, using the C collating sequence (so, if you are
not, put the appropriate command in your login fi le right now).
 To display information about locales on your system, you can use the locale
command. The syntax is:

locale [-a]

Your locale is maintained by setting a number of standard global variables, including
LC_COLLATE. To see the current value of these variables, enter the command by itself:

 locale

To display a list of all the available locales on your system, use the -a (all) option:

locale -a

USING RANGES AND PREDEFINED CHARACTER CLASSES
Once you make sure you are using the C collating sequence (as described in the previous
section) you have some fl exibility. When you want to match all the upper- or lowercase
letters, you can use either a predefi ned character class or a range.
 For example, the following two commands both search a fi le named data for all
the lines that contain the letter “H”, followed by any lowercase letter from “a” to “z”. For
example, “Ha”, “Hb”, “Hc”, and so on:

grep 'H[[:lower:]]' data
grep 'H[a-z]' data

The next two commands search for all the lines that contain a single upper- or lowercase
letter, followed by a single digit, followed by a lowercase letter:

grep '[A-Za-z][0-9][a-z]' data
grep '[[:alpha:]][[:digit:]][[:lower:]]' data

33614_20_497_520.indd 51033614_20_497_520.indd 510 1/9/2008 12:37:58 PM1/9/2008 12:37:58 PM

Regular Expressions

511

Here is a more complex example that searches for Canadian postal codes. These codes
have the format “letter number letter space number letter number”, where all the letters
are uppercase, for example, M5P 3G4. Take a moment to analyze both these commands
until you understand them completely:

grep '[A-Z][0-9][A-Z] [0-9][A-Z][0-9]' data
grep '[[:upper:]][[:digit:]][[:upper:]] [[:digit:]][[:
upper:]][[:digit:]]' data

The choice of which type of character class to use — a range or a predefi ned name —
is up to you. Many old-time Unix users prefer to use ranges, because that’s what they
learned. Moreover, ranges are easier to type than names, which require colons and extra
brackets. (See the previous example.)
 However, names are more readable, which makes them better to use in shell scripts. Also,
names are designed to always work properly, regardless of your locale or your language,
so they are more portable. For example, say you are working with text that contains non-
English characters, such as “é” (an “e” with an acute accent). By using [:lower:], you
will be sure to pick up the “é”. This might not be the case if you used a-z.

REPETITION OPERATORS
Within a regular expression, a single character (such as A) or a character class (such
as A-Za-z or [:alpha:]) matches only one character. To match more than one
character at a time, you use a REPETITION OPERATOR.
 The most useful repetition operator is the * (star) metacharacter. A * matches zero or
more occurrences of the preceding character. (See Chapter 10 for a discussion of the idea
of “zero or more”.) For example, let’s say you want to search a fi le named data for all the
lines that contain the uppercase letter “H”, followed by zero or more lowercase letters. You
can use either of the following commands:

grep 'H[a-z]*' data
grep 'H[[:lower:]]*' data

These commands will fi nd patterns like:

H Har Harley Harmonica Harpoon HarDeeHarHar

The most common combination is to use a . (dot) followed by a *. This will match zero
or more occurrences of any character. For example, the following command searches for
lines that contain “error” followed by zero or more characters, followed by “code”:

grep 'error.*code' data

As an example, this command would select the following lines:

Be sure to document the error code.
Don’t make an error while you are writing code.
Remember that errorcode #5 means "Too many parentheses".

Repetition Operators

33614_20_497_520.indd 51133614_20_497_520.indd 511 1/9/2008 12:37:58 PM1/9/2008 12:37:58 PM

Chapter 20

512 Harley Hahn’s Guide to Unix and Linux

The following example searches for lines that contain a colon, followed by zero or more
occurrences of any other characters, followed by another colon:

grep ':.*:' data

At times, you may want to match one or more characters, rather than zero or more. To
do so, use the + (plus) metacharacter instead of *. For example, the following commands
search the fi le data and select any lines that contain the letters “variable” followed by
one or more numbers:

grep 'variable[0-9]+' data
grep 'variable[[:digit:]]+' data

These commands would select any of the following lines:

You can use variable1 if you want.
error in variable3x
address12, variable12 and number12

They would not select the lines:

Remember to use variable 1, 2 or 3.
variableX3 is the one to use
The next thing to do is set Variable417.

What if you want to match either an uppercase “V” or lowercase “v” at the beginning of
the pattern? Just change the fi rst letter to a character class:

grep '[vV]ariable[0-9]+' data

The next repetition operator is the ? (question mark) metacharacter. This allows you to
match either zero or one instance of something. Another way to say this is that a ? makes
something optional. For example, let’s say you want to fi nd all the lines in the fi le data that
contain the word “color” (American spelling) or “colour” (British spelling). You can use:

grep 'colou?r' data

The fi nal repetition operators let you specify as many occurrences as you want by using
brace brackets to create what is called a BOUND. There are four different types of
bounds. They are:

{n} match exactly n times
{n,} match n or more times
{,m} match m or fewer times [non-standard]

{n,m} match n to m times

Note: The third construction {,m} is not part of the POSIX 1003.2 standard, and will
not work with some programs.

33614_20_497_520.indd 51233614_20_497_520.indd 512 1/9/2008 12:37:58 PM1/9/2008 12:37:58 PM

Regular Expressions

513

 Here are some examples. The fi rst example matches exactly 3 digits; the second
matches at least 3 digits; the third matches 5 or fewer digits; the fi nal example matches 3
to 5 digits.

[0-9]{3}
[0-9]{3,}
[0-9]{,5}
[0-9]{3,5}

To show you how you might use a bound with grep, the following command fi nds all
the lines in a fi le named data that contain either 2- or 3-digit numbers. Notice the use
of \< and \> to match complete numbers:

grep '\<[0-9]{2,3}\>' data

So far, we have used repetition operators with only single characters. You can use them
with multiple characters if you enclose the characters in parentheses. Such a pattern is
called a GROUP. By creating a group, you can treat a sequence of characters as a single
unit. For example, to match the letters “xyz” 5 times in a row, you can use either of the
following regular expressions:

xyzxyzxyzxyzxyz
(xyz){5}

The last repetition operator, the | (vertical bar) character, allows us to use alternation.
That is, we can match either one thing or another. For example, say we want to search a
fi le for all the lines that contain any of the following words:

cat dog bird hamster

Using alternation, it’s easy:

grep 'cat|dog|bird|hamster' data

Obviously, this is a powerful tool. However, in this case, can you see a problem? We are
searching for character strings, not complete words. Thus, the above command would
also fi nd lines that contain words like “concatenate” or “dogmatic”. To fi nd only complete
words, we need to explicitly match word boundaries:

grep '\<(cat|dog|bird|hamster)\>' data

Notice the use of the parenthesis to create a group. This allows us to treat the entire
pattern as a single unit. Take a moment to think about this until it makes sense.
 To fi nish this section, I will explain one last metacharacter. As you know, metacharacters
have special meaning within a regular expression. The question arises: What if you want
to match one of these characters? For example, what if you want to match an actual *
(star), . (dot) or | (vertical bar) character?

Repetition Operators

33614_20_497_520.indd 51333614_20_497_520.indd 513 1/9/2008 12:37:58 PM1/9/2008 12:37:58 PM

Chapter 20

514 Harley Hahn’s Guide to Unix and Linux

 The answer is you can quote the character with a \ (backslash). This changes it from
a metacharacter to a regular character, so it will be interpreted literally. For example, to
search the fi le data for all the lines that contain a “$” character, use:

grep '\$' data

If you want to search for a backslash character itself, just use two backslashes in a row. For
example, to fi nd all the lines that contain the characters “*”, followed by any number of
characters, followed by one or more letters, followed by “$”, use:

grep '*.*[A-Za-z]+\$' data

HOW TO UNDERSTAND A COMPLEX REGULAR EXPRESSION
Once you understand the rules, most regular expressions are easy to write. However, they
can be hard to read, especially if they are lengthy. In fact, experienced Unix people often have
trouble understanding regular expressions they themselves have written*. Here is a simple
technique I have developed over the years to help understand otherwise cryptic regexes.
 When you encounter a regular expression that gives you trouble, write it on a piece of
paper. Then break the regex into parts, writing the parts vertically, one above the other. Take
each part in turn and write its meaning on the same line. For example, consider the regex:

.[A-Za-z]+\$

We can break this down as follows:

 \\ → a \ (backslash) character
 * → a * (star) character
 .* → any number of other characters
 [A-Za-z]+ → one or more upper- or lowercase letters
 \$ → a $ (dollar) character

 When you analyze a regular expression in this way, you are, in effect, parsing it, similar
to what your program does when it processes the command. With a little practice, you
will fi nd that even the most complex regexes become understandable.

SOLVING THREE INTERESTING PUZZLES; THE DICTIONARY FILE
To conclude our discussion, I will show you three interesting puzzles that we will solve
using regular expressions. To solve the fi rst two puzzles, we will use a fi le that, in itself, is
interesting, the DICTIONARY FILE.
 The dictionary fi le, which has been included with Unix from the very beginning,
contains a very long list of English words, including most of the words commonly found
in a concise dictionary. Each word is on a line by itself and the lines are in alphabetical
order, which makes the fi le easy to search. Once you get used to using the dictionary fi le

 *Thus, the old riddle, “If God can do anything, can he create a regular expression even he can’t understand?”
 No doubt this was what Thomas Aquinas was referring to when he wrote in The Summa Theologica: “There may be doubt
as to the precise meaning of the word ‘all’ when we say that God can do all things.”

hah33614_c20_497_520.indd 514hah33614_c20_497_520.indd 514 1/11/2008 10:25:35 AM1/11/2008 10:25:35 AM

Regular Expressions

515

imaginatively, you will be able to do all kinds of amazing things. Some Unix commands,
such as look (discussed in Chapter 19) use the dictionary fi le to do their work.
 The name of the dictionary fi le is words. In the early versions of Unix, the words
fi le was stored in a directory named /usr/dict. In recent years, however, the Unix fi le
structure has been reorganized and, on most modern systems — including Linux and
FreeBSD — the words fi le is stored in a directory named /usr/share/dict. On a
few systems, such as Solaris, the fi le is stored in /usr/share/lib/dict. Thus, the
pathname of the dictionary fi le may vary from one system to another. (We’ll talk about
the Unix fi le system and pathnames in Chapter 23.)
 For reference, here are the most likely places you will fi nd the dictionary fi le:

/usr/share/dict/words
/usr/dict/words
/usr/share/lib/dict/words

In the examples below, I will use the fi rst pathname, which is the most common. If this
name doesn’t work for you, try one of the others.
 To start, here is a simple puzzle. What are all the English words that begin with “qu”
and end with “y”. To solve this puzzle, all we need to do is grep* the dictionary fi le using
the following regular expression:

grep '^qu[a-z]+y$' /usr/share/dict/words

 To understand this regular expression, we will use the technique I mentioned earlier.
We will break the regex into parts and write the parts vertically, one above the other. The
breakdown of the regular expression is as follows:

 ^ → beginning of line
 qu → the letters “qu”
 [a-z]+ → one or more lowercase letters
 y → the letter “y”
 $ → end of line

 Remember that each line of the dictionary fi le contains only a single word. Thus, we
start our search at the beginning of a line and fi nish it at the end of a line.
 The next puzzle is an old one. Find a common English word that contains all fi ve
vowels — a, e, i, o, u — in that order. The letters do not have to be adjacent, but they must
be in alphabetical order. That is, “a” must come before “e”, which must come before “i”,
and so on.
 To solve the puzzle, we can grep the dictionary fi le for any words that contain the
letter “a”, followed by zero or more lowercase letters, followed by “e”, followed by zero or
more lowercase letters, and so on. This time, let’s start by writing down the various parts,
which we will then put together. This is often a useful technique, when you are creating a
complicated regular expression:

 *As I mentioned in Chapter 19, the word “grep” is often used as a verb.

Solving Three Interesting Puzzles; The Dictionary File

hah33614_c20_497_520.indd 515hah33614_c20_497_520.indd 515 1/11/2008 10:25:36 AM1/11/2008 10:25:36 AM

Chapter 20

516 Harley Hahn’s Guide to Unix and Linux

 a → the letter “a”
 [a-z]* → zero or more lowercase letters
 e → the letter “e”
 [a-z]* → zero or more lowercase letters
 i → the letter “i”
 [a-z]* → zero or more lowercase letters
 o → the letter “o”
 [a-z]* → zero or more lowercase letters
 u → the letter “u”

 Thus, the full command is:

grep 'a[a-z]*e[a-z]*i[a-z]*o[a-z]*u' /usr/share/dict/words

To avoid undue suspense, I will tell you now that you should fi nd a number of words, most
of them obscure. However, there are only three such words that are common. They are*:

adventitious
facetious
sacrilegious

Our last puzzle involves a search of the Unix fi le system for historical artifacts. Many
of the original Unix commands were two letters long: the text editor was ed, the copy
program was cp, and so on. Let us fi nd all such commands.
 To solve the puzzle, you need to know that the very oldest Unix programs reside in the
/bin directory. To list all the fi les in this directory, we use the ls command (discussed
in Chapter 24):

ls /bin

To analyze the output of ls, we can pipe it to grep. When we do this, ls will automatically
place each name on a separate line, because the output is going to a fi lter. Using grep,
we can then search for lines that consist of only two lowercase letters. The full pipeline is
as follows:

ls /bin | grep '^[a-z]{2}$'

On some systems, grep will not return the results you want, because it will not recognize
the brace brackets as being metacharacters. If this happens to you, you have two choices.
You can use egrep instead:

ls /bin | egrep '^[a-z]{2}$'

Or, you can eliminate the need for brace brackets. Simply repeat the character class, and
you won’t need to use a bound:

ls /bin | grep '^[a-z][a-z]$'

 *Strictly speaking, there are six vowels in English: a, e, i, o, u and (sometimes) y. If you want words that contain all six
vowels, just turn these three words into adverbs: “adventitiously”, “facetiously” and “sacrilegiously”.

hah33614_c20_497_520.indd 516hah33614_c20_497_520.indd 516 1/11/2008 10:25:36 AM1/11/2008 10:25:36 AM

Regular Expressions

517

Try these commands on your system, and see what you fi nd. When you see a name and
you want to fi nd out more about the command, just look it up in the online manual
(Chapter 9). For example:

man ed cp

Aside from the fi les you will fi nd in /bin, there are other old Unix commands in
/usr/bin. To search this directory for 2-character command names, just modify the
previous command slightly.

ls /usr/bin | grep '^[a-z]{2}$'

To count how many such commands there are, use grep with the -c (count) option:

ls /bin | grep -c '^[a-z]{2}$'
ls /usr/bin | grep -c '^[a-z]{2}$'

Note: When you look in /usr/bin, you may fi nd some 2-character commands that are
not old. To see if a command dates from the early days of Unix, check its man page.

C H A P T E R 2 0 E X E R C I S E S

REVIEW QUESTIONS

1. What is a regular expression? What are two common abbreviations for “regular
expression”?

2. Within a regular expression, explain what the following metacharacters match: ., ^,
$, \<, \>, [list], [^list]. Explain what the following repetition operators match: *,
+, ?, {n}.

3. For each of the following predefi ned character classes, give the defi nition and specify
the equivalent range: [:lower:], [:upper:], [:alpha:], [:digit:] and
[:alnum:]. For example, [:lower:] represents all the lowercase numbers; the
equivalent range is a-z.

4. By default, your system uses the dictionary collating sequence, but you want to use the
C collating sequence. How do you make the change? What command would you use
for the Bourne Shell family? For the C-Shell family? In which initialization fi le would
you put such a command?

Chapter 20 Exercises

33614_20_497_520.indd 51733614_20_497_520.indd 517 1/9/2008 12:37:58 PM1/9/2008 12:37:58 PM

Chapter 20

518 Harley Hahn’s Guide to Unix and Linux

APPLYING YOUR KNOWLEDGE

1. Create regular expressions to match:

 • “hello”
 • the word “hello”
 • either the word “hello” or the word “Hello”
 • “hello” at the beginning of a line
 • “hello” at the end of a line
 • a line consisting only of “hello”

 Use grep to test your answers.

2. Using repetition operators, create regular expressions to match:

 • “start”, followed by 0 or more numbers, followed by “end”
 • “start”, followed by 1 or more numbers, followed by “end”
 • “start”, followed by 0 or 1 number, followed by “end”
 • “start”, followed by exactly 3 numbers, followed by “end”

 Use grep to test your answers. Hint: Make sure grep is using extended (not basic)
regular expressions.

3. As we discussed in Chapter 20, the following two commands fi nd all the lines in the
fi le data that contain at least one non-alphabetic character:

 grep '[^A-Za-z]' data
 grep '[^[:alpha:]]' data

 What command would you use to fi nd all the lines that do not contain even a single
alphabetic character?

4. Within the Usenet global discussion group system, freedom of expression is very
important. However, it is also important that people should be able to avoid offensive
postings if they so desire. The solution is to encode potentially offensive text in a way
that it looks like gibberish to the casual observer. However, the encoded text can be
decoded easily by anyone who chooses.

 The system used for the coding is called Rot-13. It works as follows. Each letter of the
alphabet is replaced by the letter 13 places later in the alphabet, wrapping back to the
beginning if necessary:

 A → N N → A
 B → O O → B
 C → P P → C
 D → Q... Q → D...

hah33614_c20_497_520.indd 518hah33614_c20_497_520.indd 518 5/20/2009 2:24:03 PM5/20/2009 2:24:03 PM

Regular Expressions

519

 Create a single command that reads from a fi le named input, encodes the text using
Rot-13, and writes the encoded text to standard output. Then create a command that
reads encoded Rot-13 data and converts it back to ordinary text. Test your solutions
by creating a text fi le named input, encoding it and then decoding it.

FOR FURTHER THOUGHT

1. The term “regular expression” comes from an abstract computer science concept. Is
it a good idea or a bad idea to use such names? Would it make much difference if
the term “regular expression” was replaced by a more straightforward name, such as
“pattern matching expression” or “pattern matcher”? Why?

2. With the introduction of locales to support internationalization, regular expression
patterns that worked for years stopped working on some systems. In particular,
regular expressions that depended on the traditional C collating sequence, do not
always work with the dictionary collating sequence. In most cases, the solution is
to use predefi ned character classes instead of ranges. For example, you should use
[:lower:] instead of a-z. (See Figure 20-3 for the full set.) What do you think
of this arrangement? Give three reasons why the old system was better. Give three
reasons why the new system is better.

Chapter 20 Exercises

33614_20_497_520.indd 51933614_20_497_520.indd 519 1/9/2008 12:37:59 PM1/9/2008 12:37:59 PM

33614_20_497_520.indd 52033614_20_497_520.indd 520 1/9/2008 12:37:59 PM1/9/2008 12:37:59 PM

521

C H A P T E R 2 1

Displaying Files

Displaying Files

With all the time we spend using computers, it is important to remind ourselves that
the main product of our effort is almost always some type of output: text, numbers,
graphics, sound, photos, video, or some other data. When you use the Unix command-
line programs we discuss in this book, the output is usually text, either displayed on your
monitor as it is generated, or saved in a fi le.
 For this reason, Unix has always had a variety of programs that allow you to display
textual data, either from the output of a program or from a fi le. In this chapter, we will
discuss the programs you use to display the contents of fi les. We’ll start with text fi les and
then move on to binary fi les.
 Throughout the discussion, my goals for you are twofold. First, whenever you need to
display data from a fi le, I want you to be able to analyze the situation and choose the best
program to do the job. Second, regardless of which program you decide to use, I want you
to be familiar enough with it to handle most everyday tasks competently.
 To start our discussion, I’ll take you on a survey of the Unix programs used to display
fi les. I’ll introduce you to each program, explain what it does, and explain when to use it.
You and I will then discuss each program in turn, at which time I will fi ll in the details.
By far, the most important such program is less. (I’ll explain the name later.) For this
reason, we will spend the most time on this very useful and practical program.
 As we discuss the various programs, we’re going to detour a bit to cover two interesting
topics. First, I’m going to describe the two different ways in which text-based programs
can handle your input, “cooked mode” and “raw mode”. Second, I’m going to introduce
you to the binary, octal and hexadecimal number systems, concepts that you must
understand when you display binary fi les.
 Throughout this chapter, we will discuss how to display “fi les” even though, strictly
speaking, I have not yet explained what a fi le actually is. In Chapter 23, we will discuss the
Unix fi le system in detail. At that time, I will give you an exact, technical defi nition of a
Unix fi le. For now, we’ll just use the intuitive idea that a fi le is something with a name that
contains information. For example, you might display a fi le named essay that contains
the text of an essay you have written.

33614_21_521_558.indd 52133614_21_521_558.indd 521 1/9/2008 12:38:23 PM1/9/2008 12:38:23 PM

Chapter 21

522 Harley Hahn’s Guide to Unix and Linux

One more idea before we start: When people talk about “displaying” a fi le, it refers to
displaying the contents of the fi le. For example, if I write “The following command
displays the fi le essay,” it means “The following command displays the contents of the
fi le essay.” This is a subtle, but important point, so make sure you understand it.

SURVEY OF PROGRAMS USED TO DISPLAY FILES
Unix has a variety of programs you can use to display fi les. In this section, we’ll survey the
programs, so you will have an overall view of what’s available. Later in the chapter, we’ll
talk about each program in detail.
 To start, there are programs whose only purpose is to display textual data one screenful
at a time. Such a program is called a PAGER. The name comes from the fact that, in the
early days of Unix, users had terminals that printed output on paper. Thus, to look at a
fi le, you would print it on paper, one page a time. Nowadays, of course, to look at a fi le,
you display it on your monitor one screenful at a time. Still, the programs that do the job
are called “pagers”.
 In general, there are two ways to use a pager. First, as we discussed in Chapter 15, you
can use a pager at the end of a pipeline to display output from another program. We have
seen many such examples in previous chapters, for example:

cat newnames oldnames | grep Harley | sort | less
colrm 14 30 < students | less

In the fi rst pipeline, we combine the contents of two fi les, grep the data for all the lines
that contain the string “Harley”, and send the results to less to be displayed. In the
second example, we read data from a fi le, remove columns 14 through 30 from each line
of data and, again, send the results to less to be displayed.
 The other way to use a pager is to have it display the contents of a fi le, one screenful at
a time. For example, the following command uses less to examine the contents of the
Unix password fi le (described in Chapter 11):

less /etc/passwd

You can look at any text fi le in this manner, simply by typing less followed by the name
of the fi le. (We’ll discuss options, syntax and other details later in the chapter.)
 Although less is the principal Unix pager, there are two other such programs you
may hear about, more and pg. You will remember from our discussion in Chapter 2
that, in the 1980s, there were two main branches of Unix, System V developed at AT&T,
and BSD developed at U.C. Berkeley. The pg program was the default System V pager;
more was the default BSD pager. Today, both of these programs are obsolete having been
replaced by less.
 On rare occasions, you may have to use more. For this reason, we will talk about it
a bit, so if you ever encounter it, you’ll know what to do. The pg program, for the most
part, is gone and buried, and there is no need for us to discuss it. I only mention it here
for historical reasons: if you see the name, you’ll at least know what it is.

33614_21_521_558.indd 52233614_21_521_558.indd 522 1/9/2008 12:38:24 PM1/9/2008 12:38:24 PM

Displaying Files

523Survey of Programs Used to Display Files

 Aside from using a pager, you can also display a fi le by using the cat program. As we
discussed in Chapter 16, the principal use of cat is to combine the contents of multiple
fi les. However, cat can also be used to display a fi le quickly, for example:

cat /etc/passwd

Since cat displays the entire fi le at once (not one screenful at a time), you would use it
only when a fi le is short enough to fi t on your screen without scrolling. Most of the time,
it makes more sense to use less.
 In most cases, you use less or cat when you want to look at an entire fi le. If you
want to display only part of a fi le, there are three other programs you can use: head, to
display the beginning of a fi le; tail, to display the end of a fi le; and grep, to display all
the lines that contain (or don’t contain) a particular pattern.
 In Chapter 16, we discussed how to use head and tail as fi lters within a pipeline.
In this chapter, I’ll show you how to use them with fi les. In Chapter 19, we talked about
grep in detail, and in Chapter 20, I showed you a lot of examples. For this reason, we
won’t need to discuss grep in this chapter. (However, I do want to mention it.)
 The next group of programs you can use to display fi les are the text editors. A text
editor allows you to look at any part of a fi le, search for patterns, move back and forth
within the fi le, and so on. It also allows you to edit (make changes to) the fi le. Thus, you
use a text editor to display a fi le when you want to make changes at the same time, or
when you want to use special editor commands to move around the fi le. Otherwise you
would use a pager.
 In Chapter 14, I mentioned several text editors that are widely available on Unix and
Linux systems: kedit, gedit, Pico, Nano, vi and Emacs. Any of these editors will allow
you to display and change fi les. However, vi and Emacs are, by far, the most powerful
tools (and the hardest to learn). The only editor we will talk about in detail in this book
is vi, which we will discuss in Chapter 22.
 From time to time, you may want to use a text editor to examine a fi le that is so
important you don’t want to make any changes accidentally. To do so, you can run the
editor in what is called “read-only” mode, which means you can look at the fi le, but you
cannot make any changes.
 To start vi in read-only mode , you use the -R option. For example, any user can look
at the Unix password fi le (Chapter 11), but you are not allowed to modify it unless you
are superuser. Thus, to use vi to look at the password fi le without being able to edit it,
you would use:

vi -R /etc/passwd

As a convenience, you can use view as a synonym for vi -R:

view /etc/passwd

Even if you are logged in as superuser, you will often choose to use vi -R or view to
look at a very important system fi le. This ensures that you don’t change it accidentally.
(We’ll discuss this more in Chapter 22.)

33614_21_521_558.indd 52333614_21_521_558.indd 523 1/9/2008 12:38:24 PM1/9/2008 12:38:24 PM

Chapter 21

524 Harley Hahn’s Guide to Unix and Linux

 The programs we have discussed so far all work with text fi les, that is, fi les that contain
lines of characters. However, there are many different types of non-text fi les, called binary
fi les, and from time to time, you may need to look inside such fi les. The fi nal two programs I
want to mention — hexdump and od — are used to display fi les that contain binary data.
 For example, say you are writing a program that sends binary output to a fi le. Each time
you run the program, you need to look inside the fi le to check on the output. That is where
hexdump or od come in handy. We’ll talk about the details later in the chapter. As a quick
example, either of the following Linux commands lets you look inside the fi le containing
the grep program. (Don’t worry about the options for now. We’ll discuss them later.)

hexdump -C /bin/grep | less
od -Ax -tx1z /bin/grep | less

For reference, Figure 21-1 contains a summary of the programs we have discussed in our
survey. As you look at the summary, please take a moment to appreciate how many Unix
tools there are to display fi les, each with its own characteristics and uses.

INTRODUCTION TO less: STARTING, STOPPING, HELP
The less program is a pager. That is, it displays data, one screenful at a time. When
you start less, there are many options to choose from and, once it is running, there are
many commands you can use. However, you will rarely need so much complexity. In this
chapter, we will concentrate on the basic options and features you are likely to use on a
day-to-day basis. For a description of the more esoteric options and commands we won’t
be covering, see the manual page and the Info page:

PROGRAM PURPOSE CHAPTER
less Pager: display one screenful at a time 21

more Pager (obsolete, used with BSD) 21

pg Pager (obsolete, used with System V) —

cat Display entire fi le, no paging 16

head Display fi rst part of fi le 16, 21

tail Display last part of fi le 16, 21

grep Display lines containing/not containing specifi c pattern 19, 20

vi Text editor: display and edit fi le 21

view, vi -R Read-only text editor: display but don’t allow changes to fi le 22

hexdump Display binary (non-text) fi les 21

od Display binary (non-text) fi les 21

FIGURE 21-1: Programs to display fi les

Unix and Linux have a large variety of tools you can use to display all or part of a fi le. This summary
shows the most important such tools, along with the chapters in which they are discussed. At the very
least, you should be competent with less, cat, head, tail, and grep to display text fi les. You
should also know how to use vi, as it is the principal Unix text editor. If you are a programmer, you
should be familiar with either hexdump or od, so you can display binary fi les.

33614_21_521_558.indd 52433614_21_521_558.indd 524 1/9/2008 12:38:24 PM1/9/2008 12:38:24 PM

Displaying Files

525

man less
info less

(The online manual and the Info system are discussed in Chapter 9.)
 The basic syntax to use less is as follows:

less [-cCEFmMsX] [+command] [-xtab] [file...]

where command is a command for less to execute automatically; tab is the tab spacing
you want to use; fi le is the name of a fi le.
 Most of the time, you will not need any options. All you will do is specify one or more
fi les to display, for example:

less information
less names addresses

You can use less to display any text fi le you have permission to read, including a system
fi le or a fi le belonging to another userid. (We discuss fi le permissions in Chapter 25.) As
an example, the following command displays a well-known system fi le, the Termcap fi le
we discussed in Chapter 7:

less /etc/termcap

The Termcap fi le contains technical descriptions of all the different types of terminals.
Although Termcap has been mostly replaced* by a newer system called Terminfo (see
Chapter 7), this fi le is an excellent example to use when practicing with less, so if
you want to follow along as you read this chapter, you can enter the above command
whenever you want.
 Before displaying anything, less will clear the screen. (You can suppress this by using
the -X option.) When less starts, it displays the fi rst screenful of data, whatever fi ts on
your monitor or within your window. At the bottom left-hand corner of the screen, you will
see a prompt. The initial prompt shows you the name of the fi le being displayed. Depending
on how your system is confi gured, you may also see other information. For example:

/etc/termcap lines 1-33/18956 0%

In this case, we are looking at lines 1 through 33 of the fi le /etc/termcap. The top
line on the screen is the fi rst line of the fi le (0%). Subsequent prompts will update the line
numbers and percentage.
 On some systems, the default is for less to display a much simpler prompt without
the line numbers and percentage. If this is the case on your system, the fi rst prompt will
show only the fi le name, for example:

/etc/termcap

Subsequent prompts will be even simpler; all you will see is a colon:

:

 *Although the Terminfo system is preferred (see Chapter 7), Termcap is still used by some programs, including less itself.

Introduction to less: Starting, Stopping, Help

33614_21_521_558.indd 52533614_21_521_558.indd 525 1/9/2008 12:38:24 PM1/9/2008 12:38:24 PM

Chapter 21

526 Harley Hahn’s Guide to Unix and Linux

On such systems, you can display extra information in the prompt by using the -M option
(discussed later in the chapter.)

 Once you see the prompt, you can enter a command. In a moment, we’ll talk about
the various commands, of which there are many. For now, I’ll just mention the most
common command, which is simply to press the <Space> bar. This tells less to display
the next screenful of data. Thus, you can read an entire fi le, one screenful at a time, from
beginning to end, simply by pressing <Space>.
 When you reach the end of the fi le, less changes the prompt to:

(END)

If you want to quit, you can press q at any time. You don’t have to wait until the end of
the fi le. Thus, to look at a fi le, all you need to do is start less, press <Space> until you
see as much as you want, and then press q to quit.
 As a quick exercise, try this. Enter one of the following commands to display the
Termcap fi le:

less /etc/termcap
less -m /etc/termcap

You will see the fi rst screenful of data. Press <Space> a few times, moving down through
the fi le, one screenful at a time. When you get tired of looking at an endless list of cryptic,
obsolete terminal descriptions, press q to quit.

THE STORY OF less AND more
As I explained earlier in the chapter, the original Unix pagers were more (used with BSD)
and pg (used with System V). You will sometimes hear that the name less was chosen
as a wry joke. Since less is much more powerful than more, the joke is that “less is
more”. It’s plausible, but not true. Here is the real story.
 The original Unix pager, more, was a simple program used to display data one
screenful at a time. The name more came from the fact that, after each screenful, the
program would display a prompt with the word “More”:

--More--

HINT

For ambitious fanatics with a lot of extra time, less offers more fl exibility for customizing the
prompt than any other pager in the history of the world. (See the man page for details.)

HINT

When you use less to display a fi le, there are many commands you can use while you are
looking at a fi le. The most important command is h (help). At any time, you can press h to
display a summary of all the commands.
 The best way to learn about less is to press h, see what is available and experiment.

33614_21_521_558.indd 52633614_21_521_558.indd 526 1/9/2008 12:38:24 PM1/9/2008 12:38:24 PM

Displaying Files

527

The more program was useful, but it had serious limitations. The most important limitation
was that more could only display data from start to fi nish: it could not back up.
 In 1983, a programmer named Mark Nudelman was working at a company called
 Integrated Offi ce Systems. The company produced Unix software that could create very
large log fi les containing transaction information and error messages. Some of the fi les
were so large that the current version of the vi text editor was not able to read them.
Thus, Nudelman and the other programmers were forced to use more to examine the
fi les when they wanted to look for errors.
 However, there was a problem. Whenever a programmer found an error message
in a log fi le, there was no way to back up to see what caused the problem, that is, the
transactions immediately preceding the error. The programmers often complained about
this problem. As Nudelman explained to me:
 “A group of engineers were standing around a terminal in the lab using more to look
at a log fi le. We found a line indicating an error and, as usual, we had to determine the
line number of the error. Then we had to quit more, restart it, and move forward to a
point several lines before the error to see what led up to the error. Someone complained
about this cumbersome process. Someone else said “We need a backwards more.” A third
person said “Yeah, we need LESS!”, which got a chuckle from everyone.
 Thinking about the problem, it occurred to Nudelman that it wouldn’t be too hard to
create a pager that could back up. In late 1983, he wrote such a program, which he indeed
called less. At fi rst, less was used only within the company. However, after enhancing
the program, Nudelman felt comfortable making it available to the outside world, which
he did in May 1985.
 Nudelman released less as open source software, which enabled many other people
to help him improve the program. Over the years, less became more and more powerful
and so popular with Unix users that it eventually reached the point where it replaced both
more and pg (the other popular Unix pager). Today, less is the most widely used Unix
pager in the world and is distributed as part of the GNU utilities (see Chapter 2).
 Interesting note: Most programs are released with version numbers such as 1.0, 1.01,
1.2, 2.0 and so on. Nudelman used a simpler system. From the very beginning, he gave
each new version of less its own number: 1, 2, 3, 4 and so on. Thus, as I write this, the
less program I am using is version 394.

USING less
As you read a fi le with less, there are a great many commands you can use. For
reference, the most important commands are summarized in Figure 21-2. For a more
comprehensive summary, you can press h (help) from within less, or you can enter the
following command from the shell prompt:

less --help

When you display the comprehensive summary, you will see there are many more
commands than you will ever need. For example, there are fi ve different ways to move
forward (that is, down) by one line, fi ve different ways to move backward (up) by one

Using less

33614_21_521_558.indd 52733614_21_521_558.indd 527 1/9/2008 12:38:24 PM1/9/2008 12:38:24 PM

Chapter 21

528 Harley Hahn’s Guide to Unix and Linux

line, fi ve different ways to quit the program, and so on. Don’t be intimidated. You only
need to know the commands in Figure 21-2.
 The best strategy is to start with the three commands I mentioned earlier: <Space>
to page through the fi le, h for help, and q to quit. Once you feel comfortable with these
three, teach yourself the rest of the commands in Figure 21-1, one at a time, until you
have memorized them all. Just work your way down the list from top to bottom. (I chose
the order carefully and, yes, you do need to memorize them all.)

BASIC COMMANDS
h display help information

<Space> go forward one screenful

q quit the program

ADVANCED COMMANDS
g go to fi rst line

G go to last line

= display current line number and fi le name

<Return> go forward one line

n<Return> go forward n lines

b go backward one screenful

y go backward one line

ny go backward n lines

d go forward (down) a half screenful

u go backward (up) a half screenful

<Down> go forward one line

<Up> go forward one line

<PageUp> go backward (up) one screenful

<PageDown> go forward (down) one screenful

ng go to line n

np go to line n% through the fi le

/pattern search forward for the specifi ed pattern

?pattern search backward for the specifi ed pattern

n repeat search: same direction

N repeat search: opposite direction

!command execute the specifi ed shell command

v start vi editor using current fi le

-option change specifi ed option

_option display current value of option

FIGURE 21-2: less: Summary of the Most Useful Commands

33614_21_521_558.indd 52833614_21_521_558.indd 528 1/9/2008 12:38:24 PM1/9/2008 12:38:24 PM

Displaying Files

529

 If you need a fi le on which to practice, use the Termcap fi le I mentioned earlier in the
chapter. The following command will get you started:

less -m /etc/termcap

(It helps to use the -m option when you are practicing, so the prompt will show your
position in the fi le.)

USING less TO SEARCH WITHIN A FILE
Most of the commands in Figure 21-2 are straightforward. However, I do want to say a
few words about the search commands. When you want to search for a pattern, you use
either / (search forward) or ? (search backward), followed by a pattern. The pattern
can be a simple character string or a regular expression (described in Chapter 20). After
typing / or ?, followed by the pattern, you need to press <Return> to let less know
you are fi nished.
 Here are some examples. To search forward in the fi le for the next occurrence of
“buffer”, use:

/buffer

To search backward for the same pattern, use:

?buffer

Searches are case sensitive, so you will get different results if you search for “Buffer”:

/Buffer

If you want to use case insensitive searching, you can start less with the -I option
(described later in the chapter), for example:

less -Im /etc/termcap

When you start less in this way, searching for “buffer” would produce the same result
as searching for “Buffer” or “BUFFER”.
 If you want to turn the -I option off and on while you are reading a fi le, you can use
the -I command from within less. To display the current state of this option, use the
_I command. (Changing and displaying options from within less is described later in
the chapter.)
 If you want to perform more searches, you can use regular expressions. For example,
let’s say you want to search for any string that contains “buf”, followed by zero or more
lowercase letters. You can use:

/buf[:lower:]*
?buf[:lower:]*

(For a detailed explanation of regular expressions, including many examples, see
Chapter 20.)

Using less to Search Within a File

33614_21_521_558.indd 52933614_21_521_558.indd 529 1/9/2008 12:38:24 PM1/9/2008 12:38:24 PM

Chapter 21

530 Harley Hahn’s Guide to Unix and Linux

 Once you have entered a search command, you can repeat it by using the n (next)
command. This performs the exact same search in the same direction. To repeat the same
search in the opposite direction, use N.
 Whenever you search for a pattern, less will highlight that pattern wherever it appears
in the fi le. Thus, once you search for something, it is easy to see all such occurrences as
you page through the fi le. The highlighting will persist until you enter another search.

RAW AND COOKED MODE
Before we continue our discussion, I want to take a moment to talk about a few important
I/O (input/output) concepts that will help you better understand how less and similar
programs work. Let’s start with a defi nition.
 A DEVICE DRIVER or, more simply, a DRIVER, is a program that provides an
interface between the operating system and a particular type of device, usually some type
of hardware. When you use the Unix text-based CLI (command line interface), the driver
that controls your terminal is called a TERMINAL DRIVER.
 Unlike some other drivers, terminal drivers must provide for an interactive user
interface, which requires special preprocessing and postprocessing of the data. To meet
this need, terminal drivers use what is called a LINE DISCIPLINE.
 Unix has two main line disciplines, CANONICAL MODE and RAW MODE. The details
are horribly technical, but the basic idea is that, in canonical mode, the characters you
type are accumulated in a buffer (storage area), and nothing is sent to the program until
you press the <Return> key. In raw mode (also known as NONCANONICAL MODE),
each character is passed directly to the program as soon as you press a key. When you read
Unix documentation, you will often see canonical mode referred to as COOKED MODE.
(This is, of course, an amusing metaphor, “cooked” being the opposite of “raw”.)
 When a programmer creates a program, he can use whichever line discipline he wants.
Raw mode gives the programmer full control over the user’s working environment.
The less program, for example, works in raw mode, which allows it to take over the
command line and the screen completely, displaying lines and processing characters
according to its needs.
 This is why whenever you press a key, less is able to respond instantly; it does not
need you to press <Return>. Thus, you simply press the <Space> bar and less displays
more data; you press b and less moves backwards in the fi le; you press q and the

HINT

Once you have learned how to use the vi editor, the less commands will make more sense since
many of the commands are taken directly from vi. This is because virtually all experienced Unix
people are familiar with vi, so using the same commands with less makes a lot of sense.

HINT

If you have too much spare time on your hands, you can use the lesskey command to change
the keys used by less. For details, see the lesskey man page.

33614_21_521_558.indd 53033614_21_521_558.indd 530 1/9/2008 12:38:25 PM1/9/2008 12:38:25 PM

Displaying Files

531

program quits. You will fi nd many other programs that work in raw mode, such as the
text editors vi and Emacs.
 In canonical (cooked) mode, a program is sent whole lines, not individual characters.
This releases the programmer from having to process each character as it is generated. It
also allows you to make changes in the line before the line is processed. For example, you
can use <Backspace> or <Delete> to make corrections before you press <Return>. When
you use the shell, for example, you are working in canonical mode: nothing is sent until
you press <Return>.
 Virtually all interactive text-based programs use either canonical mode or raw mode.
However, there is a third line discipline you may hear about, even though it is not used
much anymore.
 CBREAK MODE is a variation of raw mode. Most input is sent directly to the
program, just like raw mode. However, a few very important keys are handled directly by
the terminal driver. These keys (which we discussed in Chapter 7) are the ones that send
the fi ve special signals: intr (^C), quit (^\), susp (^Z), stop (^S), and start
(^Q). Cbreak mode, then, is mostly raw with a bit of cooking. In the olden days, it was
sometimes referred to whimsically, as “rare mode”.

OPTIONS TO USE WITH less
When you start less, there are a large number of options you can use, most of which
can be safely ignored*. For practical purposes, you can consider less to have the
following syntax:

less [-cCEFmMs] [+command] [-xtab] [file...]

where command is a command for less to execute automatically, tab is the tab spacing
you want to use, and fi le is the name of a fi le.
 The three most useful options are -s, -c and -m. The -s (squeeze) option replaces
multiple blank lines with a single blank line. This is useful for condensing output in
which multiple blank lines are not meaningful. Of course, no changes are made to the
original fi le.
 The -c (clear) option tells less to display each new screenful of data from the top
down. Without -c, new lines scroll up from the bottom line of the screen. Some people
fi nd that long fi les are easier to read with -c. The -C (uppercase “C”) option is similar to
-c except that the entire screen is cleared before new data is written. You will have to try
both options for yourself and see what you prefer.
 The name -m refers to more, the original BSD pager I mentioned earlier. The
more prompt displays a percentage, showing how far down the user is in the fi le.
When less was developed, it was given a very simple prompt, a colon. However,
the -m option was included for people who were used to more and wanted the more
verbose prompt.

 *In fact, less is one of those odd commands, like ls (see Chapter 24), that has more options than there are letters in the
alphabet. It’s hard to explain why, but I suspect it has something to do with an overactive thyroid.

Options to Use With less

33614_21_521_558.indd 53133614_21_521_558.indd 531 1/9/2008 12:38:25 PM1/9/2008 12:38:25 PM

Chapter 21

532 Harley Hahn’s Guide to Unix and Linux

 The -m option makes the prompt look like the more prompt by showing the percentage
of the fi le that has been displayed. For example, let’s say you display the Termcap fi le (see
the discussion earlier in the chapter) using -m:

less -m /etc/termcap

After moving down a certain distance you see the prompt:

40%

This indicates you are now 40 percent of the way through the fi le. (By the way, you can
jump directly to this location by using the command 40p. See Figure 21-2.)
 The -M (uppercase “M”) option makes the prompt show even more information: you
will see the name of the fi le and the line number, as well as the percentage that has been
displayed. For example, if you use:

less -M /etc/termcap

A typical prompt would look like this:

/etc/termcap lines 7532-7572/18956 40%

The line numbers refer to the range of lines being displayed, in this case, lines 7,532 to
7,572 (out of 18,956).
 One of my favorite options is -E (end). This tells less to quit automatically when
the end of the fi le has been displayed. When you use -E, you don’t have to press q to quit
the program. This is convenient when you know you only want to read through a fi le
once without looking backward.
 The -F (fi nish automatically) option tells less to quit automatically if the entire
fi le can be displayed at once. Again, this keeps you from having to press q to quit the
program. In my experience, -F works best with very short fi les, while -E works best with
long fi les. To see how this works, let’s create a very short fi le named friends. To start,
enter the command:

cat > friends

Now type the names of fi ve or six friends, one per line. When you are fi nished, press ^D
to send the eof signal to end the program. (We discuss ^D in Chapter 7.) Now, compare
the following two commands. Notice that with the second command, you don’t have to
press q to quit the program.

less friends
less -F friends

The + (plus sign) option allows you to specify where less will start to display data.
Whatever appears after the + will be executed as an initial command. For example, to
display the Termcap fi le with the initial position at the end of the fi le, use:

less +G /etc/termcap

33614_21_521_558.indd 53233614_21_521_558.indd 532 1/9/2008 12:38:25 PM1/9/2008 12:38:25 PM

Displaying Files

533

To display the same fi le, starting with a search for the word “buffer”, use:

less +/buffer /etc/termcap

To start at a particular line, use +g (go to) preceeded by the line number. For example,
to start at line 37, use:

less +37g /etc/termcap

As a convenience, less allows you to leave out the g. Thus, the following two commands
both start at line 37:

less +37g /etc/termcap
less +37 /etc/termcap

The -I (ignore case) option tells less to ignore differences in upper- and lowercase
when you search for patterns. By default, less is case sensitive. For example, “the” is
not the same as “The”. However, when you use -I, you get the same results searching for
“the”, “The” or “THE”.
 The -N (number) option is useful when you want to see line numbers in the output.
When you use this option, less numbers each line, much like the nl command (Chapter
18). For instance, the following two examples generate similar output:

less -N file
nl file | less

In both cases, of course, the actual fi le is not changed.
 There are two important differences between using nl and less -N. First, less
numbers lines in only one way: 1, 2, 3 and so on. The nl command has a variety of
options that allow you a great deal of fl exibility in how the line numbers should be
generated. You can choose the starting number, the increment, and so on (see Chapter
18). Second, less numbers all lines, even blank ones. By default, nl does not number
blank lines unless you use the -b a option.
 Finally, the -x option followed by a number tells less to set the tabs at the specifi ed
regular interval. This controls the spacing for data that contains tab characters. For
example, to display a program named foo.c with the tabs set to every 4 spaces, use:

less -x4 foo.c

As with most Unix programs, the default tab setting is every 8 spaces (see Chapter 18).
 If you want to change an option on the fl y while you are viewing a fi le, use the -
(hyphen) command followed by the new option. This acts like an on/off toggle switch.
For example, to turn on the -M option (to display a verbose prompt) while you are
looking at a fi le, type:

-M

To turn off the option, just enter the command again.

Options to Use With less

33614_21_521_558.indd 53333614_21_521_558.indd 533 1/9/2008 12:38:25 PM1/9/2008 12:38:25 PM

Chapter 21

534 Harley Hahn’s Guide to Unix and Linux

 To display the current value of an option, use an _ (underscore) followed by the
option. For example, to check how the prompt is set, use:

_M

Here is another example. You have started less without the -I option and, as you are
looking at the fi le, you decide you want to do a case insensitive search. All you need to
do is type:

-I

After entering your search command, you type -I again to turn off the option. If you
do this a few times, it’s easy to lose track. So, at any time, you can check the status of the
option, by typing:

_I

This is a handy pattern to remember.

WHEN TO USE less AND WHEN TO USE cat
As we discussed earlier in the chapter, you can use both less and cat to display fi les.
With less, the fi le is displayed one screenful at a time; with cat the entire fi le is
displayed all at once. If you expect a fi le to be longer than the size of your screen, it is best
to use less. If you use cat, most of the fi le will scroll off your screen faster than you
can read it. However, what if the fi le is small?
 If you use cat to display a small fi le — one that is short enough to fi t on your screen
— the data is displayed quickly, and that is that. Using less is inconvenient for two
reasons. First, less will clear the screen, erasing any previous output. Second, you will
have to press q to quit the program, which is irritating when all you want to do is display
a few lines quickly.
 You can, of course, use less with the -F (fi nish automatically) option, which causes the
program to quit automatically if the entire fi le can be displayed at once. For example, let’s
say that data is a very small fi le. You can display it quickly by using the command:

less -F data

In fact, you can even specify that less should use the -F option by default. (You do this
by setting the LESS environment variable, explained later in the chapter.) Once you set

HINT

When you are new to less and you want to learn how to use the various options, you can
use the - (change option) and _ (display option) commands to experiment while you are
displaying a fi le.
 This is especially useful if you want to learn how to use the -P option (which we did not discuss)
to change the prompt. You can make a change to the prompt, and see the result immediately.

33614_21_521_558.indd 53433614_21_521_558.indd 534 1/9/2008 12:38:25 PM1/9/2008 12:38:25 PM

Displaying Files

535

this variable, you won’t have to type -F, and the following two commands are more or
less equivalent (assuming data is a very small fi le):

less data
cat data

However, if you watch experienced Unix people, you will see that they always use cat to
display short fi les; they never use less. Why is this?
 There are four reasons. First, as I mentioned, less clears the screen, which erases the
previous output. This can be inconvenient. Second it is faster to type “cat” than “less”.
Third, the name cat is a lot cuter than the name less. Finally, using cat in this way is
how Unix people distinguish themselves from the crowd.
 These might seem like insignifi cant reasons, but Unix people like their work to be
smooth, fast and fun. So if you want to look like a real Unix person and not a clueless
goober, use cat when the fi le is very small, and less otherwise.

USING ENVIRONMENT VARIABLES TO CUSTOMIZE YOUR PAGER
As we discussed in Chapter 15, the Unix philosophy says that each tool should do only
one thing and do it well. Thus, the Unix pagers (less, more, pg) were all designed
to provide only one service: to display data one screenful at a time. If another program
requires this functionality, the program does not have to provide the service itself. Instead,
it uses a pager.
 The most common example occurs when you use the man program (Chapter 9) to
access the online Unix manual. The man program does not actually display the text of the
page. Rather, it calls upon a pager to show you the page, one screenful at a time.
 The question arises, which pager will man and other programs use? You might think
that, because less is the most popular pager, any program that needs such a tool will
automatically use less. This is often the case, but not always. On some systems, for
example, the man program, by default, will use more to display man pages. This can be
irritating because, as we discussed earlier, more is not nearly as powerful as less.
 However, you can specify your default pager. All you have to do is set an environment
variable named PAGER to the name of the pager you want to use. For example, the
following commands set less as your default pager. The fi rst command is for the
Bourne Shell family (Bash, Korn Shell). The second command is for the C-Shell family
(C-Shell, Tcsh).

export PAGER=less
setenv PAGER less

To make the change permanent, all you need to do is put the appropriate command
in your login fi le. (Environment variables are discussed in Chapter 12; the login fi le is
discussed in Chapter 14.)
 Once you set the PAGER environment variable in this way, all programs that require
an external pager will use less. Even if less already seems to be the preferred pager

Using Environment Variables to Customize Your Pager

33614_21_521_558.indd 53533614_21_521_558.indd 535 1/9/2008 12:38:25 PM1/9/2008 12:38:25 PM

Chapter 21

536 Harley Hahn’s Guide to Unix and Linux

for your system, it is a good idea to set PAGER in your login fi le. This will override any
other defaults explicitly, ensuring that no matter how your system happens to be set up,
you will be in control.
 Aside from PAGER, there is another environment variable you can use for further
customization. You can set the variable LESS to the options you want to use every time
the program starts. For example, let’s say you always want to use less with the options
-CFMs (discussed earlier in the chapter). The following commands set the variable LESS
appropriately. (The fi rst command is for the Bourne Shell family. The second command
is for the C-Shell family.)

export LESS='-CFMs'
setenv LESS '-CFMs'

Again, this is a command to put in your login fi le. Once you do, less will always start
with these particular options. This will be the case whether you run less yourself or
whether another program, such as man runs it on your behalf.
 If you ever fi nd yourself using the more program (say, on a system that does not
have less), you can specify automatic options in the same way by setting the MORE
environment variable. For example, the following commands specify that more should
always start with the -cs options. (The fi rst command is for the Bourne Shell family; the
second is for the C-Shell family.)

export MORE='-cs'
setenv MORE '-cs'

Once again, all you need to do is put the appropriate command in your login fi le to make
your preferences permanent.

DISPLAYING MULTIPLE FILES WITH less
Anything you can do with less using a single fi le, you can also do with multiple fi les.
In particular, you can move back and forth from one fi le to another, and you can search
for patterns in more than one fi le at the same time. For reference, Figure 21-3 contains a
summary of the relevant commands.
 To work with multiple fi les, all you have to do is specify more than one fi le name on
the command line. For example, the following command tells less that you want to
work with three different fi les:

less data example memo

HINT

The less program actually looks at 30 different environment variables, which allows for an
enormous amount of fl exibility.
 The most important variable is LESS, the one variable we have discussed. If you are curious
as to what the other variables do, take a look at the less man page.

33614_21_521_558.indd 53633614_21_521_558.indd 536 1/9/2008 12:38:25 PM1/9/2008 12:38:25 PM

Displaying Files

537

At any time, you see only one fi le, which we call the CURRENT FILE. However, less
maintains a list of all your fi les and, whenever you want, you can move from one fi le to
another. You can also add fi les to the list or delete fi les from the list as the need arises.
 When less starts, the current fi le is the fi rst one in the list. In the above example,
the current fi le would be data. To move forward within the list, you use the :n (next)
command. For example, if you are reading data and you type :n, you will change to
example, which will become the new current fi le. If you type :n again, the current fi le
will change to memo.
 Similarly, you can move backwards within the list by using the :p (previous) command,
and you can jump to the beginning of the list by using the :x command. For example, if
you are reading memo and you type :p, the current fi le will change to example. If you
type :x instead, the current fi le will change to data.
 To display the name of the current fi le, type :f. This is a synonym for the = command
(see Figure 21-2). At this time, you may want to take a moment and practice these three
commands before you move on.
 One of the most powerful features of less is that it allows you to search for a pattern
in more than one fi le. Here is how it works.
 As we discussed earlier in the chapter, you use the / command to search forwards within
a fi le and ? to search backwards. After using either of these commands, you can type n to
search again in the same direction or N to search again in the opposite direction.
 For example, let’s say you enter the command:

/buffer

This performs a forward search within the current fi le for the string “buffer”. Once less
has found it, you can jump forward to the next occurrence of “buffer” by typing n. Or,
you can jump backward to the previous occurrence by typing N.
 When you are working with more than one fi le, you have an option: instead of
using / or ?, you can use /* or ?*. When you search in this way, less treats the
entire list as if it were one large fi le. For example, let’s say you start less with the
command above:

:n change to next fi le in list

:p change to previous fi le in list

:x change to fi rst fi le in list

:e insert a new fi le into the list

:d delete current fi le from the list

:f display name of current fi le (same as =)

= display name of current fi le

/*pattern search forward for specifi ed pattern

?*pattern search backward for specifi ed pattern

FIGURE 21-3: less: Commands to Use With Multiple Files

Displaying Multiple Files With less

33614_21_521_558.indd 53733614_21_521_558.indd 537 1/9/2008 12:38:25 PM1/9/2008 12:38:25 PM

Chapter 21

538 Harley Hahn’s Guide to Unix and Linux

less data example memo

The current fi le is data, and the list of fi les is:

data example memo

You type the command :n, which moves you within the list to the second fi le, example.
You then type 50p (50 percent), which moves you to the middle of example. You now
enter the following command to search forward for the string “buffer”.

/*buffer

This command starts from the current position in example and searches forward for
“buffer”. Once the search is complete, you can press n to repeat the search moving forward.
If you press n repeatedly, less would normally stop at the end of the fi le. However, since
you used /* instead of /, less will move to the next fi le in the list automatically (in this
case, memo) and continue the search.
 Similarly, if you press N repeatedly to search backwards, when less gets to the
beginning of the current fi le (example), it will move to the end of the previous fi le
automatically (data) and continue the search.
 The same idea applies when you use ?* instead of ? to perform a backwards search.
The * tells less to ignore fi le boundaries when you use n or N commands.
 In addition to :n, :p, :x, /* and ?*, less has two more commands to help you work
with multiple fi les. These commands allow you to insert and delete fi les from the list.
 To insert a fi le, you type :e (examine) followed by one or more fi le names. The new
fi les will be inserted into the list directly after the current fi le. The fi rst such fi le will then
become the new current fi le. For example, let’s say the list of fi les is:

data example memo

The current fi le happens to be example. You enter the following command to insert
three fi les into the list:

:e a1 a2 a3

The list becomes:

data example a1 a2 a3 memo

The current fi le is now a1.
 To delete the current fi le from the list, you use the :d (delete) command. (Of course,
less does not delete the actual fi le.) For example, if you are working with the list above,
and you type :d, the current fi le (a1) is deleted from the list:

data example a2 a3 memo

The previous fi le (example) becomes the new current fi le.
 At fi rst, these commands can be a bit confusing, especially because there is no way
to display the actual list so you can see what’s what. When you work with multiple fi les,
you’ll need to keep the sequence of fi les in your head. Still, when you want to display

33614_21_521_558.indd 53833614_21_521_558.indd 538 1/9/2008 12:38:25 PM1/9/2008 12:38:25 PM

Displaying Files

539

more than one fi le or search through more than one fi le, you will fi nd these commands
to be surprisingly practical, so they are worth learning.

DISPLAYING A FILE USING more
As we discussed earlier in the chapter, the early pagers more and pg have been replaced by
the more powerful program less. Although you will probably never see pg, you will run
into more from time to time. For example, you may have to use a system that does not have
less, and you will have to use more. Or you may use a system in which the default pager
is more, and you may fi nd yourself using it accidentally.* In such cases, it behooves you to
know a bit about the program so, in this section, I’ll go over the basics for you.
 The syntax for more is:

more [-cs] [file...]

where fi le is the name of a fi le.
 The more program displays data one screenful at a time. After each screen is written,
you will see a prompt at the bottom left corner of the screen. The prompt looks like this:

--More--(40%)

(Hence the name more.)
 At the end of the prompt is a number in parentheses. This shows you how much of the
data has been displayed. In our example, the prompt shows that you are 40 percent of the
way through the fi le.
 The simplest way to use more is to specify a single fi le name. For example:

more filename

If the data fi ts on a single screen, it will be displayed all at once and more will quit
automatically. Otherwise, the data will be displayed, one screenful at a time, with the
prompt at the bottom.
 Once you see the prompt, you can enter a command. The most common command is
simply to press the <Space> bar, which displays the next screenful of data. You can press
<Space> repeatedly to page through the entire fi le. After displaying the last screenful of
data, more will quit automatically.
 The most common use for more is to display the output of a pipeline, for example:

cat newnames oldnames | grep Harley | sort | more
ls -l | more

When you use more in a pipeline, the prompt will not show the percentage:

--More--

This is because more displays the data as it arrives, so it has no idea how much there will be.

 *This is the case on Solaris systems. When you use the man command to display a man page, the default pager is more. If
you use such a system regularly, you can make less your default pager by setting the PAGER environment variable. See the
discussion earlier in the chapter.

Displaying a File Using more

33614_21_521_558.indd 53933614_21_521_558.indd 539 1/9/2008 12:38:25 PM1/9/2008 12:38:25 PM

Chapter 21

540 Harley Hahn’s Guide to Unix and Linux

 When more pauses , there are a variety of commands you can use. Like less, more
works in raw mode (explained earlier in the chapter), so when you type single-character
commands, you do not have to press <Return>. As you might expect, the most important
command is h (help), which displays a comprehensive command summary.
 For the most part, you can think of more as a less powerful version of less. For
reference, the most important more commands are summarized in Figure 21-4. For a
comprehensive summary, see the more man page (man more).
 As I mentioned, you can move forward one screenful by pressing <Space>. Alternatively,
you can press d (down) to move forward a half screenful, or <Return> to move forward
one line. To move backward one screenful, press b. (Note: The b command only works
when you are reading a fi le. Within a pipeline, you can’t go backwards because more does
not save the data.)
 To search for a pattern, type / followed by the pattern, followed by <Return>. If you
want, you can use a regular expression (see Chapter 20). When more fi nds the pattern, it
will display two lines before that location so you can see the line in context. To repeat the
previous search, enter / without a pattern, that is, /<Return>.
 When you start more, the two most useful options are -s and -c. The -s (squeeze)
option replaces multiple blank lines with a single blank line. You can use this option to
condense output in which multiple blank lines are not meaningful. Of course, this does
not affect the original fi le.
 The -c (clear) option tells more to display each new screenful of data from the top
down. Each line is cleared before it is replaced. Without -c, new lines scroll up from the
bottom line of the screen. Some people fi nd that long fi les are easier to read with -c. You
will have to try it for yourself.

BASIC COMMANDS
h display help information

<Space> go forward one screenful

q quit the program

ADVANCED COMMANDS
= display current line number

<Return> go forward one line

d go forward (down) a half screenful

f go forward one screenful

b go backward one screenful

/pattern search forward for the specifi ed pattern

/ repeat last search

!command execute the specifi ed shell command

v start vi editor using current fi le

Figure 21-4: more: Useful Commands

33614_21_521_558.indd 54033614_21_521_558.indd 540 1/9/2008 12:38:26 PM1/9/2008 12:38:26 PM

Displaying Files

541

DISPLAYING THE BEGINNING OF A FILE: head
In Chapter 16, we discussed how to use head as a fi lter within a pipeline to select lines
from the beginning of a stream of data. In this section, I’ll show you how to use head on
its own, to display the beginning of a fi le. When you use head in this way, the syntax is:

head [-n lines] [file...]

where lines is the number of lines you want to display, and fi le is the name of a fi le. By
default, head will display the fi rst 10 lines of a fi le. This is useful when you want to get a
quick look at a fi le to check its contents. For example, to display the fi rst 10 lines of a fi le
named information, use:

head information

If you want to display a different number of lines, specify that number using the -n
option. For example, to display the fi rst 20 lines of the same fi le, use:

head -n 20 information

DISPLAYING THE END OF A FILE: tail
To display the end of a fi le, you use the tail command. The syntax is:

tail [-n [+]lines] [file...]

where lines is the number of lines you want to display, and fi le is the name of a fi le.
 By default, tail will display the last 10 lines of a fi le. For example, to display the last
10 lines of a fi le named information, use:

tail information

To display a different number of lines, use the -n option followed by a number. For
example, to display the last 20 lines of the fi le information, use:

HINT

Originally, head and tail (discussed next) did not require you to use the -n option; you
could simply type a hyphen followed by a number. For example, the following commands all
display 15 lines of output:

calculate | head -n 15
calculate | head -15

calculate | tail -n 15
calculate | tail -15

Offi cially, modern versions of head and tail are supposed to require the -n option, which is
why I have included it. However, most versions of Unix and Linux will accept both types of syntax
and, if you watch experienced Unix people, you will fi nd that they often leave out the -n.

Displaying the End of a File: tail

33614_21_521_558.indd 54133614_21_521_558.indd 541 1/9/2008 12:38:26 PM1/9/2008 12:38:26 PM

Chapter 21

542 Harley Hahn’s Guide to Unix and Linux

tail -n 20 information

Strictly speaking, you must type the -n option. However, as I explained in the previous
section, you can usually get away with leaving it out. Instead, you can simply type a -
(hyphen) followed by the number of lines you want to display. Thus, the following two
lines are equivalent:

tail -n 20 information
tail -20 information

If you put a + (plus sign) character before the number, tail displays from that line number
to the end of the fi le. For example, to display from line 35 to the end of the fi le, use:

tail -n +35 information.

In this case, don’t leave out the -n to ensure that tail does not interpret the number
as a fi le name.

WATCHING THE END OF A GROWING FILE: tail -f
The tail command has a special option that allows you to watch a fi le grow, line by
line. This option comes in handy when you must wait for data to be written to a fi le. For
example, you might want to monitor a program that writes one line at a time to the end
of a fi le. Or, if you are a system administrator, you might want to keep an eye on a log fi le
to which important messages are written from time to time.
 To run tail in this way, you use the -f option. The syntax is:

tail -f [-n [+]lines] [file...]

where lines is the number of lines you want to display, and fi le is the name of a fi le. (The
lines argument is described in the previous section.)
 The -f option tells tail not to stop when it reaches the end of the fi le. Instead,
tail waits indefi nitely and displays more output as the fi le grows. (The name -f stands
for “follow”.)
 For example, let’s say that over the next few minutes, a particular program will be
adding output to the end of a fi le named results. You want to follow the progress of
this program. Enter:

tail -f results

As soon as you enter the command, tail will display the last 10 lines of the fi le. The
program will then wait, monitoring the fi le for new data. As new lines are added, tail
will display them for you automatically.
 When you use tail -f, it waits for new input indefi nitely; the program will not stop
by itself. To stop it, you must press ^C (the intr key; see Chapter 7). This can present a
small problem because, until you stop tail, you won’t be able to enter more commands.
There are two ways to handle the situation.

33614_21_521_558.indd 54233614_21_521_558.indd 542 1/9/2008 12:38:26 PM1/9/2008 12:38:26 PM

Displaying Files

543

 First, you can run tail -f in the background (see Chapter 26) by using an &
(ampersand) character at the end of the command.

tail -f results &

When you run tail in the background, it can run unattended as long as you want
without tying up your terminal. Moreover, because tail is running in the same window
or virtual console in which you are working, you will instantly see any new output. The
disadvantage is that the output of tail will be mixed in with the output of whatever
other programs you run, which can be confusing.
 Note: When you run a program in the background, you can’t stop it by pressing ^C.
Instead, you need to use the kill command. (The details are explained in Chapter 26.)
 An alternative way to use tail -f is to run it in its own terminal window or virtual
console (see Chapter 6). If you do this, once tail begins you can leave it alone, do your
work in a second window or virtual console, and check back with tail whenever you want.
Using two windows or consoles in this way not only allows you to run other commands while
tail is running, but it also keeps the output of tail separate. The only drawback is that
you must remember to keep an eye on the window or console where tail is running.
 If you would like to practice using tail -f, here is an experiment to try. To start,
open two terminal windows (see Chapter 6). In the fi rst window, use the cat command
to create a small fi le named example:

cat > example

Type 4-5 lines and then press ^D to end the input and stop the command. (Using cat
to create a small fi le is explained in Chapter 16; using ^D, the eof key, is explained
in Chapter 7.)
 In the second terminal window, enter the following tail command:

tail -f example

The tail program will list the last 10 lines of example and then wait for new input.
Now return to the fi rst window and add some more lines to the fi le. The easiest way to do
this is to append the data using >> (see Chapter 16). Enter the command:

cat >> example

Now type as many lines as you want, pressing <Return> at the end of each line. Notice
that, each time you type a line in the fi rst window, the line shows up in the second window
as output from tail.
 When you are fi nished experimenting, press ^D in the fi rst window to tell cat there
is no more input. Then press ^C in the second window to stop tail.
 If you look back at the syntax for using tail -f, you will see that you can specify
more than one fi le name. This is because tail can monitor multiple fi les at the same time
and alert you when any one of them receives new data. If you would like to experiment,
set up two terminal windows as in our last example. In the fi rst window, use cat to create
two small fi les as described above:

Watching the End of a Growing File: tail -f

33614_21_521_558.indd 54333614_21_521_558.indd 543 1/9/2008 12:38:26 PM1/9/2008 12:38:26 PM

Chapter 21

544 Harley Hahn’s Guide to Unix and Linux

cat > file1
cat > file2

In the second window, run the following command:

tail -f file1 file2

Now return to the fi rst window and use the following commands in turn to add lines to
one of the two fi les:

cat >> file1
cat >> file2

Notice that each time you use cat (in the fi rst window) to add lines to one of the fi les,
tail (in the second window) shows you the name of the fi le followed by the new lines.

BINARY, OCTAL AND HEXADECIMAL
To conclude this chapter, we are going to talk about two commands, od and hexdump,
that are used to display data from binary fi les. To interpret the output of these commands,
you will need to understand the binary, octal and hexadecimal number systems. So, before
we move on, let’s take a moment to discuss these very important concepts.
 Although these three number systems are very important to computer science and
computer programming, a detailed discussion is, unfortunately, beyond the scope of this
book. In this section, I’ll cover the basic ideas to get you started. If you have your heart set
on becoming a computer person, my advice is to spend some time on your own, studying
these topics in detail.
 Most of the time, we use numbers composed of the 10 digits, 0 through 9. As such, our
everyday numbers are composed of powers of 10: 1, 10, 100, 1000, and so on. We call such
numbers DECIMAL NUMBERS. For example, the decimal number 19,563 is actually:

(1x10,000) + (9x1,000) + (5x100) + (6x10) + (3x1)

Or, using exponents:

(1x104) + (9x103) + (5x102) + (6x101) + (3x100)

We refer to this system as BASE 10 or the DECIMAL SYSTEM. The name comes from the
idea that all numbers are constructed from 10 different digits. In the world of computers,
there are three other bases that are actually more important than base 10:

• Base 2 (binary): uses 2 digits, 0-1
• Base 8 (octal): uses 8 digits, 0-7
• Base 16 (hexadecimal): uses 16 digits, 0-9 A-F

The importance of these systems comes from the way computer data is stored. This is because
all data is organized into sequences of electrical traces that, conceptually, are considered to
be either off or on. This is true for any type of data, whether it resides in computer memory
(such as RAM or ROM) or stored on disks, CDs, DVDs, fl ash memory, or other devices.

33614_21_521_558.indd 54433614_21_521_558.indd 544 1/9/2008 12:38:26 PM1/9/2008 12:38:26 PM

Displaying Files

545

 As a shorthand notation, we represent “off” by the number 0, and “on” by the number
1. In this way, any data item, no matter how long or short, can be considered to be a
pattern of 0s and 1s. Indeed, in a technical sense, this is how computer scientists think of
data: as long streams of 0s and 1s.
 Here are a few simple examples. Within the ASCII code, the letter “m” is represented
by the pattern:

01101101

The word “mellow” is represented as:

011011010110010101101100011011000110111101110111

(For a discussion of the ASCII code, see Chapter 19 and 20. For a table showing the details
of the code, see Appendix D.)
 The ASCII code is used only to represent individual characters. When it comes to
working with numerical values, we use a variety of different systems. Without going into
the details, here is how the number 3.14159 would be represented using a system called
“single precision fl oating-point”:

01000000010010010000111111010000

If these examples seem a bit confusing, don’t worry. The details are very complex and
not important right now. What is important is that you should understand that, to a
computer scientist, all data — no matter what type or how much — is stored as long
sequences of 0s and 1s. For this reason, it is important to learn how to work with numbers
consisting only of 0s and 1s, which we call BINARY NUMBERS.
 In computer science, a single 0 or 1 that is stored as data is called a a BIT (“binary
digit”); 8 bits in a row is called a BYTE. For instance, the previous example contains a
binary number consisting of 32 bits or 8 bytes of data. We refer to this system as BASE 2 or
the BINARY SYSTEM. The name reminds us that, in base 2, all numbers are constructed
from only two different digits: 0 and 1.
 If you are a beginner, the advantages of base 2 will not be obvious, and binary numbers
will look meaningless. However, once you get some experience, you will see that binary
numbers directly refl ect the underlying reality of how data is stored. This is why, in many
cases, using binary numbers offers a signifi cant advantage over using base 10 numbers.
However, there is a problem: binary numbers are diffi cult to use because they take up a
lot of room, and because they are unwieldy and confusing to the eye.
 As a compromise, there are two ways to represent binary numbers in a more compact
fashion without losing the direct connection to the underlying data. They are called “base
8” and “base 16”. Before I can explain how they work, I want to take a quick diversion to
show you how to count in base 2.
 In base 10, we start counting from 0 until we run out of digits. We then add 1 to the
digit on the left and start again at 0. For example, we start with 0 and count 1, 2, 3, 4, 5,
6, 7, 8, 9, at which point we run out of digits. The next number is 10. We continue 11, 12,
13, 14, 15, 16, 17, 18, 19, and then go to 20. And so on.

Binary, Octal and Hexadecimal

33614_21_521_558.indd 54533614_21_521_558.indd 545 1/9/2008 12:38:26 PM1/9/2008 12:38:26 PM

Chapter 21

546 Harley Hahn’s Guide to Unix and Linux

 Base 2 (in fact, all bases) work the same way. The only difference is in how far we can
go before we run out of digits. In base 2, we have only 2 digits: 0 and 1. We start counting
at 0, and then move to 1, at which point we run out of digits. So the next number is 10.
Then 11, 100, 101, 110, 111, 1000 and so on. In other words:

0 (base 10) = 0 (base 2)
1 (base 10) = 1 (base 2)
2 (base 10) = 10 (base 2)
3 (base 10) = 11 (base 2)
4 (base 10) = 100 (base 2)
5 (base 10) = 101 (base 2), and so on.

DECIMAL
(BASE 10)

BINARY
(BASE 2)

OCTAL
(BASE 8)

HEXADECIMAL
(BASE 16)

0 0 0 0

1 1 1 1

2 10 2 2

3 11 3 3

4 100 4 4

5 101 5 5

6 110 6 6

7 111 7 7

8 1000 10 8

9 1001 11 9

10 1010 12 A

11 1011 13 B

12 1100 14 C

13 1101 15 D

14 1110 16 E

15 1111 17 F

16 10000 20 10

17 10001 21 11

18 10010 22 12

19 10011 23 13

20 10100 24 14

FIGURE 21-5: Decimal, Binary, Octal and Hexadecimal Equivalents

In regular life, we use decimal (base 10) numbers. With computers, data is stored in a form that is best
refl ected using binary (base 2) numbers. Such data can be written in a more compact form by using
either octal (base 8) or hexadecimal (base 16) numbers. (See text for details.)

This table shows the equivalent ways of representing the decimal numbers 0 through 20 in binary, octal
and hexadecimal. Can you see the patterns? Do they make sense to you?

33614_21_521_558.indd 54633614_21_521_558.indd 546 1/9/2008 12:38:26 PM1/9/2008 12:38:26 PM

Displaying Files

547

Take a look at Figure 21-5 where you will see
the decimal numbers 0 through 20, along
with their base 2 equivalents. (For now, you
can ignore the other two columns.)
 BASE 8 is also called OCTAL. With this
base, we have 8 digits, 0 through 7, so we
count as follows: 0, 1, 2, 3, 4, 5, 6, 7, 10, 11,
12, and so on.
 BASE 16, also called HEXADECIMAL
or HEX, works in a similar fashion using
16 digits. Of course, if we confi ne ourselves
to regular digits, we only have 10 of them:
0 through 9. To count in base 16, we need
6 more digits, so we use the symbols A, B,
C, D, E and F. Thus, in base 16, we count as
follows: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E,
F, 10, 11, 12, and so on.
 Take another look at Figure 21-5. By now, all four columns should be starting to make
sense. Of course, this may all be new to you, and I don’t expect you to feel comfortable
with three new ways of counting right away. However, the time will come when it will
all seem easy. For example, an experienced programmer can look at the binary number
“1101” and instantly think: 13 decimal. Or he can look at the base 8 number “20” and
instantly think: 16 decimal. Or he can look at the base 10 number “13” and instantly
think: D in hexadecimal. One day it will be just as easy for you; it’s not really that hard
once you practice.*
 So why is all this so important? The answer lies in Figure 21-6. Suppose you ask the
question, how many different 3-bit binary numbers are there? The answer is 8, from 000
to 111 (when you include leading zeros). In Figure 21-6, you can see that each of these 8
values corresponds to a specifi c octal number. For example, 000 (binary) equals 0 (octal);
101 (binary) equals 5 (octal); and so on. This means that any pattern of 3 bits (binary
digits) can be represented by a single octal digit. Conversely, any octal digit corresponds
to a specifi c pattern of 3 bits.
 This is an extremely important concept, so let’s take a moment to make sure you
understand it. As an example, consider the binary representation of “mellow” we looked
at earlier:

011011010110010101101100011011000110111101110111

Here we have 48 bits. Let’s divide them into groups of three:

 *When I was an undergraduate student at the University of Waterloo (Canada), I worked as a systems programmer for the
university computing center. This was in the days of IBM mainframe computers when it was especially important for system
programmers to be comfortable with hexadecimal arithmetic. Most of us could add in base 16, and a few people could subtract.
For more complicated calculations, of course, we used calculators. My supervisor, however, was an amazing fellow. His name
was Romney White, and he could actually multiply in base 16. Romney was the only person I ever met who was able to do this.
 Today, by the way, Romney works at IBM, where he is an expert in using Linux on mainframes. When you have a moment,
look him up on the Web. (Search for: “romney white” + “linux”.)

OCTAL
(BASE 8)

BINARY
(BASE 2)

0 000

1 001

2 010

3 011

4 100

5 101

6 110

7 111

FIGURE 21-6: Octal and Binary Equivalents

Every combination of three base 2 digits (bits) can
be represented by a single octal digit. Similarly,
each octal digit corresponds to a specifi c pattern
of 3 bits.

Binary, Octal and Hexadecimal

33614_21_521_558.indd 54733614_21_521_558.indd 547 1/9/2008 12:38:26 PM1/9/2008 12:38:26 PM

Chapter 21

548 Harley Hahn’s Guide to Unix and Linux

011 011 010 110 010 101 101 100
011 011 000 110 111 101 110 111

Using the table in Figure 21-6, we can replace each set of 3 bits with its equivalent octal
number. That is, we replace 011 with 3, 010 with 2, and so on:

3 3 2 6 2 5 5 4 3 3 0 6 7 5 6 7

Removing the spaces, we have:

3326255433067567

Notice how much more compact octal is than binary. However, because each octal digit
corresponds to exactly 3 bits (binary digits), we have retained all the information exactly.
Why does this work out so nicely? It’s because 8 is an exact power of 3. In particular, 8 =
23. Thus, each digit in base 8 corresponds to 3 digits in base 2.
 At this point, you may be wondering, could we represent long strings of bits even
more compactly, if we use a number system based on a higher power of 2? The answer
is yes. The value of 24 is 16, and we can do even better than base 8 by using base 16
(hexadecimal). This is because each hexadecimal digit can represent 4 bits. You can see
this in Figure 21-7.
 To see how this works, consider once again, the 48-bit binary representation of “mellow”:

011011010110010101101100011011000110111101110111

To start, let’s divide the bits into groups of four:

0110 1101 0110 0101 0110 1100 0110 1100 0110 1111 0111 0111

Using the table in Figure 21-7, we replace each group of 4 bits by its hexadecimal equivalent:

6 D 6 5 6 C 6 C 6 F 7 7

Removing the spaces, we have:

6D656C6C6F77

Thus, the following three values are all equivalent. The fi rst in binary (base 2), the second
in octal (base 8), and the third in hexadecimal (base 16):

011011010110010101101100011011000110111101110111
3326255433067567
6D656C6C6F77

What does this all mean? Because we can represent binary data using either octal
characters (3 bits per character) or hexadecimal characters (4 bits per character), we can
display the raw contents of any binary fi le by representing the data as long sequences of
either octal or hex numbers. And that, in fact, is what I am going to show you how to do
when we discuss the hexdump and od commands. Before we do, however, we need to
discuss just one more topic.

33614_21_521_558.indd 54833614_21_521_558.indd 548 1/9/2008 12:38:26 PM1/9/2008 12:38:26 PM

Displaying Files

549

READING AND WRITING BINARY, OCTAL AND HEXADECIMAL
What do you think of when you see the number 101? Most people would say “one
hundred and one”. However, as a computer person, you might wonder: how do I know
I am looking at a base 10 number? Perhaps “101” refers to a base 2 (binary) number, in
which case its decimal value would be 5:

(1x22) + (0x21) + (1x20) = 4 + 0 + 1 = 5

Or perhaps it’s base 8 (octal), giving it a value of 65 decimal:

(1x82) + (0x81) + (1x80) = 64 + 0 + 1 = 65

Or could it be base 16 (hexadecimal), with a value of 257 decimal?

(1x162) + (0x161) + (1x160) = 256 + 0 + 1 = 257

You can see the problem. Moreover, if you want to speak about the number 101, how would
you pronounce it? If you knew it was decimal, you would talk about it in the regular way. But
what if it is binary or octal or hex? It doesn’t make sense to call it as “one hundred and one”.
 Within mathematics, we use subscripts to indicate bases. For example, 10116 means
“101 base 16”; 1018 means “101 base 8”; 1012 means “101 base 2”. When you don’t see a

subscript, you know you are looking at a
base 10 number.
 With computers, we don’t have
subscripts. Instead, the most common
convention is to use a prefi x consisting of
the digit 0 followed by a letter to indicate
the base. The prefi x 0x means “base 16”
(hex); 0o means “base 8” (octal); 0b means
“base 2” (binary). For example, you might
see 0x101, 0o101 or 0b101. Sometimes,
we indicate octal in a different way, by
using a single (otherwise unnecessary)
leading 0, such as 0101. You can see these
conventions illustrated in Figure 21-8.
 I realize that, at fi rst, all this may be
a bit confusing. However, most of the
time the type of number being used is
clear from context. Indeed, you can often
guess a base just by looking at a number.
For example, if you see 110101011010,
it’s a good bet you are looking at a
binary number. If you see a number like
45A6FC0, you know you are looking at a
hex number, because only hexadecimal
uses the digits A-F.

HEXADECIMAL
(BASE 16)

BINARY
(BASE 2)

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001

A 1010

B 1011

C 1100

D 1101

E 1110

F 1111

FIGURE 21-7: Hexadecimal and Binary Equivalents

Every combination of four base 2 digits (bits)
can be represented by a single hexadecimal digit.
Similarly, each hexadecimal digit corresponds to a
specifi c pattern of 4 bits.

Reading and Writing Binary, Octal and Hexadecimal

33614_21_521_558.indd 54933614_21_521_558.indd 549 1/9/2008 12:38:26 PM1/9/2008 12:38:26 PM

Chapter 21

550 Harley Hahn’s Guide to Unix and Linux

 With hex numbers, you will see both upper- and lowercase letters used as digits. For
example, the two numbers 0x45A6FC0, 0x45a6fc0 are the same. Most people, however,
prefer to use uppercase digits, as they are easier to read.
 When we speak about numbers, the rules are simple. When we refer to decimal
numbers, we speak about them in the usual way. For example, 101 base 10 is referred to as
“one hundred and one”; 3,056 is “three thousand and fi fty-six”.
 With other bases, we simply say the names of the digits. Sometimes we mention the base.
For example, if we want to talk about 101 base 16, we say “one-zero-one base 16” or “hex-
one-zero-one”; 3,056 base 16 is “three-zero-fi ve-six base 16” or “hex three-zero-fi ve-six”.
 Similarly, 101 base 8 is “one-zero-one base 8” or “octal one-zero-one”; and 101 base 2 is “one-
zero-one base 2”, “binary one-zero-one”, or something similar. You can see these pronunciations
illustrated in Figure 21-8.

WHY WE USE HEXADECIMAL RATHER THAN OCTAL
In Chapter 7, we talked about the type of technology that was used to create computer
memory in the olden days. In particular, I mentioned that, in the 1950s and into the
1960s, memory was made from tiny magnetic cores. For this reason, the word CORE
became a synonym for memory.
 In those days, debugging a program was diffi cult, especially when the program aborted
unexpectedly. To help with such problems, a programmer could instruct the operating
system to print the contents of the memory used by a program at the moment it aborted.
The programmer could then study the printed data and try to fi gure out what happened.
As I explained in Chapter 7, such data was called a CORE DUMP, and it took a lot of skill
to interpret. Today, the expression “core dump” is still used, but you will sometimes see
the term MEMORY DUMP or DUMP used instead.
 In the early 1970s when Unix was developed, debugging could be very diffi cult, and
programmers often had to save and examine dumps. Although technology had evolved
— magnetic cores had been replaced by semiconductors — memory was still referred to
as core, and a copy of the contents of memory was still called a core dump. Thus, when
Unix saved the contents of memory to a fi le for later examination, the fi le was called a
CORE FILE, and the default name for such a fi le was core.

MEANING MATHEMATICS COMPUTERS PRONUNCIATION

101 base 10 101 101 “one hundred and one”

101 base 16 10116 0x101 “hex one-zero-one”

101 base 8 1018 0101 or 0o101 “octal one-zero-one”

101 base 2 1012 0b101 “binary one-zero-one”

FIGURE 21-8: Conventions for Indicating Hexadecimal, Octal, and Binary Numbers

When we work with non-decimal number systems, we need written and spoken conventions to indicate
the base of a number. In mathematics, we use subscripts when writing such numbers. With computers
we don’t have subscripts, so we usually use a special prefi x. When we talk about non-decimal numbers,
we pronounce each digit separately.

33614_21_521_558.indd 55033614_21_521_558.indd 550 1/9/2008 12:38:27 PM1/9/2008 12:38:27 PM

Displaying Files

551

 Thus, from the very beginning, Unix programmers had a need to examine core fi les.
To meet this need, the Unix developers created a program to display the contents of a core
fi le as octal (base 8) digits. This program was named od (“octal dump”) and, over the
years, it has proven to be an especially useful program. Even today, using od is one of the
best ways we have to look at binary data.
 As we discussed in the previous section, binary data can be represented as either octal
numbers, using 3 bits per digit, or hexadecimal numbers, using 4 bits per digit. Octal is
relatively easy to learn because it uses digits that are already familiar to us (0 through
7). Hexadecimal, on the other hand, requires 16 digits, 6 of which (A, B, C, D, E, F) are
not part of our everyday culture. As such, hex is a lot more diffi cult to learn than octal.
Nevertheless, hexadecimal is used much more than octal. There are three reasons for this.
 First, hex is signifi cantly more compact than octal. (To be precise, hex is 4/3 times more
compact than octal.) If you want to display bits, it takes a lot fewer hex characters to do
the job than octal characters.
 The second reason hex is more popular has to do with how bits are used. Computer
processors organize bits into fundamental units called WORDS, the size of a word
depending on the design of the processor. Since the mid-1960s, most processors have
used 16-bit or 32-bit words; today, it is common to fi nd processors that use 64-bit words.
In the 1950s and 1960s, however, many computers, especially scientifi c computers, used
24-bit or 36-bit words.
 With a 24-bit or 36-bit word, it is possible to use either octal or hex, because 24 and
36 are divisible by both 3 and 4. Since octal was simpler, it was used widely in the 1950s
and 1960s.
 With 16-bit, 32-bit or 64-bit words, it is diffi cult to use octal, because 16, 32 and 64 are
not divisible by 3. It is, however, possible to use hexadecimal, because 16, 32 and 64 are
all divisible by 4. For this reason, since the 1970s, hex has been used more and more, and
octal has been used less and less.
 The third reason why hexadecimal is used so widely is that, although it is harder to
learn than octal, once you learn it, it is easy to use. For this reason, even the earliest
versions of od came with an option to display data in hexadecimal.
 As I mentioned earlier, the venerable od program has been around for years, in fact,
since the beginning of Unix. However, in 1992, another such program, called hexdump,
was written for BSD (Berkeley Unix; see Chapter 2). Today, hexdump is widely available,
not only on BSD systems, such as FreeBSD, but as part of many Linux distributions.
 Most experienced Unix people tend to pick a favorite, either od or hexdump, and use
one or the other. For this reason, I am going to show you how to use both of them, so you
can see which one you like best.

DISPLAYING BINARY FILES: hexdump, od
The original use for both hexdump and od (octal dump) was to look at memory dumps
contained in core fi les. By examining a dump, a programmer could track down bugs
that would otherwise be elusive. Today, there are much better debugging tools, and
programmers rarely look at core fi les manually. However, hexdump and od are still

Displaying Binary Files: hexdump, od

33614_21_521_558.indd 55133614_21_521_558.indd 551 1/9/2008 12:38:27 PM1/9/2008 12:38:27 PM

Chapter 21

552 Harley Hahn’s Guide to Unix and Linux

useful, as they can display any type of binary data in a readable format. Indeed, these two
programs are the primary text-based tools used to look inside binary fi les.
 Since either of these programs will do the job, I’ll show you how to use both of them.
You can then do some experimenting and see which one you prefer. The biggest difference
between the two programs is that hexdump, by default, displays data in hexadecimal,
while od, which is older, defaults to octal. Thus, if you use od, you will have to remember
the specifi c options that generate hex output.
 Another consideration is that od is available on all Unix systems, while hexdump is
not. For example, if you use Solaris, you may not have hexdump. For this reason, if you
work with binary fi les and you prefer hexdump, you should still know a bit about od, in
case you have to use it one day.
 Before we get into the syntax, let’s take a look at some typical output. In Figure 21-
9, you see a portion of the binary data in the fi le that holds the ls program. (The ls
program is used to list fi le names. We will talk about it in Chapter 24.)
 When you examine data within a fi le, there will be times when you need to know the
exact location of what you are looking at. When you use less to look at a text fi le, it’s
easy to fi gure out where you are. At any time, you can use the = (equals sign) command
to display the current line number. Alternatively, you can use the -M option to show the
current line number in the prompt, or you can use the -N option to display a number to
the left of every line.
 With a binary fi le, there are no lines, so line numbers are not meaningful. Instead,
we mark each location within the fi le by an OFFSET, a number that tells you how many
bytes you are from the beginning of the fi le. The fi rst byte has offset 0; the second byte has
offset 1; and so on.
 Take a look at the sample data in Figure 21-9. The offset — which is not part of the data
— is in the left-hand column. In our example, all the numbers are in hexadecimal, so the
offset of the fi rst byte of data is 0x120 (that is, hex 120) or 288 in decimal. Thus, the fi rst
byte of data in our example is the 289th byte in the fi le. (Remember, offsets start at 0.)
 The fi rst row of output contains 16 bytes. Thus, the offsets run from 0x120 to 0x12F.
The second row starts at offset 0x130. To the right of each offset the 16 bytes per line are
displayed in two different formats. In the middle column are hex digits, grouped in bytes.

OFFSET HEXADECIMAL ASCII
000120
000130
000140
000150
000160
000170

00 00 00 00 00 00 00 00 00 00 00 00 06 00 00 00
04 00 00 00 2f 6c 69 62 2f 6c 64 2d 6c 69 6e 75
78 2e 73 6f 2e 32 00 00 04 00 00 00 10 00 00 00
01 00 00 00 47 4e 55 00 00 00 00 00 02 00 00 00
06 00 00 00 09 00 00 00 61 00 00 00 76 00 00 00
00 00 00 00 4c 00 00 00 4b 00 00 00 3f 00 00 00

|................|
|..../lib/ld-linu|
|x.so.2..........|
|....GNU.........|
|........a...v...|
|....L...K...?...|

FIGURE 21-9: Sample binary data displayed as hexadecimal and ASCII

You can use the hexdump or od commands to display binary data. Here is a sample of such data
displayed in canonical format; that is, with the offset in hexadecimal on the left, the data in hex in the
middle, and the same data as ASCII characters on the right. This particular example was taken from
the fi le that contains the GNU/Linux ls program.

33614_21_521_558.indd 55233614_21_521_558.indd 552 1/9/2008 12:38:27 PM1/9/2008 12:38:27 PM

Displaying Files

553

(Remember, one byte = 8 bits = 2 hex digits.) On the right, the same data is displayed as
ASCII characters.
 Within most binary fi les, you will notice that some bytes contain actual ASCII
characters. It is easy to identify these bytes by looking at the rightmost column. In our
example, you can see the strings /lib/ld-linux.so.2 and GNU. By convention,
bytes that do not correspond to printable ASCII characters are indicated by a . (period)
character. You can see many such bytes in our example.
 Most bytes in a binary fi le are not characters; they are machine instructions, numeric
data, and so on. You can tell this by looking in the rightmost column, where you will see
mostly . markers, with a sprinkling of random characters. In our example, the fi rst line
and last two lines contain all non-ASCII data. A few bytes do contain values that happen
to correspond to characters, but this is coincidental and not meaningful.
 The way in which data is displayed in Figure 21-9 is called CANONICAL FORMAT.
This format, used for binary data that is displayed or printed, consists of 16 bytes per line.
To the left of each line is the offset in hexadecimal. In the middle are the actual bytes, also
in hexadecimal. On the right are the ASCII equivalents.
 Both hexhdump and od are able to display binary in many different formats. In fact,
both commands support a large variety of options that give you enormous control over
how data is displayed. Most of the time, however, it is best to use the canonical format.
For that reason, in our discussion of these commands, I will show you which options to
use to produce this type of output. If you need information about the other variations,
you can fi nd it on the respective man pages.
 We’ll start with hexdump because it is simpler to use. To use hexdump to display a
binary fi le in canonical format, the syntax is simple:

hexdump -C [file...]

where fi le is the name of a fi le.
 The hexdump program has many options that allow you to control output.
However, there is an important shortcut: if you use the -C (canonical) option,
hexdump will automatically use the appropriate combination of options so as to
produce canonical output.
 Here is an example. Let’s say you want to look inside the binary fi le that contains the
ls program. To start, you use the whereis program to fi nd the pathname — that is,
the exact location — of the fi le. (We’ll discuss pathnames and whereis in Chapter 24,
so don’t worry about the details for now.) The command to use is:

whereis ls

Typical output would be:

ls: /bin/ls /usr/share/man/man1/ls.1.gz

The output shows us the exact locations of the program and its man page. We are only
interested in the program, so we use the fi rst pathname:

Displaying Binary Files: hexdump, od

33614_21_521_558.indd 55333614_21_521_558.indd 553 1/9/2008 12:38:27 PM1/9/2008 12:38:27 PM

Chapter 21

554 Harley Hahn’s Guide to Unix and Linux

hexdump -C /bin/ls | less

This command displays the contents of the entire fi le in canonical format. That’s all there
is to it.
 If you want to limit the amount of data being displayed, there are two more options
you can use. The -s (skip over) option allows you to set the initial offset by specifying
how many bytes to skip at the beginning of the fi le. For example, to display data starting
from offset 0x120 (hex 120) use:

hexdump -C -s 0x120 /bin/ls | less

To limit the amount of output, you use the -n (number of bytes) option. The following
command starts at offset 0x120 and displays 96 bytes of data (that is, 6 lines of output).
In this case, the amount of output is so small, we don’t need to pipe it to less:

hexdump -C -s 0x120 -n 96 /bin/ls

This, by the way, is the exact command that generated the output for Figure 21-9.
 Incorporating these two options into the syntax, we can defi ne a more comprehensive
specifi cation for hexdump:

hexdump -C [-s offset] [-n length] [file...]

where fi le is the name of a fi le, offset is the number of bytes to skip over at the beginning
of the fi le, and length is the number of bytes to display. Note: offset can be in any
base, but length must be a decimal number. (No one knows why; make up your
own reason.)

 To use od to display a binary fi le in canonical format, the syntax is:

od -Ax -tx1z [file...]

where fi le is the name of a fi le.

HINT

With FreeBSD, you can use the command hd as an alias for hexdump -C. Thus, on a FreeBSD
system, the following two commands are equivalent:

hd /bin/ls
hexdump -C /bin/ls

If you would like to use this handy command on a different system, all you need to do is create
an alias of your own, using one of the following commands. The fi rst one is for the Bourne Shell
family; the second is for the C-Shell family:

alias hd='hexdump -C'
alias hd 'hexdump -C'

To make the alias permanent, put the appropriate command into your environment fi le. (Aliases
are discussed in Chapter 13; the environment fi le is discussed in Chapter 14.)

33614_21_521_558.indd 55433614_21_521_558.indd 554 1/9/2008 12:38:27 PM1/9/2008 12:38:27 PM

Displaying Files

555

 The -A (address) option allows you to specify which number system to use for the offset
values. For canonical output, you specify x, which displays the offsets in hexadecimal.
 The -t (type of format) option controls how the data is to be displayed. For canonical
output, you specify x1, which displays the data in hex one byte at a time, and z, which
displays ASCII equivalents at the end of each line. For a full list of format codes, see the
man page (man od) or the info fi le (info od).
 (Note: This syntax is for the GNU version of od, such as you will fi nd with Linux. If
you are using a system that does not have the GNU utilities, the command will be more
primitive. In particular, you won’t be able to use the z format code. Check your man page
for details.)
 As an example, the following od command is equivalent to our original hexdump
command. It displays the contents of the ls fi le in canonical format:

od -Ax -tx1z /bin/ls | less

If you want to limit the amount of data being displayed, there are two more options you
can use. The -j (jump over) option specifi es how many bytes to skip at the beginning of
the fi le. For example, to start displaying data from offset 0x120 (hex 120) use:

od -Ax -tx1z -j 0x120 /bin/ls | less

To limit the amount of output, use the -N (number of bytes) option. The following
command starts at offset 0x120 and displays 96 bytes (6 lines of output). In this case, the
amount of output is so small, we don’t need to pipe it to less:

od -Ax -tx1z -j 0x120 -N 96 /bin/ls

This command generates output similar to what you see in Figure 21-9.
 Incorporating these two options into the syntax, we can defi ne a more comprehensive
syntax for od:

od -Ax -tx1z [-j offset] [-N length] [file...]

where fi le is the name of a fi le; offset is number of bytes to skip over at the beginning of
the fi le; and length is the number of bytes to display, in decimal, hex or octal.

HINT

The syntax for od is complex and awkward. However, you can simplify by creating an alias
to specify the options that produce output in canonical format. The following commands
will do the job. The fi rst command is for the Bourne Shell family; the second is for the C-
Shell family:

alias od='od -Ax -tx1z'
alias od 'od -Ax -tx1z'

Once you have such an alias, whenever you type od, you will automatically get the output you
want. To make the alias permanent, put one of these commands into your environment fi le.
(Aliases are discussed in Chapter 13; the environment fi le is discussed in Chapter 14.)

Displaying Binary Files: hexdump, od

33614_21_521_558.indd 55533614_21_521_558.indd 555 1/9/2008 12:38:27 PM1/9/2008 12:38:27 PM

Chapter 21

556 Harley Hahn’s Guide to Unix and Linux

WHY DOES SO MUCH COMPUTER TERMINOLOGY COME FROM MATHEMATICS?
As you learn more and more computer science, you will notice that much of the
terminology is derived from mathematics. As an example, the word “canonical” — which
we used in two different ways in this chapter — comes from a similar mathematical term.
You might be wondering why so much computer terminology comes from mathematics.
There are several reasons.
 Early computer science was developed in the 1950s and 1960s from mathematical theory
created in the 1930s and 1940s. In particular, the mathematical foundations of computer
science came from the work of Alan Turing (1912-1954), John von Neumann (1903-1957),
Alonzo Church (1903-1995) and, to a lesser extent, Kurt Gödel (1906-1978).
 During the 1950s and 1960s, almost all computer scientists were mathematicians. Indeed,
computer science was considered to be a branch of mathematics(*). It was only natural,
then, for pioneers to draw upon terminology from their own fi elds to describe new ideas.
 Over the years, as computer science developed, it required a great deal of analysis
and formalization. As with other sciences, the necessary techniques and insight were
taken from mathematics which, having been studied and formalized for over 2,000
years, was rich in such tools. (This is why the great German mathematician and scientist
Carl Friedrich Gauss referred to mathematics as “The Queen of Sciences”.) Even today,
computer scientists and programmers in need of abstraction and logical reasoning borrow
heavily from mathematics. As they do, it is common for them to modify mathematical
terms to suit their own needs.

WHAT’S IN A NAME?

Canonical
Earlier in the chapter, when we discussed how interactive text-based programs handle input,
I talked about canonical mode and non-canonical mode. In this section, I mentioned that a
certain format for binary output is called canonical output. Computer scientists use “canonical”
differently from the regular English meaning, so you should understand the distinction.
 In general English, the word “canonical” is related to the idea of a canon, a collection of offi cial
rules governing the members of a Christian church. Canonical describes something that follows
the rules of the canon. Thus, one might refer to the canonical practices of the Catholic Church.
 In mathematics, the same term has a more exact and streamlined meaning. It refers to the
simplest, most important way of expressing a mathematical idea. For example, high school
students are taught the canonical formula for fi nding the roots of a quadratic equation.
 Computer scientists borrowed the term from mathematics and, in doing so, they relaxed
the meaning signifi cantly. In computer science, CANONICAL refers to the most common,
conventional way of doing something. For example, in our discussion of the od and hexdump
commands, we talked about the canonical format for displaying binary data. There is nothing
magical about this format. However, it works well, it has been used for well over four decades,
and it is what people expect, so it is canonical.

 *At the school where I did my undergraduate work — the University of Waterloo, Canada — the Department of Computer
Science was (and still is) part of the Faculty of Mathematics. Indeed, my undergraduate degree is actually a Bachelor of
Mathematics with a major in Computer Science.

33614_21_521_558.indd 55633614_21_521_558.indd 556 1/9/2008 12:38:27 PM1/9/2008 12:38:27 PM

Displaying Files

557

C H A P T E R 2 1 E X E R C I S E S

REVIEW QUESTIONS

1. Which programs do you use to display a text fi le one screenful at a time? An entire text
fi le all at once? The fi rst part of a text fi le? The last part of a text fi le? A binary fi le?

2. As you are using less to display a fi le, which commands do you use to perform the
following actions? Go forward one screenful; go backward one screenful; go to the fi rst
line; go to the last line; search forward; search backward; display help; quit the program.

3. You can use less to display more than one fi le, for example:

 less file1 file2 file3 file4 file5

 As you are reading, which commands do you use to perform the following actions?
Change to the next fi le; change to the previous fi le; change to the fi rst fi le; delete the
current fi le from the list. Which commands do you use to search forward and search
backward within all the fi les?

4. What command would you use to watch the end of a growing fi le?

5. When you display a binary fi le, what is canonical format? How do you display a fi le in
canonical format using hexdump? Using od?

APPLYING YOUR KNOWLEDGE

1. Check the value of your PAGER environment variable. If it is not set to less, do
so now. Display the man page (Chapter 9) for the less program itself. Perform the
following operations:

 • Display help information. Page down to the end of help, one screenful at a time. Take a
moment to read each screen. Quit help.

 • Search forward for “help”. Search again. Search again. Then search backward.
 • Go to the end of the man page.
 • Go backward one screenful.
 • Go to line 100.
 • Display the current line number.
 • Go to the line 20 percent of the way through the man page.
 • Display the current line number.
 • Go to the beginning of the man page.
 • Quit.

HINT

Mathematics is to computer science as Greek and Latin are to English.

Chapter 21 Exercises

33614_21_521_558.indd 55733614_21_521_558.indd 557 1/9/2008 12:38:27 PM1/9/2008 12:38:27 PM

Chapter 21

558 Harley Hahn’s Guide to Unix and Linux

2. You want to use less to display the contents of the fi le list, which contains many
lines of text. Along with the text, you also want to see line numbers. However, there
are no line numbers within the text, and you do not want to change the original fi le
in any way. How would you do this using nl and less? How would you do it using
only less? Is there any advantage to using nl?

3. Convert the following binary (base 2) number to octal (base 8), hexadecimal (base
16), and decimal (base 10). You must show your work.

 1111101000100101

4. Use the strings command (Chapter 19) to look for character strings within the
binary fi le /bin/ls. Select one string and use hexdump or od to fi nd the exact
position of that string in the fi le.

FOR FURTHER THOUGHT

1. You want to use less to search through fi ve different fi les, looking for a particular
sequence of words. The obvious solution is to use less as follows:

 less file1 file2 file3 file4 file5

 However, this requires you to keep track of and manipulate fi ve different fi les. Instead
you might fi rst combine the fi les into one large fi le:

 cat file1 file2 file3 file4 file5 | less

 Will this make your job easier or harder? Why?

2. In the text, we discussed four numbers systems: decimal (base 10), binary (base 2),
octal (base 8) and hexadecimal (base 16). In principle, any positive whole number can
be used as a base. Consider base 12, also called DUODECIMAL. In base 12 we use the
digits 0 through 9. For the extra two digits, we use A and B. Thus, in base 12, we count
as follows: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, 10, 11, 12, and so on. The number 22 in base
10 equals 1A in base 12.

 What important advantages does base 12 have over base 10? Hint: How many factors
does 12 have compared to 10? How does this simplify calculations? Would our culture
be better off if we used base 12 instead of base 10?

 In spite of its advantages, we don’t use base 12 with computers. Most of the time we
use base 16, which is much more complicated. Why is this?

 By the way, if you have ever read the Lord of the Rings books by J.R.R. Tolkein, you will
be interested to know that the Elvish languages use a duodecimal number system.

33614_21_521_558.indd 55833614_21_521_558.indd 558 1/9/2008 12:38:27 PM1/9/2008 12:38:27 PM

559

C H A P T E R 2 2

The vi Text Editor

The vi Text Editor

A TEXT EDITOR — often referred to as an EDITOR — is a program used to create and
modify text fi les. When you use such a program to modify a fi le, we say that you EDIT
the fi le.
 It is important that you learn how to use a Unix editor well, as you will need it whenever
you want to work with plain text. If you are a programmer, you will need an editor to write
your programs. For non-programming tasks, you will need an editor to create and modify
confi guration fi les, shell scripts, initialization fi les, Web pages, simple documents, and so
on; in fact, you will need an editor when you work with any fi le that contains text.
 Unlike a word processor, an editor works only with plain text, that is, data consisting of
printable characters: letters, numbers, punctuation, spaces and tabs (see Chapter 19). As a
general rule, editors use one simple monospaced font. Thus, you do not use an editor when
you want to prepare a document that has more than one font, or that uses various font
sizes, colors, italics, boldface or other attributes. For such work, you use a word processor.
 In this chapter, we will cover vi, the most important of the Unix editors. Although
I will not be able to explain everything — that would take at least several chapters — I
will show you most of what you need to know most of the time. (Note: the name vi is
pronounced as two separate letters: “vee-eye”.)
 Throughout this chapter, we will be talking about editing “fi les” even though, strictly
speaking, I have not yet explained what a fi le actually is. I’ll do that in Chapter 23, when
we discuss the Unix fi le system. For now, we’ll just use the intuitive idea that a fi le has
a name and contains information. For example, you might use vi to edit a fi le named
essay, which contains the text of an essay you have written.
 When you fi rst learn vi, it will seem awkward. There is no getting around that. If you
feel frustrated, remember that, at one time, everyone has felt the same way. However, once
you become experienced, everything will make sense, and vi will seem natural and easy to
use. This suggests the following hint which, in Chapter 1, we applied to Unix in general:

HINT

vi is easy to use, but diffi cult to learn.

33614_22_559_626.indd 55933614_22_559_626.indd 559 1/9/2008 12:38:53 PM1/9/2008 12:38:53 PM

Chapter 22

560 Harley Hahn’s Guide to Unix and Linux

WHY IS vi SO IMPORTANT?
There are many different Unix/Linux text editors, including the simple ones we discussed
in Chapter 14 (kedit, gedit, Pico and Nano). However, the two principal Unix text
editors are vi and Emacs, both of which have been around for a long time. They are
powerful, mature, full-featured programs, by far, the mostly widely used editors. Either
one of them will meet your needs.
 The vi and Emacs editors are vastly different from one another and, as you might
expect, it is common to fi nd people disagreeing about which one is better. Indeed, the
Unix community has been arguing the question for many years. The truth is vi and
Emacs represent totally different ways of approaching the activity of text editing. As such,
there are vi people and there are Emacs people and, when it comes to editing, they see
the world differently. Eventually, when you become experienced enough, you yourself
will have to make a choice: will you be a vi person or an Emacs person?
 For now, all you need to understand is that vi and Emacs are very complex, and
they both take a long time to learn. In this chapter, I will teach you how to use vi
because it is the more important of the two editors. Later, you can teach yourself Emacs
if you so desire.
 Regardless of which program you end up choosing for your primary editor, you must
learn vi. The reason is that, unlike any other editor, vi is ubiquitous. It has been used by
so many people for so long that you will fi nd it on almost every Unix and Linux system
in the world. More formally, vi is part of the two principal Unix specifi cations: POSIX
(see Chapter 11) and the Single Unix Specifi cation (the standards that must be met to call
something “Unix”). Thus, by defi nition, vi must be available on every Unix system, no
matter how esoteric. This means that, once you know how to use vi, you will be able to
edit text on any Unix or Linux system you may encounter, which means you will always be
able to edit a confi guration fi le, create an initialization fi le, or write a simple shell script.
 This is particularly important when you work within an environment that provides
limited tools. For example, if you have problems with your system and you boot from a
rescue disk, you will probably fi nd that vi is the only available text editor. Similarly, vi
is often the only editor available on embedded systems (computerized devices such as
mobile phones, DVD players, appliances, and so on).
 Personally, I have been using Unix since 1976, and I have never seen a system that did
not have vi.* Indeed, the vi editor is used so widely and is so important that, if you ever
apply for a job working with Unix or Linux, it will be assumed that you know vi.

A QUICK HISTORY OF vi
The vi editor was created by Bill Joy , while he was a graduate student at U.C. Berkeley
in the late 1970s (Figure 22-1). Joy, an astonishingly skillful programmer, was one of the
most prolifi c and important contributors during the early days of Unix (see Chapter

 *Some Linux distributions do not automatically install either vi or Emacs. The most common reason is that the creators
of the distributions did not want to take sides in the never-ending vi/Emacs debate. As an alternative, one of the simpler text
editors, such as Nano (see Chapter 14) will be installed by default. Rest assured, if you ever encounter such a system, it is very
easy to install vi.

33614_22_559_626.indd 56033614_22_559_626.indd 560 1/9/2008 12:38:54 PM1/9/2008 12:38:54 PM

The vi Text Editor

561A Quick History of vi

2). In addition to vi, Joy was also responsible for the original BSD (Berkeley Unix), the
C-Shell, and the fi rst robust implementation of TCP/IP, the protocols that support the
Internet. In 1982, he co-founded Sun Microsystems, where he contributed signifi cantly
to the development of NFS (Network File System) and the SPARC microprocessor
architecture. To understand how, in the late 1970s, Joy came to write vi as a grad student,
it is necessary to go back to the early days of Unix.
 The fi rst important Unix editor was ed (pronounced as two separate letters, “ee-dee”).
It was written at Bell Labs in 1971 by Ken Thompson, one of the two original creators of
Unix (the other being Dennis Ritchie; see Chapters 1 and 2). The ed editor was a LINE-
ORIENTED EDITOR or LINE EDITOR, which meant that it worked with numbered
lines of text. For example, you might enter a command to print lines 100 though 150, or
to delete line 17. Such an approach was necessary because of the slowness and limited
capabilities of the early terminals (described in Chapter 3).
 In the fall of 1975, Bill Joy left the University of Michigan to become a graduate
computer science student at U.C. Berkeley. He had planned to study computing theory,
which is quite mathematical. His work, however, led him into programming and,
serendipitously, to Unix. The reason was that Ken Thompson happened to be at Berkeley
at the same time.
 Thompson, who was taking a sabbatical from Bell Labs, had decided to spend a year
at Berkeley, his alma mater, as a visiting professor. He arrived at a time when the Berkeley
Computer Science department had just acquired a brand new PDP 11/70 minicomputer.

FIGURE 22-1: Bill Joy and Dennis Ritchie

In the late 1970s, Bill Joy (right) was a graduate student at U.C. Berkeley. During that time, Joy created
the vi editor and the C- Shell, and put together the very fi rst version of BSD (Berkeley Unix).

In this photo, taken in June 1984 at a Usenix conference in Snowbird, Utah, Joy is shown with Dennis
Ritchie (left), co-developer of the original Unix operating system (see Chapter 3). By the time this
photo was taken, BSD, along with vi and the C-Shell, were used widely around the world. The round
button on Joy’s left sleeve (on your right) reads “The Joy of Unix”.

Photo courtesy of Kirk McKusick

hah33614_c22_559_626.indd 561hah33614_c22_559_626.indd 561 5/20/2009 2:25:44 PM5/20/2009 2:25:44 PM

Chapter 22

562 Harley Hahn’s Guide to Unix and Linux

Working with two students, Thompson installed the latest version of Unix (Version 6)
on the new computer. He then installed a Pascal system to run under Unix. (Pascal is a
programming language, created in 1970 by the Swiss computer scientist, Niklaus Wirth,
to teach structured programming.)
 Joy and another student, Charles Haley, were intrigued with Thompson’s Pascal
implementation, and they decided to use it to work on general context-free parsing
algorithms (methods used to analyze the structure of source programs). Joy and Haley
soon found, however, that the Pascal system had signifi cant limitations. They started to
fi x the problems, which brought them smack up against the primitive ed editor.
 Joy and Haley found ed so frustrating, they decided to create a better editor. At the time,
another visitor, George Coulouris from Queen Mary College (London), had brought his
own software to Berkeley: in this case, an editor called em (“ee-em”). Coulouris had created
em as a backward compatible replacement for ed. He chose the name em to mean “editor
for mortals” (the idea being that ed was not fi t for regular human beings). Joy and Haley
took parts of em and put them into ed to create a hybrid, which they named en (“ee-en”).
 The en editor was far from perfect. Both Joy and Haley spent a lot of time working
on it, creating one new version after another. Eventually, they came up with something
that worked reasonably well, which they called ex (“ee-ex”). Compared to ed, ex was a
vastly improved editor. Still, it was a line-oriented editor, the type of program that was
appropriate for very old terminals and slow modems.

FIGURE 22-2: The Lear Siegler ADM-3A terminal

It is a well-known principle that software enhancements are often driven by new hardware. This was
the case in 1976, when Bill Joy developed the vi text editor. The older line-oriented editors, such as
ed and ex, were designed for use with primitive line-oriented terminals. However, Joy had access to
a new screen-oriented terminal, the Lear Siegler ADM-3A. The advanced capabilities of this terminal
inspired Joy to create vi, a screen-oriented editor. See text for details.

33614_22_559_626.indd 56233614_22_559_626.indd 562 1/9/2008 12:38:54 PM1/9/2008 12:38:54 PM

The vi Text Editor

563

 But now it was 1976, and Joy and Haley had access to a newer type of terminal, the
Lear Siegler ADM-3A. The ADM-3A was much more sophisticated than the old Teletype
ASR33 on which ed had been developed at Bell Labs (see Chapter 3). Where an ASR33
printed output on paper, one line at a time, the ADM-3A had a monitor and was able to
display text anywhere on the screen. You can see a photo of an Lear Siegler ADM-3A in
Figure 22-2. Compare this to the photo of the Teletype ASR33 in Chapter 3.
 To take advantage of the increased capabilities of the ADM-3A, Joy enhanced ex by
creating a separate screen-oriented interface, which he called vi (“vee-eye”). The new vi
editor supported all of the ex commands as well as a large number of new commands
that allowed the use of the full screen. For example, unlike the older line-oriented editors,
vi allowed you to jump visually from one place to another as you edited a fi le. You could
also insert, modify or delete text anywhere you wanted without having to worry about line
numbers. In this way, vi was a SCREEN-ORIENTED EDITOR or SCREEN EDITOR.
 To this day, the vi editor is still based on an amalgam of screen-oriented commands
and line-oriented commands. Thus, as you learn vi, you must teach yourself two different
types of commands. As you might expect, this means it can take awhile to learn how to
use vi well. Still, as you will see, being able to edit your data in two different ways at the
same time makes for a particularly powerful tool.
 Interestingly enough, vi and ex are actually the same program. If you start the
program in the usual way, using the vi command, you see the screen-oriented interface. If
you start the program with the ex command, you get the older line-oriented interface.

WHAT’S IN A NAME?

ed, ex, vi
In the early days of Unix, many commands were given short, two-letter names. The convention
was to pronounce these names as two separate letters. For example, ed is “ee-dee”; ex is “ee-ex”;
and vi is “vee-eye”. It is incorrect to pronounce vi as a single syllable “vie”.
 The meaning of the name ed is simple: it stands for “editor”.
 The name ex is less straightforward. Many people think it was chosen to mean “extended
editor”. In one sense, this is true, as ex greatly extended the power of ed. Although the details
are a bit fuzzy, the name was actually a continuation of the pattern ed... en... ex. Charles Haley,
the co-author of ex explained it to me thus: “I think there was an en. I don’t remember an eo.
I think we went from en to “e-whatever” or ex. Bill Joy made a similar comment once in an
interview: “I don’t know if there was an eo or an ep, but fi nally there was ex. I remember en,
but I don’t know how it got to ex.”
 If you are interested in seeing which two-letter command names are still in use, look at the
end of Chapter 20, where I show how to use the grep program to fi nd these names on your
own system. If you have a few moments, you might look up these commands in the online
manual: you will fi nd some forgotten gems.
 Regardless, when Joy extended ex by adding screen-oriented commands, he chose a new
2-character name, vi, meaning “visual editor”.
 There were two practical reasons why so many commands were given such small names.
First, smart people tend to prefer short, easy-to-use abbreviations. Second, the old terminals
were agonizingly slow, and it was convenient to use short command names that were easy to
type correctly.

A Quick History of vi

33614_22_559_626.indd 56333614_22_559_626.indd 563 1/9/2008 12:38:55 PM1/9/2008 12:38:55 PM

Chapter 22

564 Harley Hahn’s Guide to Unix and Linux

VIM: AN ALTERNATIVE TO vi
The vi editor was created by Bill Joy in 1976 and distributed as part of 2BSD (the second
version of Berkeley Unix) in mid-1978. Eventually, the editor became so popular that AT&T
included it in System V, making vi the de facto Unix editor. Over the years, many people
worked on vi, as the responsibility for maintaining it passed from Joy to other programmers.
With so many people using and modifying the program, you would expect vi to be enhanced,
as indeed it was. Until 1992, however, the enhancements were relatively minor.
 This was because Joy’s original design was so good that, for a long time, there was
no pressing need for major improvements. Indeed, to this day, when you use vi, what
you see in front of you is almost exactly what BSD users were using in the late 1970s.
This is not to say that vi cannot be improved. It’s just that such changes would be so
fundamental as to turn vi into a signifi cantly different program.
 In fact, that is exactly what happened. In the late 1980s, an open source vi-clone
named STvi (often written as STevie) was created for non-Unix systems. In 1988, a Dutch
programmer named Bram Moolenaar took STvi and used it to create a new program he
called VIM, the name meaning “vi imitation”. For several years, Moolenaar worked on
Vim, fi xing bugs and adding new features until, in 1992, he released the fi rst Unix version
of the program. By now, there were so many enhancements, that Moolenaar changed the
meaning of the name. Although the program was still called Vim, Moolenaar declared
that, from now on, the name should stand for “vi improved”.
 Throughout the 1990s, Vim grew in popularity, particularly within the more geeky part
of the Linux community: the programmers, system administrators, network managers,
and so on. By the early 2000s, Vim was so popular that it became the editor of choice
for most such users and, by 2005, many Linux distributions had replaced vi with Vim.
Indeed, if you are using Linux right now, chances are that your system has only Vim and
not vi. If so, when you enter the vi command or when you display the vi man page
(man vi), what you will get will be Vim, not vi. This is not the case for most non-Linux
systems. In fact, with many types of Unix, it is likely that your system will not have Vim
unless you have installed it yourself.
 In this chapter, we will not talk much about Vim. Rather, we will cover standard vi:
the canonical program that has been the text editing workhorse for so many years. I have
chosen to do this for two reasons.
 First, Vim is not really a new version of vi or even an extension of vi. Vim is a
completely different program that is backward compatible with vi. The distinction
is important. When you run Vim, you are using an editor that has many sophisticated
features that do not exist in vi. Of course, because Vim is backwards compatible, you
can use all the standard vi commands. However, the new features that Vim offers are so
far-reaching that they make using Vim a much different experience than using vi.
 As diffi cult as vi can be for beginners, Vim can be more diffi cult, because it requires
you to learn, not only all the vi and ex commands, but all the additional Vim commands.
Moreover, when you use the special features of Vim, your minute-to-minute strategies
for solving problems are signifi cantly different from when you use vi. For this reason, if
you want to learn Vim, the best strategy is to learn vi fi rst.

33614_22_559_626.indd 56433614_22_559_626.indd 564 1/9/2008 12:38:55 PM1/9/2008 12:38:55 PM

The vi Text Editor

565

 Although this sounds complicated, it actually isn’t. Because Vim is crafted so artfully,
you can use it exactly as if it were vi. Later, once you are comfortable with vi, you can
expand your horizons and teach yourself how to take full advantage of Vim’s power. To
help you, at the end of the chapter I will take a few moments to talk about the extra
features Vim has to offer and to show you how to get started.
 The second reason we are going to concentrate on standard vi is that it is a standard.
No matter what type of Unix or Linux you use, no matter how small your system, vi
is the only comprehensive text editor that is likely to be available. As such, even if your
personal editor-of-choice is Vim, Emacs, Nano, Pico, or something else, using vi is a
basic skill you need to master.

STARTING vi
To start vi, the basic syntax is:

vi [-rR] [file...]

where fi le is the name of a fi le you want to edit.
 The vi program is very complex and, as you might imagine, it has many options. Most
of the time, however, you won’t need any of them. Indeed, under normal circumstances,
you only need to know about two options, -r and -R, both of which we’ll talk about later
in the chapter.
 To use vi to edit an existing fi le, just specify the name of the fi le, for example:

vi essay

To create a new fi le, you have two choices. First, you can specify a fi le name. If the fi le
does not exist, vi will create it for you. For example, to use vi to create a brand new fi le
named message, you would use:

vi message

Alternatively, you can create an empty fi le by entering the vi command by itself without
a fi le name:

vi

This tells vi to create a new fi le without a name. You can specify the name later, when it
comes time to save your data.

HINT

How do you know if your system uses Vim instead of vi? Enter the command to display the
vi man page:

man vi

If you see the Vim man page, you know your system uses Vim instead of vi.

Starting vi

33614_22_559_626.indd 56533614_22_559_626.indd 565 1/9/2008 12:38:55 PM1/9/2008 12:38:55 PM

Chapter 22

566 Harley Hahn’s Guide to Unix and Linux

STARTING VIM: vim
As we discussed earlier, on some systems, especially Linux systems, vi has been replaced
by Vim. If this is the case on your system, my goal is for you to use Vim as if it were vi.
Later, once you are comfortable with vi, you can teach yourself how to use the extended
features offered by Vim. (We’ll talk about this more at the end of the chapter.)
 For now, all you have to know is how to start Vim so it acts like vi. In general, starting
Vim is just like starting vi. If you specify the name of an existing fi le, Vim will open it for
you. If the fi le does not exist, Vim will create it for you. If you don’t specify a fi le name,
Vim will create an empty fi le that you can name later, when you save your work. The basic
syntax is:

vim -C [-rR] [file...]

The -r and -R options work the same way as with vi: we’ll talk about them later in the
chapter. For now, the only option I want to talk about is -C. Within both vi and Vim,
there are many internal settings you can use to affect the behavior of the program. When
you start Vim with -C, it changes the settings so as to make Vim act as much like vi as
possible. When you use Vim in this way, we say that it runs in COMPATIBILITY MODE**.
Until you have mastered vi and are ready to switch to the full Vim, it is a good idea to
always start Vim in compatibility mode. For example:

vim -C essay
vim -C

The fi rst command tells Vim you want to work with a fi le named essay. If the fi le exists,
Vim will open it for you; if not, Vim will create it. The second command tells Vim to
create a brand new, unnamed fi le. This is the command to use when you want to create a
new fi le but you haven’t yet decided what to name it.
 If Vim has replaced vi on your system, the vi command will have the same effect as
the vim command. On such systems, the following two commands are equivalent to the
previous commands:

vi -C essay
vi -C

HINT

If you ever forget what fi le you are editing (easier than you might imagine), press ^G*. This
displays the name of the fi le , as well as your position within the fi le.

 *As we discussed in Chapter 7, it is a Unix convention to write the ^ (circumfl ex) character as an abbreviation for <Ctrl>.
Thus, ^G refers to the single character <Ctrl-G>.
 **On some systems, Vim will not start in compatibility mode when you use the -C option. If this is the case on your system,
you can force Vim into compatibility mode by turning on the compatible option in your Vim initialization fi le (explained
later in the chapter).

33614_22_559_626.indd 56633614_22_559_626.indd 566 1/9/2008 12:38:55 PM1/9/2008 12:38:55 PM

The vi Text Editor

567

Whenever you start Vim without specifying a fi le name, the program will display some
helpful information (see Figure 22-3). This information is only for your convenience.
Vim will remove it as soon as you begin to enter data.

FIGURE 22-3: Vim Startup Screen

When you start Vim without specifying the name of a fi le, you will see a startup screen with helpful
information. The information is displayed for your convenience: it will disappear as soon as you begin
to enter data.

VIM - Vi IMproved

version 7.0.42
by Bram Moolenaar et al.

Modifi ed by <bugzilla@redhat.com>
Vim is open source and freely distributable

Sponsor Vim development!
 type :help sponsor<Enter> for information

 type :q<Enter> to exit
 type :help<Enter> or <F1> for on-line help
 type :help version7<Enter> for version info

Running in Vi compatible mode
 type :set nocp<Enter> for Vim defaults
 type :help cp-default<Enter> for info on this

HINT

Here is a simple test you can run to see if your system uses Vim instead of vi. Enter the vi
command with no fi le name:

vi

If you see a mostly empty screen, you are using standard vi. If you see the special help
information shown in Figure 22-3, you are using Vim. (Once you have run the test, quit the
program by typing :q, a colon followed by a lowercase “q”.)

HINT

To use Vim as if it were vi, you start the program in compatibility mode by using the -C
option. For convenience, you can create an alias using one of the following commands. The fi rst
command is for the Bourne shell family (Bash, Korn Shell); the second is for the C-Shell family
(Tcsh, C-Shell):

alias vi="vim -C"
alias vi "vim -C"

To make the alias permanent, put the command in your environment fi le (see Chapter 14).
Once you do this, you can use the vi command to run Vim in compatibility mode, and the vim
command to run Vim in its native mode.

Starting Vim: vim

33614_22_559_626.indd 56733614_22_559_626.indd 567 1/9/2008 12:38:55 PM1/9/2008 12:38:55 PM

mailto:bugzilla@redhat.com

Chapter 22

568 Harley Hahn’s Guide to Unix and Linux

COMMAND MODE AND INPUT MODE
As you work with vi, your data is kept in a storage area called an EDITING BUFFER.
When you tell vi that you want to edit a fi le, vi copies the contents of the fi le to the editing
buffer, so you work with a copy of your data, not with the original. Understanding the
editing buffer is crucial to using vi, so hold on to the concept as you continue reading.
 Take a moment to think about what it is like to use a word processor. You can move
the cursor to any place you want and just start typing. When you need to move from one
place to another within the fi le, you can use your mouse or the special navigation keys on
your keyboard. With a PC, these would be <PageUp>, <PageDown>, <Home>, <End>,
and the cursor control (arrow) keys. When you need to use a command, you select an
item from a pull-down menu or use a special key combination.
 In 1976, when Bill Joy was developing vi, terminals did not have navigation keys.
Nor did they support GUIs with a mouse, pull-down menus, function keys, or even an
<Alt> key. There were only the letters of the alphabet, the numbers, punctuation, and a
few miscellaneous keys such as <Shift>, <Ctrl>, <Return> and <Esc>. Without a mouse
or navigation keys, there was no simple way to move the cursor from one position to
another. Without pull-down menus or special keys, it was not obvious how the user
might specify commands, such as insert, change, delete, copy or paste.
 The solution Joy chose was to design vi to work in two different modes. In COMMAND
MODE, whichever keys you type are interpreted as commands. For example, in command
mode, the single letter x is the command to delete a character; the combination dd is the
command to delete an entire line. There are many such 1- and 2-character commands
and, in order to master vi, you are going to have to learn many of them. This may sound
diffi cult but, with a bit of practice, the vi commands are actually quite easy to use.
 The second mode is INPUT MODE. In this mode, everything you type is inserted
directly into the editing buffer. For example, in input mode, if you type “Hello Harley”,
these 12 characters are inserted into the editing buffer. If you press the x key, an “x” is
inserted; if you press dd, the letters “dd” are inserted.
 The beauty of this system is that it does not require anything special, such as navigation
keys or a mouse. As such, you can use vi with any type of terminal, even over a remote
connection. The only special keys you need are <Ctrl> and <Esc>, which were available
on every terminal in general use in the late 1970s.
 Of course, for the system to work, there must be a way to switch from command mode
to input mode and back again. When vi starts, you are in command mode. To change to
input mode, you use one of several commands (which you will learn in due course). Once
you are in input mode, changing back to command mode is easy: just press the <Esc>
(Escape) key. If you are already in command mode and you press <Esc>, vi will beep.
 If you are wondering why the <Esc> key was chosen for this task, take a look at
Figure 22-4: a drawing of the keyboard layout of the ADM-3A terminal taken from the
ADM-3A Operators Manual. As we discussed earlier, this was the terminal Bill Joy was
using when he developed vi. Notice the position of the <Esc> key on the left side of the
keyboard, just above the <Ctrl> key. This is a good location for such an important key,
as it is easy to reach with the fourth or fi fth fi nger of your left hand.

33614_22_559_626.indd 56833614_22_559_626.indd 568 1/9/2008 12:38:55 PM1/9/2008 12:38:55 PM

The vi Text Editor

569

 Now, take a look at your own keyboard. Notice that the <Esc> key has been moved to
a much less convenient location, the very top left-hand corner of the keyboard. The old
position of the <Esc> key was where your <Tab> key is right now, just above the <Caps
Lock> key. Take a moment to compare what it is like to press the <Tab> key compared to
the <Esc> key. When Bill Joy picked <Esc> as the means of changing from input mode
to command mode, the key was easy to reach, which made changing modes fast and easy.
Now pressing the <Esc> key requires a long, awkward stretch, making it slower and less
comfortable to change modes. Such is life.
 To continue, at fi rst it will seem strange to have to change to a special mode just to
start typing data. Don’t worry. When it comes to vi, practice not only makes perfect, but
it also brings a kind of comfort and ease that lets you work as fast as you can type. If you
are a touch typist, you will fi nd that vi is very easy to use once you have memorized the
basic commands, as you will be able to do anything you want without taking your hands
off the keyboard.
 To give you a feeling for what it is like to work with modes, consider the following
scenario. (Don’t worry about the details. We’ll discuss them later in the chapter.) You
want to add some data to the middle of a fi le named schedule. To run vi, you enter
the command:

vi schedule

As vi starts, it does three things. First, it copies the contents of schedule to the editing
buffer. Next, it positions the cursor at the beginning of the fi rst line of the buffer. Finally,
it puts you in command mode.
 You begin by using the appropriate commands to move the cursor to the place where
you want to add the new data. You then type a command to change to input mode and
start typing. At this point, everything you type is inserted directly into the editing buffer.
When you are fi nished typing, you press <Esc> to change back to command mode. You
then save the contents of the editing buffer back to the original fi le and quit the program.

FIGURE 22-4: Keyboard layout of the ADM-3A terminal

A drawing of the keyboard layout of the Lear Siegler ADM-3A terminal, taken from the ADM-3A
Operators Manual. This is the type of terminal Bill Joy used to develop the vi text editor. The
convenient location of the <Esc> key is one reason why Joy chose it as the means of changing from
input mode to command mode. See text for details.

Command Mode and Input Mode

33614_22_559_626.indd 56933614_22_559_626.indd 569 1/9/2008 12:38:55 PM1/9/2008 12:38:55 PM

Chapter 22

570 Harley Hahn’s Guide to Unix and Linux

KNOWING WHAT MODE YOU ARE IN
Traditionally, vi did not do anything to tell you what mode you were in. You were just
expected to know. I realize this sounds terribly confusing but, actually, it isn’t. Once you
have some experience, your mind will keep track of what is happening and, from moment
to moment, you will just know what mode you are in.
 If you ever do lose your way, remember this: if you are in command mode and you
press <Esc>, vi will beep at you. Thus, if you are not sure what mode you are in, just
press <Esc> twice. This is guaranteed to leave you in command mode and to beep at
least once. (Because if you are in input mode, the fi rst <Esc> will change to command
mode, and the second <Esc> will beep. If you are already in command mode, both
<Esc>s will beep.)
 Still, you might ask, why doesn’t vi do something to show you what mode you are in?
Actually, some versions of vi will help you in this way, if you set an internal option named
showmode. (We’ll talk about vi options later in the chapter.) The command to use is:

:set showmode

Once you set this option, vi will display a message on the bottom line of the screen
showing the current mode. (The actual message can vary from one version of vi to
another, but you won’t have any trouble fi guring it out.) If you decide that you always
want to set showmode, you can place the command in your vi initialization fi le, so the
option will be set automatically whenever you start vi. (We’ll discuss initialization fi les
later in the chapter.)
 If you are a Vim user, you don’t even have to set an option. By default, whenever
you enter input mode, Vim will display the following reminder in the bottom left-hand
corner of the screen:

-- INSERT --

As nice as it might be to see a visual reminder, the truth is, it just isn’t necessary. As I
mentioned earlier, once you get used to vi and you have some experience switching
from command mode to input mode and back again, you will always know what mode
you are in. For this reason, most experienced vi users do not even bother to set the
showmode option, even if it is available. They don’t really need it and — after a little
practice — neither will you.

HINT

Notice that, although it is vi that changes from one mode to another, it is common to talk as if
it were you, the user, who were making the change. For example, I might say “There are many
commands you can use when you are in command mode.” Or, “To add text to the editing buffer,
you must fi rst change to input mode.”
 When it comes to computers, this way of speaking is very common. This is because sentient
beings tend to identify with their tools more than they like to admit.

33614_22_559_626.indd 57033614_22_559_626.indd 570 1/9/2008 12:38:55 PM1/9/2008 12:38:55 PM

The vi Text Editor

571

STARTING vi AS A READ-ONLY EDITOR: view, vi -R
There may be times when you want to use vi to look at an important fi le that should not
be changed. There are two ways to do this. First, you can start the program with the -R
(read-only) option. This tells vi that you do not want to save data back into the original
fi le. (This option works with both vi and Vim.) Second, you can start the program by
using the view command.
 There is really no difference between vi -R and view. You can use whichever is
easier to remember. Thus, the following two commands are equivalent:

vi -R importantfile
view importantfile

Both commands start vi using a fi le named importantfile for reading only. Using
vi in this way protects you from accidentally modifying important data.
 You may be wondering, why would anyone would want to use vi to work with a fi le
that cannot be changed? If all you want to do is display the fi le, why not simply use less
(Chapter 21)? The answer is that vi is very powerful and when it comes to displaying a
fi le, many people prefer to use the vi commands instead of less. Once you master vi,
you will feel the same way, especially when you need to examine large, complex fi les.

RECOVERING DATA AFTER A SYSTEM FAILURE
Once in a while, it may happen that the system will go down or you will lose your
connection while you are in the middle of editing a fi le. If so, vi will usually make it
possible for you to recover your data.
 You will remember that, when you use vi, the data you are editing is kept in the editing
buffer. From time to time, vi saves the contents of the editing buffer to a temporary fi le.
Normally, vi deletes this fi le when you are fi nished editing. However, if the program
terminates abnormally, the temporary fi le will still exist, and you can use it to recover
your data.
 To recover a fi le, start vi with the -r (recover) option:

vi -r

This will show you all the fi les that are available for recovery. You can now restart vi
using -r followed by the name of the fi le. For example:

vi -r test.c

This will recover your fi le, hopefully leaving you where you were when the system went down.
Note: Be careful not to confuse the -r (recover) option with the -R (read-only) option.

HINT

No matter how smart you are, vi will make you smarter.

Recovering Data After a System Failure

33614_22_559_626.indd 57133614_22_559_626.indd 571 1/9/2008 12:38:56 PM1/9/2008 12:38:56 PM

Chapter 22

572 Harley Hahn’s Guide to Unix and Linux

STOPPING vi
There are two ways to stop vi. Most of the time, you will want to save your work and quit.
However, if you accidentally mess up the data, you may want to quit without saving in
order to preserve the original contents of the fi le. In either case, you must be in command
mode to enter a quit command. If you are in input mode, you must fi rst press <Esc> to
change to command mode.
 To save your work and then quit, the command is ZZ. (I’ll explain the name in a moment.)
Hold down the <Shift> key and press <Z> twice. You do not need to press <Return>:

ZZ

To quit without saving your work, the command is :q!. After you type this command,
you do need to press <Return>:

:q!<Return>

Before you use the :q! command, think at least twice. Once you quit without saving
your data, there is no way to get it back.
 Later in the chapter, I’ll explain why the second command starts with a colon and why
you need to press <Return>. Rest assured, it all makes sense. (ZZ is a vicommand; :q!
is an ex command.) For now, all I will mention is that in Unix, the ! (bang) character is
sometimes used to indicate that you want to override some type of automatic check. In
the case of :q!, the ! tells vi not to check if you have saved your data.

HINT

Vim maintains an excellent recovery facility by saving your editing buffer in a SWAP FILE,
stored in the same directory as the fi le you are editing. (We’ll discuss directories in Chapters 23
and 24.) The swap fi le is updated automatically each time you type 200 characters or whenever
you have not typed anything for four seconds.
 To recover a fi le, you must use the rm command (see Chapter 25) to delete the swap fi le; Vim
will not do it for you.
 The name of the swap fi le consists of a . (dot), followed by the name of the original fi le,
followed by .swp. For example, if you are editing a program called test.c, the swap fi le will
be .test.c.swp. If you do not delete the swap fi le, the next time you edit the original fi le,
Vim will create a new swap fi le with a slightly different name, for example, .test.c.swo.

HINT

If you use Vim, it is possible to get stuck in limbo if you mistype the :q! command. The reason
is that, with Vim, typing q is the signal to record a macro. (We’ll talk about macros later in the
chapter.) If this happens to you, you’ll see the message “recording” on the bottom line of your
window. Don’t panic. To stop the macro recording facility, all you have to do is type q (for quit)
until the message goes away.

33614_22_559_626.indd 57233614_22_559_626.indd 572 1/9/2008 12:38:56 PM1/9/2008 12:38:56 PM

The vi Text Editor

573

HOW vi USES THE SCREEN
At this point, I’d like to take a moment to discuss a few short topics related to how vi uses
the screen. The bottom line of the screen is called the COMMAND LINE. This line is used
by vi in two different ways: to display messages and to display certain commands as you
type them (see the next section). All the other lines on the screen are used to display data.
 If your editing buffer contains only a small amount of data, there may not be enough
lines to fi ll up the screen. For example, say that your terminal or window contains 25
lines. The bottom line is the command line, leaving 24 lines to display data. Let’s say
the editing buffer contains only 10 lines of data. It would be confusing if vi displayed
14 empty lines as being blank. After all, you might actually have blank lines as part of
your data.
 Instead, vi marks the beginning of each empty line with a ~ (tilde) character. You can
see an example of this in Figure 22-5. As you add new lines to the editing buffer, they will
take up more and more of the screen, and the tildes will disappear.
 Most of the time, the data you edit with vi will consist of plain text: characters, letters,
numbers, punctuation and so on. However, if the need arises, you can insert control
characters (see Chapter 7) into the editing buffer. To do so, press ̂ V followed by the
control character you want to enter. For example, if you want to type an actual ^C
character, press ^V^C. If you actually want to enter a ^V, type ^V^V.
 When vi displays control characters, you will see a ̂ character followed by a letter, for
example, ^C. Remember that you are looking at a single character, even though it takes
up two spaces on your screen.
 As I explained in Chapter 18, the tab character is ̂ I. The vi editor, like Unix in
general, assumes that tabs are set for every 8 positions. (You can change the positioning,
but most people don’t bother.) If you insert a tab in the editing buffer, you will not see
^I. Rather, vi displays as many spaces as necessary to make it look as if your data is
aligned according to the tab. This is just for your convenience: the extra spaces do not
really exist. In reality, there is only one single character (^I) for each tab.
 Finally, if at any time your screen becomes garbled — for instance, if you are working
remotely and there is noise on the line — you can tell vi to redisplay all the lines on your
screen by pressing ̂ L.

WHAT’S IN A NAME?

ZZ
It makes sense that there should be a quick way to save your work and stop vi, but why ZZ?
 Let’s say the command had a simpler name such as s (for “save”). That would be convenient,
but what would happen if you thought you were in command mode, and you were really in
input mode? You would start typing data and, before you knew it, you would type an “s” and
stop the program.
 The name ZZ was chosen because, although it is easy to type, it is unlikely you would ever
type it by accident.

How vi Uses the Screen

33614_22_559_626.indd 57333614_22_559_626.indd 573 1/9/2008 12:38:56 PM1/9/2008 12:38:56 PM

Chapter 22

574 Harley Hahn’s Guide to Unix and Linux

USING vi AND ex COMMANDS
I explained earlier that vi and ex are really different faces of the same program. This
means that as you use vi, you have access to both the vi and ex commands.
 Most vi commands are one or two letters. For example, to move the cursor forward
one word, you use the w command. (Just type “w” in command mode.) To delete the
current line, you use the dd command. (Just type “dd”.) Since vi commands are so short,
they are not echoed as you type.
 With most vi commands, you do not press <Return>. For example, as soon as you
type “w”, the cursor moves forward one word. As soon as you type “dd”, the current line

FIGURE 22-5: How vi Displays Empty Lines

The bottom line on your screen, the command line, is used by vi in two ways: to display messages and
to display certain commands as they are being typed. All other lines are used to display data.

When the editing buffer does not contain enough data to fi ll up all the lines, vi marks the empty lines
by displaying ~ (tilde) characters. In this example, you can see 17 empty lines, each of which is marked
by a single tilde. As more lines of data are inserted into the editing buffer, the empty lines will be used
and the tildes will disappear.

1. This window has 25 lines.
2. The bottom line is the command line.
3. The other 24 lines are used to display data.
4.
5.
6.
7. Below are 17 empty lines, marked with tildes.
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
“harley” [New fi le]

33614_22_559_626.indd 57433614_22_559_626.indd 574 1/9/2008 12:38:56 PM1/9/2008 12:38:56 PM

The vi Text Editor

575

disappears. If you make a mistake and type a bad vi command, you will hear a beep.
However, there will not be an error message. (What would be the point?)
 The ex commands are longer and more complex than the vi commands. For this
reason, they are echoed on the command line as you type. All ex commands start with :
(colon). For example, the following command deletes lines 1 through 5:

:1,5d

This next command changes all occurrences of “harley” to “Harley”. (Don’t worry about
the details for now.)

:%s/harley/Harley/g

As soon as you type the initial colon, vi moves the cursor to the command line (the
bottom line of your screen). As you type the command, each character is echoed. When
you fi nish typing the command, you must press <Return>.
 If you make a mistake before you press <Return>, you have two choices. First, you can
press <Esc> to cancel the command completely. Or you can correct the command using
the special keys shown in Figure 22-6 (see Chapter 7 for details). You can also use these
same keys in input mode to make corrections as you type.
 On some systems, when you make a correction, the cursor will move backwards, but
the characters will not be erased from the screen. For example, say that you enter:

:1,5del

Before you press <Return>, you realize that you did not need to type “el” at the end of the
command. So, you press <Backspace> twice. The cursor moves back two positions, but
you still see the two characters. Don’t worry about it: they are gone. Just press <Return>.

A STRATEGY FOR LEARNING vi COMMANDS
The vi editor has a large variety of commands. For convenience, we can group them
as follows:

• Commands to move the cursor
• Commands to enter input mode
• Commands to make changes

KEY PURPOSE

<Backspace>/<Delete> erase the last character typed

^W erase the last word typed

^X/^U erase the entire line

FIGURE 22-6: Keys to Use to Make Corrections While Using vi

As you are typing with the vi editor, there are three standard Unix keys you can use to make corrections.
See Chapter 7 for details.

A Strategy for Learning vi Commands

33614_22_559_626.indd 57533614_22_559_626.indd 575 1/9/2008 12:38:56 PM1/9/2008 12:38:56 PM

Chapter 22

576 Harley Hahn’s Guide to Unix and Linux

My goal is for you to learn enough commands from each group so that you are able to
form moment-to-moment strategies to carry out any editing task you require. Here
is an example to show you what I mean. As you work, the cursor shows your current
position within the editing buffer. To insert new data into the buffer, you would use the
following strategy:

1. Make sure you are in command mode.
2. Move the cursor to the place at which you want to insert the data.
3. Change to input mode.
4. Enter the data.
5. Press <Esc> to change back to command mode.

Once you learn the basic vi commands, you will fi nd that there are a variety of ways
to implement any particular strategy. How you choose to do it depends on the specifi c
situation and your level of skill.
 One thing that may surprise you is the large number of commands vi has to offer. For
example, there are 12 different commands just to enter input mode; in command mode,
there are 40 different commands just to move the cursor (and these are just the simple
cursor commands).
 As you might guess, no one needs to know 12 ways to enter input mode or 40 ways
to move the cursor. However, I do want you to learn as many vi commands as possible
because, believe it or not, that is what makes vi so easy to use.
 For example, let’s say you want to move from the top left corner of the screen to a
position halfway down the screen and several words to the right. You could move the
cursor one position at a time, which would be slow and awkward. But if you knew all 40
cursor movement commands, you could choose the best ones for the situation and, by
typing just three or four keys, you could instantly move the cursor to the exact location
you want.
 In this chapter, I will cover all the basic vi and ex commands. For a more comprehensive
reference, you can use Appendix C, which contains a summary of all the important
commands. My advice is to keep teaching yourself until you know all the commands
in Appendix C. From time to time, take a moment to teach yourself a new command;
then practice it. All the commands are useful, and they are all worth practicing. As you
read the rest of the chapter, I want you to work in front of your computer and follow
along. As we discuss each new command, I want you to take some time to experiment
with it.
 Finally, near the end of the book, you will fi nd a special vi index, just for this chapter.
This is the place to look when you want to fi nd a vi-related topic. (Take a moment right
now to fi nd the index.)

HINT

The art of using vi well is being able to select the best commands to carry out a task as simply
and as quickly as possible.

33614_22_559_626.indd 57633614_22_559_626.indd 576 1/9/2008 12:38:56 PM1/9/2008 12:38:56 PM

The vi Text Editor

577

CREATING A PRACTICE FILE
As you read this chapter, you will need a text fi le to practice editing. You can create one by
using either of the following commands:

cp /etc/passwd temp
man vi > temp

The fi rst command creates a small fi le by copying the system password fi le. The second
command creates a large fi le by copying the vi man page. (The cp command is explained
in Chapter 25; the password fi le in Chapter 11, the online manual in Chapter 9, and the
redirection of standard output using > in Chapter 15.)
 Both of these commands will leave you with a fi le named temp, which you can use for
practice. Once you have such a fi le, you can edit it by entering the command:

vi temp

When you are fi nished, you can remove (delete) the fi le by using the command:

rm temp

(The rm command is explained in Chapter 25.)

MOVING THE CURSOR
At all times, the cursor is on one of the lines on your screen. This line is called the
CURRENT LINE . Within the current line, the cursor will be on or under one particular
character, called the CURRENT CHARACTER. Many of the vi commands perform an
action on either the current line or the current character. For example, the x command
deletes the current character; the dd command deletes the current line.
 Whenever you move the cursor, the new position becomes the current character.
Similarly, if you move the cursor to a new line, that line becomes the current line.
Whenever you move the cursor to a line that is not currently on the screen, vi will display
a different part of the editing buffer, so that the new current line is visible. In other words,
to jump from one part of the editing buffer to another, you simply move the cursor.
 Within vi, there are many different commands that move the cursor, which means
there are many different ways to jump from one place to another within the editing buffer.
My goal is to teach you most of these commands. Then, whenever you need to jump to
a different part of the editing buffer, you will be able to fi gure out which sequence of
commands will work best. Before long, choosing the fastest cursor movement commands
will become second nature.
 In some cases, there are several ways to make the exact same cursor movements. For
example, there are three different commands to move the cursor one position to the left.
In such cases, there is no need to learn all of the equivalent commands. Just pick the one
you like the best and practice it. Now, let’s get started.
 To move the cursor one position, you have a lot of choices. The best commands to use
are h, j, k and l. They work as follows:

Moving the Cursor

33614_22_559_626.indd 57733614_22_559_626.indd 577 1/9/2008 12:38:56 PM1/9/2008 12:38:56 PM

Chapter 22

578 Harley Hahn’s Guide to Unix and Linux

h move cursor one position left
j move cursor one position down
k move cursor one position up
l move cursor one position right

Why such an odd choice of keys? There are two reasons. First, if you are a touch typist,
these four keys will be close to the fi ngers of your right hand on the home row, making it
very easy to move the cursor. (Take a look at your keyboard.)
 Second, as we discussed earlier in the chapter, vi was developed in 1976 by Bill Joy
using an ADM-3A terminal. Take a look at Figure 22-7 where you will see a close-up
photo of an ADM-3A keyboard showing these four keys. Notice the arrows above the
letters. The ADM-3A was designed to use these four keys as cursor control keys, so it was
natural for Joy to use them the same way.
 If you are a touch typist, using H, J, K and L to move the cursor is especially convenient.
However, there are other keys you can use that are easier to remember. If your keyboard
has cursor control keys (arrow keys), you can use those. (I will call them <Left>, <Down>,
<Up> and <Right>.) You can also use <Backspace> to move left and the <Space> bar to
move right.

 <Left> move cursor one position left
<Down> move cursor one position down
<Up> move cursor one position up
<Right> move cursor one position right
<Backspace> move cursor one position left
<Space> move cursor one position right

Another way to move up and down is to use the - (minus) and + (plus) commands.
Pressing - moves to the beginning of the previous line; pressing + moves to the beginning
of the next line. As an alternative, pressing <Return> also moves to the beginning of the
next line.

- move cursor to beginning of previous line
+ move cursor to beginning of next line
<Return> move cursor to beginning of next line

FIGURE 22-7: The H, J, K and L keys on the ADM-3A terminal

When Bill Joy developed vi in 1976, he was using a Lear Siegler ADM-3A terminal. With this
terminal, the keys for H, J, K and L were used—not only to type letters—but to control the cursor
(notice the arrows). For this reason, Joy used these same four keys to move the cursor within vi. See
text for details.

33614_22_559_626.indd 57833614_22_559_626.indd 578 1/9/2008 12:38:56 PM1/9/2008 12:38:56 PM

The vi Text Editor

579

Within the current line, the 0 (number zero) command moves to the beginning of the
line; the $ (dollar sign) command moves to the end of the line. If the current line is
indented, you can use the ^ (circumfl ex) to move to the fi rst character in the line that is
not a space or tab.

0 move cursor to beginning of current line
$ move cursor to end of current line
^ move cursor to fi rst non-space/tab in current line

Aside from moving the cursor by character or by line, there are several commands you
can use to move from word to word. (Within vi, a WORD is a string of letters, numbers,
or underscore characters.) To move forward, use the w or e commands. The w command
moves to the fi rst character of the next word; e moves to the last character (end) of the
current word. To move backwards, use b to move to the fi rst character in the previous
word. You will fi nd that using w, e or b is often a fast way to move the cursor exactly
where you want, saving a lot of keystrokes.

w move cursor forward to fi rst character of next word
e move cursor forward to last character of current word
b move cursor backward to fi rst character of current word

All three commands stop at each punctuation character, which is okay if your data does
not contain many such characters. However, if your data has a lot of punctuation, moving
in this way is necessarily slow. Instead, you can use the W, E and B commands. These work
the same way except they recognize only spaces and newlines as ending a word.

W same as w; ignore punctuation
E same as e; ignore punctuation
B same as b; ignore punctuation

For example, say that the cursor is at the beginning of the following line:

This is an (important) test; don't forget to study.

If you press w several times, you will stop at each parenthesis, the semicolon, the
apostrophe (single quote), as well as at the beginning of each word. That is, you will have
to press w 13 times to reach the last word of the line. If you use W, you will stop only after
each space. You will have to press W only 8 times to reach the last word of the line. (This
would be a good time to take a moment to try these commands for yourself.)
 For larger movements, the parentheses commands jump from sentence to sentence:

) move forward to next sentence
(move backward to previous sentence

Similarly, the brace bracket commands jump from paragraph to paragraph:

} move forward to next paragraph
{ move backward to previous paragraph

Moving the Cursor

33614_22_559_626.indd 57933614_22_559_626.indd 579 1/9/2008 12:38:56 PM1/9/2008 12:38:56 PM

Chapter 22

580 Harley Hahn’s Guide to Unix and Linux

Again, these are commands you should try for yourself to make sure you understand
exactly how they work. As you do, notice how handy it is being able to jump around by
word, sentence and paragraph. Then take a moment to consider the following question:
English prose is built from words, sentences and paragraphs. Why is it that, except for
vi, almost no other text editors and no word processors allow you to work directly with
words, sentences and paragraphs?
 Within vi, the offi cial defi nition of a SENTENCE is a string of characters, ending in
a period, comma, question mark or exclamation mark, followed by at least two spaces or
a newline character. (The newline character marks the end of a line; see Chapter 7.)
 In other words, for vi to recognize a sentence, it must either be followed by two spaces
or be at the end of the line. The reason for this requirement is that using two spaces allows
vi to distinguish sentences from words (which are separated by single spaces). Consider the
following example, which consists of two sentences, separated by a period and two spaces:

Meet me at the Shell Tower at 6pm. Is this okay with you?

A PARAGRAPH is defi ned as a section of text that starts and ends in a blank line. In other
words, putting a tab at the beginning of a line is not enough to indicate a new paragraph.

 There will be times when you will want to make a large move from one part of your
screen to another. To start such a move, you can use the H, M or L commands. They jump
to the top, middle or bottom of your screen respectively (“high”, “middle” and “low”).

H move cursor to top line of screen
M move cursor to middle line of screen
L move cursor to last line of screen

In general, the art of moving the cursor is to get to where you want in as few keystrokes
as possible. Here is an example. Say that your cursor is on the top line of the screen. The
last line of data on the screen contains:

today if you can. Otherwise give me a call.

You want to move to the “c” in “call” so you can insert the word “phone”.

HINT

In general, it behooves you to form the habit of typing two spaces between sentences and a
blank line between paragraphs. This will do three things:
 First, your writing will be easier to read.
 Second, when you use vi, it will be easy to move from one sentence to another (using (and
)) and to move from one paragraph to another (using { and }).
 Third, if you send text to someone who may need to edit it, that person will fi nd your text a lot
easier to manipulate. For example, let’s say you email a message to someone who is polite enough
to edit your text when he replies. It is a lot easier for him to delete whole sentences or paragraphs
if the original message was formatted nicely. This may seem like a minor point, but it really isn’t.
 Prediction: Once you are comfortable with vi, you will fi nd yourself annoyed at people who
use only a single space between sentences when they write plain text.

33614_22_559_626.indd 58033614_22_559_626.indd 580 1/9/2008 12:38:56 PM1/9/2008 12:38:56 PM

The vi Text Editor

581

 You could press <Down> many times to move to the line you want, and then press
<Right> many times to move to the word you want. However, you can do the whole thing
in three keystrokes:

L$b

1. Move cursor to last line of screen (L).
2. Move cursor to end of that line ($).
3. Move cursor to beginning of previous word (b).

To increase the power of the cursor movement commands, you can repeat a movement
by typing a number, called a REPEAT COUNT, before the command. For example, to
move forward 10 words, type:

10w

Notice you do not put a space after the number. Here are two more examples. To move
down 50 lines, type any of the following commands:

50j
50<Down>
50+
50<Return>

To move back three paragraphs, use a repeat count with the { (left brace) command:

3{

As a general rule, you can use a repeat count with any vi command, as long as doing so
makes sense.

MOVING THROUGH THE EDITING BUFFER
At all times, vi displays as much of the editing buffer as will fi t on your screen. When
you work with a large amount of text, you will be able to see only part of it at once. For
example, if your terminal or window has 25 lines, vi will be able to display only 24 lines
of text at a time. (Remember, vi does not display text on the bottom line of the screen,
which is used as the command line.) When you want to see another part of the text, you
will need to move the cursor to that location within the editing buffer. There are several
commands you can use.

HINT

Whenever you need to move the cursor from one place to another, challenge yourself to do it in
as few keystrokes as possible*.

 *This may help you work your way through college. Hang around the Student Center with your laptop, betting people
that you can move the vi cursor from one point to another faster than anyone else. Start by using a lot of short movement
commands like <Up> and <Down>. After you have lost a few bets and the odds increase, you can clean up by using H, M and L,
followed by sentence and word commands with a repeat count.

Moving Through the Editing Buffer

33614_22_559_626.indd 58133614_22_559_626.indd 581 1/9/2008 12:38:57 PM1/9/2008 12:38:57 PM

Chapter 22

582 Harley Hahn’s Guide to Unix and Linux

 First, you can use the ̂ F (forward) command to move down one screenful. (Remember,
^F refers to <Ctrl-F>.) The opposite command is ^B (backward), which moves up one
screenful. There are also two variations: ^D moves down a half screenful, and ^U moves
up a half screenful. You use ^F and ^B when you want to move through the fi le quickly.
You use ^D and ^U when you want to make smaller jumps.

^F move down (forward) one screenful
^B move up (back) one screenful
^D move down a half screenful
^U move up a half screenful

As a general rule, if you type a number in front of a cursor movement command, the
number acts as a repeat count. For example, to move down 6 screenfuls all at once, type:

6^F

To move up 10 screenfuls, use:

10^B

Since you can use ̂ F and ̂ B to jump a long distance in this manner, you do not need to be
able to use a repeat count with the ^D and ^U commands. Thus, when you type a number
in front of ^D or ^U, the number has a different meaning: it sets the number of lines that
both of these commands should jump. For example, consider the following commands:

10^D
10^U

Either of these commands tells vi to jump 10 lines and all subsequent ̂ D and ̂ U commands
should also jump 10 lines (until you reset the count). If you’d like, you can set the number
of lines to a large amount. For example, if you want to jump 100 lines at a time, use either:

100^D
100^U

Until you change this number, all ^D and ^U commands will jump 100 lines.

JUMPING TO A PREVIOUS LOCATION
There will be many times when you will move the cursor a long way and, a moment later,
want to move it back. Sometimes, such a move is deliberate. For instance, you might
jump to the end of the editing buffer, add a single line, and then want to return to what
you were doing. The situation can also arise accidentally, when you make a mistake and
suddenly fi nd yourself a long way from where you were working.
 In such cases, you can return to your previous location by using the ̀ ` command
(that is, by typing two backquotes in a row). To test this command, start vi with a large
fi le. Then use the G command with a repeat count to jump to line 10:

10G

33614_22_559_626.indd 58233614_22_559_626.indd 582 1/9/2008 12:38:57 PM1/9/2008 12:38:57 PM

The vi Text Editor

583

Now move to the 8th character on the line by using the l (lowercase “l”) command:

8l

Next, use the G command to jump to the end of the editing buffer by typing:

G

To return to your previous location (the 8th character in line 10), type two backquotes
in a row:

``

A variation of this command is to use '' (two single quotes) instead of two backquotes.
This jumps to the beginning of the line, rather than within the line. To test this, move the
cursor again to the 8th position in line 10, and then jump to the end of the fi le:

10G
8l
G

Now, type two single quotes in a row:

''

Notice the cursor is at the beginning of the line.
 A more powerful version of this command allows you to mark any line with an invisible
name. You can then use that name to jump to the line whenever you want. To mark a line
in this way, type m followed by a single letter. The letter is now the name of that line. For
example, to mark the current line with the name “a”, type:

ma

To jump to a marked line, type a ̀ (backquote) or ' (single quote) followed by the name
of the line, for example:

`a
'a

The fi rst command (backquote) jumps to the exact position within the marked line. The
second command (single quote) jumps to the beginning of the marked line.

HINT

When you mark a line, you can use any letter you want. In principle, this allows you to mark up
to 26 lines (a through z). In practice, you will rarely need to mark more than one or two lines at
a time. The easiest way to mark one line is to type mm. You can then jump to this line by typing
'm. (If you use two marks, use ma and mz.)
 Once you get used to typing these combinations, it will become second nature for you to
mark a line, move the cursor to do something else, and then jump back to the original line, all
without taking your hands off the keyboard. (Take a moment to appreciate the power of vi.)

Jumping to a Previous Location

33614_22_559_626.indd 58333614_22_559_626.indd 583 1/9/2008 12:38:57 PM1/9/2008 12:38:57 PM

Chapter 22

584 Harley Hahn’s Guide to Unix and Linux

SEARCHING FOR A PATTERN
One way to move around the editing buffer is to jump to a line that contains a particular
pattern. To do so, you use the / (slash) and ? (question mark) commands.
 As soon as you press the </> key, vi will display a / character on the command
line (at the bottom of the screen). You can now type any pattern you want and press
<Return>. This tells vi to search for the next occurrence of that pattern. If you want to
search again for the same pattern, just type / again and press <Return>.
 Here is an example. You are editing a list of people to whom you want to send money,
and you wish to fi nd the next occurrence of the pattern “Harley”. Type:

/Harley

Now press <Return>. The cursor will jump to the next line that contains the pattern. To
repeat the search and jump once more, type a slash by itself, followed by <Return>:

/

Since you did not specify a new pattern, vi assumes you want to use the same one as the
previous / command.
 By default, vi searches are case sensitive. Thus, the following two commands are not
the same:

/Harley
/harley

When vi looks for a pattern, it starts from the cursor location and searches forward. If it
gets to the end of the editing buffer, vi wraps around to the beginning. In this way, vi
can search the entire editing buffer, regardless of your starting location.
 To search backwards, you use the ? command. For example:

?Harley

This works the same as / except that vi searches backwards. Once you use ? to specify a
pattern, you can search backwards for the same pattern again by using ? by itself:

?

If vi gets to the beginning of the editing buffer, it will wrap around to the end and
continue to search backwards. In this way, vi can search through the entire editing
buffer backwards.
 Once you have specifi ed a pattern with / or ?, there are two convenient ways to
continue searching for the same pattern. The n (next) command searches in the same
direction as the original command. The N (uppercase “N”) command searches in the
opposite direction. For example, say that you have just entered the command:

/Harley

You now want to fi nd the next occurrence of the same pattern. All you have to do is press
n. (Do not press <Return>.) This is the same as if you had entered /<Return> with no

33614_22_559_626.indd 58433614_22_559_626.indd 584 1/9/2008 12:38:57 PM1/9/2008 12:38:57 PM

The vi Text Editor

585

pattern. To search repeatedly for the same pattern, press n as many times as you want. If
you press N, vi will repeat the same search backwards. As with the other search commands,
n and N will wrap around the end (or beginning) of the editing buffer if necessary.
 The exact meaning of n and N depends on your initial search direction. For example,
say that you enter a backwards search command:

?Harley

Pressing n will repeat the search backwards (the same direction). Pressing N will repeat
the search forwards (the opposite direction).

For fl exibility, you can use a regular expression (regex) to specify a pattern. (Regular
expressions are discussed in detail in Chapter 20; you can look there for a lot of examples.)
For reference, Figure 22-8 shows the various metacharacters that have special meanings
within a regular expression.
 Here are a few examples showing the power of using a regex. To search for the next
occurrence of an “H”, followed by any two characters, use:

/H..

To search for an “H” followed by any two lowercase characters, use:

/H[a-z][a-z]

To search for an “H”, followed by zero or more lowercase characters, followed by “y”, use:

/H[a-z]*y

METACHARACTER MEANING
. match any single character except newline

^ anchor: match the beginning of a line

$ anchor: match the end of a line

\< anchor: match the beginning of a word

\> anchor: match the end of a word

[list] character class: match any character in list

[^list] character class: match any character not in list

\ quote: interpret a metacharacter literally

FIGURE 22-8: Using regular expressions when searching with vi

When you use the / and ? commands to search with vi, you can increase the power of the search by
using a regex for the search pattern. For reference, here are the most useful metacharacters you can use
with such expressions. For details, see Chapter 20.

HINT

Although the / and ? search commands were developed for vi, you will fi nd them used with
other programs. For example, you can use the exact same commands while displaying a fi le with
less (see Chapter 21).

Searching for a Pattern

33614_22_559_626.indd 58533614_22_559_626.indd 585 1/9/2008 12:38:57 PM1/9/2008 12:38:57 PM

Chapter 22

586 Harley Hahn’s Guide to Unix and Linux

To search for the next line that begins with “Harley”, use:

/^Harley

To summarize:

/regex search forward for specifi ed regex
/ repeat forward search for previous regex
?regex search backward for specifi ed regex
? repeat backward search for previous regex
n repeat last / or ? command, same direction
N repeat last / or ? command, opposite direction

USING LINE NUMBERS
Internally, vi keeps track of each line in the editing buffer by assigning it a line number.
If you would like to see these numbers, you turn on the number option. (We’ll talk about
vi options later in the chapter.) The command to use is:

 :set number

For example, say that you are using vi to write your Applied Philosophy dissertation.
The editing buffer contains:

I have a little shadow that goes
in and out with me,
And what can be the use of him
is more than I can see.

If you enter the command :set number, you will see:

1 I have a little shadow that goes
2 in and out with me,
3 And what can be the use of him
4 is more than I can see.

It is important to realize that the numbers are not really part of your data. They are only
there for your convenience. If you want to get rid of the numbers, you can turn off the
number option as follows:

 :set nonumber

If line numbers are turned off, you can check where you are in the fi le by pressing ^G.
This displays the name of the fi le along with your position in the fi le.
 There are two important uses for line numbers. First, as you will see later, you can use
them with many of the ex commands. Second, you can use the G (go to) command to
jump to a specifi c line. Simply type the number of the line, followed by G. Do not type a
space or press <Return>. For example, to jump to line 100, type:

100G

33614_22_559_626.indd 58633614_22_559_626.indd 586 1/9/2008 12:38:57 PM1/9/2008 12:38:57 PM

The vi Text Editor

587

To jump to the beginning of the editing buffer, type 1G. With newer versions of vi, you
can use gg as a synonym for 1G.
 Alternatively, you can jump to a specifi c line by typing : (colon), followed by a line
number, followed by <Return>. Here are some examples. The fi rst command jumps
to line 1; the second command jumps to line 100; the last command jumps to the end
of the fi le. (When you specify line numbers, the $ character stands for the last line in
the fi le.)

:1
:100
:$

Here is a summary of all the variations:

nG jump to line number n
1G jump to fi rst line in editing buffer
gg jump to fi rst line in editing buffer
G jump to last line in editing buffer
:n jump to line number n
:1 jump to fi rst line in editing buffer
:$ jump to last line in editing buffer

You will fi nd G and 1G (or gg) particularly useful, so take a moment and memorize them
right now.

INSERTING TEXT
As we discussed earlier in the chapter, you must type a command to change to input
mode in order to insert text into the editing buffer. When you are fi nished inserting
text, you press <Esc> to leave input mode and return to command mode. (Remember:
When you press <Esc> in command mode, vi will beep. If you are not sure what
mode you are in, press <Esc> twice. When you hear the beep, you will know you are in
command mode.)
 There are twelve commands to change to input mode. Half of these commands are for
entering new data; the other half are for replacing existing text. Of course, you will ask,
why do you need so many different commands just to change to input mode? The answer
is that each command opens the editing buffer in a different place. Thus, when you
want to insert data, you can choose whichever command works the best in the current
situation. Here are the commands:

i change to input mode: insert before cursor position
a change to input mode: insert after cursor position
I change to input mode: insert at start of current line
A change to input mode: insert at end of current line
o change to input mode: open below current line
O change to input mode: open above current line

Inserting Text

33614_22_559_626.indd 58733614_22_559_626.indd 587 1/9/2008 12:38:57 PM1/9/2008 12:38:57 PM

Chapter 22

588 Harley Hahn’s Guide to Unix and Linux

To see how this works, let’s say you are editing a term paper for your Advanced Classical
Music class. You are writing about famous lyrics* and the current line happens to be:

For a dime you can see Kankakee or Paree

The cursor is under the letter “K” and you are in command mode. If you type i, you will
change to input mode. As you type, the data will be inserted before the “K”. The letters to
the right will be moved over to make room. For example, say that you type:

iAAA<Esc>

(The <Esc> returns you to command mode.) The current line would look like:

For a dime you can see AAAKankakee or Paree

Now, instead, suppose you had pressed a to change to input mode. In this case, the data
would be inserted after the “K”. So, let’s say you start with the original line and type:

aBBB<Esc>

The current line would now look like:

For a dime you can see KBBBankakee or Paree

By using the I (uppercase “I”) and A (uppercase “A”) commands, you can insert data at
the beginning or end of the current line, respectively. For example, let’s say you start with
the original line and type:

ICCC<Esc>

The current line would look like:

CCCFor a dime you can see Kankakee or Paree

If the current line is indented using spaces or tabs, vi will do the intelligent thing and
start inserting after the indentation.
 Now, let’s say you started with the original line and typed:

ADDD<Esc>

The data you typed is appended to the end of the line. The current line looks like:

For a dime you can see Kankakee or PareeDDD

Finally, to insert below the current line, use the o (lowercase letter “o”) command. To
insert above the current line, use the O (uppercase “O”) command. In either case, vi will
open a brand new line for you.

 *The line is taken from the 1939 song “Lydia the Tattooed Lady”, written by Harold Arlen and Yip Harburg. Over the years,
the song was popularized by Groucho Marx, who loved to sing it at the drop of a hat (and sometimes even without the hat).

HINT

To remember the difference between the i and a commands, think of i=insert, a=append.

33614_22_559_626.indd 58833614_22_559_626.indd 588 1/9/2008 12:38:57 PM1/9/2008 12:38:57 PM

The vi Text Editor

589

 As you work in input mode, there are two things I want you to remember. As we
discussed earlier in the chapter:

• You can use the keys listed in Figure 22-6 to correct mistakes without having to leave
input mode: <Backspace> (or <Delete>) to erase a character, ^W to erase a word, and
^X (or ^U) to erase an entire line.

• You can insert a control character by prefacing it with ̂ V; for example, to enter a backspace,
type ^V^H. On the screen, you will see ^H, even though it is a single character.

As I explained earlier, there are many commands to move the cursor. In particular, the ^
(circumfl ex) command moves to the beginning of the current line (after any indentation);
the $ (dollar sign) command moves to the end of the current line. Thus, if you want to
insert data at the beginning of the current line, you can type ^ followed by i, instead of
I. Similarly, you can insert at the end of the line by using $a instead of A.
 Here then, is a wonderful illustration of the beauty of the design of vi. By learning
a few extra commands, you can often type one character (I or A) instead of two (^i or
$a). If you are a beginner, this may not seem like much, but after just a few days with
vi, you will see that anything that saves keystrokes used for common operations is a real
convenience. Of course, you do have to learn the extra commands, which is why I say that
vi is easy to use, but diffi cult to learn.
 If you are used to editing with a mouse, do not scoff at vi’s older, command-oriented
design. I urge you to take some time to learn all the important vi commands. Once you
do, you will be pleased at how easy it is to edit data without having to take your hands off
the keyboard to move a mouse or to press special keys. Moreover, you will fi nd that using
vi’s powerful cursor movement commands is a lot easier and a lot faster than using a
mouse to click on a scroll bar*.

HINT

To remember the difference between the o and O commands, remember two things:
 First, the letter “o” stands for “open”.
 Second, imagine that the command name is a balloon fi lled with helium. The larger
balloon, O, fl oats higher, above the current line. The small balloon, o, fl oats lower,
below the current line.

 *You can judge how quickly someone’s mind works by noticing how he or she uses a mouse. The faster the fl ow of ideas
(it’s called “ideaphoria”) the more likely the person is to prefer the keyboard to the mouse. As a general rule, people with high
ideaphoria do not like to move their hands away from the keyboard, because it would slow them down.
 Have you ever watched someone read a Web page? People with high ideaphoria will press the <PageUp>, <PageDown> or
<Space> keys. People with low ideaphoria will use the mouse to move the scroll bar up and down.

HINT

Tools that are simple enough to use on the fi rst day will feel clunky and awkward after
the fi rst month.

Inserting Text

33614_22_559_626.indd 58933614_22_559_626.indd 589 1/9/2008 12:38:57 PM1/9/2008 12:38:57 PM

Chapter 22

590 Harley Hahn’s Guide to Unix and Linux

CHANGING TEXT
In the last section, we looked at commands that change to input mode so you can insert
data into the editing buffer. In this section, we will examine how to change data that is
already in the editing buffer. First, I will discuss seven vi commands. All but one of these
replace data by changing to input mode. Let’s start with the one command that does not
change to input mode.
 To replace a single character by another character, type r followed by the new character.
For example, let’s say that you are writing one of your professors a letter explaining why you
were not able to fi nish your term paper. You are in command mode, and the current line is:

would mean missing The Sopranos rerun. I gm sure you

You notice that the word “gm” is wrong. Move the cursor to the “g” and type:

ra

The current line now looks like:

would mean missing The Sopranos rerun. I am sure you

Since you changed only one character, there was no need to enter input mode.
 Suppose, however, you want to replace more than one character by overwriting. Move
to where you want to start the replacement and type R (uppercase “R”). You will change
to input mode and each character you type will replace one character on the current line.
When you are fi nished, press <Esc> to return to command mode. Here is an example. The
current line is as you left it above. You move the cursor to the “T” in “The” and type:

RMa's funeral<Esc>

The current line is now:

would mean missing Ma's funeral. I am sure you

When you use the R command to replace text, vi will not move off the current line.
Thus, if you type past the end of the line, vi will simply append the extra characters to
the end of the line.
 Sometimes, you will want to replace one or more characters with data that is not
exactly the same size. There are a number of commands you can use. The s (substitute)
command allows you to replace a single character with many characters. In our example,
 move the cursor to the a in “Ma” and type:

s

The a will change to a $, and you will be in input mode. You will see:

would mean missing M$'s funeral. I am sure you

The $ shows you which character is being replaced. Type as much as you want and press
<Esc> when you are done. Let’s say you type:

33614_22_559_626.indd 59033614_22_559_626.indd 590 1/9/2008 12:38:57 PM1/9/2008 12:38:57 PM

The vi Text Editor

591

other<Esc>

The current line is now:

would mean missing Mother's funeral. I am sure you

The C (uppercase “C”) command is a variation of this type of change. It allows you to
replace all the characters from the cursor to the end of the line. In our example, say that
you move to the “I” and type:

C

You will change to input mode and the last character to be replaced is marked with a $:

would mean missing Mother's funeral. I am sure you$

The current character is the “I”. Type what you want and press <Esc>. Let’s say you type:

We all hoped that<Esc>

The current line becomes:

would mean missing Mother's funeral. We all hoped that

Sometimes the easiest thing to do is replace an entire line. There are two commands that
will do the job: S or cc. Just move to the line you want to replace and type either of these
commands. You will be in input mode. When you press <Esc>, whatever you typed will
replace the entire line.
 Why are there two identical commands whose names look so different? Many of
the vi command names follow a pattern. There are names with one lowercase letter,
two lowercase letters, or one uppercase letter. According to this pattern, both S and cc
should be the command to replace an entire line. Thus, you can use whichever one makes
more sense. (If you can’t see the pattern right now, don’t worry. Wait until you learn
some more commands.)
 The fi nal vi command to replace data is extremely useful. This command is c
followed by one of the commands to move the cursor. Once again, you will be put into
input mode. This time, whatever you type will replace everything from the cursor up to
the position indicated by the move command. This can be a tad confusing, so here are a
few examples. Say that the current line is:

would mean missing Mother's funeral. We all hoped that

The cursor is at the “M”. You want to replace the entire word “Mother” with “my dog”. Type:

cw

This changes to input mode and marks the last character to be replaced with a $. You
will see:

would mean missing Mothe$'s funeral. We all hoped that

Changing Text

33614_22_559_626.indd 59133614_22_559_626.indd 591 1/9/2008 12:38:58 PM1/9/2008 12:38:58 PM

Chapter 22

592 Harley Hahn’s Guide to Unix and Linux

You now type:

my dog<Esc>

The current line becomes:

would mean missing my dog's funeral. We all hoped that

Thus, the combination cw allows you to change a single word. You can use c with any of
the cursor movement commands that are single characters. If you want, you can also use
a repeat count. For example, the command c5w replaces 5 words. The command c4b
replaces from the current position back 4 words. The command c(replaces back to the
beginning of the sentence. The command c} replaces to the end of the paragraph. To
replace 6 paragraphs, move to the beginning of the fi rst paragraph and type c6}.
 The following summary shows the vi replacement commands:

r replace exactly 1 character (does not enter input mode)
R replace by typing over
s replace 1 character by insertion
C replace from cursor to end of line by insertion
cc replace entire current line by insertion
S replace entire current line by insertion
cmove replace from cursor to move by insertion

REPLACING TEXT
As we discussed earlier, when you use vi, you have access to both the vi (screen-oriented)
commands and the older ex (line-oriented) commands. So far, most of the commands
we have talked about have been vi commands. With this section, we begin to cover the
ex commands.
 All ex commands begin with a : (colon) character. Whenever you type a colon at the
beginning of a command, vi immediately displays it on the command line (at the bottom
of the screen). As you type the rest of the command it is echoed on this line (which is
why it is called the command line). As you will see, ex commands are longer and more
complex than vi commands. For this reason, vi echoes them as you type so you can see
what you are doing. The only vi commands that are long and complex are the search
commands (/ and ?), which is why they too are displayed on the command line.
 To replace a particular pattern, you use the ex command :s (substitute). The syntax is:

:s/pattern/replace/

where pattern is the pattern you want to replace, and replace is the replacement text. For
example, to replace “UNIX” with “Linux” on the current line, use:

:s/UNIX/Linux/

Using :s in this way will replace only the fi rst occurrence of the pattern on the current
line. To replace all occurrences, you would type the letter g (global) at the end of the

33614_22_559_626.indd 59233614_22_559_626.indd 592 1/9/2008 12:38:58 PM1/9/2008 12:38:58 PM

The vi Text Editor

593

command. For instance, to change all occurrences of “UNIX” to “Linux” on the current
line, you would use:

:s/UNIX/Linux/g

If you want vi to ask your permission before making the change, add c (confi rm) to the
end of the command:

:s/UNIX/Linux/c

Of course, you can combine both g and c:

:s/UNIX/Linux/cg

When you use the c modifi er, vi will display the line that contains the pattern. It will
point out the location of the pattern and then wait for a decision. If you want to make the
replacement, type y (for yes) and then press <Return>. Otherwise, type n<Return> (for
no) or simply press <Return> by itself. (If you don’t specify “y” or “n”, vi will prudently
assume you don’t want to make the change.)
 To delete a pattern, simply replace it with nothing. For example, to remove all the
occurrences of “UNIX” on the current line, use:

:s/UNIX//g

As a convenience, if you do not use a c or a g at the end of the command, you can omit
the fi nal / character. As an example, the following two commands are equivalent:

:s/UNIX/Linux/
:s/UNIX/Linux

There are two important variations of the :s command. First, you can specify a particular
line number after the colon. This tells vi to perform the substitution on that particular
line. For example, to change the fi rst occurrence of “UNIX” to “Linux” on line 57, use:

:57s/UNIX/Linux/

(Reminder: Use :set number to display line numbers; :set nonumber to not
display line numbers.)
 Instead of a single line number, you can indicate a range by separating two line numbers
with a comma. For example, to make the same replacement on lines 57 through 60, use:

:57,60s/UNIX/Linux/

In this case, vi will replace the fi rst occurrence of the specifi ed pattern on each line in
the range.
 Most of the time, you won’t use specifi c line numbers. However, there are three special
symbols that make this form of the command particularly useful. The . (period) stands
for the current line, and the $ (dollar sign) stands for the last line in the editing buffer.
Thus, the following command replaces all occurrences of “UNIX” with “Linux”, from the
current line to the end of the editing buffer:

Replacing Text

33614_22_559_626.indd 59333614_22_559_626.indd 593 1/9/2008 12:38:58 PM1/9/2008 12:38:58 PM

Chapter 22

594 Harley Hahn’s Guide to Unix and Linux

:.,$s/UNIX/Linux/g

To make the same change from the beginning of the editing buffer (line 1) to the current
line, use:

:1,.s/UNIX/Linux/g

The third special symbol is % (the percent sign), which stands for all the lines in the
editing buffer. Thus, to change every occurrence of “UNIX” to “Linux” on every line in
the editing buffer, use:

:%s/UNIX/Linux/g

This is the same as making the substitution from line 1 to line $ (the end of the editing
buffer):

:1,$/UNIX/Linux/g

Using % is a lot more convenient than typing 1,$, so be sure to remember this handy
abbreviation: you will use it a lot.
 From time to time, you will want vi to ask for confi rmation before each substitution.
This allows you to control which instances of the pattern are replaced. As we discussed,
all you need to do is use the c (confi rm) modifi er, for example.

:%s/UNIX/Linux/cg

When you use such a command, you can stop part way through by pressing ^C (the
intr key). This aborts the entire command, not just the current substitution.
 For reference, here is a summary of the :s command:

:s/pattern/replace/ substitute, current line
:line/pattern/replace/ substitute, specifi ed line
:line,lines/pattern/replace/ substitute, specifi ed range
:%s/pattern/replace/ substitute, all lines

At the end of the command, you can use c to tell vi to ask for confi rmation, and g
(global) to replace all occurrences on each line. To specify a line number, you can use an
actual number, a . (period) for the current line, or $ (dollar sign) for the last line in the
editing buffer. The number 1 represents the fi rst line in the editing buffer.

DELETING TEXT
There are several ways to delete data from the editing buffer, using both vi and ex
commands. The vi commands are as follows:

x delete character at cursor
X delete character to left of cursor
D delete from cursor to end of line
dmove delete from cursor to move
dd delete the entire current line

33614_22_559_626.indd 59433614_22_559_626.indd 594 1/9/2008 12:38:58 PM1/9/2008 12:38:58 PM

The vi Text Editor

595

In addition, there are two variations of an ex command:

:lined delete specifi ed line
:line,lined delete specifi ed range

Regardless of which command you use, you can undo any deletion by using the undo
commands, u and U (discussed in the next section). Remember this: it may save your life
one day.
 The simplest delete command is x (lowercase “x”). It deletes the character at the
current cursor position. For example, say you are writing a letter to your parents telling
them all about life at school. The current line of the editing buffer contains:

I love heiQnous paWrties and avoid the library as a rule

You notice that there is a mistake in the third word. You move the cursor to the “Q”
and type:

x

The current line is now:

I love heinous paWrties and avoid the library as a rule

The X (uppercase “X”) command deletes a single character to the left of the cursor. For
example, in the line above, you notice there is another mistake in the fourth word. You
move to the “r” and press:

X

The current line is now:

I love heinous parties and avoid the library as a rule

The D (uppercase “D”) command deletes from the cursor to the end of the line. For
example, say that you move to the space following the word “library” and type:

D

The current line becomes:

I love heinous parties and avoid the library

The next deletion command, d (lowercase “d”) is followed by a cursor movement command.
This deletes text from the cursor to the position indicated by the move command. This is
similar to the c (change) command we discussed earlier. Here are some examples:

dw delete 1 word
d10w delete 10 words
d10W delete 10 words (ignore punctuation)
db delete backwards, 1 word
d2) delete 2 sentences
d5} delete 5 paragraphs

Deleting Text

33614_22_559_626.indd 59533614_22_559_626.indd 595 1/9/2008 12:38:58 PM1/9/2008 12:38:58 PM

Chapter 22

596 Harley Hahn’s Guide to Unix and Linux

To continue with our example, the current line is still:

I love heinous parties and avoid the library

You move to the beginning of the word “heinous” and delete 4 words by typing:

d4w

The current line becomes:

I love the library

The fi nal vi deletion command is dd. This deletes the entire current line. If you want to
delete more than one line, use a repeat count in front of the command. For example, to
delete a single line, use:

dd

To delete 10 lines, use:

10dd

At times, you will fi nd it more convenient to delete using line numbers. To do so, you use
the ex command :d. To use the :d command, you specify either a single line number or
a range (two numbers separated by a comma). For example, to delete line 50, use:

:50d

To delete lines 50 through 60, use:

:50,60d

(Reminder: To display line numbers use :set number; to turn off line numbers, use
:set nonumber.)
 As with the other ex commands, the symbol . (period) stands for the current line
and $ (dollar sign) stands for the last line in the editing buffer. Thus, to delete from the
beginning of the editing buffer to the current line, use:

:1,.d

This has the same effect as dgg or d1G. To delete from the current line to the end of the
editing buffer, use:

:.,$d

HINT

There are two especially useful ways to use the d command. First, to delete all the lines from the
current line to the end of the editing buffer, use dG.
 Second, to delete all the lines from the current line to the beginning of the editing buffer,
use either dgg or d1G. (As I mentioned earlier, the gg command does not work with older
versions of vi.)

33614_22_559_626.indd 59633614_22_559_626.indd 596 1/9/2008 12:38:58 PM1/9/2008 12:38:58 PM

The vi Text Editor

597

This has the same effect as dG. To delete the entire editing buffer, use either of the
following commands:

:1,$d
:%d

Remember that % stands for all the lines in the editing buffer.

UNDOING OR REPEATING A CHANGE
Once you start making substitutions and deletions, it becomes important to be able to
undo your changes. For instance, say you want to change all the occurrences of the word
“advertisement” to “ad”. You decide to enter:

:%s/advertisement/ad/g

However, you accidentally make a typing mistake, leaving out the second “d”:

:%s/advertisement/a/g

You have just replaced all occurrences of “advertisement” with the letter “a”. However, you
can’t fi x the problem by changing all the “a”s to “ad” because there are “a”s all over the
place. You could use the :q! command and quit without saving your work (if you were
working with an existing fi le), but then you would lose all your changes for the entire
editing session. Is there anything you can do?
 Here is a similar situation. You want to delete 10 lines, but instead of typing 10dd you
type 100dd. You have just deleted 100 lines. Is there any way to get them back?
 The answer to both questions is yes. There are two commands you can use to undo
changes, as well as a command to repeat the last change:

u undo last command that modifi ed the editing buffer
U restore current line
. repeat last command that modifi ed the editing buffer

The u (lowercase “u”) command will undo the last command that changed the editing
buffer: an insertion, a substitution, a change or a deletion. In both our examples, all you
would have to do is type u and the substitution/deletion would be nullifi ed. If, after
pressing u, you decide that you really did want the change, simply press u again. The u
command can undo itself. (If only the rest of life were that simple.)*
 The U (uppercase “U”) command will undo all the changes you made to the current
line since you last moved to it. For example, let’s say you move the cursor to a particular
line and make a lot of changes without leaving that line. Unfortunately, you make a big
mess of it, so much so that all you want is for the line to be just as it was when you moved
to it. Simply type U and the line will be restored to its original content. If, after pressing
U, you don’t like the results, you can undo it with the u (lowercase “u”) command.

 *Life is only that simple with vi. With Vim, pressing u more than once in a row undoes previous commands, one at a time.
Of course, in many cases, this might be exactly what you want.

Undoing or Repeating a Change

33614_22_559_626.indd 59733614_22_559_626.indd 597 1/9/2008 12:38:58 PM1/9/2008 12:38:58 PM

Chapter 22

598 Harley Hahn’s Guide to Unix and Linux

 The U command will undo as many changes as necessary, all at once, to restore the
current line. However, U will only work as long as you stay on the line. As soon as you
move the cursor to a new line, the U command will apply to that line, and there is no easy
way to restore the old line.
 In addition to u and U, there is another important command that involves the last
change to the editing buffer. It is the . (dot) command. You use it to repeat the last
command that modifi ed the editing buffer. This command can be very useful, so let’s take
a look at an example.
 Say that you want to insert the name “Mxyzptlk” at several different places in the
editing buffer. This is a diffi cult name to spell, and it is a bother to have to type it more
than once, so here’s the smart way to do it. Move to the place where you want to make the
fi rst insertion and type:

iMxyzptlk<Esc>

You have inserted the name into the editing buffer. Now, move to the next place where
you want to make the same insertion and type:

.

The exact same insertion will be repeated for you. You can use the . command as many
times as you want. Be careful though: as soon as you make another change, even a tiny
one-character deletion, the effect of the . command will change as well.

RECOVERING DELETIONS
Whenever you delete one or more lines of text, vi saves the deletion in a special storage
area called a NUMBERED BUFFER. There are 9 such buffers, numbered 1 through 9. At
any time, you can insert the contents of a numbered buffer into the editing buffer. To do
so, type a " (double-quote) followed by the number of the buffer, followed by a p or P
(put) command. (Reminder: When you are working with lines, the p command inserts
below the current line; the P command inserts above the current line.)
 For example, to insert the contents of buffer #1 below the current line, you would
use:

"1p

To insert the contents of buffer #2 above the current line, you would use:

"2P

In this way, you can recall and insert any of your last 9 deletions. Let’s say, for example,
you have made several deletions and you want to restore one of them. However, you can’t
remember which one it was.
 Start by typing "1p. If that doesn’t give you the text you want, type u to undo the
insert and try "2p. If that doesn’t work, type u to undo the insert and try "3p. Keep
going until you get what you want. The sequence would look like this:

33614_22_559_626.indd 59833614_22_559_626.indd 598 1/9/2008 12:38:58 PM1/9/2008 12:38:58 PM

The vi Text Editor

599

"1pu"2pu"3pu...

This in itself is pretty cool. However, vi can do more. After you undo the fi rst insertion, if
you use the . (dot) command to repeat the insertion, vi will automatically increase the
buffer number by 1. This means, instead of using the above sequence, you can use:

"1pu.u.u...

To test this, use vi to create a fi le that contains the following fi ve lines:

111
222
333
444
555

Type 1G or gg to jump to the fi rst line. Then type dd fi ve times in a row to delete each
line separately. Now try the recovery sequence above and watch what happens.
 Reminder: The numbered buffers only store deleted lines, not parts of a line or
individual characters. For example, if you use 10dd to delete 10 lines, the deletion is
saved in a numbered buffer. If you use 5x to delete 5 characters, however, the deletion is
not saved in this way.

MOVING TEXT
The vi editor has a special facility that enables you to move or copy text from one
place to another. In this section, we’ll talk about moving. In the next section, we’ll talk
about copying.
 At all times, vi keeps a copy of your last deletion in a storage area called the UNNAMED
BUFFER. At any time, you can copy the contents of the unnamed buffer to the editing
buffer by using the p and P (put) commands. (The reason this storage area is called the
unnamed buffer is that there are other, similar storage areas which have names.)
 The p (lowercase “p”) command inserts the contents of the unnamed buffer after the
current position of the cursor. For example, say that the current line contains:

This good is a sentence.

You move to the “g” and delete one word.

dw

As you do, that word is copied to the unnamed buffer. The current line now looks
like this:

This is a sentence.

Now you move to the space after “a” and type:

p

Moving Text

33614_22_559_626.indd 59933614_22_559_626.indd 599 1/9/2008 12:38:58 PM1/9/2008 12:38:58 PM

Chapter 22

600 Harley Hahn’s Guide to Unix and Linux

The contents of the unnamed buffer is inserted to the right of the cursor. The current
line becomes:

This is a good sentence.

Here is an example that uses the P (uppercase “P”) command. Say that the current
line contains:

This is right now.

You move to the space before the word “right” and type:

de

This erases up to the end of the word and leaves you with:

This is now.

Now move to the period at the end of the line and type:

P

The deletion is inserted to the left of the cursor. The current line becomes:

This is now right.

It is important to understand that the unnamed buffer can only hold one thing at a
time. For example, let’s say you have just deleted 1,000 lines of text. A copy of the text is
stored in the unnamed buffer. If you want, you can insert it somewhere else in the editing
buffer. Now, you delete a single character. The 1,000 lines of text are fl ushed from the
unnamed buffer. If you use the p command now, you will get your last deletion, that is,
the single character.
 To continue, consider, for a moment, the combination xp. The x command deletes
the character at the current cursor position. The p command inserts the deletion to the
right of the cursor. The net result is to transpose two characters. For example, say that the
current line is:

I ma never mixed up.

You move to the fi rst “m” and type:

xp

The current line is now:

I am never mixed up.

Another important combination is deep, which you can use to transpose two words.
Here is an example. Say that the current line contains:

I am mixed never up.

33614_22_559_626.indd 60033614_22_559_626.indd 600 1/9/2008 12:38:58 PM1/9/2008 12:38:58 PM

The vi Text Editor

601

Move to the space before the word “mixed”. (Take care to move to the space before the
word, not to the fi rst letter of the word.) Now type:

deep

The de command deletes the space and the following word, after which the current line
looks like:

I am never up.

The second e command moves forward to the end of the next word. The p then inserts
the deletion after the cursor. The net result is:

I am never mixed up.

In this way, you have used deep to transpose two words. Take a moment right now to
memorize this combination, so you can type it quickly when you need it.
 Whenever you delete whole lines, p and P will insert whole lines. The p command will
insert below the current line; P will insert above the current line. For example, let’s say
you want to move 10 lines from one place to another. To start, move the cursor to the fi rst
line of text. Then use the dd command with a repeat count to delete 10 lines:

10dd

These lines are deleted from the editing buffer and copied to the unnamed buffer. Now
move the cursor to the line under which you want to make the insertion and type:

p

Consider, now, what happens when you type ddp. The dd command deletes the current
line. The next line becomes the new current line. The p inserts the deletion below the new
current line. The net result is to transpose two lines. (Try it.)
 To summarize:

p copy last deletion; insert after/below cursor
P copy last deletion; insert before/above cursor
xp transpose two characters
deep transpose two words (start cursor to left of fi rst word)
ddp transpose two lines

COPYING TEXT
Copying text from one location to another is a three-step process. First, you use the y,
yy or Y commands to copy text from the editing buffer to the unnamed buffer without
deleting the original text. Second, you move the cursor to wherever you want to insert the
text. Finally, you use p or P to perform the insertion.
 When you copy text to the unnamed buffer without deleting it, we say that you YANK
the text. (Hence the names y, yy and Y.) The y and yy commands work the same as d
and dd, except they yank instead of delete. Here are some examples:

Copying Text

33614_22_559_626.indd 60133614_22_559_626.indd 601 1/9/2008 12:38:58 PM1/9/2008 12:38:58 PM

Chapter 22

602 Harley Hahn’s Guide to Unix and Linux

yw yank 1 word
y10w yank 10 words
y10W yank 10 words (ignore punctuation)
yb yank backwards, 1 word
y2) yank 2 sentences
y5} yank 5 paragraphs
yy yank 1 line
10yy yank 10 lines

Let’s say that you want to copy 5 paragraphs from one place to another. To start, move
the cursor to the beginning of the fi rst paragraph. Next, yank the 5 paragraphs into the
unnamed buffer without deleting the text:

y5}

Now move the cursor to the line under which you want to make the insertion and insert
the text:

p

For convenience, you can use Y as a synonym for yy. Thus, the following commands
both yank 10 lines into the unnamed buffer:

10yy
10Y

Notice something interesting. The y command is analogous to d in that they both copy
text to the unnamed buffer, from the current character to the end of a cursor move. (The
only difference is that d deletes and y yanks.) Similarly, yy is analogous to dd in that they
delete/yank entire lines.
 The Y command, however, does not work the same as D. The Y command yanks entire
lines. The D command deletes from the current character to the end of the line. If you
want to yank from the current character to the end of the line, you must use y$. To yank
from the current character to the beginning of the line, you would use y0.

CHANGING THE CASE OF LETTERS
The vi editor has a specifi c command to change letters from lowercase to uppercase or
from uppercase to lowercase. The command is a ~ (tilde). Simply move the cursor to the
letter you want to change and press:

~

HINT

Whenever you delete or yank text, the text remains in the unnamed buffer until you enter
another delete or yank command. Thus, you can use the p or P commands to insert the same
text, over and over, into different locations within the editing buffer.

33614_22_559_626.indd 60233614_22_559_626.indd 602 1/9/2008 12:38:58 PM1/9/2008 12:38:58 PM

The vi Text Editor

603

The ~ causes vi to change the case of the current character and then advance the cursor
one position. For example, say that the current line contains:

"By Jove," he said, "that's a CAPITAL idea."

The cursor is at the “C”. You press ~. The current line now looks like:

"By Jove," he said, "that's a cAPITAL idea."

The cursor is now at the “A”. Since, ~ moves the cursor one position to the right, you can
type ~ repeatedly to change a sequence of letters. In our example, you can change the rest
of the word to lowercase by typing six more tilde characters:

~~~~~~

The current line becomes:

"By Jove," he said, "that's a capital idea."

If you type ~ when the cursor is at a character that is not a letter, such as a punctuation 
symbol, vi will advance the cursor, but will not make a change. Thus, it is safe to “tilde” 
your way across a vast distance, as vi will simply skip over the non-alphabetic characters. 
To make this easy, you can put a repeat count in front of this command. For example, to 
change the case of a 7-letter word, move the cursor to the beginning of the word and type:

7~

The case of the entire word will be changed, leaving the cursor one position past the end 
of the word.
 Note: With some versions of vi, the ~ command will not move past the end of the 
current line, even when you use a large repeat count, such as 100~. Other versions of vi 
will process as many characters as you specify, even across multiple lines. When you have 
a spare moment, you may want to experiment with your version of vi to see whether or 
not the ~ command will move past the end of a line.

SETTING OPTIONS
Like most       complex Unix programs, vi supports a number of OPTIONS that enable 
you to control various aspects of its operation. When you start vi, each option is given 
a default value. If you want to change a particular aspect of how vi behaves, you can set 
the value of the appropriate option by using the :set command. There are two forms of 
the syntax, as there are two different types of options:

:set [no]option...
:set option[=value]...

where option is the name of an option, and value is the value the option should have.
 In most cases, the default values will work just fi ne (which is why they are the defaults). 
However, from time to time, you may want to make changes. We have already done this 

Setting Options

33614_22_559_626.indd   60333614_22_559_626.indd   603 1/9/2008   12:38:59 PM1/9/2008   12:38:59 PM



Chapter 22

604 Harley Hahn’s Guide to Unix and Linux

three times in this chapter. First, we used the  showmode option to tell vi to display a 
reminder whenever we are in input mode. The command we used was:

:set showmode

The second option we used was  number to display line numbers:

:set number

Finally, we used  nonumber to turn off the numbering:

:set nonumber

There are two types of vi options. The fi rst type  are SWITCHES, which are either off or 
on. The options I just mentioned are all switches. To turn on a switch, you use its name. 
To turn off a switch, you type “no” in front of the name. For example:

:set showmode
:set noshowmode
:set number
:set nonumber

The second type of options, VARIABLES,  contain a value. For instance, the  tabstop 
variable sets the tab spacing. By default, tabstop is set to 8, which means that tabs 
are expanded to every 8th position (in common with Unix in general; see Chapter 18). 
If you want the tabs to expand to, say, every 4th position, you would set the tabstop 
variable to 4:

:set tabstop=4

As a convenience, it is possible to set more than one option within the same command, 
for example:

:set showmode nonumber tabstop=4

The actual options that are available depend on which version of vi you are using. As 
you would expect, newer versions have more options. Typically, standard vi has about 40 
or so options, of which 16 are important. Vim has more than 340 options, almost all of 
which you never need. For reference, Figure 22-9 shows the important vi options.
 As you can see from the two fi gures, almost all options have abbreviations. For your 
convenience, you can use these abbreviations instead of typing the full name. For example, 
the following two commands are equivalent:

:set showmode nonumber tabstop=4
:set smd nonu ts=4

HINT

To set options automatically each time you start vi, place the appropriate :set commands in 
an initialization fi le (discussed later in the chapter).

33614_22_559_626.indd   60433614_22_559_626.indd   604 1/9/2008   12:38:59 PM1/9/2008   12:38:59 PM



The vi Text Editor

605

DISPLAYING OPTIONS
To display the      values of one or more options, you use a variation of the :set command. 
The syntax is:

:set [option[?]... | all]

where option is the name of an option.
 To display the value of all options, use:

:set all

Using this command is the best way to see a list of all the options supported by your 
version of vi. To display the value of a single option, type the name of the option followed 
by a ? (question mark). For example:

:set number?
:set showmode?
:set wrapmargin?

SWITCH ABBR. DEFAULT MEANING

 autoindent ai off with wrapmargin: indent to match line above/below

 autowrite aw off if text has been modifi ed, save before changing fi les

 errorbells eb off beep when displaying an error message

 exrc ex off look for an initialization fi le in current directory

 ignorecase ic off ignore case when searching

 list — off show tabs as ^I; end of line as $

 number nu off display line numbers

 readonly ro off do not allow contents of editing buffer to be changed

 showmatch sm off input mode: show matching (), {}, or []

 showmode smd off display a reminder when in input mode

 wrapscan ws off when searching, wrap around end/beginning of fi le

 writeany wa off allow write to any fi le without needing ! to override

VARIABLE ABBR. DEFAULT MEANING
 lines — 24 number of lines of text (window/screen size - 1)

 shiftwidth sw 8 number of spaces to use with autoindent

 tabstop ts 8 tab spacing

 wrapmargin wm 0 position from right margin to start wrapping (0=off)

FIGURE 22-9: vi Options: Switches and Variables  

You can control various aspects of vi by    using two different types of options: switches (off or on), and 
variables (store a value).  These two lists show the most useful switches and variables, along with their 
abbreviations, default values, and meaning.

Displaying Options

33614_22_559_626.indd   60533614_22_559_626.indd   605 1/9/2008   12:38:59 PM1/9/2008   12:38:59 PM



Chapter 22

606 Harley Hahn’s Guide to Unix and Linux

As a convenience, it is possible to display the value of more than one option name in a 
single command:

:set number? showmode? wrapmargin?

Finally, to display the values of only those options that have been changed from their 
default values, use :set by itself:

:set

When you use this last command, you may see options you don’t remember changing. 
This is because every system has a number of initialization fi les that are read by vi when 
it starts. One of these fi les is under your control, and you can use it to set up your working 
environment to suit your needs. (We’ll talk about this later in the chapter.) The other 
initialization fi les are either created automatically when vi is installed or are set up by your 
system administrator. Typically, these fi les will contain commands to modify the values of 
certain options, which will then show up in the list of options having non-default values.

BREAKING LINES AUTOMATICALLY AS YOU TYPE
When you type      a document, you need to break the text into lines. One way to do this is to press 
<Return> at the end of each line. As I explained in Chapter 7, pressing <Return> generates a 
newline character, which marks the end of a line. This works fi ne for small amounts of text, 
but if you are doing a lot of typing, it’s more convenient to let vi break the lines for you 
automatically. To do this, you set the wrapmargin (wm) option. The syntax is:

:set wrapmargin=n

where n is the number of positions from the right margin where you want lines to start 
breaking. For convenience, you can use the abbreviation wm instead of the full name.
 The wrapmargin option only affects input mode. When you set wrapmargin to 
a number greater than 0, it causes vi to break a line into two as you are typing when the 
line extends within that many characters of the right margin. For example, to tell vi to 
break your lines automatically when they get within 6 characters of the right margin, use 
either of the following commands:

:set wrapmargin=6
:set wm=6

If you want the longest possible lines, use a value of 1:

:set wm=1

To turn off automatic line breaking, set wm to 0:

:set wm=0

If you are working with indented text, you can turn on the autoindent (ai) option:

:set autoindent

33614_22_559_626.indd   60633614_22_559_626.indd   606 1/9/2008   12:38:59 PM1/9/2008   12:38:59 PM



The vi Text Editor

607

This tells vi to match the indentation to the line above or below the line you are typing.
 Automatic line breaking only affects text as you type it. To reformat existing text, you 
can use either the r and J commands (see the next section) or the fmt command from 
Chapter 18 (discussed later in the chapter).

BREAKING AND JOINING LINES
There will be many times when you         want to break long lines into two or join short lines 
together. For example:

This line is much too long and must be broken into two.

You want to break this line after the word “and”. The easiest way is to move the cursor to 
the space following “and” and type:

r<Return>

Using the r command replaces a single character with another character. In this case, the 
r command replaces the space with a newline, effectively breaking the line.
 If you have lines that are too short, you can combine them by moving the cursor to the 
fi rst line and type J (uppercase “J”). This combines the current line and the next line into 
one long line. When vi joins lines, it automatically inserts spaces in the appropriate places, 
a single space between words and a double space at the end of a sentence. (Isn’t that nice?)
 To join more than two lines at the same time, put a repeat count before the J command. 
Here is an example. Your editing buffer contains the following lines:

This sentence
is short.
This sentence is also short.

Move the cursor to the fi rst line and type:

3J

The result is:

This sentence is short.  This sentence is also short.

HINT

If you set wrapmargin to anything smaller than 6, there will be very little space at the end of 
each line, which makes it awkward to make corrections. In my experience, the best setting for 
wrapmargin is between 6 and 10, which leaves plenty of room for small changes.

HINT

The r and J commands are useful for making small adjustments. However, when you need to 
reformat anything longer than 5-6 lines of text, it is usually better to use the fmt command as 
explained later in the chapter.

Breaking and Joining Lines

33614_22_559_626.indd   60733614_22_559_626.indd   607 1/9/2008   12:38:59 PM1/9/2008   12:38:59 PM



Chapter 22

608 Harley Hahn’s Guide to Unix and Linux

COPYING AND MOVING LINES
There will be         many times when you will fi nd it convenient to copy or move lines by 
using line numbers. For these operations, you use the ex commands :co (copy) and :m 
(move). Both commands use the same format. The only difference is that :m deletes the 
original lines and :co does not.
 To use these commands, you specify a single line number or a range of line numbers 
before the command name. These are the lines to be copied or moved. After the command 
name, you specify the target line number. The new lines will be inserted below the target 
line. The syntax is:

x[,y]:coz
x[,y]:mz

where x, y and z are line numbers.
 The source lines (x, or x through y) are copied or moved, and inserted below the 
target line (z). Here are some examples:

:5co10 copy line 5, insert below line 10
:4,8co20 copy lines 4 through 8, insert below line 20
:5m10 move line 5, insert below line 10
:4,8m20 move lines 4 through 8, insert below line 20

(Reminder: To display line numbers use :set number; to turn off line numbers, use 
:set nonumber.)
 As with other ex commands, you can use a . (period) to refer to the current line and 
a $ (dollar sign) to refer to the last line in the editing buffer. For example, the following 
command moves lines 1 through the current line to the end of the editing buffer:

:1,.m$

You can also use line 0 (zero) to refer to the beginning of the editing buffer. For example, 
the following command moves from the current line through the last line to the beginning 
of the editing buffer:

:.,$m0

These last two commands are interesting. They both swap the top and bottom parts of 
the editing buffer. However, there is a subtle difference. With the fi rst command, the 
current line ends up at the bottom of the editing buffer. With the second command, the 
current line ends up on top. (Take a moment to think about this.)

ENTERING SHELL COMMANDS
There are several ways to use      regular shell commands without having to stop vi. First, 
you can enter a command by typing :! followed by the command. This tells vi to send 
the command to the shell to be executed. When the command fi nishes, control will be 
returned to vi. For example, to display the time and date, enter:

33614_22_559_626.indd   60833614_22_559_626.indd   608 1/9/2008   12:38:59 PM1/9/2008   12:38:59 PM



The vi Text Editor

609

:!date

After the command is fi nished, you will see a message. The message will vary depending 
on your version of vi. Here are the most likely ones:

Press ENTER or type command to continue
[Hit return to continue]
Press any key to continue

At this point, simply press <Return> and you will be back in vi. To repeat the most 
recent shell command — regardless of how long it has been since you entered it — use:

:!!

For example, if the last shell command you entered was date, you can display the time 
and date once again by using   :!!.
 To insert the output of a shell command directly into the editing buffer, you can use 
the :r! command. We’ll talk about this command in the next section, where you will 
fi nd some examples.
 From time to time, you will want to enter more than one shell command. You can do so by 
starting a new shell. There are two ways to do this. First, you can use the   :sh command:

:sh

This will pause vi and start a new copy of your default shell. You can now enter as many 
commands as you want. When you are fi nished with the shell, stop it by pressing ^D or 
by entering the exit command. You will be returned to vi.
 Alternatively, you can start a new shell by running an actual command. For example, 
to start a new     Bash shell, run the bash program:

:!bash

To start a new Tcsh shell, use:

:!tcsh

(The various shells are discussed in Chapter 11.) As with :sh, when you end the shell, 
you will be returned to vi. This technique is handy when, for some reason, you want 
to use a non-default shell. For example, say that you normally use Bash but, just this 
once, you want to test something by running the Tcsh. All you have to do is use the 
command :!tcsh.
 To summarize:

:!command pause vi, execute shell command
:!! pause vi, execute previous shell command
:sh  pause vi, start a new (default) shell
:!bash pause vi, start a new Bash shell
:!tcsh pause vi, start a new Tcsh shell

Entering Shell Commands

33614_22_559_626.indd   60933614_22_559_626.indd   609 1/9/2008   12:38:59 PM1/9/2008   12:38:59 PM



Chapter 22

610 Harley Hahn’s Guide to Unix and Linux

INSERTING DATA FROM A FILE INTO THE EDITING BUFFER
To read data      from  an existing fi le into the editing buffer, you use the :r command. The 
syntax is:

:[line]r file

where line is a line number and fi le is the name of a fi le.
 The :r command reads the contents of the fi le and inserts it into the editing buffer 
after the specifi ed line. For example, the following command inserts the contents of the 
fi le info after line 10:

:10r info

To refer to the beginning of the editing buffer, use line 0 (zero). For example, to insert the 
contents of info at the beginning of the editing buffer, use:

:0r info

To refer to the end of the editing buffer, use $. For example, to insert the contents of 
info at the end of the editing buffer, use:

:$r info

If you omit the line number, vi will insert the new data after the current line. This is 
probably the most useful form of the :r command. You simply move the cursor to where 
you want to insert the new data and enter the :r command. For example, let’s say you 
want to insert the contents of the fi le info at the end of the current paragraph. Use the 
} (right brace) command to jump to the end of the paragraph, then insert the data:

}
:r info

INSERTING THE OUTPUT OF A SHELL COMMAND INTO THE EDITING BUFFER
There is a variation       of the :r command that is especially useful. If, instead of a fi le name, 
you type an ! (exclamation mark) followed by the name of a program, vi will execute 
the program and insert its output into the editing buffer. Here is an example. The ls 
program displays a list of the fi les in your working directory (see Chapter 24). To insert 
such a list after the current line, enter:

:r !ls

As a second example, here is how you would insert the current time and date above the 
fi rst line of the editing buffer:

:0r !date

To complete our discussion of :r, here is a wonderful time-saving idea that illustrates 
the power of this command. In Chapter 19, we discussed how to use the look command 

33614_22_559_626.indd   61033614_22_559_626.indd   610 1/9/2008   12:38:59 PM1/9/2008   12:38:59 PM



The vi Text Editor

611

to help with spelling. For example, say that you want to use the word “ascetic”, but you 
are not quite sure   how to spell it. You can use look to display possible words from the 
dictionary fi le:

look asc

Below is some typical output. A quick perusal of the list shows the exact word you want 
(in the 5th line):

ascend
ascendant
ascent
ascertain
ascetic
ascribe
ascription

Let’s say you are working with vi, typing into the editing buffer, and you get to the point 
where you want to insert this particular word into the text. Press <Esc> to change from 
input mode to command mode, and then enter the command:

:r !look asc

The output of the look command will be inserted after the current line (the last line you 
typed). Look at the list and delete all words you don’t want. In this case, you would delete 
all but the 5th word. (If you don’t want any of the words, you can use the u command to 
undo insertion.) Once you have deleted all but the correct word, move up to the last line 
you typed and type:

J

This will join the new word onto the end of the line. Finally, to return to input mode, 
ready to insert text at the end of the line, type:

A

This allows you to append data to the end of the current line. You are now back in 
business: continue typing.
 At fi rst, a sequence of commands such as the one above may seem a bit complex. 
Actually, once you get used to it, it’s quite simple. Moreover, you can do the entire thing 
without taking your hands off from the keyboard. Try it: it’s way cool.
 Here is a summary of the :r command:

:liner fi le insert contents of fi le after specifi ed line
:r fi le insert contents of fi le after current line
:liner !program   insert output of program after specifi ed line
:r !program   insert output of program after current line

Inserting the Output of a Shell Command Into the Editing Buffer

33614_22_559_626.indd   61133614_22_559_626.indd   611 1/9/2008   12:38:59 PM1/9/2008   12:38:59 PM



Chapter 22

612 Harley Hahn’s Guide to Unix and Linux

USING A PROGRAM TO PROCESS DATA: fmt
The ! and !! (exclamation mark)          commands will send lines from the editing buffer 
to another program. The output of the program will replace the original lines. For 
example, you can replace a set of lines with the same data in sorted order. Here is how 
it works.
 Move to the line where you want to start. Type the number of lines you want to process, 
followed by !! (two exclamation marks), followed by the name of a program, followed 
by <Return>. For example, say that you have 5 lines that contain the following data, 
which you want to sort. (The sort program is discussed in Chapter 19.)

entertain
balloon
anaconda
dairy
coin

Move to the fi rst line and enter:

5!!sort

Once you type the second !, vi will move the cursor to the command line and display 
a ! character. You can now type any shell command directly on the command line. If 
necessary, you can press <Backspace> (or <Delete>) to make corrections before you 
press <Return>. In our example, the original 5 lines will be replaced by:

anaconda
balloon
coin
dairy
entertain

If you don’t like the results, as always, you can undo the change by using the u command.
 Here is another example you will fi nd especially useful. In Chapter 18, we discussed the 
fmt (format) program. This program reformats the text into lines that are (by default) 
no longer than 75 characters. While doing so, fmt preserves spaces at the beginning of 
lines, spaces between words, and blank lines. In other words, fmt will make your text 
look nice without changing the paragraph breaks.
 The fmt program is useful for formatting all or part of your editing buffer when 
you are creating documents. Once you know how to use fmt, you don’t have to worry 
so much about line breaks as you are entering or modifying your data, because you can 

HINT

If you don’t like the result of a :r or :r!command, you can reverse it with the u 
(undo) command.

33614_22_559_626.indd   61233614_22_559_626.indd   612 1/9/2008   12:38:59 PM1/9/2008   12:38:59 PM



The vi Text Editor

613

always fi x them later. As an example, the following command will format 10 lines, starting 
from the current line:

10!!fmt

So far, all our examples have used the !! (double explanation mark) command. The ! 
(single exclamation mark) command works in much the same way, except that it gives 
you more fl exibility in specifying the range of input lines.
 Type ! followed by a command to move the cursor, followed by the name of a 
program. All the lines from the current line to the end of the cursor move will be sent to 
the program for processing. For example, let’s say you want to format the text from the 
current line to the end of the paragraph. Remembering that the } (right brace bracket) 
command moves the cursor to the end of the paragraph, you would use:

!}fmt

Later in the chapter, I’ll show you how to make this command especially easy to use. (See 
the section on macros.)
 Moving on, here is an easy way to format the entire editing buffer. Jump to the fi rst line 
of the editing buffer by typing gg or 1G. Then enter:

!Gfmt

(Remember, the G command jumps to the end of the editing buffer.) Similarly, you could 
sort the entire editing buffer by using gg or 1G followed by:

!Gsort

To summarize:

n!!program execute program on n lines
!move program execute program from current line through move

WRITING DATA TO A FILE
When you      stop vi using the ZZ command, it automatically saves your data. However, 
there are several commands you can use to write data to a fi le whenever you want. These 
commands are important as they allow you to back up your data from time to time without 
quitting vi. They also allow you to save data to a different fi le. The commands are:

:w write data to original fi le
:w fi le write data to a new fi le
:w! fi le overwrite an existing fi le
:w>> fi le append data to specifi ed fi le

The :w command writes the contents of the editing buffer to the original fi le, replacing the 
current contents of the fi le. For example, let’s say you start vi by entering the command:

vi memo

Writing Data to a File

33614_22_559_626.indd   61333614_22_559_626.indd   613 1/9/2008   12:39:00 PM1/9/2008   12:39:00 PM



Chapter 22

614 Harley Hahn’s Guide to Unix and Linux

The contents of the fi le memo are copied to the editing buffer. No matter how many changes 
you make to the editing buffer, the original fi le memo is not changed. This is important as 
it allows you to quit without changing your fi le (by using the :q! command). However, at 
any time, you can copy the contents of the editing buffer to the original fi le by entering:

:w

Normally, you don’t need to do this unless you are going to use the :e command to start 
editing a new fi le (see below). However, if you have made a lot of changes, you might 
want to take a moment and save them to the original fi le. This will protect you against 
losing your work if something goes wrong.
 If you specify the name of a fi le after the :w command, vi writes the data to that fi le. 
For example, to save the contents of the editing buffer to a fi le named extra, enter:

:w extra

If the fi le does not already exist, vi will create it. If the fi le does exist, vi will display a 
warning message. Here are two typical messages:

File exists - use "w! extra" to overwrite
File exists (add ! to override)

If you really do want to overwrite the fi le, you must use :w! instead:

:w! extra

To append data to the end of an existing fi le, type >> (two greater-than signs) after the 
command name. For example:

:w>> extra

Using >> preserves the old data. Notice the similarity to the >> notation used to append 
standard output to an existing fi le (see Chapter 15).
 If you want to write only certain lines from the editing buffer, you can specify them 
in the usual manner. For example, to write line 10 to a fi le named save (replacing the 
contents of save), enter:

:10w save

To append lines 10 through 20 to the fi le named save, use:

:10,20w>> save

Earlier in   the chapter, I explained that there were two ways to quit vi. To save your data 
and quit, you use the command ZZ; to quit without saving, you use :q!. Actually, there 
is a third way. As long as you have already used the :w command to save your data, you 
can quit by using :q. As a convenience, you can combine these two commands:

:wq

Thus, the combination :wq has the same effect as ZZ.

33614_22_559_626.indd   61433614_22_559_626.indd   614 1/9/2008   12:39:00 PM1/9/2008   12:39:00 PM



The vi Text Editor

615

CHANGING TO A NEW FILE
When you      start vi, you can specify the name of the fi le you want to edit. For example, to 
edit a fi le named memo, you would enter:

vi memo

If you decide to edit a different fi le, you do not have to quit and restart the program. To 
change to a new fi le, use the :e command, followed by the name of the fi le. For example, 
to edit a fi le named document, enter:

:e document

When you start editing a new fi le, the previous contents of the editing buffer are lost, so 
be sure to use the :w command fi rst to save your data. When you use the :e command, 
vi will check to see if you have saved your data. If there is unsaved data, vi will not 
let you change to a new fi le. If you would like to override this protection, use the :e! 
command. For example, say that you start vi using the command:

vi memo

The contents of memo are copied to the editing buffer. As it happens, you make so many 
mistakes that you would rather just start over. The last thing you want to do is save the 
contents of the editing buffer back to the original fi le. Just enter:

:e!

You are now editing a copy of the original memo fi le: the previous changes have been 
thrown away. To summarize:

:e fi le edit the specifi ed fi le
:e reedit the current fi le, omit automatic check
:e! fi le edit the specifi ed fi le, omit automatic check

USING ABBREVIATIONS
To create     abbreviations for frequently used words or expressions, you use the :ab 
(abbreviate) command. The syntax is:

:ab [short long]

where short is an abbreviation and long is the replacement for that abbreviation.
 Here is an example. You are working on a resumé for a summer job, and you fi nd 
it tiresome to type “exceptionally gifted” over and over. Instead, you can establish an 
abbreviation, say, “eg”. Type :ab, followed by the short form, followed by the long form:

:ab eg exceptionally gifted

From now on, whenever you are in input mode and you type eg as a separate word, vi 
will automatically replace it with “exceptionally gifted”. Notice that the substitution only 

Using Abbreviations

33614_22_559_626.indd   61533614_22_559_626.indd   615 1/9/2008   12:39:00 PM1/9/2008   12:39:00 PM



Chapter 22

616 Harley Hahn’s Guide to Unix and Linux

takes places when “eg” is a word on its own; vi is smart enough not to replace “eg” within 
another word, such as “egotistical”.
 To remove   an abbreviation, use the :una (un-abbreviate) command. The syntax is:

:una short

where short is an abbreviation. Simply type :una followed by the name of the short form 
you wish to remove. For example:

:una eg

At any time, you can see a list of all your abbreviations by entering the :ab command 
by itself:

:ab

MACROS
As we discussed     in the previous section, the :ab command enables you to create 
abbreviations to use in input mode. Instead of typing the same text over and over, you 
can use an abbreviation. Analogously, the :map command enables you to create one-
character abbreviations that are used in command mode. In effect, this allows you to 
create your own customized one-character commands, which are called MACROS. The 
syntax is:

:map [x commands]

where x is a single character, and commands is a sequence of vi or ex commands.
 Here is an example of a simple macro. Earlier in the chapter (in the section on moving 
text), I showed you how to transpose two words: move the cursor to the space in front of 
the fi rst word and type deep. To make this more convenient, you can defi ne a macro:

:map K deep

Now, to transpose any two words, all you have to do is move the cursor to the space in 
front of the fi rst word and press K.
 By defi nition, macro names must be a single character. If you use a name that already 
has a meaning, the character will lose that meaning. For example, earlier in the chapter, we 
talked about the x (lower case “x”) and X (uppercase “X”) commands. The x command 
deletes the current character (the character to which the cursor is pointing); X deletes the 
character to the left of the cursor. Consider the following macro defi nition:

:map X dd

HINT

To defi ne abbreviations automatically each time you start vi, place the appropriate :ab 
commands in your initialization fi le (discussed later in the chapter).

33614_22_559_626.indd   61633614_22_559_626.indd   616 1/9/2008   12:39:00 PM1/9/2008   12:39:00 PM



The vi Text Editor

617

This command creates a macro named X (uppercase “X”) that deletes the current line. 
Once you defi ne this macro, the regular X command is lost. Still, you may not mind. If 
you rarely use the command, you might fi nd it convenient to type X to delete a line.
 Usually, however, it is a good idea not to replace regular commands. This raises the 
question: which characters are not used by vi or Vim? Very few,  actually. As you can 
see from Figure 22-10, there are only 14 characters not used by vi. Vim is even more 
extreme: the only common characters it doesn’t use as command names are ^K and \ 
(backslash). This is not as much of a restriction as you might think, as there are several 
Vim commands you will probably not need, so it’s safe to replace them. These characters 
are also listed in Figure 22-10.
 In a real sense, macros are tiny programs. As with all programming tools, there are far 
more details than you will ever need, so I won’t go into all the fi ne points.* Instead, I’ll 
show you a few more useful macros to give you an idea of what they can do for you.
 As we discussed earlier in the chapter, the G command moves the cursor to the end of 
the editing buffer. The 1G (go to line 1) command moves to the beginning of the buffer. 
With some versions of vi (and with Vim), you can use gg instead of 1G. If your version 
of vi doesn’t support gg, however, it is handy to have a simple command to take its 
place. Consider the following:

:map g 1G

vi: CHARACTERS TO USE AS MACRO NAMES

Letters  g   K   q   v   V   Z

Punctuation  @   #   *   \

Ctrl characters ^A  ^K  ^O  ^W  ^X

VIM: CHARACTERS TO USE AS MACRO NAMES

Letters  K   q   v   V

Punctuation  @   \

Ctrl characters ^@  ^A  ^K  ^O  ^T  ^X

Figure 22-10: Characters to use as vi and Vim macro names

The :map command allows you to create a macro, an abbreviation for a sequence of vi or ex 
commands.  A macro name must be a single character. If you choose a name that already has a meaning 
as a command, that meaning will be lost. The fi rst table shows those characters that are not used as vi 
commands and, hence, are safe to use as macro names.

With Vim, virtually all characters are used as command names.  Nevertheless, some commands are used 
so infrequently, there is no reason not to replace them. These characters are shown in the second table.

 *If you learn enough tricks and take enough time, you can write very complex vi macros. For example, there are people 
who have written macros to solve the Towers of Hanoi problem and to emulate a Turing Machine (two classical computer 
science problems). If you like this sort of thing, you should know that Vim comes with much more sophisticated tools than 
standard vi. With Vim, you can record, replay and modify macros. You can also write programs using a full-fl edged scripting 
facility. For more information, search the Web for “vim macros” and “vim scripting”.

Macros

33614_22_559_626.indd   61733614_22_559_626.indd   617 1/9/2008   12:39:00 PM1/9/2008   12:39:00 PM



Chapter 22

618 Harley Hahn’s Guide to Unix and Linux

This command defi nes a macro named g that expands to the command 1G. Now, when 
you want to zoom around the editing buffer, you can type g (lowercase “g”) to jump to 
the beginning and G (uppercase “G”) to jump to the end.
 Here is another, more complicated macro. Let’s say you are writing a program in a 
language such as C or C++ in which comments are enclosed by /* and */, for example:

/*  This line is a comment */

The following macro creates a comment out of an ordinary line by inserting /* at the 
beginning of the line, and */ at the end of the line:

:map * I/* ^V<Esc>A */^V<Esc>

Let’s take this macro apart. Following :map, you see a * (star) character. This will be the 
name of the macro.
 Next come the commands. To begin, we use I to enter input mode at the beginning 
of the line. Then we type /* followed by a space. At this point, we need to press the 
<Esc> key to quit input mode. To insert an <Esc> code into the macro, we type 
^V<Esc>. (As we discussed earlier in the chapter, ^V [Ctrl-V] tells vi that the next key 
is to be taken literally.)
 Next we use the A (append) command to enter input mode at the end of the line. We 
then type a space, followed by /*. To quit input mode, we use another <Esc>.
 If you enter the above command for yourself, you will see that the <Esc> code is 
displayed as ^[. In other words, what you will see on your screen will be:

:map * I/* ^[A */^[

This is because the <Esc> code is actually ^[, in the same way that a backspace is ^H (see 
Chapter 7), and a tab is ^I.
 Some versions of vi allow you to assign a macro to the function keys <F1> through 
<F10>. To do so, you refer to the function key by typing a # character followed by a 
number: 1=F1, 2=F2... 0=F10. For example, this following command creates a macro 
assigned to the <F1> key:

:map #1 :set all

At any time, you can display a list of all your macros by using the :map command by itself:

:map

To remove a macro, use the   :unmap command. The syntax is:

:unmap x

where x is the name of a macro. For example:

:unmap g
:unmap #1

33614_22_559_626.indd   61833614_22_559_626.indd   618 1/9/2008   12:39:00 PM1/9/2008   12:39:00 PM



The vi Text Editor

619

INITIALIZATION FILES: .exrc, .vimrc
When vi or       Vim starts, it looks for an initialization fi le in your home directory. If such 
a fi le exists, the program will read it and execute any ex commands that it fi nds. This 
allows you to initialize your working environment automatically. (The home directory is 
discussed in Chapter 23, initialization fi les in Chapter 14.)
 With vi, the initialization fi le is named .exrc (pronounced “dot-E-X-R-C”). 
With Vim, the fi le is named .vimrc (“dot-vim-R-C”)*. As we discussed in Chapter 
14, the initial . (dot) indicates that these are hidden fi les; the “rc” designation stands 
for “run commands”.
 Creating a vi initialization fi le is straightforward: just insert the ex commands you 
want to be executed automatically each time you start vi. In particular, you should 
include all the :set (option), :ab ( abbreviation), and :map (macro) commands you 
use regularly. You can also use run shell commands by using the :! command.
 As vi reads the initialization fi le, lines that begin with a " (double quote) character 
are ignored, which means you can use such lines for comments. Similarly, spaces and tabs 
at the beginning of a line are also ignored, allowing you to indent lines for readability.** 
Finally, vi assumes that everything it reads is an ex command, so you do not need to 
start any of the commands with a colon.
 To illustrate these ideas, Figure 22-11 contains a sample initialization fi le you can use 
with vi or Vim.

Section 1 sets options as follows:

autoindent: (Input mode) When using wrapmargin for automatic indentation, 
match the indentation to the line above or below.

compatible: (Vim only) Forces Vim to run in vi-compatible mode. Use this if Vim 
does not run in vi mode, even when you use the -C option.

exrc: When starting, look for a second initialization fi le in the current directory 
(explained in the next section).

ignorecase: When searching, ignore differences between upper and lower case 
(very handy).

showmatch: (Input mode) When you type a closing parenthesis, bracket or brace, 
highlight the matching opening parenthesis, bracket or brace.

showmode: Display a reminder when you are in input mode.

wrapmargin: Specify how close to the end of a line the text should be to trigger 
automatic indentation.

 *Vim will fi rst look for a .vimrc. If this fi le does not exist, it will then look for a .exrc fi le. Thus, if you have both fi les, 
only the .vimrc fi le will be read.
 **Some versions of vi (and Vim) will also ignore blank lines in an initialization fi le, which lets you make your fi le even 
easier to read. If your version of vi does not allow blank lines and you use them, you will see a non-specifi c error message, such 
as: “Error detected in .exrc.”

Initialization Files: : .exrc, .vimrc

33614_22_559_626.indd   61933614_22_559_626.indd   619 1/9/2008   12:39:00 PM1/9/2008   12:39:00 PM



Chapter 22

620 Harley Hahn’s Guide to Unix and Linux

Section 2 creates the abbreviations. This is a good place to specify shortcuts for tricky 
words, HTML tags, programming keywords, and so on.
 Section 3 defi nes the macros. As we discussed earlier in the chapter, macros can be 
complex (especially with Vim). The sample macros here are mostly straightforward. 
However, I do want to make two comments.
 First, if your version of vi supports the gg command, you don’t need the g macro.
 Second, the macro that uses the <F5> function key (#5) ends with a ^M character 
— the carriage return code — to simulate your pressing the <Return> key. Note this is 
a single control character, not two separate characters. When you type this line into the 
initialization fi le, you must press ^V<Return> or ^V^M to insert an actual ^M.
 Section 4 contains shell commands. I have used a single command line to show you how 
it works. In this case, I have used the date command (Chapter 8) to display the time and 
date. The sleep command pauses for the specifi ed number of seconds (in this case, 2).
 If your initialization fi le contains a bad command, vi will display an error message 
and quit executing the fi le at that point. Although vi will start properly, the rest of the 

FIGURE 22-11: vi/Vim sample initialization fi le

When you start vi or Vim, the program looks for an initialization fi le in your home directory.  Here is 
a sample fi le you can use as a template to create your own initialization fi le.  See text for details.

" =================================
" Sample vi/Vim initialization fi le
" =================================
"
" 1. Options
    set autoindent
    set compatible
    set ignorecase
    set showmatch
    set showmode
    set wrapmargin=6
"
" 2. Abbreviations
    ab eg exceptionally gifted
    ab h Harley
"
" 3. Macros
    map K deep
    map X dd
    map g 1G
    map #5 {!}fmt^M
"
" 4. Shell commands
    !date; sleep 2

33614_22_559_626.indd   62033614_22_559_626.indd   620 1/9/2008   12:39:00 PM1/9/2008   12:39:00 PM



The vi Text Editor

621

initialization commands in the fi le will not be processed. Vim is more forgiving: it will 
display an error message, ask you to press <Enter>, and then continue with the next 
command in the fi le.

USING TWO INITIALIZATION FILES
For situations in      which you need extra customization, it is possible to use an extra 
initialization fi le. Before I can explain how it works, I need to briefl y mention a couple of 
ideas we will be discussing in Chapter 24.
 When a userid is created, it is given its own directory, called a “home directory”. Within 
your home directory, you can create as many subdirectories as you need. Each time you 
log in, you start work in your home directory. However, it is easy to change from one 
directory to another as you work. At any time, the directory you are currently using is 
called your “working directory”.
 When you run vi or Vim, it starts by executing the initialization fi le in your home 
directory. It then checks the status of the exrc option. If this option is turned on, the 
program looks in your current directory for a second initialization fi le to execute (assuming 
your current directory is different from your home directory). In this way, you can organize 
your fi les into subdirectories, each of which has its very own initialization fi le.
 For example, let’s say you are currently working on three projects: an essay, a program, 
and a Web page. The fi les for these projects are kept in three separate directories named 
essay, program and webpage. In each directory, you create a customized .exrc or 
.vimrc fi le that contains the options, abbreviations and macros you want to use when 
you edit fi les for that particular project.
 You are working in the program directory and you want to edit a fi le named test.c. 
You enter the command:

vi test.c

As soon as vi starts, it looks for an initialization fi le in your home directory. Once the 
commands in this fi le are executed, vi checks the exrc option. If it is turned on, vi 
looks for a second initialization fi le in the program directory (your current directory). 
In this way, you are able to customize your working environment in a way that is suitable 
for editing programs.

LEARNING TO USE VIM
At the beginning   of the chapter, we talked about Vim, a complex text editor that is 
backward compatible with vi. Vim was created in 1988 by the Dutch programmer Bram 
 Moolenaar as an “improved” version of a vi clone. Since then, Vim has been extended 
enormously, with hundreds of new features. At the same time, Vim has become so popular 
that, on many Unix and Linux systems, it takes the place of vi. Although you can run 
Vim in “vi-compatible” mode, it is much more than an improved version of vi. Vim is 
a very sophisticated editor in its own right, signifi cantly different from vi.
 The truth is, Vim is so complex that it is impossible for anyone to teach it to you. 
You must learn it on your own. However, when you start, you will fi nd an immediate 

Learning to Use Vim

33614_22_559_626.indd   62133614_22_559_626.indd   621 1/9/2008   12:39:00 PM1/9/2008   12:39:00 PM



Chapter 22

622 Harley Hahn’s Guide to Unix and Linux

problem: the Vim documentation is not at all suitable for beginners. The solution is to 
start by learning vi. Once you understand vi, you will have some context. You can then 
teach yourself Vim by adding to your knowledge a bit at a time. This is one reason why, 
in this chapter, we have concentrated on vi, not Vim. (The other reason is that vi is 
ubiquitous, while Vim is not available on many Unix systems.)
 So, if you want to learn Vim, here is my advice. Start by reading this chapter and 
practicing until you feel you have mastered vi. That should take you at least a month or 
two. During this time, you will run Vim in vi-compatible mode. (The instructions for 
doing so can be found earlier in the chapter.) Later, you can turn off compatible mode 
and start using Vim in its own right.
 My guess is you have used many programs — especially GUI-based programs — that 
you were able to pick up on the fl y as you were using them. Vim is different. Vim is 
something you must teach yourself and, to do so, you must read the documentation.* 
Start by running the following command from the shell prompt:

  vimtutor

This will display a tutorial that summarizes the basic commands (most of which you will 
have already learned from this chapter). When you are fi nished, type :q.
 Next, start Vim and take a look at the online help by entering, in turn, each of the 
following   commands. (Again, you can type :q to quit.)

:help
:help user-manual
:help differences

If you fi nd reading the documentation in this way tedious (as I do), read it online. 
You can fi nd what you need at www.vim.org. (Hunt around until you fi nd the Vim 
“User Manual”.)
 Please don’t let my comments discourage you. Vim is an amazing program and, if 
you feel so inclined, you should defi nitely learn it. To inspire you, Figure 22-12 contains 
a summary of the most important enhancements offered by Vim. As you build on your 
knowledge of vi to learn Vim, my advice is to learn how to use the various features in the 
order you see them in the fi gure.

IT’S ALWAYS SOMETHING
To close the chapter, I’d like to tell you a true story, illustrating the type of wistfulness 
expressed by the American poet John Greenleaf  Whittier (1807–1892) in his poem Maud 
Muller when he wrote:
 For of all sad words of tongue or pen,
 The saddest are these: “It might have been!”
As you can see in Figure 22-12, one of the important enhancements offered by 
Vim is “screen splitting”, the ability to split your screen into horizontal or vertical 

 *If you ask another person to teach you Vim, you will just end up confused, and he or she will end up frustrated. Don’t say 
I didn’t warn you.

33614_22_559_626.indd   62233614_22_559_626.indd   622 1/9/2008   12:39:00 PM1/9/2008   12:39:00 PM

http://www.vim.org


The vi Text Editor

623

windows. This is a powerful tool in that it allows you to view more than one file at 
the same time.
 Interestingly enough, way back in 1978 at U.C. Berkeley,    Bill Joy (the creator of vi) 
was planning to put that exact feature into an early version of the program. Here is the 
story in his own words, from a 1984 interview in Unix Review magazine:

  “What actually happened was that I was in the process of adding multi-windows 
to vi when we installed our VAX [computer], which would have been in December 
of ‘78. We didn’t have any backups and the tape drive broke. I continued to work even 
without being able to do backups — and then the source code got scrunched and I 
didn’t have a complete listing.
  “I had almost rewritten all of the display code for windows, and that was when I 
gave up. After that, I went back to the previous version and just documented the code, 
fi nished the manual, and closed it off. If that scrunch had not happened, vi would have 
multiple windows. And I might have put in some programmability, but I don’t know.”

 It happened that, at the time, the American philosopher Roseanne Roseannadanna 
was visiting the Berkeley Unix lab. When Joy told her what happened she remarked, “Well 
Bill, it’s   just like my old Daddy used to tell me, ‘Roseanne Roseannadanna, if it’s not one 
thing, it’s another.’”

Vim is a highly sophisticated text editor with a great many enhancements over standard vi.  
Here is a summary of the most important such features.  The best way to learn Vim, is to start by 
mastering vi. Then teach yourself how to use the enhancements in the order I have listed them.

•  Extensive online help.

•  Screen splitting: You can split the screen into horizontal and vertical windows, 
each of which can hold its own fi le.

•  Multi-level undo.

•  Mouse support.

•  GUI support.

•  Command line history.

•  Command line completion.

•  Filename completion.

•  Search history.

•  Syntax highlighting: Use color to show the syntax for many different types of fi les.

•  Highlighting: Select text, either lines or blocks, then operate on that text.

•  Multiple buffers.

•  Macro support: tools to record, modify and run macros.

•  Built-in scripting language: Create scripts of your own; share scripts written by other people 
(available for free on the Internet).

•  Autocommands: Execute pre-defi ned commands automatically.

FIGURE 22-12: Vim: Enhancements over standard vi

It’s Always Something

33614_22_559_626.indd   62333614_22_559_626.indd   623 1/9/2008   12:39:00 PM1/9/2008   12:39:00 PM



Chapter 22

624 Harley Hahn’s Guide to Unix and Linux

C H A P T E R  2 2  E X E R C I S E S

REVIEW QUESTIONS

1.  How do you start vi when you want to: Edit a fi le named document? Edit a brand 
new fi le? Open a fi le named document in read-only mode? How do you start Vim in 
vi-compatibility mode?

2.  How do you quit vi if you have already saved your work? How do you save your work 
and then quit? How do you quit without saving?

3.  As you work with vi, your data is kept in a storage area. What is this storage area 
called? The vi editor operates in two principle modes: command mode and input 
mode. Describe each mode. How do you change from command mode to insert 
mode? How do you change from insert mode to command mode?

4.  Specify the best command to move the cursor to each of the following destinations. 
Whenever possible, use alphabetic keys.

 • One position left, down, up, right
 • Beginning of current line
 • End of current line
 • Beginning of previous line
 • Beginning of next line
 • Forward one word
 • Backward one word
 • Forward to next sentence
 • Backward to previous sentence
 • Forward to next paragraph
 • Backward to previous paragraph
 • Top line of the screen
 • Middle line of the screen
 • Bottom line of the screen
 • Beginning of editing buffer
 • End of editing buffer
 • Down one screenful
 • Up one screenful
 • Down a half screenful
 • Up a half screenful

5.  Within command mode, how do you:

 • Undo the last command that modifi ed the editing buffer.
 • Restore the current line to what it was when you moved to it.
 • Repeat the last command that modifi ed the editing buffer.

33614_22_559_626.indd   62433614_22_559_626.indd   624 1/9/2008   12:39:01 PM1/9/2008   12:39:01 PM



The vi Text Editor

625

APPLYING YOUR KNOWLEDGE

1.  Start vi and create a brand new empty fi le named temp. Insert the following lines 
into the fi le:

 one 1
 two 2
 three 3
 four 4
 five 5

  Use a single vi command to save your work and quit.

2.  Start vi to edit the fi le temp from the previous question.

  Using vi commands only: Move lines 2 through 4 to be after line 5. Undo the move.

  Using vi commands only: Copy lines 2 through 4 to the top of the editing buffer. 
Undo the change. At this point, the editing buffer should look like it did when you 
started. Quit without saving.

3.  Start vi to edit the fi le temp from the previous question.

  Using ex commands where possible: Move lines 2 through 4 to be after line 5. Undo 
the change.

  Using ex commands where possible: Copy lines 2 through 4 to the top of the editing 
buffer. Undo the change. At this point, the editing buffer should look like it did when 
you started. Quit without saving.

  Compare the vi commands you used in Exercise #2 with the ex commands you used 
in Exercise #3. What advantages did the ex commands have?

4.  Start vi to edit the fi le temp from Exercise #1. Insert the date and time at the bottom 
of the editing buffer. Where is the cursor? Why?

  Without fi rst moving the cursor, use a single command to sort all lines in the editing 
buffer in reverse alphabetical order. Quit without saving.

FOR FURTHER THOUGHT

1.  Once you are comfortable with the vi editor, you will fi nd it to be quick, powerful, 
and easy to use. However, vi is a very complex program that takes a lot of effort to 
master. The backward compatible replacement, Vim, is even more powerful, more 
complex, and even harder to learn. Considering that vi is well over 30 years old and 
is so diffi cult to learn, why do you think it is still so popular in the Unix community?

  Do you see a future in which complex tasks will be carried out exclusively by easy-to-
use tools, or will there always be a need for programs like vi?

Chapter 22 Exercises

hah33614_c22_559_626.indd   625hah33614_c22_559_626.indd   625 5/20/2009   2:26:55 PM5/20/2009   2:26:55 PM



Chapter 22

626 Harley Hahn’s Guide to Unix and Linux

2.  Broadly speaking, vi has two different types of commands: screen-oriented vi 
commands and line-oriented ex commands. The two types of commands are 
completely different from one another and, indeed, were developed for different 
types of hardware. Nevertheless, they combine nicely to create a powerful editing 
environment. Why is this? What does this tell you about the types of tools we should 
be designing for smart people?

33614_22_559_626.indd   62633614_22_559_626.indd   626 1/9/2008   12:39:01 PM1/9/2008   12:39:01 PM



627

C H A P T E R  2 3

The Unix Filesystem

In the next three chapters, we will talk about the Unix fi lesystem, the part of the operating 
system that serves you and your programs by storing and organizing all the data on your 
system. In this chapter, we will cover the basic concepts. We will then discuss the details 
of using directories in Chapter 24 and using fi les in Chapter 25.
 The goal of this chapter is to answer three key questions. First, what is a Unix fi le? As 
you might imagine, a fi le can be a repository of data stored on a disk. However, as you 
will see, there is a lot more to it than that. The second question involves organization. It 
is common for a Unix system to have hundreds of thousands of fi les. How can so many 
items be organized in a way that makes sense and is easy to understand? Finally, how is it 
possible for a single unifi ed system to offer transparent support of many different types 
of data storage devices?
 The discussion begins with a simple question that has a surprisingly complex answer: 
What is a fi le?

WHAT IS A FILE?
In the olden  days, before computers, the term “fi le” referred to a collection of papers. 
Typically, fi les were kept in cardboard folders, which were organized and stored in fi ling 
cabinets. Today, most data is computerized, and the defi nition of a fi le has changed 
appropriately. In its simplest sense, a fi le is a collection of data that has been given a 
name*. Most of the time, fi les are stored on digital media: hard disks, CDs, DVDs, fl oppy 
disks, fl ash drives, memory cards, and so on.
 Within Unix, the defi nition of a fi le is much broader. A FILE is any source, with a 
name, from which data can be read; or any target, with a name, to which data can be 
written. Thus, when you use Unix or Linux, the term “fi le” refers not only to a repository 
of data like a disk fi le, but to any physical device. For example, a keyboard can be accessed 
as a fi le (a source of input), as can a monitor (an output target). There are also fi les that 
have no physical presence whatsoever, but accept input or generate output in order to 
provide specifi c services.

What Is a File?

 *A Unix fi le can actually have more than one name. We’ll talk about this idea in Chapter 25 when we discuss links.

33614_23_627_658.indd   62733614_23_627_658.indd   627 1/9/2008   12:39:28 PM1/9/2008   12:39:28 PM



Chapter 23

628 Harley Hahn’s Guide to Unix and Linux

 Defi ning a fi le in this way — with such generality — is of enormous importance: it 
means that Unix programs can use simple procedures to read from any input source 
and write to any output target. For example, most Unix programs are designed to read 
from standard input and write to standard output (see Chapters 18 and 19). From the 
programmer’s point of view, I/O (input/output) is easy, because reading and writing data 
can be implemented in a simple, standard way, regardless of where the actual data is coming 
from or going to. From the user’s point of view, there is a great deal of fl exibility, because 
he can specify the input source and output target at the moment he runs the program.
 As you might imagine, the internal details of the Unix fi lesystem — or any fi lesystem 
— are complex. In this chapter, we will cover the basic concepts and, by the time we 
fi nish, you will fi nd that the Unix fi lesystem is a thing of compelling beauty: the type of 
beauty you fi nd only in complex systems in which everything makes sense.

TYPES OF FILES
There are  many different types of Unix fi les, but they all fall into three categories: 
ordinary fi les, directories, and pseudo fi les. Within the world of pseudo fi les, there are 
three particular types that are the most common: special fi les, named pipes, and proc 
fi les. In this section, we’ll take a quick tour of the most important types of fi les. In the 
following sections, we’ll discuss each type of fi le in more detail.
 An ORDINARY FILE  or a  REGULAR FILE is what most people think of when they 
use the word “fi le”. Ordinary fi les contain data and reside on some type of storage device, 
such as a hard disk, CD, DVD, fl ash drive, memory card, or fl oppy disk. As such, ordinary 
fi les are the type of fi les you work with most of the time. For example, when you write 
a shell script using a text editor, both the shell script and the editor program itself are 
stored in ordinary fi les.
 As we discussed in Chapter 19, there are, broadly speaking, two types of ordinary fi les: 
text fi les and binary fi les. Text fi les  contain lines of data consisting of printable characters 
(letters, numbers, punctuation symbols, spaces, tabs) with a newline character at the 
end of each line. Text fi les are used to store textual data: plain data, shell scripts, source 
programs, confi guration fi les, HTML fi les, and so on.
 Binary fi les contain non-textual  data, the type of data that makes sense only when 
executed or when interpreted by a program. Common examples are executable programs, 
object fi les, images, music fi les, video fi les, word processing documents, spreadsheets, 
databases, and so on. For example, a text editor program would be a binary fi le. The fi le 
you edit would be a text fi le.
 Since almost all the fi les you will encounter are ordinary fi les, it is crucial that you 
learn basic fi le manipulation skills. Specifi cally, you must learn how to create, copy, move, 
rename, and delete such fi les. We will discuss these topics in detail in Chapter 25.
 The second type of fi le is a  DIRECTORY. Like an ordinary fi le, a directory resides on 
some type of storage device. Directories, however, do not hold regular data. They are used 
to organize and access other fi les. Conceptually, a directory “contains” other fi les. For 
example, you might have a directory named vacation within which you keep all the 
fi les having to do with your upcoming trip to Syldavia.

33614_23_627_658.indd   62833614_23_627_658.indd   628 1/9/2008   12:39:29 PM1/9/2008   12:39:29 PM



The Unix Filesystem

629

 A directory can also contain other directories. This allows you to organize your fi les 
into a hierarchical system. As you will see later in the chapter, the entire Unix fi lesystem 
is organized as one large hierarchical tree with directories inside of directories inside 
of directories. Within your part of the tree, you can create and delete directories as you 
see fi t. In this way, you can organize your fi les as you wish and make changes as your 
needs change.
 (You will recall that, in Chapter 9, during our discussion of the Info system, we 
talked about trees. Formally, a TREE is a  data structure formed by a set of nodes, leaves, 
and branches, organized in such a way that there is, at most, one branch between any 
two nodes.)
 You will sometimes see the term  FOLDER used instead of the word “directory”, 
especially when you use GUI tools. The terminology comes from the Windows and 
Macintosh worlds, as both these systems use folders to organize fi les. A Windows folder 
is a lot like a Unix directory, but not as powerful. A Macintosh folder is a Unix directory, 
because OS X, the Mac operating system, runs on top of Unix (see Chapter 2).
 The last type of fi le is a PSEUDO FILE. Unlike  ordinary fi les and directories, pseudo 
fi les are not used to store data. For this reason, the fi les themselves do not take up any 
room, although they are considered to be part of the fi lesystem and are organized into 
directories. The purpose of a pseudo fi le is to provide a service that is accessed in the same 
way that a regular fi le is accessed. In most cases, a pseudo fi le is used to access a service 
provided by the kernel, the central part of the operating system (see Chapter 2).
 The most important type of pseudo fi le is the  SPECIAL FILE, sometimes called a 
DEVICE FILE. A special fi le is an internal representation of a physical device. For 
example, your keyboard, your monitor, a printer, a disk drive — in fact, every device in 
your computer or on your network — can all be accessed as special fi les.
 The next type of pseudo fi le is a NAMED PIPE.  A named pipe is an extension of the 
pipe facility we discussed in Chapter 15. As such, it enables you to connect the output of 
one program to the input of another.
 Finally, a PROC FILE allows you to  access information residing within the kernel. In a 
few specifi c cases, you can even use proc fi les to change data within the kernel. (Obviously, 
this should be done only by very knowledgeable people.) Originally, these fi les were created 
to furnish information about processes as they are running, hence the name “proc”.

Types of Files

WHAT’S IN A NAME?

File
When you see or hear the word “fi le”, you must decide, by context, what it means. Sometimes it 
refers to any type of fi le; sometimes it refers only to fi les that contain data, that is, ordinary fi les.
 For example, suppose you read the sentence, “The ls program lists the names of all the fi les 
in a directory.” In this case, the word “fi le” refers to any type of fi le: an ordinary fi le, a directory, 
a special fi le, a named pipe, or a virtual fi le. All fi ve types of fi les can be found in a directory and, 
hence, listed with the ls program.
 However, let’s say you read, “To compare one fi le to another, use the cmp program.” In this 
case, “fi le” refers to an ordinary fi le, as that is the only type of fi le that contains data that can 
be compared.

33614_23_627_658.indd   62933614_23_627_658.indd   629 1/9/2008   12:39:29 PM1/9/2008   12:39:29 PM



Chapter 23

630 Harley Hahn’s Guide to Unix and Linux

DIRECTORIES AND SUBDIRECTORIES
We use   directories   to organize fi les into a hierarchical tree-like system. To do so, we collect 
fi les together into groups and store each group in its own directory. Since directories are 
themselves fi les, a directory can contain other directories, which creates the hierarchy.
 Here is an example. You are a student at a prestigious West Coast university and you 
are taking three classes — History, Literature and Surfi ng — for which you have written a 
number of essays. To organize all this work, you make a directory called essays (don’t 
worry about the details for now). Within this directory, you create three more directories, 
history, literature and surfing, to hold your essays. Each essay is stored in a 
text fi le that has a descriptive name. Figure 23-1 shows a diagram of what it all looks like. 
Notice that the diagram looks like an upside-down tree.
 A PARENT DIRECTORY  is one that contains other directories. A SUBDIRECTORY 
or CHILD DIRECTORY is a   directory that lies within another directory. In Figure 23-1, 
essays is a parent directory that contains three subdirectories: history, literature 
and surfing.
 It is common to talk about directories as if they actually contain other fi les. For 
example, we might say that essays contains three subdirectories and literature 
contains four ordinary fi les. Indeed, you might imagine that if you could look inside 
the literature directory, you would see the four fi les. Actually, all fi les are stored 
as separate entities. A directory does not hold the actual fi les. It merely contains the 
information Unix needs to locate the fi les.
 You, however, don’t need to worry about the details, as Unix maintains the internal 
workings of the entire fi lesystem automatically. All you have to do is learn how to use the 
appropriate programs, and Unix will do whatever you want: make a directory, remove a 
directory, move a directory, list the contents of a directory, and so on. We’ll cover these 
programs in Chapter 24.

FIGURE 23-1: An example of organizing with directories

To organize fi les, we use parent directories and subdirectories to create a hierarchical tree. In this 
example, the parent directory essays contains three subdirectories—history, literature and 
surfi ng —each of which contains ordinary fi les. See text for details.

essays

literaturehistory surfi ng

crusades bodysurfi ng kafka  

inquisition 

sunscreen 

tolstoy  

renaissance shakespeare 

unixbooks 

33614_23_627_658.indd   63033614_23_627_658.indd   630 1/9/2008   12:39:29 PM1/9/2008   12:39:29 PM



The Unix Filesystem

631

SPECIAL FILES
Special fi les are pseudo fi les    that represent physical devices. Unix keeps all the special fi les 
in the /dev (device) directory.  (We’ll talk about the slash at the beginning of the name 
later in the chapter.) To display the names of the special fi les on your system, use the ls 
program (Chapter 24) as follows:

ls /dev | less

You will see many names, most of which you will rarely need to use. This is because, for 
the most part, special fi les are used by system programs, not users. Still, there are a few 
special fi les that are interesting to know about. I have listed these fi les in Figure 23-2, and 
we will discuss them in three different groups: hardware, terminals, and pseudo-devices.
  If you are interested in understanding the names of other special fi les, there is an offi cial 
master list that can help you. To fi nd this list, search on the Web for “LANANA Linux Device 
List”. (LANANA stands for “Linux Assigned Names and Numbers Authority”.) As the name 
implies, this list is specifi cally for Linux. However, most of the important special fi les have 
similar names on all Unix systems, so the list is useful even if you don’t use Linux.

HARDWARE
/dev/fd0 fl oppy disk

/dev/hda hard disk

/dev/hda1 hard disk: partition 1

/dev/sda SCSI hard disk

/dev/sda1 SCSI hard disk: partition 1

/dev/sda1 USB fl ash memory card (see text)

/dev/lp0 printer

/dev/usb/lp0 USB printer

TERMINALS
/dev/tty current terminal

/dev/tty1 console / virtual console

/dev/pts/0 pseudo terminal

/dev/ttyp0 pseudo terminal

PSEUDO-DEVICES
/dev/null discard output, input returns nothing (eof)

/dev/zero discard output; input returns nulls (0s)

/dev/random random number generator

/dev/urandom random number generator

FIGURE 23-2: The most interesting special fi les

Special fi les are pseudo fi les that are used to represent devices. Such fi les are mostly used by system 
programs. Although you will rarely use special fi les directly, there are a few that are interesting to know 
about. See text for details.

Special Files

33614_23_627_658.indd   63133614_23_627_658.indd   631 1/9/2008   12:39:29 PM1/9/2008   12:39:29 PM



Chapter 23

632 Harley Hahn’s Guide to Unix and Linux

SPECIAL FILES FOR HARDWARE
All devices connected to the      computer are accessible via special fi les. Let’s start with the 
most straightforward devices, the ones that represent actual hardware. As you can see in 
Figure 23-2, the fi le /dev/fd0 represents a fl oppy disk drive. The number at the end of 
a device name refers to a specifi c device. In this case, /dev/fd0 refers to the fi rst fl oppy 
disk drive. (Computer programmers often start counting at zero.) If there is a second 
fl oppy drive, it would be /dev/fd1, and so on. Similarly, /dev/lp0 corresponds to 
the fi rst printer.
 Hard disks are handled a bit differently. The fi rst IDE hard disk is referred to as 
/dev/hda, the second is /dev/hdb, and so on. Hard drives are organized into one or 
more PARTITIONS, which  act as separate devices. The fi rst partition of the fi rst hard disk 
is referred to as /dev/hda1. If there is a second partition, it is /dev/hda2. SCSI and 
SATA hard drives have their own names. The fi rst SCSI or SATA drive is /dev/sda, the 
second is /dev/sdb, and so on. Again, partitions are numbered, so the fi rst partition on 
the fi rst SCSI or SATA drive would be /dev/sda1.
 The SCSI designations are sometimes used for other types of devices as well. A common 
example is USB fl ash memory, which is treated as if it were a removable SCSI disk. For 
this reason, the name of the special fi le for fl ash memory will be named /dev/sda1 or 
something similar.

SPECIAL FILES FOR TERMINALS: tty
In Figure 23-2 you will       notice several different special fi les that represent terminals. Here 
is why . In the olden days, terminals were separate physical devices that were connected to 
a host computer (see Chapter 3). Such terminals were represented by special fi les named 
/dev/tty1, /dev/tty2, and so on. (As I explained in Chapter 7, the abbreviation 
TTY is a synonym for terminal. This is because the very fi rst Unix terminals were Teletype 
machines, which were referred to as TTYs.)
 The /dev/tty naming convention is still used today for terminals that act like 
hardware devices. In particular, this is the case when you run Unix in single-user mode. 
Your keyboard and monitor (the console) act as a built-in text-based terminal. The 
special fi le that represents this terminal is /dev/tty1. Similarly, when you use a virtual 
console within a desktop environment (see Chapter 6), it too acts like an actual terminal. 
By default, Linux supports six such consoles, which are represented by the special fi les 
/dev/tty1 through /dev/tty6.
 Everything is different; however, when you use a GUI to run a terminal emulation 
program within a window. Because there isn’t an actual terminal, Unix creates what we 
call a   PSEUDO TERMINAL or PTY to simulate a terminal. PTYs are used when you open 
a terminal window within a GUI (Chapter 6), and when you connect to a remote Unix 
host (Chapter 3). In both cases, the PTY acts as your terminal.
 It happens that there are two different systems for creating pseudo terminals, so you 
will see two types of names. If your version of Unix uses the fi rst system, the special fi les 

33614_23_627_658.indd   63233614_23_627_658.indd   632 1/9/2008   12:39:29 PM1/9/2008   12:39:29 PM



The Unix Filesystem

633

that represent pseudo terminals will have names like /dev/ttyp0 and /dev/ttyp1. 
If you use the other system, the names will be /dev/pts/1, /dev/pts/2, and so on. 
You can see both types of names in Figure 23-2.
 At any time, you can display the name of your terminal by using the tty program. For 
example, let’s say you are working at virtual terminal #3. You enter:

tty

The output is:

/dev/tty3

For convenience, the special fi le /dev/tty represents whichever terminal you are 
currently using. For example, if you are using virtual console #3, /dev/tty is the same 
as /dev/tty3.
 Here is an example of how you can use a special fi le. As you will see in Chapter 25, you 
use the cp program to make a copy of a fi le. In Chapter 11, we talked about the password 
fi le, /etc/passwd. Let’s say you want to make a copy of the password fi le and call the 
copy myfile. The command to do so is:

cp /etc/passwd myfile

That only makes sense. Now consider the following command:

cp /etc/passwd /dev/tty

This copies the password fi le to your terminal. The effect is to display the contents of the 
fi le on your monitor. Try it — then take a moment to think about what happened.

SPECIAL FILES FOR PSEUDO-DEVICES
The last type     of special fi le we will discuss is the PSEUDO-DEVICE. A pseudo-device is 
a fi le that acts as an input source or output target, but does not correspond to an actual 
device, either real or emulated. The two most useful pseudo-devices are the     NULL FILE 
and the ZERO FILE. The null fi le is /dev/null; the zero fi le is /dev/zero. Any 
output that is written to these devices is thrown away. For this reason, these fi les are 
sometimes referred to whimsically as “bit buckets”.
 We discussed the null fi le in detail in Chapter 15. Here is an example from that 
chapter. Let’s say you have a program named update that reads and modifi es a large 
number of data fi les. As it does its work, update displays statistics about what is 
happening. If you don’t want to see the statistics, you can redirect standard output to 
either of the bit buckets:

update > /dev/null
update > /dev/zero

Special Files for Pseudo-Devices

33614_23_627_658.indd   63333614_23_627_658.indd   633 1/9/2008   12:39:30 PM1/9/2008   12:39:30 PM



Chapter 23

634 Harley Hahn’s Guide to Unix and Linux

If you want to experiment, here is a quick example you can try for yourself right now. 
Enter the command:

cat /etc/passwd

You will see the contents of the password fi le. Now, redirect the output of the cat 
command to either the null fi le or the zero fi le. Notice that the output vanishes:

cat /etc/passwd > /dev/null
cat /etc/passwd > /dev/zero

When it comes to output, the two bit buckets work the same. The only difference is what 
happens when they are used for input. When a program reads from /dev/null, no 
matter how many bytes of input are requested, the result is always an eof signal (see 
Chapter 7). In other words, reading from /dev/null returns nothing.
 When a program reads from /dev/zero, the fi le generates as many bytes as are 
requested. However, they all have the value 0 (the number zero). In Unix, this value is 
considered to be the NULL CHARACTER or, more simply, a NULL. As strange  as it seems, 
a constant source of null characters can be useful. For instance, for security reasons, it is 
often necessary to wipe out the contents of a fi le or an entire disk. In such cases, you can 
overwrite the existing data with nulls simply by copying as many bytes as necessary from 
/dev/zero to the output target.
 (The terminology is a bit confusing: the null fi le returns nothing, while the zero fi le 
returns nulls. Such is life.)
 Below is an example in which we use dd to create a brand new fi le completely fi lled 
with null characters. (The dd program is a powerful I/O tool, which I won’t   explain in 
detail. If you want more information, see the online manual.)

dd if=/dev/zero of=temp bs=100 count=1

In this example, if is the input fi le; of is the output fi le; bs is the block size; and count 
is the number of blocks. Thus, we copy a 100-byte block of data from /dev/zero to a 
fi le named temp.
 If you want to experiment with this example, run the dd command and then display 
the contents of temp with the hexdump or od programs (Chapter 21). When you are 
fi nished, you can remove temp by using the rm program (Chapter 25).
 The fi nal two pseudo-devices,  /dev/random and  /dev/urandom, are used to 
generate random numbers. Thus, whenever a program needs a random number , all it has 
to do is read from one of these fi les.
 It may be that you are one of those odd people who do not use random numbers much 
in your personal life. If so, you may wonder why they are important. The answer is that 
mathematicians and scientists use such numbers to create models of natural processes 
that involve chance. When used in this way, an unlimited, easy-to-use source of random 
numbers is invaluable. (If this sort of thing interests you, read a bit about “stochastic 
processes”.) Random numbers are also used by programs that generate cryptographic 
keys for encrypting data.

33614_23_627_658.indd   63433614_23_627_658.indd   634 1/9/2008   12:39:30 PM1/9/2008   12:39:30 PM



The Unix Filesystem

635

NAMED PIPES: mkfi fo

A named pipe is     a pseudo fi le used to create a special type of pipe facility. In this way, 
named pipes act as an extension to the regular pipe facility we discussed in Chapter 15. 
Before I show you how they work, let’s take a quick look at a regular pipeline. The 
following command extracts all the lines in the system password fi le that contain the 
characters “bash”. The data is then piped to the wc program (Chapter 18) to count the 
number of lines:

grep bash /etc/passwd | wc -l

When we use a pipe in this way, it does not have a specifi c name: it is created automatically 
and it exists only while the two processes are running. For this reason, we call it an 
ANONYMOUS  PIPE.
 A named pipe is similar to an anonymous pipe in that they both connect the output of 
one process to the input of another. However, there are two important differences. First, 
you must create a named pipe explicitly. Second, a named pipe does not cease to exist 
when the two processes end; it exists until it is deleted. Thus, once you create a named 
pipe, you can use it again and again.
 You will often    see a named pipe referred to as a FIFO (pronounced “fi e-foe”), an 
abbreviation for “fi rst-in, fi rst-out”. This is a computer science term used to describe 
a data structure in which elements are retrieved in the same order they went in. More 
formally, such a data structure is called a QUEUE.**

TECHNICAL HINT

Unix and Linux provide two different special fi les to generate random numbers:  /dev/
random and  /dev/urandom. The difference is subtle, but important, when complete 
randomness is essential.
 Computerized random number  generators gather “environmental noise” and store it in 
an “entropy pool”. The bits in the entropy pool are then used to generate random numbers. 
If the entropy pool runs out, the /dev/random fi le will stop and wait for more noise to 
be gathered. This ensures complete randomness for crucial operations, such as creating 
cryptographic keys. However, at times, there can be a delay if it is necessary to wait for the 
entropy pool to fi ll.
 The /dev/urandom fi le, on the other hand, will never stop generating numbers even when 
the entropy pool is low (u stands for “unlimited). Instead, some of the old bits will be reused. In 
theory, data that is encrypted using low-entropy random numbers is slightly more susceptible 
to attack. In practice, it doesn’t make much difference, because no one actually knows how to 
take advantage of such a tiny theoretical defi ciency*. Still, if you are paranoid, using random 
instead of urandom may help you sleep better. If not, urandom will work just fi ne, and it will 
never make you wait.

 *At least in the non-classifi ed literature. 
 **Compare to a stack (see Chapters 8 and 24), a data structure in which elements are stored and retrieved in a LIFO (“last 
in, fi rst out”) manner.

Named Pipes: mkfifo

33614_23_627_658.indd   63533614_23_627_658.indd   635 1/9/2008   12:39:30 PM1/9/2008   12:39:30 PM



Chapter 23

636 Harley Hahn’s Guide to Unix and Linux

 To create a named   pipe, you use the mkfifo (make FIFO) program. The syntax is:

mkfifo [-m mode] pipe

where mode is a fi le mode of the type used with the chmod program, and pipe is the 
name of the pipe you want to create. (We’ll discuss fi le modes in Chapter 25 when we talk 
about chmod; for now, you can ignore the -m option.)
 Most of the time, named pipes are used by programmers to facilitate the exchange of 
data between two processes, an operation    called INTERPROCESS COMMUNICATION 
or IPC. In such cases, a program will create, use, and then delete named pipes as necessary. 
Using the mkfifo program, you can create a named pipe by hand from the command 
line. It isn’t done much, but let me show you an example, so you can experiment on your 
own to get a feeling for how it all works.
 In order to do the experiment, you will need to open two terminal windows or use two 
virtual consoles. Then type the following command into the fi rst terminal window. This 
command uses mkfifo to create a named pipe called fifotest:

mkfifo fifotest

Now, let’s send some input to the pipe. In the same window, enter the following 
command to grep the system password fi le for lines containing “bash” and redirect the 
output to fifotest:

grep bash /etc/passwd > fifotest

Now move to the second terminal window or virtual console. Enter the following command 
to read the data from the named pipe and count the number of lines. As soon as you enter 
the command, the wc program reads from the named pipe and displays its output.

wc -l < fifotest

Once you are fi nished with the named pipe, you can delete it. To do so, you use the rm 
(remove) program:

rm fifotest

Obviously, this was a contrived example. After all, we accomplished the very same thing 
a moment ago with a single line:

cat /etc/passwd | wc -l

However, now that you understand how named pipes work, think about how valuable 
they might be to a programmer whose work requires interprocess communication. All 
he has to do is have a program create a named pipe, which can then be used as often as 
necessary to pass data from one process to another. Once the work is done, the program 
can remove the pipe. Simple, easy and dependable, with no need to create intermediate 
fi les to hold transient data.

33614_23_627_658.indd   63633614_23_627_658.indd   636 1/9/2008   12:39:30 PM1/9/2008   12:39:30 PM



The Unix Filesystem

637

PROC FILES
Proc fi les are     pseudo  fi les that provide a simple way to examine many types of system 
information, directly from the kernel, without having to use complicated programs to 
ferret out the data. The original proc fi lesystem was developed to extract information 
about processes*, hence the name “proc”.
 All proc fi les are kept in the /proc directory. Within this directory, you will fi nd a 
subdirectory for each process on the system. The names of the subdirectories are simply 
the process IDs of the various processes. (As we will discuss in Chapter 26, each process 
has a unique identifi cation number called a “process ID”.) For example, let’s say that right 
now, one of the processes on your system is #1952. Information about that process can be 
found in pseudo fi les within the /proc/1952 directory.
 The idea for the /proc directory was taken from the  Plan 9 operating system**, 
a research project that ran from the mid-1980s to 2002. The Plan 9 project was 
established at Bell Labs by the same group that created Unix, C and C++. One of the 
basic concepts in Plan 9 was that all system interfaces should be considered part of the 
fi lesystem. In particular, information about processes was to be found in the /proc 
directory. Although Plan 9 was not a success, the idea of accessing many types of 
information as fi les was compelling and, in time, was widely adopted by the Unix and 
Linux communities.
 Linux, however, not only adopted /proc, but expanded it enormously. Modern 
Linux systems use this directory to hold many other pseudo fi les, affording access to a 
large variety of kernel data. In fact, if you are superuser, it is even possible to change some 
of the Linux kernel values by writing to a proc fi le. (Don’t try it.) Figure 23-3 shows the 
most interesting proc fi les used by Linux. You can display the information in these fi les in 
the same way as you would display the contents of an ordinary text fi le. For example, to 
display information about your processor, use either of the following commands:

cat /proc/cpuinfo
less /proc/cpuinfo

Normally, you will never need to look at a proc fi le unless you are a system administrator. 
For the most part, proc fi les are used only by programs that need highly technical 
information from the kernel. For example, in Chapter 26, we will discuss the ps (process 
status) program that shows you information about the processes on your system. The   ps 
program gathers the data it needs by reading the appropriate proc fi les.

 *As I mentioned in Chapter 6, the idea of a process is fundamental to Unix. Indeed, within a Unix system, every object is 
represented by either a fi le or a process. In simple terms, fi les hold data or allow access to resources; processes are programs that 
are executing.
 A more precise defi nition of a process (also from Chapter 6) is a program that is loaded into memory and ready to run, 
along with the program’s data and the information needed to keep track of the program.
 **The name Plan 9 came from an extremely hokey science fi ction movie Plan 9 From Outer Space, generally considered to 
be the worst movie ever made. Why would a group of highly skilled, visionary computer scientists name a major project after 
such a movie? All I can say is that it’s a geek joke.

Proc Files

33614_23_627_658.indd   63733614_23_627_658.indd   637 1/9/2008   12:39:30 PM1/9/2008   12:39:30 PM



Chapter 23

638 Harley Hahn’s Guide to Unix and Linux

There is one particularly intriguing proc fi le that I did not list in Figure 23-3: 
 /proc/kcore. This fi le represents the actual physical memory of your computer. You 
can display its size by using the ls program with the -l option (see Chapter 24):

ls -l /proc/kcore

The fi le will look huge; in fact, it will be the same size as all the memory (RAM) in your 
computer. Remember, though, this is a pseudo fi le: it doesn’t really take up space.

THE TREE-STRUCTURED FILESYSTEM; THE FILESYSTEM HIERARCHY STANDARD
In the    next few sections, we will talk about the Unix fi lesystem and how it is organized. 
In our discussions, I will use the standard Linux fi lesystem as an example. The details 
can vary from one Unix system to another, so it is possible that your system will be a 
bit different from what you read here. The basic ideas, however, including most of the 
directory names, will be the same.

PROC FILE INFORMATION ABOUT...

/proc/xxx/ process #xxx

/proc/cmdline kernel options

/proc/cpuinfo processor

/proc/devices devices

/proc/diskstats logical disk devices

/proc/fi lesystems fi lesystems

/proc/meminfo memory management

/proc/modules kernel modules

/proc/mounts mounted devices, mount points

/proc/partitions disk partitions

/proc/scsi SCSI and RAID devices

/proc/swaps swap partitions

/proc/uptime times (in seconds) that kernel: has been running, has been in idle mode

/proc/version version of kernel, distribution, gcc compiler (used to build kernel)

FIGURE 23-3: The most interesting Linux proc fi les

Proc fi les are pseudo fi les that are  used to access kernel information. Such fi les are mostly used by system 
programs. Although you will rarely use proc fi les directly, there are a few that are interesting to know 
about. See text for details.

HINT

Linux users: I encourage you to explore the proc fi les on your system. Looking inside these 
fi les can teach you a lot about how your system is confi gured and how things works. To avoid 
trouble, make sure you are not superuser, even if you are just looking.

33614_23_627_658.indd   63833614_23_627_658.indd   638 1/9/2008   12:39:30 PM1/9/2008   12:39:30 PM



The Unix Filesystem

639

 A typical Unix system contains well over 100,000 fi les(*) stored in directories and 
subdirectories. All these fi les are organized into a FILESYSTEM in which directories 
are organized into a tree structure based on a single main directory called the “root 
directory”. The job of a fi lesystem is to store and organize data, and to provide access 
to the data to users and programs. You can see a diagram of a fi lesystem organization 
in Figure 23-4. The root directory is — directly or indirectly — the parent of all other 
directories in the system.
 The fi rst time you look at the organization of the Unix fi lesystem, it can be a bit 
intimidating. After all, the names are strange and mysterious, and very little makes sense. 
However, like most of the Unix world, once you understand the patterns and how they 
work, the Unix fi lesystem is easy to understand. Later in the chapter, we’ll go over the 
subdirectories in Figure 23-4, one at a time. At the time, I’ll explain how they are used and 
what the names mean.
 Before we start, however, I’d like to take a moment to talk about how the Unix fi lesystem 
came to be organized in this way. As we discussed in Chapter 2, the fi rst Unix system was 
developed in the early 1970s at Bell Labs. Figure 23-5 shows the structure of the original 
Unix system, which was designed as a hierarchical tree structure. Don’t worry about the 
names, they will all make sense later. All I want you to notice is that the original fi lesystem 
looks very much like a subset of the current fi lesystem (Figure 23-4).

FIGURE 23-4: The standard Linux fi lesystem

Unix and Linux systems contain a very large number of fi les —at least 100,000 to 200,000—organized 
into a tree-structured set of directories and subdirectories. This example shows the skeleton of the 
standard Linux fi lesystem.

The sample you see here follows the Filesystem Hierarchy Standard (described later in the chapter). As 
you can see, the root (main) directory contains 16 subdirectories, each of which has its own subdirectories, 
sub-subdirectories, and so on. The diagram also shows 7 subdirectories that are commonly found within 
the /usr directory.

(root)

bin boot dev etc home lib media mnt opt proc root sbin srv tmp usr var

user’s home directories bin include lib local sbin share src

 *No, I am not exaggerating. Some basic Unix systems come with over 200,000 fi les. To estimate the number of fi les and 
directories on your system, run the following command as superuser:

ls -R / | wc -l

The Tree-Structured Filesystem; The Filesystem Hierarchy Standard

33614_23_627_658.indd   63933614_23_627_658.indd   639 1/9/2008   12:39:30 PM1/9/2008   12:39:30 PM



Chapter 23

640 Harley Hahn’s Guide to Unix and Linux

 As Unix evolved over the years, the organization of the fi lesystem was changed to 
refl ect the needs and preferences of the various Unix developers. Although the basic 
format stayed the same, the details differed from one version of Unix to another. This 
created a certain amount of confusion, especially when users moved between System V 
Unix and BSD (see Chapter 2). In the 1990s, the confusion increased when the creators 
of various Linux distributions began to introduce their own variations.
 In August 1993, a group of Linux users formed a small organization to develop a 
standard Linux directory structure. The fi rst such standard was released in February 1994. 
In early 1995, the group expanded their goal when members of the BSD community 
joined the effort. From then on, they would devote themselves to creating a standard 
fi lesystem organization for all Unix systems, not just Linux. The new system was called 
the FILESYSTEM HIERARCHY STANDARD or FHS. Of course, since there are no Unix 
police, the standard is voluntary. Still, many Unix and Linux developers have chosen to 
adopt most of the FHS.
 Although many Unix systems differ from the FHS in some respects, it is a well thought-
out plan, and it does capture the essence of how modern Unix and Linux fi lesystems 
are organized. If you understand the FHS, you will fi nd it easy to work with any other 
Unix system you may encounter. For this reason, as we discuss the details of the Unix 
fi lesystem, I will use the FHS as a model. If you want to see what the basic FHS looks like, 
take a look at Figure 23-4.

THE ROOT DIRECTORY; SUBDIRECTORIES
From the     very beginning, the Unix fi lesystem has been organized as a tree. In Chapter 9, 
we discussed trees as abstract data structures and, at the time, I explained that the main 
node of a tree is called the root (see Chapter 9 for the details). For this reason, we call the 
main directory of the Unix fi lesystem the ROOT DIRECTORY.
 Since the root directory is so important, its name must often be specifi ed as part of 
a command. It would be tiresome to always have to type the letters “root”. Instead, we 
indicate the root directory by a single / (slash). Here is a simple example to show how it 
works. To list the fi les in a specifi c directory, you use the ls program (Chapter 24). Just 
type ls   followed by the name of the directory. The command to list all the fi les in the 
root directory is:

ls /

HINT

As you can see in Figure 23-4, all directories except the root directory lie within another directory. 
Thus, technically speaking, all directories except the root directory are subdirectories.
 In day-to-day speech, however, we usually just talk about directories. For example, we might 
refer to the “/bin directory”. It is only when we want to emphasize that a particular directory 
lies within another directory, that we use the term “subdirectory”, for example, “/bin is a 
subdirectory of the root directory.”

33614_23_627_658.indd   64033614_23_627_658.indd   640 1/9/2008   12:39:30 PM1/9/2008   12:39:30 PM



The Unix Filesystem

641

  When you specify the name of a directory or fi le that lies within the root directory, 
you write a / followed by the name. For example, within the root directory, there is a 
subdirectory named bin. To list all the fi les in this directory, you use the command:

ls /bin

Formally, this means “the directory named bin that lies within the / (root) directory”.
 To indicate that a directory or fi le lies within another directory, separate the names  
with a /. For example, within the /bin directory, you will fi nd the fi le that contains the 
ls program itself. The formal name for this fi le is /bin/ls. Similarly, within the /etc 
directory, you will fi nd the Unix password fi le, passwd (see Chapter 11). The formal 
name for this fi le is /etc/passwd.
 When we talk about such names, we pronounce the / character as “slash”. Thus, the 
name /bin/ls is pronounced “slash-bin-slash-L-S”.

FIGURE 23-5: The original Unix fi lesystem

From the beginning, the Unix fi lesystem organized fi les using directories and subdirectories. This 
diagram shows the tree-structure used by the original Unix system in the early 1970s. Notice that the 
tree looks, more or less, like a subset of the current fi lesystem (Figure 23-4).

bin  dev  etc  lib  tmp  usr

(root)

bin games include lib man spool mail src sys user’s home directories

HINT

Until you get used to the nomenclature, the use of the / character can be confusing. This is 
because / has two meanings that have nothing to do with one another.
 At the beginning of a fi le name, / stands for the root directory. Within a fi le name, / acts as 
a delimiter. (Take a moment to think about it.)

WHAT’S IN A NAME?

root
In Chapter 4, I explained that, to become superuser, you log in with a userid of root. Now you 
can see where the name comes from: the superuser userid is named after the root directory, the 
most important directory in the fi lesystem.

The Root Directory; Subdirectories

33614_23_627_658.indd   64133614_23_627_658.indd   641 1/9/2008   12:39:30 PM1/9/2008   12:39:30 PM



Chapter 23

642 Harley Hahn’s Guide to Unix and Linux

MOUNTING A FILESYSTEM: mount, umount
In a Unix fi lesystem,        hundreds of thousands of fi les are organized into a very large tree, 
the base of which is the root directory. In most cases, all the fi les are not stored on the 
same physical device. Rather, they are stored on a number of different devices, including 
multiple disk partitions. (As I explained earlier, each disk partition is considered a 
separate device.)
 Every storage device has its own local fi lesystem, with directories and subdirectories 
organized into a tree in the standard Unix manner. Before a local fi lesystem can be accessed, 
however, its tree must be attached to the main tree. This is done by connecting the root 
directory of the smaller fi lesystem to a specifi c directory in the main fi lesystem. When we 
connect a smaller fi lesystem in this way, we say that we MOUNT it. The directory in the 
main tree to which the  fi lesystem is attached is called the MOUNT POINT. Finally, when 
we disconnect a fi lesystem, we say that we UNMOUNT it.
 Each time a Unix system starts, a number of local fi lesystems are mounted automatically 
as part of the startup process. Thus, by the time a system is running and ready to use, the 
main fi lesystem has already been augmented by several other fi lesystems.
 From time to time, you may have to mount a device manually. To do so, you use the 
mount program. To unmount a device, you use umount. As a general precaution, only 
the superuser is allowed to mount a fi lesystem. However, for convenience, some systems are 
confi gured to allow ordinary users to mount certain pre-set devices, such as CDs or DVDs.
 Here is an example of a mount command. In this example, we mount the fl oppy 
drive fi lesystem found on device /dev/fd0, attaching it to the main tree at the 
location /media/floppy:

mount /dev/fd0 /media/floppy

The effect of this command is to enable users to access the fi les on the fl oppy via the 
/media/floppy directory.
 Mounting and unmounting are system administration tasks that require superuser 
status, so I won’t go into the details. Instead, I will refer you to the online manual 
(man mount). As an ordinary user, however, you can display a list of all the fi lesystems 
currently mounted on your system, by entering a mount command by itself:

mount

Broadly speaking, there are  two types of storage devices. FIXED MEDIA,   such as hard 
drives, are attached to the computer permanently. REMOVABLE MEDIA can be changed 
while the system is running: CDs, DVDs, fl oppy disks, tapes, fl ash drives, memory cards, 
and so on. At the system level, the distinction is important because if there is a chance 
that a fi lesystem might literally disappear, Unix must make sure that it is managed 
appropriately. For example, before you can be allowed to eject a CD, Unix must ensure 
that any pending output operations are complete.
 For this reason, the Filesystem Hierarchy Standard mandates specifi c directories to 
use mounting fi lesystems. For fi xed media that are not mounted elsewhere (such as extra 
hard disks), the directory is /mnt; for removable media, the directory is /media.

33614_23_627_658.indd   64233614_23_627_658.indd   642 1/9/2008   12:39:30 PM1/9/2008   12:39:30 PM



The Unix Filesystem

643

A TOUR OF THE ROOT DIRECTORY
The fastest way to    cultivate a basic understanding of the fi lesystem on your computer is 
to look in the root directory and examine all the subdirectories. These directories form 
the backbone of the entire system. As such, they are sometimes referred to as TOP-
LEVEL DIRECTORIES.
 Figure 23-6 summarizes the standard contents of the root directory as specifi ed by the 
Filesystem Hierarchy Standard (FHS) we discussed earlier in the chapter. Although the 
details vary from one Unix system to another, all modern fi lesystems can be considered 
variations of the FHS. Thus, once you understand the FHS, you will be able to make sense 
out of any Unix fi lesystem you happen to encounter.
 Our goal here is to start with the root directory and work our way through the list of 
top-level directories. As we discuss each directory, you can check it out on your system 
by using the ls program (Chapter 24). For example, to display the contents of the /bin 
directory, use one   of the following commands:

ls /bin
ls -l /bin

When you use ls with no options, you will see only fi le names. If you use the -l (long) 
option, you will see extra details. If there is too much output, and it scrolls by too fast, you 
can display it one screenful at a time by piping it to less (Chapter 21):

ls -l / | less
ls -l /bin | less

Root directory: The root  directory is the base of the entire fi lesystem. On many 
Unix systems, the root directory will contain only subdirectories. On some systems, you 
will fi nd one ordinary fi le, the kernel. (See the discussion under /boot below.

/bin: This directory  holds the most important system programs, the basic tools an 
administrator would need to work on the system in single-user mode (see Chapter 6). 
These tools are all executable programs which, as we discussed earlier in the chapter, are 
binary fi les. Hence the name bin, a place for binary fi les. More simply, you can think of 

WHAT’S IN A NAME?

Mount, Unmount
In the early days of Unix (circa 1970), disk drives were large, expensive devices that, by today’s 
standards, held relatively    small amounts of data (40 megabytes at best). Unlike modern hard 
drives, which are complete units, the older disk drives used removable “disk packs”, each of 
which had its own fi lesystem.
 Whenever a user needed to change a disk pack, the system administrator had to physically 
unmount the current disk pack and mount the new one. This is why, even today, we talk 
about “mounting” and “unmounting” a fi lesystem. When we use the mount program, we are 
performing the software equivalent of mounting a disk pack in a drive.

A Tour of the Root Directory

33614_23_627_658.indd   64333614_23_627_658.indd   643 1/9/2008   12:39:31 PM1/9/2008   12:39:31 PM



Chapter 23

644 Harley Hahn’s Guide to Unix and Linux

this directory as a storage bin for programs. Some of the programs in this directory are 
also used by regular users.

/boot: This is the place where  the system stores all the fi les needed as part of the boot 
process (discussed in Chapter 2). The kernel must be either in this directory or in the root 
directory. The kernel is easy to recognize: just enter the following commands and look for 
a very large fi le with a strange name:

ls -l /boot | less
ls -l / | less

If you have updated your system, you will fi nd more than one version of the kernel. In 
most cases, the one in use is the latest one, which you can identify by looking at the name. 
(The version number will be part of the name.)

DIRECTORY CONTENTS
/ Root directory

/bin Essential programs

/boot Files required when booting system

/dev Device fi les

/etc Confi guration fi les

/home Users’ home directories

/lib Essential shared libraries, kernel modules

/lost+found Damaged fi les that have been recovered by fsck

/media Mount point for removable media

/mnt Mount point for fi xed media not mounted elsewhere

/opt Third-party applications (“optional software”)

/proc Proc fi les

/root Home directory for root (superuser)

/sbin Essential system administration programs run by superuser

/srv Data for services provided by local system

/tmp Temporary fi les

/usr Secondary fi lesystem used for static data

/var Secondary fi lesystem used for variable data

FIGURE 23-6: Contents of the root directory

The skeleton of the Unix fi lesystem is created by the top-level directories, that is, the subdirectories of 
the root directory. Here is a list of all the top-level directories mandated by the Filesystem Hierarchy 
Standard (FHS). Since some Unix and Linux systems do not follow the FHS exactly, you will fi nd 
variations from what you see here. Still, you can use this list as a starting point from which to understand 
your own system.

33614_23_627_658.indd   64433614_23_627_658.indd   644 1/9/2008   12:39:31 PM1/9/2008   12:39:31 PM



The Unix Filesystem

645

/dev: Within this directory, you  will fi nd all the special fi les. Most special fi les represent 
physical devices; a few represent pseudo-devices. (See this discussion earlier in the 
chapter.) This directory also contains a program named MAKEDEV, which is used to 
create new special fi les.

/etc: This directory contains  confi guration fi les. As we discussed in Chapter 6, a 
confi guration fi le is a text fi le that is processed when a program starts, containing 
commands or information that affects the operation of the program. Confi guration fi les 
are similar, in spirit, to the rc fi les we discussed in Chapter 14.

/home: When your Unix account  was created (see Chapter 4), you were given a “home 
directory” along with your userid. Your home directory is the place to store all your 
personal fi les and directories. The name of your home directory is the same as your userid. 
Thus, if you are lucky enough to have the userid harley, your home directory will be 
/home/harley. We’ll talk about home directories in detail later in the chapter. With 
one exception, all home directories reside in /home. The exception is the superuser’s 
home directory, which is /root (see below).

/lib: When programs run, they  often call upon  LIBRARIES, pre-existing modules of 
data and code. Unix provides a large number of libraries to enable programs to access 
services offered by the operating system. This directory contains the essential libraries 
and kernel modules necessary to run the programs in /bin and /sbin.

/lost+found: If Unix is not shut down properly, fi les that are only partially written may 
be damaged. The next time Unix starts, a special   program called fsck (fi lesystem check) 
will be run to examine the fi lesystem and fi x any problems. If corrupt fi les are found, 
fsck will rescue them and move them to the  /lost+found directory. The system 
administrator can then look at the recovered fi les and dispose of them appropriately.

/media: This  is the mount point for removable media, such as CDs, DVDs, fl oppy 
disks, fl ash drives, memory cards, and so on. (See the discussion on mounting fi lesystems 
earlier in the chapter.)

/mnt: This is  the mount point for fi xed media that are not mounted elsewhere, such as 
extra hard disks. At one time, this was the only mount directory, so you will often see people 
mount removable media here. Unless you want your life to ultimately be exposed as a total 
sham, do not emulate such people: removable media belong in the /media directory.

/opt: This  directory is the place for third-party applications to install themselves. 
(The name /opt stands for “optional software”.) Within /opt, each application has a 
subdirectory it can organize as it sees fi t. This gives application developers a designated 
location to install their software without having to worry about the requirements of how 
a particular fi lesystem might be organized. The subdirectories in /opt are either named 
after the company or the application. To keep things orderly, there are offi cial lists of 
names maintained by LANANA (the Linux Assigned Names and Numbers Authority 
discussed earlier in the chapter). If you want to look at the lists, search on the Web for 
“LSB Provider Names” or “LSB Package Names”. (LSB stands for “Linux Standard Base”.)

A Tour of the Root Directory

33614_23_627_658.indd   64533614_23_627_658.indd   645 1/9/2008   12:39:31 PM1/9/2008   12:39:31 PM



Chapter 23

646 Harley Hahn’s Guide to Unix and Linux

/root: This  is the home directory for the superuser, that is, for userid root. All other 
home directories are in /home (see above).

/sbin: The  name /sbin stands for “system binaries”. This directory holds programs 
that are used for system administration. As a general rule, the programs in this directory 
must be run as superuser.

/srv: This  directory is reserved for data that is related to locally offered services (hence 
the name /srv). Typical services that might store data here are cgi, Web, ftp, cvs, rsync, 
and so on.

/tmp: This  directory is used for temporary storage. Anybody is allowed to store fi les in 
this directory. Eventually, however, the contents of /tmp will be removed automatically. 
For this reason, programs will generally use this directory only to hold fi les that are 
needed for a short time.

/usr: This  directory is the root of a secondary fi lesystem that contains important 
subdirectories of its own. The purpose of /usr is to hold STATIC DATA, data that does 
not change  without system administrator intervention. By its nature, static data does 
not change over time. This allows /usr to reside on its own device, possibly a read-
only device like a CD-ROM. In the olden days, /usr was the directory in which users’ 
home directories were kept. Now that /usr is used only for static data, home directories 
— which do change — are kept in /home (see above).

/var: The  name of this directory means “variable”. Like /usr, this directory is the 
root of a secondary fi lesystem that contains important subdirectories of its own. The 
difference is that, where /usr holds static data, /var holds VARIABLE DATA, data 
that, by its  nature, is expected to change over time:log fi les (that keep track of what is 
happening on the system), print fi les, email messages, and so on. Like /usr, the /var 
fi lesystem often resides on its own device. Separating the static data from the variable 
data in this way makes the system easier to manage. For example, a system administrator 
can create a backup system that saves the variable fi les separately (and more often) than 
the static fi les.

WHAT’S IN A NAME?

dev, etc, lib, mnt, opt, src, srv, tmp, usr, var
There is a  Unix tradition to use 3-letter names for the top-level directories of the fi lesystem. The 
reason is that such names are short and easy to type. However, when we talk, these names can be 
awkward to pronounce. For this reason, each 3-letter name has a preferred pronunciation.

dev: “dev”
etc: “et-cetera” or “et-see”
lib: “libe” (to rhyme with “vibe”)
mnt: “mount”
opt: “opt”
src: “source”

33614_23_627_658.indd   64633614_23_627_658.indd   646 1/9/2008   12:39:31 PM1/9/2008   12:39:31 PM



The Unix Filesystem

647

A TOUR OF THE /usr DIRECTORY
As we discussed   earlier, the /usr and /var directories are mount points for separate 
fi lesystems that are integrated into the main fi lesystem. The /usr fi lesystem is for static 
data; /var is for variable data. Both these directories hold system data, as opposed to 
user data, which is kept in the /home directory.
 In addition, both these directories contain a number of standard subdirectories. 
However, the /var fi lesystem is more for system administrators, so it’s not that important 
to ordinary users. The /usr fi lesystem, on the other hand, is much more interesting. It 
contains fi les that are useful to regular users and to programmers. For this reason, I’ll 
take you on a short tour of /usr, showing you the most important subdirectories as 
described in the Filesystem Hierarchy Standard. For reference, Figure 23-7 contains a 
summary of these directories. As we discussed earlier, you may notice some differences 
between the standard layout and your system.

(cont’d...) 
srv: “serv”

tmp: “temp”
usr: “user”
var: “var” (to rhyme with “jar”)
As a general rule, if you are talking about something Unix-related and you come across a 
name with a missing letter or two, put it in when you pronounce the name. For example, 
the name of the /etc/passwd fi le is pronounced “slash et-cetera slash password”. The 
fi le /usr/lib/X11 is pronounced “slash user slash libe slash x-eleven”
 You will sometimes hear people say that etc stands for “extended tool chest”, or 
that usr means “Unix system resources”, and so on. None of these stories are true. All 
of these names are abbreviations, not acronyms.

DIRECTORY CONTENTS
/usr/bin Non-essential programs (most user programs)

/usr/include Header fi les for C programs

/usr/lib Non-essential shared libraries

/usr/local Locally installed programs

/usr/sbin Non-essential system administration programs run by superuser

/usr/share Shared system data

/usr/src Source code (for reference only)

FIGURE 23-7: Contents of the /usr directory

The /usr directory is the mount point for a secondary fi lesystem that contains static data of interest to 
users and programmers. Here are the most important subdirectories you will fi nd within this directory, 
according to the Filesystem Hierarchy Standard. See text for details.

A Tour of the /usr Directory

33614_23_627_658.indd   64733614_23_627_658.indd   647 1/9/2008   12:39:31 PM1/9/2008   12:39:31 PM



Chapter 23

648 Harley Hahn’s Guide to Unix and Linux

 /usr/bin: Like its namesake in the root directory (/bin), this directory contains 
executable programs. This directory contains many more programs than /bin. In fact, 
/usr/bin is the home of most of the executable programs on the system. On one of 
my Linux systems, for example, /bin has only 100 programs, while /usr/bin has 
2,084 programs.

/usr/games/: This is my favorite directory in the entire Unix fi lesystem (except, 
perhaps, /home/harley). As the name implies, this directory contains games. It 
also contains a variety of diversions and educational programs. In the olden days, 
  /usr/games was fi lled with all kinds of interesting, enjoyable programs. My favorite 
game was adventure, and my favorite diversion was fortune. If you look around the 
Internet, you can still fi nd these programs — and a lot more — and you can download 
and install them on your own system. (While you are at it, see if you can fi nd “Hunt the 
Wumpus”.) Today, alas, most of the games are gone, which is a terrible shame. Some Unix 
systems have only a few games; some have none whatsoever. It’s almost as if too many 
people have forgotten that Unix is supposed to be fun.

 /usr/include/: This is the storage area for include fi les used by C and C++ 
programmers. An   INCLUDE FILE, sometimes called a HEADER FILE, contains source 
code that any programmer may use as required. A typical include fi le has defi nitions of 
subroutines, data structures, variables, constants, and so on. We use the name “include 
fi le” because, within C, the #include statement is used to incorporate such fi les into 
a program. The name “header fi le” refers to the fact that such fi les are typically included 
at the very beginning (head) of a program. Include fi les are given names that have an 
extension of .h, for example, ioctl.h and stdio.h.

 /usr/lib: Like its analog /lib, this directory holds libraries, pre-existing modules of 
data and code used by programs to access services offered by the operating system.

 /usr/local: This directory is for the system administrator to use as he or she sees fi t 
to support local users. This is where you will fi nd local programs and documentation. 
A typical use of this directory is to create a subdirectory, /usr/local/bin, to hold 
programs that are not part of the main system. Putting software here ensures it will not 
be overwritten when the system is updated.

 /usr/sbin: Like /sbin, this directory contains system programs used by the 
administrator. Conceptually, /usr/sbin is to /sbin, as /usr/bin is to /bin (see 
discussion of /usr/bin above).

 /usr/share: There are a great many fi les containing static data — documentation, 
fonts, icons, and so on — that need to be shared among users and programs. The 
/usr/share directory has a large number of subdirectories used to hold such fi les. 
For example, in Chapter 20 we talked about the dictionary fi le. On many systems this fi le 
can be found at /usr/share/dict/words. The most interesting shared fi les are the 
ones that contain the online documentation we discussed in Chapter 9. The Unix manual 
is stored in /usr/share/man; the Info system is stored in /usr/share/info.

33614_23_627_658.indd   64833614_23_627_658.indd   648 1/9/2008   12:39:31 PM1/9/2008   12:39:31 PM



The Unix Filesystem

649

 /usr/src: The name src stands for “source code”. In this directory, you will fi nd 
subdirectories containing system source code, generally for reference only. On many 
Linux systems, you can fi nd the source code for the kernel in /usr/src/linux.

 /usr/X11: This directory holds the large number of fi les and directories used by X 
Window (the GUI-support system; see Chapter 5). On some systems, this directory is 
named /usr/X11R7 or (if the system is old) /usr/X11R6.

WHY IS THERE MORE THAN ONE DIRECTORY FOR PROGRAMS?
As we have      discussed, two different directories are used to hold general-use executable 
programs: /bin and /usr/bin. You might be wondering, why does Unix have two 
such directories? Why not simply store all the programs in one directory? The answer is 
the two bin directories are a historical legacy.
 In the early 1970s, the fi rst few versions of Unix were developed at Bell Labs on a 
PDP 11/45 minicomputer (see Chapter 2). The particular PDP 11/45 used by the Unix 
developers had two data storage devices. The primary device was a fi xed-head disk, often 
called a drum. The drum was relatively quick, because the read-write head did not move 
as the disk rotated. However, data storage was limited to less than 3 megabytes.
 The secondary device was a regular disk called an RP03. The read-write head on the 
RP03 disk moved back and forth from one track to another, which allowed it to store 
much more data, up to 40 megabytes. However, because of the moving head, the disk was 
a lot slower than the drum.
 In order to accommodate multiple storage devices on a single computer, the Unix 
developers used a design in which each device had its own fi lesystem. The main device 
(the drum) held what was called the root fi lesystem; the secondary device (the disk) held 
what was called the usr fi lesystem.
 Ideally, it would have been nice to keep the entire Unix system on the drum, as it was 
a lot faster than the disk. However, there just wasn’t enough room. Instead, the Unix 
developers divided all the fi les into two groups. The fi rst group consisted of the fi les that 
were necessary for the startup process and for running the bare-bones operating system. 
These fi les were stored on the drum in the root fi lesystem. The rest of the fi les were stored 
on the disk in the usr fi lesystem.
 At startup, Unix would boot from the drum. This gave the operating system immediate 
access to the essential fi les in the root fi lesystem. Once Unix was up and running, it would 
mount the usr fi lesystem, which made it possible to access the rest of the fi les.
 Each of the two fi lesystems had a bin directory to hold executable programs. The 
root fi lesystem had /bin, and the usr fi lesystem had /usr/bin. During the startup 
process, before the usr fi lesystem was mounted, Unix only had access to the relatively 
small storage area of the root fi lesystem. For this reason, essential programs were stored 
in /bin; other programs were stored in /usr/bin. Similarly, library fi les were divided 
into two directories, /lib and /usr/lib, and temporary fi les were kept in /tmp and 
/usr/tmp. In all cases, the root fi lesystem held only the most important fi les, the fi les 
necessary for booting and troubleshooting. Everything else went in the usr fi lesystem.

Why Is There More Than One Directory for Programs?

33614_23_627_658.indd   64933614_23_627_658.indd   649 1/9/2008   12:39:31 PM1/9/2008   12:39:31 PM



Chapter 23

650 Harley Hahn’s Guide to Unix and Linux

 Today, storage devices are fast, inexpensive, and hold large amounts of data. For the 
most part, there is no compelling reason to divide the core of Unix into more than one 
fi lesystem stored on multiple devices. Indeed, some Unix systems put all the general-use 
binary fi les in one large directory. Still, many Unix systems do use separate fi lesystems 
combined into a large tree. We will discuss the reasons for such a design later in the 
chapter, when we talk about the virtual fi lesystem.
 As a general rule, modern Unix systems distinguish between three types of software: 
general-use programs that might be used by anyone; system administration programs 
used only by the superuser; and large, third-party application programs that require 
many fi les and directories. As we discussed earlier in the chapter, the three different types 
of programs are stored in their own directories. For reference, Figure 23-8 summarizes 
the various locations where you will fi nd Unix program fi les.

HOME DIRECTORIES
With so many    system directories chock-full of important fi les, it is clear that we need 
an orderly system to control where users store their personal fi les. Of course, people as 
intelligent as you and I wouldn’t make a mess of things if we were allowed to, say, store 
our own personal programs in the /bin directory, or our own personal data fi les in 
/etc. But for the most part, we can’t have the hoi polloi putting their fi les, willy-nilly, 
wherever they want — we need organization.

GENERAL-USE PROGRAMS
/bin Essential programs

/usr/bin Non-essential programs

/usr/local/bin Locally installed programs

SYSTEM ADMINISTRATION PROGRAMS
/sbin Essential system administration programs run by superuser

/usr/sbin Non-essential system administration programs run by superuser

/usr/local/sbin Locally installed system programs

THIRD-PARTY APPLICATIONS

/opt/xxx Static data for application xxx; includes programs

/var/opt/xxx Variable data for application xxx

FIGURE 23-8: Directories that hold program fi les

The Unix fi lesystem has a number of different locations for program fi les. General-use programs are 
stored in directories with the name bin (“binary fi les”). System administration programs are stored 
in directories named sbin (“system binaries”). Large third-party applications are stored in directories 
named opt (“optional software”). Programs are further categorized as being either essential or non-
essential. Essential programs are necessary to start the system or perform crucial system administration. 
Everything else is non-essential.

The details you see here are based on the Filesystem Hierarchy Standard. Your system may differ 
somewhat.

33614_23_627_658.indd   65033614_23_627_658.indd   650 1/9/2008   12:39:31 PM1/9/2008   12:39:31 PM



The Unix Filesystem

651

 The solution is to give each user his own HOME DIRECTORY, a directory in which 
he can do whatever he wants. When your Unix account was created (see Chapter 4), a 
home directory was created for you. The name of your home directory is kept in the 
password fi le (Chapter 11) and when you log in, the system automatically places you 
in this directory. (The idea of being “in” a directory will make more sense after you 
have read Chapter 24.) Within your home directory, you can store fi les and create other 
subdirectories as you see fi t. Indeed, many people have large elaborate tree structures of 
their own, all under the auspices of their own home directory.
 The Filesystem Hierarchy Standard suggests that home directories be created in the 
/home directory. On small systems, the name of a home directory is simply the name of 
the userid, for example, /home/harley, /home/linda, and so on. On large systems 
with many userids, there may be an extra level of subdirectories to organize the home 
directories into categories. For example, at a university, home directories may be placed 
within subdirectories named undergrad, grad, professors and staff. At a real 
estate company, you might see agents, managers and admin. You get the idea.
 The only userid whose home directory is not under /home is the superuser’s (root). 
Because the administrator must always be able to control the system, the superuser’s 
home directory must be available at all times, even when the system is booting or when it 
is running in single-user mode (see Chapter 6). On many systems, the /home directory is 
in a secondary fi lesystem, which is not available until it is mounted. The  /root directory, 
on the other hand, is always part of the root fi lesystem and, thus, is always available.
 Each time you log in, the environment variable HOME is set to the name of your home  
directory. Thus, one way to display the name of your home directory is to use the echo 
program to display the value of the HOME variable:  

echo $HOME

(The echo program simply displays the values of its arguments. It is discussed, along 
with environment variables, in Chapter 12.)
 As a shortcut, the symbol   ~ (tilde) can be used as an abbreviation for your home 
directory. For example, you can display the name of your home directory by using:

echo ~

Whatever its name, the important thing about your home directory is that it is yours to 
use as you see fi t. One of the fi rst things you should do is create a bin subdirectory to 
store your own personal programs and shell scripts. You can then place the name of this 
directory — for example, /home/harley/bin — in your search path.
 (The search path is a list of  directories stored in the  PATH environment variable. 
Whenever you enter the name of a program that is not built into the shell, Unix looks in 
the directories specifi ed in your search path to fi nd the appropriate program to execute. 
See Chapter 13 for the details.)
 Figure 23-9 shows a typical directory structure based on the home directory of 
/home/harley. This home directory has three subdirectories: bin, essays 
and games. The essays directory has three subdirectories of its own: history, 

Home Directories

33614_23_627_658.indd   65133614_23_627_658.indd   651 1/9/2008   12:39:31 PM1/9/2008   12:39:31 PM



Chapter 23

652 Harley Hahn’s Guide to Unix and Linux

literature and surfing. All of these directories contain fi les which are not shown 
in the diagram. As you will see in Chapter 24, making and removing subdirectories is easy. 
Thus, it is a simple matter to enlarge or prune your directory tree as your needs change.
 The /home directory is part of the Filesystem Hierarchy Standard, and is widely 
used on Linux systems. If you use another type of Unix, however, you may fi nd your 
home directory in a different place. The classical setup — used for many years — was 
to put home directories in the /usr directory. For example, the home directory for 
userid harley would be /usr/harley. Other systems use /u, /user (with an “e”), 
/var/home or /export/home. For reference, here are examples of home directory 
locations you might see on different systems:

/usr/harley
/u/harley
/user/harley
/var/home/harley
/export/home/harley

On large systems, especially those where fi les are stored on a network, the exact location 
of the home directories may be more involved; much depends on how the system 
administrator has decided to organize the fi lesystem. For example, I have an account on 
one computer where my home directory is sub-sub-sub-sub-subdirectory:

/usr/local/psa/home/vhosts/harley

FIGURE 23-9: A typical home directory-based tree structure

Every userid is assigned a home directory. According to the Filesystem Hierarchy Standard, home 
directories should be in the /home directory, although you will fi nd variations (see text).

Within your home directory, you can create and remove subdirectories according to your needs. This 
example shows a typical home directory with three subdirectories, one of which has three subdirectories 
of its own. All six subdirectories contain fi les, although they are not shown in the diagram.

essaysbin

literaturehistory surfi ng

games

/home/harley

HINT

On any system, you can fi nd out the location of your home directory by entering either of the 
following commands:

echo $HOME
echo ~

33614_23_627_658.indd   65233614_23_627_658.indd   652 1/9/2008   12:39:32 PM1/9/2008   12:39:32 PM



The Unix Filesystem

653

THE VIRTUAL FILE SYSTEM
In this chapter, you and I have covered a lot of material. To the extent    that you care 
about such things, the details will be more or less interesting. However, there is a lot 
more to this forest than the leaves on the trees. The Unix fi lesystem was created by a 
few very smart people and, over the years, enhanced through the efforts of a great many 
experienced programmers and system administrators. The end-product is not only 
utilitarian, but beautiful.
 In this section, I want to help you appreciate, not only the usefulness of the system, but 
its beauty. To do so, I’m going to explain how multiple fi lesystems residing on a variety of 
different storage devices are combined into one large tree-structured arrangement.
 Earlier in the chapter, I explained that every storage device has its own local fi lesystem, 
with directories and subdirectories organized into a tree in the standard Unix manner. 
Before you can access such a fi lesystem, it must be connected to the main fi lesystem, a 
process we call mounting. In technical terms, we mount a fi lesystem by connecting its 
root directory to a mount point, a directory within the main fi lesystem.
 I want you to notice that when we talk about these ideas, we use the word “fi lesystem” 
in two different ways. Don’t be confused. First, there is the “Unix fi lesystem”, the large, 
all-inclusive structure that contains every fi le and every directory in the entire system. 
Second, there are the smaller, individual “device fi lesystems” that reside on the various 
storage devices. The Unix fi lesystem is created by connecting the smaller device fi lesystems 
into one large structure.
 To explain how it all works, I need to start at the beginning by answering the question, 
what happens when the system boots? When you turn on your computer, a complicated 
series of events are set into motion called the boot process (described in Chapter 2). After 
the power-on self-test, a special program called the boot loader takes control and reads 
data from the BOOT DEVICE in order to load the operating system  into memory. In 
most cases, the boot device is a partition on a local hard drive. However, it can also be a 
network device, a CD, a fl ash drive, and so on.
 Within the data on the boot device lies the initial Unix fi lesystem   called the ROOT 
FILESYSTEM. The root fi lesystem, which is mounted automatically, holds all the programs 
and data fi les necessary to start Unix. It also contains the tools a system administrator 
would need should something go wrong. As such, the root fi lesystem contains, at 
minimum, the following directories (which are discussed earlier in the chapter):

/bin /boot /dev /etc /lib /root /sbin /tmp

Once the root fi lesystem is mounted and the kernel has been started, other device fi lesystems 
are mounted automatically. The information about such fi lesystems is kept in a confi guration 
fi le,  /etc/fstab*, which can be modifi ed by the system administrator. (The name stands 
for “fi le system table”.) To look at the fi le on your system, use the command:

less /etc/fstab

 *On Solaris, the fi le is named /etc/vfstab.

The Virtual File System

33614_23_627_658.indd   65333614_23_627_658.indd   653 1/9/2008   12:39:32 PM1/9/2008   12:39:32 PM



Chapter 23

654 Harley Hahn’s Guide to Unix and Linux

 The root fi lesystem is always stored on the boot device. However, there are three other 
fi lesystems that may reside on separate devices: usr, var and home. If these fi lesystems 
are on their own devices, they are connected to the Unix fi lesystem by attaching them 
to the appropriate subdirectories. The usr fi lesystem is mounted at /usr; the var 
fi lesystem is mounted at /var; and so on. This is all done automatically so, by the time 
you see the login prompt, everything has been mounted and the Unix fi lesystem is up 
and running.
 Each device uses a fi lesystem appropriate for that type of device. A partition on a hard 
drive uses a fi lesystem suitable for a hard drive; a CD-ROM uses a fi lesystem suitable 
for CD-ROMs, and so on. As you would imagine, the details involved in reading and 
writing data vary signifi cantly depending on the type of device. They vary depending 
on whether the fi lesystem is local (on your computer) or remote (on a network). Finally, 
some fi lesystems — such as procfs for proc fi les — use pseudo fi les, which do not 
reside on storage devices. For reference, Figure 23-10 contains a list of the fi lesystems you 
are most likely to encounter.
 The signifi cant differences among the various fi lesystems raise an important question. 
Consider the following two cp (copy) commands:

cp /media/cd/essays/freddy-the-pig /home/harley/essays
cp /proc/cpuinfo /home/harley/

We’ll talk about   cp in Chapter 25. For now, all I want you to appreciate is that the fi rst 
command copies a fi le from a directory on a CD, to a directory on a hard disk partition. 
The second command copies information from a pseudo fi le (which is generated by the 
kernel) to a fi le on a hard disk partition. In both cases, you just enter a simple command, 
so who takes care of the details?
 The details are handled by a special facility called the VIRTUAL FILE SYSTEM or VFS. 
The VFS is an API (application program interface) that acts as a middleman between your 
programs and the various fi lesystems. Whenever a program requires an I/O operation, it 
sends a request to the virtual fi le system. The VFS locates the appropriate fi lesystem and 
communicates with it by instructing the device driver to perform the I/O. In this way, 
the VFS allows you and your programs to work with a single, uniform tree-structure 
(the Unix fi lesystem) even though, in reality, the data comes from a variety of separate 
heterogeneous fi lesystems.
 In our fi rst example, data must be read from the CD. The cp program issues a read 
request, which is handled by the virtual fi le system. The VFS sends its own request to the 
CD fi lesystem. The CD fi lesystem sends the appropriate commands to the CD device 
driver, which reads the data. In this way, neither you nor your programs need to know 
any of the details. As far as you are concerned, the Unix fi lesystem exists exactly as you 
imagine it and works exactly the way you want it to work.
 Can you see the beauty? At one end of every fi le operation, the virtual fi le system talks 
to you in your language. At the other end, the VFS talks to the various device fi lesystems 
in their own languages. As a result, you and your programs are able to interact with any 
of the fi lesystems without having to communicate with them directly.

33614_23_627_658.indd   65433614_23_627_658.indd   654 1/9/2008   12:39:32 PM1/9/2008   12:39:32 PM



The Unix Filesystem

655

 Now consider another question. Whenever a new type of fi lesystem is developed (say, 
for a new device), how can it be made to work with Unix? The answer is conceptually 
simple. All the developers of the new device have to do is teach the new fi lesystem to 
speak “VFS” language. This enables the fi lesystem to join the world of Unix, where it will 
fi t in seamlessly.
 Here is the beautiful part: No matter when you learned Unix — 35 years ago or 35 
minutes ago — the Unix fi lesystem looks and works the same way. Moreover, as new 
devices and better fi lesystems are developed over the years, they are integrated into your 
world smoothly and easily. This is the reason why an operating system that was designed 
at a time when students were wearing love beads and protesting the war, still works well 
at a time when students are wearing mobile phones and protesting the war.
 And what about the future? We don’t know what kind of strange new devices and 
information sources will become available in the years to come. After all, when it comes 
to technology, no one can make promises. What I can promise you, however, is that no 
matter what new technology comes along, it will work with Unix. And I can also promise 
you that, years from now, you will be teaching Unix to your children*.

DISK-BASED FILESYSTEMS

ext3 third extended fi lesystem (Linux)

ext4 fourth extended fi lesystem (Linux)

FAT32 32-bit File Allocation Table fi lesystem (Microsoft Windows)

HFS+ Hierarchical File System (Macintosh)

ISO 9660 ISO 9660 standard fi lesystem (CD-ROMs)

NTFS NT fi lesystem (Microsoft Windows)

UDF Universal Disk Format fi lesystem (rewritable CDs & DVDs)

UFS2 Unix File System (BSD, Solaris)

NETWORK FILESYSTEMS

NFS Network File System (used widely)

SMB Server Message Block (Windows networks)

SPECIAL-PURPOSE FILESYSTEMS

devpts device interface for pseudo terminals (PTYs)

procfs proc fi les fi lesystem

sysfs system data fi lesystem (devices & drivers)

tmpfs temporary storage fi lesystem

FIGURE 23-10: The most common fi lesystems

For reference, here are the     most common fi lesystems you will encounter when using a Unix or Linux 
system.  Disk-based fi lesystems store data on hard disks, CDs, DVDs or other devices; network fi lesystems 
support the sharing of resources over a network; special-purpose fi lesystems provide access to system 
resources, such as pseudo fi les.

 *So save this book.

The Virtual File System

33614_23_627_658.indd   65533614_23_627_658.indd   655 1/9/2008   12:39:32 PM1/9/2008   12:39:32 PM



Chapter 23

656 Harley Hahn’s Guide to Unix and Linux

C H A P T E R  2 3  E X E R C I S E S

REVIEW QUESTIONS

1.  What is a Unix fi le? What are the three main types of fi les? Describe each type.

2.  Explain the difference between a text fi le and a binary fi le. Give three examples of each.

3.  What is the Filesystem Hierarchy Standard or FHS? Within the FHS, briefl y describe 
the contents of (1) the root directory (/); (2) the following top-level directories: 
/bin, /boot, /dev, /etc, /home, /lib, /sbin, /tmp, /usr and /var.

4.  Within the FHS, which directories contain general-use programs? Which directories 
contain system administration programs?

5.  What is a home directory? Within the FHS, where do you fi nd the home directories? 
What is the only userid whose home directory is in a different place? Why?

  Suppose your userid is weedly and you are an undergraduate student at a large 
university. Give two likely names for your home directory.

APPLYING YOUR KNOWLEDGE

1.  The following command will list all the subdirectories of the root directory:

 ls -F / | grep '/'

  Use this command to look at the names of the top-level directories on your system. 
Compare what you see to the basic layout of the Filesystem Hierarchy Standard. What 
are the differences?

2.  As we will discuss in Chapter 24, you can use the cd to change from one directory to 
another, and ls to list the contents of a directory. For example, to change to the /bin 
directory and list its contents, you can use:

 cd /bin; ls

  Explore your system and fi nd out where the following fi les are stored:

 • Users’ home directories
 • General-use programs (the Unix utilities)
 • System administration programs
 • Special fi les
 • Confi guration fi les
 • Man pages
 • Kernel
 • Files required when booting the system

  Hint: You may fi nd the whereis program useful (see Chapter 25).

33614_23_627_658.indd   65633614_23_627_658.indd   656 1/9/2008   12:39:32 PM1/9/2008   12:39:32 PM



The Unix Filesystem

657

3.  Enter the following command:

 cp /dev/tty tempfile

  Type several lines of text and then press ^D. What did you just do? How did it work? 
Hint: To clean up after yourself, you should enter the following command to remove 
(delete) the fi le named tempfile:

 rm tempfile

FOR FURTHER THOUGHT

1.  Unix defi nes a “fi le” a very general way. Give three advantages to such a system. Give 
three disadvantages.

2.  There is no uniformity as to how closely Unix systems must follow the Filesystem 
Hierarchy Standard. Some systems stick fairly close to the ideal; others are signifi cantly 
different. Would it be a good or a bad idea to require all Unix systems to use the same 
basic fi lesystem hierarchy? Discuss the advantages and the disadvantages.

Chapter 23 Exercises

33614_23_627_658.indd   65733614_23_627_658.indd   657 1/9/2008   12:39:32 PM1/9/2008   12:39:32 PM



33614_23_627_658.indd   65833614_23_627_658.indd   658 1/9/2008   12:39:32 PM1/9/2008   12:39:32 PM



659

C H A P T E R  2 4

Working With Directories

This is the second of three chapters explaining the Unix fi lesystem. In Chapter 23, we 
discussed the fi lesystem as a whole: how it is organized into a tree-like hierarchy of 
directories and subdirectories, how the various parts of the fi lesystem are used, and the 
types of fi les you will encounter as you use Unix.
 Within this overall hierarchy, each user is assigned a home directory to organize as 
he or she sees fi t. In order to work with your part of the tree, as well as the fi lesystem 
as a whole, you need to be able to navigate quickly and easily from one directory to 
another. You also need to be able to organize your fi les by creating, deleting, moving and 
renaming subdirectories as needed. Finally, you need to be able to look inside the various 
directories, so you can work with the fi les and subdirectories therein.
 In this chapter, you will learn all the fundamental skills necessary to work with 
directories. In Chapter 25, we will conclude our discussion by looking at the commands 
that work with regular fi les.

PATHNAMES AND YOUR WORKING DIRECTORY
In Chapter 23, we    discussed how to write the full name for a fi le. Start with a / (slash), 
which stands for the root directory. Then write the names of all the directories you have 
to pass through to get to the fi le, following each name with a /. Finally, write the name of 
the fi le. Here is an example:

/usr/share/dict/words

In this case, the fi le words lies in the dict directory, which lies in the share directory, 
which lies in the usr directory, which lies in the root directory.
 When we write the name of a fi le in this way, we describe the path through the directory 
tree from the root directory to the fi le in question. To do so, we specify a sequence of 
directories separated by / characters. This description is called a PATHNAME or a PATH. 
What you see above is an example of a pathname.
 If the very last  part of a pathname is the name of an ordinary fi le, we call it a FILENAME 
or, less often, a BASENAME. In our example, words is a fi lename.

Pathnames and Your Working Directory

33614_24_659_714.indd   65933614_24_659_714.indd   659 1/9/2008   12:39:56 PM1/9/2008   12:39:56 PM



Chapter 24

660 Harley Hahn’s Guide to Unix and Linux

 Here is another example of a pathname. Let’s say your userid is harley and your home 
directory is /home/harley (see Chapter 23). You have a fi le named memo that you want 
to edit using the vi text editor (Chapter 22). To start vi, you enter the command:

vi /home/harley/memo

Sometime later, you decide to edit another fi le, document. You enter:

vi /home/harley/document

In these examples, the pathnames are:

/home/harley/memo
/home/harley/document

The fi lenames are:

memo
document

As you might imagine, typing a full pathname every time you want to access a fi le is 
tiresome and prone to error. As a convenience, Unix allows you to designate one 
directory at a time as your WORKING DIRECTORY (also known as your CURRENT 
DIRECTORY). Whenever you want to use a fi le in your working directory, you need only 
type the fi lename; you do not need to specify the entire path. For example, if you were to 
tell Unix that you want to work in the directory /home/harley (I won’t go into the 
details just yet), the following commands would be equivalent:

vi /home/harley/memo
vi memo

The rule is as follows: When you use a name that starts with a /, Unix assumes it is a 
full pathname, starting from the root directory. This is the case in the fi rst command. 
When you use a fi lename only, Unix assumes you are referring to a fi le in your working 
directory. This is the case in the second command. (Once you have experience, this rule 
will make a lot of sense.)
 Each time you log in, Unix automatically sets your working directory to be your home 
directory*, which is a convenient place to start work. As you work, you can change your 
working directory whenever you want by   using the cd (change directory) command, 
which we will discuss later in the chapter. During a work session, it is common to change 
your working directory from time to time, depending on what you are doing. However, 
it does not matter where you end up. The next time you log in, you will start, once again, 
in your home directory.
 Here is how I want you to think of it. Imagine the Unix fi lesystem as a very large tree. 
The trunk of the tree is the root directory, and all the other directories are branches of 
the tree. For example, the directories /home and /bin are branches off the root. The 

 *How does Unix know the name of your home directory? The pathname of each userid’s home directory is stored in the 
Unix password fi le, /etc/passwd, described in Chapter 11.

33614_24_659_714.indd   66033614_24_659_714.indd   660 1/9/2008   12:39:57 PM1/9/2008   12:39:57 PM



Working With Directories

661

directory /home/harley is a branch off /home. At any time, you are sitting on some 
branch in the tree. That is your working directory.
 The moment you log in, you fi nd yourself sitting on the branch of the tree that 
represents your home directory. To move to another branch of the tree, all you need to 
do is change your working directory. Thus, you can think of the cd command as a magic 
carpet that instantly moves you from one branch of the tree to another.

ABSOLUTE AND RELATIVE PATHNAMES
A pathname     or  path describes a location in the fi le tree by listing a sequence of directories 
separated by / (slash) characters. If the sequence starts from the root directory, we call it 
an ABSOLUTE PATHNAME. If the sequence starts from your working directory we call 
it a RELATIVE PATHNAME.
 To illustrate the differences, I’ll use the directory tree in Figure 24-1. This tree shows 
subdirectories belonging to userid harley, whose home directory is /home/harley. 
(Remember from Chapter 4, Unix fi les are owned by userids, not users.)
 Within the home directory, we have two subdirectories, bin and essays. In keeping 
with the Unix tradition, the fi les in the bin directory contain executable programs 
and scripts (see Chapter 23). In this case, there are two such programs, funky and 
spacewar. The essays subdirectory contains two subdirectories of its own, history 
and literature. Each of these directories contains two ordinary fi les. When userid 
harley logs in, the working directory is automatically set to be the home directory 
/home/harley. Let’s take a look at how we might specify the names of the various fi les.
 Let’s say we want to use a command in which we need to refer to the bin directory. 
Unix assumes that any name that begins with a / is an absolute pathname. That is, it 
shows the full path to the fi le, starting from the root directory. If a name does not begin 
with a /, Unix assumes that it is relative pathname. That is, it describes a path starting 
from the working directory.

Absolute and Relative Pathnames

FIGURE 24-1: A sample directory tree

Within the home directory for userid harley, there are two subdirectories: bin and essays.  The 
fi rst subdirectory contains two ordinary fi les.  The second subdirectory has two subdirectories of its own, 
each of which contains two ordinary fi les.  This small tree-structure is used within the text to illustrate 
the difference between absolute and relative pathnames.

/home/harley

bin

funky

crusades renaissance kafka tolstoy

spacewar history literature

essays

33614_24_659_714.indd   66133614_24_659_714.indd   661 1/9/2008   12:39:57 PM1/9/2008   12:39:57 PM



Chapter 24

662 Harley Hahn’s Guide to Unix and Linux

 We can refer to the bin directory in two ways. First, the absolute pathname is:

/home/harley/bin

Alternatively, since the working directory is /home/harley, it is a lot simpler to use 
the relative pathname:

bin

Here is another example using the same working directory. We want to enter a command 
for which we need to specify the name of the tolstoy fi le in the literature 
directory. The absolute pathname is:

/home/harley/essays/literature/tolstoy

Again, the relative pathname is shorter:

essays/literature/tolstoy

Here is one fi nal example. Let’s say we want to do a lot of work with the fi les kafka and 
tolstoy. It is inconvenient to refer to these fi les using the absolute pathnames:

/home/harley/essays/literature/kafka
/home/harley/essays/literature/tolstoy

However, it is only a bit more convenient to use relative pathnames:

essays/literature/kafka
essays/literature/tolstoy

The best thing to do is to change the working directory to be:

/home/harley/essays/literature

(I will show you how to do this in a moment.) Once we change the working directory, we 
can refer to the fi les more simply as:

kafka
tolstoy

Think of the working directory as a base of operations you can change whenever you 
want. When you log in, you start out in your home directory, but you can change to any 
directory you want, whenever you want. The idea is to choose your working directory, so 
as to make fi lenames as simple as possible and easy to type.
 Throughout this book, you will fi nd many examples in which I use fi lenames such as:

vi kafka

Now you understand that, in such cases, I am actually using relative pathnames. In this 
example, the command starts the vi text editor using the fi le named kafka in the 
working directory. Of course, when necessary, you can always use a full pathname:

vi /home/harley/essays/literature/kafka

33614_24_659_714.indd   66233614_24_659_714.indd   662 1/9/2008   12:39:57 PM1/9/2008   12:39:57 PM



Working With Directories

663

I want you to remember this idea whenever you use a program whose syntax requires you 
to specify the name of a fi le. In such cases, you can use either an absolute pathname or a 
relative pathname.

THREE HANDY PATHNAME ABBREVIATIONS:  ..  .  ~
Unix provides      three handy pathname abbreviations. The fi rst is two periods in a row, 
pronounced “dot-dot”:

..

When you use .. in a pathname, it refers to the parent directory.
 To illustrate how this works, let us refer to the sample directory tree in Figure 24-1. 
Within the home directory /home/harley, there are two subdirectories, bin and 
essays. The bin directory contains two fi les. The essays subdirectory contains two 
subdirectories of its own, history and literature. Each of these directories contains 
two fi les. Say that you set the working directory to:

/home/harley/essays/literature

(To do so, you would use the cd command, which we will discuss later in the chapter.) 
Once your working directory is changed in this way, you can refer to the two fi les in 
this directory as kafka and tolstoy (using relative pathnames). At this point, the 
specifi cation .. refers to the parent directory, that is:

/home/harley/essays

Let’s say you want to refer to the fi le crusades within the history directory. One 
way is to type the entire absolute pathname:

/home/harley/essays/history/crusades

An easier way is to use the abbreviation .. to stand for the parent directory:

../history/crusades

When you use .., it is the same as the name of the parent directory, so the above pathname 
is equivalent to the absolute pathname.
 You can use the .. more than once to move “up” more than one level. For example, 
from the same working directory, let’s say you want to refer to the bin directory. You 
could use the absolute pathname:

/home/harley/bin

Alternatively, you can use the .. abbreviation twice:

HINT

It is a fundamental rule of Unix that whenever you can use an ordinary fi lename, you can, 
instead, use a pathname.

Three Handy Pathname Abbreviastions: ..  .  ~

33614_24_659_714.indd   66333614_24_659_714.indd   663 1/9/2008   12:39:57 PM1/9/2008   12:39:57 PM



Chapter 24

664 Harley Hahn’s Guide to Unix and Linux

../../bin

The fi rst parent directory is:

/home/harley/essays

The second parent directory (the grandparent) is:

/home/harley

Here is another example. You want to refer to the funky fi le within the bin directory. 
The absolute pathname is:

/home/harley/bin/funky

Starting from the same working directory, you can use:

../../bin/funky

Here is one last example, which is a bit extreme. (Read slowly to make sure you understand 
it.) Your working directory is:

/home/harley/essays/literature

To refer to the root directory of the entire fi lesystem, you can use .. four times:

../../../..

Similarly, you can refer to the /etc directory as:

../../../../etc

Of course, you would probably never use these examples, as it is a lot easier to type / and 
/etc. The .. abbreviation is most useful when you want to refer to directories near 
your working directory, without having to actually change your working directory.
 The second   pathname abbreviation is a single period, usually referred to as “dot”:

.

A single . refers to the working directory itself. For example, let’s say the working 
directory is:

/home/harley/essays/literature

The following three specifi cations all refer to the same fi le:

/home/harley/essays/literature/kafka
./kafka
kafka

Certainly, it is a lot easier to type . than the full name of the working directory. But, as you 
can see, you don’t really need to specify any directory name. As long as a name does not 
begin with a /, Unix will assume that any pathname is relative to your working directory. 
This principle is important enough that I want to embody it in the form of a hint:

33614_24_659_714.indd   66433614_24_659_714.indd   664 1/9/2008   12:39:57 PM1/9/2008   12:39:57 PM



Working With Directories

665

 You might ask, why would you ever need to use a single . abbreviation? There are 
certain situations in which you must specify an absolute pathname. In such cases, you can 
use the . abbreviation for the name of your working directory. The idea is to avoid typing 
a long pathname, not only out of laziness (although that is a good idea), but to make it 
less likely you will make a spelling mistake. (As I am sure you know by now, it is far too 
easy to make spelling mistakes when typing Unix commands.)
 Here is an example. Let’s say you have written a program called plugh. (I will leave it 
to your imagination as to what this program might do.) The program is in the directory 
/home/harley/adventure which, at this moment, is your working directory. 
Normally, you would run a program by entering its name:

plugh

However, Unix can only run a program if it can fi nd it. In most cases, this means that 
the fi le that holds the program should reside in one of the directories in your search path 
(see Chapter 13). In our example, the directory containing the program is not in your 
search path. However, Unix can always fi nd and run a program if you specify the absolute 
pathname. Thus, you can run the plugh program by typing:

/home/harley/adventure/plugh

However, since the program lies in your working directory, you have an easier alternative.  
Use the . abbreviation:

./plugh

Be sure you understand that .. and . are abbreviations. As our example illustrates, when 
you start a name with .. or . you are really specifying a full pathname. Unix is just 
helping you with the typing.
 The third pathname abbreviation is the    ~ (tilde). You can use this symbol at the 
beginning of a pathname to stand for your home directory. For example, to use the ls 
program to list the names of all the fi les in your home directory, you can use:

ls ~

To list the fi les in the subdirectory bin that lies within your home directory, you can use:

ls ~/bin

To refer to another userid’s home directory, you can use a ~ followed by the userid. For 
example, to list the fi les in the home directory of userid weedly, you would use:

ls ~weedly

HINT

Any pathname that does not begin with a / is considered to be relative to your working directory.

Three Handy Pathname Abbreviastions: ..  .  ~

33614_24_659_714.indd   66533614_24_659_714.indd   665 1/9/2008   12:39:57 PM1/9/2008   12:39:57 PM



Chapter 24

666 Harley Hahn’s Guide to Unix and Linux

Let’s say that weedly has a bin directory of his own and, within that bin directory, 
there is a program named mouse. To run the program, you must type the absolute 
pathname. You have two choices:

/home/weedly/bin/mouse
~weedly/bin/mouse

These last few examples raise an important question. Can any user look at other people’s 
fi les and run their programs? For that matter, can a user change someone else’s fi les?
 The answer is that all    fi les (including directories) have “permissions”. The permissions 
for a fi le dictate who can look at and modify the fi le. On many systems, the default is to 
let users look at other people’s fi les, but not to modify them or run them. However, fi le 
permissions are under the control of the owner of the fi le. Thus, every Unix user can 
restrict or allow access to his fi les as he sees fi t. We will discuss these issues in Chapter 25.

MOVING AROUND THE DIRECTORY TREE: cd, pwd
To display the          name of your working directory, use the pwd (print working directory) 
command. The syntax is easy:

pwd

To change your working directory, you use the cd (change directory) command. The 
syntax is:

cd [-LP] [directory | -]

where directory is the name of the directory to which you want to change.
 If you enter the command without a directory name, cd will, by default, change to 
your home directory. If you enter the command with - (dash) instead of a directory 
name, cd will change to the previous directory. The -L and -P options have to do with 
symbolic links, which we will cover in Chapter 25.
 As a general rule, when a Unix name is short and has no vowels, we pronounce its 
name as separate letters. For example, the ls command is pronounced “L-S”. Similarly, 
the pwd and cd commands are pronounced “P-W-D” and “C-D”.
 Of all the Unix tools, cd and pwd are among the most useful. You will fi nd yourself 
using them a lot, so read this section carefully. Here are some examples of how to use the 

TECHNICAL HINT

There are three standard abbreviations you can use when specifying a pathname: . (current 
directory), .. (parent directory), and ~ (home directory). Although they seem similar, they are 
not implemented in the same way.
 The names . and .. are actual directory entries, created automatically by the fi lesystem. 
Every directory in the system contains these two entries.
 The name ~ is an abstraction provided by the shell, to make it convenient to refer to your 
home directory.

33614_24_659_714.indd   66633614_24_659_714.indd   666 1/9/2008   12:39:57 PM1/9/2008   12:39:57 PM



Working With Directories

667

cd command. When you practice using your own examples, remember to use the pwd 
command from time to time to check where you are.
 To change your working directory to /home/harley/essays, use:

cd /home/harley/essays

To change to /bin, use:

cd /bin

To change to / (the root directory) use:

cd /

For convenience, you can use relative pathnames as well as abbreviations. For 
example, say that your working directory is currently /home/harley. Within this 
directory, you have two subdirectories, bin and essays. To change to bin (that is, 
/home/harley/bin), simply enter:

cd bin

Because the directory name bin does not start with a /, Unix assumes it is a relative 
pathname, based on your working directory. Here is another example. Again, your 
working directory is /home/harley. This time you want to change to:

/home/harley/essays/history

Using a relative pathname, you can enter:

cd essays/history

When you use the cd command without a directory name, it changes your working 
directory to your home directory:

cd

Using cd in this way is the fastest way to return home when you are exploring a    distant 
branch of the fi lesystem and you have lost your way.* For example, say that your working 
directory happens to be /etc/local/programs. You want to move to the bin 
directory within your home directory. Just enter:

cd
cd bin

The fi rst command changes to your home directory. The second command changes to 
the bin directory within your home directory. To make it more convenient, recall that 
you can enter more than one command on the same line by separating the commands 
with a semicolon (see Chapter 10). Thus, no matter where you are in the fi lesystem, you 
can move to your own personal bin directory by entering:

 *Alternatively, if you happen to be wearing a pair of ruby slippers, you can tap your heels together three times and repeat 
“There’s no place like home.”

Moving Around the Directory Tree: cd, pwd

33614_24_659_714.indd   66733614_24_659_714.indd   667 1/9/2008   12:39:58 PM1/9/2008   12:39:58 PM



Chapter 24

668 Harley Hahn’s Guide to Unix and Linux

cd; cd bin

Here are some examples showing how to use two standard pathname abbreviations we 
discussed earlier. We’ll start with .., the abbreviation for the parent directory. Let’s say 
that your working directory is:

/home/harley/essays/history

To change to the parent directory, /home/harley/essays, just go up one level in 
the tree:

cd ..

From the original working directory, you could use the following command to change to 
/home/harley/essays/literature by using:

cd ../literature

To go up more than one level, use the .. abbreviation more than once. For example, from 
the original working directory, you could change to /home/harley/bin by using:

cd ../../bin

Question: What happens if you are in the root directory and you enter:

cd ..

Answer: Nothing will happen. Your working directory will not change, and you will 
not see an error message. Why? Because Unix considers the parent directory of the root 
directory to be the root directory itself.* For example, as odd as it seems, the following 
two pathnames refer to the same fi le:

/etc/passwd
/../../../etc/passwd

The other useful abbreviation is ~ (tilde) which, as we discussed, stands for the name of 
your home directory. Thus, the following two command lines have the same effect: they 
both set your working directory to the bin subdirectory of your home directory:

cd; cd bin
cd ~/bin

The fi rst command makes the change in two steps; the second command does it all at once.
 At times, you will fi nd yourself switching back and forth between two directories. In 
such cases, cd has a special abbreviation to make life easier. If you type - (dash) instead 
of a directory name, cd will change to the last directory you visited. At the same time, cd 
will display the name of the new directory, so you will know where you are.
 Here is an example you can try for yourself. To start, use cd to change to the /etc 
directory and the pwd to confi rm the change:

 *An assumption that has important theological implications.

33614_24_659_714.indd   66833614_24_659_714.indd   668 1/9/2008   12:39:58 PM1/9/2008   12:39:58 PM



Working With Directories

669

cd /etc; pwd

Now change to /usr/bin:

cd /usr/bin; pwd

Finally, enter cd with a - character.

cd -

You are now back in /etc.

MAKING A NEW DIRECTORY: mkdir
To make    a directory, you use the mkdir program. The syntax is:

mkdir [-p] directory...

where directory is the name of a directory you want to make.
 Using this program is straightforward. You can name a new directory anything you 
want as long as you follow a few simple rules. I will go over the rules in Chapter 25 when 
I talk about naming fi les. (Remember, as I explained in Chapter 23, directories are really 
fi les.) Basically, you can use letters, numbers, and those punctuation symbols that do not 
have a special meaning. However, most of the time, your life will be easier if you stick to 
lowercase letters only.

HINT

At any time, you can fi nd out where you are in the tree by using pwd to display the name of your 
working directory. However, there are two alternatives.
 First, it is possible to display the name of your working directory in your shell prompt. As 
you change from one directory to another, your prompt updates automatically to show you 
where you are. The details are covered in Chapter 13.
 Second, most GUI-based terminal windows display the name of your working directory in the 
title bar (at the top of the window). Take a moment to see if this is the case with your system.

WHAT’S IN A NAME?

pwd, cd
In Chapter 3, we discussed how the early Unix developers used teletype terminals that printed 
output on paper. Over the years, Unix has retained the convention of using the word “print” 
to mean “to display information”. Thus, the name pwd stands for “print working directory”, 
even though it has been a long time since anyone actually printed the name of their working 
directory on paper.
 If you hang around Unix geeks, you will often hear them use cd as a verb. (When they do, 
the name cd is pronounced as two letters “C-D”.) For example, someone might say, “To fi nd the 
basic Unix tools, just C-D to the /bin directory and look around.” This is consistent with the 
metaphor in which we imagine ourselves sitting on a branch of a tree, and we use cd to move 
to another branch and pwd to remind us where we are.

Making a New Directory: mkdir

33614_24_659_714.indd   66933614_24_659_714.indd   669 1/9/2008   12:39:58 PM1/9/2008   12:39:58 PM



Chapter 24

670 Harley Hahn’s Guide to Unix and Linux

 Here is an example. To create a directory named extra, within your working 
directory, use:

mkdir extra

When you specify a directory name, you can use either an absolute or relative pathname, 
as well as the standard abbreviations. As an example, let’s say that you want to create the 
directory tree in Figure 24-2 (the directories I used as examples earlier in the chapter.) Within 
your home directory, you want to make two subdirectories, bin and essays. Within the 
essays directory, you want two more subdirectories, history and literature.
 To start, make sure that you are in your home directory:

cd

Now, make the fi rst two subdirectories:

mkdir bin essays

Next, change to the essays directory and make the fi nal two subdirectories:

cd essays
mkdir history literature

To illustrate the various ways to specify pathnames, let’s take a look at two more ways to 
create the same directories. First, you could have done the whole thing without leaving 
the home directory:

cd
mkdir bin essays essays/history essays/literature

The fi rst command changes to the home directory. The second command specifi es all 
four names, relative to your working directory. In the following example, we don’t even 
bother changing to the home directory:

mkdir ~/bin ~/essays ~/essays/history ~/essays/literature

FIGURE 24-2: Making a sample directory tree

To make a new directory, you use the mkdir program.  Here is a sample directory tree that is created by 
using sample mkdir commands (see text for details).  This tree consists of two subdirectories, bin and 
essays, within the home directory.  The bin directory has two subdirectories of its own, history 
and literature.

/home/userid

bin

history literature

essays

33614_24_659_714.indd   67033614_24_659_714.indd   670 1/9/2008   12:39:58 PM1/9/2008   12:39:58 PM



Working With Directories

671

Remember, the ~ (tilde) character is an abbreviation for your home directory.
 There are times when it is handy to use the .. abbreviation to indicate a parent 
directory. For example, say that you have changed to the essays directory:

cd ~/essays

You now decide to create a subdirectory named extra within the bin directory. Since 
the bin and essays have the same parent (the home directory), you can use:

mkdir ../bin/extra

When you create a directory, Unix makes you follow two sensible rules. First, within a 
directory, you cannot create two subdirectories with the same name. For example, you 
cannot have two directories named ~/essays/history. (How would you tell them 
apart?) However, you can have two directories with the same name if they are in different 
parent directories. For example:

~/essays/history
~/homework/history

The second rule is that, by default, you cannot make a subdirectory if its parent directory 
does not exist. For example, you cannot make ~/homework/history unless you have 
already made ~/homework. When you specify more than one directory within a single 
command, mkdir will create the directories in the order you specify. Thus, the following 
command will work, because you are telling mkdir to create the homework directory 
before it creates the history directory:

mkdir ~/homework ~/homework/history

However, the next command will not work, because you can’t create a subdirectory before 
you create the parent directory:

mkdir ~/homework/history ~/homework

Recall for a moment our analogy comparing the fi lesystem to a tree. The main trunk is 
the root directory, and each branch is a subdirectory. The two rules merely say:

1. You cannot create two identical branches.
2. You cannot create a new branch that has nowhere to attach to the tree.

For convenience, you can override the second restriction by using the -p (make parent) 
option. This tells mkdir to create all the necessary parent directories automatically. For 
example, let’s say you are researching how the early Romans used Unix, and you need to 
create the following directory structure to hold your fi les:

~/essays/history/roman/unix/research

You can’t create the research directory unless unix exists; you can’t create unix 
unless roman exists; and so on. Thus, if none of the directories exists, you would have to 
use a sequence of fi ve commands to create the full structure:

Making a New Directory: mkdir

33614_24_659_714.indd   67133614_24_659_714.indd   671 1/9/2008   12:39:58 PM1/9/2008   12:39:58 PM



Chapter 24

672 Harley Hahn’s Guide to Unix and Linux

mkdir ~/essays
mkdir ~/essays/history
mkdir ~/essays/history/roman
mkdir ~/essays/history/roman/unix
mkdir ~/essays/history/roman/unix/research

However, if you use -p, you can create everything with a single command:

mkdir -p ~/essays/history/roman/unix/research

REMOVING A DIRECTORY: rmdir
To remove (delete) a directory,     use the rmdir program. The syntax is straightforward:

rmdir [-p] directory...

where directory is the directory that you want to remove.
 For example, to remove the directory extra from within the working directory, use:

rmdir extra

When you use rmdir, you can specify one or more directory names using absolute 
or relative pathnames. You can also use the standard abbreviations: .. for the parent 
directory, and ~ (tilde) for the home directory.
 Let’s take a look at some examples using the sample directory tree we built in the previous 
section. (See Figure 24-2.) Within the home directory, we have two subdirectories, bin 
and essays. Within the essays directory, we have two more subdirectories, history 
and literature. Say that you want to delete all four of these directories. There are 
several ways to do the job. First, move to the essays directory:

cd ~/essays

HINT

When it comes to fi lenames, Unix is case sensitive, which means it distinguishes between upper- 
and lowercase (see Chapter 4). For example, the following three directory names are considered 
to be different:

bin
Bin
BIN

We’ll talk about naming fi les in Chapter 25. For now, let me give you the following advice. When 
it comes to   naming directories, unless you have a really good reason, use only lowercase letters. 

If you want to break up words, use a - (dash) or _ (underscore), for example:

backups-january
backups_january

It is possible to use spaces within a directory name if you enclose the entire name in quotes. 
Don’t do it, however. It only leads to trouble.

33614_24_659_714.indd   67233614_24_659_714.indd   672 1/9/2008   12:39:58 PM1/9/2008   12:39:58 PM



Working With Directories

673

From here, you can delete the two subdirectories:

rmdir history literature

Next, move to the parent directory (the home directory):

cd ..

Remove the two main subdirectories:

rmdir bin essays

An alternate method would be to move to the home directory and remove all four 
subdirectories in one command:

cd
rmdir essays/history essays/literature essays bin

As a fi nal example, you could do all the work without moving to the home directory:

rmdir ~/essays/history ~/essays/literature ~/essays ~/bin

When you remove a directory, Unix makes you follow two sensible rules. First, as a 
safeguard, you cannot remove a directory unless it is empty. (A directory is not empty if 
it contains a subdirectory or a fi le.)
 Here is a real life example. It is late Sunday night, and you are working in the 
computer lab using Linux to complete a special project. Your home directory contains 
two subdirectories, data and olddata. The data directory contains 100 important 
fi les. The olddata directory is empty. You decide to remove the olddata directory. 
However, just as you enter the command, a meteorite smashes through the window hitting 
one of the geeks who is sitting beside you. In the confusion, you accidentally type:

rmdir data

Fortunately, Unix is prepared for just such an eventuality. You see the message:

rmdir: data: Directory not empty

Thanks to the built-in safeguard, your data directory is left untouched.
 If you want to remove a sequence of empty directories all at once, you can do so 
by using the -p (delete parent) option*. This tells rmdir to remove all the necessary 
parent directories automatically. For example, let’s say you have the following directory 
structure, and that all the directories are empty.

~/essays/history/roman/unix/research

 You want to remove all fi ve subdirectories. Without the -p option, you would have to 
start from the innermost subdirectory and work your way up the tree:

 *Sometimes called the Oedipus option.

Removing a Directory: rmdir

33614_24_659_714.indd   67333614_24_659_714.indd   673 1/9/2008   12:39:58 PM1/9/2008   12:39:58 PM



Chapter 24

674 Harley Hahn’s Guide to Unix and Linux

cd
rmdir essays/history/roman/unix/research
rmdir essays/history/roman/unix
rmdir essays/history/roman
rmdir essays/history
rmdir essays

With the -p option, however, you can change to your home directory and do the whole 
thing at once:

cd
rmdir -p essays/history/roman/unix/research

None of these commands will work if the directories are not empty. As I mentioned, this 
is for your protection. There will be rare occasions, however, when you really do want to 
remove a directory that is not empty. To do so, you can use the rm program with the -r 
option. Using   rm -r will remove all subdirectories and their contents, so you must be very 
careful. We will discuss the rm program in Chapter 25, so I will defer the details until then.
 A moment ago, I mentioned that there are two rules imposed by rmdir. First, you 
cannot remove a directory unless it is empty. The second rule is that you cannot remove 
any directory that lies between your working directory and the root directory. For 
example, say that your working directory is:

/home/harley/essays/literature

You cannot remove the essays directory or the harley directory, because they lie 
between you and the root directory. However, you can remove the directory:

/home/harley/essays/history

That is, you can use the command:

rmdir ../history

After all, the history directory does not lie between you and the root directory. If 
you want to remove essays, you must fi rst move closer to the root directory, say to 
/home/harley. Now you can remove the directory:

cd /home/harley
rmdir essays/history essays/literature essays

Question: Your working directory is /etc. Can you remove a subdirectory that lies 
within your home directory?

Answer: Yes, because your working directory (/etc) does not lie between the root 
directory and the directory you want to remove.

 To remember this rule, just recall our analogy to a real tree. The trunk is the root 
directory. Each branch is a subdirectory. At any time, you are sitting on some branch that 
is your working directory. Removing a directory is like sawing off a branch of the tree. 

33614_24_659_714.indd   67433614_24_659_714.indd   674 1/9/2008   12:39:58 PM1/9/2008   12:39:58 PM



Working With Directories

675

The restriction on removing directories simply states that you cannot saw off a branch 
that is holding up the one you are sitting on.

MOVING OR RENAMING A DIRECTORY: mv
To move or       rename a directory, use the mv program. The syntax is:

mv directory target

where directory is the directory you want to move or rename, and target is the target or 
new name.
 You use the mv program to “move” a directory from one place to another. If the new 
location is in the same directory, you have, in effect, renamed the original directory. That 
is why I say that mv both moves and renames.
 Let me show you a few examples. You have a directory named data in your working 
directory, and you want to change its name to extra. Assuming that a directory named 
extra does not already exist in the same directory, you can use the command:

mv data extra

The directory that used to be named data is now named extra.
 If the target directory does exist, mv will move the original directory into the target. 
For example, say that you have the following two directories:

/home/harley/data
/home/harley/storage

You want to move the data directory to the storage directory. Use:

mv /home/harley/data /home/harley/storage

Of course, if your working directory is /home/harley, you can simplify the command:

mv data storage

The pathname of the data directory is now:

/home/harley/storage/data

When mv moves a directory, it also moves all the fi les and subdirectories that lie within 
that directory. For example, say that, before the move, you had a fi le named document 
within the data directory. Its absolute pathname was:

HINT

It is possible to remove your    working directory. This is like cutting off the branch of the tree that 
you are sitting on. Probably Unix shouldn’t let you do this, but it does.
 Removing your working directory will only cause you trouble. Don’t do it.*

 *Even though I told you not to do it, I know you’re going to do it just to see what happens. When you do, be sure to use a 
temporary subdirectory. Don’t remove your home directory, or you really will be in trouble.

Moving or Renaming a Directory: mv

33614_24_659_714.indd   67533614_24_659_714.indd   675 1/9/2008   12:39:58 PM1/9/2008   12:39:58 PM



Chapter 24

676 Harley Hahn’s Guide to Unix and Linux

/home/harley/data/document

After the move, the absolute pathname becomes:

/home/harley/storage/data/document

If you had subdirectories — perhaps even a whole subtree — under data, they are 
moved as well. Thus, you can use the mv program for three purposes:

1. Rename a directory.
2. Move a directory.
3. Move an entire directory tree.

The mv program can be used to move or rename ordinary fi les, as well as directories. We 
will discuss how to do so in Chapter 25.

USING THE DIRECTORY STACK: pushd, popd, dirs
In Chapter 13, I explained that         there are two types of Unix commands. External commands 
are separate programs. Builtin (or internal) commands are interpreted directly by the shell 
and are available only if your shell supports them. In this section, I am going to show you how 
to use three builtin commands, pushd, popd and dirs. These commands are available 
with Bash, the Tcsh and the C-Shell, but not with the Korn Shell.
 At this point, we have covered the fundamental operations you need to work with 
directories. You know how to create, delete, move and rename. You also know how to change 
your working directory and display its name. What we have yet to cover are the many variations 
of the very important ls program, the tool that enables us to look inside a directory and see 
what’s there. Before we move on to ls, however, I’d like to take a moment to show you an 
advanced technique that will help you move around the tree from one directory to another.
 In Chapter 8, we talked about the idea of data structures, entities that are used to 
store and retrieve data according to a set of precise rules. So far, we have discussed three 
different data structures: the stack (Chapter 8), the queue (Chapter 23), and the tree 
(Chapters 9 and 23). We are about to use the stack again, so let’s have a quick review.
 A STACK  is a data structure in which elements are stored and retrieved one at a time 
such that, at any time, the next data element to be retrieved is the last element that was 
stored. This  arrangement is sometimes referred to as LIFO or “last-in fi rst-out”. When you 
store a data element, we say that  you PUSH it onto the stack. The most recently pushed 
data element is said to be at the  TOP of the stack. When you retrieve a data element from 
the top of the stack, we say that  you POP the element off the stack. Informally, you can 
think of a stack as being similar to a spring-loaded column of plates in a cafeteria. The 
plates are pushed onto the “stack”, one at a time. When you want a plate, you pop the top 
one off the stack. You have no access to any of the other plates.
 The shell provides a similar facility to hold directory names. At any time, you can use 
the pushd command to push the name of a directory onto the DIRECTORY STACK. 
Later, you can use the popd command to pop a name off the stack. At any time, you 
can display the contents of the stack by using the dirs command. The syntax for these 
commands is as follows:

33614_24_659_714.indd   67633614_24_659_714.indd   676 1/9/2008   12:39:58 PM1/9/2008   12:39:58 PM



Working With Directories

677

pushd [directory | +n]
popd [+n]
dirs [-c] [-l] [-v]

where directory is the name of a directory, and n is an identifi er. Note: when 
you use options with dirs, you must keep them separate. For example, you can use 
dirs -l -v, but not dirs -lv.
 In this section, we will cover the most important ways to use these three commands. 
There are a few more esoteric variations, which you can read about in the online manual. 
(Look on the man page that describes the builtin commands for your shell.) For reference, 
Figure 24-3 summarizes the commands we will be covering.
 Learning how to use the directory stack takes a bit of practice, but it is worth the effort. 
Once you master the details, you will be able to zip around the fi lesystem like a VIP with a 
backstage pass running around a rock concert. The trick is to remember one simple rule:
 At all times, the  top of the stack holds the name of your working directory.
 Whenever you change your working directory, the top of the stack changes automatically. 
Conversely, whenever you change the top of the stack, your working directory changes 
automatically. (Think about this for a moment, before you move on.)
 Here are some examples. Start by using cd to change to the /etc directory. Use pwd 
to confi rm the change:

cd /etc; pwd

Now display the contents of the stack. To do so, use the dirs command with the 
-v (verbose) option. This option tells dirs to display each element on the stack on a 
separate line with a line number. The top of the stack is line #0.

COMMAND ACTION
dirs display names: home directory shows as ~

dirs -l display names: home directory shows as full pathname

dirs -v display names: one per line, with numeric identifi ers

pushd directory change working directory: push directory onto stack

pushd +n change working directory: move directory #n to top of stack

popd change working directory: pop top of stack

popd +n remove directory #n from stack

dirs -c remove all names in stack except working directory

FIGURE 24-3: Directory stack commands

The directory stack is an advanced tool that enables you to maintain a list of directories and, whenever 
you want, change your working directory to a directory in the list.

At all times, the name at the top of the stack is your working directory.  Changing this name automatically 
changes your working directory.  Similarly, changing your working directory automatically changes the 
top name on the stack.  You control the stack by pushing names onto it, popping names off it, or selecting 
a name to move to the top.  Each of these operations changes the top of the stack, thereby changing your 
working directory.  See text for details.

Using the Directory Stack: pushd, popd, dirs

33614_24_659_714.indd   67733614_24_659_714.indd   677 1/9/2008   12:39:58 PM1/9/2008   12:39:58 PM



Chapter 24

678 Harley Hahn’s Guide to Unix and Linux

dirs -v

The output is:

0  /etc

Change to the /usr directory, and display the stack again:

cd /usr; dirs -v

Notice that the top of the stack has changed to point to your new working directory:

0  /usr

Now, use pushd to push three new directory names onto the stack. You must do this as 
three separate commands. Then use dirs to display the stack:

pushd /lib
pushd /var
pushd /etc
dirs -v

The output is:

0  /etc
1  /var
2  /lib
3  /usr

The stack now contains four directory names. Now display your working directory:

pwd

The output is:

/etc

Notice that you didn’t have to change your working directory explicitly. Whenever the 
top of the stack (#0) changes, your working directory changes automatically.*
 Next, use popd to pop a single name off the stack. Then display the stack and your 
working directory:

popd
dirs -v
pwd

The output of the dirs command is:

 *You may have heard of the legendary magician Harry Houdini (1874–1926). Houdini used to perform a mystifying mind-
reading trick in which he would guess someoe’s working directory without using the pwd command. The secret? When no one 
was looking, Houdini would use the dirs command and sneak a peek at the top of the stack.

33614_24_659_714.indd   67833614_24_659_714.indd   678 1/9/2008   12:39:59 PM1/9/2008   12:39:59 PM



Working With Directories

679

0  /var
1  /lib
2  /usr

The output of the pwd command is:

/var

The popd command popped /etc off the stack, which brought /var to the top of the 
stack. The instant this happened, /var became your working directory. We confi rmed 
this by using pwd.
 If you look back at the syntax, you will see that there are several options you can use 
with dirs. With no options, dirs will display the directory stack in a compressed format 
with all the names on a single line. If any of the names involve your home directory, dirs 
will represent it with a ~ (tilde) character. With the -l (long) option, dirs displays the 
full name of your home directory. Finally, with the -v (verbose) option, dirs displays 
one name per line with line numbers. To experiment, push your home directory onto the 
stack. Then try each of the variations:

pushd ~
dirs
dirs -l
dirs -v
dirs -l -v

The dirs command has one more option, but it has nothing to do with displaying 
names. The -c (clear) option empties the stack. Use this option when you want to clear 
out the stack and start fresh. To experiment, use dirs -c (to clear the stack) followed 
by dirs -v (to display the stack). Before you enter these commands, see if you can 
answer the question: Will the second command show an empty stack?

dirs -c
dirs -v

The answer is you will never see a completely empty stack. This is because the top of the 
stack is the name of your working directory. Since you always have a working directory, 
the directory stack must always have at least one name on it.
 At this point, I can imagine you are thinking that all of this is interesting (or dull, 
depending on your point of view), but what good is it? How often, I hear you say, am I 
going to want to push directory names onto a stack and then pop them off, one at a time, 
just so I can change my working directory? Why not just use cd?
 If you are thinking along these lines, you are correct. Most of the time, only the 
real geeks use the directory stack.* Indeed, if all you want to do is switch back and 
forth between two directories, you can use cd - (described earlier in the chapter). 
Why should you learn more arcane commands and spend time messing around with 
a stack?

Using the Directory Stack: pushd, popd, dirs

33614_24_659_714.indd   67933614_24_659_714.indd   679 1/9/2008   12:39:59 PM1/9/2008   12:39:59 PM



Chapter 24

680 Harley Hahn’s Guide to Unix and Linux

 The reason I am teaching you all this is that there is one aspect of the stack that is 
extremely useful: you can use the pushd command to jump into the middle of the 
stack and “push” a directory name to the top. The moment you do, you change your 
working directory.
 It sounds complicated, but it isn’t: it’s quick, easy, and very powerful. Here is an 
example to show you how it works. Start by entering the following commands:

cd
dirs -c
pushd /lib
pushd /var
pushd /etc
dirs -v

The cd command changes to your home directory. The dirs -c command clears the 
stack. At this point, the stack is empty except for your working directory (which is ~, 
your home directory). The next three pushd commands push directory names onto the 
stack. The fi nal dirs command displays the contents of the stack. The output of this 
command is:

0  /etc
1  /var
2  /lib
3  ~

There are now four names on the stack, and your working directory is the top one, /etc 
(#0). Let’s say you have been working for a while in /etc and you want to change to 
/lib (#2). Just enter pushd, followed by a + (plus) character and the number 2:

pushd +2

This tells the shell to move the #2 directory (/lib) to the top of the stack (#0). The 
moment /lib becomes #0, it also becomes your working directory. The net effect is to 
select the #2 directory from the middle of the stack and make it your working directory. 
At this point, if you use dirs -v to display the directory stack, it will look like this:

0  /lib
1  ~
2  /etc
3  /var

How did this happen? When you push a directory to the top, the directories above it are 
not lost. Instead, they are moved down the stack. In this case, when you moved directory 
#2 up to the top, directories #0 and #1 were rotated down towards the bottom.

 *If you should happen to be someone who uses the directory stack a lot, you should know that I am using the word “geek” 
in the kindest possible sense.

33614_24_659_714.indd   68033614_24_659_714.indd   680 1/9/2008   12:39:59 PM1/9/2008   12:39:59 PM



Working With Directories

681

 I have to admit, this example is contrived. After all, there’s no point entering commands 
to build a directory stack, display the stack contents, and then push names to the top, 
when you can do the same thing by typing a simple command like:

cd /lib

However, what if the directories had longer names? For example, let’s say you are in your 
home directory /home/harley. You now enter the following pushd commands to 
push four very long names onto the directory stack:

pushd /home/harley/source/current/calculate/source/2-1.05
pushd /usr/include/linux/nfsd
pushd /home/harley/archive/calculate/source/1-0.31
pushd /usr/share/dict/

If you were going to do a lot of work with these directories, it would be a real bother to 
have to type the names over and over. Instead, you can push them on the stack once. Then, 
whenever you want, you can push whichever name you want to the top of the stack. For 
example, let’s say you are working in the dict directory. After a while, you want to change to 
the nfsd directory. First display the stack to see what number you should push to the top:

dirs -l -v

The output is:

0  /usr/share/dict
1  /home/harley/archive/calculate/source/1-0.31
2  /usr/include/linux/nfsd
3  /home/harley/source/current/calculate/source/2-1.05
4  /home/harley

All you need to do is push directory #2 to the top of the stack:

pushd +2

Later, when you need to change to another directory, just display the directory stack again 
and push another name to the top. (It is important to display the stack each time, as the 
numbers change whenever you push.)
 Deleting and adding to the directory stack is easy. To delete a name from the stack, 
use popd followed by the number. To add a name to the stack, use pushd as described 
earlier. For example, to remove name #2 from the stack, use:

popd +2

To push /home/weedly/bin onto the stack, use:

pushd /home/weedly/bin

Something to ponder: In Chapter 13, when we discussed the history list, I showed you how 
to display a list of commands and then refer to a particular command by its event number. 

Using the Directory Stack: pushd, popd, dirs

33614_24_659_714.indd   68133614_24_659_714.indd   681 1/9/2008   12:39:59 PM1/9/2008   12:39:59 PM



Chapter 24

682 Harley Hahn’s Guide to Unix and Linux

Can you see the similarity to using the directory stack? You display a list of directories and 
then refer to a particular directory by its number. (This similarity is not an accident.)
 To fi nish this section, let me show you something totally cool. To make it easy to 
work with the directory stack, you can create aliases (see Chapter 13)  for dirs -v and 
pushd. The following commands will do the job for Bash. (Remember, the Korn shell 
does not support the directory stack.)

alias d='dirs -v'
alias p=pushd

For the C-Shell family, you would use:

alias d 'dirs -v'
alias p pushd

Once you defi ne these aliases, using the directory stack is simple. To display the stack, 
just enter:

d

To change your working directory by pushing a new name onto the stack, use a 
command like:

p /usr/lib

To change your working directory by pushing an existing name to the top of the stack, 
use a command like:

p +4

If you have a moment right now, type in these aliases and experiment a bit. As you 
enter the directory names, be sure to use autocompletion (see Chapter 13) to keep your 
typing to a minimum. If you want the aliases to be permanent, just put them in your 
environment fi le (Chapter 14). For reference, the commands we have discussed in this 
section are summarized in Figure 24-3.

THE MOST IMPORTANT PROGRAM OF ALL: ls
Of all the   Unix tools, the most important is the ls program (pronounced “L-S”), used 
to display information about the contents of a directory. Why is ls so important? To 
answer this question, we need to consider the fundamental nature of Unix.
 As I mentioned in Chapter 6, every object within a Unix system is either a fi le or 
a process. In simple terms, fi les hold data or allow access to resources; processes are 

HINT

If you plan on using the same set of directories over and over, put the appropriate pushd 
commands in your login fi le (see Chapter 14). That way, each time you log in, your directory 
stack will be built for you automatically.

33614_24_659_714.indd   68233614_24_659_714.indd   682 1/9/2008   12:39:59 PM1/9/2008   12:39:59 PM



Working With Directories

683

programs that are executing. When you use Unix, we call you a user. However, Unix 
itself does not know about users; Unix only knows about userids (see Chapter 4). Indeed, 
inside a Unix system, only userids have a real identity. Thus, it is userids, not users, that 
log in, log out, own fi les, run programs, send email, and so on.
 For this reason, every Unix system has an inside and an outside, with a clear boundary 
between the two. The inside consists of all the fi les and processes, along with the userids 
that inhabit the ghostly environment. The outside is you, the user. The boundary is defi ned 
by the physical interfaces: your keyboard, mouse, monitor, speakers, and so on. Although 
the brains of the operation are inside you (the user), you can’t enter the Unix environment. 
Thus, you have no way of sensing directly what exists on the inside and what is happening.
 To be sure, you are in charge, and your userid acts as your offi cial representative. 
However, when you come right down to it you are fl ying blind, like a pilot in a fog who 
must depend on his or her instruments. You can’t see any of the fi les or any of the processes. 
You can’t even see your userid. The best you can do is enter commands and interpret the 
output. For this reason, the most important tools are the ones that act as your ears and 
eyes, the programs that display information about fi les and processes. To do so, these 
tools help you answer the questions: “What is there?” and “What is happening?”
 In Chapter 26, I will show you how to check on the status of your processes. (The principal 
tool we will be using is the ps program.) However, as important as processes are, most of 
the time you just let them do their job. Most of your effort is spent thinking about and 
manipulating fi les. Since fi les reside in directories, the tools that enable you to look inside a 
directory are particularly important and, by far, the most useful of these tools is ls.
 And that is why, out of the hundreds of command-line programs that come with every 
Unix and Linux system, ls is the most important program of them all.

LISTING THE CONTENTS OF A DIRECTORY: ls -CrR1
To display information       about the contents of a directory, you use the ls (list fi les) 
program. You will fi nd that ls is one of the most frequently used Unix programs. As 
such, it has many options to control its output. For example, on one of my Linux systems, 
ls has 59 options. (That is not a misprint.) Non-Linux systems will have fewer options 
but even so, you will usually fi nd more than 30.
 Obviously, no program actually needs 30 options, let alone 59. In our discussion, I will 
teach you the most important options. For more information, you can always look at the 
online manual (man ls). In this section, I am going to introduce the ls program and 
discuss the basic options. In the following sections, we will discuss the more advanced 
features of ls, at which time I will describe some of the more complex options.
 Considering only the most important options, the syntax for the ls program is:

ls [-aCdFglrRs1] [name...]

where name is the name of a directory or fi le.
 Before we move on, take a moment to look at the options and notice -l (the lowercase 
letter “l”) and -1 (the number “1”). These are two different options, so don’t confuse 
them. The -l (letter l) option is used a lot; the -1 (number 1) option is used rarely.

Listing the Contents of a Directory: ls -CrR1

33614_24_659_714.indd   68333614_24_659_714.indd   683 1/9/2008   12:39:59 PM1/9/2008   12:39:59 PM



Chapter 24

684 Harley Hahn’s Guide to Unix and Linux

 The default behavior of ls is to display an alphabetical list of names of fi les in a 
directory. For example, to list the fi les in the /bin directory, use:

ls /bin

If you want to look at the contents of more than one directory, you can specify more than 
one name. For example, to list the fi les in the /bin and the /etc directories, use:

ls /bin /etc

If you don’t specify a directory, ls will — by default — display the fi les in your working 
directory. Thus, to see the fi les in your working directory, just enter:

ls

This two-letter word is the most frequently used command in the world of Unix.
 As we discussed earlier, the . (dot) character is an abbreviation for the working 
directory. Thus, the following two commands are equivalent:

ls
ls .

More useful is the .. abbreviation, which stands for the parent directory. Thus, to list the 
fi les in the parent of the working directory, you would use:

ls ..

As you would expect, you can use .. more than once to move up the tree as many times 
as you want. For example, to list the fi les in the parent directory of the parent directory 
of the working directory, use:

ls ../..

When ls sends its output to a terminal (which is usually the case), the output will be 
organized into columns. The number of columns will be chosen automatically so the 
names fi t well on your screen or window. For example, here are the fi rst seven lines of 
output of a directory listing of the /bin directory. (On this particular system, the actual 
output was 20 lines.)

awk         dmesg       kill        ping        stty
bash        echo        ksh         ps          su
cat         ed          ln          pwd         tcsh
chmod       egrep       login       rm          touch
cp          env         ls          rmdir       umount
cut         ex          mkdir       sed         uname
date        false       more        sort        vi
.           .           .           .           .
.           .           .           .           .
.           .           .           .           .

33614_24_659_714.indd   68433614_24_659_714.indd   684 1/9/2008   12:39:59 PM1/9/2008   12:39:59 PM



Working With Directories

685

Notice that the fi lenames are arranged alphabetically by column. That is, you read down, 
not across. As I explained in Chapter 23, the /bin directory contains many of the 
standard Unix programs, so the names in this directory should look familiar.
 When you redirect the output of ls to a fi le or to a pipeline, ls writes only one 
fi lename per line. This makes it easy to process the output of ls with another program. 
(Redirection and pipelines are explained in Chapter 15.) A common example is:

ls | wc -l

The   wc -l command counts the number of lines of input it receives. Thus, this 
combination of ls and wc tells you how many fi les you have in your working directory.
 If, for some reason, you want to force ls to write columns to a fi le or pipeline, use the 
-C option (uppercase “C”), for example:

ls -C | less

If you want to force ls to write one line per fi lename to your terminal (instead of 
columns), use the 1 option (the number “1”):

ls -1

By default, ls displays fi lenames in alphabetical order. (More precisely, ls uses the order 
of the characters within the collating sequence for your locale. See the discussion later 
in the chapter.) If you want to display the names in reverse order, use the -r (lowercase 
“r”) option:

ls -r

The last ls option we will discuss in this section is -R which stands for “recursive” 
(explained in a moment). This option tells ls to list information about all the 
subdirectories and fi les that reside — directly or indirectly — within the directory you 
name. In other words, ls -R displays information about an entire directory tree.
 For example, let’s say you want to take a look at all the fi les and subdirectories created 
by the users on your system. Just display all the descendants of the /home directory:

ls -R /home

Similarly, to list all the descendents of your working directory, you would use:

ls -R

Such listings tend to be very long, so you will probably want to pipe the output to less 
to display one screenful at a time. Because the output is going to a pipeline, you must 
include the -C option if you want columns:

ls -CR /home | less
ls -CR | less

When you want to use -R, remember that there is also a -r (reverse) option, so be sure 
to type carefully.

Listing the Contents of a Directory: ls -CrR1

33614_24_659_714.indd   68533614_24_659_714.indd   685 1/9/2008   12:39:59 PM1/9/2008   12:39:59 PM



Chapter 24

686 Harley Hahn’s Guide to Unix and Linux

COLLATING SEQUENCES, LOCALES AND ls
Earlier in the chapter, I     mentioned that the default behavior of ls is to display an alphabetical 
list of names of fi les in a directory. The statement seems straightforward but, actually, it is 
not. This is because the defi nition of “alphabetical order” is not the same on all systems. It 
all depends on your collating sequence which, in turn, is defi ned by your locale.
 As we discussed in Chapter 19, a locale is a technical specifi cation describing the language 
and conventions to be used when communicating with a user from a particular culture. For 
example, your locale might be set to American English, British English, Dutch, Spanish, 
and so on. For our purposes, the most important aspect of your locale is that it defi nes your 
collating sequence, the order in which characters are sorted (explained in Chapter 19.)
 The default locale for your system was set at the time your system was installed. If you 
use American English    , your locale will be either the C (POSIX) locale based on the ASCII 
code, or the  en_US locale, part of a newer international system. To check your locale, 
you can use the locale command. This will show you the value of various environment 
variables. The one you want to look at is LC_COLLATE, which specifi es the name of your 
collating sequence, because it is your collating sequence that determines the meaning of 
“alphabetical order” on your system.
 The C locale uses the same collating sequence as the ASCII code. In particular, all the 
uppercase letters are grouped together and all the lowercase letters are grouped together, 
with uppercase coming fi rst: ABCDEF...abcdef... We call this the C collating sequence, 
because it is used with the C programming language.
 The en_US locale, however, uses the  dictionary collating sequence, in which uppercase 
is mixed with lowercase: aAbBcCdDeEfF...
 When you list fi les with ls, the order in which they are displayed depends on your 
collating sequence. For example, let’s say you have 6 fi les named A, a, B, b, C and c. If 
your locale is C and you list the fi les with ls, you will see:

A  B  C  a  b  c

If your locale is en_US, you will see:

a  A  b  B  c  C

Although this might seem like a small deal, it isn’t. Your life will be easier if you use the 
C locale. You will see an important example of this later in the chapter when we discuss 
wildcards. So, here is what I want you to do.

WHAT’S IN A NAME?

Recursive
In computer science, a   RECURSIVE data structure is one that is built up from smaller data 
structures of the same type. Directory trees are recursive because they contain other, smaller trees.
 Some directory tools, such as ls, have an option to process an entire directory tree, that 
is, all the subdirectories and fi les descending from a specifi c directory. Because such trees are 
considered to be recursive, the options that process them are usually named -r or -R.

33614_24_659_714.indd   68633614_24_659_714.indd   686 1/9/2008   12:39:59 PM1/9/2008   12:39:59 PM



Working With Directories

687

 Take a moment right now and enter the locale command. This will show you the 
environment variables that defi ne your locale. If the LC_COLLATE variable is set to C or 
POSIX, that is fi ne. If it is set to en_US, I want you to change it permanently to C. (This 
is what I do on my systems.) All you have to do is add the appropriate command to your 
login fi le. The fi rst command is for the Bourne Shell family (Bash, Korn Shell); the second 
command is for the C-Shell family (C-Shell, Tcsh):

export LC_COLLATE=C
setenv LC_COLLATE C

See Chapter 19 for detailed information about locales and collating sequence; see Chapter 
14 for a discussion of the login fi le.

CHECKING FILE TYPES, PART I: ls -F
You will     often want to know what types of fi les a directory contains. In such cases, you 
have three choices. You can use ls with the -F option; you can use ls with the --color 
option (Linux only); and you can use the file command. In the next three sections, we 
will discuss each of these techniques in turn.
 When you use ls with the -F (fl ag) option, it displays a FLAG after the names of 
certain types of fi les. These fl ags are summarized in Figure 24-4. The most important 
are / (slash), which indicates a directory, and * (star), which indicates an executable fi le 
(such as a program or a script). In most cases, there will not be a fl ag. This indicates an 
ordinary, non-executable fi le.
 For example, say that your working directory contains a directory named 
documents, text fi les named memo and essay, a program (binary fi le) named 
spacewar, and a named pipe tunnel. To display the names of the fi les with fl ags, 
you would use:

ls -F

The output is:

documents/  essay  memo  spacewar*  tunnel|

FLAG MEANING

none ordinary fi le: non-executable

* ordinary fi le: executable

/ directory

@ symbolic link (discussed in Chapter 25)

| named pipe/FIFO (discussed in Chapter 23)

FIGURE 24-4: Flags displayed by the ls -F command

Checking File Types, Part I: ls -F

hah33614_c24_659_714.indd   687hah33614_c24_659_714.indd   687 1/11/2008   10:28:38 AM1/11/2008   10:28:38 AM



Chapter 24

688 Harley Hahn’s Guide to Unix and Linux

CHECKING FILE TYPES, PART II: ls --color
If you use     Linux, you  have an alternative to -F. You can use the --color option to 
use colors to indicate the various fi le types.* (We discussed options that start with -- in 
Chapter 10.) The syntax is as follows:

ls --color[=always|=auto|=never] [name...]

where name is the name of a directory or fi le.
 When --color is turned on, ls uses colors to indicate the various types of fi les. For 
example, the following command displays the names of the fi les in your working directory:

ls --color

When you use the --color option, there are three variations. The fi rst variation is 
--color=always, which is the default. If you like, you can also use yes or force. 
Thus, the following four commands are equivalent. They all tell ls to use color to indicate 
the various types of fi les.

ls --color
ls --color=always
ls --color=yes
ls --color=force

The second variation is --color=never. This tells ls not to use color. You would use 
this if, for some reason, color is turned on and you want to turn it off. If you like, you can 
also use no or none. Thus, the following three commands all tell ls not to use color:

ls --color=never
ls --color=no
ls --color=none

At this point, you are probably wondering, why are there so many ways of making what 
is, essentially, a yes or no choice? The answer is that the programmers who added color 
support to ls decided that users should be able to specify either never or always, or 
yes or no. The other two values, force and none, were added for compatibility with 
other versions of ls.**
 Normally, the special codes that create the color are mixed in with the output. This 
works okay when it is displayed on your monitor, but can look like gibberish when you 
send the output to a pipe or save it to a fi le. To avoid this, you can use the fi nal variation 
of the --color option by setting it to auto. This tells ls to use colors only when the 

  *With FreeBSD-based systems, including OS X (Macintosh), you can use the -G option in a similar way.
 **In Chapter 2, I explained that Linux is open source software, which means that anyone can look at (or even modify) the 
source code. It happens that the variations for the --color option are not well documented. However, I was able to fi gure out 
the nuances by reading the source code for the ls program.
 If you are ever really stuck trying to understand how a program works and the documentation is inadequate or confusing, 
remember that nothing is magic. If you can understand even a little C, try reading the source code. It’s not that hard to get the 
gist of what is happening, and reading other people’s code is one of the best ways to improve your own programming.

33614_24_659_714.indd   68833614_24_659_714.indd   688 1/9/2008   12:39:59 PM1/9/2008   12:39:59 PM



Working With Directories

689

output is going to a terminal. If you like, you can also use tty or if-tty. Thus, the 
following three commands are equivalent:

ls --color=auto
ls --color=tty
ls --color=if-tty

To see this for yourself, try the following two commands. The fi rst command forces the 
use of color, which generates special codes that look like gibberish when viewed within 
less. The second command detects that the output is not going to a terminal, so it does 
not generate the color codes, avoiding the problem with less.

ls --color=yes /bin | less
ls --color=auto /bin | less

Similarly, if color is on, you will want to turn it off when you save the output to a fi le:

ls --color=auto > filelist

Many people like to display colors every time they use ls. Indeed, it is so common that, 
on some systems, an alias for ls is created automatically with the --color option 
turned on. If you are a Linux user and you always see colors when you use ls, even if you 
do not specify --color, chances are you are using an alias without knowing it.
 To check if this is the case, you can tell the shell to ignore any aliases by typing a 
\ (backslash) command before the command (see Chapter 13). If the output is now 
devoid of color, you can conclude you were using an alias.

\ls

If you want to turn off the color permanently, just create an alias of your own  as a 
replacement, for example:

alias ls='ls --color=no'

alias ls 'ls --color=no'

The fi rst alias is for the Bourne Shell family: Bash, Korn Shell; the second is for the C-Shell 
family: Tcsh, C-Shell. To make the alias permanent, put it in your environment fi le. (For 
help with aliases, see Chapter 13. To read about the environment fi le, see Chapter 14.)
 If you want to turn on color permanently, use one of the following aliases instead in 
your environment fi le:

alias ls='ls --color=yes'

alias ls 'ls --color=yes'

Personally, I like fl ags better than colors, so I suggest that you use -F as well as --color:

alias ls='ls -F --color=yes'
alias ls 'ls -F --color=yes'

Checking File Types, Part II: ls --color

33614_24_659_714.indd   68933614_24_659_714.indd   689 1/9/2008   12:39:59 PM1/9/2008   12:39:59 PM



Chapter 24

690 Harley Hahn’s Guide to Unix and Linux

CHECKING FILE TYPES, PART III: fi le
So far, we have discussed     two ways to fi nd out what types of fi les a directory contains. You 
can use ls with -F to display a fl ag after the fi le name, or you can use ls with --color 
to use colors to indicate different fi le types (or both). A much more sophisticated way to 
check fi le types is by using the file command, which knows about several thousand 
different types of fi les. The syntax is:

file [name...]

where name is the name of a fi le or directory. There are a large number of options, but 
you won’t need them. (If you are curious, see the man page.)
 Using file is straightforward. Simply specify the name of one or more fi les or 
directories, for example:

file /etc/passwd /bin / ~/elmo.c /bin/ls

Here is some typical output:

/etc/passwd:         ASCII text
/bin:                directory
/:                   directory
/home/harley/elmo.c: ASCII C program text
/bin/ls:             ELF 32-bit LSB executable, Intel 80386
                     version 1 (SYSV), for GNU/Linux 2.6.9,
                     dynamically linked (uses shared libs),
                     stripped

The output for the fi rst four fi les is easy to understand. The fi rst fi le (the password fi le) 
contains plain ASCII text. The second and third fi les are directories. The fourth fi le 
contains C source code. The last fi le is an executable program. As such, file gives us a 
lot of technical information, which is useful to programmers and system administrators. 
In case you are interested, here is what it all means.

ELF: Executable and Linking Format, a standard fi le format for executable fi les.

32-bit: The word size.

HINT

When you use ls with the --color option, a variety of different colors are used to indicate 
different types of fi les. These colors are set by an environment variable called  LS_COLORS. 
You can customize the colors by changing this variable. If this sounds like fun to you, start by 
reading about the   dircolors program:

man dircolors
info dircolors

The idea is to use dircolors to generate a command that will set LS_COLORS the way you 
want. You can then put this command in your environment fi le.

33614_24_659_714.indd   69033614_24_659_714.indd   690 1/9/2008   12:40:00 PM1/9/2008   12:40:00 PM



Working With Directories

691

LSB: Compiled with Least Signifi cant Byte word ordering, used with x86 processors.

executable: An executable fi le.

Intel 80386: Processor architecture for which the fi le was compiled.

version 1 (SYSV): The version of the internal fi le format.

GNU/Linux 2.6.9: The version of the operating system and kernel under which the 
program was compiled.

dynamically linked (uses shared libs): Uses shared libraries, not statically linked.

stripped: Executable fi le has had the symbol table removed. This is done by the strip 
program in order to reduce the size of the executable fi le.

In our example, we had two directories, /bin and / (the root directory). Notice that 
file gave us information about the directory itself. If you want file to analyze the fi les 
within a directory, you need to specify their names. To specify all the fi les in a directory, 
you use what are called “wildcards”. We will discuss wildcards later in the chapter. For 
now, let me give you an example. The following command uses file to analyze all the 
fi les in the /etc directory. Because the output is rather long, we display it one screenful 
at a time by piping it to less:

file /etc/* | less

KEEPING TRACK OF YOUR DISK SPACE USAGE: ls -hs, du, df, quota
There are three programs          you can use to fi nd out how much disk space your fi les use: 
ls -s, du and quota. We’ll discuss each one in turn.
 The fi rst program is ls with the -s (size) option. This tells ls to preface each fi lename 
with its size in kilobytes. If you specify a directory name, ls will also show a total for the 
entire directory. Here is an example:

ls -s /bin

Below is some of the output from this command. (The actual output was 21 lines.)

total 8176
  4 awk      12 dmesg    16 kill     40 ping     48 stty
712 bash     28 echo   1156 ksh      88 ps       32 su
 28 cat      60 ed       35 ln       28 pwd     352 tcsh
 44 chmod     4 egrep    32 login    48 rm       48 touch
 76 cp       24 env     100 ls       24 rmdir    72 umount
 40 cut       4 ex       36 mkdir    60 sed      24 uname
 54 date     24 false    36 more     64 sort    592 vi
    .           .           .           .           .
    .           .           .           .           .
    .           .           .           .           .

Keeping Track of Your Disk Space Usage: ls -hs, du, df, quota

33614_24_659_714.indd   69133614_24_659_714.indd   691 1/9/2008   12:40:00 PM1/9/2008   12:40:00 PM



Chapter 24

692 Harley Hahn’s Guide to Unix and Linux

On the top line, you can see that the total space used by all the fi les in the directory is 
8,176 kilobytes. The other lines show how much space the various fi les require. The cat 
fi le, for example, uses 28 kilobytes. With Linux, you can use the -h (human-readable) 
option to display the units along with the numbers. For example:

ls -sh /bin/cat

The output is:

28K /bin/cat

The next program you can use to display fi le size is du (disk usage). The syntax is:

du [-achs] [name...]

where name is the name of a directory or fi le.
 When you specify the name of one or more fi les, du will show you the amount of 
storage used by those fi les. Here is an example that displays the size of the password fi le 
(described in Chapter 11):

du /etc/passwd

On most systems, the output will be shown as 1K units. For example, the following output 
tells you that the password fi le takes up 8K bytes of disk space:

8       /etc/passwd

To display the units along with the number, use the -h (human-readable) option:

du -h /etc/passwd

This changes the output to:

8.0K    /etc/passwd

You might be wondering, why does the password fi le — which is a usually small fi le 
— use 8K of disk space. After all, 8K can hold up to 8,192 (8 x 1024) characters, a lot 
more than the data within the password fi le. It happens that, for this particular fi lesystem, 
storage space on the disk is allotted in chunks of 8K. Thus, even though the fi le is small, it 
takes up 8K on the disk. (See the discussion on allocation units later in the chapter.)
 As I mentioned, most versions of du display output in terms of 1K units. Some systems, 
however, use 512-byte units. (The unit size is documented on the du man page.) This is 
the case, for instance, with Solaris. On such systems, there will usually be a -k option 
to force du to use 1K units. For example, on a Solaris system, you can use either of the 
following commands to use 1K units to display the disk space used by the password fi le:

du -k /etc/passwd
du -hk /etc/passwd

So far, we have used du to display the disk space used by specifi c fi les. Most often, however, 
du is used to fi nd out how much space is used by all the fi les in a particular directory 

33614_24_659_714.indd   69233614_24_659_714.indd   692 1/9/2008   12:40:00 PM1/9/2008   12:40:00 PM



Working With Directories

693

tree. If you do not specify a name, du will assume you want your working directory. For 
example, the following command starts from your working directory and displays the 
name of each subdirectory, sub-subdirectory, sub-sub-subdirectory, and so on. Beside 
each name du shows the total disk space taken up by the fi les in that directory. At the 
very end there is a grand total. (Because the output is lengthy, I have piped it to less to 
display one screenful at a time.)

du -h | less

To see how much disk space is used by all your fi les, specify your home directory:

du -h ~ | less

The following commands show how much disk space is used by all the fi les under 
/usr/bin and all the fi les under /etc:

du -h /usr/bin /etc | less

If you use the -s (sum) option, du will display only the total, which cuts out a lot of 
extraneous output. This is, in my opinion, the most useful way to use du. Here are two 
examples. The fi rst example displays the total disk space used by your personal fi les 
(starting from your home directory):

du -hs ~

The second example does the same for the /usr/bin, /bin, and /etc directories. The 
fi rst command is for the     Bourne Shell family (Bash, Korn Shell). The second command is 
for the C-Shell family (Tcsh, C-Shell).

du -hs /usr/bin /bin /etc 2> /dev/null
(du -hs /usr/bin /bin /etc > /dev/tty) >& /dev/null

These commands are a bit complicated, so let’s take a moment to discuss them. You will 
notice that I have thrown away the standard error by redirecting it to the bit bucket (see 
Chapter 15). I did this because, as du processes the directories, it may fi nd subdirectories 
it does not have permission to read. Each time this happens, du will display an error 
message. Throwing away standard error keeps these messages from being displayed.
 The exact method used to redirect standard error depends on which shell you are 
using. Hence, there is one command for the Bourne Shell family and another command 
for the C-Shell family. (All the details are explained in Chapter 15.)
 Moving on, the -c (count) option displays a grand total at the end of the output. This 
option is most useful when combined with -s and -h. Here is an example. Once again, 
the fi rst command is for the Bourne Shell family; the second is for the C-Shell family:

du -csh /usr/bin /bin /etc 2> /dev/null
(du -csh /usr/bin /bin /etc > /dev/tty) >& /dev/null

This combination of options (-csh) is particularly easy to remember because, 
coincidently, it happens to be the name of the C-Shell program.

Keeping Track of Your Disk Space Usage: ls -hs, du, df, quota

33614_24_659_714.indd   69333614_24_659_714.indd   693 1/9/2008   12:40:00 PM1/9/2008   12:40:00 PM



Chapter 24

694 Harley Hahn’s Guide to Unix and Linux

 Finally, if you use the -a (all) option, du shows the size of every directory and fi le it 
processes. This can make for a very long listing, but it gives you an exact description of 
how your disk space is being used. For example, to display all the information about disk 
storage for your personal fi les, specify your home directory:

du -ah ~ | less

The next disk storage program is df. (The name stands for “disk free-space”). This 
program shows you how much disk space is used by each fi lesystem, and how much is 
available. The df program has various options but, generally, you won’t need them. The 
only option I want to mention is -h, which displays human-readable output by using 
storage units of kilobytes, megabytes and gigabytes instead of blocks. Try each of these 
commands on your system and see which you prefer:

df
df -h

Here is some typical Linux output from the fi rst command. In this example, the root 
fi le system (/), which contains almost all the data on the system, has used only 9% of its 
allocated space. A smaller fi lesystem, /boot, has used 16% of its space.

Filesystem   1K-blocks     Used  Available  Use%
/dev/hda1     36947496   312446   31915940    9% /
/dev/hdd1        99043    14385      79544   16% /boot
tmpfs           192816        0     192816    0% /dev/shm

So you can compare, here is the output from the second command:

Filesystem        Size     Used  Available  Use%
/dev/hda1          36G     3.0G       31G     9% /
/dev/hdd1          97M      15M       78M    16% /boot
tmpfs             189M        0      189M     0% /dev/shm

The fi nal disk storage program is quota. If you share a Unix or Linux system, there is 
a good chance your system administrator has imposed a quota on how much disk space 
each userid is allowed to use. If you exceed your quota, you will not be allowed to use any 
more disk fi le space until you delete some fi les.
 If your system has such a quota, you can use the quota program to check on your 
usage and limits:

quota

To display extra information, use the -v (verbose) option:

quota -v

Note: The four programs ls -s, du, df and quota estimate storage usage in different 
ways, so don’t be surprised if the numbers vary somewhat.

33614_24_659_714.indd   69433614_24_659_714.indd   694 1/9/2008   12:40:00 PM1/9/2008   12:40:00 PM



Working With Directories

695

HOW BIG IS A FILE? BLOCKS AND ALLOCATION UNITS: dumpe2fs
Disk storage is measured     in kilobytes, megabytes and gigabytes. One KILOBYTE 
(1K)  is 1,024 (210) bytes;  one MEGABYTE is 1,048,576 (220) bytes; one GIGABYTE is 
1,073,741,824 (230) bytes.  Within a text fi le, one byte holds a single character. For example, 
100 characters require 100 bytes of disk storage.
 We have already discussed how to use ls -s and du to display the amount of 
disk space used by a fi le. Before we move on, there is an important point I want you to 
understand. The amount of disk space used by a fi le is not the same as the amount of data 
in the fi le. Here is why.
 Within a fi lesystem, space is allotted in fi xed-size chunks called BLOCKS, which are 
either 512 bytes, 1K, 2K or 4K depending on the fi lesystem. The minimum amount of 
space that can be allocated for a fi le is a single block. Let’s consider a fi lesystem that uses 
1K (1024-byte) blocks. (This is typical for Linux.) A fi le that contains only 1 byte of data 
requires a full block. If the fi le grows to become a single byte larger than one block, it 
will require a second block. Thus, a fi le containing up to 1024 bytes of data will require 1 
block. A fi le containing 1025 bytes of data will require 2 blocks.

Question: How many blocks will a 1,000,000-byte fi le require?

Answer: Assuming the block size is 1024 bytes, 1,000,000 divided by 1024 is a bit less 
than 976.6. Thus, a 1,000,000-byte fi le will take up 977 blocks. (This works out to 
1,000,448 bytes.)

So far, we have talked about how data is organized within a fi lesystem. But what happens 
when the fi les are written to a disk or other storage medium? For reasons of effi ciency, disk 
storage space is also allotted in fi xed-size chunks, which are called ALLOCATION UNITS or 
CLUSTERS. The size of an allocation unit depends on the fi lesystem and the storage device. 
For example, on one of my Linux systems, the block size is 1K. However, disk allocation 
units are 8K. Thus, a fi le that requires a single byte actually takes up 8K of disk space.

Question: A fi le contains 8,500 bytes of data. How many blocks does it require? How 
much disk space will it take up?

Answer: The fi le contains 8500/1024 = 8.3K bytes of data. Assuming the block size is 1K, 
the fi le will require 9 blocks. Assuming disk space is allotted in allocation units of 8K, the 
fi le will take up 2 allocation units, or 16K bytes of disk space.

How do you determine the size of a block and an allocation unit on your system? We’ll 
start with allocation units because the method is simpler. Our strategy is to create a very 

HINT

If you are using a shared system, it is important to remember that you are sharing. From time to 
time, use du to see how much disk space you are using. If you have fi les that you do not need, 
especially large fi les, be considerate and remove them.
 Don’t think of it as being forced to live within your quota. Think of it as being a good neighbor.

How Big Is a fi le? Blocks and Allocation Units: dumpe2fs

33614_24_659_714.indd   69533614_24_659_714.indd   695 1/9/2008   12:40:00 PM1/9/2008   12:40:00 PM



Chapter 24

696 Harley Hahn’s Guide to Unix and Linux

tiny fi le and then see how much space it takes up on the disk. This will be the size of a 
single allocation unit.
 The fi rst step is to create a very small fi le. The following commands will do the job:

cat > temp
X
^D

To start, enter the cat command (Chapter 16) to read input from the keyboard and 
redirect it to a fi le named temp. Note: If temp does not exist, the shell will create it for 
you. If temp already exists, the shell will replace it.
 Next, type a line that consists of a single character. In this case, I typed the letter “X” 
and pressed <Return>. This data will be written to the fi le temp.
 Finally, press ^D (Ctrl-D) to indicate the end of the data by sending the eof signal 
(see Chapter 7). We now have a very small text fi le consisting of two characters: an “X”, 
followed by a newline.
 Enter the ls -l command (explained later in the chapter) to display the amount of 
data contained in the fi le:

ls -l temp

The output is:

-rw-rw-r-- 1 harley staff 2 Aug 10 11:45 temp

The fi le size is displayed just before the date. As you can see, the fi le contains 2 bytes of 
data. Now use the du program (discussed earlier in the chapter) to see how much disk 
space the fi le takes up:

du -h temp

Here is the output:

8.0K    temp

As you can see, in our example, the sample fi le takes up 8K of storage space on the disk, 
even though it contains only 2 bytes of data. Thus, we can conclude that the allocation 
unit for this system is 8K.
 To conclude our experiment, use the rm program (Chapter 25) to remove the 
temporary fi le:

rm temp

Finding the block size for the fi lesystem is tricky. Although some fi le programs, such 
as df, will display a “block size”, this is not the offi cial block size of the fi lesystem: it is 
just a convenient unit used by the program. The exact method for fi nding the defi nitive 
block size depends on which operating system you are using. With Linux, you use the 
  dumpe2fs program; with Solaris, you use fstyp -v; and with FreeBSD, you use 

33614_24_659_714.indd   69633614_24_659_714.indd   696 1/9/2008   12:40:00 PM1/9/2008   12:40:00 PM



Working With Directories

697

dumpfs. As an example, I’ll show you how it works with Linux. (If you need more details 
on any of these programs, check with the online manual.)
 As I explained above, all the data within a fi lesystem is organized into blocks. One of 
the blocks,  called the SUPERBLOCK, is a special data area that holds crucial information 
about the fi lesystem itself. With Linux, you can examine the contents of the superblock 
by using the dumpe2fs program. In particular, it is possible to display the block size 
used by the fi lesystem. Here is how to do it.

1. Find out the name of the special fi le that represents the fi le system, for example, 
/dev/hda1. To do so, you can use the df command (discussed earlier in the chapter).

2. To run dumpe2fs, you must be superuser. Use the su command to change to 
superuser (see Chapter 6).

3. Enter the dumpe2fs command, followed by the name of the special fi le. This 
command will display a lot of data from the superblock. The number you want is on 
a line that contains the string “Block size”. So all you have to do is run the dumpe2fs 
command and grep the output for “Block size”. Here is an example:

dumpe2fs /dev/hda1 | grep "Block size"

Note: If the shell can’t fi nd the dumpe2fs program, you will have to specify the full 
pathname. The program will be in /sbin:

/sbin/dumpe2fs /dev/hda1 | grep "Block size"

Here is some sample output. In this case, you can see that the fi lesystem block size is 1K 
(1024 bytes):

Block size: 1024

If you want to take a minute to look at all the information from the superblock, pipe the 
output of dumpe2fs to less:

dumpe2fs /dev/hda1 | less

When you are fi nished, use the exit command to log out as superuser (see Chapter 6).

GLOBBING WITH WILDCARDS
Whenever    you type a command that uses fi lenames as arguments, you can specify 
multiple fi lenames by using certain metacharacters referred to as WILDCARDS. As you 
may remember from Chapter 13, a metacharacter is any character that is interpreted by 
the shell as having a special meaning. Wildcards have a special meaning when you use 
them within a fi lename. Here is an example.
 Let’s say you want to list the names of all the fi les in your working directory that start 
with the letter “h”. You can use:

ls h*

Globbing With Wildcards

33614_24_659_714.indd   69733614_24_659_714.indd   697 1/9/2008   12:40:00 PM1/9/2008   12:40:00 PM



Chapter 24

698 Harley Hahn’s Guide to Unix and Linux

In this example, the    * (star) is a metacharacter that matches any sequence of zero or 
more characters.
 At fi rst glance, wildcards look a lot like the regular expression metacharacters we 
discussed in Chapter 20. In fact, wildcards are simpler. Moreover, they are used for only 
one purpose: to match a set of fi lenames when you type a command. Figure 24-5 shows 
the basic wildcards and their meanings. Before you move on, take a moment and compare 
this table with the ones that summarize regular expressions in Chapter 20.
 When you use a wildcard, the shell interprets the pattern and replaces it with the 
appropriate fi lenames before running the command. For example, let’s say you enter:

ls h*

The shell replaces h* with all the fi lenames in your working directory that begin with 
the letter h. Then the shell runs the ls command. For instance, let’s say your working 
directory contains the following six fi les:

a  data-old  data-new  harley  h1  h2  z

If you enter the command above, the shell changes it to:

ls h1 h2 harley

You can, of course, use more than one pattern in the same command:

ls h* data*

In our example, the shell would change the command to:

ls h1 h2 harley data-old data-new

Using wildcards to specify fi les is known formally by different names, depending on 
which shell you are using. With Bash, it is    called PATHNAME EXPANSION; with the 
Korn shell, it is called FILENAME GENERATION; with the C-Shell and Tcsh, it is called 
FILENAME SUBSTITUTION. When the shell performs the actual substitution, it is 
called GLOBBING. Sometimes, the word GLOB is used as a verb, as in, “Unless you set 
the noglob variable, the C-Shell globs automatically.”

SYMBOL MEANING
* match any sequence of zero or more characters

? match any single character

[list] match any character in list

[^list] match any character not in list

{string1|string2...} match one of the specifi ed strings

FIGURE 24-5: Summary of wildcards used to specify fi lenames

Whenever you type a command that uses fi lenames as arguments, you can use wildcards to match 
multiple fi lenames.  This table shows the various wildcards and how they are used.  Note: When you 
type a pathname, you cannot match a / character; it must be typed explicitly.

33614_24_659_714.indd   69833614_24_659_714.indd   698 1/9/2008   12:40:00 PM1/9/2008   12:40:00 PM



Working With Directories

699

 As I mentioned, when wildcards are globbed by the shell, the wildcards are changed 
to actual fi lenames before the arguments are passed to the program. If you use a 
pattern that does not match any fi les, the shell will display an appropriate message. For 
example, let’s say your working directory contains the fi les listed above, and you enter 
the following command:

ls v*

This command lists all the fi les that begin with the letter “v”. Since there are no such fi les, 
ls displays an error message:

ls: v*: No such file or directory

Now that you understand the main concepts, let’s cover the wildcards in detail, one at 
a time. The most important wildcard, * (star), matches zero or more characters. The * 
wildcard will match any character except / (slash) which, as you know, is used as a delimiter 
within pathnames. (If you want to specify a /, you must type it yourself.) For example, the 
following wildcard specifi cations match patterns as indicated:

Ha* fi lenames that begin with “Ha”
Ha*y fi lenames that begin with “Ha” and end with “y”
Ha*l*y fi lenames that begin with “Ha”, contain an “l”, and end with “y”

The   ? (question mark) wildcard matches any single character except /.  For example:

d? 2-character fi lenames that begin with “d”
?? any 2-character fi lenames
?*y fi lenames with at least 2 characters, ending with “y”

You can specify a list of characters by using   [ and ] (square brackets) to enclose the list. 
This represents a single instance of any of the specifi ed characters. For example:

spacewar.[co] either “spacewar.c” or “spacewar.o”
[Hh]* fi lenames that begin with either “H” or “h”

To match any character that is not in a list, put a   ̂  (circumfl ex) at the beginning of 
the list. For example, the following command displays the names of all the fi les in your 
working directory that do not begin with the letters “H” or “h”:

ls [^Hh]*

Within square brackets, you can specify a range of characters by using a - (dash). For 
example, the pattern [0-9] matches any of the digits 0 through 9. Using a range with 
letters works the same way, but you must be careful: ranges of letters are expanded 
according to the collating sequence that is used with your locale. (See the discussion 
earlier in the chapter.) Consider the following two examples:

[a-z]* fi lenames that begin with a lowercase letter
[a-zA-Z]*[0-9] fi lenames that begin with an upper- or lowercase letter and end 

with a numeral

Globbing With Wildcards

33614_24_659_714.indd   69933614_24_659_714.indd   699 1/9/2008   12:40:00 PM1/9/2008   12:40:00 PM



Chapter 24

700 Harley Hahn’s Guide to Unix and Linux

If you are using the C collating sequence (C locale), the order of the    letters is ABCDEF...
abcdef... Thus, the examples above will work the way you expect. However, if you use 
the dictionary collating sequence (en_US locale), the examples will not work properly 
because the order of the letters is aAbBcCdDeEfF...zZ.
 More specifi cally, with the C collating sequence, [a-z] matches any of the lowercase 
letters, which is what you would want. With the dictionary collating sequence, [a-z] 
matches any of the upper- or lowercase letters except “Z”, not at all what you want. 
Similarly, with the C collating sequence, [A-Z] matches any of the uppercase letters. 
With the dictionary collating sequence, [A-Z] matches any upper- or lowercase letter 
except “a”, again not what you want.
 For this reason, I strongly suggest you use the C collating sequence, not the dictionary 
collating. To do so, you must make sure the LC_COLLATE environment variable is set to 
C not en_US. (There are instructions earlier in the chapter.)
 If, for some reason, you do decide to stick with the dictionary collating sequence, you 
won’t be able to use [a-z] or [A-Z] as wildcards. However, there are several predefi ned 
character classes you can use instead. I have listed the most important ones in Figure 24-6. 
For a detailed discussion of predefi ned character classes, see Chapter 20.
 Here is an example. You want to display the names of the very oldest Unix programs. 
Most of these names consist of two lowercase letters, like ls and rm. The best places to 
look for such programs are /bin and /usr/bin (see Chapter 23). If you use the C 
locale, you can use the following command. Try it on your system and see what you fi nd.

ls /bin/[a-z][a-z] /usr/bin/[a-z][a-z]

If you use the en_US locale, you will get spurious results if there happen to be any 2-letter 
names that contain an uppercase letter. In this case, the correct command would be:

ls /bin/[[:lower:]][[:lower:]] /usr/bin/[[:lower:]][[:lower:]]

You can see why I recommend always using the C collating sequence.
 So far, we have talked about the three different types of wildcards we use with fi lename 
expansion: * to match zero or more characters, ? to match any single character, and [ ] 

CLASS MEANING SIMILAR TO...
[[:lower:]]  lowercase letters [a-z]

[[:upper:]] uppercase letters [A-Z]

[[:digit:]] digits [0-9]

[[:alnum:]] upper- and lowercase letters, numbers [A-Za-z0-9]

[[:alpha:]] upper- and lowercase letters [A-Za-z]

FIGURE 24-6: Wildcards: Predefi ned character classes  

Wildcards can use ranges to match any character from a specifi c set.  The most common ranges are 
[a-z] to match a lowercase letter, and [A-Z] to match an uppercase letter.  As explained in the 
text, these ranges work with the C locale, but not with the en_US locale.  As an alternative, you can 
use predefi ned character classes, the most important of which are listed in this table.  For more details, 
see Chapter 20.

33614_24_659_714.indd   70033614_24_659_714.indd   700 1/9/2008   12:40:00 PM1/9/2008   12:40:00 PM



Working With Directories

701

to defi ne a list. The fi nal wildcard pattern we need to discuss allows you to specify more 
than one character string and then match each of the strings in turn. To do so, you use { 
and } (brace brackets) to enclose a list of patterns, separated by   commas. For example:

{harley,weedly}

Important: Do not put spaces before or after the commas.
 When you use brace brackets in this way, it tells the shell to form a separate fi lename 
using each pattern in turn. We call this BRACE EXPANSION.  Brace expansion is available 
only with Bash, the Tcsh and the C-Shell (not with the Korn Shell or the FreeBSD Shell). 
When a command is processed, brace expansion is done before fi lename expansion.
 Here is an example. Say that you want to list the names of all the fi les in the directories 
/home/harley, /home/weedly and /home/tln. You could specify all three 
directory names explicitly:

ls /home/harley /home/weedly /home/tln

With brace expansion, the command is simpler:

ls /home/{harley,weedly,tln}

Here is a second example. You want to combine the contents of the fi les olddata1, 
olddata2, olddata3, newdata1, newdata2 and newdata3, and store the 
output in a new fi le named master. Use any of the following commands:

cat olddata1 olddata2 olddata3 newdata1 newdata2 newdata3 > master
cat {old,new}data{1,2,3} > master
cat {old,new}data[1-3] > master

(The cat program, which combines fi les, is discussed in Chapter 16. The > character, 
which redirects the standard output, is discussed in Chapter 15.)
 Brace expansion is important because it can be used in two ways. First, as you have 
seen, it will match a set of fi les that have common names. Second, when you are creating 
new fi les, it can also be used to describe fi le names that do not exist. For example, let’s say 
your home directory contains a subdirectory named work. The following two mkdir 
commands both create four new subdirectories in the work directory. Notice how 
convenient it is to use brace expansion:

mkdir ~/work/essays ~/work/photos ~/work/bin ~/work/music
mkdir ~/work/{essays,photos,bin,music}

One last example. In Chapter 25, you will learn how to use the touch command to 
create empty fi les quickly. Let’s say you want to create the following fi ve new fi les:

dataold  datanew  databackup  datamaster  datafinal

Using brace expansion, the command is:

touch data{old,new,backup,master,final}

Globbing With Wildcards

33614_24_659_714.indd   70133614_24_659_714.indd   701 1/9/2008   12:40:01 PM1/9/2008   12:40:01 PM



Chapter 24

702 Harley Hahn’s Guide to Unix and Linux

DOT FILES (HIDDEN FILES): ls -a
By default, the ls program      will not display any fi lenames that begin with a . (dot) 
character. Thus, if you use a fi le that you don’t want to see each time you use ls, all you 
have to do is give it a name that begins with a dot. As we discussed in Chapter 14, such 
fi les are called DOTFILES or HIDDEN FILES. Most of the time, dotfi les are used by 
programs to hold confi guration data or initialization commands. For example, all shells 
use dotfi les, as does the vi/Vim editor (see Figure 24-7).
 To display the names of hidden fi les, you use ls with the -a (all fi les) option. For example, 
to see the names of your hidden fi les, change to your home directory and use ls -a:

cd
ls -a

Most likely, you will also see some directory names that start with a dot. Such directories 
are also hidden and you will not see them with ls unless you use the -a option.
 When you use -a, you see all your fi les. Unfortunately, there is no option to display 
only dotfi les. However, by using wildcards, you can restrict the list of fi lenames to show 
only the dotfi les. For example, the following command displays the names of all the fi les 
in the working directory whose names begin with a . followed by a letter:

ls .[a-zA-Z]*

The following command is a bit complex but much more useful. It also displays dotfi les. 
However, it omits both . and .. as well as the contents of any hidden directories:

ls -d .??*

WHAT’S IN A NAME?

Wildcard, Globbing
The term “wildcard” comes from   poker and other card games in which certain cards are 
designated as being “wild”. In a poker game, wild cards can take on a variety of different values.
 “Globbing” refers to expanding a pattern with wildcards into a list of fi lenames. The term 
“glob” dates back to the very fi rst Unix shell, even before the Bourne Shell (see Chapter 11). 
At the time, wildcard expansion was performed by a separate program (/etc/glob) called 
by the shell. No one knows why the program was named glob, so you can make up your 
own reason.
 Within the Unix community, the idea of globbing is so common that the idea of globbing 
is used by geeks in everyday discourse. For example, say that one geek text messages to another 
geek, “Which is your favorite Star Trek show, ST:TOS, ST:TNG or ST:DS9?” The second geek 
might reply, “I don’t watch ST:*”.
 In a similar vein, you will sometimes see the name UN*X used to represent any type of Unix 
or Linux. This dates back to the 1970s, when AT&T was claiming that UNIX was a registered 
trademark, and no one could use the name without their permission. For example, the AT&T 
lawyers said that UNIX was an adjective, not a noun and that one must never refer to “UNIX”, 
only “the UNIX operating system”. In response to such silliness, many Unix geeks started to 
write UN*X to refer to any type of Unix.

33614_24_659_714.indd   70233614_24_659_714.indd   702 1/9/2008   12:40:01 PM1/9/2008   12:40:01 PM



Working With Directories

703

Figure 24-7 lists the names of the standard dotfi les we have already covered (Chapter 14 
for the shell, Chapter 22 for vi and Vim). These are fi les that, one day, you may want to 
change. Most likely you will fi nd a lot of other dotfi les in your home directory. Unless you 
know what you are doing, however, you should leave them alone.

LONG DIRECTORY LISTINGS: ls -dhltu
When you use     the ls program, there are several options that will display a variety of 
information along with the names. The most useful of these options is -l, which stands 
for “long listing”:

ls -l

FILENAME USE
.bash_login Login fi le: Bash

.bash_logout Logout fi le: Bash

.bash_profi le Login fi le: Bash

.bashrc Environment fi le: Bash

.cshrc Environment fi le: C-Shell, Tcsh

.exrc Initialization fi le: vi, Vim

.history History fi le: Bash, Korn Shell, C-Shell, Tcsh

.login Login fi le: C-Shell, Tcsh

.logout Logout fi le: C-Shell, Tcsh

.profi le Login fi le: Bash, Korn Shell, Bourne Shell

.tcshrc Environment fi le: Tcsh

.vimrc Initialization fi le: Vim

FIGURE 24-7: Dotfi les used by the shells and by vi/Vim

Any fi le whose name begins with a . (dot) is called a dotfi le or a hidden fi le.  The ls program does not 
display the names of dotfi les unless you use the -a option.

Dotfi les are most often used by programs to hold confi guration data or initialization commands.  Here, 
as examples, are the dotfi les used by the various shells and by the vi/Vim text editor.

HINT

Many of the dotfi les in your home directory are important. Before you edit one of these fi les, it 
is a good idea to make a copy. To do so, use the     cp program (Chapter 25), for example:

cp .bash_profile .bash_profile.bak

If you accidentally ruin the fi le, you will be able to restore it. To do so, use the mv command 
(also Chapter 25), for example:

mv .bash_profile.bak .bash_profile

Long Directory Listings: ls -dhltu

hah33614_c24_659_714.indd   703hah33614_c24_659_714.indd   703 5/20/2009   2:29:56 PM5/20/2009   2:29:56 PM



Chapter 24

704 Harley Hahn’s Guide to Unix and Linux

If the listing is so long that it scrolls off your screen, you can pipe it to less:

ls -l | less

Here is some sample output, which we will analyze:

total 32
-rw-rw-r--  1 harley staff  2255 Apr  2 21:52 application
drwxrwxr-x  2 harley staff  4096 Oct  5 11:40 bin
drwxrwxr-x  2 harley staff  4096 Oct  5 11:41 music
-rw-rw-r--  1 harley staff   663 Sep 26 20:03 partylist

On the far right you see the names of four fi les: application, bin, music and 
partylist. On the far left, at the beginning of the line, there is a one-letter indicator 
showing you the type of fi le. We’ll talk more about this in a moment. For now, I’ll mention 
that a - (dash) indicates a regular fi le; a d indicates a directory. Thus, application 
and partylist are regular fi les; bin and music are directories.
 To the left of the fi lenames there is a time and date. This is called the MODIFICATION 
TIME. It shows  when the fi le was last changed. In our example, the fi le application 
was last changed on April 2 at 9:52 PM. (Remember, Unix uses a 24-hour clock; see 
Chapter 8 and Appendix F.)
 As an alternative,  you can use -u with -l to display the ACCESS TIME instead of the 
modifi cation time. The access time shows the last time the fi le was read. For example:

ls -lu application

The output is below. As you can see from the output above, the fi le application was 
last changed on April 2 at 9:52 PM. However, as you can see from the output below, the 
fi le was last read on April 11 at 3:45 PM:

-rw-rw-r--  1 harley staff  2255 Apr 11 15:45 application

If you want to display the fi les sorted by time, use the -t option:

ls -lt
ls -ltu

Here is the output from the fi rst command, displaying the fi les from newest (most recently 
modifi ed) to oldest (least recently modifi ed):

total 32
drwxrwxr-x  2 harley staff  4096 Oct  5 11:41 music
drwxrwxr-x  2 harley staff  4096 Oct  5 11:40 bin
-rw-rw-r--  1 harley staff   663 Sep 26 20:03 partylist
-rw-rw-r--  1 harley staff  2255 Apr  2 21:52 application

If you combine -t with the -r (reverse) option, ls displays the fi les from oldest to newest:

ls -lrt
ls -lrtu

33614_24_659_714.indd   70433614_24_659_714.indd   704 1/9/2008   12:40:01 PM1/9/2008   12:40:01 PM



Working With Directories

705

For example:

total 32
-rw-rw-r--  1 harley staff  2255 Apr  2 21:52 application
-rw-rw-r--  1 harley staff   663 Sep 26 20:03 partylist
drwxrwxr-x  2 harley staff  4096 Oct  5 11:40 bin
drwxrwxr-x  2 harley staff  4096 Oct  5 11:41 music

 Returning to our discussion, at the very top of the listing, ls shows the total number 
of fi lesystem blocks used by all the fi les being listed. In this case, the two fi les and two 
directories use a total of 32 blocks. (For an explanation of fi lesystem blocks, see the 
discussion earlier in the chapter.)
 To the left of the   date, you see the size of each fi le in bytes. If the fi le is a text fi le, 
each byte will hold a single character of data. For example, the fi le partylist is a text 
fi le that contains 663 characters, including the newline at the end of each line of text. 
Similarly, the fi le application contains 2,255 bytes of data, including newlines. It 
is important to realize that the number you see here shows the actual amount of data 
contained in the fi le, not the amount of storage space taken up by the fi le. If you want to 
fi nd out how much space the fi le occupies, you must use the du or ls -s commands, 
discussed earlier in the chapter.
 By default, ls displays fi le sizes in bytes, which can be confusing when the numbers 
are large. To display larger numbers in units of kilobytes (K) or megabytes (M), use the 
-h (human-readable) option:

ls -hl

For example, the following output shows the same fi les as above:

total 32
-rw-rw-r--  1 harley staff  2.3K Apr  2 21:52 application
drwxrwxr-x  2 harley staff  4.0K Oct  5 11:40 bin
drwxrwxr-x  2 harley staff  4.0K Oct  5 11:41 music
-rw-rw-r--  1 harley staff   663 Sep 26 20:03 partylist

HINT

Let’s say your working directory has a great many fi les, and you want to display information 
about the most recently modifi ed fi les. The easiest way is to display the fi les in reverse, time-
sorted order:

ls -lrt

To display the most recently accessed fi les, use:

ls -lrtu

Because you are working in a large directory, most of the fi le names will scroll off the screen. 
However, it doesn’t matter, because all you care about is the last few lines.

Long Directory Listings: ls -dhltu

hah33614_c24_659_714.indd   705hah33614_c24_659_714.indd   705 5/20/2009   2:31:20 PM5/20/2009   2:31:20 PM



Chapter 24

706 Harley Hahn’s Guide to Unix and Linux

Notice that the two directories each use 4,096 bytes, which is exactly 4K. This is because 
this particular system uses allocation units of 4K, and every directory starts out with a 
minimum of 1 allocation unit. (Allocation units are discussed earlier in the chapter.) It is 
important to remember that the number 4K refers to the size of the directory itself, not 
the contents of the directory. Although we often talk about a directory as if it “contains” a 
number of fi les, it’s only a metaphor. Directories take up only a small amount of storage 
space because they contain information about fi les, not the fi les themselves.
 At the far left of each line, the fi rst character shows you the type of fi le. There are several 
possibilities, which are summarized in Figure 24-8. As I mentioned, the most important 
characters are - (dash) which indicates an ordinary fi le and d which indicates a directory. 
Although the - character identifi es an ordinary fi le, it doesn’t tell you anything about the 
fi le. If you want more information, you can use the file command (described earlier 
in the chapter). For example, in the listing above you can see that partylist is an 
ordinary fi le. If you want more information, enter:

file partylist

The output is:

partylist: ASCII text

Returning to the fi le indicators, the less common characters are l (lowercase letter “l”) for 
a symbolic link (Chapter 25), p for a named pipe (Chapter 23), and b and c for special 
fi les (Chapter 23). When it comes to special fi les, Unix distinguishes between two types 
of devices. Devices such as  terminals that process one byte of data at a time are called 
CHARACTER DEVICES.   Devices such as disks that process a fi xed number of bytes at 
a time are called BLOCK DEVICES. The letter c identifi es special fi les that represent 
character devices; b identifi es special fi les that represent block devices.
 To the left of the fi le size are two names, the userid and group of the owner of the fi le 
and the group to which that userid belongs. In our example, all the fi les are owned by 
userid harley, which is in the group named staff. (Some versions of Unix do not 
show the group unless you use the -g option.) To the left of the userid is a number that 

INDICATOR MEANING
- ordinary fi le

d directory

l symbolic link

b special fi le (block device)

c special fi le (character device)

p named pipe/FIFO

FIGURE 24-8: File type indicators used by ls -l
When you use ls with  the -l (long listing) option, information about each fi le is displayed on a 
separate line.  At the far left of the line, ls displays a single character indicating the type of fi le.  Here 
is a list of the most important indicators.

33614_24_659_714.indd   70633614_24_659_714.indd   706 1/9/2008   12:40:01 PM1/9/2008   12:40:01 PM



Working With Directories

707

shows how many links there are to this fi le. Finally, the string of nine characters at the far 
left (just to the right of the initial character) shows the fi le permissions. We will discuss 
these four concepts — fi le ownership, groups, links, and permissions — in Chapter 25, at 
which time we will look at the output of the ls -l program in more detail.
 When you specify the name of a directory, ls lists information about the fi les in that 
directory. For example, to display a long listing about all the fi les in the /bin directory, 
you would use:

ls -l /bin | less

If you want information about the directory itself, use the -d (directory) option. This tells 
ls to consider directories as fi les in their own right. For example, to display information 
about the /bin directory itself, not the contents of /bin, you would use:

ls -dl /bin

Here is some sample output:

drwxr-xr-x 2 root root 4096 Dec 21 2008 /bin

This is a handy option to remember when you are listing a number of fi les, some of 
which are directories, and ls displays unwanted information about the contents of every 
directory. When you use -d, it tells ls not to look inside any of the directories.
 The information displayed by the -l option can be used in many imaginative ways by 
piping the output to a fi lter (see Chapters 16-19). Here are two examples to give you some 
ideas. To list the names of all the fi les that were last modifi ed in September, you can use:

ls -l | grep Sep

To count how many fi les were last modifi ed in September, use:

ls -l | grep Sep | wc -l

USEFUL ALIASES FOR USING ls
The ls program is    used a lot. Indeed, as I mentioned earlier, I consider ls to be the most 
useful program in   the entire Unix toolbox. For this reason, it is common to defi ne aliases 
to make it easy to use ls with the most commonly used options. Once you fi nd aliases 
you like, you can make them permanent by putting them in your environment fi le. (For 
a detailed discussion of aliases, see Chapter 13; for information about the environment 
fi le, see Chapter 14.)
 There are two types of aliases you can use with ls. First, there are aliases that redefi ne 
ls itself. For example, let’s say that, whenever you use ls, you always want the -F and 
--color options. Just use one of the following aliases. The fi rst one is for the Bourne 
shell family; the second one is for the C-Shell family:

alias ls='ls -F --color=auto'
alias ls 'ls -F --color=auto'

Useful Aliases for Using ls

33614_24_659_714.indd   70733614_24_659_714.indd   707 1/9/2008   12:40:01 PM1/9/2008   12:40:01 PM



Chapter 24

708 Harley Hahn’s Guide to Unix and Linux

The second type of alias makes up a new name for a particular variation of ls. Here are 
the aliases for the Bourne Shell family:

alias ll='ls -l'
alias la='ls -a'
alias lla='ls -la'
alias ldot='ls -d .??*'

For the C-Shell family:

alias ll  'ls -l'
alias la  'ls -a'
alias lla 'ls -la'
alias ldot 'ls -d .??*'

These aliases make it easy to display a long listing (ll), a list of all fi les (la), a long listing 
of all fi les (lla), and a listing of only dotfi les (ldot).  For example, once you have 
defi ned the ll alias, you can display a long listing of the /bin directory by using:

ll /bin

To display a long listing of your working directory, including dotfi les, use:

lla

To display only your dotfi les, use:

ldot

My suggestion is to put these aliases in your environment fi le and spend some time using 
them. Once you get used to these aliases, you won’t want to do without them.

DISPLAYING A DIRECTORY TREE: tree
If you use Linux,      there is a powerful tool called tree that will draw you a picture of any 
part of the fi lesystem. The syntax is:

tree [-adfFilrst] [-L level] [directory...]

where level is the depth to descend into the tree, and directory is the name of a directory.
 To see how it works, list the tree for the entire fi lesystem. Because the tree will be huge, 
you will need to pipe it to less. When you get tired of reading, press q to quit.

tree / | less

Most of the time, you would use tree to visualize your own fi les. To display your part 
of the fi lesystem, use:

tree ~ | less

Here is some typical output:

33614_24_659_714.indd   70833614_24_659_714.indd   708 1/9/2008   12:40:01 PM1/9/2008   12:40:01 PM



Working With Directories

709

/home/harley
|-- bin
|   |-- funky
|   `-- spacewar
`-- essays
    |-- history
    |   |-- crusades
    |   `-- renaissance
    `-- literature
        |-- kafka
        `-- tolstoy

In this example, the home directory has two subdirectories, bin and essays. The bin 
directory contains two fi les. The essays directory contains two subdirectories of its 
own, history and literature, both of which contain two fi les.
 The tree program has a lot of options. I’ll explain the most important ones, so you can 
experiment. To start, some of the options are the same as we use with ls. The -a option 
displays all fi les, including dotfi les; -s displays the size of each fi le as well as the name; -F 
displays a fl ag showing the type of fi le; -r sorts the output in reverse order; -t sorts the 
output by modifi cation time.
 In addition, tree has its own options. The most useful is -d which displays directories 
only, for example:

tree -d ~ | less

Using the same tree structure as above, the output is:

/home/harley
|-- bin
`-- essays
    |-- history
    `-- literature
4 directories

The -f option displays full pathnames, for example:

tree -df ~ | less

The sample output is:

/home/harley
|-- /home/harley/bin
`-- /home/harley/essays
    |-- /home/harley/history
    `-- /home/harley/literature
4 directories

Displaying a Directory Tree: tree

33614_24_659_714.indd   70933614_24_659_714.indd   709 1/9/2008   12:40:01 PM1/9/2008   12:40:01 PM



Chapter 24

710 Harley Hahn’s Guide to Unix and Linux

The -i option omits the indentation lines. This is useful when you want to collect a set 
of pathnames:

tree -dfi ~ | less

The sample output is:

/home/harley
/home/harley/bin
/home/harley/essays
/home/harley/history
/home/harley/literature
4 directories

To limit the depth of the tree, you can use the -L (limit) option, followed by a number. 
This tells tree to only descend that many levels into the tree, for example:

tree -d -L 2 /home

Finally, the -l option tells tree to follow all symbolic links (see Chapter 25) as if they 
were real directories.
 To conclude this section, here is an example of how you can use tree to fi nd all 
the directories named bin in the entire fi lesystem. The idea is to start from the root 
directory (/), limit the search to directories only (-d), display full pathnames (-f), omit 
indentation lines (-i), and then send the output to grep (Chapter 19) to select only those 
lines that end with /bin. The command is:

tree -dif / | grep '/bin$'

Here is some sample output:

/bin
/home/harley/bin
/usr/bin
/usr/local/bin
/usr/X11R6/bin

FILE MANAGERS
In this  chapter, we have discussed the basic operations you can use with directories: 
creating, deleting, moving and renaming. We have also discussed how to change your 
working directory and how to use ls to display the contents of a directory in various 
ways. In Chapter 25, we will cover analogous topics with respect to ordinary fi les. In 
particular, I will show you how to create, copy, rename, move and delete fi les, and how to 
use ls to display information about fi les.
 In both chapters, we use text-based commands that we enter at the shell prompt, the 
standard Unix CLI (command-line interface) we fi rst discussed in Chapter 6. As powerful 
as the directory and fi le commands are, there is an alternative I want you to know about. 

33614_24_659_714.indd   71033614_24_659_714.indd   710 1/9/2008   12:40:01 PM1/9/2008   12:40:01 PM



Working With Directories

711

Instead of typing commands, you can use a FILE MANAGER, a program designed to help 
you manipulate directories and fi les.
 File managers use the entire screen or window to display a list of fi les and directories. 
By pressing various keys, you can perform any of the common operations quickly and 
easily. Each fi le manager works in its own way, so I won’t go into the details: you will have 
to teach yourself. Typically, it can take awhile to master a fi le manager, but once you do, 
using it becomes second nature. To start, read the built-in help information.
 The classic fi le manager was the  Norton Commander, an extremely popular tool, fi rst 
written in 1986 by programmer John Socha for  the old DOS operating system. Over the 
years, the dual-panel design developed by Socha has been cloned and extended many 
times. If you are a Windows user, you probably have some experience with a different type 
of design, as implemented by Windows Explorer, the default Windows fi le manager.
 In general, we can divide fi le managers into   two families, GUI-based and text based. The 
GUI-based fi le managers are designed to be used with a graphical desktop environment, 
such as Gnome or KDE (see Chapter 5). Most desktop environments come with a default 
fi le manager: for Gnome, it is Nautilus; for KDE it is Konqueror (see Figure 24-9). 
However, there are a variety of other graphical fi le managers available for free if you want 
more choice. The text-based fi le managers are for use within a text-based environment, 
for example, when you use a virtual console (Chapter 6) or when you access a remote 
Unix host with a terminal emulator (Chapter 3).

FIGURE 24-9: An example of a fi le manager

A fi le manager is a program that helps you manipulate fi les and directories.  Using a fi le manager is 
an alternative to typing directory and fi le commands at the command line.  Here is a screenshot of 
Konqueror, the default fi le manager for the KDE desktop environment.

File Managers

33614_24_659_714.indd   71133614_24_659_714.indd   711 1/9/2008   12:40:01 PM1/9/2008   12:40:01 PM



Chapter 24

712 Harley Hahn’s Guide to Unix and Linux

For reference, here is a list of selected fi le managers you may wish to try.

Graphical File Managers:
• File Runner
• Gentoo
• Nautilus (comes with Gnome)
• Konqueror (comes with KDE)
• XFE [X File Explorer]

Text-Based File Managers:
• FDclone (Japanese clone of FD, a DOS fi le manager)
• Midnight Commander (clone of the classic Norton Commander)
• Vifm (fi le manager based on vi commands)

Finally, there is one more tool I want   to mention. You can use the Vim text editor (Chapter 
22) to perform fi le operations. Just start Vim with the name of a directory, and Vim will 
let you perform basic operations on the fi les within that directory. Try it when you get a 
chance. Note: This feature will not work when you start Vim in compatibility mode, that 
is, with the -C option (see Chapter 22).

C H A P T E R  2 4  E X E R C I S E S

REVIEW QUESTIONS

1.  What is a pathname? What is the difference between an absolute pathname and a 
relative pathname?

2.  What is the working directory? What is another name for it? Which command displays the name 
of your working directory? Can you think of another way to display the same information? 
Which commands — there are more than one — change your working directory?

  Suppose you want a constant reminder of the name of your working directory. How 
would you arrange that? Hint: Think about your shell prompt.

3.  What program do you use to list the fi les in a directory? Which options do you use to 
display:

 • All fi les, including dotfi les (hidden fi les)
 • Names in reverse alphabetical order
 • Entire tree, including all subdirectories
 • Flag after each name (/ = directory)
 • Size of each fi le, in human readable units
 • Long listing (permissions, owner, and so on)
 • Information about a directory itself, not its contents

  When you look at a directory listing, what do the entries . and .. mean?

33614_24_659_714.indd   71233614_24_659_714.indd   712 1/9/2008   12:40:02 PM1/9/2008   12:40:02 PM



Working With Directories

713

4.  What is globbing? What are wildcards? What are the fi ve different wildcards? What 
does each one match? How is globbing different from using regular expressions?

5.  What program do you use to draw a diagram of a directory tree? Which is the most 
useful option for this program?

APPLYING YOUR KNOWLEDGE

1.  Starting from your home directory, using as few commands as possible, create the 
following directories :

 temp/
 temp/books/
 temp/books/unix/harley
 temp/books/literature/
 temp/books/literature/english/
 temp/books/literature/english/shakespeare
 temp/books/literature/english/shakespeare/hamlet
 temp/books/literature/english/shakespeare/macbeth

  Display a diagram of the directory tree starting from temp that shows only directories. 
(Note: You may not have the program to do this if you are not using Linux.)

2.  Starting with the directories from the the last question, using commands that 
are as short as possible, create the following empty fi les. (Hint: Use the touch 
command to create the fi les. It is explained in Chapter 25, and there is an example 
in this chapter.)

 • In the harley directory: create notes, questions, answers.
 • In the english directory: create essay, exam-schedule.
 • In the hamlet directory: create quotes.

  Display a diagram of the directory tree starting from temp showing all fi les and 
directories.

3.  Clear the directory stack. Now push the following two directories onto the stack:

 ~/temp/books/unix/harley
 ~/temp/books/literature/english/

  Display the contents of the stack so that each element is on a separate line with a line 
number. Using the stack, change to the harley directory.

4.  Create two versions of a command to display the access times of all the fi les in your 
working directory with a name that consists of the characters “backup”, followed by 
a single character, followed by 2 digits. The fi rst command should use predefi ned 
character classes. The second command should use ranges.

Chapter 24 Exercises

33614_24_659_714.indd   71333614_24_659_714.indd   713 1/9/2008   12:40:02 PM1/9/2008   12:40:02 PM



Chapter 24

714 Harley Hahn’s Guide to Unix and Linux

FOR FURTHER THOUGHT

1.  You are teaching a Unix class, and it is time to explain how to create directories and 
how to think about the working directory. You have two choices. First, you can explain 
the concepts abstractly: we create directories as needed, and we use the cd command 
to change the value of the working directory. Alternatively, you can introduce the 
metaphor of a tree: directories are like branches of a tree, and using cd moves us from 
one branch to another. Which approach do you think is better? Why?

2.  To display fi le types, you can use either ls -F and file. Why is it necessary to have 
two such commands?

33614_24_659_714.indd   71433614_24_659_714.indd   714 1/9/2008   12:40:02 PM1/9/2008   12:40:02 PM



715

C H A P T E R  2 5

Working With Files

Creating a File: touch

This is the last of three chapters devoted to Unix fi les. In Chapter 23, we discussed the Unix 
fi lesystem in detail. At the time, I explained that there are three types of fi les: directories, 
ordinary fi les, and pseudo fi les. For day-to-day work, directories and ordinary fi les are 
the most important, so I want to make sure you master all the basic skills related to these 
two types of fi les. In Chapter 24, we talked about how to use directories. In this chapter, 
we will discuss the details of working with ordinary fi les.
 Throughout the chapter, when I use the term “fi le”, I am referring to ordinary fi les. Thus, 
to be precise, the title of the chapter should actually be “Working With Ordinary Files”.
 Our plan for the chapter is as follows: fi rst, I will show you how to create, copy, move 
and rename ordinary fi les. We will then discuss permissions, the attributes that allow users 
to share fi les. From there, we will talk about what goes on behind the scenes, and you will 
see that manipulating fi les actually involves working with “links”. Finally, I will explain 
how to search for fi les and how to process fi les that have been found in a search. It sounds 
like a lot — and it is — but I promise, by the time you fi nish, it will all make sense.

CREATING A FILE: touch
How do you create a fi le? Strangely       enough, you don’t. Unix creates fi les for you as the 
need arises; you rarely need to create a new fi le for yourself.
 There are three common situations in which a fi le will be created for you automatically. 
First, when necessary, many programs will create a fi le for you automatically. For example, 
let’s say you start the vi editor (Chapter 22) by using the command:

vi essay

This command specifi es that you want to edit a fi le named essay. If essay does not 
exist, vi will create it for you the fi rst time you save your work. In our example, I used 
vi, but the same principal applies to many other programs as well.
 Second, when you redirect output to a fi le (see Chapter 15), the shell will create the fi le 
if it does not already exist. For example, say that you want to save the output of the ls 
command to a fi le named listing. You enter the ls command, redirecting the output:

33614_25_715_766.indd   71533614_25_715_766.indd   715 1/9/2008   12:40:30 PM1/9/2008   12:40:30 PM



Chapter 25

716 Harley Hahn’s Guide to Unix and Linux

ls > listing

If listing does not already exist, the shell creates it for you.
 Finally, when you copy a fi le, the copy program creates a new fi le. For example, say that 
you want to copy the fi le data to a fi le named extra. You enter the following command:

cp data extra

If the fi le extra does not exist, it will be created automatically. (The cp command is 
explained later in the chapter.)
 However, let’s say that for some reason you want to create a brand new, empty fi le. What 
is the easiest way to do it? In Chapter 24, I explained how to use the mkdir command 
to make a new directory. Is there an analogous command to make an ordinary fi le? The 
answer is no, but there is a command that has the side effect of creating an empty fi le. 
This command is called touch and here is how it works.
 In Chapter 24, I explained how to display the modifi cation time (ls -l) or access 
time (ls -lu) of a fi le. The modifi cation time is the last time the fi le was changed; the 
access time is the last time the fi le was read. The main purpose of touch is to change the 
modifi cation time and the access time of a fi le without changing the fi le. Imagine yourself 
reaching out and carefully touching the fi le (hence the name). The syntax is:

touch [-acm] [-t time] file...

where time is a time and date in the form [[YY]YY]MMDDhhmm[.ss].
 By default, touch sets both the modifi cation and the access times to the current time 
and date. For example, let’s say that a fi le named essay was last modifi ed on July 8 at 
2:30 PM. You enter:

ls -l essay

The output is:

-rw-------  1 harley staff  4883 Jul  8 14:30 essay

It is now 10:30 AM, December 21. You enter:

touch essay

Now when you enter the same ls command you see:

-rw-------  1 harley staff  4883 Dec 21 10:30 essay

When might you use touch? Let’s say you are preparing to distribute a set of fi les — 
music, software, whatever — and you want them to all have the same time and date. 
Change to the directory that holds the fi les and enter:

touch *

All the fi les matched by the * wildcard (see Chapter 24) now have the same modifi cation 
time and access time.

33614_25_715_766.indd   71633614_25_715_766.indd   716 1/9/2008   12:40:31 PM1/9/2008   12:40:31 PM



Working With Files

717

 If you want to change the modifi cation time only, use the -m option. If you want to 
change the access time only, use -a. To use a specifi c time and date instead of the current 
time, use -t followed by a time in the format [[YY]YY]MMDDhhmm[.ss]. Here are 
two examples. Let’s say today is August 31. The fi rst command changes the modifi cation 
time (only) to 5:29 PM on the current day. The second command changes the access time 
(only) to December 21, 2008, 10:30 AM:

touch -m -t 08311729 file1
touch -a -t 200812211030 file2

Realistically, you will rarely have a need to change the modifi cation time or the access time 
for a fi le. However, touch has one very important side effect: if the fi le you specify does 
not exist, touch will create it for you. Thus, you can use touch to create brand new, 
empty fi les whenever you want. For example, to create a fi le named newfile, just enter:

touch newfile

If you want, you can create more than one new fi le at a time:

touch data1 data2 data3 temp extra

When you use touch to create a new fi le, the modifi cation time and access time will be 
the current time and date. If this doesn’t suit you, you can use the options we discussed 
above to set a specifi c time as you create the fi le.
 One last option: If you are updating the modifi cation time or access time for a number 
of fi les, and you don’t want touch to create any new fi les, use the -c (no create) option. 
For example, the following command will update the times for the specifi ed fi les. However, 
if a fi le does not exist it will not be created:

touch -c backup1 backup2 backup3 backup4

NAMING A FILE
Unix   is liberal with respect to naming fi les. There are only two basic rules:

1.  Filenames can be up to 255 characters long.*

Naming a File

HINT

Most of the time, there is no need to use touch to create new fi les, because — as we have 
discussed — new fi les are almost always created for you automatically as the need arises.
 Where touch does come in handy is when you need some temporary fi les quickly, say, to 
experiment with fi le commands. When this happens, using touch is the fastest way to create a 
set of brand new, empty fi les, for example:

touch test1 test2 test3

 *Technically, the maximum size of a fi lename is set by the fi lesystem, not by Unix or Linux. Most modern fi lesystems 
default to a maximum fi lename length of 255 characters. However, some fi lesystems are more fl exible. For example, if you are a 
fi lesystem nerd, it is easy to modify the ext2, ext3 or ext4 fi lesystems to allow up to 1012 characters in a fi lename.

33614_25_715_766.indd   71733614_25_715_766.indd   717 1/9/2008   12:40:31 PM1/9/2008   12:40:31 PM



Chapter 25

718 Harley Hahn’s Guide to Unix and Linux

2.  A fi lename can contain any character except / (slash) or the null character.

This only makes sense. As you know from Chapter 24, the / character is used as a separator 
within pathnames so, of course, you can’t use it within a fi lename. The null character is 
the character consisting of all zero bits (see Chapter 23). This character is used as a string 
terminator in the C programming language, and you would normally never use it within 
a fi lename.
 To these two rules, I am going to add a third one of my own.

3. Create fi lenames that are meaningful to you.

As an example, the name data doesn’t mean much compared to the more descriptive 
chemlab-experiment-2008-12-21. True, the long name is complicated and 
takes longer to type, but once you know how to use fi lename completion (see Chapter 
13), you will rarely have to type a complete name. For example, for the long name above, 
you might be able to type ch<Tab> and let the shell complete the name for you.
 My advice is to choose meaningful names for all your fi les at the moment you create 
them. Otherwise, you will eventually accumulate many fi les that may or may not contain 
valuable data. If you are like everyone else, I am sure you think that, one day, you will 
go through all your fi les and delete the ones you don’t need. However, if you are like 
everyone else, you will probably never actually do so.*

 Unix allows you to create fi lenames that contain all sorts of outlandish characters: 
backspaces, punctuation, control characters, even spaces and tabs. Obviously, such 
fi lenames will cause trouble. For example, what if you use the ls -l command to list 
information about a fi le named info;date:

ls -l info;date

Unix would interpret the semicolon as separating two commands:

ls -l info
date

Here is another example. Say that you have a fi le named -jokes. It would be a lot of 
trouble using the name in a command, for example:

ls -jokes

Unix would interpret the - (hyphen) character as indicating an option.

 *If you need convincing, just ask yourself, “Right now, how many photos do I have on my computer that, one day, I will 
sort through?”

HINT

The best way to keep junk from accumulating in your directories is to give meaningful names 
to your fi les when you create them.

33614_25_715_766.indd   71833614_25_715_766.indd   718 1/9/2008   12:40:31 PM1/9/2008   12:40:31 PM



Working With Files

719

 Generally speaking, you will run into trouble with any name that contains a character 
with a special meaning (<, >, |, ! and so on). The best idea is to confi ne yourself to 
characters that cannot be misinterpreted. These are shown in Figure 25-1. Hyphens are 
okay to use, as long as you don’t put them at the beginning of the name.
 If you ever do end up with a name that contains spaces or other strange characters, 
you can sometimes make it work by quoting the name. (Quoting is explained in Chapter 
13.) Here is a particularly meretricious example:

ls -l 'this is a bad filename, but it does work'
ls -l this\ is\ a\ bad\ filename\,\ but\ it\ does\ work

To fi nish this section, I am going to explain three important fi le naming conventions. 
First, as   we discussed in Chapters 14 and 24, fi les whose names begin with a . (dot) 
character are called dotfi les or hidden fi les. When you use ls, such fi les are listed only if 
you specify the -a (all) option. By convention, we use names that start with a dot only for 
fi les that contain confi guration data or initialization commands. (Figure 24-5 contains a 
list of the common dotfi les.)
 Second, we often use fi lenames that end with a dot followed by one or more letters to 
indicate the type of the fi le. For example, C source fi les have names that end in .c, such as 
myprog.c; MP3 music fi les have names that end in mp3; fi les that have been compressed 
by the gzip program have names that end in .gz; and so on. In such cases, the suffi x is 
referred   to as an EXTENSION. There are literally hundreds of different extensions. Such 
extensions are convenient as they allow you to use wildcards (see Chapter 24) to refer to 
a group of fi les. For example, you can list the names of all the C source fi les in a directory 
by using:

ls *.c

Finally,  as you will remember, Unix distinguishes between upper- and lowercase. Thus, 
the names info, Info and INFO are completely different. A Unix person would simply 
use info. Now, consider the following names that you might use for a directory that 
contains programs or shell scripts:

a, b, c... Lowercase letters

A, B, C... Uppercase letters

0, 1, 2... Numbers

.  Dot

- Hyphen

_ Underscore

FIGURE 25-1: Characters that are safe to use in fi lenames

Unix allows you to use any characters you want in a fi lename except a / (slash) or a null.  However, 
your life will be a lot easier if you stick to letters, numbers, the dot, the hyphen (but not at the beginning 
of a name), and the underscore.

Naming a File

33614_25_715_766.indd   71933614_25_715_766.indd   719 1/9/2008   12:40:31 PM1/9/2008   12:40:31 PM



Chapter 25

720 Harley Hahn’s Guide to Unix and Linux

Program Files
ProgramFiles
programfiles
program-files
program_files
bin

The fi rst name is what Windows uses. As Unix people, we reject the name immediately 
because it contains a space. The next name has two uppercase letters, which makes it 
diffi cult to type, so we reject it as well. But what about the next three names? They contain 
no spaces or uppercase letters or strange characters. However, for important directories, 
it’s handy to have short, easy names, which is why bin gets our vote.
 In the world of Unix, we have a convention that names beginning with uppercase letters 
are reserved for fi les that are important in some special way. For example, when you download 
software that comes in the form of a set of fi les, you will often fi nd a fi le named README. 
Because uppercase comes before lowercase in the ASCII code (Chapters 19 and 20), such 
names will come fi rst in the directory listing and will stand out*. For this reason, as a general 
rule, I recommend that you use only lowercase letters when you name fi les and directories.

COPYING A FILE: cp
To make a     copy of a fi le, use the cp command. The syntax is:

cp [-ip] file1 file2

where fi le1 is the name of an existing fi le, and fi le2 is the name of the destination fi le.
 Using this command is straightforward. For example, if you have a fi le named data 
and you want to make a copy named extra, use:

cp data extra

Here is another example. You want to make a copy of the system password fi le (see Chapter 
11). The copy should be called pword and should be in your home directory. As we 
discussed in Chapter 24, the ~ character represents your home directory, so you can use:

cp /etc/passwd ~/pword

 *If you are using the C locale. This will not be the case if you are using the en_US locale (see Chapter 19).

HINT

If you are programmer, you will be tempted, from time to time, to use the fi lename test for a 
program or shell script you are developing. Don’t do it.
 It happens that the shell has   a builtin command named test, which is used to compare 
values within a shell script. If you name one of your programs test, whenever you try to run 
the program by typing its name, you will get the shell builtin instead. Nothing will seem to 
happen, and you will end up wasting a lot of your time trying to fi gure out the problem.
 (If you are interested in knowing what test does, look it up in the online manual.)

33614_25_715_766.indd   72033614_25_715_766.indd   720 1/9/2008   12:40:31 PM1/9/2008   12:40:31 PM



Working With Files

721

If the destination fi le does not exist, cp will create it. If the destination fi le already exists, 
cp will replace it. When this happens, there is no way to get back the data that has been 
replaced. Consider the fi rst example:

cp data extra

If the fi le extra does not exist, it will be created. However, if the fi le extra did exist, it 
would be replaced. When this happens, the data in the original fi le is lost forever; there is 
no way to get it back. (Read the last sentence again.)
 To append data to the end of a fi le, you do not use cp. Rather, you use the   cat 
program and redirect the output (see Chapter 16). For example, the following command 
appends the contents of data to the end of extra. In this case, the original contents of 
extra are preserved.

cat data >> extra

Since cp can easily wipe out the contents of a fi le, if you want to be extra careful, you can 
use the -i (interactive) option:

cp -i data extra

The -i option tells cp to ask your permission before replacing a fi le that already exists. 
For example, you might see:

cp: overwrite extra (yes/no)?

If you respond with anything that starts with “y” or “Y” (for “yes”), cp will replace the 
fi le. If you type any other answer — such as pressing the <Return> key — cp will not 
make the replacement.
 The only other option I want you to know about is -p (preserve). This option gives the 
destination fi le the same modifi cation time, access time, and permissions as the source 
fi le. (We will discuss permissions later in the chapter.)

COPYING FILES TO A DIFFERENT DIRECTORY: cp
The cp command      can be used to copy one or more fi les to a different directory. The 
syntax is:

cp [-ip] file... directory

where fi le is the name of an existing fi le, and directory is the name of an existing directory. 
The -i (interactive) and -p (preserve) options work as described in the previous section.
 Here is an example. To copy the fi le data to a directory named backups, use:

cp data backups

To copy the three fi les data1, data2 and data3 to the backups directory, use:

cp data1 data2 data3 backups

Copying Files to a Different Directory: cp

33614_25_715_766.indd   72133614_25_715_766.indd   721 1/9/2008   12:40:31 PM1/9/2008   12:40:31 PM



Chapter 25

722 Harley Hahn’s Guide to Unix and Linux

Here is one more example, a little more complicated. Your working directory is 
/home/harley/work/bin. You want to copy the fi le adventure from the directory 
/home/harley/bin to the working directory. To refer to source directory, we use 
../../bin; to refer to the working directory, we use a . by itself. The command is:

cp ../../bin/adventure .

COPYING A DIRECTORY TO ANOTHER DIRECTORY: cp -r
You can use cp to     copy a directory and all of its fi les to another directory by using the -r 
option. The syntax is:

cp -r [-ip] directory1... directory2

where directory1 is the name of an existing directory, and directory2 is the name of the 
destination directory. The -i (interactive) and -p (preserve) options work as described 
earlier in the chapter. The -r (recursive) option tells cp to copy an entire subtree.
 Here is an example. Say that, within your working directory, you have two 
subdirectories: essays and backups. Within the essays directory, you have many 
fi les and subdirectories. You enter:

cp -r essays backups

A copy of essays, including all its fi les and subdirectories, is now in backups. When you 
use -r, the cp command creates new directories automatically as needed.

HINT

You can often use wildcards to specify more than one fi lename (see Chapter 24.) For example, to 
copy the three fi les data1, data2 and data3 to the backups directory, you can use:

cp data[123] backups

If there are no other fi les whose names begin with data, you can use:

cp data* backups

If there are no other fi les whose names begin with d, you can use:

cp d* backups

HINT

To copy all the fi les in a directory use cp with the * wildcard (see Chapter 24), for example:

cp documents/* backups

To copy the directory itself including all its fi les and subdirectories, use cp with the -r option, 
for example:

cp -r documents backups

33614_25_715_766.indd   72233614_25_715_766.indd   722 1/9/2008   12:40:31 PM1/9/2008   12:40:31 PM



Working With Files

723

MOVING A FILE: mv
To move a      fi le to a different directory, use the mv (move) command. The syntax is:

mv [-if] file... directory

where fi le is the name of an existing fi le, and directory is the name of the target directory.
 The mv command will move one or more fi les to an existing directory. (To create a 
directory, use the mkdir command, explained in Chapter 24.) Here are two examples. 
The fi rst command moves a fi le named data to a directory named archive:

mv data archive

You must be careful. If a directory named archive does not exist, mv will think you 
want to rename the fi le (see below). The next example moves three fi les, data1, data2 
and data3, to the archive directory:

mv data1 data2 data3 archive

As with most fi le commands, you can use a wildcard specifi cation. For example, the last 
command can be abbreviated to:

mv data[123] archive

If the target to which you move a fi le already exists, the source fi le will replace the target 
fi le. In such cases, the original contents of the target fi le will be lost and there is no way 
to get it back, so be careful. If you want to be cautious about losing data, use the -i 
(interactive) option. For example:

mv -i data archive

This tells mv to ask your permission before replacing a fi le that already exists. If you 
type an answer that begins with the letter y or Y (for “yes”), mv will replace the fi le. If 
you type any other answer — such as pressing the <Return> key — mv will not make 
the replacement. In this example, mv would ask your permission before replacing a fi le 
named archive/data.
 The opposite option is -f (force). This forces mv to replace a fi le without checking 
with you. The -f option will override the -i option as well as restrictions imposed by 
fi le permissions (explained later in the chapter). Use -f with care and only when you 
know exactly what you are doing.

RENAMING A FILE OR DIRECTORY: mv
To rename      a fi le or directory, use the mv (move) command. The syntax is:

mv [-if] oldname newname

where oldname is the name of an existing fi le or directory, and newname is the new name. 
The -i (interactive) and -f (force) options work as described in the last section.

Renaming a File or Directory: mv

33614_25_715_766.indd   72333614_25_715_766.indd   723 1/9/2008   12:40:31 PM1/9/2008   12:40:31 PM



Chapter 25

724 Harley Hahn’s Guide to Unix and Linux

 Renaming a fi le or directory is straightforward. For example, to rename a fi le from 
unimportant to important, use:

mv unimportant important

If the target (in this case, important) already exists, it will be replaced. All the data in 
the original target will be lost, and there is no way to get it back, so be careful. You can use 
the -i and -f options, described in the last section, to control the replacement: -i tells 
mv to ask you before replacing a fi le; -f forces the replacement no matter what.
 As you might expect, you can use mv to rename and move at the same time. For 
example, say that incomplete is a fi le and archive is a directory. The following 
command moves incomplete to the directory archive (which must already exist). 
As part of the move, the fi le will be renamed to complete:

mv incomplete archive/complete

Finally, consider what happens if you use mv with a directory named old as follows:

mv old new

If there is no directory named new, the old directory will be renamed new. However, if 
there is a directory named new, the old directory will be moved to become a subdirectory 
of new. (Take a moment to think about this.)

DELETING A FILE: rm
To delete a     fi le, use the rm (remove) command. The syntax is:

rm [-fir] file...

where fi le is the name of a fi le you want to delete.
 (Notice that the name of this command is “remove”, not “delete”. This will make sense 
when we talk about links later in the chapter.)
 To delete a fi le, just specify its name. Here are some examples. The fi rst command 
deletes a fi le named data in your working directory. The second command deletes a 
fi le named essay in your home directory. The next command deletes a fi le named 
spacewar in the directory named bin, which lies in your working directory.

rm data
rm ~/essay
rm bin/spacewar

As with all fi le commands, you can use wildcard specifi cations (see Chapter 24). Here are two 
examples. The fi rst command deletes the fi les data1, data2 and data3 in the working 
directory. The second command deletes all the fi les in your working directory, except dotfi les. 
(Obviously, this is a very powerful command, so do not experiment with it.)

rm data[123]
rm *

33614_25_715_766.indd   72433614_25_715_766.indd   724 1/9/2008   12:40:31 PM1/9/2008   12:40:31 PM



Working With Files

725

Once you delete a fi le, it is gone for good. There is no way to get back an erased fi le, so 
be careful.
 When you use rm with a wildcard specifi cation, it is a good idea to test it fi rst with 
an ls command to see what fi les are matched. Here is an example. You want to delete 
the fi les data.backup, data.old and data.extra. You are thinking about using 
the wildcard specifi cation data* which would match all fi les whose names begin with 
data. However, to be prudent, you check this specifi cation by entering:

ls data*

The output is:

data.backup  data.extra  data.important  data.old

You see that you had forgotten about the fi le data.important. If you had used rm 
with data* you would have lost this fi le. Instead, you can use:

rm data.[beo]*

This will match only those fi les you really want to delete.

HOW TO KEEP FROM DELETING THE WRONG FILES: rm -if
As I mentioned      in the previous section, it is a good idea to check a wildcard pattern 
with ls before you use it with an rm command. However, even if you check the pattern 
with ls, you might still type it incorrectly when you enter the rm command. Here is a 
foolproof way to solve the problem.
 In Chapter 13, in our discussion of aliases, I showed you how to defi ne an alias named 
del, which runs the rm command using the same arguments as the preceding ls command. 
For the   Bourne shell family (Bash, Korn shell), the command to defi ne this alias is:

alias del='fc -s ls=rm'

For the C-Shell family (Tcsh, C-Shell), the command is:

alias del 'rm \!ls:*'

(The details are explained in Chapter 13.) To defi ne the del alias permanently, just 
put the appropriate command in your environment fi le (Chapter 14). Once the alias is 
defi ned, it is easy to use. To start, enter an ls command with the wildcard specifi cation 
that describes the fi les you want to delete. For example:

ls data.[beo]*

HINT

Before you use rm with a wildcard specifi cation, test it fi rst with ls to confi rm which fi les will 
be matched.

How to Keep From Deleting the Wrong Files: rm -if

33614_25_715_766.indd   72533614_25_715_766.indd   725 1/9/2008   12:40:32 PM1/9/2008   12:40:32 PM



Chapter 25

726 Harley Hahn’s Guide to Unix and Linux

Take a look at the list of fi les. If they are really the ones you want to delete, enter:

del

This will execute the rm command using the fi lenames from the previous ls command. 
If the list of fi les is not what you want, try changing the pattern.
 A handy alternative is to use the -i (interactive) option. This tells rm to ask your 
permission before deleting each fi le. For example, you can enter:

rm -i data*

The rm program will display a message for each fi le, asking your permission to proceed, 
for example:

rm: remove regular file `data.backup'?

If you type a response that begins with “y” or “Y” (for “yes”), rm will delete the fi le. If 
you type any other answer — such as pressing the <Return> key — rm will leave the 
fi le alone.
 It is common for people to create an alias that automatically inserts the -i option 
every time they use the rm command. Here are the aliases. The fi rst one is for the Bourne 
Shell family; the second one is for the C-Shell family:

alias rm='rm -i'
alias rm 'rm -i'

Some system administrators put such an alias in the system-wide environment fi le, 
thinking they are doing their users a favor.
 This practice is to be deplored for two reasons. First, Unix was designed to be terse and 
exact. Having to type “y” each time you want to delete a fi le slows down your thought 
processes. Using an automatic -i option makes for sloppy thinking because users come 
to depend on it.
 If you feel like arguing the point, think about this: it is true that, during the fi rst week, 
a new user who is not used to the rm command may accidentally delete one or two fi les, 
and he won’t get them back. However, the experience is an important one, and it won’t 
be long before he will learn to use the command carefully. I believe that, in the long run, 
developing your skills is always the better alternative to being coddled. The truth is in 
spite of the potential power of rm, experienced Unix users rarely delete fi les by accident, 
because they have formed good habits.
 The second reason I don’t want you to use the -i option automatically is that, eventually, 
you will use more than one Unix or Linux system. If you become used to a slow, awkward, 
ask-me-before-you-delete-each-fi le rm command, you will forget that most Unix systems 
do not work that way. One day, you will fi nd yourself on a different system, and it will be 
all too easy to make a catastrophic mistake. Your fi ngers have a memory, and once you get 
used to typing rm instead of rm -i, it is a diffi cult habit to unlearn.
 For this reason, if you really must create an alias for rm -i, give it a different name, 
for example:

33614_25_715_766.indd   72633614_25_715_766.indd   726 1/9/2008   12:40:32 PM1/9/2008   12:40:32 PM



Working With Files

727

alias erase='rm -i'
alias erase 'rm -i'

One fi nal point. Later in  the chapter, we will discuss fi le permissions. At that time, you 
will see that there are three types of permissions: read, write and execute. I won’t go into 
the details now except to say that without write permission, you are not allowed to delete 
a fi le. If you try to delete a fi le for which you do not have write permission, rm will ask 
your permission to override the protection mechanism.
 For example, say that the fi le data.important has fi le permissions of 400. (The 
“400” will make sense later. Basically, it means that you have read permission, but not 
write or execute permission.) You enter:

rm data.important

You will see the question:

rm: remove write-protected regular file `data.important'?

If you type a response that begins with “y” or “Y” (for “yes”), rm will delete the fi le. 
If you type any other answer — such as pressing the <Return> key — rm will leave 
the fi le alone. If you are careful, you can tell rm to perform the deletion without asking 
permission — regardless of fi le permissions — by using the -f (force) option:

rm -f data.important

On some systems, -f will also override the -i option.

DELETING AN ENTIRE DIRECTORY TREE: rm -r
To delete an entire      directory tree, use the rm command with the -r (recursive) option 
and specify the name of a directory. This tells rm to delete not only the directory, but all 
the fi les and subdirectories that lie within the directory. For example, let’s say you have a 
directory named extra. Within this directory are a number of fi les and subdirectories. 
Within each subdirectory are still more fi les and subdirectories. To delete everything all 
at once, enter:

rm -r extra

Here is another example, deceptively simple, yet powerful. To delete everything under 
your working directory, use:

rm -r *

HINT

When you delete fi les with rm, the -f (force) option will override fi le permissions and (on 
some systems) the -i option. For this reason, only use -f when you are sure you know what 
you are doing.

Deleting an Entire Directory Tree: rm -r

33614_25_715_766.indd   72733614_25_715_766.indd   727 1/9/2008   12:40:32 PM1/9/2008   12:40:32 PM



Chapter 25

728 Harley Hahn’s Guide to Unix and Linux

Obviously, rm -r can be a dangerous command, so if you have the tiniest doubt that 
you know what you are doing, -r is a good option to forget about. At the very least, think 
about using -i (interactive) option at the same time. This tells rm to ask permission 
before deleting each fi le and directory, for example:

rm -ir extra

To delete an entire directory tree quickly and quietly, regardless of fi le permissions, you 
can use the -f option:

rm -fr extra

Remember, on some systems, -f will also override the -i option, so please be careful.

 To conclude the discussion of the rm command, let’s take a quick look at how easy it 
is to wipe out all your fi les. Say that your home directory contains many subdirectories, 
the result of months of hard work. You want to delete all the fi les and directories under 
the extra directory.
 As it happens, you are not in your home directory. What you should do is change to 
your home directory and then enter the rm command:

cd
rm -fr extra

However, you think to yourself, “There is no point in typing two commands. I can do the 
whole thing in a single command.” You intend to enter:

rm -fr ~/extra

(Remember, as we discussed in Chapter 24, the ~, tilde, character represents your home 
directory.) It happens, however, that you are in a hurry, you accidentally type a space 
before the slash:

rm -fr ~ /extra

In effect, you have entered a command to delete all the fi les in two directory trees: ~ (your 
home directory) and /extra.
 Once you press <Return>, don’t even bother trying to hit ^C or <Delete> (whichever 
is your intr key) to abort the command. The computer is so much faster than you, there 
is no way to catch a runaway rm command. By the time you realize what has happened, 

HINT

Before using rm with the -r option to delete an entire directory tree, always take a moment and 
use pwd to display your working directory. Imagine what the following command would do if 
you were in the wrong directory:

rm -rf *

33614_25_715_766.indd   72833614_25_715_766.indd   728 1/9/2008   12:40:32 PM1/9/2008   12:40:32 PM



Working With Files

729

all your fi les are gone, including your dotfi les. (I tested this command so you don’t have 
to: just believe me.)
 As we discussed in Chapter 4, when you log in as root, you become superuser. As 
superuser, you are able to do just about anything, including deleting any fi le or directory 
in the entire system. What do you think would happen if you logged in as superuser and 
entered the following command?

rm -fr /

(Don’t try this at home unless you have a note from your mother.)

IS IT POSSIBLE TO    RESTORE A FILE THAT HAS BEEN DELETED?
No.

FILE PERMISSIONS
Unix maintains a set       of FILE PERMISSIONS (often called PERMISSIONS) for each fi le. 
These permissions control which userids can access the fi le and in what way. There are 
three types of permissions: READ PERMISSION, WRITE PERMISSION and EXECUTE 
PERMISSION. The three permissions are independent of one another. For example, 
your userid might have read and write permission for a particular fi le, but not execute 
permission for the fi le. It is important to understand that permissions are associated with 
userids, not users. For example, if someone were to log in with your userid, he or she 
would have the same access to your fi les as you do.
 The exact meaning of fi le permissions depends on the type of fi le. For ordinary 
fi les, the meaning of the permissions is straightforward: read permission enables a 
userid to read the fi le. Write permission enables a userid to write to the fi le. Execute 
permission enables a userid to execute the fi le. Of course, it makes no sense to try 
to execute a fi le unless it is executable. As a general rule, a fi le is executable if it is a 
program or a script of some type. A shell script, for example, contains commands to 
be executed by the shell.

TECHNICAL HINT

You must be especially careful when you use rm -fr with variables. For example, let’s say you 
have a shell script that uses the variables $HOME and $FILE (see Chapter 12) as follows:

rm -fr $HOME/$FILE

If for some reason, neither of the variables is defi ned, the command becomes:

rm -fr /

At best, you will delete all your own fi les, including all your (hidden) dotfi les. If you run the 
script as superuser, you will cause a catastrophe. Adding the -i option won’t help because, as I 
explained earlier, on many systems -f overrides -i.

File Permissions

33614_25_715_766.indd   72933614_25_715_766.indd   729 1/9/2008   12:40:32 PM1/9/2008   12:40:32 PM



Chapter 25

730 Harley Hahn’s Guide to Unix and Linux

 The three types of permissions are distinct, but they do work together. For example, in 
order to edit a fi le, you need both read and write permission. In order to run a shell script, 
you need both read and execute permission.
 As you will see later in the chapter, you are able to set and change the permissions for 
your own fi les. You do so for two reasons:

• To restrict access by other users

Restricting which userids may access your fi les provides security for your data in a 
straightforward manner.

• To guard against your own errors

If you want to protect a fi le from being deleted accidentally, you can make sure that there 
is no write permission for the fi le. Many commands that replace or delete data will ask for 
confi rmation before changing a fi le that does not have write permission. (This is the case 
for the rm and mv commands we discussed earlier in the chapter.)
 With directories, permissions have somewhat different meanings than with ordinary 
fi les. Read permission enables a userid to read the names in the directory. Write permission 
enables a userid to make changes to the directory (create, move, copy, delete). Execute 
permission enables a userid to search the directory.
 If you have read permission only, you can list the names in a directory, but that is all. 
Unless you have execute permission, you cannot, for example, check the size of a fi le, look 
in a subdirectory, or use the cd command to change the directory.
 Consider the following unusual combination. What would it mean if you had write 
and execute permission for a directory, but not read permission? You would be able to 
access and modify the directory without being able to read it. Thus, you could not list the 
contents but, if you knew the name of a fi le, you could delete it.
 For reference, Figure 25-2 contains a summary of fi le permissions as they apply to 
ordinary fi les and directories.

ORDINARY FILE

Read Read from the fi le

Write Write to the fi le

Execute Execute the fi le

DIRECTORY

Read Read the directory

Write Create, move, copy or delete entries

Execute Search the directory

FIGURE 25-2: Summary of fi le permissions

File permissions control which userids can access a fi le. Every fi le has three sets of permissions: for 
the owner, for the group, and for everyone else.  Each set of permissions has three components: read 
permission, write permission, and execute permission.  The meanings of these permissions are somewhat 
different for ordinary fi les than for directories.

33614_25_715_766.indd   73033614_25_715_766.indd   730 1/9/2008   12:40:32 PM1/9/2008   12:40:32 PM



Working With Files

731

SETUID
Within your    Unix system, you do not exist. You log in as a particular userid, and you run 
programs to do your bidding. As a person who lives in the outside world, your role is 
limited to furnishing input and reading output. It is your programs that do the real work. 
For example, to sort data, you use the sort program; to rename a fi le, you use the mv 
program; to display a fi le, you use less; and so on.
 As a general rule (with one exception, which we’ll discuss in a moment) whenever you 
run a program, that program runs under the auspices of your userid. This means that 
your programs have the exact same privileges as your userid. For example, let’s say your 
userid does not have read permission for a fi le named secrets. You want to see what’s 
in the fi le, so you enter:

less secrets

Since your userid cannot read the fi le, the programs you call upon to do your work cannot 
read the fi le either. As a result, you see the message:

secrets: Permission denied

If you really want to see inside the secrets fi le, you have three choices. First, you can 
change its fi le permissions (I’ll explain how to do so later in the chapter). Second, you 
can log in with a userid that already has read permission for that fi le. Third, if you know 
the root password, you can log in as superuser, which allows you to bypass virtually 
all restrictions.
 In other words — unless you are superuser — your programs are bound by the 
restrictions of your userid, with one exception. There are times when it is necessary for a 
regular userid to run a program with special privileges. To make this possible, there is a 
special fi le permission setting that allows other userids to access a fi le as if they were the 
owner (creator) of the fi le. This special permission is called SETUID (pronounced “set 
U-I-D”) or SUID. The name stands for “set userid”.
 In most cases, setuid is used to allow regular userids to run selected programs that are 
owned by root. This means that no matter which userid runs the program, it executes 
with root privileges. This enables the program to perform tasks that could normally be 
done only by the superuser. For example, to change your password, you use the passwd 
program. However, to change your password, the program must modify the password fi le 
and the shadow fi le (see Chapter 11) which requires superuser privileges. For this reason, 

HINT

When you fi rst learn  about the directory permissions, they may seem a bit confusing. Later in 
this chapter, you will learn that a directory entry contains only a fi lename and a pointer to the 
fi le, not the actual fi le itself.
 Once you understand this, the directory permissions will make perfect sense. Read permission 
means you can read directory entries. Write permission means you can change directory entries. 
Execute permission means you can use directory entries.

Setuid

33614_25_715_766.indd   73133614_25_715_766.indd   731 1/9/2008   12:40:32 PM1/9/2008   12:40:32 PM



Chapter 25

732 Harley Hahn’s Guide to Unix and Linux

the passwd program itself is stored in a fi le that is owned by root and has setuid 
turned on.
 How can you tell that a fi le has the setiud fi le permission? When you display a long 
listing, you will see the letter “s” instead of “x” as one of the fi le permissions. For example, 
you enter:

ls -l /usr/bin/passwd

This displays a long listing for passwd program. The output is:

-r-s--x--x  1 root root  21944 Feb 12 2007 /usr/bin/passwd

The “s” in the fi le permissions (4th character from the left) indicates the setuid permission. 
The “s” replaces what would otherwise be an “x”.
 Obviously, such permissions can be a security risk. After all, a program running amok 
with superuser privileges can be used to hack into a system or cause damage. Thus, the 
use of setuid is strictly controlled. As a general rule, setuid is used only to allow regular 
userids to run a program with temporary privileges in order to perform a specifi c task.

HOW UNIX MAINTAINS FILE PERMISSIONS: id, groups 
The programmers at        Bell Labs who created the fi rst Unix system (see Chapter 1) organized 
fi le permissions in a way that is still in use today. At the time Unix was developed, people 
at Bell Labs worked in small groups that shared programs and documents. For this reason, 
the Unix developers created three categories: the user, the user’s work group, and everyone 
on the system. They then designed Unix so as to maintain three sets of permissions for 
each fi le. Here is how it works.
 The userid that creates the fi le becomes the   OWNER of the fi le. The owner is the only 
userid that can change the permissions for a fi le*. The fi rst set of fi le permissions describe 
how the owner may access the fi le. Each userid belongs to a group (explained below). The 
second set of permissions apply to all other userids that are in the same group as the owner. 
The third set of permissions apply to the rest of the userids on the system. This means 
that, for each of your fi les and directories, you can assign separate read, write and execute 
permissions for yourself, for the people in your work group, and for everyone else.
 Here is an example. You are working with a group of people developing a program. 
The fi le that contains the program resides in one of your personal directories. You might 
set up the fi le permissions so that both you and your group have read, write and execute 
permission, while all the other users on the system have only read and execute permission. 
This means that, while anyone can run the program, only you or members of your group 
can change it.
 Here is another example. You have a document that you don’t want anyone else to see. 
Just give yourself read and write permission, and give no permissions to your group or to 
everyone else.**

 *  The only exception is that the superuser, who can do virtually anything, can change the permissions for any fi le. If necessary, 
the superuser can also change the owner and group of a fi le by using the chown and chgrp commands respectively.
 **Remember, however, you can’t hide anything from the superuser.

33614_25_715_766.indd   73233614_25_715_766.indd   732 1/9/2008   12:40:32 PM1/9/2008   12:40:32 PM



Working With Files

733

 It is important to understand that the permissions for “everyone” do not include 
you or the members of your group. Imagine a strange situation in which you give read 
permission for a fi le to everyone, but no permissions to your group. Members of your 
group will not be able to read the fi le. However, everyone else will. In addition, if there are 
users on your network who have access to your fi lesystem, they too fall in the category of 
“everyone”, even if they don’t have an account on your particular system.
 So who is in your group? When your system administrator created your account, he or 
she  also assigned you to a GROUP. Just as each user has a name called a userid, each group 
has a  name called a GROUPID (pronounced “group-I-D”). The list of all the groupids in 
your system is kept in the fi le /etc/group, which you are free to examine at any time:

less /etc/group

The name of your group is kept in the password fi le /etc/passwd (described in Chapter 
11), along with your userid, the name of your home directory, and other information. 
The easiest way to display your userid and groupid is to use the id command. (Just type 
the name by itself with no options.)
 The id command is particularly handy in one very specifi c circumstance. You are 
doing some system administration work and, from time to time, you need to change 
from your own userid to root (superuser) and back again. If you become confused and 
you can’t remember which userid you are using, you can always enter the id command. 
(This happens to me several times a month.)

Question: Suppose a system administrator is walking through a computer lab, and he sees 
a machine someone has left logged into a Unix system. What does he do?

Answer: The fi rst thing he does is enter the id command to see who is logged in. He makes 
a note of the userid — so he can talk to the user — and then logs out by typing exit.

 In the early days of Unix, each userid could belong only to one group. Modern Unix 
systems, however, allow users to belong to multiple groups at the same time. For each 
userid, the group that is listed in the password fi le is called the PRIMARY GROUP. If 
the   userid belongs to any other groups, they are called SUPPLEMENTARY GROUPS. 
There are two ways in which you can display a list of all the groups to which your userid 
belongs. First, you can use the id program (with Solaris, you must use id -a):

id

Here is some sample output:

uid=500(harley) gid=500(staff) groups=500(staff),502(admin)

In this case, userid harley belongs to two groups: the primary group staff, and one 
supplementary group admin.
 Another way to display all your groups is to use the groups program. The syntax is:

groups [userid...]

where userid is a userid.

How Unix Maintains File Permissions: id, groups

33614_25_715_766.indd   73333614_25_715_766.indd   733 1/9/2008   12:40:32 PM1/9/2008   12:40:32 PM



Chapter 25

734 Harley Hahn’s Guide to Unix and Linux

 By default, groups displays the names of the groups to which the current userid 
belongs. If you specify one or more userids, groups will show you to which groups 
they belong. Try the following two commands on your system. The fi rst one displays 
all of your groups; the second displays the groups to which the superuser (userid 
root) belongs:

groups
groups root

How important are groups? In the 1970s, groups were very important. Most Unix users 
were researchers working in a trustworthy environment that was not connected to an 
outside network. Placing each userid in a group allowed the researchers to share work and 
collaborate with their colleagues. Today, however, for regular users, groups are sometimes 
ignored for two reasons.
 First, most people have their own Unix or Linux computer, and when you are the only 
one using a system, there is no one to share with. Second, even on a shared system or a 
large network, system administrators often do not fi nd it worthwhile to maintain groups 
that are small enough to be useful. For example, if you are an undergraduate student at a 
university, your userid might be part of a large group (such as all social science students) 
with whom sharing would be a meaningless experience.
 Having said that, you should know that some organizations do take the trouble to 
maintain groups in order to share data fi les or executable programs. For example, at a 
university, students taking a particular course may be given userids that belong to a group 
that was set up just for that course. In this way, the teacher can create fi les that can be 
accessed only by those students.

DISPLAYING FILE PERMISSIONS: ls -l
To      display the fi le permissions for a fi le, use the ls command with the -l (long listing) 
option. The permissions are shown on the left-hand side of the output. To display the 
permissions for a directory, set the -d option along with -l. (The ls command, along 
with these options, is explained in Chapter 24.)
 Here is an example. You enter the following command to look at the fi les in your 
working directory:

ls -l

The output is:

HINT

Unless you have an actual need to share fi les with the other userids in your group, it’s better to 
ignore the group idea altogether. When you set fi le permissions (explained later in the chapter), 
just give the “group” the same permissions you give to “everyone”.

33614_25_715_766.indd   73433614_25_715_766.indd   734 1/9/2008   12:40:32 PM1/9/2008   12:40:32 PM



Working With Files

735

total 109
-rwxrwxrwx 1 harley staff 28672 Sep 5 16:37 program.allusers
-rwxrwx--- 1 harley staff  6864 Sep 5 16:38 program.group
-rwx------ 1 harley staff  4576 Sep 5 16:32 program.owner
-rw-rw-rw- 1 harley staff  7376 Sep 5 16:34 text.allusers
-rw-rw---- 1 harley staff  5532 Sep 5 16:34 text.group
-rw------- 1 harley staff  6454 Sep 5 16:34 text.owner

We discussed most of this output in Chapter 24. Briefl y, the fi lename is on the far right. 
Moving to the left, we see the time and date of the last modifi cation, the size (in bytes), 
and the group and userid of the owner. In this case, the owner of the fi les is userid 
harley and the group is staff. To the left of the owner is the number of links (which 
I will discuss later in this chapter). At the far left, the fi rst character of each line is the fi le 
type indicator. An ordinary fi le is marked by -, a hyphen; a directory (there are none in 
this example) is marked by a d.
 What we want to focus on here are the 9 characters to the right of the fi le type indicator. 
Their meaning is as follows:

r  =  read permission
w  =  write permission
x  =  execute permission
-  =  permission not granted

To analyze the permissions for a fi le, simply divide the 9 characters into three sets of 3. 
From left to right, these sets show the permissions for the owner of the fi le, the group, and 
for all other userids on the system. Let’s do this for all the fi les in the example:

Owner Group Other File
rwx rwx rwx program.allusers
rwx rwx ---  program.group
rwx --- ---  program.owner
rw- rw- rw-  text.allusers
rw- rw- ---  text.group
rw- --- ---  text.owner

We can now see exactly how each permission is assigned. For instance, the fi le 
text.owner has read and write permissions for the owner, and no permissions for the 
group or for anyone else.

FILE MODES
Unix    uses a compact, three-number code to represent the full set of fi le permissions. This 
code is called a FILE MODE or, more simply, a MODE. As an example, the mode for the 
fi le text.owner in the last example is 600.

File Modes

33614_25_715_766.indd   73533614_25_715_766.indd   735 1/9/2008   12:40:33 PM1/9/2008   12:40:33 PM



Chapter 25

736 Harley Hahn’s Guide to Unix and Linux

 Within a mode, each number stands for one set of permissions. The fi rst number 
represents the permissions for the userid that owns the fi le; the second number represents 
the permissions for the userids in the group; the third number represents the permissions 
for all the other userids on the system. Using the example I just mentioned, we get:

6  =  permissions for owner
0  =  permissions for group
0  =  permissions for all other userids

Here’s how the code works. We start with the following numeric values for the various 
permissions:

4  =  read permission
2  =  write permission
1  =  execute permission
0  =  no permission

For each set of permissions, simply add the appropriate numbers. For example, to indicate 
read and write permission, add 4 and 2. Figure 25-3 shows each possible combination 
along with its numeric value.
 Let’s do an example. What is the mode for a fi le in which:

• The owner has read, write and execute permissions?
• The group has read and write permissions?
• All other userids have read permission only?

Owner: read + write + execute = 4+2+1 = 7
Group: read + write = 4+2+0 = 6
Other: read = 4+0+0 = 4

Thus, the mode is 764. New let’s take a look at the examples from the previous section:

Owner Group Other Mode File
rwx = 7 rwx = 7 rwx = 7 777 program.allusers
rwx = 7 rwx = 7 --- = 0 770 program.group
rwx = 7 --- = 0 --- = 0 700  program.owner
rw- = 6 rw- = 6 rw- = 6 666 text.allusers
rw- = 6 rw- = 6 --- = 0 660 text.group
rw- = 6 --- = 0 --- = 0 600 text.owner

Now, let’s do an example going backwards. What does a fi le mode of 540 mean? Using 
Figure 25-3, we see:

Owner:  5 = read + execute
Group: 4 = read
Other: 0 = nothing

Thus, the owner can read and execute the fi le. The group can only read the fi le. Everyone 
else has no permissions.

33614_25_715_766.indd   73633614_25_715_766.indd   736 1/9/2008   12:40:33 PM1/9/2008   12:40:33 PM



Working With Files

737

CHANGING FILE PERMISSIONS: chmod
To change     the permissions for a fi le, use the chmod (change fi le mode) command. The 
syntax is:

chmod mode file...

where mode is the new fi le mode, and fi le is the name of a fi le or directory.
 Only the owner or the superuser can change the fi le mode for a fi le. As I mentioned 
earlier, your userid is automatically the owner of every fi le you create.
 Here are some examples of how you might use chmod. The fi rst command changes 
the mode for the specifi ed fi les to give read and write permission to the owner, and read 
permission to the group and to everyone else. These permissions are suitable for a fi le you 
want to let anyone read, but not modify.

chmod 644 essay1 essay2 document

The next command gives the owner read, write, and execute permissions, with read and 
execute permissions for the group and for everyone else. These permissions are suitable for 
a fi le that contains a program that you want to let other people execute, but not modify.

chmod 755 spacewar

In general, it is prudent to restrict permissions unless you have a reason to do otherwise. 
The following commands show how to set permissions only for the owner, with no 
permissions for the group or everyone else. First, to set read and write permissions only:

chmod 600 homework.text

Next, to set read, write, and execute permissions:

chmod 700 homework.program

READ WRITE EXECUTE COMPONENTS TOTAL

— — — 0  +  0  +  0 0

— — yes 0  +  0  +  1 1

— yes — 0  +  2  +  0 2

— yes yes 0  +  2  +  1 3

yes — — 4  +  0  +  0 4

yes — yes 4  +  0  +  1 5

yes yes — 4  +  2  +  0 6

yes yes yes 4  +  2  +  1 7

FIGURE 25-3: Numeric values for fi le permission combinations

There are three types of fi le permissions: read permission, write permission, and execute permission. 
The value of these permissions are represented by 3 different numbers which are added together as 
shown in the table.  See text for details.

Changing File Permissions: chmod

33614_25_715_766.indd   73733614_25_715_766.indd   737 1/9/2008   12:40:33 PM1/9/2008   12:40:33 PM



Chapter 25

738 Harley Hahn’s Guide to Unix and Linux

When you create a shell script or a program, it will, by default, have only read and write 
permissions. In order to execute the script, you will have to add execute permission. Use 
chmod 700 (or chmod 755 if you want to share).

HOW UNIX ASSIGNS PERMISSIONS TO A NEW FILE: umask
When Unix      creates a new fi le, it starts with a fi le mode of:

666:  for non-executable ordinary files
777:  for executable ordinary files
777:  for directories

From this initial mode, Unix subtracts the value of the USER MASK. The user mask is a 
mode, set by you, showing which permissions you want to restrict. To set the user mask, 
use the umask command. The syntax is:

umask [mode]

where mode specifi es which permissions you want to restrict.
 It is a good idea to put a umask command in your login fi le, so that your user mask 
will be set automatically each time you log in. Indeed, you will see a umask command in 
the sample login fi les I showed you in Chapter 14.
 What should your user mask be? Let’s consider some examples. To start, let’s say you 
want write permission to be withheld from your group and from everyone else. Use a 
mode of 022:

umask 022

This user mask shares your fi les without letting anyone change them. In most cases, it is 
prudent to be as private as possible. To do so, you can withhold all permissions — read, 
write, and execute — from your group and from anyone else. Use a mode of 077:

umask 077

To display the current value of your user mask, you can enter the umask command 
without a parameter:

umask

Note: umask is a builtin command, which means its exact behavior depends on which 
shell you are using. Some shells do not display leading zeros. For example, if your user 
mask is 022, you may see 22; if your user mask is 002, you may see 2. If this is the case 
with your shell, just pretend the zeros are there.

HINT

To avoid problems, do not give execute permission to a fi le that is not executable.

33614_25_715_766.indd   73833614_25_715_766.indd   738 1/9/2008   12:40:33 PM1/9/2008   12:40:33 PM



Working With Files

739

WIPING OUT THE CONTENTS OF A FILE: shred
As we discussed      earlier in the chapter, once you delete a fi le, there is no way to get it back. 
However, the actual disk space used by the fi le is not wiped clean. Rather, it is marked as 
being available for reuse by the fi lesystem. Eventually, the disk space will be reused and the 
old data will be overwritten by new data. On a large, busy Unix system, this can happen 
within seconds. However, there is no guarantee when this will happen, and sometimes old 
data can stay hidden in the unused part of a disk for some time. Indeed, there are special 
“undelete” tools that are able to look at the unused portion of a disk and recover old data.
 Moreover, even if data is overwritten, in extreme cases it is possible for data to be 
recovered, as long as the data has not been overwritten more than once. If you can take 
a hard disk to a lab with very expensive data recovery equipment, it may be possible to 
sense traces of the old data on the magnetic surface of the disk.
 For the truly paranoid, then, the best way to delete data forever is to destroy the storage 
media, say, by melting it. This is relatively easy with a CD or fl oppy disk, but not so easy 
with a hard disk, especially if you want to wipe out a few fi les and not the entire disk. So 
for those rare occasions in which simple fi le deletion is not enough, the GNU utilities 
(see Chapter 2) provide a program called shred. Although shred is not universally 
available, you will fi nd it on most Linux systems. The syntax is:

shred -fvuz [file...]

where fi le is the name of a fi le.
 The goal of shred is to overwrite existing data so many times that even the most 
expensive data recovery equipment in the world will feel foolish trying to read the 
magnetic traces. All you need to do is specify the names of one or more fi les and shred 
does the work automatically. If you add the -v (verbose) option, as I like to do, shred 
will display messages as it progresses:

shred -v datafile

By default, shred will overwrite the data many times and will leave the fi le with random 
data. Random data, of course, is a tipoff that the fi le has been “shredded”. To hide this, you 
can use the -z option, which tells shred to fi nish the job by fi lling the fi le with all zeros. 
Going further, if you want to delete the fi le after processing, use the -u option. Finally, to 
override restrictive fi le permissions, you can use the -f (force) option.
 Here then is the ultimate shred command. It will override existing fi le permissions, 
wipe out all the data by overwriting it many times, fi ll the fi le with all zeros, and delete 
the remains:

HINT

Unless you have a good reason to do otherwise, make your fi les completely private by using 
umask 077 in your login fi le. If you want to share, you can use chmod to do so on a fi le-by-
fi le basis.

Wiping Out the Contents of a File: shred

33614_25_715_766.indd   73933614_25_715_766.indd   739 1/9/2008   12:40:33 PM1/9/2008   12:40:33 PM



Chapter 25

740 Harley Hahn’s Guide to Unix and Linux

shred -fuvz datafile

The shred program, of course, can only do so much. If a fi le has been backed up 
automatically to another system or copied to a mirror site, all the shredding in the world 
won’t get rid of the remote copies. Moreover, shred won’t work on all fi lesystems. For 
example, when you update a fi le with the ZFS fi lesystem (developed by Sun Microsystems), 
the new data is written to a different location on the disk. The old data is not replaced 
until that particular part of the disk is reused by another fi le.

THE IDEA OF A LINK: stat, ls -i
When Unix creates a fi le,        it does two things. First, it sets aside space on the storage device 
to store data. Second, it creates a structure called an INDEX NODE or INODE (“I-node”) 
to hold the basic information about the fi le. The inode contains all the information 
the fi lesystem needs to make use of the fi le. Figure 25-4 contains a summary of what 
you would fi nd in an inode in a typical Unix fi lesystem. Ordinary users don’t have to 
know what is in an inode, because the fi lesystem handles the details automatically. On 
Linux systems, it is easy to look inside the inode for a particular fi le by using the stat 
command. Just type stat followed by the name of a fi le:

stat filename

The fi lesystem keeps all the inodes in a large table called the INODE TABLE. Within the 
inode table, each inode    is known by a number called the INDEX NUMBER or INUMBER 
(“I-number”). For example, say that a particular fi le is described by inode #478515 . We 
say that the fi le has an inumber of 478515. To display the inumber for a fi le, use ls with 
the -i option. For example, the following command displays the inumber for the two 
fi les named xyzzy and plugh*:

ls -i xyzzy plugh

The following two commands display inumbers for all the fi les in the current directory:

ls -i
ls -il

When we work with directories, we talk as if they actually contain fi les. For example, 
you might hear someone say that his bin directory contains a fi le named spacewar. 
However, the directory does not really contain the fi le. Actually, the directory only 
contains the name of the fi le and its inumber. Thus, the contents of a directory is quite 
small: just a list of names and, for each name, an inumber.
 Let’s look at an example. What happens when you create a fi le named spacewar in 
your bin directory? First, Unix sets aside storage space on the disk to hold the fi le. Next, 
Unix looks in the inode table and fi nds a free inode. Let’s say that it is inode #478515 . 
Unix fi lls in the information in the inode that pertains to the new fi le. Finally, Unix places 
an entry in the bin directory. This entry contains the name spacewar along with an 

 *When you have a moment, look up these two names on the Internet.  

33614_25_715_766.indd   74033614_25_715_766.indd   740 1/9/2008   12:40:33 PM1/9/2008   12:40:33 PM



Working With Files

741

inumber of 478515 . Whenever a program needs to use the fi le, it is a simple matter to 
look up the name in the directory, use the corresponding inumber to fi nd the inode, and 
then use the information in the inode to access the fi le.
 The connection between a fi lename and its inode is called a LINK. Conceptually, a link 
connects a fi lename with the fi le itself. This is why — as you can see from Figure 25-4 
— the inode does not contain a fi lename. Indeed, as you will see in a moment, an inode 
can be referenced by more than one fi lename.

MULTIPLE LINKS TO THE SAME FILE
One of the    most elegant features of the Unix fi lesystem is that it allows multiple links to 
the same fi le. In other words, a fi le can be known by more than one name. How can this 
be? The unique identifi er of a fi le is its inumber, not its name. Thus, there is no reason 
why more than one fi lename cannot reference the same inumber. Here is an example.
 Let’s say that your home directory is /home/harley. Within your home directory, 
you have a subdirectory called bin. You have created a fi le in the bin directory by the 
name of spacewar. It happens that this fi le has an inumber of 478515 . Using the ln 
command (described later in the chapter), you create another fi le named funky in the 
same directory, such that it has the same inumber as spacewar. Since both spacewar 
and funky have the same inumber, they are, essentially, different names for the same fi le.
 Now, let’s say you move to your home directory and create another fi le named 
extra, also with the same inumber. Then you move to the home directory of a friend, 
/home/weedly, and create a fourth fi le named myfile, also with the same inumber. 
At this point, you still have only one fi le — the one identifi ed by inumber 478515 — but 
it has four different names:

• Length of fi le in bytes

• Name of device that contains the fi le

• Userid of owner

• Groupid

• File permissions

• Last modifi cation time

• Last access time

• Last time inode was changed

• Number of links pointing to the fi le

• Type of fi le (ordinary, directory, special, symbolic link...)

• Number of blocks allocated to the fi le

FIGURE 25-4: Contents of an inode (index node)

An index node or inode contains information about a fi le.  Here is a list of the information typically 
stored in an inode in a Unix fi lesystem.  The exact contents can vary slightly from one fi lesystem to 
another.

Multiple Links to the Same File

33614_25_715_766.indd   74133614_25_715_766.indd   741 1/9/2008   12:40:33 PM1/9/2008   12:40:33 PM



Chapter 25

742 Harley Hahn’s Guide to Unix and Linux

/home/harley/bin/spacewar
/home/harley/bin/funky
/home/harley/extra
/home/weedly/myfile

Why would you want to do this? Once you get used to the idea of links, you will fi nd 
ample opportunities to use them. The basic idea — which will make more sense as you 
become more experienced and sophisticated — is that the same fi le can have different 
meanings, depending upon the context in which it is being used. For example, it is often 
handy to allow different users to access the same fi le under different names.
 However, there is a lot more to the ideas behind links. The reason I want you to 
understand how they work is because it is the links that underlie the operation of the 
basic fi le commands: cp (copy), mv (move), rm (remove), and ln (link). If all you do is 
memorize how to use the commands, you will never really understand what is happening, 
and the rules for using the fi lesystem will never really make sense.
 In a moment we will consider the implications of this statement. Before we do, I want 
you to consider a question. Let’s say that a fi le has more than one link; that is, the fi le 
can be accessed by more than one name. Which of the names is the most important 
one? Does the original name have any special signifi cance? The answer is that Unix treats 
all links as equal. It doesn’t matter what the original name of the fi le was. A new link is 
considered to be just as important as the old one.
 Within Unix, fi les are not controlled by their names or locations. Files are controlled 
by ownership and permissions.

CREATING A NEW LINK: ln
Whenever     you create a fi le, the fi lesystem creates a link between the fi lename and the fi le 
automatically. However, there will be times you want to make a new link to an existing 
fi le. To do so, you use the ln (link) command. There are two forms of this command. 
First, to make a new link to a single fi le, use the syntax:

ln file newname

where fi le is the name of an existing ordinary fi le, and newname is the name you want to 
give the link.
 For example, let’s say you have a fi le named spacewar, and you want to make a new 
link with the name funky, use:

ln spacewar funky

You will end up with two fi lenames, each of which refers to the same fi le (that is, to the 
same inumber). Once a new link is created, it is functionally the same as the original 
directory entry.
 The second way to use ln is to make new links for one or more ordinary fi les and 
place them in a specifi ed directory. The syntax is:

ln file... directory

33614_25_715_766.indd   74233614_25_715_766.indd   742 1/9/2008   12:40:33 PM1/9/2008   12:40:33 PM



Working With Files

743

where fi le the name of an existing ordinary fi le, and directory is the name of the directory 
in which you want to place the new links.
 Here is an example. Your home directory is /home/harley. In this directory, you have 
two fi les, data1 and data2. Your friend uses the home directory /home/weedly. In 
this directory, he has a subdirectory named work. The fi le permissions for this directory 
are such that your userid is allowed to create fi les. You want to make links to your two fi les 
and place them in your friend’s directory. Use the command:

ln /home/harley/data1 /home/harley/data2 /home/weedly/work

To simplify the command, you can use wildcards (see Chapter 24):

ln /home/harley/data[12] /home/weedly/work

Another way to simplify this command is to change to your home directory before 
entering the ln command:

cd; ln data[12] /home/weedly/work

Once you create these new links, both fi les have names in two different directories at the 
same time. To see the number of links for a fi le, use the   ls -l command. The number of 
links is displayed between the fi le permissions and the userid of the owner. For example, 
let’s say you enter the command:

ls -l music videos

The output is:

-rw------- 1 harley staff  4070 Oct 14 09:50 music
-rwx------ 2 harley staff 81920 Oct 14 09:49 videos

You can see that music has only one link, while videos has two links.

HOW THE BASIC FILE COMMANDS WORK
It is    important that you be able to understand the basic fi le commands in terms of 
fi lenames and links. Here are the basic operations:

1. CREATE A FILE; CREATE A DIRECTORY [mkdir]

To create a new   fi le   or directory, Unix sets aside storage space and builds an inode. Within 
the appropriate directory, Unix places a new entry using the fi lename or directory name 
you specifi ed, along with the inumber of the new inode.

2. COPY A FILE [cp]

To copy to an existing     fi le, Unix replaces the contents of the target fi le with the contents of 
the source fi le. No inumbers change. To copy to a fi le that does not exist, Unix fi rst creates 
a brand new fi le with its own inumber. (Remember, the inumber is really what identifi es 
a fi le.) The contents of the old fi le are then copied to the new fi le. After the copy, there 

How the Basic File Commands Work

33614_25_715_766.indd   74333614_25_715_766.indd   743 1/9/2008   12:40:33 PM1/9/2008   12:40:33 PM



Chapter 25

744 Harley Hahn’s Guide to Unix and Linux

are two distinct fi les. The old fi lename corresponds to the old inumber; the new fi lename 
corresponds to the new inumber.

3. RENAME A FILE or MOVE A FILE [mv]

To rename or move     a   fi le, Unix changes the fi lename, or moves the directory entry, or 
both, but keeps the same inumber. This is why the same command (mv) is used to rename 
and move.

4. CREATE A LINK [ln]

To create a  new link   to an existing fi le, Unix makes a new directory entry using the 
fi lename you specify, pointing to the same inumber as the original fi le. There is now one 
fi le and two fi lenames, and both fi lenames point to the same inumber.

5. REMOVE A LINK [rm, rmdir]

When you   remove a     link, Unix eliminates the connection between the fi lename and the 
inumber by removing the directory entry. If there are no more links, Unix deletes the fi le.
 It is important to understand that removing a link is not the same as deleting a fi le. 
If there is more than one link to a fi le, Unix will not delete the fi le until the last link is 
removed. In most cases, however, there is only one link to a fi le, which is why, most of the 
time, rm and rmdir act as delete commands.
 Here is a simple example to illustrate the ideas we have just discussed. You have a fi le 
named spacewar. You decide to make a new link to this fi le and call it funky:

ln spacewar funky

Now you remove spacewar:

rm spacewar

Even though the fi rst fi lename is gone, the original fi le still exists. The fi le itself will not 
be deleted until the last link (funky) is removed.

SYMBOLIC LINKS: ln -s
The type of      links we have discussed enable us to have more than one name refer to the 
same fi le. However, such links have two limitations. First, you cannot create a link to a 
directory. Second, you cannot create a link to a fi le in a different fi lesystem.
 To create a link to a directory or to a fi le in a different fi lesystem, you need to create 
what is called a SYMBOLIC LINK or a SYMLINK. To do so, you use the ln program with 
the -s option. A symbolic link does not contain the inumber of a fi le. Rather, it contains 
the pathname of the original fi le. Whenever you access a symbolic link, Unix uses that 
pathname to fi nd the fi le. (In this sense, a symbolic link is similar to a Windows shortcut. 
Windows Vista, by the way, supports actual Unix-like symbolic links.)
 When you use ls -l to display the long listing for a fi le that is a symbolic link, you 
will notice two things. First, the fi le type indicator (the leftmost character of the output) 
will be the lowercase letter l for “link”. Second, the actual symbolic link is shown at the 

33614_25_715_766.indd   74433614_25_715_766.indd   744 1/9/2008   12:40:33 PM1/9/2008   12:40:33 PM



Working With Files

745

right side of the line. Here is an example from a system in which the fi le /bin/sh is a 
symbolic link to the fi le /bin/bash. You enter the command:

ls -l /bin/sh

The output is:

lrwxrwxrwx  1 root root 4 Sep 11 2008  /bin/sh -> bash

As you can see, this fi le is only 4 bytes long, just long enough to hold the pathname of the 
real fi le (which is 4 characters long). The fact that this is a symbolic link — and not, say, 
a 4-character ordinary fi le — is noted in the inode for the fi le.
 If you want to see the long listing for the fi le itself, you must specify the actual name:

ls -l /bin/bash

In this case, the output is:

-rwxr-xr-x 1 root root 720888 Feb 10 2008  /bin/bash

As you can see, this particular fi le has 720,888 bytes. As you might have guessed from the 
name, the fi le holds the program for the Bash shell.
 To distinguish between the two types of links, a regular link is sometimes called a 
HARD LINK,     while a symbolic link is sometimes called a SOFT LINK. When we use the 
word “link” by itself, we mean a hard link.
 As we discussed earlier, to display the number of hard links to a fi le you use the ls -l 
command. There is, however, no way to display how many soft links (symbolic links) 
there are to a fi le. This is because the fi lesystem itself doesn’t even know how many such 
links exist.

Question: What happens if there exists a symbolic link to a fi le, and you delete the fi le?

Answer: The symbolic link will not be deleted. In fact, you can still list it with ls. However, 
if you try to use the link, you will get an error message.

USING SYMBOLIC LINKS WITH DIRECTORIES
In Chapter 24,        we discussed how to use the builtin commands cd to change the working 
directory and pwd to display the name of the working directory. A question arises: 
How should cd and pwd behave when a directory name is a symbolic link to another 
directory? There are two choices. First, the command can consider the symbolic link to 
be an entity in its own right, a synonym for the actual directory, much like a hard link is 
for an ordinary fi le. Alternatively, the link might be nothing more than a stepping stone 
to the real directory.
 With some shells, the cd has two options to give you control over such situations. The 
-L (logical) option tells cd to treat symbolic links as if they were real directories on their 
own. The -P (physical) option tells cd to substitute the real directory for the symbolic 
one. Here is an example.

Using Symbolic Links With Directories

33614_25_715_766.indd   74533614_25_715_766.indd   745 1/9/2008   12:40:34 PM1/9/2008   12:40:34 PM



Chapter 25

746 Harley Hahn’s Guide to Unix and Linux

 To start, within your home directory, create a subdirectory named extra. Next, create 
a symbolic link to this directory and name it backups. Finally, display a long listing of 
the two fi les:

cd
mkdir extra
ln -s extra backups
ls -ld extra backups

Here is some sample output:

lrwxrwxrwx 1 harley staff    5 Sep 8 17:52 backups -> extra
drwxrwxr-x 2 harley staff 4096 Sep 8 17:52 extra

By looking at the fi rst character of each line, we can see that backups is a link and extra 
is a real directory. Notice that backups is only 5 bytes long, just long enough to contain 
the name of the target directory. The extra directory, however, is 4,096 bytes long, the 
block size for this fi lesystem (see Chapter 24).
 Now, consider the command:

cd -L backups

This changes the working directory to backups even though, strictly speaking, backups 
doesn’t really exist. What if, instead, we had used the -P option?

cd -P backups

In this case, the shell would have substituted the actual directory for the symbolic link 
and our working directory would become extra. When this happens, we say that the 
shell FOLLOWS the link.
 By default, cd assumes -L, so you never really have to specify it. However, if you want 
the shell to follow a symbolic link, you do have to specify -P.
 The pwd (    print working directory) command has the same two options that can be 
applied when you display the name of your working directory. To test this, create the 
directory and symbolic link above and enter either of the following commands (they 
are equivalent):

cd backups
cd -L backups

Now enter the command:

pwd -P

The -P option tells pwd to follow the link. The output will look something like this:

/home/harley/extra

Now enter either of the following commands. As with cd, the -L option is the default:

33614_25_715_766.indd   74633614_25_715_766.indd   746 1/9/2008   12:40:34 PM1/9/2008   12:40:34 PM



Working With Files

747

pwd
pwd -L

In this case, pwd does not follow the link, so the output is:

/home/harley/backups

FINDING FILES ASSOCIATED WITH A UNIX COMMAND: whereis
There will be      many instances when you want to fi nd a particular fi le or set of fi les. At such 
times, there are three different programs you can use: whereis, locate, and find. In 
the next several sections, we will cover each program in turn.
 The whereis program is used to fi nd the fi les associated with a specifi c Unix 
command: binary (executable) fi les, source fi les, and documentation fi les. Rather than 
search the entire fi lesystem, whereis looks only in those directories in which such fi les 
are likely to be found: /bin, /sbin, /etc, /usr/share/man, and so on. (See the 
description of the Filesystem Hierarchy Standard in Chapter 23.)
 The syntax for the whereis program is:

whereis [-bms] command...

where command is the name of a command.
 Let’s say you want to fi nd the fi les associated with the ls command. Just enter:

whereis ls

Here is some typical output (actually, one long line):

ls: /bin/ls /usr/share/man/man1p/ls.1p.gz
/usr/share/man/man1/ls.1.gz

In this case, we see that the ls program itself resides in the fi le with the pathname 
/bin/ls. This is straightforward. The next two long pathnames show the location of 
two different man pages in compressed format:

/usr/share/man/man1p/ls.1p.gz
/usr/share/man/man1/ls.1.gz

(The .gz extension indicates that a fi le has been compressed by the gzip program. 
Such fi les are   uncompressed automatically before they are displayed.)
 The two lines above show that the fi rst man page is in section 1p, and the second is in 
section 1. You can display either of these pages by using the man command (see Chapter 9). 
Since section 1 is the default, you don’t have to specify it. However, you do have to specify 
any other section, such as 1p. Thus, the commands used to display these pages are:

man ls
man 1p ls

Finding Files Associated With a Unix Command: whereis

33614_25_715_766.indd   74733614_25_715_766.indd   747 1/9/2008   12:40:34 PM1/9/2008   12:40:34 PM



Chapter 25

748 Harley Hahn’s Guide to Unix and Linux

This example illustrates one of the things I like about whereis: it will sometimes fi nd 
man pages you had no idea existed. For example, on the system used to generate the 
above output, it happens that there are two different man pages for the ls program. 
Indeed, they are different enough that it is worth reading the both. However, if we hadn’t 
checked with whereis, we would not have known about the second page.
 If you want to limit the output of whereis, there are several options you can use. To 
display only the pathname of the executable fi le, use the -b (binary) option; for fi les from 
the online manual, use the -m option; and for source fi les use the -s option. Here is an 
example. The following command displays the pathnames for the executable fi les for ten 
different programs:

whereis -b chmod cp id ln ls mv rm shred stat touch

Try this command on your system and see what you get.

FINDING FILES BY SEARCHING A DATABASE: locate
There are two      different Unix programs that provide a general “fi le fi nding” service: 
locate and find. I want you to learn how to use them both. The find program is 
much older and much more diffi cult to use. However, it is very powerful and is available 
on every Unix and Linux system. The locate program is newer and easy to use, but 
less powerful than find. Moreover, although it comes with most Linux and FreeBSD 
systems, it is not available on all Unix systems (for example Solaris). In this section, we’ll 
cover locate. In the following sections, we’ll discuss find.
 The job of the locate program is to search a special database containing the pathnames 
of all publicly accessible fi les, looking for all the names that contain a specifi c pattern. The 
database is maintained automatically and updated regularly. The syntax for locate is:

locate [-bcirS] pattern...

where pattern is the pattern you are looking for in a pathname.
 Here is a simple example. You want to fi nd all the fi les whose pathname contains the 
characters “test”. Since there will probably be many such fi les, it is a good idea to pipe 
the output of the command to less (Chapter 12) to display the output one screenful 
at a time:

locate test | less

Aside from ordinary characters, you can use a regular expression if you include the -r 
option. Within a regular expression, you can use ^ and $ to anchor the beginning and 
end of the pathname respectively. (For help with regular expressions, see Chapter 20.)
 Here is an interesting example. You want to search your system for photos. One way is 
to look for fi les with an extension of either .jpg or .png, and save the pathnames in a 
fi le. You can then browse the fi le at your leisure. The commands to use are:

locate -r '.jpg$' > photos
locate -r '.png$' >> photos

33614_25_715_766.indd   74833614_25_715_766.indd   748 1/9/2008   12:40:34 PM1/9/2008   12:40:34 PM



Working With Files

749

The fi rst command redirects its output to the fi le photos. The second command appends 
its output to the same fi le. (For a discussion of redirecting output, see Chapter 15.)
 Because locate often gives you more than you want, it is common to process the 
output in some way. One of the most powerful combinations is to pipe the output of 
locate to grep. For example, let’s say you are using a new system and want to fi nd the 
Unix dictionary fi le (see Chapter 20). Most likely, this fi le will contain the letters “dict” 
as well as the letters “words”. To fi nd all such fi les, use locate to fi nd all the fi les that 
contain “dict”. Then use grep to search the output of locate for lines that contain 
“words”. The command is:

locate dict | grep words

Try it on your system and see what you get.
 To modify the operation of locate, there are several options you can use. First, 
the -c (count) option displays the total number of fi les that are matched, instead of 
displaying the actual fi lenames. For example, if you want to fi nd out how many JPG fi les 
are on your system, use the command:

locate -cr '.jpg$'

The next option is -i (ignore case). This tells locate to treat upper- and lowercase letters 
as being the same. For example, if you want to search for all the fi les whose pathnames 
contain either “x11” or “X11”, you can use either of the following commands:

locate x11 X11
locate -i x11

If you want, you can combine -i with -r to use case-insensitive regular expressions. For 
example, here is how to search for fi les whose pathnames start with “/usr” and end with 
“x11” or “X11”:

locate -ir '^/usr*x11$'

You will often fi nd that it is convenient to match only the last part of the pathname, what 
we have called the fi lename or basename (see Chapter 24). To do so, use the -b option. 
For example, to fi nd all the fi les whose basenames contain the letters “temp”, use:

locate -b temp

To fi nd all the fi les whose name consists only of the letters “temp”, use:

locate -br '^temp$'

Finally, to display information about the locate database on your system, use the -S 
(statistics) option:

locate -S

As you can see, locate is easy to use. Just tell it what you want, and locate will fi nd 
it. However, there is one drawback I want to make sure you understand.

Finding Files by Searching a Database: locate

33614_25_715_766.indd   74933614_25_715_766.indd   749 1/9/2008   12:40:34 PM1/9/2008   12:40:34 PM



Chapter 25

750 Harley Hahn’s Guide to Unix and Linux

 I mentioned earlier that locate uses a special database that contains the pathnames of 
all the publicly available fi les. On a well-run system, this database is updated automatically 
at regular intervals. However, when you or anyone else creates a new fi le, it will not appear 
in the database until the next update. To get around this limitation, you can use find 
(discussed in the next section), because find actually searches the directory tree.

FINDING FILES BY SEARCHING A DIRECTORY TREE: fi nd
So far, we have      discussed two different tools that fi nd fi les: whereis and locate. Both 
of these programs are fast and easy to use and, most of the time, they should be your fi rst 
choice when you are searching for a fi le.
 However, there are limitations. The whereis program searches only for fi les 
associated with a particular program (executable fi les, source fi les, documentation fi les). 
The locate program doesn’t actually perform a search. It simply looks for pattern 
matches in a database that contains the pathnames of all the publicly accessible fi les on 
the system. When you want to do a full search on demand, you need to use find.
 The find program is the oldest and most complex of the three programs. Indeed, 
find is one of the most complex Unix tools you will ever use. However, it has three 
important advantages over the other programs. First, it is very powerful: find can search 
for any fi le, anywhere, according to a large variety of criteria. Second, once find has 
completed a search, it can process the results in several different ways. Finally, unlike 
locate, find is available on all Unix and Linux systems, so you can use it on any 
system you encounter.
 The full syntax for find is very complicated. In fact, I won’t even show it to you. 
Instead, we’ll start with an overview and move ahead one step at a time.
 The general idea is that find searches one or more directory trees for fi les that meet 
certain criteria, according to tests that you specify. Once the search is complete, find 
performs an action on the fi les it has found. The action can be as simple as displaying the 
names of the fi les. The action can also be more complex: find can delete the fi les, display 
information about them, or pass the fi les to another command for further processing.
 To run find, you specify three things (in this order): directory paths, tests, and 
actions. The general syntax is:

find path... test... action...

Once you enter the command, find follows a 3-step process:

1.  Path: The fi rst thing find does is look at each path, examining the entire directory 
tree it represents, including all subdirectories.

2.  Test: For each fi le find encounters, it applies the tests you specifi ed. The goal is to 
create a list of all the fi les that meet your criteria.

3.  Action: Once the search is complete, find carries out the actions you specifi ed on 
each fi le in the list.

Consider the following simple example:

33614_25_715_766.indd   75033614_25_715_766.indd   750 1/9/2008   12:40:34 PM1/9/2008   12:40:34 PM



Working With Files

751

find /home/harley -name important -print

Without going into the details just yet, let’s break this command into parts:

Path: /home/harley
Test: -name important
Action: -print

Within this command, we give find the following instructions:

1.  Path: Starting from /home/harley, search all fi les and subdirectories.

2.  Test: For each fi le, apply the test -name important. (The meaning of this test is to 
look for fi les named important.)

3.  Action: For each fi le that passed the test, perform the action -print (that is, display 
the pathname).

So what does the above command do? It displays the pathnames of all the fi les named 
important within the /home/harley directory tree.
 Take a moment to refl ect on how we analyzed the above command. You will fi nd that 
any find command — no matter how complex — can be analyzed in the same way, by 
breaking it into three parts: paths, tests, actions. Conversely, when you need to construct 
a complicated find command, you can build it up by thinking about these three parts, 
one after another.

THE fi nd COMMAND: PATHS
As we have      discussed, the general format of the find program is:

find path... test... action...

As you can see, the beginning of every find command consists of one or more paths. 
These paths show find where to search. Specifying paths is straightforward, as you will 
see from the following examples. (When you read them, realize that these examples do 
not specify any tests or actions. We’ll talk about these topics in a moment.) Most of the 
time, you will use only a single path so, to start, here is a simple example:

find backups

In this example, we tell find to start with the directory named backups and search 
though all its descendents, both fi les and subdirectories. As you can see, we have used 
a relative pathname. You can also use absolute pathnames, a . (dot) for the working 
directory, or a ~ (tilde) for a home directory. Here are a few more partial commands:

find /usr/bin
find /
find .
find ~
find ~weedly

The find Command: Paths

33614_25_715_766.indd   75133614_25_715_766.indd   751 1/9/2008   12:40:34 PM1/9/2008   12:40:34 PM



Chapter 25

752 Harley Hahn’s Guide to Unix and Linux

The fi rst example tells find to start searching from the directory /usr/bin. The second 
example searches from the root directory. (Effectively, this tells find to search the entire 
fi lesystem.) The next example searches from the working directory. The fourth example 
searches from the home directory. The fi nal example searches from the home directory for 
userid weedly. (For a complete discussion of how to specify pathnames, see Chapter 24.)
 If you want, you can specify more than one path for file to search, for example:

find /bin /sbin /usr/bin ~harley/bin

In this example, find will search four separate, directory trees. The search results will be 
processed together as one long list.

THE fi nd COMMAND: TESTS
We use the      find program to search one or more directory trees, look for fi les that meet 
specifi ed criteria, and then perform certain actions on those fi les. To defi ne the criteria, 
we specify one or more TESTS. The general format of the command is:

find path... test... action...

So far, learning about find has been fairly easy. This is where it gets complicated. In 
the previous section, we discussed how to specify paths. In this section, we will discuss 
how to use the various tests to specify which fi les you want to process. There are many 
different tests, ranging from simple to arcane. As a reference, I have summarized the most 
important tests in Figure 25-5.
 The find program is a very old tool, and the basic tests are the same from one system 
to another. However, the newer versions of find support some tests that are not available 
on all systems. Figure 25-5 summarize the tests that you can use with the version of find 
that is part of the GNU utilities, the program that comes with Linux (see Chapter 2). 
If you use a different type of Unix, all the basic tests will work, but some of the more 
esoteric ones may not be supported. To see a complete list of the available tests for your 
version of find, check the man page on your system (man find).
 As you can see from Figure 25-5, find has a lot of different tests. Eventually, you can 
learn them all as the need arises. For now, my goal is to make sure you understand the 
most important tests. By far, the two most important tests are -type and -name, so 
we’ll start with those.
 The  -type test controls which types of fi les find should look at. The syntax is -type 
followed by a one-letter designation. Most commonly, you will use either f for ordinary 
fi les or d for directories. If necessary, you can also use b (block devices), c (character 
devices), p (named pipe), or l (symbolic link). Here are some examples. (Note: In these 
examples, I have used the action -print, which simply displays the results of the search. 
We’ll discuss other, more complicated actions later in the chapter.)

find /etc -type f -print
find /etc -type d -print
find /etc -print

33614_25_715_766.indd   75233614_25_715_766.indd   752 1/9/2008   12:40:34 PM1/9/2008   12:40:34 PM



Working With Files

753

All three commands perform a search starting from the /etc directory. The fi rst 
command searches only for ordinary fi les; the second searches only for directories; the 
third searches for any type of fi le.
 The  -name test tells find to look for fi les whose names match a specifi ed pattern. 
If you want, you can use the standard wildcards *, ? and [ ] (see Chapter 24). If you 
do, however, you must quote them, so they are passed to find and not interpreted by 
the shell. Here are some examples. All three commands start searching from the working 
directory (.) and search only for ordinary fi les (-type f):

find . -type f -name important -print
find . -type f -name '*.c' -print
find . -type f -name 'data[123]' -print

The fi rst command searches for fi les named important. The second command searches 
for fi lenames with the extension .c, that is, C source fi les. The third command searches 
only for fi les named data1, data2 or data3.

FILENAMES

-name pattern fi lename contains pattern

-iname pattern fi lename contains pattern (case insensitive)

FILE CHARACTERISTICS

-type [df] type of fi le: d = directory, f = ordinary fi le

-perm mode fi le permissions are set to mode

-user userid owner is userid

-group groupid group is groupid

-size [-+]n[cbkMG] size is n [chars(bytes), blocks, kilobytes, megabytes, gigabytes]

-empty empty fi le (size = 0)

ACCESS TIMES, MODIFICATION TIMES

-amin [-+]n accessed n minutes ago

-anewer fi le accessed more recently than fi le

-atime [-+]n accessed n days ago

-cmin [-+]n status changed n minutes ago

-cnewer fi le status changed more recently than fi le

-ctime [-+]n status changed n days ago

-mmin [-+]n modifi ed n minutes ago

-mtime [-+]n modifi ed n days ago

-newer fi le modifi ed more recently than fi le

FIGURE 25-5: The fi nd program: Tests

The fi nd program searches directory trees looking for fi les that meet specifi c criteria, according to 
various tests.  See text for details.

The find Command: Tests

33614_25_715_766.indd   75333614_25_715_766.indd   753 1/9/2008   12:40:34 PM1/9/2008   12:40:34 PM



Chapter 25

754 Harley Hahn’s Guide to Unix and Linux

 Like most of Unix, the -name test is case sensitive, that is, it distinguishes between 
upper- and lowercase. To ignore differences in case, use  -iname instead. Consider, for 
instance, the following two examples. Both commands start searching from /usr and 
look only for directories:

find /usr -type d -name bin -print
find /usr -type d -iname bin -print

The second command looks only for directories named bin. The second command uses 
-iname, which means it will match directories named bin, Bin, BIN, and so on.
 Aside from names, you can select fi les based on a variety of other characteristics. 
We have already seen the -type test, which selects a particular type of fi le, usually f 
for ordinary fi les or d for directories. You can also use  -perm to search for fi les with a 
specifi c mode, and  -user or  -group for fi les owned by a specifi c userid or groupid. 
Consider these three examples, which start searching from your home directory:

find ~ -type d -perm 700 -print
find ~ -type f -user harley -print
find ~ -type f -group staff -print

The fi rst command searches for directories that have a fi le mode of 700. (We discussed 
permissions and modes earlier in the chapter.) The second command searches for 
ordinary fi les owned by userid harley. The fi nal command searches for ordinary fi les 
whose groupid is staff.
 You can also search for fi les according to their size, by using  -size followed by a 
specifi c value. The basic format is a number followed by a one-letter abbreviation. The 
abbreviations are: c for characters (that is, bytes), b for 512-byte blocks, k for kilobytes, 
M for megabytes, and G for gigabytes. Here are two examples, both of which search for 
ordinary fi les starting from your home directory:

find ~ -type f -size 1b -print
find ~ -type f -size 100c -print

HINT

The most common mistake I see people make with fi nd is to forget to quote wildcards when 
using -name. If you do not quote   wildcards, the shell will interpret them itself, resulting in an 
error. Consider the following two commands:

find . -type f -name '*.c' -print
find . -type f -name *.c -print

The fi rst command will work fi ne. The second command, however, may not work because the 
shell will change the expression *.c to an actual set of fi lenames, causing a syntax error. You 
will see an error message like the following:

find: paths must precede expression

33614_25_715_766.indd   75433614_25_715_766.indd   754 1/9/2008   12:40:34 PM1/9/2008   12:40:34 PM



Working With Files

755

The fi rst command searches for fi les that are exactly 1 block in size. Since this is the 
minimum size for a fi le, this command effectively fi nds all your small fi les. The second 
command searches for fi les containing exactly 100 bytes.
 Before we move on, I want to take a moment to explain an important point. When you 
use a size measured in blocks, kilobytes, megabytes, or gigabytes, find assumes you are 
talking about disk space. This is why -size 1b fi nds all your small fi les. As we discussed 
in Chapter 24, the minimum allocation of disk space is 1 block.
 When you use a size measured in bytes, find assumes you are talking about the 
actual content of the fi les, not how much disk space it uses. That is why -size 100c 
looks for fi les that contain exactly 100 bytes of data. In fact, a fi le containing 100 bytes of 
data will be found by both -size 100c and -size 1b.
 Whenever you use -size, you can preface the number with either a - (minus) or 
+ (plus) to mean “less than” or “greater than” respectively. (This is a general rule for all 
numbers used with tests.) For example, the following command fi nds all your personal 
fi les with a size of less than 10 kilobytes. The second command fi nds all your fi les with a 
size greater than 1 megabyte:

find ~ -type f -size -10k -print
find ~ -type f -size +1M -print

The fi nal group of tests allow you to search for fi les based on their access or modifi cation 
times. The tests are summarized in Figure 25-5, so I won’t go over each one in detail. Let 
me just give you a few examples. Suppose you want to fi nd all of your fi les that have been 
modifi ed in the last 30 minutes. Use the  -mmin test with the value -30, for example:

find ~ -mmin -30 -print

Let’s say you want to fi nd fi les that have not been used for over 180 days. Use  -atime 
with the value +180:

find ~ -atime +180 -print

Finally, to fi nd all your fi les that have been changed in the last 10 minutes,  use:

find ~ -cmin -10 -print

THE fi nd COMMAND: NEGATING A TEST WITH THE ! OPERATOR
When necessary,         you can negate a test by preceding it with the ! (exclamation mark) 
OPERATOR. To do so, just type ! before the test. When you use !, you must follow two 
rules. First, you must put a space on each side of the ! mark, so it can be parsed properly. 
Second, you must quote the !, so it is passed to find and not interpreted by the shell. 
(This is a good habit anytime you want to pass metacharacters to a program.)
 As an example, consider the following command that searches from your home 
directory and displays the names of all ordinary fi les that have the extension .jpg:

find ~ -type f -name '*.jpg' -print

The find Command: Negating a Test With the ! Operator

33614_25_715_766.indd   75533614_25_715_766.indd   755 1/9/2008   12:40:35 PM1/9/2008   12:40:35 PM



Chapter 25

756 Harley Hahn’s Guide to Unix and Linux

Suppose, instead, we want to display the names of those fi les that do not have the 
extension .jpg. All we have to do is use the ! operator to reverse the test:

find ~ -type f \! -name '*.jpg' -print

You will notice that I used a backslash to quote the ! operator. If you prefer you can use 
single quotes instead. (For more information about quoting, see Chapter 13.)

find ~ -type f '!' -name '*.jpg' -print

When necessary, you can negate more than one test. Just make sure that each test has 
its own ! operator. For example, suppose you want to see if you have any fi les that are 
neither ordinary fi les or directories. That is, you want to see if you have any symbolic 
links, named pipes, special fi les, and so on. The command to use is:

find ~ \! -type f \! -type d -print

THE fi nd COMMAND: DEALING WITH FILE PERMISSION ERROR MESSAGES
The find program is         a great tool for searching through large directory trees. In particular, 
by starting at / (the root directory), you can search the entire fi lesystem. However, when 
you search outside your own home directory area, you will fi nd that some directories and 
fi les are off-limits, because your userid does not have permission to access them. Each 
time this happens, find will display an error message.
 For example, the following command searches the entire fi lesystem looking for 
directories named bin:

find / -type d -name bin -print

When you run this command, you will probably see many error messages similar to 
the following:

find: /etc/cron.d: Permission denied

In most cases, there is no reason to see these messages, because they don’t really help you. 
In fact, all they do is clutter your output. So how can you get rid of them?
 Since error messages are written to standard error (see Chapter 15), you can get rid 
of the messages by redirecting standard error to /dev/null, the bit bucket. With the 
  Bourne Shell family (Bash, Korn shell), this is easy:

find / -type d -name bin -print 2> /dev/null

With the C-Shell family (C-Shell, Tcsh), it is a bit more complicated, but it can be done:

(find / -type d -name bin -print > /dev/tty) >& /dev/null

The details are explained in Chapter 15.

33614_25_715_766.indd   75633614_25_715_766.indd   756 1/9/2008   12:40:35 PM1/9/2008   12:40:35 PM



Working With Files

757

THE fi nd COMMAND: ACTIONS
As we have      discussed, we use the find program to search one or more directory trees, 
look for fi les that meet specifi ed criteria, and then perform certain actions on those fi les. 
The general format of the command is:

find path... test... action...

So far, we have talked about how to specify paths and tests. To conclude our discussion, we 
will now talk about actions. An ACTION tells find what to do with the fi les it fi nds. For 
reference, I have summarized the most important actions in Figure 25-6. (For a complete 
list, see the find man page on your system.)
 As you can see, actions start with a - (dash) character, just like tests. The most 
commonly used action is  -print, which tells find to display the pathnames of all the 
fi les it has selected. More precisely, -print tells find to write the list of pathnames to 
standard output. (Why the name -print? As we discussed in Chapter 7, for historical 
reasons, it is a Unix convention to use the word “print” to mean “display”.)
 Here is a simple, straightforward example that starts from the working directory and 
searches for fi les named important:

find . -name important -print

With most versions of find, if you do not specify an action, -print is assumed by 
default. Thus, the following two commands are equivalent:

find . -name important -print
find . -name important

Similarly, with the GNU version of find, if you do not specify a path, the working 
directory is assumed by default. Thus, if you are a Linux user, the following three 
commands are equivalent:

ACTIONS
-print write pathname to standard output

-fprint fi le same as -print; write output to fi le

-ls display long directory listing

-fl s fi le same as -ls; write output to fi le

-delete delete fi le

-exec command {} \; execute command, {} indicates matched fi lenames

-ok command {} \; same as -exec, but confi rm before running command

FIGURE 25-6: The fi nd program: Actions

The fi nd program searches directory trees, looking for fi les that meet criteria, according to tests that you 
specify.  For each fi le that is found, fi nd performs the actions you specify.  See text for details.

The find Command: Actions

33614_25_715_766.indd   75733614_25_715_766.indd   757 1/9/2008   12:40:35 PM1/9/2008   12:40:35 PM



Chapter 25

758 Harley Hahn’s Guide to Unix and Linux

find . -name important -print
find . -name important
find -name important

Moving on, let me show you a more useful example. You want to search the entire 
fi lesystem for music fi les in MP3 format. To do so, you use find to start from the root 
directory and search for all the ordinary fi les that have an extension of .mp3. Since you 
will be searching throughout the fi lesystem, you know that find will generate spurious 
fi le permission error messages (see the previous section). For this reason, you redirect 
standard error to the bit bucket. The full command is:

find / -type f -name '*.mp3' -print 2> /dev/null

If the list of MP3 fi les is long, most of it will scroll off your screen. If so, you have two 
choices. First, you can pipe the output to less to display one screenful at a time:

find / -type f -name '*.mp3' -print 2> /dev/null | less

Alternatively, you can save the output in a fi le, so you can peruse it later at your leisure. 
To do so, use the  -fprint action instead of -print. The syntax is simple: just type 
-fprint followed by the name of the fi le. For example, the following command fi nds the 
names of all the MP3 fi les on the system and stores them in a fi le called musiclist:

find / -type f -name '*.mp3' -fprint musiclist 2> /dev/null

The -print action displays pathnames. If you want more information about each fi le, 
you can use the  -ls action instead. This action displays information similar to the ls 
command with the option -dils. The formatting is done internally. (find doesn’t 
really run the ls program.) What you will see is:

• Inode number
• Size in blocks
• File permissions
• Number of hard links
• Owner
• Group
• Size in bytes
• Time of last modifi cation
• Pathname

As an example, the following command searches from your home directory for all fi les 
and directories that have been modifi ed in the last 10 minutes. It then uses -ls to display 
information about these fi les:

find ~ -mmin -10 -ls

The  -fls action is similar to -ls except that, like -fprint, it writes its output to a fi le. 
For example, the following command fi nds all your fi les that have been modifi ed in the 
last 10 minutes and writes their pathnames to a fi le named recent:

33614_25_715_766.indd   75833614_25_715_766.indd   758 1/9/2008   12:40:35 PM1/9/2008   12:40:35 PM



Working With Files

759

find ~ -mmin -10 -fls recent

The next action  -delete can be very useful. However, it can easily turn around and 
bite you, so be careful how you use it. The -delete action removes the link to every fi le 
that has been found in the search. If that link is the only one, the fi le is deleted (see the 
discussion on links earlier in the chapter). In other words, using -delete is similar to 
using the rm command.
 Here is an example. Starting the search from your home directory, you want to remove 
all the fi les with the extension .backup:

find ~ -name '*.backup' -delete

Here is a more complex (and more useful) example. The following command removes all 
the fi les with the extension .backup that have not been accessed for at least 180 days:

find ~ -name '*.backup' -atime +180 -delete

Using the -ls and -delete actions is similar to sending the output of a search to the 
ls and rm programs respectively. However, find offers much more generality: you 
can send the search output to any program you want by using the  -exec action. The 
syntax is:

-exec command {} \;

where command is any command you want, including options and parameters.
 Here is how it works. You type -exec followed by a command. You can specify any 
command you want, as well as options and parameters, just as if you were typing it 
on the command line. Within the command, you use the characters {} to represent a 
pathname found by find. To indicate the end of the command, you must end it with a 
; (semicolon). As you can see from the syntax above, the semicolon must be quoted. This 
ensures that it is passed to find and not interpreted by the shell. (Quoting is explained 
in Chapter 13.)
 The -exec action is, more than any other feature, what makes find so powerful, so 
it is crucial that you learn how to use it well. To show you how it works, let’s start with a 
trivial example. The command below starts searching from your home directory, looking 
for all your directories. The results of the search are sent to the echo program, one at a 
time, to be displayed.

find ~ -type d -exec echo {} \;

With some shells, you will have a problem if you don’t quote the brace brackets:

find ~ -type d -exec echo '{}' \;

As a quick aside, let me remind you that you can quote the semicolon with single quotes 
instead of a backslash if you want:

find ~ -type d -exec echo {} ';'
find ~ -type d -exec echo '{}' ';'

The find Command: Actions

33614_25_715_766.indd   75933614_25_715_766.indd   759 1/9/2008   12:40:35 PM1/9/2008   12:40:35 PM



Chapter 25

760 Harley Hahn’s Guide to Unix and Linux

An -exec action is carried out once for each item that is found during the search. In 
this case, if there are, say, 26 directories, find will execute the echo command 26 times. 
Each time echo is executed, the {} characters will be replaced by the pathname of a 
different directory.
 The reason I call the previous command a trivial example is that you don’t really need 
to send pathnames to echo to display them. You can use -print instead:

find ~ -type d -print

However, our -exec action can be much more powerful. Let’s say that, for security 
reasons, you decide no one but you should be allowed to access your directories. To 
implement this policy, you need to use chmod to set the fi le permissions for all your 
directories to 700. (See the discussion of fi le permissions earlier in the chapter.) You 
could type a chmod for each directory, which would take a long time. Instead, use find 
to search for your directories and let -exec do the work for you:

find ~ -type d -exec chmod 700 {} \;

One more example. You are using a version of find that does not support the -ls 
or -delete actions. How can you replace them? Just use -exec to run ls or rm, 
for example:

find ~ -name '*.backup' -exec ls -dils {} \;
find ~ -name '*.backup' -exec rm {} \;

For more control, there is a variation of -exec that let’s you decide which command 
should be executed. Use  -ok instead of -exec, and you will be asked to confi rm each 
command before it is executed:

find ~ -type d -ok chmod 700 {} \;

PROCESSING FILES THAT HAVE BEEN FOUND: xargs
When       you use find to search for fi les that meet a specifi c criteria, there are two ways to 
process what you fi nd. First, you can use the -exec action as described in the previous 
section. This allows you to use any program you want to process each fi le. However, you 
must understand that -exec generates a separate command for each fi le. For example, 
if your search fi nds 57 fi les, -exec will generate 57 separate commands.
 For simple commands that operate on a small number of fi les, this may be okay. 
However, when a search yields a large number of fi les, there is a better alternative. Instead 
of using -exec, you can pipe the output of find to a special program designed to work 
effi ciently in such situations. This program, named xargs (“X-args”), runs any command 
you specify using arguments that are passed to it via standard input. The syntax is:

xargs [-prt] [-istring] [command [argument...]]

where command is the command you want to run; string is a placeholder; and argument 
is an argument read from standard input.

33614_25_715_766.indd   76033614_25_715_766.indd   760 1/9/2008   12:40:35 PM1/9/2008   12:40:35 PM



Working With Files

761

 Let’s start with a simple example. You want to create a list of all your ordinary fi les 
showing how much disk space is used by each fi le. You tell find to start from your 
home directory and search for ordinary fi les. The output is piped to xargs which runs 
the command ls -s (Chapter 24) to display the size of each fi le. The whole thing looks 
like this:

find ~ -type f | xargs ls -s

Here is a more complex example that should prove valuable in your everyday life. You 
are a beautiful, intelligent woman with excellent taste, and you want to phone me to tell 
me how much you enjoy this book. You remember that, over a year ago, a mutual friend 
sent you an email message containing my name and number, and that you saved it to a 
fi le. You haven’t looked at the fi le since, and you can’t even remember its name or what 
directory it was in. How can you fi nd the phone number?
 The solution is to use find to compile a list of all your ordinary fi les that were last 
modifi ed more than 365 days ago. Pipe the output to xargs and use grep (Chapter 19) 
to search all the fi les for lines containing the character string “Harley Hahn”. Here is the 
command to use:

find ~ -type f -mtime +365 | xargs grep "Harley Hahn"

In this case, the phone number is found in a fi le named important in your home 
directory. The output is:

/home/linda/important: Harley Hahn (202) 456-1111

When you need to process output from find, the   echo command can be surprisingly 
useful. As you remember from Chapter 12, echo evaluates its arguments and writes 
them to standard output. If you give it a list of pathnames, echo outputs one long 
line containing all the names. This line can then be piped to another program for 
further processing.
 As an example, let’s say you want to count how many ordinary fi les and directories 
you have. You use two separate commands, one to count the fi les, the other to count 
the directories:

find ~ -type f | xargs echo | wc -w
find ~ -type d | xargs echo | wc -w

Both commands use find to search from your home directory. The fi rst command uses 
-type f to search only for ordinary fi les; the second command uses -type d to 
search only for directories. Both commands pipe the output of find to xargs, which 
feeds it to echo. The output of the echo command is then piped to wc -w (Chapter 
18) to count the number of words, that is, the number of pathnames.
 From time to time, you will want to be able to use the arguments sent to xargs 
more than once in the same command. To do so, you use the -i (insert) option. This 
allows you to use {} as a placeholder that will be replaced with the arguments before the 
command is run. Let me start with a simple example to show you how it works.

Processing Files That Have Been Found: xargs

33614_25_715_766.indd   76133614_25_715_766.indd   761 1/9/2008   12:40:35 PM1/9/2008   12:40:35 PM



Chapter 25

762 Harley Hahn’s Guide to Unix and Linux

 Consider the following two commands, both of which search for ordinary fi les starting 
from your working directory:

find . -type f | xargs echo
find . -type f | xargs -i echo {} {}

In the fi rst command, echo writes a single copy of its arguments to standard output. In 
the second command, echo writes two copies of its arguments to standard output. Here 
is a more useful example that moves all the fi les in your working directory to another 
directory, renaming the fi les as they move.

find . -type f | xargs -i mv {} ~/backups/{}.old

This command uses find to search your working directory for ordinary fi les. The 
list of fi les is piped to xargs, which runs an   mv command (explained earlier in the 
chapter). The mv command moves each fi le to a subdirectory named backups, which 
lies within your home directory. As part of the move, the extension .old is appended 
to each fi lename.
 Let’s say your working directory contains three ordinary fi les: a, b and c. After the 
above command is run, the working directory will be empty, and the backups directory 
will contain a.old, b.old and c.old.
 If you want to use -i but, for some reason, you don’t want to use {}, you can specify 
your own placeholder. Just type it directly after the -i, for example:

find . -type f | xargs -iXX mv XX ~/backups/XX.old

When you write such commands, it is possible to create unexpected problems, because 
you can’t see what is happening. If you anticipate a problem, use the -p (prompt) 
option. This tells xargs to show you each command as it is generated, and to ask your 
permission before running it. If you type a reply that begins with “y” or “Y”, xargs 
runs the command. If you type any other answer — such as pressing the <Return> key 
— xargs skips the command.
 Here is an example you can try for yourself. Use touch (explained earlier in the 
chapter) to create several new fi les in your working directory:

touch a b c d e

Now enter the following command to add the extension .junk to the end of each of 
these fi lenames. Use -p so xargs will ask your approval for each fi le:

find . -name '[abcde]' | xargs -i -p mv {} {}.junk

If you want to see which commands are generated but you don’t need to be asked for 
approval, use -t. This causes xargs to display each command as it is run. You can think 
of -t as meaning “tell me what you are doing”:

find . -name '[abcde]' | xargs -i -t mv {} {}.junk

33614_25_715_766.indd   76233614_25_715_766.indd   762 1/9/2008   12:40:35 PM1/9/2008   12:40:35 PM



Working With Files

763

Important: Be sure not to group -i with any other options. For example, the following 
command will not work properly, because xargs will think that the p following -i is a 
placeholder, not an option:

find . -name '[abcde]' | xargs -ip mv {} {}.junk

The last option I want you to know about is -r. By default, xargs always runs the 
specifi ed command at least once. The -r option tells xargs not to run the command 
if there are no input arguments. For example, the following command searches your 
working directory and displays a long listing of any fi les that are empty:

find . -empty | xargs ls -l

Suppose, however, there are no empty fi les. The ls -l command will run with no 
arguments. This will produce a long listing of the entire directory, which is not what you 
want. The solution is to use the -r option:

find . -empty | xargs -r ls -l

Now xargs will only run the ls command if there are arguments.
 As you can see, connecting find and xargs is an easy way to build powerful tools. 
However, I don’t want to give you the impression that xargs is only used with find. 
In fact, xargs can be used with any program that can supply it with character strings to 
use as arguments. Here are some examples.
 You are writing a shell script, and you want to use whoami (Chapter 8) to display the 
current userid, and date (also Chapter 8) to display the time and date. To make it look 
nice, you want all the output to be on a single line:

(whoami; date) | xargs

You have a fi le, filenames, that contains the names of a number of fi les. You want to 
use cat (Chapter 16) to combine all the data in these fi les and save the output to a fi le 
named master:

xargs cat < filenames > master

Finally, you want to move all the C source fi les in your current directory to a subdirectory 
named archive. First, create the subdirectory if it does not already exist:

mkdir archive

Now use ls and xargs to list and move all the fi les that have an extension of .c. I have 
included the -t option, so xargs will show you each command as it is executed:

0p7 0p7 

Processing Files That Have Been Found: xargs

33614_25_715_766.indd   76333614_25_715_766.indd   763 1/9/2008   12:40:35 PM1/9/2008   12:40:35 PM



Chapter 25

764 Harley Hahn’s Guide to Unix and Linux

C H A P T E R  2 5  E X E R C I S E S

REVIEW QUESTIONS

1.  Which command do you use to create a brand new, empty fi le?  Why do you rarely 
need to use this command?  Give three common situations in which a fi le would be 
created for you automatically.

2.  Examine each of the following character strings and decide whether or not it would 
make a good fi lename.  If not, explain why.

 data-backup-02 Data Backup 02
 data_backup_02 Data;Backup,02
 DataBackup02 databackup20
 DATABACKUP02 data/backup/20

3.  What are fi le permissions?  What are the two main uses for fi le permissions?  Which 
program is used to set or change fi le permissions?  What are the three types of fi le 
permissions?  For each type, explain what it means when applied (a) to an ordinary 
fi le (b) to a directory.

4.  What is a link?  What is a symbolic link?  What is a hard link and a soft link?  How do 
you create a link?  How do you create a symbolic link?

5.  Which three programs are used to fi nd a fi le or a set of fi les?  When would you use 
each one?

APPLYING YOUR KNOWLEDGE

1.  Within your home directory, create a directory named temp and change to it.  Within 
this directory, create two subdirectories named days and months.  Within each 
directory, create two fi les named file1 and file2.  Hint: Use a subshell (see 
Chapter 15) to change the working directory and create the fi les.

  Once all the fi les are created, use the tree program (Chapter 24) to display a diagram 
of the directory tree showing both directories and fi les.  If your system doesn’t have 
tree, use ls -R instead.

2.  Continuing from the previous exercise:

  Within the days directory, rename file1 to monday and rename file2 to 
tuesday.  Then copy monday to friday.  Within the months directory, rename 
file1 to december and file2 to july.

  Move back to temp and use tree to display another diagram of the directory tree.  
If your system doesn’t have tree, use ls -R instead.

33614_25_715_766.indd   76433614_25_715_766.indd   764 1/9/2008   12:40:35 PM1/9/2008   12:40:35 PM



Working With Files

765

  Create a link from december to april.  Create a symbolic link from december 
to may.  Display a long listing of the months directory.  What do you notice?

  To clean up, use a single command to delete the temp directory, all its subdirectories, 
and all the fi les in those directories.  Use one fi nal command to confi rm that temp no 
longer exists.

3.  Use a text editor to create a fi le named green.  Within the fi le, enter the line:

 I am a smart person.

  Save your work and quit the editor.

  Create a link to the fi le green and call it blue.  Display a long listing of green and 
blue and make a note of their modifi cation times.

  Wait 3 minutes, then use the text editor to edit the fi le green.  Change the one line 
of text to:

  I am a very smart person.

  Save your work and quit the editor.

  Display a long listing of green and blue.  Why do they both have the same (updated) 
modifi cation time even though you only edited one fi le?  What would have happened 
if you had changed blue instead of green?

4.  You are setting up a Web site in which all the HTML fi les are in subdirectories of a 
directory named httpdocs in your home directory.  Use a pipeline to fi nd all the 
fi les with the extension .html and change their permissions to the following:

  Owner: read + write
  Group: nothing
  Other: read

FOR FURTHER THOUGHT

1.  Most GUI-based fi le managers maintain a “trash” folder to store deleted fi les, so they 
can be recovered if necessary.  With such systems, a fi le is not gone for good until it is 
deleted from the “trash”.  Why do the Unix text-based tools not offer such a service?

2.  Imagine going back in a time machine to 1976, when I fi rst started to use Unix.  You 
fi nd me and ask for a tour of the Unix system I am using.  To your surprise, you 
see fi les, directories, subdirectories, a working directory, a home directory, special 
fi les, links, inodes, permissions, and so on.  You also see all the standard commands: 
ls, mkdir, pwd, cd, chmod, cp, rm, mv, ln and find.  Indeed, you notice that 
virtually every idea and tool you learned about in this chapter was developed more 
than thirty years ago.

Working With Files

33614_25_715_766.indd   76533614_25_715_766.indd   765 1/9/2008   12:40:35 PM1/9/2008   12:40:35 PM



Chapter 25

766 Harley Hahn’s Guide to Unix and Linux

  What is it about the basic design of the Unix fi lesystem that has enabled it to survive 
for so long and still be so useful?  Is this unusual in the world of computing?

3.  The find program is a powerful tool, but very complicated.  Imagine a GUI-based 
version of the program that enables you to choose options from a large drop-down 
list, enter fi le patterns into a form, select various tests from a menu, and so on.  Would 
such a program be be easier to use than the standard text-based version?  Could a GUI 
version of find replace the text-based version?

33614_25_715_766.indd   76633614_25_715_766.indd   766 1/9/2008   12:40:36 PM1/9/2008   12:40:36 PM



767

C H A P T E R  2 6

Processes and Job Control

Within Unix, every   object is represented by either a fi le or a process. In simple terms, a 
fi le is an input source or output target, while a process is a program that is executing. Files 
offer access to data; processes make things happen.
 It is very important that you have a fi rm understanding of both fi les and processes. We 
discussed fi les in detail in Chapters 23, 24 and 25. In this chapter, we will cover processes 
and the related topic of job control. To do so, we will consider several key questions. 
Where do processes come from? How are they managed by the system? How do you 
control your own processes?
 As you read this chapter, much of what we have discussed throughout the book 
will come together in a way that will bring you a great deal of satisfaction. Once you 
understand processes and how they are managed, you will appreciate the richness of 
Unix, and how its various parts interact to form a complex, elegant system.

HOW THE KERNEL MANAGES PROCESSES
In Chapter 6, we   discussed the idea of a process, a program that is executing. More 
precisely, a PROCESS  is a program that is loaded into memory and ready to run, along 
with the program’s data and the information needed to keep track of the program. All 
processes are managed by the kernel, the central part of the operating system. The details, 
as you can imagine, are complex, so let me offer you a summary.
 When a process is created, the kernel assigns it a unique identifi cation number called 
a PROCESS ID or    PID (pronounced as three separate letters, “P-I-D”). To keep track 
of all the processes in the system, the kernel maintains a PROCESS TABLE, indexed by 
PID, containing one entry for each process. Along with the PID, each entry in the table 
contains the information necessary to describe and manage the process.
 Does this arrangement sound familiar? It should, because it is similar to the system 
of inumbers and inodes we discussed in Chapter 25. As you will remember, every fi le 
has a unique identifi cation number called its inumber, which is used as an index into 
the inode table. Each inode contains the information necessary to describe and manage 
a particular fi le. Thus, the process table is similar to the inode table. Analogously, a 

How the Kernel Manages Processes

33614_26_767_816.indd   76733614_26_767_816.indd   767 1/9/2008   12:40:56 PM1/9/2008   12:40:56 PM



Chapter 26

768 Harley Hahn’s Guide to Unix and Linux

process ID corresponds to an inumber, while an entry in the process table corresponds 
to an inode.
 A small Unix system can easily have over 100 processes running at the same time. 
Some of them, of course, are programs run by the users. Most processes, however, are 
started automatically to perform tasks in the background. On a large system, there can 
be hundreds or even thousands of processes all needing to share the system’s resources: 
processors, memory, I/O devices, network connections, and so on. In order to manage such 
a complex workload, the kernel provides a sophisticated scheduling service, sometimes 
referred to as the  SCHEDULER.
 At all times, the scheduler maintains a list of all the processes waiting to execute. 
Using a complicated algorithm, the scheduler chooses one process at a time, and gives it a 
chance to run for  a short interval called a TIME SLICE. (On a multiprocessor system, the 
scheduler will choose more than one process at a time.)
 When we talk about concepts such as time slices, we often refer to processing time 
as CPU TIME.  This term dates back to the olden days — before modern single-chip 
processors — when the bulk of the computation was performed by a central processing 
unit or CPU.
 A typical time slice consists of about 10 milliseconds (10 thousandths of a second) of 
CPU time. Once the time slice is over, the process goes back on the scheduling list and 
another process is started. In this way, every process, eventually, is given enough CPU time 
to complete its work. Although a time slice isn’t very long by human standards, modern 
processors are very, very fast and 10 milliseconds is actually long enough to execute tens 
of thousands of instructions. (Think about that for a moment.)
 Each time a process fi nishes its time slice, the kernel needs to put the process on hold. 
However, this must be done in such a way that, later, when the process is restarted, it is 
able to continue exactly where it left off. To make this possible, the kernel saves data for 
every process that is interrupted. For example, the kernel will save the location of the next 
instruction to be executed within the program, a copy of the environment, and so on.

FORKING TILL YOU DIE
So how are processes  created? With one notable exception (discussed later in the chapter), 
every process is created by another process. Here is how the system works.
 As we discussed in Chapter 2, the kernel is the core of the operating system. As such, 
the kernel provides essential services to processes, specifi cally:

•  Memory management (virtual memory management, including paging)
•  Process management (process creation, termination, scheduling)
•  Interprocess communication (local, network)
•  Input/output (via device drivers, programs that perform the actual communications 

with physical devices)
•  File management
•  Security and access control
•  Network access (such as TCP/IP)

33614_26_767_816.indd   76833614_26_767_816.indd   768 1/9/2008   12:40:57 PM1/9/2008   12:40:57 PM



Processes and Job Control

769

When a process needs the kernel         to perform a service, it sends the request by using a 
SYSTEM CALL. For example, a process would use a system call to initiate an I/O operation. 
When you write programs, the exact method of using a system call depends on your 
programming language. In a C program, for example, you would use a function from a 
standard library. Unix systems typically have between 200-300 system calls, and part of 
becoming a programmer is learning how to use them, at least the most important ones.
 The most important system calls are the ones used for process control and I/O (see 
Figure 26-1). Specifi cally, the system calls used to create and use processes are fork, 
exec, wait, and exit.
 The fork system call creates a copy of the current process. Once this happens, we 
call the original process the PARENT PROCESS or, more simply, the PARENT. The 
new process, which is an exact copy of the parent, is called the CHILD PROCESS or the 
CHILD. The wait system call forces a process to pause until another process has fi nished 
executing. The exec system call changes the program that a process is running. And, 
fi nally, the exit system call terminates a process. To make it easy to talk about these 
concepts, we often use the words FORK, EXEC, WAIT and EXIT as verbs. For example, 
you might read, “When a process forks, it results in two identical processes.”
 What is amazing is that, by using only these four basic system calls (with a few minor 
variations we can ignore), Unix processes are able to coordinate the elaborate interaction 
that takes place between you, the shell, and the programs you choose to run. To illustrate 
how it works, let’s consider what happens when you enter a command at the shell prompt.
 As you know (from Chapter 11), the shell is a program that acts as a user interface 
and script interpreter. It is the shell that enables you to enter commands and, indirectly, 
to access the services of the kernel. Although the shell is important, once it is running 

Forking Till You Die

SYSTEM CALL PURPOSE
fork create a copy of the current process

wait wait for another process to fi nish executing

exec execute a new program within the current process

exit terminate the current process

     kill send a signal to another process

open open a fi le for reading or writing

read read data from a fi le

write write data to a fi le

close close a fi le

FIGURE 26-1: Commonly used  system calls

Many important tasks can be performed only by the kernel. When a process needs to perform one of 
these tasks, it must use a system call to send a request to the kernel to do the job. Unix/Linux systems 
generally have 200-300 different system calls. The most commonly used system calls are the ones used 
for process control (fork, wait, exec, exit and kill), and fi le I/O (open, read, write 
and close).

33614_26_767_816.indd   76933614_26_767_816.indd   769 1/9/2008   12:40:57 PM1/9/2008   12:40:57 PM



Chapter 26

770 Harley Hahn’s Guide to Unix and Linux

it is just another process, one of many in the system. Like all processes, the shell has its 
own PID (process ID) and its own entry in the process table. In fact, at any time, you can 
display the PID    of the current shell by displaying the value of a special shell variable with 
the odd name of   $ (dollar sign):

echo $$

(See Chapter 12 for a discussion of shell variables.)
 As we discussed in Chapter 13, there are two types of commands: internal and external. 
Internal or builtin     commands are interpreted directly by the shell, so there is no need to 
create a new process. External commands, however, require the shell to run a separate 
program. As such, whenever you want to run an external command, the shell must create 
a new process. Here is how it  works.
 The fi rst thing the shell does is use the fork system call to create a brand new process. 
The original process becomes the parent, and the new process is the child. As soon as the 
forking is done, two things happen. First, the child uses the exec system call to change 
itself from a process running the shell into a process running the external program. Second, 
the parent uses the wait system call to pause itself until the child is fi nished executing.
 Eventually, the external program fi nishes, at which time the child process uses the 
exit system call to stop itself. Whenever a process stops permanently, for whatever 
reason, we say that the process     DIES or TERMINATES. In fact, as you will see later in the 
chapter, when we stop a process deliberately, we say that we “kill” it.
 Whenever a process dies, all the resources it was using — memory, fi les, and so on — 
are deallocated, so they can be used by other processes. At this point, the defunct process 
is referred to as a ZOMBIE.  Although a zombie is dead and is no longer a real process, it 
still retains its entry in the process table. This is because the entry contains data about the 
recently departed child that may be of interest to the parent.
 Immediately after a child turns into a zombie, the parent — which has been waiting 
patiently for that child to die — is woken up by the kernel. The parent now has an 
opportunity to look at the zombie’s entry in the process table to see how things turned 
out. The kernel then removes the entry from that table, effectively extinguishing the last 
remnant of the child’s short, but useful life.
 To illustrate the procedure, let’s consider what happens when you enter a command 
to run the vi text editor. The fi rst thing the shell does is fork to create a child process, 
identical to itself. It then begins waiting for the child to die.* At the same instant, the child 
uses exec to change from a process running the shell to a process running vi. What you 
notice is that, an instant after you enter the vi command, the shell prompt is replaced by 
the vi program.
 When you fi nish working with vi you quit the program. This kills the child process 
that has been running vi and turns it into a zombie. The death of the child causes the 
kernel to wake up the parent. This, in turn, causes the zombie to be removed from the 
process table. At the same time, the original process returns to where it was. What you 
notice is that, an instant after you stop the vi program, you see a new shell prompt.

 *Unix programming is not for the faint of heart.

33614_26_767_816.indd   77033614_26_767_816.indd   770 1/9/2008   12:40:57 PM1/9/2008   12:40:57 PM



Processes and Job Control

771

ORPHANS AND ABANDONED PROCESSES
You might ask, what if a      parent forks and then dies unexpectedly, leaving the child all 
alone? The child, of course, keeps executing but it is now considered to be an ORPHAN. 
An orphan can still do its job, but when it dies there is no parent to wake up. As a result, 
the dead child — now in the form of a zombie — is stuck in limbo.
 In the olden days, an orphaned zombie would stay in the process table forever or until 
the system was rebooted (whichever came fi rst). On modern Unix systems, orphaned 
processes are automatically adopted by process #1, the init process (discussed later in 
the chapter). In this way, whenever an orphan dies, init, acting in loco parentis is able 
to swoop down and — without a trace of hesitation — initiate the steps that will lead to 
the destruction of the the zombie.
 A similar situation arises when a parent creates a child, but does not have the good 
manners to wait for the child to die. Later, when the child dies and turns into a zombie, the 
neglectful parent has left the poor zombie — like Mariana in the Moated Grange* — saying 
to itself, “My life is dreary, he cometh not, I am aweary, aweary, I would that I were dead!”
 Fortunately, this is an uncommon event. In fact, such occurrences generally happen 
only when a program has a bug that allows the program to create a child without waiting 
for the child to die. Interestingly enough, if one of your own programs inadvertently 
creates an immortal zombie in this manner, there is no direct way for you to get rid of it. 
After all, how can you kill something that is already dead?
 To get rid of an abandoned child that has become a zombie, you can use the kill 
program (described later in the chapter) to terminate the parent. Once the parent dies, the 
zombie becomes an orphan, which will automatically be adopted by the init process. 
In due course, init will fulfi l its destiny as a responsible step-parent by driving the fi nal 
stake through the heart of the zombie.
 Is Unix programming cool or what?

DISTINGUISHING BETWEEN PARENT AND CHILD
Earlier in the chapter,  I     explained that the shell executes an external command by forking 
to create a child process. The child process then execs to run the command, while the 
parent waits for the child to terminate.
 As we discussed, forking results in two identical processes: the original (the parent) 
and the copy (the child). But one process has to wait and the other has to run a program. 
If the parent and child are identical, how does the parent know it’s the parent, and how 
does the child know it’s the child? In other words, how do they each know what to do?
 The answer is when the fork system call has fi nished its work, it passes a numeric value, 
called a RETURN VALUE, to both the parent and the child process. The return value for the 
child is set to 0 (zero). The return value for the parent is set to the process ID of the newly 
created child. Thus, after a fork operation is complete, a process can tell if it is the parent 
or the child simply by checking the return value. If the return value is greater than zero, the 
process knows it is the parent. If the return value is 0, the process knows it is the child.

 *See the poem “Mariana in the Moated Grange” by Alfred Tennyson.

Distinguishing Between Parent and Child

33614_26_767_816.indd   77133614_26_767_816.indd   771 1/9/2008   12:40:57 PM1/9/2008   12:40:57 PM



Chapter 26

772 Harley Hahn’s Guide to Unix and Linux

 So what happens when you run an external command? After the shell forks, there are 
two identical shells. One is the parent; the other is the child but, at fi rst, they don’t know 
which is which. To fi gure it out, each process checks the return value it received from 
fork. The shell with the positive return value knows it is the parent, so it uses the wait 
system call to pause itself. The shell with the zero return value knows it is the child, so it 
uses the exec system call to run the external program. (Like all tricks, it doesn’t look like 
magic once you understand how it is done.)

THE VERY FIRST PROCESS: init
In the next section, we     will begin to take a look at the day-to-day programs and techniques 
you will use to control your processes. Before we do, however, I want to digress for a 
moment to discuss a very interesting observation. If processes are created by forking, 
every child process must have a parent. But then, that parent must have a parent of its 
own, and so on. Indeed, if you trace the generations back far enough, you come to the 
conclusion that, somewhere, there must have been a very fi rst process.
 That conclusion is correct. Every Unix system has a process that — at least indirectly 
— is the parent of all the other processes in the system. The details can vary from one 
type of Unix to another, but all I want is for you to understand the general idea. I’ll 
describe how it works with Linux.
 In Chapter 2, we talked about the boot procedure, the complex set of steps that starts 
the operating system . Towards the end of the boot procedure, the kernel creates a special 
process “by hand”, that is, without forking. This process is given a PID (process ID) of 0. 
For reasons I will explain in a moment, process #0 is referred to as the IDLE PROCESS.
 After performing some important functions — such as initializing the data structures 
needed by the kernel — the idle process forks, creating process #1. The idle process then 
execs to run a very simple program that is essentially an infi nite loop doing nothing. 
(Hence, the name “idle process”.) The idea is that, whenever there are no processes 
waiting to execute, the scheduler will run the idle process. By the time process #0 has 
metamorphosized into the idle process, it has served its purpose and, effectively, has 
vanished. Indeed, if you use the ps command (discussed later) to display the status of 
process #0, the kernel will deny that the process even exists.
 But what of process #1? It carries out the rest of the steps that are necessary to set up the 
kernel and fi nish the boot procedure. For this reason, it is called the INIT PROCESS, and 
the actual program itself is named init. Specifi cally, the init process opens the system 
console (see Chapter 3) and mounts the root fi lesystem (see Chapter 23). It then runs 
the shell script contained in the fi le /etc/inittab. In doing so, init forks multiple 
times to create the basic processes necessary for running the system (such as setting the 
runlevel; see Chapter 6) and enabling users to login. In doing so, init becomes the 
ancestor of all the other processes in the system.*

 *Process #0, the idle process, forks to create process #1, the init process. Thus, strictly speaking, the ultimate ancestor of all 
processes is actually process #0. However, once process #0 fi nishes its job, it effectively disappears. Thus, we can say that process 
#1 is the only living ancestor of all the processes in the system.
 In fact, if a process were ever to become interested in genealogy, it would not be able to trace its roots past process #1, 
because processes are not allowed to read the source code for the kernel.

33614_26_767_816.indd   77233614_26_767_816.indd   772 1/9/2008   12:40:57 PM1/9/2008   12:40:57 PM



Processes and Job Control

773

 Unlike the idle process (#0), the init process (#1) never stops running. In fact, it is 
the fi rst process in the process table, and it stays there until the system is shut down. 
Even after the system has booted, init is still called upon to perform important actions 
from time to time. For example, as we have already discussed, when a parent process dies 
before its child, the child becomes an orphan. The init program automatically adopts 
all orphans to make sure their deaths are handled properly.
 Later in the chapter, when we discuss the ps (process status) command, I will show 
you how to display the process IDs of both a process and its parents. You will see that if 
you trace the ancestry of any process in the system far enough, it will always lead you back 
to process #1.

FOREGROUND AND BACKGROUND PROCESSES
When you run a program,       the input and output is usually connected to your terminal. For 
text-based programs, input comes from your keyboard, and output goes to your monitor. 
This only make sense because most of the programs you will use need to interact with 
you in order to do their job.
 Some programs, however, can run by themselves without tying up your terminal. For 
example, let’s say you want to use a program to read a very large amount of data from a 
fi le, sort that data, and then write the output to another fi le. There is no reason why such 
a program can’t work on its own without your intervention.
 As we have discussed, whenever you enter a command to run a program, the shell 
waits for the program to fi nish before asking you to enter another command. However, 
if you were using the sorting program I described above, there would be no need to wait 
for it to fi nish. You could enter the command to start the program and then move right 
along to the next command, leaving the program to run on its own.
 To do this, all you have to do is type an & (ampersand) character at the end of the 
command. This tells the shell that the program you are running should execute all by 
itself. For example, say the command to run the sorting program is as follows:

sort < bigfile > results

If you enter this exact command, the shell will launch the program and wait until the 
program fi nishes executing. It is only when the program is done that the shell will display 
a prompt to tell you that it is waiting for a new command. However, it works differently 
when you enter the command with an & at the end:

sort < bigfile > results &

In this case, the shell does not wait for the program to fi nish. As soon as the program 
starts, the shell regains control and displays a new prompt. This means you can enter 
another command without waiting for the fi rst program to fi nish.
 When the shell waits for a program to fi nish before prompting you to enter a new 
command, we say the process is running in the FOREGROUND. When the shell starts 
a program, but then leaves it to run on its own, we say the process is running in the 
BACKGROUND. In the fi rst example, we ran the sort program in the foreground. In 

Foreground and Background Processes

33614_26_767_816.indd   77333614_26_767_816.indd   773 1/9/2008   12:40:58 PM1/9/2008   12:40:58 PM



Chapter 26

774 Harley Hahn’s Guide to Unix and Linux

the second example, we ran sort in the background by typing an & character at the end 
of the command.
 As I explained in Chapter 15, most Unix programs are designed to read input from 
standard input (stdin) and write output to standard output (stdout). Error messages 
are written to standard error (stderr). When you run a program from the shell prompt, 
stdin is connected to your keyboard, and stdout and stderr are connected to your 
monitor. If you want to change this, you can redirect stdin, stout and stderr at the time 
you run the program.
 Reading from the keyboard and writing to the monitor works fi ne when you run a 
process in the foreground. However, when you run a program in the background, the 
process executes on its own to allow you to enter another command. What happens, then, 
if a background process tries to read or write to standard I/O? The answer is the input is 
disconnected, but the output connections do not change.
 This has two important implications. First, if a process running in the background 
tries to read from stdin, there will be nothing there and the process will pause indefi nitely, 
waiting for input. The process wants to read, and it is going to wait and wait and wait 
until you give it something to read. In such cases, the only thing you can do is use the fg 
command to move the process to the foreground (discussed later). This allows you to 
interact with the process and give it what it wants.
 Second, if a process running in the background writes to either stdout or stderr, the 
output will show up on your monitor. However, since you are probably working on 
something else, the output will be mixed in with whatever else you are doing, which can 
be confusing and distracting.

CREATING A DELAY: sleep
In  order to demonstrate     how background output can get mixed up with foreground 
output, I have a short   experiment for you. In this experiment, we are going to run a 
sequence of two commands in the background. The fi rst command will create a delay; 
the second command will then write some output to the terminal. In the meantime 
(during the delay), we will start another program in the foreground. You will then see 
what happens when a background process writes its output to the screen while you are 
working in the foreground.
 Before we get started, I want to tell you about the tool we will use to create the delay. 
We will be using a program named sleep. The syntax is:

sleep interval[s|m|h|d]

where interval is the length of the delay.
 Using sleep is straightforward. Just specify the length of the delay you want in 
seconds. For example, to pause for 5 seconds, use:

sleep 5

If you enter this command at your terminal, it will seem as if nothing is happening. 
However, 5 seconds later, the program will fi nish and you will see a new shell prompt.

33614_26_767_816.indd   77433614_26_767_816.indd   774 1/9/2008   12:40:58 PM1/9/2008   12:40:58 PM



Processes and Job Control

775

 With Linux or any other system that uses the GNU utilities (see Chapter 2), you can 
specify a one-letter modifi er after the interval: s for seconds (the default), m for minutes; 
h for hours, and d for days. For example:

sleep 5
sleep 5s
sleep 5m
sleep 5h
sleep 5d

The fi rst two commands pause for 5 seconds. The next three commands pause for 5 
minutes, 5 hours, and 5 days respectively.
 Most often, we use sleep within a shell script to create a specifi c delay. For example, 
let’s say Program A writes data to a fi le that is needed by Program B. You may need to 
write a shell script to make sure the data fi le exists before you run Program B. Within the 
script, you use sleep to create, say, a 5 minute delay within a loop. Every 5 minutes, your 
script checks to see if the fi le exists. If not, it waits for another 5 minutes and tries again. 
Eventually, when the fi le is detected, the script moves on and runs Program B.
 At the command line, sleep is useful when you want to wait a specifi ed amount 
of time before running a command, which is what we will be doing. To run the 
experiment, I want you to enter the following two command lines quickly, one right 
after the other:

(sleep 20; cat /etc/passwd) &
vi /etc/termcap

The fi rst command runs in the background. It pauses for 20 seconds and then copies 
the contents of the password fi le (Chapter 11) to your terminal. The second command 
runs in the foreground. It uses the vi text editor (Chapter 22) to look at the Termcap 
fi le (Chapter 7).
 After you enter the second command and vi has started, wait a short time and you 
will see the contents of the password fi le splattered all over your screen. Now you can 
appreciate how irritating it is when a background process writes its output to your 
terminal when you are working on something else.
 The moral? Don’t run programs in the background if they are going to read or write 
from the terminal.
 (Within    vi: To redraw the screen, press ^L. This is a handy command to remember 
for just such occasions. To quit, type :q and then press <Return>.)
 A program is a candidate to run as a background process only if it does not need to 
run interactively; that is, if it does not need to read from your keyboard or write to your 
screen. Consider our earlier example:

sort < bigfile > results &

In this case, we can run the program in the background because it gets its input from one 
fi le (bigfile) and writes its output to another fi le (results).

Creating a Delay: sleep

33614_26_767_816.indd   77533614_26_767_816.indd   775 1/9/2008   12:40:58 PM1/9/2008   12:40:58 PM



Chapter 26

776 Harley Hahn’s Guide to Unix and Linux

 Interestingly enough, the shell will allow you to run any program in the background; 
all you have to do is put an & character at the end of the command. So be thoughtful. 
Don’t, for instance, run vi, less or other such programs in the background.

JOB CONTROL
In the early 1970s,    the fi rst Unix shells offered very little in the way of process control. 
When a user ran a program, the resulting process used the terminal for standard input, 
standard output, and standard error. Until that process fi nished, the user was unable 
to enter any more commands. If it became necessary to terminate the process before it 
fi nished on its own, the user could press either ^C to send the intr signal or ^\ to send 
the quit signal (see Chapter 7). The only difference was that quit would generate a 
core dump for debugging.
 Alternatively, a user could type an & (ampersand) character at the end of the command 
line to run the program as an ASYNCHRONOUS PROCESS.   An asynchronous process 
had two defi ning characteristics. First, by default, standard input would be connected to 
the empty fi le /dev/null. Second, because the process was running on its own without 
any input from the user, it would not respond to the intr or quit signals.
 Today, we have GUIs, terminal windows, and virtual consoles, which make it easy to 
run more than one program at the same time. In the 1970s, however, being able to create 
asynchronous processes was very important, as it enabled users to start programs that 
would run by themselves without tying up the terminal. For example, if you had a long 
source program to compile, you could use an asynchronous process to do the job. Once 
the process started, your terminal would be free, so you wouldn’t have to stop working. Of 

HINT

If you accidentally run an interactive program in the background, you can terminate it by using 
the kill command, discussed later in the chapter.

TECHNICAL HINT

Compiling a source program is       a great activity to run in the background. For example, let’s say 
you are using the gcc compiler to compile a C program named myprog.c. Just make sure 
to redirect the standard error to a fi le, and everything will work fi ne. The fi rst command below 
does the job for the Bourne shell family (Bash, Korn Shell). The second command is for the C-
Shell family (Tcsh, C-Shell):

gcc myprog.c 2> errors &
gcc myprog.c >& errors &

Another common situation occurs when you need to build a program that uses a makefi le. For 
example, say you have downloaded a program named game. After unpacking the fi les, you can 
use make to build the program in the background:

make game > makeoutput 2> makeerrors &

In both cases, the shell will display a message for you when the program has fi nished.

33614_26_767_816.indd   77633614_26_767_816.indd   776 1/9/2008   12:40:58 PM1/9/2008   12:40:58 PM



Processes and Job Control

777

course, if the asynchronous process got into trouble, you would not be able to terminate 
it with ^C or ^/. Instead, you would have to use the kill command (covered later in 
the chapter).
 As we discussed in Chapter 11, the original Bourne Shell was created in 1976 by Steven 
 Bourne at Bell Labs. This shell was part of AT&T Unix and it supported asynchronous 
processes, which is all there was until 1978 when  Bill Joy, a graduate student at U.C. 
Berkeley, created a brand new shell, which he called the C-Shell (see Chapter 11). As part 
of the C-Shell, Joy included support for a new capability called JOB CONTROL. (Joy also 
added several other important new features, such as aliases and command history.)
 Job control made it possible to run multiple processes: one in the foreground, the rest 
in the background. Within the C-Shell, a user   could pause any process and restart it as 
needed. He could also move processes between the foreground and background, suspend 
(pause) them, and display their status. Joy included the C-Shell in BSD (Berkeley Unix), 
and job control proved to be one of the shell’s most popular features. Even so, AT&T Unix 
did not get job control for four more years, until David Korn included it in the fi rst Korn 
Shell in 1982. Today, job control is supported by every important Unix shell.
 The essential feature of job control is that every command you enter is considered to 
be a JOB identifi ed by a unique JOB NUMBER  also referred to as a JOB ID (pronounced 
“job-I-D”). To control and manipulate your jobs, you use the job id along with a variety 
of commands, variables, terminal settings, shell variables, and shell options. For reference, 
these tools are summarized in Figure 26-2.
 Within the Bourne Shell family (Bash, Korn Shell), job control is enabled when the 
monitor option is set. This is the default for interactive shells, but it can be turned off 
by unsetting the option (see Chapter 12). With the C-Shell family (Tcsh, C-Shell), job 
control is always turned on for interactive shells.
 It is natural to wonder, how is a job different from a process? For practical purposes, the 
two concepts are similar, and you will often see people use the terms “job” and “process” 
interchangeably. Strictly speaking, however, there is a difference. A process is a program 
that is executing or ready to execute. A job refers to all the processes that are necessary to 
interpret an entire command line. Where processes are controlled by the kernel, jobs are 
controlled by the shell, and in the same way that the kernel uses the process table to keep 
track of processes, the shell uses a JOB TABLE  to keep track of jobs.
 As an example, let’s say you enter the following simple command to display the time 
and date:

date

This command generates a single process, with its own process ID, and a single job with 
its own job ID. As the job runs, there will be one new entry in the process table and one 
new entry in the jobs table. Now consider the following more complicated command 
lines. The fi rst uses a pipeline consisting of four different programs. The second executes 
four different programs in sequence:

who | cut -c 1-8 | sort | uniq -c
date; who; uptime; cal 12 2008

Job Control

33614_26_767_816.indd   77733614_26_767_816.indd   777 1/9/2008   12:40:58 PM1/9/2008   12:40:58 PM



Chapter 26

778 Harley Hahn’s Guide to Unix and Linux

Each of these command lines generates four different processes, one for each program, 
and each process has its own process ID. However, the entire pipeline — no matter how 
many processes it might require — is considered to be a single job, with a single job ID. 
While the job is running, there will be four entries in the process table, but only a single 
entry in the job table.

JOB CONTROL COMMANDS 
jobs display list of jobs

ps display list of processes

fg move job to foreground

bg move job to background

suspend suspend the current shell

^Z suspend the current foreground job

kill send signal to job; by default, terminate job

VARIABLES 
echo $$ display PID of current shell

echo $! display PID of the last command you moved to the background

TERMINAL SETTINGS 
stty tostop suspend background jobs that try to write to the terminal

stty -tostop turn off tostop

SHELL OPTIONS: BASH, KORN SHELL  
set -o monitor enable job control

set +o nomonitor turn off monitor

set -o notify notify immediately when background jobs fi nish

set +o nonotify turn off notify

SHELL VARIABLES: TCSH, C-SHELL
set listjobs list all jobs whenever a job is suspended (Tcsh only)

set listjobs long listjobs with a long listing (Tcsh only)

set notify notify immediately when background jobs fi nish

set nonotify turn off notify

FIGURE 26-2: Job control: Tools

Job control is a feature supported by the shell that enables you to run multiple jobs, one in the foreground, 
the rest in the background. You can selectively suspend (pause) jobs, restart them, move them between 
the foreground and background, and display their status. To do so, you use a variety of commands, 
variables, terminal settings, shell variables, and shell options.

33614_26_767_816.indd   77833614_26_767_816.indd   778 1/9/2008   12:40:58 PM1/9/2008   12:40:58 PM



Processes and Job Control

779

 At any time, you can display a list of all your processes by using     the ps (process status) 
command. Similarly, you can display a list of your jobs by using the jobs command. 
We’ll discuss the details later in the chapter.

RUNNING A JOB IN THE BACKGROUND
To run    a job in the background, you type an & character at the end of the command. 
For example, the following command runs the ls program in the background, with the 
output   redirected to a fi le named temp:

ls > temp &

Each time you run a job in the background, the shell displays the job number and the 
process ID. The shell assigns the job numbers itself, starting from 1. For example, if you 
create 4 jobs, they will be assigned job numbers 1, 2, 3 and 4. The kernel assigns the 
process ID, which is, in most cases, a multi-digit number.
 As an example, let’s say you entered the command above. The shell displays the 
following:

[1] 4003

This means that job number #1 has just been started, with a process ID of 4003. If your 
job consists of a pipeline with more than one program, the process ID you see will be that 
of the last program in the pipeline. For example, let’s say you enter:

who | cut -c 1-8 | sort | uniq -c &

The shell displays the following:

[2] 4354

This tells you that you have started job #2 and that the process id of the last program 
uniq) is 4354.
 Since background jobs run by themselves, there is no easy way for you to keep track 
of their  progress. For this reason, the shell sends you a short status message whenever a 
background job fi nishes. For example, when the job in our fi rst example fi nishes, the shell 
will display a message similar to the following:

[1]  Done    ls > temp

This message notifi es you that job #1 has just fi nished.
 If you are waiting for a particular background job to fi nish, such notifi cations are 
important. However, it would be irritating if the shell displayed status messages willy-nilly 
when you were in the middle of doing something else, such as editing a fi le or reading 
a man page. For this reason, when a background job ends, the shell does not notify you 
immediately. Instead, it waits until it is time to display the next shell prompt. This prevents 
the status message from interfering with the output from another program.

Running a Job in the Background

33614_26_767_816.indd   77933614_26_767_816.indd   779 1/9/2008   12:40:58 PM1/9/2008   12:40:58 PM



Chapter 26

780 Harley Hahn’s Guide to Unix and Linux

 If you do not want to wait for such messages, there is a setting you can change to 
force the shell to notify you the instant a background job fi nishes, regardless of what 
else you   might be doing. With the Bourne shell family (Bash, Korn Shell), you set the 
notify option:

set -o notify

To unset this option, use:

set +o notify

With the C-Shell family (Tcsh, C-Shell), you set the notify variable:

set notify

To unset this variable, use:

unset notify

For a discussion of how to use shell options and shell variables, see Chapter 12. If you want 
to make the setting permanent, just place the appropriate command in your environment 
fi le (Chapter 14).

SUSPENDING A JOB: fg
At any     time, every job is in one of three STATES: running in the foreground; running 
in the background; or paused, waiting for a signal to resume execution. To pause a 
foreground job, you  press ^Z (Ctrl-Z). As described in Chapter 7, this sends the susp 
signal, which causes the process to pause. When you pause a process in this way, we say 
that you SUSPEND it or STOP it.
 The terminology can be a bit misleading, so let’s take a moment to discuss it. The 
term “stop” refers to a temporary pause. Indeed, as you will see, a stopped job can be 
restarted. Thus, when you press ^Z it merely pauses the job. If you want to halt a process 
permanently, you must press ^C or use the kill command (both of which are discussed 
later in the chapter).
 When you stop a program, the shell puts it on hold and displays a new shell prompt. 
You can now enter as many commands as you like. When you want to resume working 
with the suspended program, you move it back to the foreground by using the fg 
command. Using ^Z and fg in this way enables you to suspend a program, enter some 
commands, and then return to the original program whenever you want. Here is a typical 
example of how you might make use of this facility.
 You are using the vi text editor to write a shell script. Within the script, you want to use 
the cal command to display a calendar, but you are not sure about the syntax. You suspend 
vi, display the man page for cal, fi nd out what you want, and then return to vi exactly 
where you left off. Here is how you do it. To start, enter the following command to run vi:

vi script

33614_26_767_816.indd   78033614_26_767_816.indd   780 1/9/2008   12:40:58 PM1/9/2008   12:40:58 PM



Processes and Job Control

781

You are now editing a fi le named script. Pretend you have typed several lines of the 
script and you need to fi nd out about the cal program. To suspend vi, press ^Z:

^Z

The shell pauses vi and displays an informative message:

[3]+  Stopped    vi script

In this case, the message tells you that vi, job #3, is now suspended. You are now at the 
shell prompt. Enter the command to display the man page for cal:

man cal

Look around for a bit, and then press q to quit. You will see the shell prompt. You can now 
restart vi by moving it back into the foreground:

fg

You are now back in vi, exactly where you left off. (When you want to quit vi, type :q 
and press <Return>.)

 When you suspend a job, the process is paused indefi nitely. This can create a problem 
if you try to log out,  because you will have suspended jobs waiting around. The rule is, 
when you log out, all suspended jobs are terminated automatically. In most cases, this 
would be a mistake. So if you try to log out and you have suspended jobs, the shell will 
display a warning message. Here are some examples:

There are suspended jobs.
You have stopped jobs.

If you try to logout and you see such a message, use fg to move the suspended job into 
the foreground and quit the program properly. If you have more than one suspended 
job, you must repeat the procedure for each one. This will prevent you from losing 
data accidentally.
 On occasion, you may be completely sure that you want to log out even though you 
have one or more suspended jobs. If so, all you have to do is try to log out a second time. 
Since the shell has already warned you once, it will assume you know what you are doing, 
and you will be allowed to log out without a warning. Remember, though, that logging 
out in this way will terminate all your suspended jobs; they will not be waiting for you 
the next time you log in.

HINT

 If you are working and, all of a sudden, your program stops and you see a message like 
“Stopped” or “Suspended”, it means you have accidentally pressed ^Z.
 When this happens, all you have to do is enter fg, and your program will come back to life.

Suspending a Job: fg

33614_26_767_816.indd   78133614_26_767_816.indd   781 1/9/2008   12:40:58 PM1/9/2008   12:40:58 PM



Chapter 26

782 Harley Hahn’s Guide to Unix and Linux

SUSPENDING A SHELL: suspend
Pressing ^Z will suspend     whichever job is running in the foreground. However, there is 
one process it will not suspend: your current shell. If you want to pause your shell, you’ll 
need to use the suspend command. The syntax is:

suspend [-f]

Why would you want to suspend a shell? Here is an example. As we discussed in 
Chapter 4, when you have your own Unix or Linux system, you must do your own 
system administration. Let’s say you are logged in under your own userid, and you need 
to do something that requires being superuser, so you use su (Chapter 6) to start a new 
shell in which you are root. After you have been working for a while, you realize that 
you need to do something quick under your own userid. It would be bothersome to 
stop the superuser shell and have to restart it later, because you would lose track of your 
working directory, any variable changes, and so on. Instead, you can enter:

suspend

This pauses the current shell — the one in which you are superuser — and returns you 
to the previous shell in which you were logged in under your regular userid. When you 
are ready to go back to being superuser to fi nish your admin work, you can use the fg 
command to move your   superuser shell back to the foreground:

fg

Here is another example. Let’s say you use Bash as your default shell, but you want to 
experiment with the Tcsh. You enter the following command to start a new shell:

tcsh

At any time, you can use suspend to pause the Tcsh and return to Bash. Later, you can 
use fg to resume your work with the Tcsh.

HINT FOR TCSH USERS

When you suspend a job with the   Tcsh, the shell displays only a short message “Suspended” 
with no other information. However, if you set the listjobs variable, the Tcsh will display a 
list of all your jobs whenever any job is suspended. The command to use is:

set listjobs

If you give listjobs a value of long, the Tcsh will display a “long” listing that also shows 
each job’s process ID:

set listjobs=long

My suggestion is to put this command in your environment fi le (see Chapter 14) to make the 
setting permanent.

33614_26_767_816.indd   78233614_26_767_816.indd   782 1/9/2008   12:40:58 PM1/9/2008   12:40:58 PM



Processes and Job Control

783

 The only restriction on suspending shells is that, by default, you are not allowed    to 
suspend your login shell. This prevents you from putting yourself in limbo by stopping 
your main shell. In certain circumstances, however, you may actually want to pause a 
login shell. For example, when you start a superuser shell by using su - instead of su, it 
creates a login shell (see Chapter 6). If you want to suspend the new shell, you must use 
the -f (force) option:

suspend -f

This tells suspend to pause the current shell, regardless of whether or not it happens 
to be a login shell.

JOB CONTROL VS. MULTIPLE WINDOWS
In Chapter 6,    we  discussed a variety of ways in which you can run more than one program at 
a time when you are using Unix or Linux on your own computer. First, you can use multiple 
virtual consoles, each of which supports a completely separate work session. Second, within 
the GUI, you can open as many terminal windows as you want, each of which has its own CLI 
(command line interface) with its own shell. Finally, some terminal window programs allow 
you to have multiple tabs within the same window, with each tab having its own shell.
 With so much fl exibility, why do you need to be able to suspend processes and run 
programs in the background? Why not just run every program in its own window and do 
without job control? There are several important answers to this question.
 First, your work will be a lot slower if you need to switch to a different virtual console, 
window, or tab every time you begin a new task. In many cases, it is a lot less cumbersome 
to simply pause what you are doing, enter a few commands, and then return to your 
original task.
 Second, when you use multiple windows, you have a lot more visual elements on 
your screen, which can slow you down. Moreover, windows need to be managed: moved, 
resized, iconized, maximized, and so on. Using job control makes your life a lot simpler 
by reducing the mental and visual clutter.
 Third, it often happens that the commands you use within a short period of time are 
related to a specifi c task or problem. In such cases, it is handy to be able to recall previous 
commands from your history list (see Chapter 13). When you use separate windows, the 
history list in one window is not accessible from another window.
 Finally, there will be times when you will use a terminal emulator to access a remote 
host (see Chapter 3), especially if you are a system administrator. In such cases, you 
will have only a single CLI connected to the remote host. You will not have a GUI with 
multiple windows or several virtual consoles. If you are not skillful at using job control, 
you will only be able to run one program at a time, which will be frustrating.
 As a general rule, when you need to switch between completely unrelated tasks — 
especially tasks that require a full screen — it makes sense to use multiple windows or 
separate virtual consoles. In most other cases, however, you will fi nd that job control 
works better and faster.

Job Control vs. Multiple Windows

33614_26_767_816.indd   78333614_26_767_816.indd   783 1/9/2008   12:40:59 PM1/9/2008   12:40:59 PM



Chapter 26

784 Harley Hahn’s Guide to Unix and Linux

DISPLAYING A LIST OF YOUR JOBS: jobs
At any time, you      can display a list of all your jobs by using the jobs command. The 
syntax is:

jobs [-l]

In most cases, all you need to do is enter the command name by itself:

jobs

Here is some sample output in which you can see three suspended jobs (#1, #3, #4) and 
one job running in the background (#2):

[1]   Stopped    vim document
[2]   Running    make game >makeoutput 2>makeerrors &
[3]-  Stopped    less /etc/passwd
[4]+  Stopped    man cal

If you would like to see the process ID as well as the job number and command name, use 
the -l (long listing) option:

jobs -l

For example:

[1]   2288 Stopped    vim document
[2]   2290 Running    make game >makeoutput 2>makeerrors &
[3]-  2291 Stopped    less /etc/passwd
[4]+  2319 Stopped    man cal

Notice that in both listings, one of the jobs is fl agged with a       + (plus sign) character. This 
is called the “current job”. Another job is fl agged with a - (minus sign) character. This is 
the “previous job”.
 These designations are used by the various commands that manipulate jobs. If you 
don’t specify a job number, such commands will, by default, act upon the current job. (You 
will see this when we discuss the fg and bg commands.) In most cases, the CURRENT 
JOB is the one that was most recently suspended. The PREVIOUS JOB is the next one in 
line. In our example, the current job is #4 and the previous job is #3.
 If there are no suspended jobs, the current job will be the one that was most recently 
moved to the background. For example, let’s say you enter the jobs command and you 
see the following:

[2]   Running    make game >makeoutput 2>makeerrors &
[6]-  Running    calculate data1 data2 &
[7]+  Running    gcc program.c &

In this case, there are no suspended jobs. However, there are three jobs running in the 
background. The current job is #7. The previous job is #6.

33614_26_767_816.indd   78433614_26_767_816.indd   784 1/9/2008   12:40:59 PM1/9/2008   12:40:59 PM



Processes and Job Control

785

MOVING A JOB TO THE FOREGROUND: fg
To move      a job to the foreground you use the fg command. There are three variations of 
the syntax:

fg
fg %[job]
%[job]

where job identifi es a particular job.
 Although the syntax looks confusing, it’s actually quite simple, as you will see. The 
simplest form of the command is to enter fg by itself:

fg

This tells the shell to restart the current job, the one that is fl agged with a + character 
when you use the jobs command. For example, let’s say you use the jobs command 
and the output is:

[1]   2288 Stopped    vim document
[2]   2290 Running    make game >makeoutput 2>makeerrors &
[3]-  2291 Stopped    less /etc/passwd
[4]+  2319 Stopped    man cal

The current job is #4, which is suspended. If you enter the fg command by itself, it 
restarts job #4 by moving it to the foreground.
 Let’s say that, in another situation, you enter the jobs command again and the 
output is:

[2]   Running    make game >makeoutput 2>makeerrors &
[6]-  Running    calculate data1 data2 &
[7]+  Running    gcc program.c &

In this case, the current job is #7, which is running in the background. If you enter fg 
by itself, it will move job #7 from the background to the foreground. This allows you to 
interact with the program.
 To move a job that is not the current job, you must identify it explicitly. There are 
several ways to do so, which are summarized in Figure 26-3.
 Most of the time, the easiest way to specify a job is to use a   % (percent) character, 
followed by a job number. For example, to move job number 1 into the foreground, you 
would use:

fg %1

You can also specify a job by referring to the name of the command. For example, if you 
want to restart the job that was running the command make game, you can use:

fg %make

Moving a Job to the Foreground:  fg

33614_26_767_816.indd   78533614_26_767_816.indd   785 1/9/2008   12:40:59 PM1/9/2008   12:40:59 PM



Chapter 26

786 Harley Hahn’s Guide to Unix and Linux

Actually, you only need to specify enough of the command to distinguish it from all the 
other jobs. If there are no other commands that begin with the letter “m”, you could use:

fg %m

An alternative is to use %? followed by part of the command. For example, another way 
to move the make game command to the foreground is to use:

fg %?game

As I mentioned, if you use the fg command without specifying a particular job, fg 
will move the current job into the foreground. (This is the job that is marked with a + 
character when you use the jobs command.) Alternatively, you can use either % or %+ to 
refer to the current job. Thus, the following three commands are equivalent:

fg
fg %
fg %+

Similarly, you can use %- to refer to the previous job:

fg %-

This is the job that is marked with a - (minus sign) when you use the jobs command.
 As a convenience, some shells (Bash, Tcsh, C-Shell) will assume that you are using the 
fg command if you simply enter a job specifi cation that begins with a % character. For 
example, let’s say that job number 2 is the command vim document and that no other 
jobs use similar names. All of the following commands will have the same effect:

JOB NUMBER MEANING   
%% current job

%+ current job

%- previous job

%n job #n

%name job with specifi ed command name

%?name job with name anywhere within the command

FIGURE 26-3: Job control: Specifying a job

To use a job control command, you must specify one or more jobs. You can refer to the jobs in several 
different ways: as the current job, as the previous job, using a particular job number, or using all or part 
of the command name.

HINT

To switch back and forth   between two jobs quickly, use:

fg %-

Once you get used to this command, you will use it a lot.

33614_26_767_816.indd   78633614_26_767_816.indd   786 1/9/2008   12:40:59 PM1/9/2008   12:40:59 PM



Processes and Job Control

787

%2
fg %2
fg %vim
fg %?docu

In each case, the shell will move job number 2 into the foreground.
 With some shells, there is one fi nal abbreviation that you can use: a command 
consisting of nothing but the single character % will tell the shell to move the current job 
to the foreground. Thus the following four commands are equivalent:

%
fg
fg %
fg %+

Have you noticed something interesting? If you type a job specifi cation all by itself, the 
shell will assume you want to use the fg command. Thus, fg is the only command 
in which the command name itself is optional. Remember this interesting bit of trivia; 
someday it will help you win friends and infl uence people.

MOVING A JOB TO THE BACKGROUND: bg
To move      a job to the background, you use the bg command. The syntax is:

bg [%job...]

where job identifi es a particular job.
 To specify a job, you follow the same rules as with the fg command. In particular, 
you can use the variations in Figure 26-3. For instance, to move job number 2 into the 
background, you would use:

bg %2

If you’d like, you can move more than one job to the background at the same time, 
for example:

bg %2 %5 %6

To move the current job into the background, use the command name by itself, without 
a job specifi cation:

bg

HINT

 Although our examples showed several jobs suspended at the same time, you will usually 
pause only a single job, do something else, and then return to what you were doing.
 In such cases, job control is very simple. To suspend a job, you press ^Z. To restart the job, 
you enter either fg or (if your shell supports it) %.

Moving a Job to the Background: bg

33614_26_767_816.indd   78733614_26_767_816.indd   787 1/9/2008   12:40:59 PM1/9/2008   12:40:59 PM



Chapter 26

788 Harley Hahn’s Guide to Unix and Linux

As you might imagine, you will use the fg command more often than the bg command. 
But there is one important situation when bg comes in handy. Say that you enter a 
command that seems to be taking a long time. If the program is not interactive, you can 
suspend it and move it to the background. For example, let’s say that you want to use 
make to build a program named game, so you enter the command:

make game > makeoutput 2> makeerrors

After waiting awhile, you realize this could take a long time. Since make does not need 
anything from you, there is no point in tying up your terminal. Simply press ̂ Z to suspend 
the job; then enter bg to move the job to the background. Your terminal is now free.

LEARNING TO USE THE ps PROGRAM
To display    information about processes, you use the ps (process status) program. The ps 
program is a useful tool that can help you fi nd a particular PID (process ID), check on 
what your processes are doing, and give you an overview of everything that is happening 
on the system. Unfortunately, ps has so many confusing and obtuse options that the mere 
reading of the man page is likely to cause permanent damage to your orbitofrontal cortex.
 There are several reasons for this situation. First, as we discussed in Chapter 2, in the 
1980s there were two principal branches of Unix: the offi cial UNIX (from AT&T) and 
unoffi cial BSD (from U.C. Berkeley). UNIX and BSD each had their own version of ps, 
and each version had its own options. Over time, both types of ps became well-known 
and widely used.
 As a result, many modern versions of ps support both types of options, which we 
refer to as the UNIX OPTIONS    and the BSD OPTIONS. This is the case with Linux, for 
example. Thus, with the Linux version of ps, you can use either the UNIX or BSD options, 
whichever you prefer. From time to time, however, you will encounter versions of ps that 
support only the UNIX options or only the BSD options. Since you never know when you 
will be called upon to use such a system, you must be familiar with both types of options.
 Second, ps is a powerful tool that is used by system administrators and advanced 
programmers for various types of analysis. As such, there are a lot of technical options 
that are not really necessary for everyday use. Still, they are available and, when you read 
the man page, the descriptions can be confusing.
 Third, if you have a system that uses the GNU utilities — such as Linux (see Chapter 2) 
— you will fi nd that ps supports, not only the UNIX options and BSD options, but an extra 
set of GNU-only options. Most of the time, however, you can ignore these options.

HINT

The bg command is useful when you intend to run a program in the background but forget 
to type the & character when you entered the command. As a result, the job starts running in 
the foreground.
 Just suspend the job by pressing ^Z, and then use the bg command to move the job into 
the background.

33614_26_767_816.indd   78833614_26_767_816.indd   788 1/9/2008   12:40:59 PM1/9/2008   12:40:59 PM



Processes and Job Control

789

 Finally, to add to the confusion, you will sometimes see the UNIX options referred to 
as POSIX OPTIONS or STANDARD OPTIONS. This is because they are used as   the basis 
for the POSIX version of ps. (POSIX is a large-scale project, started in the 1990s, with the 
aim of standardizing Unix; see Chapter 11).
 By now, it should be clear that, in order to make sense out of all this, we will need a 
plan, so here it is.
 Although ps has many, many options, very few of them are necessary for everyday 
work. My plan is to teach you the minimum you need to know to use both the UNIX 
options and the BSD options. We will ignore all of the esoteric options, including the 
GNU-only ones. Should you ever need any of the other options, you can, of course, 
simply check with the ps man page on your system (man ps) to see what is available.

THE ps PROGRAM: BASIC SKILLS
To display       information about processes, you use the ps (process status) program. As we 
just discussed, ps has a great many options that can be divided into three groups: UNIX, 
BSD and GNU-only. I will teach you how to use the most important UNIX and BSD 
options, which is all you will normally need.
 When it comes to ps options, there is an interesting tradition. The UNIX options 
are preceded by a dash in the regular manner, but the BSD options do not have a dash. 
Remember this when you are reading the man page: if an option has a dash, it is a UNIX 
option; if not, it is a BSD option. I will maintain this tradition within our discussion.
 If your version of ps supports both the UNIX and BSD options, you can use whichever 
ones you prefer. In fact, experienced users will sometimes use one set of options and 
sometimes use the other, whatever happens to be best for the problem at hand. However, 
let me give you a warning. Don’t mix the two types of options in the same command: it 
can cause subtle problems.
 To start, here is the basic syntax to use ps with UNIX options:

ps [-aefFly] [-p pid] [-u userid]

And here is the syntax to use with BSD options:

ps [ajluvx] [p pid] [U userid]

In both cases, pid is a process ID, and userid is a userid.
 Rather than go through each option separately, I have summarized everything you 
need to know in several tables. Figure 26-4 contains the information you need to use ps 
with UNIX options. Figure 26-5 shows what you need for BSD options. Take a moment 
to look through both these fi gures. At fi rst, it may look a bit confusing, but after you get 
used to it, everything will make sense.
 Let’s say that all you want to see is basic information about all the processes running 
under your userid from your terminal. In this case, you need only enter the command 
name by itself:

ps

The ps Program: Basic Skills

33614_26_767_816.indd   78933614_26_767_816.indd   789 1/9/2008   12:40:59 PM1/9/2008   12:40:59 PM



Chapter 26

790 Harley Hahn’s Guide to Unix and Linux

Here is some typical output using the UNIX version of ps:

  PID  TTY       TIME  CMD
 2262  tty1  00:00:00  bash
11728  tty1  00:00:00  ps

Here is the same output using the BSD version of ps:

  PID  TT  STAT     TIME  COMMAND
50384  p1  Ss    0:00.02  -sh (sh)
72883  p1  R+    0:00.00  ps

In general, ps displays a table in which each row contains information about one process. 
In the UNIX example above, we see information about two processes, #2262 and #11728. 
In the BSD example, we see information about processes #50384 and #72883.
 Each column of the table contains a specifi c type of information. There are a variety 
of different columns you will see depending on which options you use. As a reference, 
Figure 26-6 shows the most common column headings. Let’s use the information in this 
fi gure to decode the information in our examples.

Which processes are displayed?
ps processes associated with your userid and your terminal

ps -a processes associated with any userid and a terminal

ps -e all processes (includes daemons)

ps -p pid process with process ID pid

ps -u userid processes associated with specifi ed userid

Which data columns are displayed?
ps PID TTY TIME CMD

ps -f UID PID PPID C TTY TIME CMD

ps -F UID PID PPID C SZ RSS STIME TTY TIME CMD

ps -l F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD

ps -ly S UID PID PPID C PRI NI RSS SZ WCHAN TTY TIME CMD

Particularly Useful Combinations
ps display your own processes

ps -ef display all user processes, full output

ps -a display all non-daemon processes

ps -t - display all daemons (only)

FIGURE 26-4: The ps program: UNIX options

The ps (process status) program displays information about the processes that are running on your 
system. There are two sets of options you can use: UNIX options and BSD options. Here is a summary 
of the most important UNIX options.

33614_26_767_816.indd   79033614_26_767_816.indd   790 1/9/2008   12:40:59 PM1/9/2008   12:40:59 PM



Processes and Job Control

791

 Starting with the UNIX example, we see there are four columns labeled PID, TTY, 
TIME and CMD. Looking up these names in Figure 26-6, we see the following:

PID: process ID
TTY: name of controlling terminal
TIME: cumulative CPU time
CMD: name of command being executed

Thus, we can see that process #2262 is controlled by terminal tty1, has taken virtually no 
CPU time, and is running Bash. The information for process #11728 is pretty much the 
same. The only difference is that this process is running the ps command. What you see 
in this example is the minimum you see, because there are always at least two processes: 
your shell and the ps program itself. The ps process does not live long, however. In fact, 
it dies as soon as its output is displayed.
 Now let us analyze the BSD example the same way. Looking at the output, we see fi ve 
columns labeled PID, TT, STAT, TIME and COMMAND. Checking with Figure 26-6, we 
see the following:

PID: process ID
TT: name of controlling terminal

Which processes are displayed?
ps processes associated with your userid and your terminal

ps a processes associated with any userid and a terminal

ps ax all processes (includes daemons)

ps p pid process with process ID pid 

ps U userid processes associated with userid

Which data columns are displayed?
ps PID TT STAT TIME COMMAND

ps j USER PID PPID PGID SESS JOBC STAT TT TIME COMMAND

ps l UID PID PPID CPU PRI NI VSZ RSS WCHAN STAT TT TIME COMMAND

ps u USER PID %CPU %MEM VSZ RSS TT STAT STARTED TIME COMMAND

ps v PID STAT TIME SL RE PAGEIN VSZ RSS LIM TSIZ %CPU %MEM COMMAND

Particularly Useful Combinations
ps display your own processes

ps ax display all processes

ps aux display all processes, full output

FIGURE 26-5: The ps program: BSD options

The ps (process status) program displays information about the processes that are running on your 
system. There are two sets of options you can use: UNIX options and BSD options. Here is a summary 
of the most important BSD options.

The ps Program: Basic Skills

33614_26_767_816.indd   79133614_26_767_816.indd   791 1/9/2008   12:40:59 PM1/9/2008   12:40:59 PM



Chapter 26

792 Harley Hahn’s Guide to Unix and Linux

STAT: state code (O,R,S,T,Z)
TIME: cumulative CPU time
COMMAND: full command being executed

In general, the output of the BSD version of ps is straightforward, except for the STAT 
column, which we will get to in a moment.
 Before we leave this section, I want to show you a small but interesting variation: when 
you use BSD options, ps displays abbreviated terminal names. Take a moment to look 
carefully at the TT column in the example above. Notice that you see only two characters, 
in this case p1. The full name of this terminal is actually ttyp1. (Terminal names are 
discussed in Chapter 23.)

UNIX 
HEADINGS MEANING
ADDR virtual address within process table   

C processor utilization (obsolete)     

CMD name of command being executed      

F fl ags associated with the process            

NI nice number, for setting priority     

PID process ID                

PPID parent’s process ID            

PRI priority (higher number = lower priority) 

RSS resident set size (memory management)   

S state code (D,R,S,T,Z)          

STIME cumulative system time          

SZ size in physical pages (memory management)

TIME cumulative CPU time            

TTY full name of controlling terminal 

UID userid                  

WCHAN wait channel

BSD 
HEADINGS MEANING
%CPU percentage of CPU (processor) usage

%MEM percentage of real memory usage

CMD name of command being executed

COMMAND full command being executed

CPU short-term CPU usage (scheduling)

JOBC job control count

LIM memory-use limit

NI nice number, for setting priority

PAGEIN total page faults (memory 
management)

PGID process group number

PID process ID

PPID parent’s process ID

PRI scheduling priority

RE memory residency time in seconds

RSS resident set size (memory 
management)

SESS session pointer

SL sleep time in seconds

STARTED time started

STAT state code (O,R,S,T,Z)

TIME cumulative CPU time

TSIZ text size in kilobytes

TT abbreviated name of controlling 
terminal

TTY full name of controlling terminal 

UID userid

USER user name 

VSZ virtual size in kilobytes

WCHAN wait channel

FIGURE 26-6: The ps program:    Column headings

The ps (process status) program displays information 
about processes. The information is organized into 
columns, each of which has a heading. Because the 
headings are abbreviations, they can be a bit cryptic.

For reference, here are the column headings you are 
likely to encounter using the basic options described in 
Figures 26-4 and 26-5. 

Most of the time, you will probably ignore the more 
esoteric columns. Still, I have explained them all in 
case you are curious. As you can see, the headings used 
by the UNIX options differ from those used by the 
BSD options. For the meaning of the state codes, see 
Figure 26-7.

33614_26_767_816.indd   79233614_26_767_816.indd   792 1/9/2008   12:40:59 PM1/9/2008   12:40:59 PM



Processes and Job Control

793

THE ps PROGRAM: CHOOSING OPTIONS
The best     approach to using ps is to start by asking two questions: Which processes am 
I interested in? What information do I want to see about each process? Once you decide 
what you need, all you need to do is use Figure 26-4 (for UNIX) or Figure 26-5 (for BSD) 
to choose the appropriate options.
 For example, let’s say you want to see the process ID of every process running on the 
system, as well as the process ID of all the parents. Let’s do UNIX fi rst. To start, we ask 
ourselves, which option will display all the processes on the system? From Figure 26-4, we 
see that this is the -e (everything) option.
 Next, we must fi nd the option that will display the process ID for each process and its 
parent. Checking with Figure 26-6, we see that the column headings we want are PID and 
PPID. Going back to Figure 26-4, we look for options that will show these two headings. 
All four choices will do the job, so let’s use -f (full output) because it displays the least 
amount of output.
 Putting it all together, we have fi gured out how to display the process ID for every 
process in the system as well as all the parents:

ps -ef

Most likely, this command will generate a lot of lines, so it is a good idea to pipe the 
output to less (Chapter 21) to display one screenful at a time:

ps -ef | less

Now let’s do the same analysis for the BSD version of ps. To start, we look at Figure 26-5 
to see which option will display all the processes in the system. The answer is ax. Next, we 
look for the options that will display the parent’s process ID. We have two choices, j and 
l. Let’s choose j because it generates less output. Thus, the BSD version of the command 
we want is:

ps ajx | less

As an exercise, let’s see what it takes to trace the parentage of one of our processes as far back 
as possible . To start, we will use a UNIX version of ps to display our current processes:

ps

The output is:

HINT

It is interesting to draw an     analogy between ls and ps. Both of these programs examine specifi c 
data structures to fi nd and display information for you.
 The ls program (Chapter 25) examines the inode table, which is indexed by inumber, to 
display information about fi les. The ps program examines the process table, which is indexed 
by process ID, to display information about processes.

The ps Program: Choosing Options

33614_26_767_816.indd   79333614_26_767_816.indd   793 1/9/2008   12:41:00 PM1/9/2008   12:41:00 PM



Chapter 26

794 Harley Hahn’s Guide to Unix and Linux

  PID TTY         TIME CMD
12175 tty2    00:00:00 bash
12218 tty2    00:00:00 ps

Our goal is to trace the parentage of the shell, process #12175. To start, we ask the question, 
what option will display information about one specifi c process? Looking at Figure 26-4, 
we see that we can use -p followed by a process ID. Next we ask, which option will display 
the parent’s process ID? The answer is -f. Thus, to start our search, we use the command:

ps -f -p 12175

The output is:

UID       PID  PPID  C  STIME  TTY      TIME  CMD
harley  12175  1879  0  14:14  tty1 00:00:00  -bash

From this we can see that the parent of process #12175 is process #1879. Let us repeat the 
same command with the new process ID:

ps -f -p 1879

The output is:

UID      PID  PPID  C  STIME  TTY     TIME  CMD
root    1879     1  0  09:36  ?   00:00:00  login -- harley

Notice that the parent of process #1879 is process #1. This is the init process we discussed 
earlier in the chapter.
 Before we move on, there are two interesting points I wish to draw to your attention. 
First, notice the ? character in the TTY column. This indicates that the process does not 
have a controlling terminal. We call such processes “daemons”, and we will talk about 
them later in the chapter. Second, we see that process #1879 is running the login 
program under the auspices of userid root. This is because login is the program that 
enables users to log in to the system. You may remember that, in Chapter 4, we used the 
same program to log out and leave the terminal ready for a new user.
 To fi nish our search for the ultimate parent, let us display information about process #1:

ps -f -p 1

The output is:

UID      PID  PPID  C  STIME  TTY     TIME  CMD
root       1     0  0  09:34  ?   00:00:01  init [5]

We have reached the end of our genealogical journey. As we discussed earlier in the 
chapter, the parent of process #1 (the init process) is process #0 (the idle process). Notice, 
by the way, that process #1 ran the init command to boot the system into runlevel 5 
(multiuser mode with a GUI). We discuss runlevels in Chapter 6.

33614_26_767_816.indd   79433614_26_767_816.indd   794 1/9/2008   12:41:00 PM1/9/2008   12:41:00 PM



Processes and Job Control

795

THE ps PROGRAM: STATES
Let us now conclude      our discussion of the ps command by talking about states. As we 
discussed earlier in the chapter, processes are generally in one of three states: running in 
the foreground; running in the background; or suspended, waiting for a signal to resume 
execution. There are also other less common variations, such as the zombie state, when a 
process has died but its parent is not waiting for it.
 To look at the state of a process, you use ps to display the S column (with UNIX 
options) or the STAT column (with BSD options). Let’s start with the UNIX version. 
Checking with Figure 26-4, we see that the UNIX options that display the S column are 
-l and -ly. We’ll use -ly because it displays less output. Thus, to display a list of all 
your processes including their state, you would use:

ps -ly

Here is some typical output from a Linux system:

S UID  PID PPID C PRI NI RSS  SZ WCHAN  TTY      TIME CMD
S 500 8175 1879 0  75  0 464 112 wait   tty1 00:00:00 bash
T 500 8885 8175 0  75  0 996 366 finish tty1 00:00:00 vim
R 500 9067 8175 2  78  0 996 077 -      tty1 00:00:02 find
R 500 9069 8175 0  78  0 800 034 -      tty1 00:00:00 ps

The state is described by the one-letter code in the S column. The meanings of the codes 
are explained in Figure 26-7. In this case, we can see that the fi rst process in the list, 
process #8175 (the shell), has a state code of S. This means it is waiting for something to 
fi nish. (In particular, it is waiting for the child process #90682, the ps program itself.)
 The second process, #8885, has a state code of T, which means it is suspended. In this 
case, the vim editor was running in the foreground, when it was suspended by pressing 
^Z. (This procedure is described earlier in the chapter.)
 The third process, #9067, has a state code of R. This means it is running. In fact, it is a 
find command (Chapter 25) that is running in the background.
 Finally, the last process is the ps program itself. It also has a state code of R, because it 
too is running — in this case, in the foreground. It is this process that has displayed the 
output you are reading. In fact, by the time you see the output, the process has already 
terminated, and the shell process (#8175) has regained control.
 Before we leave this example, I would like to point out something interesting. By 
looking at the PIDs and PPIDs, you can see that the shell is the parent of all the other 
processes. (This should make sense to you.)
 Now let’s discuss how to check states with BSD options. To start, take a look at 
Figure 26-6. The heading we want to display is STAT. Now look at Figure 26-5. Notice 
that all the variations of ps display the STAT column, including ps by itself with no 
options. If you are using a pure BSD system, all you need to use is:

ps

The ps Program: States

33614_26_767_816.indd   79533614_26_767_816.indd   795 1/9/2008   12:41:00 PM1/9/2008   12:41:00 PM



Chapter 26

796 Harley Hahn’s Guide to Unix and Linux

If you are using a mixed system (as is the case with Linux), you will have to force BSD 
output by using one of the BSD options. My suggestion is to choose j because it generates 
the least amount of output:

ps j

Here is some typical output, using the plain ps command on a FreeBSD system. (With 
the j option, the output would be similar but with more columns.)

  PID  TT  STAT  TIME      COMMAND
52496  p0  Ss    0:00.02   -sh (sh)
52563  p0  T     0:00.02   vi test
54123  p0  Z     0:00.00   (sh)
52717  p0  D     0:00.12   find / -name harley -print
52725  p0  R+    0:00.00   ps

The fi rst process, #52496, is the shell.* Notice that the STAT column has more than one 
character. The fi rst character is the state code. The second character gives esoteric technical 
information we can safely ignore. (If you are interested, see the man page.) In this case, 

LINUX, FREEBSD
D Uninterruptible sleep: waiting for an event to complete (usually I/O; D=“disk”)

I Idle: sleeping for longer than 20 seconds (FreeBSD only)

R Running or runnable (runnable = waiting in the run queue)

S Interruptible sleep: waiting for an event to complete

T Suspended: either by a job control signal or because it is being traced

Z Zombie: terminated, parent not waiting

SOLARIS
O Running: currently executing (O=“onproc”) 

R Runnable: waiting in the run queue

S Sleeping: waiting for an event to complete (usually I/O)

T Suspended: either by a job control signal or because it is being traced

Z Zombie: terminated, parent not waiting

FIGURE 26-7: The ps program: Process state codes

With certain options, the ps command displays a column of data indicating the state of each process. 
With the UNIX options, the column is labeled S, and contains a single-character code. With the BSD 
options, the column is labeled STAT and contains a similar code, sometimes followed by 1-3 other, 
less important characters. Here are the meanings of the codes, which vary slightly from one system to 
another.

 *As you will remember from Chapter 11, the name of the old Bourne shell was sh. You might be wondering, is this a Bourne 
shell? The answer is no; the Bourne shell has not been used for years. It happens that the FreeBSD shell is also named sh.

33614_26_767_816.indd   79633614_26_767_816.indd   796 1/9/2008   12:41:00 PM1/9/2008   12:41:00 PM



Processes and Job Control

797

the state code is S. Looking this up in Figure 26-7, we see that the process is waiting for 
something to fi nish. Specifi cally, it is waiting for a child process, #52725, the ps program.
 The second process, #52563, has a state code of T, meaning it is suspended. In this case, 
vi was suspended by pressing ^Z.
 The third process, #54123, is an old shell with a state code of Z, which means it is a 
zombie. This is an unusual fi nding. Somehow, the process managed to die while its parent 
was not waiting for it. (See the discussion on zombies earlier in the chapter.)
 The fourth process, #52717, is a find program running in the background. It has 
a state code of D, indicating that it is waiting for an I/O event to complete (in this case, 
reading from the disk). This makes sense, as find does a lot of I/O. You must remember, 
however that whenever you use ps, you are looking at an instantaneous snapshot. As 
it happened, we caught find when it was waiting for I/O. We might just as easily have 
found it running, in which case the state code would have been R.
 Finally, the last process, #52725, is the ps program itself. It has a state code of R, 
because it is running in the foreground.
 Before we leave this example, let me draw your attention to an interesting point. If 
you look at the rightmost column, COMMAND, you will see that it displays the entire 
command being executed. This column is only available with the BSD options. With the 
UNIX options, all you will ever see is the CMD column, which only shows the name, not 
the full command.*

 *  With Solaris, the CMD column does show the full command.
 **You need to be even more careful if your girlfriend is the system administrator.

HINT

If you are using a system like Linux that supports both the UNIX and BSD options, you can 
pick the options that best serve your needs. For example, let’s say you want to display a list of 
processes along with the full command (COMMAND), not the command name (CMD). If you 
have access to BSD options, you can use:

ps j

There is no easy way to do this using only UNIX options. (Yay for BSD!)

HINT FOR PARANOIDS

On a multiuser system, you can amuse yourself by using ps to snoop on what other people are 
doing. In particular, when you use BSD options, you can look in the COMMAND column and see 
the full commands that other users have entered. (If your system doesn’t support BSD options, 
you can do the same thing with the w program; see Chapter 8.)
 At fi rst this will seem like harmless fun, until you realize that everyone else on the system can 
see what you are doing as well.
 So be careful. If you are a guy, what do you think the system administrator or your girlfriend** 
would think if they were to snoop on you and see that, for the last hour, you have been working 
with the command vi pornography-list?

The ps Program: States

33614_26_767_816.indd   79733614_26_767_816.indd   797 1/9/2008   12:41:00 PM1/9/2008   12:41:00 PM



Chapter 26

798 Harley Hahn’s Guide to Unix and Linux

MONITORING SYSTEM PROCESSES: top, prstat
To look at        your own processes, you can use the ps command. However, what if you want to 
examine the system as a whole? To be sure, ps has options that will display a large variety of 
information about all the processes on the system. However, ps has a major limitation: it 
shows you a static snapshot of the processes, how they looked at a particular instant in time. 
Because processes are dynamic, this limitation becomes important when you need to watch 
how the various processes are changing from moment to moment. In such cases, you can 
use the top program to display overall system statistics updated every few seconds, as well 
as information about the most important processes as they change in real time.
 The name of the program comes from the fact that it shows you the “top” processes, 
that is, the ones that are using the most CPU time. The syntax for using top is a bit 
complicated and can vary slightly from one system to another. Here is the basic syntax 
that you would use with Linux. With other systems, the options will vary, so you will have 
to check your online manual.

top [-d delay] [-n count] [-p pid[,pid]...]

where delay is the refresh interval in seconds; count is the total number of times to 
refresh; and pid is a process ID.
 The top program is available with most Linux and BSD systems. If your system does 
not have top, there will usually be an equivalent program. For example, with Solaris, 
you can use prstat instead. Because the options can vary depending on your version 
of top, it is worth a moment of your time to check with the man page on your system.
 To watch how top works, enter the command by itself:

top

To quit the program at any time, press q or ^C.
 Like less and vi, top works in raw mode (see Chapter 21). This allows it to take 
over the command line and screen completely, displaying lines and changing characters 
as necessary. As an example, take a look at Figure 26-8, where you see an abbreviated 
example of some typical output.
 The output can be divided into two parts. The top fi ve lines show information about 
the system as a whole. In our example, the top line shows the time (9:10 AM), how long 
the system has been running (14 hours and 50 minutes), and the number of users (7). 
There is also a wealth of other, more technical information showing statistics about 
processes, CPU time, real memory (memory), and virtual memory (swap space).
 Below the system information, you see data describing the various processes, one 
process per line, listed in order of CPU usage. In our example, the system is quiet. In fact, 
top itself is the top process.
 The top program is powerful because it automatically refreshes the statistics at regular 
intervals. The default interval varies depending on your version of top. For example, on 
one of my Linux systems, the default is 3 seconds; on my FreeBSD system, it is 2 seconds; 
on my Solaris system (using prstat), it is 5 seconds. To change the refresh rate, use the 
-d (delay)  option. For example, to tell top to refresh itself every second, you would use:

33614_26_767_816.indd   79833614_26_767_816.indd   798 1/9/2008   12:41:00 PM1/9/2008   12:41:00 PM



Processes and Job Control

799

top -d 1

Some versions of top allow you to enter even shorter intervals. If your system supports 
it, try running with a very fast refresh rate, such as:

top -d 0.1

On a busy system, this makes for a fascinating display.*
 Because top works in raw mode, you can type various commands as the program 
runs. The most important command is q, which quits the program. The next most 
important command is h (help) or ?, which displays a summary of all the commands. 
A third command — not always documented — is the <Space> key. This forces top to 
refresh the display at that moment. Pressing <Space> is useful when you have chosen a 
slow refresh rate, and you need an instant update. I won’t go over all the commands here, 
as they are very technical. However, when you have a moment, press h and see what is 
available with your version of top.
 For extra control, there are two other options you can use. By default, top refreshes 
indefi nitely. The -n option let’s you tell top to refresh only a certain number of times. 
For example, to refresh the display 6 times, once every 10 seconds, you would use:

top -d 10 -n 6

In this case, the program will run for only 60 seconds.

 *Tip for guys: If you have a hot date you are eager to impress, invite her back to your place and have her sit in front of your 
computer. Then log into a busy Unix or Linux system and run top with a refresh rate of 1 second or less. If that doesn’t impress 
her, nothing will.

top - 9:10:24 up 14:50, 7 users, load average: 0.32,0.17,0.05
Tasks: 97 total, 1 running, 92 sleeping, 4 stopped, 0 zombie
Cpu(s): 1.7% us, 2.0% sy, 0.0% ni, 96.4% id, 0.0% wa
Mem: 385632k total, 287164k used, 98468k free, 41268k buffer
Swap: 786424k total, 0k used, 786424k free, 156016k cached

 PID USER   PR NI VIRT  RES  SHR S %CPU %MEM  TIME+  COMMAND
4016 harley 16  0 2124  992  780 R  1.3  0.3 0:00.35 top
3274 harley 15  0 7980 1808 1324 S  0.3  0.5 0:01.14 sshd
   1 root   16  0 1996  680  588 S  0.0  0.2 0:01.67 init
   2 root   34 19    0    0    0 S  0.0  0.0 0:00.00 ksoftirqd
   3 root   RT  0    0    0    0 S  0.0  0.0 0:00.00 watchdg
   4 root   10 -5    0    0    0 S  0.0  0.0 0:00.00 events
   5 root   10 -5    0    0    0 S  0.0  0.0 0:00.01 khelper
   6 root   11 -5    0    0    0 S  0.0  0.0 0:00.00 kthread
   8 root   10 -5    0    0    0 S  0.0  0.0 0:00.02 kblockd
  11 root   10 -5    0    0    0 S  0.0  0.0 0:00.00 khubd

FIGURE 26-8: The top program

The top program is used to display dynamic information about the “top” processes on the system, that 
is, the processes that are using the most CPU time. What you see here is an abbreviated example of the 
type of output top displays. The output is updated at regular intervals. As top executes, you can type 
commands to control its behavior. For help press h; to quit press q or ^C.

Monitoring System Processes: top, prstat

33614_26_767_816.indd   79933614_26_767_816.indd   799 1/9/2008   12:41:00 PM1/9/2008   12:41:00 PM



Chapter 26

800 Harley Hahn’s Guide to Unix and Linux

 To display information about a specifi c process, use -p followed by the process ID, 
for example:

top -p 3274

To specify more than one process ID, separate them with commas. For example, the 
following command uses a refresh rate of 1 second and displays information about 
processes #1 through #5:

top -d 1 -p 1,2,3,4,5

In general, top is used more by system administrators and programmers than by regular 
users. Typically, an admin will use top for performance monitoring. For example, he 
may want to see how a new application is doing on a server, or he may want to evaluate 
two different database programs to see which one works more effi ciently. Programmers 
will often use top to test how a program performs under various workloads.
 You will fi nd that ps suits your needs more often than top. However, in certain 
situations, top can be invaluable. For example, if you are using a system that, all of a 
sudden, becomes abnormally slow, you can use top to fi nd out what is happening.

DISPLAYING A PROCESS TREE: pstree, ptree
So far, we       have discussed two important tools you can use to display information about 
processes: ps to look at static information, and top to look at dynamic information. A third 
tool, pstree, is useful when you want to understand the relationships between processes.
 Earlier in the chapter, I explained that every process (except the very fi rst one) is 
created by another process. When this happens, the original process is called the parent; 
the newly created process is called the child. Whenever a new process is created, it is given 
an identifi cation number called a process ID or PID.
 Towards the end of the startup procedure, the kernel creates the very fi rst process, 
the idle process, which is given a PID of #0. After performing a number of tasks, the idle 
process creates the second process, the init process, which is given a PID of #1. The idle 
process then goes into a permanent sleep (hence the name).
 The job of the init process is to create a variety of other processes. Most of these third-
generation processes are daemons (I’ll explain the name later in the chapter), whose job 
is to wait for something to happen and then react appropriately. In particular, there are 
daemons that do nothing but wait for users to log in. When a user is ready to log in, 
the daemon creates another process to handle the task. The login daemon then creates 
another process to run the user’s shell. Finally, whenever the shell needs to execute a 
program for the user, the shell creates yet another process to carry out the job.
 Although this arrangement seems complicated, it can be simplifi ed enormously by 
making one simple observation: every process (except the fi rst one) has a single parent. 
Thus, it is possible to imagine all the processes in the system arranged into a large, 
tree-structured hierarchy with the init process at the root of the tree. We call such data 
structures PROCESS TREES, and we use them to show the connections between parent 
processes and their children.

33614_26_767_816.indd   80033614_26_767_816.indd   800 1/9/2008   12:41:00 PM1/9/2008   12:41:00 PM



Processes and Job Control

801

 You can display a diagram of any part of the system process tree by using the pstree 
program. For example, you can display the entire process tree, starting from the init process. 
Or, you can display a subtree based on a specifi c PID or userid. The syntax to use is:

pstree [-aAcGnpu] [ pid | userid ]

where pid is a process ID, and userid is a userid.
 The pstree program is available with most Unix systems. If your system does not 
have pstree, there will sometimes be an equivalent program. For example, with Solaris, 
you can use ptree instead. (See the online manual for the details.) On other systems, the 
ps command has special options to display process trees. You can try ps f or ps -H, 
although the output won’t be as good as with pstree.
 To see how pstree works, start by entering the command without any options. 
By default, pstree draws the process tree for the entire system, starting with the init 
process. This generates a lot of lines, so it is a good idea to pipe the output to less 
(Chapter 21) to display one screenful at a time:

pstree | less

Here is an abbreviated example showing the fi rst eight lines of output on a Linux system. 
Notice that the root of the tree — the init process — is at the top of the diagram:

init-+-apmd
     |-and
     |-automount
     |-crond
     |-cups-config-dae
     |-cupsd
     |-2*[dbus-daemon---{dbus-daemon}]
     |-dbus-launch

As you look at this process tree, I want you to notice several things. First, at each level, the 
tree is sorted alphabetically by process name. This is the default, which you can change 
using the -n option (see below).
 Next, notice the notation 2* in the second to last line. This means that the there are 
two identical subtrees. Using such notation allows pstree to create a more compact 
diagram. If you want pstree to expand all subtrees, even the identical ones, use the -c 
(do not compact) option.
 Finally, you can see that pstree uses plain ASCII characters to draw the branches of 
the tree. With some terminals, pstree will use special line drawing characters instead. 
This enables it to draw continuous lines. If for some reason your output doesn’t look 
right, you can use -A to force the use of ASCII characters or -G to force the use of line 
drawing characters. Take a moment to experiment and see which type of output looks 
best on your system:

pstree -A | less
pstree -G | less

Displaying a Process Tree: pstree, ptree

33614_26_767_816.indd   80133614_26_767_816.indd   801 1/9/2008   12:41:00 PM1/9/2008   12:41:00 PM



Chapter 26

802 Harley Hahn’s Guide to Unix and Linux

Aside from the display options, there are options that enable you to control which 
information is displayed. My two favorite options are -p, which displays the PID of each 
process, and -n, which sorts the tree by PID, instead of by process name:

pstree -np

Here are the fi rst eight lines of the output using these options. We see that the process tree 
starts with process #1 (the init process). This process has a number of children: process #2, 
#3, #4, #5, #6, and so on. Process #6 has children of its own: #8, #11, #13, #80, and so on.

init(1)-+-ksoftirqd(2)
        |-watchdog(3)
        |-events(4)
        |-khelper(5)
        |-kthread(6)-+-kblockd(8)
        |            |-khubd(11)
        |            |-kseriod(13)
        |            |-pdflush(80)

By default, pstree draws the entire process tree starting from the root, that is, starting 
from process #1. There will be times, however, when you will be most interested in parts 
of the tree. In such cases, there are two ways you can limit the output. If you specify a PID, 
pstree will display the subtree descended from that particular process.
 Here is an example. You use Bash for your shell. From the shell, you have two processes 
in the background: make and gcc. You also have two processes that are suspended: vim 
and man. You want to display a process tree showing only these processes. To start, you 
use ps or echo $$ to fi nd out the PID of your shell. It happens to be #2146. You then 
enter the following command:

pstree -p 2146

Here is the output:

bash-+-gcc(4252)
     |-pstree(4281)
     |-make(4276)
     |-man(4285)---sh(4295)---less(4301)
     `-vim(4249)

Notice that man has created a child process to run a new shell (#4295), which has created 
another child process (#4301) to run less. This is because man calls upon less to 
display its output.
 The second way in which you can restrict the range of the process tree is to specify a 
userid instead of a PID. When you do this, pstree displays only those processes that are 
running under the auspices of that userid, for example:

pstree -p harley

33614_26_767_816.indd   80233614_26_767_816.indd   802 1/9/2008   12:41:00 PM1/9/2008   12:41:00 PM



Processes and Job Control

803

The last two options I want to mention are used to show extra information along with 
the process name. The -a (all) option displays the entire command line for each process, 
not just the name of the program. The -u (userid change) option marks the transition 
whenever a child process runs under a different userid than its parent.

THINKING ABOUT HOW UNIX ORGANIZES PROCESSES AND FILES: fuser
Before we move on, I want to take a     moment and ask you to think about the similarities 
between how Unix organizes processes and fi les.
 Both processes and fi les can be thought of as existing within hierarchical trees with the 
root at the top. The root of the process tree is process #1 (the init process). The root of 
the fi le tree is the root directory (see Chapter 23). Within the process tree, every process 
has a single parent process above it. Within the fi le tree, every subdirectory has a single 
parent directory above it. To display the fi le tree, we use the tree program (Chapter 24). 
To display the process tree, we use the pstree program.
 With a little more thought, we can fi nd even more similarities. Every process is identifi ed 
by a unique number called a process ID. Every fi le is identifi ed by a unique number called 
an inumber. Internally, Unix keeps track of processes by using a process table, indexed 
by process ID. Within the process table, each entry contains information about a single 
process. Similarly, Unix keeps track of fi les by using an inode table, indexed by inumber. 
Within the inode table, each entry (the inode) contains information about a single fi le.
 However, for a very good reason, this is about as far as we can push the analogy. Why? 
Because there is a fundamental difference between processes and fi les. Processes are dynamic: 
at every instant, the data that describes them is changing. Files are comparatively static.
 For example, to display information about fi les, we use the ls program (Chapters 24 
and 25), which simply looks in the inode table for its data. To display information about 
processes, we use the ps and top programs, and gathering information about processes 
is trickier. To be sure, some basic data can be found in the process table. However, most 
of the dynamic information must come from the kernel itself, and obtaining such 
information is not as simple as looking in a table.
 In order to procure the data they need to do their jobs, both ps and top must use a 
type of pseudo fi le called a proc fi le (see Chapter 23). Within the /proc directory, every 
process is represented by its own  proc fi le. When a program needs information about a 
process, it reads from that process’ proc fi le. This, in turn, triggers a request to the kernel 
to supply the necessary data. The whole thing happens so quickly that it doesn’t occur to 
you that fi nding process information is more complicated than fi nding fi le information.
 You might be wondering, are there any tools that bridge the gap between processes 
and fi les? Yes, there are. One of the most interesting is fuser, a system administration 
tool that lists all the processes that are using a specifi c fi le. For example, let’s say you enter 
the following command to run the find program (Chapter 25) to search for fi les named 
foo. Notice that the program is run in the background, and that it redirects the standard 
output to a fi le named bar*:

 *See Chapter 9 for a discussion of the names foo and bar.

Thinking About How Unix Organizes Processes and Files: fuser

33614_26_767_816.indd   80333614_26_767_816.indd   803 1/9/2008   12:41:01 PM1/9/2008   12:41:01 PM



Chapter 26

804 Harley Hahn’s Guide to Unix and Linux

find / -name foo -print > bar 2>/dev/null &

 When the program starts, the shell displays the following message, showing you the 
job ID (3) and the process id (3739):

[3] 3739

Since standard output is redirected to bar, you know that this particular fi le will be in 
use while the program is running. To check this, you enter the command:

fuser bar

Here is the output:

bar: 3739

As you can see, the fi le bar is in use by process #3739. In this way, fuser provides an 
interesting example of how a single tool can gather information about both processes and 
fi les at the same time.
 If you try experimenting with fuser, you may run into a problem that is worth 
discussing. The fuser program  is meant to be used by system administrators. For this 
reason, it is commonly stored with other such tools in one of the admin directories, such 
as /sbin (see Chapter 23). However, unless you are logged in as superuser, it is unlikely 
that the admin directories will be in your search path. This means that, when you type in 
the fuser command, the shell will not be able to fi nd the program.
 When you encounter such a problem, simply use whereis (Chapter 25) to fi nd the 
location of fuser on your system. For example:

whereis fuser

Here is some typical output:

fuser: /sbin/fuser /usr/share/man/man1/fuser.1.gz

In this case, the fi rst path is the location of the program; the second path is the location of the 
man page. To run fuser, all you need to do is show the shell where to fi nd the program:

/sbin/fuser bar

This is the technique to use when you want to run a program whose directory is not in 
your search path.

KILLING A PROCESS: kill
The kill program     has two uses: to terminate a process and to send a signal to a process. 
In this section, we’ll talk about termination. In the next section, we’ll discuss the more 
general topic of signals.
 As a rule, programs run until they fi nish on their own or until you tell them to quit. 
You can usually stop a program prematurely by pressing ^C to send the intr signal (see 
Chapter 7), or by typing a quit command. However, these methods won’t always work. 

33614_26_767_816.indd   80433614_26_767_816.indd   804 1/9/2008   12:41:01 PM1/9/2008   12:41:01 PM



Processes and Job Control

805

For instance,  on occasion, a program will freeze and stop responding to the keyboard. In 
such cases, pressing ^C or typing a quit command will not work. A similar problem arises 
when you want to terminate a program running in the background. Because background 
processes don’t read from the keyboard, there is no way to reach the program directly.
 In such cases, you can terminate a program by using the kill program. When you 
terminate a program in this way, we say that you KILL it. The syntax to use is:

kill [-9] pid... | jobid...

where pid or jobid identifi es the process.
 Most of the time, you will want to kill a single process. First you will use ps or jobs 
to fi nd the process ID or job ID of the process you want to kill. Then you will use kill 
to carry out the actual termination. Consider the following example. You have entered 
the command below to run the make program in the background:

make game > makeoutput 2> makeerrors &

Some time later, you decide to kill the process. The fi rst step is to fi nd out the process ID. 
You enter:

ps

The output is:

 PID TTY         TIME CMD
2146 tty2    00:00:00 bash
5505 tty2    00:00:00 make
5534 tty2    00:00:00 ps

The process ID you want is 5505. To kill this process, you enter:

kill 5505

The shell will kill the process and display a message, for example:

[2]  Terminated   make game >makeoutput 2>makeerrors

This means the process that was running the program make game has been killed. The 
number at the beginning of the line means that the process was job #2.
 An alternative way to list your processes is to use the jobs -l command. Let’s say 
you had used the following command instead of ps:

jobs -l

Here is what you would have seen:

[2]-  5505 Running    make game >makeoutput 2>makeerrors &

Again, you could use the command kill 5505 to kill the make process. However, 
there is an alternative. You can specify a job number in the same manner as when you 

Killing a Process: kill

33614_26_767_816.indd   80533614_26_767_816.indd   805 1/9/2008   12:41:01 PM1/9/2008   12:41:01 PM



Chapter 26

806 Harley Hahn’s Guide to Unix and Linux

use  the fg and bg commands (see Figure 26-3). Thus, in this case, any of the following 
commands would work:

kill 5505
kill %-
kill %2
kill %make
kill %?game

Here is another common situation. A foreground process becomes so unresponsive, you 
can’t stop it no matter what you type, including ^C. You have two choices. First, you can 
try pressing ^Z to suspend the process. If this is successful, you can then use ps or jobs 
to fi nd the process and terminate it with kill.
 Alternatively, you can open up a new terminal window and use ps -u or ps U to list 
all the processes running under your userid. You can then identify the runaway process 
and terminate it with kill. In fact, this is sometimes the only way to kill a process that 
is off by itself in deep space.
 If you are using a remote Unix host, you have a third choice. If all else fails, simply disconnect 
from the host. On some systems, when your connection drops, the kernel automatically kills 
all your processes. Of course, this will kill any other programs that may be running.
 Whenever you kill a process with children, it has the side effect of killing the children. 
Thus, you can kill an entire group of related processes simply by fi nding and killing the 
original parent. (In Unix, family ties run deep.)
 When ̂ C or a quit command doesn’t work, kill will usually do the job. However, on 
occasion, even kill will fail. In such cases, there is a variation that always works: specify 
the option -9 as part of the command. This sends the “sure kill” signal 9 (which we will 
discuss in the next section). For example:

kill -9 5505
kill -9 %2

Sending signal 9 will always work. However, it should be your last choice, because it kills too 
quickly. Using   kill -9 does not allow the process to release any resources it may be using. 
For example, the process may not be able to close fi les (which may result in data loss), release 
memory, and so on. Using kill -9 can also result in abandoned child processes, which 
will not be able to die properly. (See the discussion on orphans earlier in the chapter.)
 Although the kernel will usually clean up the mess, it is smart to try all the other 
techniques before resorting to drastic measures.

SENDING A SIGNAL TO A PROCESS: kill
As we      have just discussed, you can use the kill program to terminate a process that is 
otherwise unreachable. However, kill is not merely a termination tool. It is actually a 
powerful program that can send any signal to any process. When used in this way, the 
more general form of the syntax is:

kill [-signal] pid...|jobid...

33614_26_767_816.indd   80633614_26_767_816.indd   806 1/9/2008   12:41:01 PM1/9/2008   12:41:01 PM



Processes and Job Control

807

where signal is the type of signal you want to send, and pid or jobid identifi es a process, as 
discussed in the previous section.
 In Chapter 23, we encountered the concept of interprocess communication or   IPC, 
the exchanging of data between two processes. At the time, we were discussing the use 
of named pipes as a means of sending data from one process to another. The purpose of 
the kill program is to support a different type of IPC, specifi cally, the sending of a very 
simple message called a SIGNAL. A signal is nothing more than a number that is sent to 
a process to let it know that some type of event has occurred. It is up to the process to 
recognize the signal and do something. When a process does this, we say that it  TRAPS 
the signal.
 In Chapter 7, we encountered signals during our discussion of several of the special key 
combinations, such as ^C and ^Z. When you press one of these keys, it sends a signal to 
the current foreground process. For example, when you press ^C, it sends signal 2.
 There are a large variety of signals used within Unix, most of which are of interest only 
to system programmers. For reference, Figure 26-9 contains a list of the most commonly 
used signals. Notice that each signal is known by a number, as well as a standardized 
name and abbreviation (both of which should be typed in uppercase letters).
 In general, the signal numbers for HUP, INT, KILL and TERM are the same on all 
systems. However, the other signal numbers can vary from one type of Unix to another. 
For this reason, it is a good habit to use the names or abbreviations — which are always 
the same — rather than numbers. The chart in Figure 26-9 shows the signal numbers that 
are used with Linux.
 If you would like to see the full list of signals supported by your system, enter the 
kill command with the -l (list) option:

kill -l

If this option does  not work on your system, you can look for an include fi le (see 
Chapter 23) named signal.h and display its contents. One of the following 
commands will do the job.  

locate signal.h
find / -name 'signal.h' -print 2> /dev/null

The kill program lets you specify any signal you want. For example, let’s say you want 
to suspend job %2, which is running in the background. Simply send it the STOP signal:

kill -STOP %2

If you do not specify a signal, kill will, by default, send the TERM signal. Thus, the 
following commands (all acting upon process 3662) are equivalent:

kill 3662
kill -15 3662
kill -TERM 3662
kill -SIGTERM 3662

Sending a Signal to a Process: kill

33614_26_767_816.indd   80733614_26_767_816.indd   807 1/9/2008   12:41:01 PM1/9/2008   12:41:01 PM



Chapter 26

808 Harley Hahn’s Guide to Unix and Linux

As I mentioned, there are many different signals, and the purpose of the kill command 
is to send one specifi c signal to a particular process. In this sense, it might have been better 
to name the command signal. However, by default, kill sends the TERM signal, which 
has the effect of killing the process, and this is why the command is called kill. Indeed, 
most people use kill only for killing processes and not for sending other signals.
 For security reasons, a regular userid can send signals only to its own processes. The 
superuser, however, is allowed to send signals to any process on the system. This means 
that, if you are using your own system and you become stuck with a process that just 
won’t die, you can always change to superuser and use kill to put the process out of its 
misery. Be very careful, though, superuser + kill is a highly lethal combination that can 
get you into a lot of trouble if you don’t know exactly what you are doing.

SETTING THE PRIORITY FOR A PROCESS: nice
At the     beginning of the chapter, I explained that even a small Unix system can have over 
a hundred processes running at the same time. A large system can have thousands of 
processes, all of which need to share the system’s resources: processors, memory, I/O 
devices, network connections, and so on. In order to manage such a complex workload, 
the kernel uses a sophisticated subsystem called the scheduler, whose job is to allot 
resources dynamically among the various processes.
 In making such moment-to-moment decisions, the scheduler considers a variety of 
different values associated with each process. One of the more important values is the 
PRIORITY, an indication of how much precedence a process should be given over other 
processes. The priority is set by a number of factors, which are generally beyond the reach 
of individual users. This only makes sense for two reasons.
 First, managing processes effi ciently is a very complex operation, and the scheduler 
can do it much better and much faster than a human being, even an experienced system 
administrator. Second, if it were possible to manipulate priorities, it would be far too 

NUM. NAME ABBREV. DESCRIPTION
1 SIGHUP HUP Hang-up: sent to processes when you log out or if your terminal disconnects

2 SIGINT INT Interrupt: sent when you press ^C

9 SIGKILL KILL Kill: immediate termination; cannot be trapped by a process

15 SIGTERM TERM Terminate: request to terminate; can be trapped by a process

18 SIGCONT CONT Continue: resume suspended process; sent byfg or bg

19 SIGSTOP STOP Stop (suspend): sent when you press ^Z

FIGURE 26-9: Signals 

Signals are used as a simple, but important form of interprocess control. This list shows the most 
commonly used signals, along with their names. When you use kill to send a signal to a process, you 
can specify the signal using its number, its name, or its abbreviation. If you use a name or abbreviation, 
be sure to type uppercase letters. Some of the numbers vary from one type of system to another so, as 
a general rule, it is best to use names or abbreviations, which are standardized. The signal numbers 
shown here are the ones used with Linux.

33614_26_767_816.indd   80833614_26_767_816.indd   808 1/9/2008   12:41:01 PM1/9/2008   12:41:01 PM



Processes and Job Control

809

tempting for users to raise the priorities of their own programs at the expense of other 
users and the system itself.
 In certain situations, however, you may want to do the opposite. That is, you may want 
to lower the priority of one of your programs. Typically, this will happen when you are 
running a non-interactive program that requires a relatively large amount of CPU time 
over an extended period. In such cases, you might as well be a nice person and run the 
program in the background at a low priority. After all, you won’t notice if the program 
takes a bit longer to fi nish, and running it with a low priority allows the scheduler to give 
precedence to other programs, making the system more responsive and effi cient.
 To run programs at a lower priority you use a tool called nice. (Can you see where 
the name comes from?) The syntax is:

nice [-n adjustment] command

where adjustment is a numeric value, and command is the command you want to run.
 The simplest way to use nice is simply to type the name in front of a command you 
plan on running in the background, for example:

nice gcc myprogram.c &

That’s all there is to it. When you start a program in this way, nice will cause it to run at a 
reduced priority. However, nice will not automatically run the program in the background. 
You will need to do that yourself by typing an & character at the end of the command.
 Which types of programs should you use with nice? In general, any program that 
can run in the background and which uses a large amount of CPU time. Traditional uses 
for nice are for programs that compile a large amount of source code, that make (put 
together) software packages, or that perform complex mathematical computations. For 
example, if you share a multiuser system and you are testing a program that calculates the 
1,000,000th digit of pi, you defi nitely want to run it with as low a priority as possible.
 When it comes to using nice, there are two caveats of which you should be aware. 
First, you can use nice only with self-contained programs that run on their own. For 
example, you can use nice with external commands and shell scripts. However, you 
cannot lower the priority of builtin shell commands (internal commands), pipelines, or 
compound commands.
 The second consideration is that you should use nice only with programs that run in 
the background. Although it is possible to lower the priority of a foreground program, it 
doesn’t make sense to do so. After all, when a program runs in the foreground, you want 
it to be able to respond to you as quickly as possible.
 In most cases, it will suffi ce to use nice in the way I have described. On occasion, 
however, you may want to have more control over how much the priority is lowered. To do 
  so, you can use the -n option followed by a value called the NICE NUMBER or NICENESS. 
On most systems, you can specify a nice number of 0 to 19. The higher the nice number, 
the lower the priority of the program (which means the nicer you are as a user).
 When you run a program in the regular way (without nice), the program is given a 
niceness of 0. This is considered to be normal priority. When you use nice without the 

Setting the Priority for a Process: nice

33614_26_767_816.indd   80933614_26_767_816.indd   809 1/9/2008   12:41:01 PM1/9/2008   12:41:01 PM



Chapter 26

810 Harley Hahn’s Guide to Unix and Linux

-n option, it defaults to a niceness of 10, right in the middle of the range. Most of the 
time, that is all you need. However, you can specify your own value if necessary.
 For example, let’s say you have a program called calculate that spends hours and 
hours performing complex mathematical calculations. To be a nice guy, you decide to run 
the program in the background with as low a priority as possible. You can use a command 
like the following:

nice -n 19 calculate > outputfile 2> errorfile &

By now, you are probably wondering, if a high nice number will lower the priority of a program, 
will a low nice number raise the priority? The answer is yes, but only if you are superuser. As 
superuser you are allowed to specify a negative number between -20 and -1. For example, to 
run a very special program with as high a priority as possible, change to superuser and enter 
the command:

nice -n -20 specialprogram

As you might imagine, setting a negative nice number is something you would rarely 
need to do. Indeed, most of the time, you are better off letting the scheduler manage the 
system on its own.

CHANGING THE PRIORITY OF AN EXISTING PROCESS: renice
On occasion,     you may fi nd yourself waiting a long time for a program that is running in 
the foreground, when it occurs to you that it would make more sense for the program 
to be running in the background at a low priority. In such cases, all you have to do is 
press ^Z to suspend the process, use bg to move it to the background, and then lower its 
priority. To lower the priority of an existing process, you use renice. The syntax is:

renice niceness -p processid

where niceness is a nice number, and processid is a process ID.
 As we discussed in the previous section, a higher nice number means a lower priority. 
When you use renice as a regular user, you are only allowed to increase the nice 
number for a process, not lower it. That is, you can lower the priority of a process, but 
not raise it. In addition, as a reasonable precaution, regular users can only change the 

HINT

When you share a multiuser system, it is a good habit to use nice to run CPU intensive 
programs in the background at a low priority. This keeps such programs from slowing down 
the system for other users.
 However, nice can also come in handy on a single-user system. When you force your most 
demanding background programs to run at a low priority, you prevent them from slowing 
down your own moment-to-moment work.
 (In other words, being nice always pays off.)

33614_26_767_816.indd   81033614_26_767_816.indd   810 1/9/2008   12:41:01 PM1/9/2008   12:41:01 PM



Processes and Job Control

811

niceness for their own processes. (Can you see why?) These limitations, however, do not 
apply to the superuser.
 Here is an example of how you might use renice. You enter the following command 
to run a program that calculates the 1,000,000th digit of pi:

picalculate > outputfile 2&> errorfile

After watching your program do nothing for a while, it occurs to you that you might 
as well run it in the background. At the same time, it would be a good idea to lower the 
priority as much as possible. First, press ^Z to suspend the foreground process. You see a 
message like the following:

[1]+  Stopped    picalculate >outputfile 2>errorfile

This tells you that the process, job #1, is suspended. You can now use bg to move the 
process to the background:

bg %1

You then see the following message, which tells you that the program is running in 
the background:

[1]+ picalculate >outputfile 2>errorfile &

Next, use ps to fi nd out the process ID:

ps

The output is:

 PID TTY       TIME CMD
4052 tty1  00:00:00 bash
4089 tty1  00:00:00 picalculate
4105 tty1  00:00:00 ps

Finally, use renice to give the process the highest possible niceness, thereby lowering 
its priority as much as possible:

renice 19 -p 4089

You will see the following confi rmation message:

4089: old priority 0, new priority 19

HINT

If your system seems bogged down for no apparent reason, you can use top to see if there 
are any non-interactive processes taking a lot of CPU time. If so, you can consider using 
renice to lower the priority of the processes. (Warning: Don’t muck around with processes 
you don’t understand.)

Changing the Priority of an Existing Process: renice

33614_26_767_816.indd   81133614_26_767_816.indd   811 1/9/2008   12:41:01 PM1/9/2008   12:41:01 PM



Chapter 26

812 Harley Hahn’s Guide to Unix and Linux

DAEMONS
How many   processes do you think are running on your system right now? It is easy to 
fi nd out. Just use the ps program with the appropriate options to list every process, one 
per line, and then pipe the output to wc -l (Chapter 18) to count the lines.
 Here are two commands that will do the job. The fi rst command uses ps with UNIX 
options. The second uses the BSD options:

ps -e | wc -l
ps ax | wc -l

As a test, I ran these commands on three different Unix systems. First, I checked a Solaris 
system, which I accessed over the Internet. Absolutely no one else was using the system 
and nothing else was running on it. Next, I checked a Linux system sitting next to me. It 
was running a full GUI-based desktop environment, and no one else but me was using 
the system. Finally, I checked a FreeBSD system that acts as a medium-sized Web server 
and database server.
 Here is what I found. Not counting the ps program itself, the small Solaris system was 
running 46 processes; the small Linux system was running 95 processes; and the medium 
FreeBSD system was running 133 processes. Remarkably, these are all relatively small 
numbers. It is not unusual for a good-sized Unix system to be running hundreds or even 
thousands of processes at the same time.
 Obviously, most of these processes are not programs run by users. So what are they? 
The answer is they are DAEMONS, programs that run in the background, completely 
disconnected from any terminal, in order to provide a service. (With Microsoft Windows, 
the same type of functionality is provided by programs called “services”.) Typically, a 
daemon will wait silently in the background for something to happen: an event, a request, 
an interrupt, a specifi c time interval, etc. When the trigger occurs, the daemon swings 
into action, doing whatever is necessary to carry out its job.
 Daemons carry out a great many tasks that are necessary to run the system. For reference, 
I have listed some of the more interesting daemons in Figure 26-10. Although you will fi nd 
a few daemons (such as init) on most Unix systems, there is a fair bit of variation. To 
fi nd the daemons on your system, use ps and look in the output for a ? character in the 
TTY column. This indicates that the process is not controlled by a terminal.
 The best command to use is the variation of ps that displays all the processes that are 
not controlled by a terminal:

ps -t - | less

If this command does not work on your system, try the following:

ps -e | grep '?' | less

Most daemons are created automatically during the last part of the boot sequence. In 
some cases, the processes are created by the init process (process #1). In other cases, the 
processes are created by parents that terminate themselves, turning the daemons into 
orphans. As you may remember from our discussion earlier in the chapter, all orphans 

33614_26_767_816.indd   81233614_26_767_816.indd   812 1/9/2008   12:41:01 PM1/9/2008   12:41:01 PM



Processes and Job Control

813

are adopted by the init process. Thus, one way or the other, most daemons end up as 
children of process #1. For this reason, one defi nition of a daemon is any background 
process without a controlling terminal, whose parent’s process ID is #1.
 If you are using a Linux system, take a moment to look in the /etc/rc.d/init.d 
directory. Here you will fi nd a large number of shell scripts, each of which is used to start, 
stop or restart a particular daemon.

DAEMON PURPOSE
init Ancestor of all other processes; adopts orphans

apache Apache Web server

atd Runs jobs queued by the at program

crond Manages execution of prescheduled jobs (cron service)

cupsd Print scheduler (CUPS=Common Unix Printing System)

dhcpd Dynamically confi gure TCP/IP information for clients (DHCP)

ftpd FTP server (FTP=File Transfer Protocol)

gated Gateway routing for networks

httpd Web server

inetd Internet services

kerneld Loads and unloads kernel modules as needed

kudzu Detects and confi gures new/changed hardware during boot

lpd Print spooling (line printer daemon)

mysql MySQL database server

named Internet DNS name service (DNS=Domain Name System)

nfsd Network fi le access (NFS=Network File System)

ntpd Time synchronization (NTP=Network Time Protocol)

rpcbind Remote procedure calls (RPC)

routed Manage network routing tables

sched Another name for swapper

sendmail SMTP server (email)

smbd File sharing & printing services for Windows clients (Samba)

sshd SSH (secure shell) connections

swapper Copies data from memory to swap space to reclaim physical memory

syncd Synchronizes fi le systems with contents of system memory

syslogd Collects various system messages (system logger)

xinetd Internet services (replacement for inetd)

FIGURE 26-10: Daemons 

A daemon is a process that runs silently in the background, disconnected from any terminal, in order 
to provide a service. Unix systems typically have many daemons, each waiting to perform its job as 
needed. Here is a list of interesting daemons you will fi nd on many systems. Notice that many of the 
names end with the letter “d”.

Daemons

33614_26_767_816.indd   81333614_26_767_816.indd   813 1/9/2008   12:41:02 PM1/9/2008   12:41:02 PM



Chapter 26

814 Harley Hahn’s Guide to Unix and Linux

THE END OF THE LAST CHAPTER
I would like to thank you for spending so much time with me talking about Unix and 
Linux. I wrote this book in order to make Unix accessible to intelligent people and, to the 
extent that I have helped you, I am grateful for the opportunity.
 Unix has traditionally attracted the most talented computer users and programmers, 
for whom working on Unix was a labor of love. One reason Unix is so wonderful, is 
that most of it was designed before the men in suits sat up and took notice. That is why 
Unix works so well and why it is so elegant; the basic Unix philosophy was developed 
long before the business and marketing people started trying to make money from it. As 
we discussed in Chapter 2, in the 1990s, this philosophy was transplanted to the Linux 
Project and to the open source community, with wonderful results.
 You may remember my observing that Unix is not easy to learn, but it is easy to use. By 
now, you will realize what this means: that it is more important for a tool to be designed 
well for a smart person, than it is for the tool to be easy enough to be used on the fi rst day 
by someone whose biggest intellectual challenge in life is downloading a ringtone.
 You have my word that every moment you spend learning and using Unix will repay 
you generously. I can’t be by your side as you work, but you do have this book, and I have 
put in a great deal of effort to provide you with the very best Unix companion I could.
 Although I may be irreverent at times — indeed, whenever I am able to make a joke 
that my editors can’t catch — I would like to take a moment to wish you the very best. As 
you read and re-read this book, please remember: I am on your side.

WHAT’S IN A NAME?

Daemon
 Daemons are processes that   provide services by running  silently in the background, 
disconnected from any terminal. Although the name is pronounced “dee-mon”, the correctly 
spelling is “daemon”.
 You may occasionally read that the name stands for “Disk and Executing Monitor”, a term 
from the old DEC 10 and 20 computers. However, this explanation was made up after the fact. 
The name “daemon” was fi rst used by MIT programmers who worked on  CTSS ( Compatible 
Time-sharing System), developed in 1963. They coined the term to refer to what were called 
“dragons” by other programmers who worked on  ITS ( Incompatible Time-sharing System).
 CTSS and ITS were both ancestors to Unix. ITS was an important, though strange, operating 
system that developed a cult following at MIT. As CTSS and ITS programmers migrated from 
MIT to Bell Labs (the birthplace of Unix), the idea of daemons traveled with them.
 So why the name “daemon”? One story is that the name comes from “Maxwell’s demon”, an 
imaginary creature devised by the Scottish physicist James Maxwell  (1831-1879) for a thought 
experiment related to the second law of thermodynamics. You can believe this or not. (I don’t.)
 Regardless of the origin, nobody knows why we use the British variation of the spelling. In 
Celtic mythology, a daemon is usually good or neutral, merely a spirit or inspiration. A demon, 
however, is always an evil entity. Perhaps there is a lesson here somewhere.

33614_26_767_816.indd   81433614_26_767_816.indd   814 1/9/2008   12:41:02 PM1/9/2008   12:41:02 PM



Processes and Job Control

815

C H A P T E R  2 6  E X E R C I S E S

REVIEW QUESTIONS

1.  What is a process?  What part of the operating system manages processes?  Defi ne the 
following terms: process ID, parent process, child process, fork and exec.

2.  What is a job?  What part of the operating system manages jobs?  What is job control?

  What is the difference between running a job in the foreground and running a job in 
the background?  How do you run a job in the foreground?  How do you run a job in 
the background?  How do you move a job from the foreground to the background?

3.  The ps (process status) program is used to display information about processes.  
What are the two types of options you can use with this program?  For each type of 
option, which commands would you use to display information about:

 • Your current processes
 • Process #120357
 • All the processes running on the system
 • Processes associated with userid weedly

4.  You are a system administrator.  One of your systems seems to be bogging down and 
your job is to fi gure out why.  To start, you want to take a look at various processes 
running on the system and how they are changing from moment to moment.  Which 
program will you use?  Specify the command that will run this program with an 
automatic update every 5 seconds.

5.  What is the difference between killing a process and stopping a process?  How do you 
kill a process?  How do you stop a process?

6.  You have started a program named foobar that is running amok.  What steps would 
you take to kill it?  If foobar does not respond, what do you do?

EXERCISES

1.  Enter a command line that pauses for 5 seconds and then displays the message “I am 
smart.”  Wait for 5 seconds to make sure it works.

  Now change the delay to 30 seconds, and re-enter the command line.  This time, 
before the 30 seconds are up, press ^C.  What happens?  Why?

HINT

Unix is fun.

Chapter 26 Exercises

33614_26_767_816.indd   81533614_26_767_816.indd   815 1/9/2008   12:41:02 PM1/9/2008   12:41:02 PM



Chapter 26

816 Harley Hahn’s Guide to Unix and Linux

2.  You have just logged into a Unix system over the Internet using your userid, which is 
weedly.  You enter the command ps -f command and see:

 UID        PID  PPID  C STIME TTY        TIME CMD
 weedly    2282  2281  0 15:31 pts/3  00:00:00 -bash
 weedly    2547  2282  0 16:13 pts/3  00:00:00 ps -f

  Everything looks fi ne.  Just out of curiosity, you decide to check on the rest of the 
system, so you enter the command ps -af.  Among the output lines, you see:

 weedly    2522  2436  0 16:09 pts/4  00:00:00 vim secret

  Someone else is logged in using your userid!  What do you do?

3.  Create a pipeline to count the number of daemons on your system.  Then create a 
second pipeline to display a sorted list of all the daemons. You should display the 
names of the daemons only and nothing else.

FOR FURTHER THOUGHT

1.  Using the kill command to kill processes is more complicated than it needs to be.  
Describe a simpler way to provide the same functionality.

2.  Why are there two different types of options for ps?  Is this good or bad?

33614_26_767_816.indd   81633614_26_767_816.indd   816 1/9/2008   12:41:02 PM1/9/2008   12:41:02 PM



817

This appendix summarizes the 143 Unix commands discussed in this book.  At the end of 
each name,  the designation [X] indicates the chapter in which the command is discussed.

See Appendix B for a summary of commands organized into categories.

  ! [13] Reexecute command from the history list
  !! [13] Reexecute last command from the history list
  & [26] Run a program in the background
  ̂^ [13] Substitute/reexecute last command from history list
  ̂Z [26] Suspend (pause) a foreground process

  alias [13] Create/display aliases
  apropos [9] Display command names based on keyword search

  bash [11] Bash shell
  bc [8] Arbitrary-precision, easy-to-use calculator
  bg [26] Move job to the background
  bindkey [13] Set command-line editing mode

  cal [8] Display a calendar
  calendar [8] Display current reminders from calendar fi le
  cat [16] Combine fi les; copy standard input to standard output
  cd [24] Change your working directory
  chmod [25] Change fi le permissions for fi les or directories
  chsh [11] Change your default shell
  cmp [17] Compare two fi les
  colrm [16] Delete specifi ed columns of data
  comm [17] Compare two sorted fi les, show differences
  cp [25] Copy fi les; copy directories
  csh [11] C-Shell
  cut [17] Extract specifi ed columns/fi elds of data

A P P E N D I X  A

Summary of Unix Commands
Covered in This Book

Appendix A

33614_apa_817_820.indd   81733614_apa_817_820.indd   817 1/9/2008   12:41:26 PM1/9/2008   12:41:26 PM



818 Harley Hahn’s Guide to Unix and Linux

Chapter references are indicated by the numbers in brackets.

  date [8] Display the time and date
  dc [8] Arbitrary-precision, stack-based calculator
  df [24] Display disk space used/available for fi lesystems
  diff [17] Compare two fi les, show differences
  dirs [24] Display/clear contents of the directory stack
  dmesg [6] Display boot messages (Linux)
  du [24] Display amount of disk storage used by fi les
  dumpe2fs [24] Display fi lesystem information from superblock

  echo [12] Write arguments to standard output
  env [12] Display environment variables
  exit [4] Exit a shell
  expand [18] Change tabs to spaces
  export [12] Export shell variables to the environment

  fc [13] Display/reexecute commands from the history list
  fg [26] Move job to the foreground
  file [24] Analyze type of fi le
  find [25] Search for fi les in a directory tree; process results
  fmt [18, 22] Format paragraphs to make them look nice
  fold [18] Format long lines into shorter lines
  fuser [26] Identify processes that are using specifi c fi les

  grep [19] Select lines containing a specifi ed pattern
  groups [25] Display the groups to which a userid belongs

  head [16,21] Select lines from beginning of data
  hexdump [21] Display binary (non-text) fi les
  history [13] Display commands from the history list
  hostname [8] Display the name of your system

  id [25] Display current userid and groupid
  info [9] Display fi le from the Info reference system
  init [6] Change to another runlevel

  jobs [26] Display information about jobs
  join [19] Combine columns of data based on common fi elds

  kill [26] Terminate a process; send a signal to a process
  ksh [11] Korn shell

  last [4] Check the last time userid has logged in
  leave [8] Display reminder at a specifi ed time
  less [21] Pager: display data, one screenful at a time
  ln [25] Create a new link to a fi le
  locate [25] Search for fi les
  lock [8] Temporarily lock your terminal
  login [4] Terminate a login shell and initiate a new login

33614_apa_817_820.indd   81833614_apa_817_820.indd   818 1/9/2008   12:41:26 PM1/9/2008   12:41:26 PM



819

Chapter references are indicated by the numbers in brackets.

  logout [4] Terminate a login shell
  look [19] Select lines that begin with a specifi ed pattern
  ls [24, 25] Display various types of information about fi les

  man [9] Display pages from the online Unix reference manual
  mkdir [24] Create a directory
  mkfifo [23] Create a named pipe
  more [21] Pager: display data, one screenful at a time
  mount [23] Mount a fi lesystem
  mv [24, 25] Move or rename fi les or directories

  nice [26] Run a program using specifi ed scheduling priority
  nl [18] Add line numbers to text

  od [21] Display binary (non-text) fi les

  passwd [4] Change your login password
  paste [17] Combine columns of data
  popd [24] Change working directory; pop name off directory stack
  pr [18] Format text into pages or columns
  print [12] Write arguments to standard output
  printenv [12] Display environment variables
  prstat [26] Display dynamic information about processes
  ps [26] Display information about processes
  pstree [26] Display diagram of a process tree
  ptree [26] Display diagram of a process tree
  pushd [24] Change working directory; push name on directory stack
  pwd [24] Display pathname of your working directory

  quota [8, 24] Display your system resource quotas

  reboot [6] Reboot the computer
  renice [26] Change scheduling priority of a running program
  rev [16] Reverse order of characters in each line of data
  rm [25] Delete fi les or directories
  rmdir [24] Remove an empty directory

  sdiff [17] Compare two fi les, show differences
  sed [19] Non-interactive text editing
  set [12] Set/display shell options and shell variables
  setenv [12] Set/display environment variables
  sh [11] Bourne shell
  shred [25] Delete a fi le securely
  shutdown [6] Shutdown the computer
  sleep [26] Delay for a specifi ed interval
  sort [19] Sort data; check if data is sorted
  split [16] Split a large fi le into smaller fi les

Appendix A

33614_apa_817_820.indd   81933614_apa_817_820.indd   819 1/9/2008   12:41:26 PM1/9/2008   12:41:26 PM



820 Harley Hahn’s Guide to Unix and Linux

Chapter references are indicated by the numbers in brackets.

  stat [25] Display information from an inode
  strings [19] Search for character strings in binary fi les
  stty [7] Set/display operating options for your terminal
  su [6] Change to superuser or another userid
  sudo [6] Run a single command as superuser
  suspend [26] Suspend (pause) a shell

  tac [16] Combine fi les while reversing order of lines of text
  tail [16, 21] Select lines from end of data
  tcsh [11] Tcsh shell
  tee [15] Copy standard input to a fi le and to standard output
  top [26] Display data about the most CPU-intensive processes
  touch [25] Update access/modifi cation times of fi le; create fi le
  tr [19] Change or delete selected characters
  tree [24] Display a diagram of a directory tree
  tsort [19] Create a total ordering from partial orderings
  tty [23] Display name of the special fi le for your terminal
  type [8] Locate a command: display its pathname or alias

  umask [25] Set fi le mode mask for fi le creation
  umount [23] Unmount a fi lesystem
  unalias [13] Delete aliases
  uname [8] Display the name of your operating system
  unexpand [18] Change spaces to tabs
  uniq [19] Remove adjacent repeated lines in a text fi le
  unset [12] Delete shell variables
  unsetenv [12] Unset environment variables
  uptime [8] Display how long your system has been up
  users [8] Display userids that are currently logged in

  vi [22] vi text editor
  view [22] Start vi text editor in read-only mode
  vim [22] Vim text editor

  w [8] Display info about userids and active processes
  wc [18] Count lines, words and characters
  whatis [9] Display one-line summary of specifi ed command
  whence [8] Locate a command: display its pathname or alias
  whereis [25]  Find fi les associated with a command
  which [8] Locate a command: display its pathname or alias
  who [8] Display info about currently logged in userids
  whoami [8] Display the userid that is currently logged in

  xargs Run command using arguments from standard input
  xman [9] GUI-based: display pages from online reference manual

33614_apa_817_820.indd   82033614_apa_817_820.indd   820 1/9/2008   12:41:26 PM1/9/2008   12:41:26 PM



821

This appendix summarizes the 143 Unix commands discussed in this book, organized 
into categories.  At the end of each name, the designation [X] indicates the chapter in 
which the command is discussed.  See Appendix A for a summary of commands in 
alphabetical order.  The categories are:

Building Blocks Files System Tools
Command Tools Filesystems Terminals
Comparing Files Logging In and Out Text Formatting
Directories Processes and Job Control Tools
Displaying Data Shells Users and Userids
Documentation Selecting Data Variables
Editing  

BUILDING BLOCKS 
  cat [16] Combine fi les; copy standard input to standard output
  tee [15] Copy standard input to a fi le and to standard output
  xargs [25] Run command using arguments from standard input

COMMAND TOOLS 
  alias [13] Create/display aliases
  type [8] Locate a command: display its pathname or alias
  unalias [13] Delete aliases
  whence [8] Locate a command: display its pathname or alias
  which [8] Locate a command: display its pathname or alias

COMPARING   FILES 
  cmp [17] Compare two fi les
  comm [17] Compare two sorted fi les, show differences
  diff [17] Compare two fi les, show differences
  sdiff [17] Compare two fi les, show differences

A P P E N D I X  B

Summary of Unix Commands
Covered in This Book

Appendix B

33614_apb_821_826.indd   82133614_apb_821_826.indd   821 1/9/2008   12:41:50 PM1/9/2008   12:41:50 PM



822 Harley Hahn’s Guide to Unix and Linux

Chapter references are indicated by the numbers in brackets.

 DIRECTORIES 
  cd [24] Change your working directory
  chmod [25] Change fi le permissions for fi les or directories
  dirs [24] Display/clear contents of the directory stack
  du [24] Display amount of disk storage used by fi les
  file [24] Analyze type of fi le
  ls [24, 25] Display various types of information about fi les
  mkdir [24] Create a directory
  mv [24,25] Move or rename fi les or directories
  popd [24] Change working directory; pop name off directory stack
  pushd [24] Change working directory; push name on directory stack
  pwd [24] Display pathname of your working directory
  rm [25] Delete fi les or directories
  rmdir [24] Remove an empty directory
  tree [24] Display a diagram of a directory tree

DISPLAYING   DATA 
  cat [16] Combine fi les; copy standard input to standard output
  echo [12] Write arguments to standard output
  head [16, 21] Select lines from beginning of data
  hexdump [21] Display binary (non-text) fi les
  less [21] Pager: display data, one screenful at a time
  more [21] Pager: display data, one screenful at a time
  od [21] Display binary (non-text) fi les
  print [12] Write arguments to standard output
  tail [16, 21] Select lines from end of data

 DOCUMENTATION 
  apropos [9] Display command names based on keyword search
  info [9] Display fi le from the Info reference system
  man [9] Display pages from the online Unix reference manual
  whatis [9] Display one-line summary of specifi ed command
  xman [9] GUI-based: display pages from online reference manual

EDITING   
  sed [19] Non-interactive text editing
  vi [22] vi text editor
  view [22] Start vi text editor in read-only mode
  vim [22] Vim text editor

FILES  
  chmod [25] Change fi le permissions for fi le or directory
  cp [25] Copy fi les; copy directories

33614_apb_821_826.indd   82233614_apb_821_826.indd   822 1/9/2008   12:41:50 PM1/9/2008   12:41:50 PM



823

Chapter references are indicated by the numbers in brackets.

  du [24] Display amount of disk storage used by fi les
  find [25] Search for fi les in a directory tree; process results
  ln [25] Create a new link to a fi le
  locate [25] Search for fi les
  ls [24, 25] Display various types of information about fi les
  mkfifo [23] Create a named pipe
  mv [24, 25] Move or rename fi les or directories
  rm [25] Delete fi les or directories
  shred [25] Delete a fi le securely
  stat [25] Display information from an inode
  touch [25] Update access/modifi cation times of fi le; create fi le
  umask [25] Set fi le mode mask for fi le creation
  whence [8] Locate a command: display its pathname or alias
  whereis [25] Find fi les associated with a command

FILESYSTEMS  
  df [24] Display disk space used/available for fi lesystems
  dumpe2fs [24] Display fi lesystem information from superblock
  mount [23] Mount a fi lesystem
  umount [23] Unmount a fi lesystem

LOGGING IN   AND OUT 
  login [4] Terminate a login shell and initiate a new login
  logout [4] Terminate a login shell
  passwd [4] Change your login password

PROCESSES   AND JOB CONTROL 
  & [26] Run a program in the background
  ̂Z [26] Suspend (pause) a foreground process
  fg [26] Move job to the foreground
  suspend [26] Suspend (pause) a shell
  jobs [26] Display information about jobs
  bg [26] Move job to the background
  ps [26] Display information about processes
  top [26] Display data about the most CPU-intensive processes
  prstat [26] Display dynamic information about processes
  pstree [26] Display diagram of a process tree
  ptree [26] Display diagram of a process tree
  fuser [26] Identify processes that are using specifi c fi les
  kill [26] Terminate a process; send a signal to a process
  nice [26] Run a program using specifi ed scheduling priority
  renice [26] Change scheduling priority of a running program

Appendix B

33614_apb_821_826.indd   82333614_apb_821_826.indd   823 1/9/2008   12:41:50 PM1/9/2008   12:41:50 PM



824 Harley Hahn’s Guide to Unix and Linux

Chapter references are indicated by the numbers in brackets.

SHELLS  

  ! [13] Reexecute command from the history list
  !! [13] Reexecute last command from the history list
  ̂^ [13] Substitute/reexecute last command from history list
  bash [11] Bash shell
  bindkey [13] Set command-line editing mode
  chsh [11] Change your default shell
  csh [11] C-Shell
  exit [4] Exit a shell
  fc [13] Display/reexecute commands from the history list
  history [13] Display commands from the history list
  ksh [11] Korn shell
  sh [11] Bourne shell
  tcsh [11] Tcsh shell

SELECTING   DATA 

  cut [17] Extract specifi ed columns/fi elds of data
  grep [19] Select lines containing a specifi ed pattern
  head [16, 21] Select lines from beginning of data
  look [19] Select lines that begin with a specifi ed pattern
  strings [19] Search for character strings in binary fi les
  tail [16, 21] Select lines from end of data

SYSTEM TOOLS  

  dmesg [6] Display boot messages (Linux)
  hostname [8] Display the name of your system
  init [6] Change to another runlevel
  reboot [6] Reboot the computer
  shutdown [6] Shutdown the computer
  su [6] Change to superuser or another userid
  sudo [6] Run a single command as superuser
  uname [8] Display the name of your operating system
  uptime [8] Display how long your system has been up

TERMINALS  

  lock [8] Temporarily lock your terminal
  stty [7] Set/display operating options for your terminal
  tty [23] Display name of the special fi le for your terminal

33614_apb_821_826.indd   82433614_apb_821_826.indd   824 1/9/2008   12:41:50 PM1/9/2008   12:41:50 PM



825

Chapter references are indicated by the numbers in brackets.

TEXT   FORMATTING 

  colrm [16] Delete specifi ed columns of data
  expand [18] Change tabs to spaces
  fmt [18, 22] Format paragraphs to make them look nice
  fold [18] Format long lines into shorter lines
  join [19] Combine columns of data based on common fi elds
  nl [18] Add line numbers to text
  paste [17] Combine columns of data
  pr [18] Format text into pages or columns
  rev [16] Reverse order of characters in each line of data
  sed [19] Non-interactive text editing
  split [16] Split a large fi le into smaller fi les
  tac [16] Combine fi les while reversing order of lines of text
  tr [19] Change or delete selected characters
  unexpand [18] Change spaces to tabs
  uniq [19] Remove adjacent repeated lines in a text fi le

 TOOLS 

  bc [8] Arbitrary-precision, easy-to-use calculator
  cal [8] Display a calendar
  calendar [8] Display current reminders from calendar fi le
  date [8] Display the time and date
  dc [8] Arbitrary-precision, stack-based calculator
  leave [8] Display reminder at a specifi ed time
  sleep [26] Delay for a specifi ed interval
  sort [19] Sort data; check if data is sorted
  tsort [19] Create a total ordering from partial orderings
  wc [18] Count lines, words and characters

USERS   AND USERIDS 

  groups [25] Display the groups to which a userid belongs
  id [25] Display current userid and groupid
  last [4] Check the last time userid has logged in
  quota [8, 24] Display your system resource quotas
  users [8] Display userids that are currently logged in
  w [8] Display info about userids and active processes
  who [8] Display info about currently logged in userids
  whoami [8] Display the userid that is currently logged in

Appendix B

33614_apb_821_826.indd   82533614_apb_821_826.indd   825 1/9/2008   12:41:50 PM1/9/2008   12:41:50 PM



826 Harley Hahn’s Guide to Unix and Linux

Chapter references are indicated by the numbers in brackets.

 VARIABLES 
  echo [12] Write arguments to standard output
  env [12] Display environment variables
  export [12] Export shell variables to the environment
  print [12] Write arguments to standard output
  printenv [12] Display environment variables
  set [12] Set/display shell options and shell variables
  setenv [12] Set/display environment variables
  unset [12] Delete shell variables
  unsetenv [12] Unset environment variables

33614_apb_821_826.indd   82633614_apb_821_826.indd   826 1/9/2008   12:41:51 PM1/9/2008   12:41:51 PM



827

This appendix contains a summary of all the vi commands covered in this book.  For 
more information, see Chapter 22 in which I discuss vi in detail.

STARTING    
   vi fi le  Start vi, edit specifi ed fi le
   vi -R fi le Start vi read-only, edit specifi ed fi le
   view fi le  Start vi read-only, edit specifi ed fi le
   vim fi le   Start Vim, edit specifi ed fi le.
   vim -C fi le  Start vi in compatibility mode

STOPPING   
   :q!  Stop without saving data
   ZZ   Save data and stop
   :wq  Save data and stop
   :x   Save data and stop

RECOVERING AFTER SYSTEM FAILURE    
   vi -r  Display names of fi les that can be recovered
 vi -r fi le  Start vi, recover specifi ed fi le

KEYS TO USE TO MAKE CORRECTIONS  
  <Backspace>/<Delete>   Erase the last character typed
  ̂W  Erase the last word typed
  ̂X /^U  Erase the entire line

CONTROLLING THE DISPLAY  
  ̂L   Redisplay the current screen
  :set number   Display internal line numbers
  :set nonumber   Do not display internal line numbers

A P P E N D I X  C

Summary of vi Commands

Appendix C 

33614_apc_827_832.indd   82733614_apc_827_832.indd   827 1/9/2008   12:42:26 PM1/9/2008   12:42:26 PM



828 Harley Hahn’s Guide to Unix and Linux

MOVING THE CURSOR   

     h  Move cursor one position left
    j  Move cursor one position down
     k  Move cursor one position up
    l  Move cursor one position right
 <Left>   Move cursor one position left
 <Down>   Move cursor one position down
 <Up>   Move cursor one position up
 <Right>  Move cursor one position right
 <Backspace>  Move cursor one position left
 <Space>  Move cursor one position right
     -  Move cursor to beginning of previous line
    +  Move cursor to beginning of next line
 <Return>   Move cursor to beginning of next line
    0  Move cursor to beginning of current line
    $  Move cursor to end of current line
    ^  Move cursor to fi rst non-space/tab in current line
    w  Move cursor forward to fi rst character of next word
    e  Move cursor forward to last character of next word
    b  Move cursor backward to fi rst character of previous word
    W  Same as w; ignore punctuation
    E  Same as e; ignore punctuation
    B  Same as b; ignore punctuation
    )  Move forward to next sentence beginning
    (  Move backward to previous sentence beginning
    }  Move forward to next paragraph beginning
    {  Move backward to previous paragraph beginning
    H  Move cursor to top line
     M  Move cursor to middle line
    L  Move cursor to last line

MOVING THROUGH THE EDITING BUFFER   
    ^F  Move down (forwards) one screenful
    ^B  Move up (backwards) one screenful
 n^F   Move down n screenfuls
 n^B   Move up n screenfuls
    ^D  Move down a half screenful
    ^U  Move up a half screenful
 n^D   Move down n lines
 n^U   Move up n lines

33614_apc_827_832.indd   82833614_apc_827_832.indd   828 1/9/2008   12:42:26 PM1/9/2008   12:42:26 PM



829

SEARCHING FOR A PATTERN   

  /regex   Search forward for specifi ed regular expression
   /  Repeat forward search for previous pattern
  ?regex  Sarch backward for specifi ed regular expression
   ?  Repeat backward search for previous pattern
   n  Repeat last / or ? command, same direction
   N  Repeat last / or ? command, opposite direction

SPECIAL CHARACTERS TO USE IN REGULAR EXPRESSIONS   

  .  Match any single character except newline
  *  Match zero or more of the preceding characters
  ̂  Match the beginning of a line
  $  Match the end of a line
   \<  Match the beginning of a word
   \>  Match the end of a word
  [     ]   Match one of the enclosed characters
  [^ ]   Match any character that is not enclosed
    \  Interpret the following symbol literally

LINE NUMBERS  

 nG  Jump to line number n
   1G  Jump to fi rst line in editing buffer
   gg  Jump to fi rst line in editing buffer
    G  Jump to last line in editing buffer
  :map g 1G   Defi ne macro so g will be the same as 1G
 :n   Jump to line number n
   :1  Jump to fi rst line in editing buffer
   :$  Jump to last line in editing buffer

INSERTING  

    i  Change to insert mode: insert before cursor position
    a  Change to insert mode: insert after cursor position
    I  Change to insert mode: insert at start of current line
    A  Change to insert mode: insert at end of current line
    o  Change to insert mode: open below current line
    O  Change to insert mode: open above current line
   <Escape>   Leave insert mode, change to command mode

Appendix C

33614_apc_827_832.indd   82933614_apc_827_832.indd   829 1/9/2008   12:42:26 PM1/9/2008   12:42:26 PM



830 Harley Hahn’s Guide to Unix and Linux

MAKING CHANGES  
   r  Replace exactly 1 character (do not enter input mode)
   R  Replace by typing over
   s  Replace 1 character by insertion
   C  Replace from cursor to end of line by insertion
   cc Replace entire current line by insertion
   S  Replace entire current line by insertion
   cmove   Replace from cursor to move by insertion
   ~  Change the case of a letter

REPLACING A PATTERN   
                  :s/pattern/replace/  Substitute, current line
   :lines/pattern/replace/  Substitute, specifi ed line
:line,lines/pattern/replace/  Substitute, specifi ed range
              :%s/pattern/replace/  Substitute, all lines

At the end of a command, use c to ask for confi rmation, and g (global) to replace all 
occurrences on each line.  To specify a line number, you can use an actual number, a . 
(period) for the current line, or $ (dollar sign) for the last line in the editing buffer.  The 
number 1 represents the fi rst line in the editing buffer.

UNDOING OR REPEATING    A CHANGE
   u  Undo last command that modifi ed the editing buffer
   U  Restore current line
   .  Repeat last command that modifi ed the editing buffer

BREAKING AND JOINING LINES    
   r<Return>   Break current line into two (replace character with newline)
    J  Join current line and next line into one long line
   :set wm=n  Auto line break within n positions of right margin

DELETING   
        x  Delete character at cursor
        X  Delete character to left of cursor
        D  Delete from cursor to end of line
        dd   Delete the entire current line
        dmove  Delete from cursor to move
        dG   Delete from current line to end of editing buffer
         d1G  Delete from current line to start of editing buffer
           lined  Delete specifi ed line
:line,lined   Delete specifi ed range

33614_apc_827_832.indd   83033614_apc_827_832.indd   830 1/9/2008   12:42:26 PM1/9/2008   12:42:26 PM



831

DELETING: USEFUL COMBINATIONS

   dw delete 1 word
 dnw   delete n words
   dnW delete n words (ignore punctuation)
   db delete backward, 1 word
   dn) delete n sentences
   dn} delete n paragraphs
   dG delete from current line to end of editing buffer
   dgg delete from current line to start of editing buffer
   d1G delete from current line to start of editing buffer

COPYING THE LAST DELETION   

   p copy buffer; insert after/below cursor
   P copy buffer; insert before/above cursor
   xp transpose two characters
   deep transpose two words (start to the left of fi rst word)
   ddp transpose two lines
  "1pu.u.u...   recall one deletion after another

COPYING AND MOVING LINES    

  :linecotarget   copy specifi ed line; insert below target
 :line,linecotarget copy specifi ed range; insert below target
  :linemtarget   move specifi ed line; insert below target
 :line,linemtarget move specifi ed range; insert below target

YANKING   

   ymove  yank from cursor to move
   yy yank the entire current line

YANKING: USEFUL COMBINATIONS

   yw yank 1 word
 ynw yank n words
 ynW   yank n words (ignore punctuation)
   yb yank backward, 1 word
   yn) yank n sentences
   yn} yank n paragraphs
   yG yank from current line to end of editing buffer
   ygg yank from current line to start of editing buffer
   y1G yank from current line to start of editing buffer

Appendix C

33614_apc_827_832.indd   83133614_apc_827_832.indd   831 1/9/2008   12:42:27 PM1/9/2008   12:42:27 PM



832 Harley Hahn’s Guide to Unix and Linux

EXECUTING SHELL COMMANDS   

  :!command pause vi,   execute specifi ed shell command
  :!! pause vi,  execute previous shell command
  :sh  pause vi, start a shell
  :!csh pause vi, start a new C-Shell

READING DATA INTO EDITING BUFFER   

:liner fi le insert contents of fi le after specifi ed line
  :r fi le insert contents of fi le after current line
:liner !command  insert output of command after specifi ed line
  :r !command insert output of command after current line
  :r !look pattern insert words that begin with specifi ed pattern

USING SHELL COMMANDS TO PROCESS   DATA

n  !!command  execute command on n lines
  !move command   execute command from cursor to move
  !move fmt   format lines from cursor to move

WRITING DATA  

    :w write data to original fi le
  :w fi le write data to specifi ed fi le
    :w>> fi le append data to specifi ed fi le

CHANGING THE FILE WHILE EDITING   

    :e fi le edit the specifi ed fi le
    :e! fi le edit the specifi ed fi le, omit automatic check

ABBREVIATIONS  

  :ab short long  set short as an abbreviation for long
:ab  display current abbreviations
  :una short cancel abbreviation short

33614_apc_827_832.indd   83233614_apc_827_832.indd   832 1/9/2008   12:42:27 PM1/9/2008   12:42:27 PM



833Appendix D

Before the 1990s, the   character encoding used by Unix (and most computer systems) was 
the ASCII CODE, often referred to as ASCII. The name stands for “American Standard 
Code for Information Interchange”.

The ASCII code was created in 1967. It specifi es a 7-bit pattern for every character, 128 
in all. These bit patterns range from 0000000 (0 in decimal) to 1111111 (127 in decimal). 
For this reason, the 128 ASCII characters are numbered from 0 to 127.

The 128 characters that comprise the ASCII code consist of 33 “control characters” 
and 95 “printable characters”. The control characters are discussed in see Chapter 7. 
The printable characters, shown below, are the 52 letters of the alphabet (26 uppercase, 
26 lowercase), 10 numbers, 32 punctuation symbols, and the space character (listed 
fi rst below):

 !"#$%&'()*+,-./0123456789:;<=>?
@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_
‘abcdefghijklmnopqrstuvwxyz{|}~

As a convenience, most Unix systems have a reference page showing the ASCII code 
to allow you to look at it quickly whenever you want. Unfortunately, the ASCII reference 
page is not standardized, so the way in which you display it depends on which system you 
are using. You can see the details in Figure 19-1 or Figure 20-5.

A P P E N D I X  D

The ASCII Code

33614_apd_833_837.indd   83333614_apd_833_837.indd   833 1/9/2008   12:42:53 PM1/9/2008   12:42:53 PM



834 Harley Hahn’s Guide to Unix and Linux

 CHARACTER DECIMAL HEX OCTAL BINARY

  0 00 000 0000 0000 (null)

 Ctrl-A 1 01 001 0000 0001 

 Ctrl-B 2 02 002 0000 0010 

 Ctrl-C 3 03 003 0000 0011 

 Ctrl-D 4 04 004 0000 0100 

 Ctrl-E 5 05 005 0000 0101 

 Ctrl-F 6 06 006 0000 0110 

 Ctrl-G 7 07 007 0000 0111 (beep)

 Ctrl-H 8 08 010 0000 1000 backspace

 Ctrl-I 9 09 011 0000 1001 tab

 Ctrl-J 10 0A 012 0000 1010 

 Ctrl-K 11 0B 013 0000 1011 

 Ctrl-L 12 0C 014 0000 1100 

 Ctrl-M 13 0D 015 0000 1101 return

 Ctrl-N 14 0E 016 0000 1110 

 Ctrl-O 15 0F 017 0000 1111 

 Ctrl-P 16 10 020 0001 0000 

 Ctrl-Q 17 11 021 0001 0001 

 Ctrl-R 18 12 022 0001 0010 

 Ctrl-S 19 13 023 0001 0011 

 Ctrl-T 20 14 024 0001 0100 

 Ctrl-U 21 15 025 0001 0101 

 Ctrl-V 22 16 026 0001 0110 

 Ctrl-W 23 17 027 0001 0111 

 Ctrl-X 24 18 030 0001 1000 

 Ctrl-Y 25 19 031 0001 1001 

 Ctrl-Z 26 1A 032 0001 1010 

 Ctrl-[ 27 1B 033 0001 1011 escape

 Ctrl-\ 28 1C 034 0001 1100 

 Ctrl-] 29 1D 035 0001 1101 

 Ctrl-^ 30 1E 036 0001 1110 

 Ctrl-_ 31 1F 037 0001 1111 

33614_apd_833_837.indd   83433614_apd_833_837.indd   834 1/9/2008   12:42:54 PM1/9/2008   12:42:54 PM



835

 CHARACTER DECIMAL HEX OCTAL BINARY

 (space) 32 20 040 0010 0000 space

 ! 33 21 041 0010 0001 (exclamation mark)

 " 34 22 042 0010 0010 (double quote)

 # 35 23 043 0010 0011 (number sign)

 $ 36 24 044 0010 0100 (dollar sign)

 % 37 25 045 0010 0101 (percent sign)

 & 38 26 046 0010 0110 (ampersand)

 ' 39 27 047 0010 0111 (single quote)

 ( 40 28 050 0010 1000 (left parenthesis)

 ) 41 29 051 0010 1001 (right parenthesis)

 * 42 2A 052 0010 1010 (asterisk)

 + 43 2B 053 0010 1011 (plus)

 , 44 2C 054 0010 1100 (comma)

 - 45 2D 055 0010 1101 (minus/hyphen)

 . 46 2E 056 0010 1110 (period)

 / 47 2F 057 0010 1111 (slash)

 0 48 30 060 0011 0000 

 1 49 31 061 0011 0001 

 2 50 32 062 0011 0010 

 3 51 33 063 0011 0011 

 4 52 34 064 0011 0100 

 5 53 35 065 0011 0101 

 6 54 36 066 0011 0110 

 7 55 37 067 0011 0111 

 8 56 38 070 0011 1000 

 9 57 39 071 0011 1001 

 : 58 3A 072 0011 1010 (colon)

 ; 59 3B 073 0011 1011 (semicolon)

 < 60 3C 074 0011 1100 (less than)

 = 61 3D 075 0011 1101 (equals)

 > 62 3E 076 0011 1110 (greater than)

 ? 63 3F 077 0011 1111 (question mark)

Appendix D

33614_apd_833_837.indd   83533614_apd_833_837.indd   835 1/9/2008   12:42:54 PM1/9/2008   12:42:54 PM



836 Harley Hahn’s Guide to Unix and Linux

 CHARACTER DECIMAL HEX OCTAL BINARY

 @ 64 40 100 0100 0000 (at sign)

 A 65 41 101 0100 0001 

 B 66 42 102 0100 0010 

 C 67 43 103 0100 0011 

 D 68 44 104 0100 0100 

 E 69 45 105 0100 0101 

 F 70 46 106 0100 0110 

 G 71 47 107 0100 0111 

 H 72 48 110 0100 1000 

 I 73 49 111 0100 1001 

 J 74 4A 112 0100 1010 

 K 75 4B 113 0100 1011 

 L 76 4C 114 0100 1100 

 M 77 4D 115 0100 1101 

 N 78 4E 116 0100 1110 

 O 79 4F 117 0100 1111 

 P 80 50 120 0101 0000 

 Q 81 51 121 0101 0001 

 R 82 52 122 0101 0010 

 S 83 53 123 0101 0011 

 T 84 54 124 0101 0100 

 U 85 55 125 0101 0101 

 V 86 56 126 0101 0110 

 W 87 57 127 0101 0111 

 X 88 58 130 0101 1000 

 Y 89 59 131 0101 1001 

 Z 90 5A 132 0101 1010 

 [ 91 5B 133 0101 1011 (left square bracket)

 \ 92 5C 134 0101 1100 (backslash)

 ] 93 5D 135 0101 1101 (right square bracket)

 ^ 94 5E 136 0101 1110 (circumfl ex)

 _ 95 5F 137 0101 1111 (underscore)

33614_apd_833_837.indd   83633614_apd_833_837.indd   836 1/9/2008   12:42:54 PM1/9/2008   12:42:54 PM



837

 ‘ 96 60 140 0110 0000 (backquote)

 a 97 61 141 0110 0001 

 b 98 62 142 0110 0010 

 c 99 63 143 0110 0011 

 d 100 64 144 0110 0100 

 e 101 65 145 0110 0101 

 f 102 66 146 0110 0110 

 g 103 67 147 0110 0111 

 h 104 68 150 0110 1000 

 i 105 69 151 0110 1001 

 j 106 6A 152 0110 1010 

 k 107 6B 153 0110 1011 

 l 108 6C 154 0110 1100 

 m 109 6D 155 0110 1101 

 n 110 6E 156 0110 1110 

 o 111 6F 157 0110 1111 

 p 112 70 160 0111 0000 

 q 113 71 161 0111 0001 

 r 114 72 162 0111 0010 

 s 115 73 163 0111 0011 

 t 116 74 164 0111 0100 

 u 117 75 165 0111 0101 

 v 118 76 166 0111 0110 

 w 119 77 167 0111 0111 

 x 120 78 170 0111 1000 

 y 121 79 171 0111 1001 

 z 122 7A 172 0111 1010 

 { 123 7B 173 0111 1011 (left brace bracket)

 | 124 7C 174 0111 1100 (vertical bar)

 } 125 7D 175 0111 1101 (right brace bracket)

 ~ 126 7E 176 0111 1110 (tilde)

  127 7F 177 0111 1111 del 

 CHARACTER DECIMAL HEX OCTAL BINARY

Appendix D

33614_apd_833_837.indd   83733614_apd_833_837.indd   837 1/9/2008   12:42:54 PM1/9/2008   12:42:54 PM



838 Harley Hahn’s Guide to Unix and Linux

A P P E N D I X  E

What to Do If You Forget 
the Root Password

When you      use your own Unix system, you are the system administrator, which means 
there is no one to help you if something goes wrong.
 So what do you do if you forget the root (superuser) password?
 Here are the steps to follow to solve this problem for a typical Linux system.  The 
actual details may vary a bit from one system to another, but what you read here should 
work with most modern Linux distributions.
 I won’t explain all of the commands in detail, because that would take us into the 
realm of system administration, which is beyond the scope of this book.  If there is a 
command you don’t understand, just look it up in the online manual or ask someone 
for help.
 If you have   sudo privileges (see Chapter 6), you may be able to change the root 
password quickly by using the command:

sudo passwd root

You will fi nd that more elaborate measures are necessary if you don’t have sudo 
privileges, or if your system is confi gured in such a way that sudo will not let you change 
the root password.
 The general strategy is to take control of the computer by booting from a live Linux 
CD.  Then mount the main (root) fi le system that resides on your hard disk.  Once this 
is done, you can use the mount point as the root of the fi le system, and then change the 
root password with the standard passwd program.

1.  Boot Linux from a live CD.

2.   Press <Crtl-Alt-F1> to get to a command line.

3.   Change to superuser:

sudo su

33614_ape_838_840.indd   83833614_ape_838_840.indd   838 1/9/2008   12:43:18 PM1/9/2008   12:43:18 PM



839Appendix E

4.   Start the partition table editor:

   parted

(If your system does not have parted, you’ll have to use another partition editor 
such as fdisk, cfdisk or sfdisk.)

5.  Within parted, display the partitions on your primary hard disk:

print

6.  Write down the device name for the hard disk that contains your Linux system, for 
example, /dev/hda or /dev/sda.

7.   Write down the number of the main Linux partition, for example, partition number 2.

  If you are not sure which is the root partition, look for a fi le system type of ext3, 
ext2, reiserfs or xfs.  If there is more than one such partition, write down all 
their numbers.

8.   Stop the parted program:

quit

You should now be back at the shell prompt.

9.  Create a mount point for the fi le system that resides on the hard disk.  (In this 
example, I will call it harley):

mkdir /mnt/harley

10.  Mount the    root fi le system from the hard disk by using the device name and partition 
number you got from parted. For example, if your device name was /dev/hda 
and your partition was number 2, you would use the command:

mount /dev/hda2 /mnt/harley

If, in step 7, you found more than one possible partition, choose one of them.  If it 
doesn’t work, you can try another.

11.  Confi rm that you have mounted the root partition.  To test this, see if the shadow fi le 
(/etc/shadow) — the fi le that contains the passwords — lies in that partition:

ls /mnt/harley/etc/shadow

If the password fi le isn’t there, you have not mounted the root partition.  Go back to 
step 10 and try a different partition.  Continue until you have successfully mounted 
the root partition.

33614_ape_838_840.indd   83933614_ape_838_840.indd   839 1/9/2008   12:43:18 PM1/9/2008   12:43:18 PM



840 Harley Hahn’s Guide to Unix and Linux

12.  Change the root password on the hard disk system.

There are various ways to do this.  The simplest strategy is to run the   passwd 
command using the new mount point as the root of the fi le system.  This can be done 
with one simple command:

chroot /mnt/harley passwd

This   chroot (change root) command means: “Change the root of the fi le tree 
temporarily to /mnt/harley, and then execute the command passwd.”

Since you are in superuser mode, the passwd command will change the root 
password.  And since the fi le system root is temporarily /mnt/harley, the password 
fi le that will be used is the one on the hard disk (/mnt/harley/etc/shadow).

In this way, you are able to change the root password for the system on the hard disk.

13.  Remove the CD, reboot from the hard disk, and test to make sure the password was 
changed correctly.

WHAT’S IN A NAME?

Root 
Within Unix, the name “root” has four different meanings:

• The userid of the superuser.
• The name of the directory that is the starting point of the Unix fi le tree.
• The name of the main Unix fi le system.
• The name of the disk partition that contains the root fi le system.

Notice that, within the short set of instructions in this appendix, we have managed to use the 
word “root” in all four ways.
 That is, we mounted the root fi le system that resides in the root partition, in order to make 
the mount point the root of the Unix fi le tree so we could change the root password.

33614_ape_838_840.indd   84033614_ape_838_840.indd   840 1/9/2008   12:43:18 PM1/9/2008   12:43:18 PM



841

A P P E N D I X  F

Time Zones
and 24-Hour Time

Unix and the Internet are used around the world, and times must be expressed carefully, 
especially within the headers of email messages and Usenet articles.
 In general, both Unix and the Internet    use a 24-hour clock.  For example, within the 
header of an email message, you might see 20:50 instead of 8:50 PM.  If you are not used 
to a 24-hour clock, use the conversion information below.

Conversion between the 24-hour time system 
and the AM/PM time system.

(midnight) 12:00 AM = 00:00 12:00 PM = 12:00 (noon)

 1:00 AM = 01:00  1:00 PM = 13:00

 2:00 AM = 02:00  2:00 PM = 14:00

 3:00 AM = 03:00  3:00 PM = 15:00

 4:00 AM = 04:00  4:00 PM = 16:00

 5:00 AM = 05:00  5:00 PM = 17:00

 6:00 AM = 06:00  6:00 PM = 18:00

 7:00 AM = 07:00  7:00 PM = 19:00

 8:00 AM = 08:00  8:00 PM = 20:00

 9:00 AM = 09:00  9:00 PM = 21:00

10:00 AM = 10:00 10:00 PM = 22:00

11:00 AM = 11:00 11:00 PM = 23:00

Whenever your programs need to know the time, date, or time zone, they get the 
information from settings that are maintained by Unix.  For example, when you send a 
mail message, your mail program puts the date, time, and time zone on the message.
 To ensure that the time and date are always correct,   most Unix systems use a program 
to synchronize the computer’s clock with an exact time source on the Internet.  This 
program runs in the background, checking the time and date automatically at regular 

Appendix F

33614_apf_841_845.indd   84133614_apf_841_845.indd   841 1/9/2008   12:43:43 PM1/9/2008   12:43:43 PM



842 Harley Hahn’s Guide to Unix and Linux

intervals, and making corrections as necessary*.  Although the time checking is automatic, 
you do need to make sure your time zone is set correctly.  Normally, this is done when you 
install Unix.
 In practice, you will see   time zone information expressed in three different ways. First, 
when you see a specifi c time, you may also see an abbreviation for the local time zone.  
For example, here is the output from a   date command (see Chapter 8) that shows a time 
of 8:50 PM, Pacifi c Daylight Time (PDT):

$ date
Sun Dec 21 20:50:17 PDT 2008

Another way you might see this same information is with the time converted to    UTC 
(Coordinated Universal Time), also referred to as   GMT (Greenwich Mean Time) or   UT 
(Universal Time)**. (In case you are not familiar with UTC, I explain it below.)
 UTC is considered to be a universal time.  It is expected that everyone who uses the 
Internet should be able to translate UTC times into his or her own local time.  If you are 
not sure how to do this, the tables in Figures F-1 and F-2 will help you.
 You will often see UTC/GMT/UT times in an email message or Usenet article, even 
when the message or article did not originate in the UTC time zone. The conversion 
is done automatically by the software. As an example, here is the same time as the one 

 *Time-checking is carried out    using a system called NTP or Network Time Protocol.  The purpose of NTP is to synchronize 
computer clocks with a reference clock.  The reference clock can be on the same network or on the Internet.
 The program that does the work is     ntpd, a daemon that runs in the background.  Some systems use a program called 
ntpdate, which is not a daemon.  ntpd does a better job at time synchronization and, eventually, it will replace ntpdate.  For 
this reason, the use of ntpdate is deprecated.  Similarly, an older program called rdate is also deprecated in favor of ntpd.
 **There are technical differences between UTC, GMT and UT.  However, for practical purposes, you can consider them 
the same.

ABBREVIATION  TIME ZONE DIFFERENCE FROM UTC

UTC           Coordinated Universal Time  0

GMT           Greenwich Mean Time         same as UTC

UT            Universal Time              same as UTC

EST           Eastern Standard Time       -5 hours

EDT           Eastern Daylight Time       -4 hours

CST           Central Standard Time       -6 hours

CDT           Central Daylight Time       -5 hours

MST           Mountain Standard Time      -7 hours

MDT           Mountain Daylight Time      -6 hours

PST           Pacifi c Standard Time      -8 hours

PDT          Pacifi c Daylight Time       -7 hours

FIGURE F-1: U.S. Time Zones in Relation to UTC

Most parts    of the U.S. change to   Daylight Saving Time on the second Sunday in March.  The change 
back to Standard Time is on the fi rst Sunday in November.

33614_apf_841_845.indd   84233614_apf_841_845.indd   842 1/9/2008   12:43:44 PM1/9/2008   12:43:44 PM



843

above specified as UTC.  To display the current time in this format, use date with 
the -u option:

$   date -u
Sun Dec 21 03:50:17 UTC 2008

Notice how, in this example, the UTC time is 3:50 AM one day later. This is because UTC 
is 7 hours ahead of PDT. For reference, Figure F-1 summarizes the time zones used in 
the U.S. and how they compare to UTC.  Figure F-2 does the same for the European and 
Indian time zones*.
 One last way in which you may see time specifi ed is as a local time followed by the 
difference in hours from UTC.  Here is an example taken from an email header.  The 
format is a bit different from that of the date command.

Date: Sun, 21 Dec 2008 20:50:17 -0700

This header line shows the same time, 8:50 PM, and indicates that the local time zone is 
-7 hours different from UTC.
 Once you understand how time zones differ from UTC, you can use the tables in 
Figures F-2 and F-3 to convert local times and calculate time zone differences.  Here are 
some examples.

ABBREVIATION  TIME ZONE                     DIFFERENCE FROM UTC

UTC           Coordinated Universal Time    0

GMT           Greenwich Mean Time          same as UTC

UT            Universal Time                same as UTC

WET           Western European Time         same as UTC

WEST          Western European Summer Time  +1 hour

BST           British Summer Time           +1 hour

IST           Irish Summer Time             +1 hour

CET           Central European Time         +1 hour

CEST          Central European Summer Time  +2 hours

EET           Eastern European Time         +2 hour

EEST         Eastern European Summer Time  +3 hours

IST          India Standard Time          +5.5 hours

FIGURE F-2: European and Indian time zones in relation to UTC

In most places, the change to      Summer Time is made on the last Sunday in March.  The change back to 
regular time is made on the last Sunday in October.

 *Time zone information is actually much more complicated than you might think.  The information in these tables covers 
only a small number of the world’s time zones.
 To keep track of all such data, Unix systems use a standard reference known as the     tz or zoneinfo database.  This 
database is sometimes called the Olson database, named after the American programmer Arthur David Olson, who started 
compiling time zone information in the mid-1980s.

Appendix F

33614_apf_841_845.indd   84333614_apf_841_845.indd   843 1/9/2008   12:43:44 PM1/9/2008   12:43:44 PM



844 Harley Hahn’s Guide to Unix and Linux

You live in New York and   it is summer.  You get an email message with the time 17:55 UTC.  
What is this in your local time?

In the summer, New York uses EDT (Eastern Daylight Time).  Checking with the tables, 
you see the difference between UTC and EDT is -4 hours.  Thus, 17:55 UTC is 13:55 EDT, 
or 1:55 PM New York time.

You live in California and you have a friend in Germany.  How many hours is he ahead of you?

Assume it is winter.  California uses PST (Pacifi c Standard Time), and Germany uses CET 
(Central European Time).  From the tables, the difference between UTC and PST is -8 
hours. The difference between UTC and CET is +1 hours. Thus, your friend is 9 hours 
ahead of you.
 In the summer, PST changes to PDT, and CET changes to CEST.  However, the difference 
between the two time zones does not change, and your friend is still 9 hours ahead of you.

You work at a technically advanced Internet company on the U.S. West coast.  You are the 
manager of the Foobar department, and you have to arrange a weekly telephone meeting 
with the programmers, who work in Bangalore, India, and the Vice President of Information 
Confusion, who works in New York.  What is the best time to have the meeting?

To start, let’s assume it is winter.  The U.S. West Coast uses PST, New York uses EST, and 
India uses IST (India Standard Time).  According to the tables, the difference between PST 
and UTC is -8 hours.  The difference between EST and UTC is -5 hours.  The difference 
between IST and UTC is +5.5 hours.  This means that India is 10.5 hours ahead of New 
York and 13.5 hours ahead of the U.S. West Coast.  For example, midnight on the West 
Coast is 1:30 PM in India.
 Let’s say that you can induce the programmers to come in early and talk to you at 7:30 AM 
their time.  In New York, it will be 9:00 PM the previous day.  On the West Coast, it will 
be 6:00 PM the previous day.  This is a good fi t, so you set up your weekly meeting at 6:00 
PM Monday on the West Coast, 9:00 PM Monday in New York, and 7:30 AM Tuesday 
morning in India.
 In the summer, PST moves ahead 1 hour to PDT, and EST moves ahead 1 hour to EDT.  
Indian time doesn’t change.  Looking at the tables and recalculating, we see that, during the 
summer, India is only 9.5 hours ahead of New York and 12.5 hours ahead of the West Coast.  
Thus, if you keep the same times for the West Coast and New York, the programmers don’t 
have to show up until 8:30 AM, which lets them sleep in for an extra hour.

WHAT’S IN A NAME?

UTC, UT, GMT
Greenwich (pronounced “Gren-itch”), a         borough of London, was the home of the Royal 
Observatory from 1675-1985.  It was at this observatory that our modern system of timekeeping 
and longitude was developed.  For this reason, the imaginary north- south line that runs through 
the observatory is designated as 0 degrees longitude.

33614_apf_841_845.indd   84433614_apf_841_845.indd   844 1/9/2008   12:43:44 PM1/9/2008   12:43:44 PM



845

(continued...) In 1884, the time at Greenwich was adopted as the global standard used to 
determine all the time zones around the world.  This global standard time is called Greenwich 
Mean Time or GMT.  (In this context, the word “mean” refers to average.)  GMT is used 
widely on the Internet, and is sometimes referred to by the newer, more offi cial name of UT 
(Universal Time).
 In addition to UT, you will see another name, UTC (Coordinated Universal Time).  UTC is 
the offi cial value of Universal Time as calculated by the U.S. National Bureau of Standards and 
the U.S. Naval Observatory.
 You might wonder why the abbreviation for Coordinated Universal Time is UTC, not CUT.
 UTC was adopted as an offi cial international standard in 1970.  The work was done by a 
group of experts within the International Telecommunication Union.  When it came time to 
name the new standard, the group had a problem.
 In English, the abbreviation for Coordinated Universal Time would be CUT.  But in French, 

the name is Temps Universel Coordonné, and the abbreviation would be TUC.  The group of 
experts wanted the same abbreviation to be used everywhere, but they couldn’t agree on whether 
it should be CUT or TUC.  The compromise was to use UTC.  Although the abbreviation is 
inexact in both English and French, it had the enormous advantage of keeping the peace.
 (Not too many people know this, but now you do.)

Appendix F

33614_apf_841_845.indd   84533614_apf_841_845.indd   845 1/9/2008   12:43:44 PM1/9/2008   12:43:44 PM



846 Harley Hahn’s Guide to Unix and Linux

A P P E N D I X  G

Shell Options 
and Shell Variables

Every shell supports a variety of ways for you to control its behavior. The Bourne Shell family 
(Bash, Korn Shell) uses shell options; the C-Shell family (Tcsh, C-Shell) uses both shell 
options and shell variables. This appendix summarizes these options and variables.  

For a detailed discussion of both shell options and shell variables, see Chapter 12.

BOURNE SHELL FAMILY
The Bourne Shell family   uses a large number of options to control the behavior of the 
shell. In particular, interactive shells require different options than non-interactive 
shells. (In fact, this is what makes them interactive.) There are two ways to specify such 
options. First, they may be invoked in the standard manner by specifying options on 
the command line when the shell is started. This is the case for non-interactive shells 
that are run automatically, and for interactive shells that you yourself start by entering a 
command. For example:

bash -vx

(By the way, these two options are particularly useful when you are testing or debugging 
a shell script.)
 Within an interactive shell — that is, at the shell prompt — you can turn options on 
or off as you wish. To set (turn on) an option, use the   set -o command. To unset (turn 
off) an option, use the   set +o command. When you use these commands, you specify 
the long name for the option, not its abbreviation. For example:

set -o verbose
set +o xtrace

To display the current state of all the options, use either command by itself:

set -o
set +o

33614_apg_846_850.indd   84633614_apg_846_850.indd   846 1/9/2008   12:44:32 PM1/9/2008   12:44:32 PM



847

SHELLS OPTION LONG NAME MEANING

 B  K  -a  allexport Export all subsequently defi ned variables and functions

 •  K  bgnice Run background jobs at lower priority

 B  •  -B  braceexpand Enable brace expansion

 B  K  -c — Read commands from string argument

 B  K  -E    emacs Command line editor: Emacs mode; turns off vi mode

 B  K  -e    errexit If a command fails, abort and exit script

 B  K  -h    hashall Hash (remember) locations of commands as they are found

 B  •  -H    histexpand Enable ! style history substitution

 B •   history Enable command history

 B  K  -I    ignoreeof Ignore eof signal ^D; use exit to quit shell (see Chapter 7)

 B  K  -k    keyword Place all keyword arguments in the environment

 •  K  markdirs When globbing, append / to directory names

 B  K  -m    monitor Job control: enable

 B  K  -C    noclobber Do not allow redirected output to replace a fi le

 B  K  -n    noexec Debug: read commands, check syntax, but do not execute

 B  K  -f    noglob Disable globbing (expansion of fi lenames)

 •  K  nolog Do not save function defi nitions in history fi le

 B  K  -b    notify Job control: notify immediately when background jobs fi nish

 B  K  -u    nounset Treat using an unset variable as an error

 B  K  -t    onecmd Read and execute one command, then exit

 B  •  posix Conform to POSIX standard

 B  •  -p    privileged Use privileged mode to run a script or start a shell

 B  •  -r — Start shell in restricted mode

 •  K  -s — Sort positional parameters

 •  K  trackall Aliases: substitute full pathnames for commands

 B  K  -v  verbose Debug: echo each command to stderr (standard error)

 B  K  -V  vi Command line editor: vi mode; turns off Emacs mode

 •  K  viraw In vi mode: process each character as it is typed

 B  K  -x  xtrace Debug: as command executes, echo to stderr (that is, trace)

FIGURE G-1: Bourne Shell family: Shell options

This table   summarizes the important shell options available with the Bourne Shell family. The leftmost 
column shows which shells support each option: B = Bash;  K = Korn Shell.  A dot indicates that a shell 
does not support that option.  Note that some options, such as bgnice, have a long name but not a 
short option name.  For more information, see the man page for your particular shell.

Notes: (1) Although Bash supports the emacs  and vi options, it does not use  -E and -V. (2) The 
Korn shell uses  -h and -t, but does not support the  long names hashall and onecmd.

Appendix G

33614_apg_846_850.indd   84733614_apg_846_850.indd   847 1/9/2008   12:44:33 PM1/9/2008   12:44:33 PM



848 Harley Hahn’s Guide to Unix and Linux

The -o variation prints human-readable output; +o prints output suitable for a script. 
(Try them.)
 In all, the Bourne Shell family uses a great many shell options. In most cases, you will 
not need to change them, because the defaults will work just fi ne. For reference, however, 
the table in Figure G-1 summarizes the shell options for Bash and the Korn Shell. Not 
all options are available with all shells, so be sure to look at the leftmost column, which 
shows you which shells support each option.
 With Bash, there are extra options available to control a variety of features.  To set and 
unset these options, you use the   shopt (“shell options”) command. The shopt options 
are so esoteric that you are unlikely to need them. If you have a moment, though, and 
you’d like to take a look at them, see the shopt man page.

C-SHELL FAMILY
The C-Shell family   also uses options to control the behavior of the shell. These options 
are summarized in Figure G-2. If you compare the options in Figure G-2 with those in 
Figure G-1, you will notice that most of the C-Shell options are also used by the Bourne 
Shell family. However, there is an important difference.

HINT

The best place to read about the Bash shopt options is the Bash man page.  To fi nd the relevant 
discussion, search for “shopt”.

SHELLS OPTION SHELL VARIABLE  MEANING

 C  T  -c Read commands from string argument; compare to -s

 •  T  -d Load directory stack from .cshdirs fi le

 C  T  -e If a command fails, abort and exit script

 C  T  -i Interactive mode (affects prompts, error handling, etc.)

 C  T   -n Debug: read commands, check syntax, but do not execute

 C  T  -s Read commands from stdin (standard input); compare to -c

 C  T  -t Read and execute one command, then exit

 C  T  -v verbose Debug: print each command, after history substitution only

 C  T  -V verbose Debug: set verbose before reading .tcshc/.cshrc fi le

 C  T  -x echo Debug: echo each command, after all substitutions

 C  T  -X echo Debug: set echo before reading .tcshc/.cshrc fi le

FIGURE G-2: C-Shell family: Shell options 

This table summarizes the important   shell  options available with C-Shell family. The  leftmost column 
shows which shells support  each option: C = C-Shell; T = Tcsh. A dot  indicates that a shell does not 
support that  option. For more information, see the man  page for your particular shell.

Note: The -v and -V options work by setting the verbose shell variable. The -x and -X options 
work by setting the echo shell variable.

33614_apg_846_850.indd   84833614_apg_846_850.indd   848 1/9/2008   12:44:33 PM1/9/2008   12:44:33 PM



849

 In the Bourne Shell family the behavior of the shell is controlled entirely by options, 
of which there are three types: regular command-line options (such as -v), “long name” 
options used with the set +o command, and the large number of extra options used 
only with the Bash shopt command.
 Although the C-Shell family does   use a small number of command-line options 
(Figure  G-2), for the most part, the behavior of a shell is controlled by shell variables. 
This is one of the important differences between C-Shell family and the Bourne Shell 
family, and is explained in detail in Chapter 12. For reference, Figure G-3 contains a 
summary of the shell variables used by the C-Shell and Tcsh.

SHELLS  SHELL VARIABLE MEANING

 •  T     addsuffi x      Autocomplete: append / (slash) after directory names

 •  T     ampm           Show times in 12-hour AM/PM format

 •  T     autocorrect   Spell-correct: invoke spell-word editor before completion attempt

 •  T     autoexpand Autocomplete: invoke expand-history editor before completion attempt

 •  T     autolist       Autocomplete: when completion fails, list remaining choices

 •  T     autologout    Time (in minutes) until auto-logout, if you don’t type a command

 C  T     cdpath         Directories to be searched by cd, chdir, popd

 •  T    color          Cause ls-F command to use color

 •  T     complete      Autocomplete: igncase=ignore case; enhance=also . - are separators

 •  T     correct        Spell-correct: cmd=command; all=entire line; complete=complete instead

 C  T     cwd            Your current working directory (compare to owd)

 C  T     echo           Debug: echo each command, after all substitutions

 •  T     echo_style     echo command: bsd (support -n); sysv (support \ escape); both; none

 •  T     edit           Command line editor: enable

 C  T     fi gnore        Autocomplete: suffi xes to ignore

 C  •     fi lec          Autocomplete: enable (always on with Tcsh)

 •  T     group          Current groupid

 C  T     hardpaths     Directory stack: resolve pathnames to contain no symbolic links

 C  T     history        Command history: number of lines in history list

 C  T     home           Your home directory

 C  T     ignoreeof      Do not quit shell upon eof signal (^D)

 •  T     implicitcd    Typing directory name by itself means change to that directory

 •  T     inputmode Command line editor: set initial mode at start of line, insert or overwrite

FIGURE G-3:  C-Shell family: Shell variables (continued on next page)

This table summarizes the important shell variables used with the C-Shell family to control the behavior 
of the shell. The  leftmost column shows which shells support  each option: C = C-Shell;  T = Tcsh. A dot 
indicates that a  shell does not support that option.

For more information, see the man page  for your shell. For information about  autocompletion, spell-
correction, or command  line editing, see the Tcsh man page. For a  detailed discussion of shell variables, 
see  Chapter 12.

Appendix G

33614_apg_846_850.indd   84933614_apg_846_850.indd   849 1/9/2008   12:44:33 PM1/9/2008   12:44:33 PM



850 Harley Hahn’s Guide to Unix and Linux

SHELLS  SHELL VARIABLE MEANING

 •  T     listjobs       Job control: list all jobs whenever a job is suspended; long = long format

 •  T     loginsh        Set to indicate a login shell

 C  T     mail           List of fi les to check for new email

 •  T     matchbeep Autocomplete: make a sound; ambiguous, notunique, never, nomatch

 C  T     nobeep         Autocomplete: never make a sound

 C  T     noclobber      Do not allow redirected output to replace a fi le

 C  T     noglob         Globbing (fi lename expansion): disable

 C  T     notify         Job control: notify immediately when background jobs fi nished

 •  T     owd            Your most recent [old] working directory (compare to cwd)

 C  T     path          Directories to search for programs

 C  T     prompt        Your shell prompt (customize by changing this variable)

 •  T     pushdsilent    Directory stack: pushd and popd do not list directory stack

 •  T     pushdtohome Directory stack: pushd without arguments assumes home directory (like cd)

 •  T     recexact   Autocomplete: match exact match even if longer match is possible

 •  T     rmstar Force user to confi rm before executing rm * (remove all fi les)

 •  T     rprompt       When prompting, string to print on right side of screen (hint: set to %/)

 •  T     savedirs       Directory stack: before logout, save directory stack

 C  T     savehist       Command history: before logout, save this number of lines in history list

 C  T     shell         Pathname of your login shell

 C  T     term           Type of terminal you are using

 C  T     user           Current userid

 C  T     verbose        Debug: echo each command, after history substitution only

 •  T     visiblebell  Use a screen fl ash instead of an audible sound

FIGURE G-3:  C-Shell family: Shell variables (continued from previous page)

33614_apg_846_850.indd   85033614_apg_846_850.indd   850 1/9/2008   12:44:33 PM1/9/2008   12:44:33 PM



851

G L O S S A R Y

This glossary contains defi nitions for the 622 technical terms explained in this book.  After each 
defi nition, the number in square brackets indicates the chapter in which the term is discussed.

A
 absolute pathname  A pathname in which the full name of every directory is specifi ed, 

from the root directory to the actual fi le. [24]
 accelerator key  Within a GUI, a key combination using the <Alt> key that acts as a 

shortcut for clicking on an item. For example, when you are working within a window, 
you can usually pull down the File menu by using the accelerator key <Alt-F>. [6]

 access time  With respect to a fi le, the last time the fi le was read. To display the access time 
for a fi le, you use the ls program with the -lu options. Compare to modifi cation 
time. [24]

 account  Permission to use a Unix system, including a bona fi de userid and password, as 
well as restrictions as to how that userid may use the system. [4]

 action  When using the find program to search for fi les, an instruction specifying what 
to do with the results of a search. For example, the action -print writes the results 
of a search to standard output. See also test and operator. [25]

 active window  Within a GUI, the window that currently has the focus. Whatever you type 
on the keyboard is used as input for the program running in the active window. [6]

 admin  Synonym for system administrator. [4]
 alias  Within the shell, a user-defi ned name given to a command or to a list of commands. 

The most common uses for an alias are to act as an abbreviation or as a customized 
variation of a command. [13]

 allocation unit  With respect to a Unix fi lesystem on a hard disk or other medium, the 
fundamental unit of storage allocation. The allocation unit size depends on the nature of 
the disk and is typically a multiple of the fi lesystem block size. Compare to block. [24]

 alphanumeric  Describes data that consists only of letters (alpha) or numbers (numeric). 
Punctuation is not alphanumeric. [13]

 anchor  Within a regular expression, one of several metacharacters (^, $, \<, \>) used 
to match locations at the beginning or end of a character string. [20]

 anonymous pipe  Same as pipe. [23]
 apply (a diff)  To follow the instructions contained in a diff, to recreate one fi le from 

another. Typically, one would apply a diff to recreate a later version of a fi le from an 
earlier version. See also diff and patch. [17]

Glossary

33614_glo_851_890.indd   85133614_glo_851_890.indd   851 1/9/2008   12:46:52 PM1/9/2008   12:46:52 PM



852 Harley Hahn’s Guide to Unix and Linux

Chapter references are indicated by the numbers in brackets.

 argument  When you type a command, items on the command line, usually coming 
after any options, that are used to pass information to the program you want to run. 
For example, in the command ls -l datafile, -l is an option and datafile is 
an argument. See also option. [10]

 ASCII  Same as ASCII code. [19]
 ASCII code  Often abbreviated as ASCII. A standardized character encoding system, 

created in 1967 and modifi ed in later years, in which character data is represented as 
bits. Each character is stored in a single byte (8 bits). Within a byte, the leftmost bit 
is ignored; the other 7 bits form a pattern of 0s and 1s that represents the particular 
character. In all, the ASCII code contains 128 distinct bit patterns ranging from 
0000000 to 1111111. For reference, the full ASCII code is shown in Appendix D. 
See also printable characters. [19] [20]

 ASCII fi le  Same as text fi le. [19]
 asynchronous process  With respect to the very oldest Unix shells (before job control), 

a process that runs on its own without any input from the user. With the development 
of job control, asynchronous processes were replaced by background processes. See 
also job control and background process. [26]

 autocompletion  Within the shell, a feature that helps the user enter commands by 
automatically completing words. There are several types of autocompletion: command 
completion, fi lename completion, variable completion, userid completion and 
hostname completion. [13]

B
 back door  A secret facility, used by a hacker to access a system or control a program 

surreptitiously. [13]
 background process  A process for which the shell does not wait to complete before 

displaying the next shell prompt. We say that such processes run "in the background". 
Compare to foreground process. [26]

 backwards compatible  Describes a program that supports the features of an older 
program. For example, the Tcsh is backwards compatible with the older C-Shell; Bash 
and the Korn Shell are backwards compatible with the older Bourne Shell. [11]

 bang  The exclamation mark (!) character. A bang is often used to change the mode of 
what you are doing, for example, to pause the current program and send a command 
to the shell. [9]

bang character  See bang. [9]
 bar  A meaningless word, used to represent an unnamed item during a discussion or 

exposition. The word "bar" is usually used along with "foo" to refer to two unnamed 
items. The convention is to use "foo" for the fi rst item and "bar" for the second item. 
For example, you might hear someone ask the question, "I have two fi les, foo and bar. 
How can I copy all the lines in foo that contain a particular pattern to end of bar?" See 
also foo and foobar. [9]

 base 2  Same as binary system. [21]
 base 8  Same as octal. [21]

33614_glo_851_890.indd   85233614_glo_851_890.indd   852 1/9/2008   12:46:53 PM1/9/2008   12:46:53 PM



853

Chapter references are indicated by the numbers in brackets.

 base 10  Same as decimal system. [21]
 base 12  Same as duodecimal. [21]
 base 16  Same as hexadecimal. [21]
 basename  Synonym for fi lename. [24]
 Bash  The most important member of the Bourne shell family, originally created by 

Brian Fox, in 1987, under the auspices of the Free Software Foundation. The name 
Bash stands for "Bourne-again shell". Bash is used widely, being the default shell on 
virtually all Linux systems. The name of the Bash program is bash. See also Bourne 
shell family. [11]

 basic regular expression  Sometimes abbreviated as BRE. An old type of regular 
expression, used for many years, now replaced by extended regular expressions. 
Compared to the more modern extended regular expressions, basic regular expressions, 
BREs are less powerful and have a slightly more confusing syntax. For these reasons, 
they are considered obsolete, retained only for compatibility with older programs. 
Compare to extended regular expression. See also regular expression. [20]

 binary digit  One of the two digits 0 and 1 used in the binary system. See also bit and 
binary system. [21]

 binary fi le  A fi le containing non-textual data that makes sense only when read by a 
program. Common examples of binary fi les are executable programs, object fi les, 
images, music fi les, video fi les, word processing documents, spreadsheets and 
databases. Compare to text fi le. [19]

 binary number  A number expressed by using the binary system, that is base 2. See also 
binary system. [21]

 binary system  Same as base 2. A number system, based on powers of 2, in which 
numbers are constructed using the 2 digits 0 and 1. See also octal, decimal system, 
duodecimal and hexadecimal. [21]

 bit  The basic element of data storage, containing a single element that is always in one 
of two states. The custom is to speak of a bit as containing either a 0 or a 1. A bit that 
contains a 0 is said to be "off ". A bit that contains a 1 is said to be "on". The term bit 
is a contraction of "binary digit". See also byte, binary system and binary digit. [21]

 bit bucket  A whimsical name for any fi le with the characteristic that all output written 
to the fi le is thrown away. There are two bit buckets: the null fi le (/dev/null) and 
the zero fi le (/dev/zero). Both are pseudo-fi les, a type of special fi le. See also null 
fi le, zero fi le, and pseudo-fi le. [15]

 block  With respect to a Unix fi lesystem, the fundamental unit of storage allocation 
within the fi lesystem itself, usually 512 bytes, 1K, 2K or 4K. A typical Linux fi lesystem 
uses 1K blocks. Compare to allocation unit. [24]

 block device  A device such as a disk that when reading or writing, processes a fi xed 
number of bytes at a time. In the output of the ls -l command, a character device is 
indicated by the symbol b. Compare to character device. [24]

 boot  To take control of a computer and perform such initializations as are necessary, 
whenever the computer starts or restarts. See also boot loader and boot device. [2]

Glossary

33614_glo_851_890.indd   85333614_glo_851_890.indd   853 1/9/2008   12:46:53 PM1/9/2008   12:46:53 PM



854 Harley Hahn’s Guide to Unix and Linux

Chapter references are indicated by the numbers in brackets.

 boot device  The device from which the boot loader reads the data necessary to start the 
operating system. In most cases, the boot device is a partition on a local hard drive. 
However, it can also be a network device, a CD, a fl ash drive, and so on. See also boot 
and boot loader. [23]

 boot loader  A small program that takes control when you start or restart your computer 
in order to load enough software for the operating system to start. With a dual boot 
or multi-boot system, the boot loader allows you to choose which operating system 
you want to use. The most common Linux boot loaders are GRUB and LILO. See also 
boot and (boot loader. [2]

 bound  [20] Within a regular expression, a specifi cation, used within the { } repetition 
operator, to match the desired character a specifi c number of times. For example, 
within the repetition operator {3,5}, the bound 3,5 specifi es a match of 3 to 5 
times. See also repetition operator.

 Bourne shell  The fi rst widely used Unix shell, originally developed in 1976 by Steven 
Bourne, a researcher at Bell Labs. Although the Bourne Shell has been updated over 
the years, it is rarely used today, as it lacks the advanced features of the modern shells. 
The name of the Bourne shell program is sh. See also Bourne shell family. [11]

 Bourne shell family  The shells whose principle characteristics are based on the Bourne 
Shell and the Bourne shell programming language. The most important members of 
the Bourne shell family are Bash, the Korn shell, the Zsh, the Pdksh, and the FreeBSD 
shell. The Bourne shell itself is rarely used today. [11]

 brace expansion  With Bash, the C-Shell or Tcsh, the facility that enables you to use 
braces to enclose a set of character strings, which are used to match or generate 
fi lenames containing each of the strings in turn. See also pathname expansion. [24]

 branch  Within a tree (data structure), a path that joins one node to another. Corresponds 
to an edge in a graph. See also tree. [9]

 browser  A client program, such as Internet Explorer or Firefox, used to access the Web 
as well as other Internet facilities, such as mail, Usenet and anonymous FTP. For most 
people, a browser acts as the primary interface to the Internet. [3]

 BSD  An operating system developed at the University of California at Berkeley, originally 
based on AT&T UNIX. The name BSD stands for "Berkeley Software Distribution". 
The fi rst version of BSD, later referred to as 1BSD, was distributed in 1977. In the 
1980s, BSD was one of the two main branches of Unix; the other was System V. [2]

 BSD options  With respect to the ps (process status) command, those options that are 
derived from the 1980s version of ps that was part of BSD (Berkeley Unix). BSD 
options do not start with a dash. Compare to UNIX options. [26]

 builtin  Within the shell, a command that is interpreted by the shell directly. Same as 
builtin command and internal command. [13]

 builtin command  Same as builtin. [13]
 byte  A unit of data storage, 8 consecutive bits. One byte can hold a single ASCII character. 

See also bit and binary system. [21]

33614_glo_851_890.indd   85433614_glo_851_890.indd   854 1/9/2008   12:46:53 PM1/9/2008   12:46:53 PM



855

Chapter references are indicated by the numbers in brackets.

C
 C collating sequence  The collating sequence, based on the ASCII code, used by the C 

(POSIX) locale; named after the C programming language. Within the C collating 
sequence, uppercase letters come before lowercase letters (ABC... XYZabc...xyz). 
Compare to dictionary collating sequence. See also ASCII code, collating sequence 
and locale. [19]

 C-Shell  A shell developed in 1978 by Bill Joy, a graduate student at U.C. Berkeley. 
Pronounced "see-shell". The C-Shell programming language is based on the language C 
(hence the name). In its time, the C-Shell was used widely and became one of the most 
important shells of all time. Today, most C-Shell users prefer the more powerful Tcsh. 
The name of the C-Shell program is csh. See also Tcsh and C-Shell family. [11]

 C-Shell family  The shells whose principal characteristics are based on the C-Shell, in 
particular, the C-Shell programming language. The most widely used members of the 
C-Shell family are the Tcsh and the C-Shell itself. [11]

 canonical
1. In mathematics, the simplest, most important way of expressing an idea. [21]
2. In computer science, the most common, conventional way of doing something. [21]

 canonical format  With respect to binary data being displayed or printed, a commonly 
used format consisting of 16 bytes per line. To the left of each line is the offset in 
hexadecimal. In the middle are the actual bytes, also in hexadecimal. On the right are 
the ASCII equivalents. The command hexdump -C displays binary data in canonical 
format. [21]

 canonical mode  A line discipline in which characters typed as input to a program are not 
sent to the program immediately. Rather, the characters are accumulated in a buffer 
(storage area) and are sent only when the user presses the <Return> key. Compare to 
raw mode and cbreak mode. See also line discipline. [21]

 carriage return
1. A special character used to control the operation of an output device, indicating 

that the cursor or print position should move to the beginning of the line. In the 
ASCII code, the carriage return character has the value 13 in decimal, or 0D in 
hexadecimal. [4] 

2. On an old Teletype ASR33, the operation in which the print head is moved to the 
beginning of the line. [4] 

3. On a manual typewriter, the lever used to return the carriage (the cylinder on 
which the paper is held) to the far left position. [4]

 case sensitive  Describes a program or operating system that distinguishes between 
upper- and lowercase letters. [4]

 cbreak mode  A variation of raw mode, a line discipline in which most input is sent 
directly to the program, except a few very important characters that are handled 
directly by the terminal driver (^C, ^\, ^Z, ^S and ^Q). Compare to canonical mode 
and raw made. See also line discipline. [21]

Glossary

33614_glo_851_890.indd   85533614_glo_851_890.indd   855 1/9/2008   12:46:53 PM1/9/2008   12:46:53 PM



856 Harley Hahn’s Guide to Unix and Linux

Chapter references are indicated by the numbers in brackets.

 CDE    A desktop environment based on the Motif window manager, developed in the 
early 1990s as a large, multi-company effort in collaboration with the Open Group. 
CDE is an abbreviation for Common Desktop Environment. [5]

 character class  With respect to regular expressions, an element, beginning and ending 
with square brackets, containing a set of characters, for example, [ABCDE]. A 
character class is used to match any single character within the set. See also predefi ned 
character class and range. [20]

 character device  A device, such as a terminal, that when reading or writing, processes 
data one byte at a time. In the output of the ls -l command, a character device is 
indicated by the symbol c. Compare to block device. [24]

 character string  A sequence of plain-text characters, consisting only of letters, numbers 
or punctuation. [12] More strictly, a sequence of printable characters. [19] Same as 
string. See also printable character.

 character terminal  A terminal that displays only characters (text): letters, numbers, 
punctuation and so on. Same as text-based terminal. [3]

 child  Same as child process. [15] [26]
 child directory  Same as subdirectory. [23]
 child process  A process that has been started by another process. The new process is the 

child; the original process is the parent. See also parent process. [15] [26]
 chording  When using a mouse or other pointing device, pressing two or more buttons 

at the same time. [6]
 CLI  Abbreviation for "command line interface". A text-based interface in which the user 

types commands that are interpreted by the shell. Compare to GUI. [6]
 click  When using a mouse or other pointing device, to press a button. [6]
 client  A program that requests a service from a server. [3]
 clipboard  Within a GUI, an invisible storage area used to hold data that has been copied 

or cut; such data can be pasted into a window. The data in the clipboard is changed 
only when it is replaced by new data. The contents of the clipboard are lost when you 
close the GUI (by shutting down, logging off, or rebooting). [6]

 close  Within a GUI, to stop the program running in a window, causing the window to 
disappear. [6]

 close button  Within a GUI, a small rectangle, usually in the top right-hand corner of the 
window, that, when clicked, closes the window. [6]

 cluster  Synonym for allocation unit. [24]
 code  Synonym for source code. [2]
 collating sequence  Describes the order in which characters are placed when sorted. In 

modern versions of Unix or Linux, the collating sequence depends on the choice of 
locale. See also locale. [19]

 command completion  A type of autocompletion that completes a partially typed 
command at the beginning of a line. Command completion is available with Bash and 
the Tcsh. See also autocompletion. [13]

33614_glo_851_890.indd   85633614_glo_851_890.indd   856 1/9/2008   12:46:53 PM1/9/2008   12:46:53 PM



857Glossary

Chapter references are indicated by the numbers in brackets.

 command line
1. When entering a Unix command: the entire line that you type before you press the 

<Return> key. [6] 
2. When using the vi editor: the bottom line of the screen, upon which certain 

commands are echoed as they are typed. [22]
 command line editing  Within the shell, a powerful facility that allows you to use a large 

variety of commands to manipulate what you type on the command line, including 
the ability to use the the history list and autocompletion. Command line editing is 
available with Bash, the Korn Shell, and the Tcsh. It is used in either Emacs mode or 
vi mode. [13]

command line interface  See CLI. [6]
 command mode  When using the vi text editor, a mode in which the characters you 

type are interpreted as commands. Compare to insert mode. [22]
 command processor  A program that reads and interprets commands entered at the 

terminal or read from a fi le. The shell is a command processor. [11]
 command substitution  Within the shell, to specify that the output of one command 

is to be inserted into another command, which is then executed. To use command 
substitution, you enclose the fi rst command in backquote (`) characters. [13]

 command syntax  Same as syntax. [10]
 comment  Within a program, a line that is ignored. Comments are used by programmers 

to insert notes into a program, in order to provide documentation for the programmer 
and for anyone else who may read the program. Within a shell script, comments start 
with the # (hash) character. [14]

 compatibility mode  When using the Vim text editor, a mode in which Vim works as 
much as possible like the vi text editor. [22]

 conditional execution  Within the shell, a facility that allows the execution of a 
command only if a previous command has, as specifi ed by the user, either succeeded 
or failed. [15]

 confi guration fi le  A fi le whose contents is read by a program at the time the program 
starts. Typically, a confi guration fi le contains commands or information that affect the 
operation of the program. [6]

 console  The terminal, considered to be part of the host computer, that is used to 
administer the system. [3]

 context menu  Within a GUI, a pop-up menu containing a list of actions that relate to an 
object. Typically, you cause a pop-up menu to appear by right-clicking on the object. [6]

 cooked mode  Same as canonical mode. [21]
 copy  Within a GUI, to copy data from a window to the clipboard without changing the 

original data. [6]
 copyleft  A legal principle, originally applied to free software, that gives anyone permission 

to run a program, copy the program, modify the program, and distribute modifi ed 
versions, as long as they do not add restrictions of their own. The fi rst implementation 
of copyleft was the GPL (GNU General Public License). [2]

33614_glo_851_890.indd   85733614_glo_851_890.indd   857 1/9/2008   12:46:54 PM1/9/2008   12:46:54 PM



858 Harley Hahn’s Guide to Unix and Linux

Chapter references are indicated by the numbers in brackets.

 core
1. Originally, a tiny, round, hollow magnetic device used in core memory. [7] [21]
2. More generally, a synonym for computer memory. [7] [21]

 core dump  In the 1960s and 1970s: a printout of the contents of the memory used by a 
program that had aborted. A core dump could take up many pages of paper and took 
great skill to interpret. [7]

 core fi le  A fi le (named core) that is generated automatically when a program aborts. 
A core fi le, which contains a copy of the contents of memory at the moment the 
program aborted, can be analyzed by a programmer in order to fi gure out what went 
wrong. [7] [21]

 core memory  An obsolete type of computer memory, fi rst introduced in 1952, 
constructed from a large number of tiny, round, hollow magnetic devices (cores) 
arranged in a lattice with several electrical wires running through each core. By 
changing the current in the wires, it was possible to modify the magnetic properties 
of individual cores to be either "off " or "on", allowing for the storage and retrieval of 
binary data. [7] [21]

 CPU  The processor, the main component of a computer. For example, the amount of 
processor time used by a program is called CPU time. In the early days of mainframe 
computers, the term CPU was an acronym standing for "central processing unit". [8]

 CPU time  The amount of time a process has executed on the processor. See also time 
slice. [26]

 cracker  A person who deliberately tries to break into a computer system with the 
purpose of doing things that people in authority do not want him to do. [4]

 CSV (comma-separated value) format  Describes a fi le containing machine-readable 
data in which fi elds are separated by commas, that is, in which the delimiters are 
commas. See also delimiters, record and fi eld. [17]

 current character  When using the vi text editor, the character at which the cursor is 
currently positioned. Many vi commands perform an action on the current character. 
See also current line. [22]

 current directory  Synonym for working directory. The default directory, used when 
entering Unix commands. The current directory is set by the cd (change directory) 
command; the name is displayed by the pwd (print working directory) command. [24]

 current fi le  When using the pager less, the fi le currently being viewed. [21]
 current job  With respect to job control, the job that was most recently suspended or, 

if there are no suspended jobs, most recently moved to the background. Certain job 
control commands act upon the current job by default. See also job, job control and 
previous job. [26]

 current line  When using the vi text editor, the line on which the cursor is currently 
positioned. Many vi commands perform an action on the current line. See also 
current character. [22]

 cut  Within a GUI, to copy data from a window to the clipboard. As part of the operation, 
the original data is deleted from the window. [6]

33614_glo_851_890.indd   85833614_glo_851_890.indd   858 1/9/2008   12:46:54 PM1/9/2008   12:46:54 PM



859Glossary

Chapter references are indicated by the numbers in brackets.

D
 daemon  A program that runs in the background, completely disconnected from any 

terminal, in order to provide a service. (With Microsoft Windows, the same type of 
functionality is provided by a "service".) [26]

 data structure  In computer science, any well-defi ned method of organizing data such 
that there exist algorithms for storing, retrieving, modifying, and searching the data. 
The most common types of data structures are lists, linked lists, associative arrays, 
hash tables, stacks, queues, deques (double-ended queues), as well as a variety of tree-
based structures. See also queue, stack and tree. [8]

 decimal number  A number expressed by using the decimal system. See also decimal 
system. [21]

 decimal system  Same as base 10. A number system, based on powers of 10, in which 
numbers are constructed using the 10 digits 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9. See also binary 
system, octal and hexadecimal. [21]

 default  An assumed value that will be used when an particular item is not specifi ed. [10]
 del  A character that, on some Unix systems, is used instead of a backspace (^H) to erase 

a single character. You will sometimes see the del character represented by the two 
characters ^?. Within the ASCII code, the del character has a value of 127 in decimal 
or 7F in hexadecimal. [7]

 delimiter  Within a fi le containing machine-readable data, designated characters that 
separate adjacent fi elds. Data in which commas are used as delimiters is said to be in 
CSV (comma-separated value) format. See also CSV format, fi eld and record. [17]

 desktop  Within a GUI, the overall visual space in which you work. More generally, the 
abstract environment in which you organize your work. Desktop environments, such 
as KDE and Gnome, allow you to use more than one desktop, only one of which is 
visible at a time. (Within Gnome, desktops are called "workspaces".) [6]

 desktop environment  A GUI-based system that provides a working environment 
whose purpose is to help the user carry out the complex cognitive tasks associated 
with using a computer. Sometimes called a desktop manager. In the Linux world, the 
two most widely used desktop environments are KDE and Gnome. See also KDE and 
Gnome. [5]

 desktop manager  Same as desktop environment. [5]
 destructive backspace  The type of backspace that occurs when the cursor moves back 

and characters are erased. This is what happens when you press the <Backspace> key. 
Compare to non-destructive backspace. [7]

 device driver  A program that acts as the interface between the operating system and a 
particular type of device, usually some type of hardware. Same as driver. [2] [21]

 device fi le  Same as special fi le. [23]
 dictionary collating sequence  The collating sequence used by the en_US locale, in 

which uppercase letters and lowercase letters are grouped in pairs (AaBbCcDd... Zz). 
Compare to C collating sequence. See also collating sequence and locale. [19]

33614_glo_851_890.indd   85933614_glo_851_890.indd   859 1/9/2008   12:46:54 PM1/9/2008   12:46:54 PM



860 Harley Hahn’s Guide to Unix and Linux

Chapter references are indicated by the numbers in brackets.

 dictionary fi le  A fi le, included with Unix, that contains a very long list of English words, 
including most of the words commonly found in a concise dictionary. Each word is 
on a line by itself and the lines are in alphabetical order, making the fi le easy to search. 
The dictionary fi le is available to any user; it is also used by the look command and 
by the (now obsolete) spell command. [20]

 die  With respect to a process, to stop running. Same as terminate. [26]
 diff  A list of simple editing instructions that, when followed, change one fi le into 

another. See also apply and patch. [17]
 directory  One of the three types of Unix fi les; a fi le that resides on a storage device, 

used to organize and access other fi les. Conceptually, a directory "contains" other fi les. 
Compare to ordinary fi le and pseudo fi le. See also fi le. [23]

 Directory Node  Within the Info system, a special node that contains a list of links to the 
major topics. The directory node acts as the main menu for the entire Info system. [9]

 directory stack  A stack, maintained by the shell to store directory names that can be 
used to change the working directory. See also stack. [24]

 distribution  A particular version of a Linux system. [2]
 distro  Abbreviation for distribution. [2]
 dotfi le  A fi le whose name begins with a . (dot) character. When the ls command lists 

fi lenames, dotfi les are not listed unless requested specifi cally by using the -a (all fi les) 
option. Same as hidden fi le. [14] [24]

 double-click  When using a mouse or other pointing device, to press a button twice in 
rapid succession. [6]

 drag  Within a GUI, to move a graphical object. To do so, you use your mouse to point 
to the object. You then hold down a mouse button, move the mouse (which moves the 
object to a new location), and then release the button. [6]

 driver  Same as device driver. [2] [21]
 dual boot  Describes a computer that is set up to boot one of two different operating 

systems, as chosen by the user during the startup process. [2]
 dump  Same as core dump. [21]
 duodecimal  Same as base 12. A number system, based on powers of 12, in which 

numbers are constructed using the 12 digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A and B. See also 
binary system, octal, decimal system, duodecimal and hexadecimal. [21]

E
 echo  To display a character on the monitor that corresponds to a key that has been pressed 

by a user. For example, when you press the <A> key, Unix echoes the letter "A". [3]
 edit  (verb) To use a text editor to modify the contents of a fi le. [22]
 editing buffer  When using the vi text editor, a storage area containing the data you are 

currently editing. [22]
 editor  Same as text editor. [22]
 Emacs mode  Within the shell, a mode used with command line editing in which the 

editing commands are the same ones as are used with the Emacs text editor. See also 
command line editing and vi mode. [13]

33614_glo_851_890.indd   86033614_glo_851_890.indd   860 1/9/2008   12:46:54 PM1/9/2008   12:46:54 PM



861Glossary

Chapter references are indicated by the numbers in brackets.

 emulate  To cause a computer to act like a different device. To use your computer 
to connect to a Unix host, you run a program (for example, ssh) that emulates a 
terminal. [3]

 environment  When using the shell, a table of variables that is copied and made available 
to all child processes, that is, to any program started by that shell. [12]

 environment fi le  A type of initialization fi le that runs whenever a new shell starts. See 
also login fi le, initialization fi le and logout fi le. [14]

 environment variable  Within the shell, a variable that is stored in the environment. 
Because the environment is inherited by all child processes, environment variables can 
be thought of as global variables. However, they are not strictly global, because changes 
made by the child are not propagated back to the parent. See also shell variable, global 
variable and local variable. [7] [12]

 escape
1. When a program is in a specifi c mode, to do something that changes the program 

to a different mode. For example, within the vi editor, you press the <Esc> key to 
escape from insert mode to command mode. [13] 

2. Within the shell, a synonym for quote. For example, in the command echo hello\; 
goodbye, we say that the backslash escapes the semicolon. [13]

 escape character  When using a program, a key that, when pressed, changes the program 
from one mode to another. [13]

 event  Within the shell, a command that has been stored in the history list. [13]
 event number  Within the shell, a number that identifi es an event (a command that has 

been stored in the history list). [13]
 exec  With respect to a process, to change the program that the process is running. See 

also fork, wait and exit. [26]
 execute  To follow the instructions contained in a program. Same as run. [2]
 execute permission  A type of fi le permission that allows the executing of a fi le or the 

searching of a directory. Compare to read permission and write permission. See also 
fi le permission. [25]

 exit  With respect to a process, to stop running. See also fork, exec and wait. [26]
 export  Within the Bourne shell family (Bash, Korn shell), to cause a variable to become 

part of the environment, thereby making the variable accessible to child processes. [12]
 extended regular expression  Sometimes abbreviated as ERE. A type of regular expression 

that offers more powerful features than the older, traditional Unix regular expressions 
(basic regular expressions). EREs are considered to be the current standard, part of 
the IEEE 1003.2 (POSIX) specifi cation. Compare to basic regular expression. See also 
regular expression. [20]

 extension  An optional part of a fi lename, at the end of the name, following a . (dot) 
character. For example, the fi lename foobar.c has the extension c. Extensions 
enable users, and sometimes programs, to identify the type of fi le. [25]

 external command  Within the shell, a command that is interpreted by running a 
separate program. Compare to internal command. [13]

33614_glo_851_890.indd   86133614_glo_851_890.indd   861 1/9/2008   12:46:54 PM1/9/2008   12:46:54 PM



862 Harley Hahn’s Guide to Unix and Linux

Chapter references are indicated by the numbers in brackets.

F
 fi eld  Within a fi le containing machine-readable data, a specifi c part of a record. See 

also record. [17]
 FIFO

1. Abbreviation for "fi rst-in, fi rst out". Describes a data structure, such as a queue, in 
which elements are retrieved in the same order in which they went in. Compare to 
LIFO. See also queue and stack. [23] 

2. A synonym for named pipe, pronounced "fi e-foe". [23]
 fi le

1. Any source, with a name, from which data can be read; any target, with a name, to 
which data can be written. There are three types of fi les: ordinary fi le, directory, 
and pseudo fi le. [23]

2. A synonym for ordinary fi le. [23]
 fi le descriptor  Within a Unix process, a unique number that identifi es an input source 

or an output target. By default, standard input uses fi le descriptor 0; standard output 
uses 1; and standard error uses 2. [15]

 fi le manager  A program that helps you manipulate fi les and directories. Using a fi le 
manager is an alternative to typing directory and fi le commands at the command line. 
The default fi le manager for the KDE desktop environment is Konqueror; the default 
fi le manager for Gnome is Nautilus. [24]

 fi le mode  A three-number octal value, for example 755, that describes three sets of 
fi le permissions: read permission, write permission, and execute permission. The 
fi rst number describes the permissions for the owner. The second number describes 
the permissions for the group. The third number describes the permissions for all 
userids. [25]

 fi le permissions  One of three types of authorizations (read, write and execute) that 
specifi es how a fi le may be accessed. See also read permission, write permission, and 
execute permission. [25]

 fi lename  The very last part of a pathname, the actual name of a fi le. [24]
 fi lename completion  A type of autocompletion that completes a partially typed 

fi lename. Filename completion is available with Bash, the Korn Shell, the C-Shell, and 
the Tcsh. See also autocompletion. [13]

 fi lename generation  Within the Korn Shell and Bourne Shell, the facility that implements 
globbing, that is, the replacing of wildcard patterns by matching fi lenames. Within 
Bash, this same facility is referred to as pathname expansion; within the C-Shell and 
Tcsh, it is called fi lename substitution. See also wildcard and globbing. [24]

 fi lename substitution  Within the C-Shell or Tcsh, the facility that implements 
globbing, that is, the replacing of wildcard patterns by matching fi lenames. Within 
Bash, this same facility is referred to as pathname expansion; within the Korn Shell 
and Bourne Shell, it is called fi lename generation. See also wildcard, globbing and 
brace expansion. [24]

33614_glo_851_890.indd   86233614_glo_851_890.indd   862 1/9/2008   12:46:54 PM1/9/2008   12:46:54 PM



863Glossary

Chapter references are indicated by the numbers in brackets.

 fi lesystem
1. The Unix fi lesystem: a hierarchical tree-structure based on a single main directory 

(the root directory), containing all the fi les on a Unix system, including fi les from 
disk-based fi lesystems, network fi lesystems, and special-purpose fi lesystems. See 
also root directory and tree. [23] 

2. Device fi lesystem: a hierarchical tree-structure containing the fi les stored on a 
specifi c device or disk partition. [23]

 fi lesystem hierarchy standard  A standard that describes how a Unix system should 
organize its directories, in particular, the top-level directories and selected second-
level directories. Abbreviated as FHS. [23]

 fi lter  Any program that reads and writes textual data, one line at a time, reading from 
standard input and writing to standard output. As a general rule, most fi lters are 
designed as tools, to do one thing well. [16]

 fi xed media  Describes storage devices that are attached to a computer permanently, for 
example, hard drives. Compare to removable media. [23]

 fl ag
1. A synonym for option. [10] 
2. When using the ls (list fi les) program with the -F option, a single character 

displayed at the end of a fi lename to indicate the type of fi le. The various fl ags are 
/ (directory), * (executable fi le), @ (symbolic link), and | (named pipe/FIFO). 
The absence of a fl ag indicates an ordinary, non-executable fi le. [24]

 focus  Within a GUI, the indication of which window is active. Once a window has the 
focus, whatever you type on the keyboard is used as input for the program running in 
that window. [6]

 fold
1. As an adjective, describes the idea that lowercase letters are to be treated as if 

they were uppercase, or vice versa. For example, "The sort command has a fold 
option -f." [19] 

2. As a verb, the act of treating lowercase letters as if they were uppercase, or vice 
versa. For example, "The -f option tells sort to fold lowercase letters into 
uppercase." [19]

 folder  When using a GUI-based tool, a synonym for directory. Otherwise, not used 
with Unix (unless you want to sound like a clueless goober). [23]

 follow  When using a symbolic link, to refer to the name of the directory contained in 
the link. See symbolic link. [25]

 foo  A meaningless word, used to represent an unnamed item during a discussion or 
exposition. When a second unnamed item must be discussed, it is often referred to as 
"bar". For example, you might hear someone ask the question, "I have two fi les, foo 
and bar. How can I copy all the lines in foo that contain a particular pattern to the end 
of bar?" See also bar and foobar. [9]

33614_glo_851_890.indd   86333614_glo_851_890.indd   863 1/9/2008   12:46:54 PM1/9/2008   12:46:54 PM



864 Harley Hahn’s Guide to Unix and Linux

Chapter references are indicated by the numbers in brackets.

 foobar  A meaningless word, used to represent an unnamed item during a discussion 
or exposition. "Foobar" is often used to represent some type of pattern. For example, 
you might see the following question posted to a Usenet discussion group: "How do I 
remove a fi le named "-foobar"?" See also foo and bar. [9]

 foreground process  A process that must fi nish before the shell can display the next 
shell prompt. We say that such a process runs "in the foreground". Compare to 
background process. [26]

 fork  With respect to a process, to create a copy of the process. The original process is 
called the parent process; the new process is called the child process. See also exec, 
wait and exit. [26]

 free software  Software that can legally be examined, modifi ed, shared and distributed 
by anyone. [2]

 Free Software Foundation  An organization, started in 1985 by Richard Stallman and a 
small group of programmers, devoted to the creation and distribution of free software; 
home of the GNU project. [2]

 FreeBSD shell  A member of the Bourne shell family, the default shell for the FreeBSD 
operating system. The name of the FreeBSD shell program is sh. See also Bourne 
shell family. [11]

 french spacing  Within typography, the use of two spaces (rather than one) at the end of 
each sentence. The practice is based on the use of monospaced fonts, such as the ones 
originally used with typewriters. [18]

 FSF  Abbreviation for Free Software Foundation. [2]

G
 General Public License  Same as GPL. [2]
 gigabyte  A unit of storage measurement, 230 = 1,073,741,824 bytes. Abbreviated as G or 

GB. See also kilobyte and megabyte. [24]
 glob  (verb) The act of globbing. [24]
 global variable  A variable whose value is available outside of the scope in which it was 

created. See also local variable, shell variable and environment variable. [12]
 globbing  An operation in which a wildcard pattern is replaced by a list of matching 

fi lenames, typically within a command that is processed by the shell. See also wildcard 
and pathname expansion. [24]

 Gnome  A widely used, free desktop environment. The Gnome Project was founded in 
August 1997 by two programmers, Miguel de Icaza and Federico Mena. Their goal was 
to create an alternative to KDE that could be distributed under a more liberal license. 
Compare to KDE. See also desktop environment. [5]

 GNU  The name of the Free Software Foundation's project to develop an entire Unix-
like operating system independent of commercial software, to be distributed as free 
software. GNU is a whimsical name, a recursive acronym standing for "GNU's not 
Unix". See also Free Software Foundation and (free software. [2]

33614_glo_851_890.indd   86433614_glo_851_890.indd   864 1/9/2008   12:46:54 PM1/9/2008   12:46:54 PM



865Glossary

Chapter references are indicated by the numbers in brackets.

 GNU Manifesto  An essay, written by Richard Stallman, the principal founder of the 
Free Software Foundation, in which he explained his reasons for promoting the idea 
of free software. The GNU Manifesto was fi rst published in the March 1985 issue of 
Dr. Dobb's Journal of Software Tools. [2]

 GPL  Abbreviation for General Public License. A legal license, fi rst used in 1989 by 
the Free Software Foundation, to implement the idea of copyleft as applied to free 
software. The GPL allows allow anyone to run a program, copy the program, modify 
the program, and distribute modifi ed versions, as long as they do not add restrictions 
of their own. [2]

graphical user interface  See GUI. [5]
 graphics terminal  A terminal that displays, not only characters, but anything that can 

be drawn on the screen using small dots: pictures, geometric shapes, shading, lines, 
colors, and so on. [3]

 group
1. A set of userids that share common fi le permissions. Groups make it easy for people 

who work together to read, write or execute each other's fi les. The name of a group 
is called its groupid (pronounced "group-I-D"). See also groupid, primary group, 
supplementary group and fi le mode. [25] 

2. Within a regular expression, a sequence of characters within parentheses, treated 
as a single unit, often before a repetition operator, for example, (xyz){5}. In this 
case, the group (xyz), combined with the repetition operator {5}, matches the 
character string "xyz" 5 times in a row. [20]

 groupid  The name of a group used for sharing fi le permissions. Pronounced "group-
I-D". See also group. [25]

 grouping  Within the shell, especially the C-Shell, a list of commands, typed within 
parentheses, that are to be executed by a subshell. [15]

 GUI  Abbreviation for "graphical user interface"; pronounced either "gooey" or as three 
separate letters "G-U-I". A system that allows you to interact with a computer by using 
a pointing device (usually a mouse) and a keyboard to manipulate windows, icons, 
menus and other graphical elements. Compare to CLI. [5]

H
 hack  To put forth a massive amount of nerd-like effort, often programming. [4]
 hacker  A person who hacks. [4]
 hard link  Synonym for link. Used to distinguish between a regular link (hard link) and 

a symbolic link (soft link). [25]
 hardware  The physical components of a computer: keyboard, monitor, mouse, disk 

drives, processor, memory, and so on. [2]
 header fi le  Same as include fi le. [23]
 headless system  A computer that runs on its own, without direct input from a human 

being. A typical headless system would be a server, with no monitor, keyboard or 
mouse. When necessary the server can be controlled via a network connection. [3]

33614_glo_851_890.indd   86533614_glo_851_890.indd   865 1/9/2008   12:46:55 PM1/9/2008   12:46:55 PM



866 Harley Hahn’s Guide to Unix and Linux

Chapter references are indicated by the numbers in brackets.

 hex  Same as hexadecimal. [21]
 hexadecimal  Same as base 16. A number system, based on powers of 16, in which numbers 

are constructed using the 16 digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E and F. Often 
abbreviated as hex. See also binary system, octal, decimal system and duodecimal. [21]

 hidden fi le  A fi le whose name begins with a . (dot) character. When the ls command 
lists fi lenames, hidden fi les are not listed unless requested specifi cally by using the -a 
(all fi les) option. Same as dotfi le. [14] [24]

 history list  Within the shell, a list of the commands that have been entered. A user can 
access the history list in a variety of ways — the details depend on the shell being used 
— in order to recall previous commands, which can then be modifi ed and reentered. 
Some shells allow the user to set the size of the history list and to specify whether or 
not the list should be saved when the user logs out. [13]

 hold  When using a mouse or other pointing device, to press a button and keep it down 
while performing an action, such as moving a window. [6]

 home directory  The directory designated to hold the fi les for a particular userid. Whenever 
you log in, your current directory is automatically set to be your home directory. [23]

 host  A computer that runs Unix. Users use a terminal to connect to the host. [3]
 hostname completion  A type of autocompletion that completes a partially typed 

computer name, when a word begins with an @ (at) character. The word to be completed 
must be the name of a computer on the local network. Hostname completion is 
available with Bash. See also autocompletion. [13]

 human-readable  With respect to a program, describes output that is designed to be 
particularly easy for a person to read. Compare to machine-readable. [12]

I
 icon  Within a GUI, a small picture that represents an object, such as a window, program 

or fi le. [6]
 iconify  Same as minimize. [6]
 idle process  Process #0, the original process, created as part of the boot sequence. The 

idle process performs a number of initialization functions, creates process #1 (the init 
process), and then runs a very simple program that is essentially an infi nite loop doing 
nothing. (Hence, the name "idle process".) See also boot and init process. [26]

 idle time  When using the CLI (command line interface), the length of time since the 
user has pressed a key. [8]

 include fi le  A fi le containing C or C++ source code that can be inserted into a program 
as required. A typical include fi le has defi nitions of subroutines, data structures, 
variables, constants, and so on. Also called a header fi le. [23]

 index node  Same as inode. [25]
 index number  Same as inumber. [25]
 infi x notation  Arithmetical notation in which an operator is placed in between the 

operands, for example, "5 + 7". Compare to prefi x notation and postfi x notation. [8]
 Info  A help system, derived from Emacs and separate from the online Unix manual, 

used to document the GNU utilities. [9]

33614_glo_851_890.indd   86633614_glo_851_890.indd   866 1/9/2008   12:46:55 PM1/9/2008   12:46:55 PM



867Glossary

Chapter references are indicated by the numbers in brackets.

 Info fi le  Within the Info system, a fi le containing the documentation for one topic. [9]
 inherit  With respect to a child process, to be given access to a copy of a variable that was 

part of the environment of the parent process. [12]
 init process  Process #1, created by the process #0 (the idle process). The ancestor of 

all other processes on the system. The init process completes the last part of boot 
sequence. Among other tasks, it starts the system in a particular runlevel. The init 
process also adopts all orphan processes to make sure they are handled properly. See 
also boot, idle process, runlevel and orphan. [26]

 initialization fi le  A fi le that contains commands to be executed whenever a user logs in 
or whenever a new shell starts. There are two types of initialization fi les: A login fi le 
runs whenever a user logs in; an environment fi le runs whenever a new shell starts. 
See also logout fi le. [14]

 inner join  A type of join in which the output includes only those lines in which the join 
fi eld matches. Compare to outer join. See also fi eld, join and join fi eld. [19]

 inode  Abbreviation for index node, pronounced "eye-node". Within a fi lesystem, a 
structure that holds the basic information about a fi le. See also inode table, inumber, 
and link. [25]

 inode table  A table containing all the inodes in a fi lesystem. Each inode describes a 
single fi le, identifi ed by its inumber. See also inode and inumber. [25]

 input mode  When using the vi text editor, a mode in which the characters you type are 
inserted into the editing buffer. Compare to command mode. [22]

 input stream  Data read by a program. Compare to output stream. See also stream. [19]
 interactive  Describes a program that communicates with a person. When you run an 

interactive program, the input comes from your keyboard or your mouse, and the 
output is sent to your monitor. [12]

 interactive shell  A shell that provides the interface for a user working at a terminal. [12]
 interface  The part of a machine that provides a way for the user to interact with the 

machine. For example, with a desktop computer, the interface consists of the monitor, 
the keyboard, the mouse, the speakers and, possibly, a microphone and webcam. [3]

 internal command  Within the shell, a command that is interpreted by the shell directly. 
Same as builtin command and builtin. Compare to external command. [13]

 interprocess communication  The exchange of data between two processes. Abbreviated 
as IPC. See also signal. [23]

 inumber  Abbreviation for index number, pronounced "eye-number". Within a 
fi lesystem, a number that identifi es a particular inode (index node) within the table of 
inodes. See also inode, inode table, and link. [25]

J
 job  Within the shell, the internal representation of a command that is currently running 

or suspended. In most cases, a job corresponds to a single process. However, with a 
pipeline or a compound command, a job corresponds to multiple processes. Jobs are 
controlled by the shell, unlike processes, which are managed by the kernel. See also job 
control, job number and job table. Compare to process. [26]

33614_glo_851_890.indd   86733614_glo_851_890.indd   867 1/9/2008   12:46:55 PM1/9/2008   12:46:55 PM



868 Harley Hahn’s Guide to Unix and Linux

Chapter references are indicated by the numbers in brackets.

 job control  A facility, supported by the kernel and implemented by the shell, enabling a 
user to run multiple processes, one in the foreground, the rest in the background. With 
job control one can move processes between the foreground and background, suspend 
(pause) them, and display their status. See also job, job number and job table. [26]

 job ID  Same as job number. [26]
 job number  A unique number, assigned by the shell, that identifi es a particular job. 

Sometimes referred to as a job number. Job numbers start from 1 and count up. See 
also job, job control and job table. Compare to process ID. [26]

 job table  A table, maintained by the shell, used to keep track of all the jobs started by 
each userid. The job table contains one entry per process, indexed by job ID. Each entry 
in the table contains the information necessary to describe and manage a particular 
job. See also job, job control and job ID. Compare to process table. [26]

 join  Combining two sets of data based on matching fi elds. See also fi eld, join fi eld, 
inner join and outer join. [19]

 join fi eld  When creating a join, the fi eld used to match two sets of data. See also fi eld, 
join, inner join and outer join. [19]

K
 KDE  A widely used, free desktop environment. The KDE Project was founded in 

October 1996 by Matthias Ettrich, a German student. His goal was to create a 
complete, integrated, graphical working environment; in fact, the fi rst modern desktop 
environment. Compare to Gnome. See also desktop environment. [5]

 kernel  The central part of an operating system that is always running in order to provide 
essential services as they are needed. [2]

 keyword  Within the shell, one of several builtin commands that are used to control 
the fl ow within a shell script. For example, with Bash: case, for, function, if, 
select, time and while. [13]

 kill  To terminate a process permanently. Under normal circumstances, a foreground 
process can be killed by pressing ^C or (for programs that run in raw mode) by typing 
a quit command. Compare to suspend. [12]

 kilobyte  A unit of storage measurement, 210 = 1,024 bytes. Abbreviated as K or KB. See 
also gigabyte and megabyte. [24]

 Korn shell  A member of the Bourne shell family, developed as a replacement for the 
Bourne shell in 1982 by David Korn, a researcher at Bell Labs. The name of the Korn 
shell program is ksh. See also Pdksh and Bourne shell family. [11]

L
 lag  When using a remote Unix system, a noticeable delay between the time you press a 

key or move your mouse and the time you notice the result of your action. [3]
 layers of abstraction  A model in which a large overall goal is defi ned in terms of layers, 

which are visualized as being stacked from the bottom up, one on top of the next. Each 
layer provides services to the layer above and requests services from the layer below, 
with no other interactions. [5]

33614_glo_851_890.indd   86833614_glo_851_890.indd   868 1/9/2008   12:46:55 PM1/9/2008   12:46:55 PM



869Glossary

Chapter references are indicated by the numbers in brackets.

 leaf  Within a tree (data structure), a node that has only one connection; that is, a node 
at the end of a branch. See also tree. [9]

 left button  On a mouse or other pointing device, the button that, when the mouse is on 
your right, is the leftmost button. See also right button and middle button. [6]

 left-click  When using a mouse or other pointing device, to press the left button. [6]
 library  A pre-existing module of data and code, usually used to enable programs to 

access services offered by the operating system.  [23]
 LIFO  Abbreviation for "last in, fi rst out". Describes a data structure, such as a stack, in 

which elements are retrieved in the opposite order to which they went in. Compare to 
FIFO. See also stack and queue. [8] [24]

 line discipline  A facility used by a terminal driver to provide the preprocessing and 
postprocessing necessary for an interactive interface. See also canonical mode and 
raw mode. [21]

 line editor  Same as line-oriented editor. [22]
 line-oriented editor  A text editor that numbers lines of text and uses commands based 

on these numbers. Same as line editor. Compare to screen-oriented editor. [22]
 linefeed

1. A special character used to control the operation of an output device, indicating 
that the cursor or print position should move down one line. Within Unix, the 
linefeed character is called a newline and is used to indicate the end of a line of 
text. When sent to a terminal, a linefeed causes the cursor to move down one line. 
Within the ASCII code, the linefeed character is ^J (Ctrl-J), with a value of 10 in 
decimal or 0A in hexadecimal. See also newline and return. [4] [7] 

2. On an old Teletype ASR33, the operation in which the print head is moved down 
one line. [4]

 link
1. Abbreviation for index number, pronounced "eye-number". Within a fi lesystem, a 

number that identifi es a particular inode (index node) within the table of inodes. 
See also inode and link. [25] 

2. Within the Info system, a facility that lets you jump from one node to another 
node. [9]

 Linus's Law  "Given enough eyeballs, all bugs are shallow." In other words, when a vast 
number of people test and read new code, it does not take long to fi nd the bugs. Linus' 
Law was coined by Eric Raymond in his essay "The Cathedral and the Bazaar". The 
name was chosen to honor Linus Torvalds, the founder of the Linux kernel project. [2]

 Linux
1. Any Unix-like kernel created by the Linux project. The project to develop such 

kernels was started in 1991 by Linus Torvalds. [2] 
2. More generally, any operating system based on a Linux kernel. More generally, any 

operating system based on a Linux kernel. Such operating systems are sometimes 
referred to as GNU/Linux, to indicate that a Linux kernel is combined with the 
GNU utilities. [2]

33614_glo_851_890.indd   86933614_glo_851_890.indd   869 1/9/2008   12:46:55 PM1/9/2008   12:46:55 PM



870 Harley Hahn’s Guide to Unix and Linux

Chapter references are indicated by the numbers in brackets.

 live CD  A CD that has been made bootable, containing everything necessary to run a full 
operating system. When you boot from a live CD, you bypass the hard disk, allowing 
you to use an operating system without having to install it on your system. [2]

 local  Describes a variable that exists only within the scope in which the variable was 
created. For example, shell variables are local to the shell in which they exist. [12]

 local variable  A variable that exists only within the scope in which it was created. For 
example, within the shell, a variable that is not part of the environment is a local 
variable. See also global variable, shell variable and environment variable. [12]

 locale  A technical specifi cation describing the language and conventions that should 
be used when communicating with a user from a particular culture. The intention 
is that a user can choose whichever locale he wants, and the programs he runs will 
communicate with him accordingly. For users of American English, the default locale 
is either the C (POSIX) locale based on the ASCII code; or the en_US locale, part of 
a newer international system. [19]

 log in  To initiate a Unix work session. [4]
 log out  To terminate a Unix work session. [4]
 login  Describes the process of logging in. [4]
 login fi le  A type of initialization fi le that runs whenever a user logs in. See also 

environment fi le, initialization fi le and logout fi le. [14]
 login shell  The shell that starts automatically when you log in. See also non-login 

shell. [11] [14]
 logout  Describes the process of logging out. [4]
 logout fi le  A fi le that contains commands that are executed whenever a user logs out. 

See also initialization fi le, login fi le and environment fi le. [14]
 lowercase  Describes small letters, "a" to "z". [4]

M
 machine-readable  With respect to a program, describes output that is formatted so as 

to be suitable for processing by another program. Such output may be diffi cult for a 
person to read. Compare to human-readable. [12]

 macro  When using the vi text editor, a one-character abbreviation for a command. [22]
 mail server  A computer that provides the service of sending and receiving email for 

various clients. [3]
 mainframe computer  A large, expensive computer, typically used by institutions 

— such as governments, universities and companies — that can afford a staff of 
programmers and administrators. The name "mainframe" was coined in the early 
1970s to distinguish the older, large computers from the new minicomputers. [3]

 man page  Within the online manual, the documentation for a single topic. By tradition, 
the documentation for each topic is referred to as a "page", even though it might be 
large enough to fi ll many printed pages. Same as page. See online manual. [9]

(the)  Manual  Same as the online manual. When Unix users refer to "the Manual", they 
always mean the online manual. [9]

33614_glo_851_890.indd   87033614_glo_851_890.indd   870 1/9/2008   12:46:55 PM1/9/2008   12:46:55 PM



871Glossary

Chapter references are indicated by the numbers in brackets.

 map  To create a mapping. [7]
 mapped  Expresses the idea that a mapping exists between two objects. For example, the 

<Ctrl-C> character is mapped onto the intr signal. Thus, when you press <Ctrl-C>, 
it has the effect of sending the intr signal. [7]

 mapping  An equivalence between two objects. For example, if we say that A is mapped 
onto B, it means that, when we use A, it is the same as using B. [7]

 match  With respect to a regular expression, to correspond to a particular character 
string. [20]

 maximize  Within a GUI, to expand a window to its largest possible size. [6]
 maximize button  Within a GUI, a small rectangle, usually in the top right-hand corner 

of the window, that, when clicked, maximizes the window. [6]
 megabyte  A unit of storage measurement, 220 = 1,048,576 bytes. Abbreviated as M or 

MB. See also kilobyte and gigabyte. [24]
 memory dump  Same as core dump. [21]
 menu  A list of items from which you can make a selection. Within a GUI, there are 

two types of menus: pull-down menus (more common) and pop-up menus (less 
common). [6]

 menu bar  Within a GUI, a menu consisting of a horizontal list of words near the top of 
a window. [6]

 metacharacters  Within the shell, a character that has a special, non-literal meaning. [13]
 microkernel  A kernel consisting of a relatively small program that calls upon other 

programs, called servers, to perform much of its work. By their nature, microkernels 
are somewhat ineffi cient. However, because of their modular structure, they are easier 
to maintain and customize than other types of kernels. Compare to monolithic 
kernel. [2]

 middle button  On a mouse or other pointing device, the middle button. Although 
almost all mice have left and right buttons, many do not have a middle button. See 
also right button and left button. [6]

 middle-click  When using a mouse or other pointing device, to press the middle 
button. [6]

 minicomputer  Any of the relatively small and inexpensive computers that were 
manufactured in the 1970s and 1980s. Until personal computers became available in 
the 1980s, most Unix systems ran on minicomputers. Compare to mainframe. [3]

 minimize  Within a GUI, to cause a window to vanish from the main part of the screen. To 
restore a window that has been minimized, you click on its icon within the taskbar. [6]

 minimize button  Within a GUI, a small rectangle, usually in the top right-hand corner 
of the window, that, when clicked, minimizes the window. [6]

 mode
1. A particular state of a program or a device. For example, you can use Unix in text 

mode (using the CLI) or graphics mode (using a GUI). Similarly, when you use the 
vi editor, you are, at any time, either in command mode or insert mode. [6] [13]

2. Same as fi le mode. [25]

33614_glo_851_890.indd   87133614_glo_851_890.indd   871 1/9/2008   12:46:55 PM1/9/2008   12:46:55 PM



872 Harley Hahn’s Guide to Unix and Linux

Chapter references are indicated by the numbers in brackets.

 modifi cation time  With respect to a fi le, the last time the fi le was changed. To display 
the modifi cation time for a fi le, you use the ls program with the -l option. Compare 
to access time. [24]

 modifi er key  On a keyboard, a key that can be held down while pressing another key, for 
example, <Shift>, <Ctrl> and <Alt>. [7]

 monolithic kernel  A kernel consisting of a single, relatively large program that performs 
all its operations internally. Monolithic kernels are effi cient, but can be unwieldy, 
which makes them diffi cult to design and maintain. Compare to microkernel. [2]

 mount  (verb) To enable access to a fi lesystem residing on a device by connecting the 
device fi lesystem to the main Unix fi lesystem. To mount a fi lesystem, you use the 
mount command. The directory to which the device fi lesystem is attached is called 
the mount point. See also unmount) and fi lesystem. [23]

 mount point  The directory within the Unix fi lesystem to which a device fi lesystem is 
connected (that is, mounted). See also mount) and fi lesystem. [23]

 multi-boot  Describes a computer that is set up to boot one of a number of different 
operating systems, as chosen by the user during the startup process. [2]

 multiprogramming  The old name for multitasking. Describes an operating system that 
can execute more than one program at a time. [3]

 multitasking  Describes an operating system that can execute more than one program 
at a time. [2]

 multiuser  Describes an operating system that can support more than one user at a 
time. [2]

N
 name  An identifi er used to refer to a variable. [12]
 named pipe  A type of pseudo fi le used to connect the output of one program to the 

input of a second program. Unlike an anonymous pipe (regular pipe), a named pipe 
is created explicitly and exists until it is deleted. Thus, a named pipe can be used 
repeatedly. Also called a FIFO ("fi e-foe"). Compare to pipe. See also pseudo fi le. [23]

 newline  The Unix name for the linefeed character. Within text, a newline character is 
used to indicate the end of a line. When sent to a terminal, a newline causes the cursor 
to move down one line. Within the ASCII code, the newline character is ^J (Ctrl-J), 
with a value of 10 in decimal or 0A in hexadecimal. [7]

 News (the)  Synonym for Usenet. [3]
 news server  A server that stores Usenet articles and makes them available to users via 

newsreader programs. [3]
 newsgroup  A Usenet discussion group. [3]
 newsreader  A client program used to access the Usenet system of discussion groups. [3]
 nice number  A number used to modify the priority of a process. The higher the 

nice number, the lower the priority. In most cases, the nice number of a process is 
changed by either the nice or renice command in order to lower the priority of 
the process. [26]

33614_glo_851_890.indd   87233614_glo_851_890.indd   872 1/9/2008   12:46:56 PM1/9/2008   12:46:56 PM



873Glossary

Chapter references are indicated by the numbers in brackets.

 niceness  Synonym for nice number. [26]
 node

1. Within a tree (data structure), a fork in a path. Corresponds to a vertex in a graph. 
See tree. [9] 

2. Within the Info system, a section that contains information about one specifi c 
topic. [9]

 non-destructive backspace  The type of backspace that occurs when the cursor moves 
back but nothing is changed. This is what happens when you press the <Left> arrow 
key. [7]

 non-interactive  Describes a program that runs independently of a person. For example, 
a non-interactive program might read its input from a fi le and write its output to 
another fi le. [12]

 non-interactive shell  A shell that is running a shell script. [12]
 non-login shell  Any interactive shell that was not started at the time the user logged in. 

See also login shell. [14]
 noncanonical mode  Same as raw mode. [21]
 null  Describes a variable that has no value. [12]
 null character  Also called a null. The character consisting of all 0 bits, that is, the 

numeric value 0. See also zero fi le. [23]
 null fi le  The pseudo-fi le /dev/null. When the null fi le is used as an output target, it 

throws away all input. When used as an input source, it always returns the eof signal 
(that is, nothing). The null fi le is one of the two bit buckets, the other being the zero 
fi le. See also pseudo-fi le. [23]

 numbered buffer  When using the vi text editor, one of 9 storage areas (numbered 1 
through 9) used to store and retrieve data. See also unnamed buffer. [22]

O
 octal  Same as base 8. A number system, based on powers of 8, in which numbers are 

constructed using the 8 digits 0, 1, 2, 3, 4, 5, 6, and 7. See also binary system, decimal 
system, duodecimal and (hexadecimal system. [21]

 offset  The location within a fi le of a particular byte, the fi rst byte having offset 0. [21]
 one or more  Indicates that you must use at least one of something. For example, the 

syntax for a command might allow you to specify one or more fi le names. This means 
that you must use at least one name. Compare to zero or more. [10]

 online
1. In an older sense, describes the idea of being connected to a specifi c computer 

system. For example, when you connect to a remote Unix host, you are online. [9] 
2. Describes an Internet resource or service, for example, online banking. [9] 
3. Describes a person who is currently using the Internet, for example, "Linda is online 

right now." [9] 
4. Describes a situation that exists only because of the Internet, for example, an online 

relationship. [9]

33614_glo_851_890.indd   87333614_glo_851_890.indd   873 1/9/2008   12:46:56 PM1/9/2008   12:46:56 PM



874 Harley Hahn’s Guide to Unix and Linux

Chapter references are indicated by the numbers in brackets.

 online manual  A collection of information, available to all Unix users at all times, 
containing documentation about commands and important system facilities. The 
online manual is divided into sections, each of which contains many entries (called 
pages) that document a single topic. You can access the online manual by using the 
man command or, with a GUI, by using xman. Alternatively, you can fi nd many 
versions of the online manual on the Web. There is longstanding tradition that users 
should check the online manual before asking for help. See RTFM. When Unix users 
refer to "the Manual", they always mean the online manual. [9]

 Open Software Foundation  An organization, formed in May 1988 by eight Unix vendors 
(including IBM, DEC and HP), for the purpose of creating their own "standard" Unix. 
Abbreviated as OSF. Compare to Unix International. [5]

 open source movement  A loosely organized international social movement among 
programmers, based on the willingness to work together on free software. [2]

 open source software
1. Software whose source code is freely distributed, often with the software itself. [2] 
2. Synonym for free software. [2]

 operating system  A complex master control program whose principal function is to 
make effi cient use of the hardware. The operating system acts as the primary interface 
to the hardware for both users and programs. [2]

 operator  When using the find program, an instruction used to group together or 
modify tests. For example, the ! operator negates the meaning of a test. See also test 
and action. [25]

 option
1. When entering a Unix command: an optional part of a command, almost always 

prefaced with - or -- (one or two hyphens), that specifi es how you want the 
command to execute. For example, you might enter the command ls -l. This is 
the ls command with the -l option. In conversation, the - character is usually 
pronounced "dash", even though it is actually a hyphen or minus sign (depending 
on your point of view). If you were to talk about the last example, you would say 
that you used the ls command with the "dash L" option. See also argument. [10] 

2. When using the vi text editor: a setting that enables you to control a specifi c 
aspect of the program's operation. There are two types of vi options: switch and 
variable. [22]

 ordinary fi le  One of the three types of Unix fi les. Same as regular fi le. A fi le that contains 
data and resides on a storage device, such as a hard disk, CD, DVD, fl ash drive, memory 
card, or fl oppy disk. As such, ordinary fi les are the type of fi les you work with most of 
the time. Compare to directory and pseudo fi le. See also fi le. [23]

 orphan  A child process whose parent has terminated. See also die and zombie. On most 
system, orphans are adopted by process #1, the init process, so they can be processed 
properly. See also init process. [26]

 OSF  Abbreviation for Open Software Foundation. [5]

33614_glo_851_890.indd   87433614_glo_851_890.indd   874 1/9/2008   12:46:56 PM1/9/2008   12:46:56 PM



875Glossary

Chapter references are indicated by the numbers in brackets.

 outer join  A type of join in which the output also includes the lines in which the join fi eld 
does not not match. Compare to inner join. See also fi eld, join and join fi eld. [19]

 output stream  Data that is written by a program. Compare to input stream. See also 
stream. [19]

 owner  With respect to a fi le, the userid that controls the fi le's permissions. By default, 
the userid that created the fi le is the owner. However, the owner can be changed with 
the chown program. [25]

P
 page  Within the online manual, the documentation for a single topic. By tradition, the 

documentation for each topic is referred to as a "page", even though it might be large 
enough to fi ll many printed pages. Same as man page. See online manual. [9]

 pager  A program that displays text data from a fi le or a pipeline, one screenful at a 
time. [21]

 paragraph  When using the vi text editor, a section of text that starts and ends in a 
blank line. Various vi commands act upon paragraphs when moving the cursor or 
modifying text. See also word and sentence. [22]

 parent  Same as parent process. [15] [26]
 parent directory  A directory that contains another directory. A directory that lies within 

a parent directory is called a subdirectory or child directory. See also directory. [23]
 parent process  A process that starts another process. The original process is the parent; 

the new process is the child. See also child process. [15] [26]
 parse  Within the shell, to separate a command into logical components, which can then 

be analyzed and interpreted. [13]
 partial ordering  When ordering elements of a set, a binary relation that orders some, but 

not all members of the set with respect to one another. Compare to total ordering. [19]
 partition  On a storage device such as a hard disk, a logically discrete part of the disk on 

which an operating system or a fi lesystem can be installed. [2]
 partition manager  A program used to manipulate partitions on a disk or similar 

device. [2]
 password  A secret pattern of characters that must be typed as part of the login process 

to ensure that a user is authorized to use a particular userid. [4]
 password aging  A security requirement that forces a user to change his or her password 

regularly, for example, every 60 days. [4]
 password fi le  A system fi le, /etc/passwd, that contains information about all the 

userids in the system. Each line in the fi le contains information about one userid. On old 
systems, the password fi le contained the passwords (encoded, of course). On modern 
systems, the passwords are kept separately in a shadow fi le. See also shadow fi le. [11]

 paste  Within a GUI, to copy data from the clipboard to a window. The data within the 
clipboard is not changed in any way. [6]

 patch  A diff used to modify a program, usually to fi x bugs or to enhance the program in 
some way. See also apply and diff. [17]

33614_glo_851_890.indd   87533614_glo_851_890.indd   875 1/9/2008   12:46:56 PM1/9/2008   12:46:56 PM



876 Harley Hahn’s Guide to Unix and Linux

Chapter references are indicated by the numbers in brackets.

 path  Same as pathname. [24]
 pathname  A description of the location of a fi le within the directory tree. Same as path. 

See also absolute pathname and relative pathname. [24]
 pathname expansion  Within the Bash shell, the facility that implements globbing, that 

is, the replacing of wildcard patterns by matching fi lenames. Within the C-Shell and 
Tcsh, this same facility is referred to as fi lename substitution; within the Korn Shell 
and Bourne Shell, it is called fi lename generation. See also wildcard, globbing and 
brace expansion. [24]

 Pdksh  A member of the Bourne shell family, a free, open source version of the Korn 
shell, originally developed in 1987 by Eric Gisin. Pdksh is an acronym for "public 
domain Korn shell". The name of the Pdksh program is ksh. See also Korn shell and 
Bourne shell family. [11]

 permission  Same as fi le permission. [25]
 PID  Same as process ID. A unique number, assigned by the kernel, that identifi es a 

particular process. Pronounced "P-I-D". See also process and process table. [26]
 pipe

1. A connection between two consecutive programs in a pipeline, in which the output 
of one program is used as the input for a second program. Sometimes called an 
(anonymous pipe. Compare to named pipe. 

2. (verb) To send data from one program to another so as to create a pipeline. [15]
 pipeline  An arrangement in which two or more programs process data in sequence, the 

output of one program becoming the input to the next program. [15]
 pointer  Within a GUI, a small, movable image that indicates the position to which the 

pointing device (mouse) is currently pointing. The shape of the pointer may change, 
depending on what you are doing and where it is on the screen. [6]

 Polish Notation  Arithmetical notation in which an operator is placed before the 
operands, for example, "+ 5 7". Named in honor of Jan Lukasiewicz (1878-1956), a 
renowned Polish mathematician, logician and philosopher. Same as prefi x notation. 
See also Reverse Polish Notation. [8]

 pop  With a stack, to retrieve the data element from the top of the stack (that is, the last 
element written) while simultaneously removing it from the stack. [8] [24]

 pop-up menu  Within a GUI, a menu that appears from no apparent location as a result 
of some action, often a right-click. [6]

 port  As a verb, to adapt software designed for one computer system to run on another 
system; "Tammy ported the Foo program from Linux to Windows." As a noun, to refer 
to such software; "Tammy created the Windows port of the Foo program." [2]

 POSIX  A project, started under the auspices of the IEEE (Institute of Electrical and 
Electronics Engineers) in the early 1990s, with the goal of standardizing Unix. 
Pronounced "pause-ix". The specifi cation for the POSIX shell is described by IEEE 
standard 1003.2. Most modern shells in the Bourne shell family adhere to this standard. 
This is not the case for shells in the C-Shell family. [11]

33614_glo_851_890.indd   87633614_glo_851_890.indd   876 1/9/2008   12:46:56 PM1/9/2008   12:46:56 PM



877Glossary

Chapter references are indicated by the numbers in brackets.

 POSIX options  Same as UNIX options. [26]
 postfi x notation  Arithmetical notation in which an operator is placed after the operands, 

for example, "5 7 +". Also called Reverse Polish Notation. Compare to infi x notation 
and prefi x notation. [8]

 predefi ned character class  With respect to regular expressions, a name that can be used 
instead of a set of characters within a character class. For example, the predefi ned 
character class [:digit:] can be used instead of 0-9. See also character class. [20]

 prefi x notation  Arithmetical notation in which an operator is placed before the 
operands, for example, "+ 5 7". Also called Polish notation. Compare to infi x notation 
and postfi x notation. [8]

 previous job  With respect to job control, the second most recently suspended job or, if 
there are no suspended jobs, most recently moved to the background. See also job, job 
control and current job. [26]

 primary group  With respect to a specifi c userid, the one group that is listed as the 
userid's group in the system password fi le. All other groups to which the userid belongs 
are called supplementary groups. Compare to supplementary group. See also group 
and fi le mode. [25]

 print  To display information on the terminal. For example, the command to display the 
name of your working directory is pwd: "print working directory". [7]

 printable characters  Within a character encoding system, those characters that can 
be displayed and printed; not control characters. Within the ASCII code, there are 
96 printable characters: letters, numbers, punctuation symbols, the space, and (for 
practical purposes) the tab. See also ASCII code. [19]

 priority  With respect to scheduling the execution of processes, an indication of how much 
precedence a process should be given over other processes. The priority of a process is 
inversely proportional to its nice number. See also process and nice number. [26]

 proc fi le  A type of pseudo fi le used to access information residing within the kernel. In 
a few specifi c cases, proc fi les can be used to change data within the kernel. Originally, 
these fi les were created to furnish information about processes, hence the name "proc". 
See also pseudo fi le. [23]

 process  A program that is loaded into memory and ready to run, along with the 
program's data and the information needed to keep track of the program. Processes 
are controlled by the kernel, unlike jobs, which are controlled by the shell. See also job, 
process ID and process table. [6] [15] [26]

 process ID  A unique number, assigned by the kernel, that identifi es a particular process. 
Often referred to as a PID ("P-I-D"). See also process and process table. Compare to 
job ID. [26]

 process table  A table, maintained by the kernel, used to keep track of all the processes in 
the system. The process table contains one entry per process, indexed by PID (process 
ID). Each entry in the table contains the information necessary to describe and manage 
a particular process. See also process and process ID. Compare to job table. [26]

33614_glo_851_890.indd   87733614_glo_851_890.indd   877 1/9/2008   12:46:56 PM1/9/2008   12:46:56 PM



878 Harley Hahn’s Guide to Unix and Linux

Chapter references are indicated by the numbers in brackets.

 process tree  A data structure in the form of a tree-structured hierarchy that shows 
the connections between parent processes and their children. The process tree for 
the entire system has the init process at the root of the tree. See also process, parent 
process, child process and init process. [26]

 program  A list of instructions that, when carried out by a computer, performs a task. [2]
 Project Athena  A collaboration between researchers at MIT, IBM, and DEC, started in 

1984. The goal was to create the fi rst standardized, networked, hardware-independent, 
graphical operating environment for use by the students at MIT . Project Athena is 
noteworthy for having created the fi rst version of X Window. [5]

 prompt  A short message, displayed by a program, indicating that the program is ready 
to accept input from the keyboard. [4]

 pseudo fi le  One of the three types of Unix fi les. A pseudo fi le is used to access a service, 
usually provided by the kernel. Because pseudo fi les do not store data, they require no 
disk space. The most important types of pseudo fi les are special fi les, named pipes, 
and proc fi les. Compare to ordinary fi le and directory. See also fi le. [23]

 pseudo terminal  A simulated terminal used when you open a terminal window within 
a GUI or when you connect to a remote Unix computer. Abbreviated as PTY. See also 
terminal. Compare to virtual console. [23]

 pseudo-device  A type of special fi le that acts as an input source or output target but 
does not correspond to an actual device, either real or emulated. The two most useful 
pseudo-devices are the null fi le and the zero fi le. See also special fi le. [23]

 PTY  Abbreviation for pseudo terminal. [23]
 pull-down menu  Within a GUI, a menu that appears when you click on a word or 

icon. [6]
 punch card  A type of card, invented by U.S. inventor Herman Hollerith (1860-1929), 

used to store data that is encoded by holes punched in columns. [18]
 push  With a stack, to store a data element on the stack. [8] [24]

Q
 queue  A data structure in which elements are stored and retrieved one at a time, such 

that elements are retrieved in the same order they were stored. See also FIFO ("fi rst-in 
fi rst-out") and data structure. [23]

 quote  Within the shell, to indicate that certain characters are to be interpreted literally 
according to certain rules. This is done by placing one or more characters within single 
quotes (') or double quotes ("), or by placing a backslash (\) before a single character. 
See also strong quotes and weak quotes. [13]

R
 range  With respect to regular expressions, within a character class, a specifi cation for a 

set of characters that can be ordered. A range consists of the fi rst member of the set, 
followed by a hyphen, followed by the last member of the set. For example, the range 
0-9 specifi es the digits 0 through 9. See also character class. [20]

33614_glo_851_890.indd   87833614_glo_851_890.indd   878 1/9/2008   12:46:56 PM1/9/2008   12:46:56 PM



879Glossary

Chapter references are indicated by the numbers in brackets.

 raw mode  A line discipline in which characters typed as input to a program are sent to 
the program as soon as the user presses a key. Compare to canonical mode and cbreak 
made. See also line discipline. [21]

 read permission  A type of fi le permission that allows the reading of a fi le or directory. 
Compare to write permission and execute permission. See also fi le permission. [25]

 reboot  A process that stops Unix and then restarts the computer, effectively stopping 
and restarting Unix. [6]

 record  Within a fi le containing machine-readable data, a line of data. See also fi eld and 
delimiter. [17]

 recursive
1. Describes an algorithm or program (computer science), or a function (mathematics) 

that is defi ned in terms of itself. Informally, describes a name or acronym that 
can be expanded indefi nitely, for example, the recursive acronym GNU stands for 
"GNU's not Unix". [2] 

2. With respect to Unix fi le commands, describes options that process an entire sub-
tree of directories. Such options are usually named -r or -R. [24]

 redirect  To redefi ne the source for standard input or the target for either standard 
output or standard error. [15]

 regex  Abbreviation for regular expression. [20]
 regular expression  A specifi cation, based on specifi c metacharacters and abbreviations, 

that provides a compact way of unambiguously describing a pattern of characters. 
Abbreviated as "regex" or, more simply, "re". [20]

 regular fi le  Same as ordinary fi le). [23]
 relative pathname  A pathname that is interpreted in such a way that it starts from the 

current directory. [24]
 removable media  Describes storage devices that can be inserted or removed while 

the system is running; for example, CDs, DVDs, fl oppy disks, tapes, fl ash drives, and 
memory cards. Compare to fi xed media. [23]

 repeat count  When using the vi text editor, a number, typed before a command, that 
causes the command to be repeated automatically the specifi ed number of times. For 
example, the command dd deletes the current line. The command 10dd deletes 10 
lines, starting with the current line. [22]

 repetition operator  Within a regular expression, one of several metacharacters (*, +, ?, 
{ }) used to match more than one character at a time. See also bound. [20]

 resize  Within a GUI, to change the size of a window. [6]
 restart  Same as reboot. [6]
 restore  Within a GUI, after a window has been minimized or maximized, to cause the 

window to regain its original size and position. [6]
 return  A character that, when sent to a terminal, causes the cursor to move to the 

beginning of the line. In the ASCII code, the return character has the value 13 in 
decimal, or 0D in hexadecimal. See also linefeed and newline. [7]

33614_glo_851_890.indd   87933614_glo_851_890.indd   879 1/9/2008   12:46:57 PM1/9/2008   12:46:57 PM



880 Harley Hahn’s Guide to Unix and Linux

Chapter references are indicated by the numbers in brackets.

 return value  When a program or function calls another program or function, data sent 
back to the calling program. The fork system call sends a zero return value to the 
child process and a non-zero return value (the process ID of the child) to the parent 
process. [26]

 Reverse Polish Notation  Arithmetical notation in which an operator is placed after the 
operands, for example, "5 7 +". Often abbreviated as RPN. Named in honor of Jan 
Lukasiewicz (1878-1956), a renowned Polish mathematician, logician and philosopher. 
Same as postfi x notation. [8]

 revision control system  A sophisticated system, commonly used by software developers 
to manage the development of large programs or documents. Same as source control 
system. Generic term is version control system. [17]

 right buttons  On a mouse or other pointing device, the button that, when the mouse is 
on your right, is the rightmost button. See also left button and middle button. [6]

 right-click  When using a mouse or other pointing device, to press the right button. [6]
 root

1. A special userid that affords a user special privileges and great power. To maintain 
proper security, the root password is kept secret, known only to the system 
administrator. A user who has logged in as root is called the superuser. [4] 

2. Within the Unix fi lesystem, the main directory. Same as root directory. The root 
directory is, directly or indirectly, the parent directory of all the other directories in 
the fi lesystem. [23] 

3. Within a tree (data structure), the main node from which the tree arises. See tree. [9]
 root directory  The main directory of the Unix fi lesystem. The root directory is, directly 

or indirectly, the parent directory of all the other directories. See also root and 
fi lesystem. [23]

 root fi lesystem  A fi lesystem stored on the boot device, containing all the programs and 
data fi les necessary to start Unix, as well as the tools a system administrator would 
need should something go wrong. [23]

 router  A special-purpose computer that relays data from one network to another. [3]
 RPN  Abbreviation for Reverse Polish Notation. [8]
 RTFM

1. Pronounced as four separate letters, "R-T-F-M". Within the Unix culture, RTFM is 
used as a verb to express the idea that, before asking for help with a problem, one 
should look for information in the online manual. For example, "Can you help me 
with the sort command? I have RTFM'd but I still can't fi gure it out." Originally, 
RTFM was an acronym for "Read the fuckin' manual." Today, RTFM is a valid word 
in its own right and is the longest verb without vowels in the English language. [9] 

2. In a more general sense, RTFM is used to express the idea that, before someone 
asks for assistance, he should try to help himself by reading the appropriate 
documentation, or by searching for information on the Web and on Usenet. [9]

 run  To follow the instructions contained in a program. Same as execute. [2]

33614_glo_851_890.indd   88033614_glo_851_890.indd   880 1/9/2008   12:46:57 PM1/9/2008   12:46:57 PM



881Glossary

Chapter references are indicated by the numbers in brackets.

 runlevel  One of a small number of modes in which Unix can be run, determining which 
fundamental services are to be provided. More technically, a system software confi guration 
that allows a specifi ed group of processes to exist. See also init process. [6]

 runtime level  Same as runlevel. [6]

S
 scheduler  A service, provided by the kernel, that keeps track of the processes waiting for 

processor time, in order to decide which process to execute next. [6] [26]
 screen editor  Same as screen-oriented editor. [22]
 screen-oriented editor  A text editor that allows you to enter, display and manipulate 

data anywhere on the screen, without having to use commands that require line 
numbers. Same as screen editor. Compare to line-oriented editor. (22)

 scroll  To move lines on the screen of a terminal, usually up or down, in order to make 
room for new lines. [7]

 search path  Within the shell, the list of directories in which the shell looks when it needs 
to fi nd a program that must be executed. [13]

 secondary prompt  A special shell prompt used to indicate that a command is being 
continued onto a new line. See also shell prompt. [19]

 sentence  When using the vi text editor, a string of characters, ending in a period, 
comma, question mark or exclamation mark, followed by at least two spaces or a 
newline character. Various vi commands act upon sentences when moving the cursor 
or modifying text. See also word and paragraph. [22]

 server
1. A program that offers a service of some type, usually over a network. The program 

that requests such services is called a client. [3] 
2. A computer that runs a server program. [3] 
3. A program used by a microkernel to perform specifi c tasks. [2]

 set
1. Within the shell, to create a variable and, possibly, give it a value. [12] 
2. Within the Bourne shell family (Bash, Korn shell), to turn on an option. See also 

unset. [12]
 setuid  Often abbreviated as suid (pronounced "S-U-I-D"); stands for "set userid". 

A special type of file permission used only with files that contain executable 
programs. When setuid is set, a program executes with the permissions of the 
owner of the file regardless of which userid runs the program. Setuid is usually 
used to enable regular userids to run programs owned by root that require 
superuser privileges. [25]

 shadow fi le  A system fi le, /etc/shadow, that contains encoded passwords with 
related data, such as expiration dates. See also password fi le. [11]

 shell  A program that provides one of the primary interfaces to Unix by acting as a 
command processor and by interpreting scripts of commands. [2] [11]

33614_glo_851_890.indd   88133614_glo_851_890.indd   881 1/9/2008   12:46:57 PM1/9/2008   12:46:57 PM



882 Harley Hahn’s Guide to Unix and Linux

Chapter references are indicated by the numbers in brackets.

 shell option  Within the Bourne shell family (Bash, Korn shell), a setting that acts as an 
off/on switch in order to control a particular aspect of the shell's behavior. Within the 
C-Shell family (C-Shell, Tcsh), shell options are not used. Instead, the behavior of the 
shell is controlled by setting shell variables. [12]

 shell prompt  One or more characters displayed by the shell to indicate that it is ready to 
accept a new command. See also secondary prompt. [4] [13]

 shell script  A list of commands, stored in a fi le, that can be executed by a shell. Most 
shells have special programming commands designed specifi cally for use within shell 
scripts. [11] [12]

 shell variable  Within a shell, a local variable that is not part of the environment and, 
hence, is not accessible to child processes. See also environment variable, local 
variable and global variable. [12]

 shortcut key  Within a GUI, a key or key combination that allows you to initiate a 
particular action without having to go to the trouble of pulling down a menu and 
selecting an item. [6]

 shutdown  A process that stops Unix and turns off the computer. [6]
 signal  A type of interprocess communication in which a simple message, in the form of 

a number, is sent to a process to let it know that some type of event has occurred. It is 
up to the process to recognize the signal and do something. When a process does this, 
we say that it traps the signal. See also interprocess communication and trap. [26]

 single-user mode  Runlevel #1. A runlevel in which only the superuser may log in, 
usually to perform some type of system maintenance or repair. [6]

 Slackware  The fi rst successful Linux distribution, released in July 1993 by Patrick 
Volkerding. The name "slack" was a whimsical choice, taken from the Church of the 
SubGenius, a parody religion. Slack refers to the feeling of exhilaration and satisfaction 
that comes from achieving your personal goals. [2]

 soft link  Synonym for symbolic link. Used to distinguish between a regular link (hard 
link) and a symbolic link (soft link). [25]

 software  Computer programs of all types. [2]
 source  Synonym for source code. [2]
 source code  A program written in a computer language, readable by a knowledgeable 

person. To convert a source program into an executable program, it must be translated 
into machine language. Informally, source code is often referred to as "source". [2]

 source control system  A sophisticated system, commonly used by software developers 
to manage the development of large programs or documents. Same as revision control 
system. Generic term is version control system. [17]

 special fi le  A type of pseudo fi le that provides an internal representation of a physical 
device. Also called a device fi le. See also pseudo fi le. [23]

 squeeze  With respect to programs that modify text (such as tr), while performing 
a translate operation, to treat multiple adjacent identical characters as a single 
character. For example, replacing multiple spaces in a row by a single space. See also 
translate. [19]

33614_glo_851_890.indd   88233614_glo_851_890.indd   882 1/9/2008   12:46:57 PM1/9/2008   12:46:57 PM



883Glossary

Chapter references are indicated by the numbers in brackets.

 stack  A data structure in which elements are stored and retrieved one at a time, such 
that, at any time, the next data element to be retrieved is the last element that was 
stored. See also LIFO ("last-in fi rst out") and data structure. [8] [24]

 standard error  The default target for error messages written by a program. Abbreviated 
as stderr. When a user logs in, the shell automatically sets standard error to be the 
monitor. Thus, by default, most programs write their error messages to the monitor. 
See also standard input, standard output and standard I/O. [15]

 standard I/O  Collectively, refers to standard input, standard output and standard 
error. Abbreviation for "standard input/output". [15]

 standard input  The default input source for a program. Abbreviated as stdin. When 
a user logs in, the shell automatically sets standard input to the keyboard. Thus, by 
default, most programs read their input from the keyboard. See also standard output, 
standard error and standard I/O. [15]

 standard options  Same as UNIX options. [26]
 standard output  The default target for general output written by a program. Abbreviated 

as stdout. When a user logs in, the shell automatically sets standard output to be the 
monitor. Thus, by default, most programs write their output to the monitor. See also 
standard input, standard error and standard I/O. [15]

 state  The current status of a process. At any time, a process is in one of three possible 
states: running in the foreground; running in the background; or suspended (paused), 
waiting for a signal to resume execution. See also foreground process, background 
process and suspend. [26]

 static data  Within the Unix fi lesystem, data that does not change without system 
administrator intervention. Compare to variable data. [23]

 stderr  Abbreviation for standard error. [15]
 stdin  Abbreviation for standard input. [15]
 stdout  Abbreviation for standard output. [15]
 stop  To pause a process temporarily, usually by pressing the ^Z key. Once a process is 

stopped, it waits for a signal to resume execution. Same as suspend. Compare to kill. 
See also process and job control. [26]

 stream  Data that is either read by a program (an input stream) or written by a program 
(an output stream). [19]

 string  A sequence of printable characters. Same as character string. See also printable 
character. [19]

 strong quotes  When using the shell, a synonym for single quotes ('). Within single 
quotes, no characters have special meanings. Compare to weak quotes. [13]

 subdirectory  Also called a child directory. A directory that lies within another directory. 
All directories, except the root directory, can be considered subdirectories. The directory 
that contains a subdirectory is called the parent directory. See also directory. [23]

 subshell  Any shell that is started from within another shell. [15] [26]
 suid  Abbreviation for setuid. Pronounced "S-U-I-D". [25]

33614_glo_851_890.indd   88333614_glo_851_890.indd   883 1/9/2008   12:46:57 PM1/9/2008   12:46:57 PM



884 Harley Hahn’s Guide to Unix and Linux

Chapter references are indicated by the numbers in brackets.

 superblock  Within a Unix fi lesystem, a special data area that holds crucial information 
about the fi lesystem itself. [24]

 superuser  A user, usually the system administrator, who has logged in using the root 
userid, which affords special privileges. See also root. [4]

 supplementary group  With respect to a specifi c userid, aside from the userid's primary 
group, any other group to which the userid belongs. Compare to primary group. See 
also group and fi le mode. [25]

 suspend  To pause a process temporarily, usually by pressing the ^Z key. Once a process 
is suspended, it waits for a signal to resume execution. Same as stop. Compare to kill. 
See also process and job control. [26]

 swap fi le  When using the vi text editor, a copy of the editing buffer that is saved 
automatically in the same directory in which you are editing. Should your work 
session be aborted expectedly — say by a system crash — the swap fi le can be used to 
recover your data. [22]

 switch
1. When entering a Unix command: another name for an option. [10] 
2. When using the vi text editor: a type of option that is either on or off. Compare to 

variable. See also option. [22]
 symbolic link  Within a fi lesystem, a type of link that is, literally, the pathname of another 

fi le. A symbolic link is sometimes called a soft link to distinguish it from a regular link 
(hard link). Often referred to as a symlink. Compare to link. [25]

 symlink  Abbreviation for symbolic link. [25]
 syntax  The formal description of how a command should be entered. [10]
 sysadmin  Synonym for system administrator. [4]
 system administrator  The person who administers and manages a Unix system. Same 

as sysadmin. [4]
 system call  A facility used by a process to call upon the kernel to provide a service. [12]
system call  A facility used by a process to request the kernel to perform a service. [26]
 system maintenance mode  Obsolete term for single-user mode. [6]
 system manager  Obsolete term for system administrator. [4]
 System V  A version of UNIX developed at AT&T, released in 1983. In the 1980s, System 

V was one of the two main branches of the Unix; the other was BSD. [2]

T
 tab stop  On a typewriter, a mechanical marker that sets a position where the carriage 

will stop when the <Tab> key is pressed. [18]
 task  Within a GUI, a program that is running in a window. [6]
 task switching  Within a GUI, to change the focus from one window to another, often 

by using a key combination to cycle through the list of currently running tasks. With 
most GUIs, the task switching keys are <Alt-Tab> to move forward through the list, 
and <Alt-Shift-Tab> to move backward through the list. [6]

33614_glo_851_890.indd   88433614_glo_851_890.indd   884 1/9/2008   12:46:57 PM1/9/2008   12:46:57 PM



885Glossary

Chapter references are indicated by the numbers in brackets.

 taskbar  Within a GUI, a horizontal bar, usually at the bottom of the screen, which 
contains a representation of each window that is currently active. The representation of 
a window is usually an icon, possibly with some text. Within Gnome the functionality 
of the taskbar is provided by the "Window List". [6]

 TCO  Abbreviation for total cost of ownership. [5]
 Tcsh  A member of the C-Shell family, originally developed in the late 1970s by Ken 

Greer of Carnegie-Mellon University as a completely free version of the C-Shell. 
Pronounced "tee-see-shell". The Tcsh is used widely as a powerful, backwards 
compatible replacement for the traditional C-Shell. The name of the Tcsh program is 
either tcsh or csh. See also C-Shell family. [11]

 Termcap  A database, consisting of one large fi le, that contains technical descriptions of 
all the different types of terminals. In modern systems, Termcap has been replaced by 
Terminfo. [7]

 terminal  The hardware used to access a Unix system via a keyboard, a monitor and, 
possibly, a mouse. A Unix terminal can be a machine designed to be a terminal, or it 
can be a computer that is running a program to act like (emulate) a terminal. [3]

 terminal driver  The program that acts as the driver for a terminal. [21]
 terminal room  In the 1970s and 1980s, a room in which there were a number of 

terminals connected to a host computer. To use a Unix system, you would go to the 
terminal room, and wait for a free terminal. [3]

 terminal server  A special-purpose computer that acts as a switch, connecting terminals 
to host computers. [3]

 terminate  With respect to a process, to stop running. Same as die. [26]
 Terminfo  A database, consisting of a collection of fi les, containing technical descriptions 

of all the different types of terminals. In modern systems, Terminfo replaces an older 
database called Termcap. [7]

 test  When using the find program, a specifi cation defi ning the criteria used during the 
fi le search. For example, the test -type f tells find to search only for ordinary fi les. 
See also action and operator. [25]

 Texinfo  The offi cial documentation system for the GNU project. Texinfo provides a 
sophisticated set of tools that use a single information fi le to generate output in a 
variety of formats: Info format, plain text, HTML, DVI, PDF, XML and Docbook. 
Most commonly pronounced as "Tekinfo". [9]

 text  Data that consists of characters: letters, numbers, punctuation, and so on. [3]
 text editor  A program used to create and modify text fi les. Often referred to informally 

as an editor. [22]
 text fi le  A fi le that contains only printable characters, with a newline character at the 

end of each line. Unix fi lters are designed to work with text fi les. Sometimes called an 
ASCII fi le. Compare to binary fi le. See also printable character. [19]

 text-based terminal  A terminal that displays only characters (text): letters, numbers, 
punctuation and so on. Same as character terminal. [3]

33614_glo_851_890.indd   88533614_glo_851_890.indd   885 1/9/2008   12:46:57 PM1/9/2008   12:46:57 PM



886 Harley Hahn’s Guide to Unix and Linux

Chapter references are indicated by the numbers in brackets.

 time slice  A very short interval during which a particular process is allowed to use the 
processor. A typical time slice would be 10 milliseconds (10 thousandths of a second). 
See also CPU time. [6] [26]

 time-sharing system  The old name for a multiuser system. Describes an operating 
system that can support more than one user at a time. [3]

 title bar  Within a GUI, the horizontal area at the top of a window that has the name of 
the program running in the window. [6]

 top  Within a stack, the location of the data element that was most recently pushed onto 
(written to) the stack. [8] [24]

 Top Node  Within the Info system, the root of a tree. As a general rule, the Top Node 
contains a summary of the topic under discussion, as well as a menu showing the 
topics covered in the fi le. [9]

 top-level directory  Any subdirectory of the root directory. The root directory and the 
top-level directories form the backbone of the Unix fi lesystem. See also root directory 
and fi lesystem. [23]

 total cost of ownership  A business term, often abbreviated as TCO. An estimate of the 
total cost of owning and using a machine or a system over its lifetime. To estimate 
the TCO for a computer, one must consider the cost of hardware, software, upgrades, 
maintenance, technical support, and training. As a rule of thumb, the TCO of a 
business PC is 3 to 4 times its purchase price. [5]

 total ordering  When ordering elements of a set, a binary relation that orders all the 
members of the set with respect to one another. Compare to partial ordering. [19]

 translate  With respect to programs that modify text (such as tr), to change every 
instance of a character to one or more specifi ed characters. See also squeeze. [19]

 trap   For a program that is executing, to notice and react to a specifi c signal, especially 
signals that might abort or otherwise affect the program. [7]

 tree  A data structure formed by a set of nodes, leaves, and branches, organized in such a 
way that there is, at most, one branch between any two nodes. See also data structure, 
node, leaf, branch, root. [9]

 triple-click  When using a mouse or other pointing device, to press a button three times 
in rapid succession. [6]

U
 UI  Abbreviation for Unix International. [5]
 Unix

1. Any operating system that meets generally accepted "Unix-like" standards with 
respect to providing user and programming services. [2] 

2. Describes a worldwide culture, based on the Unix operating systems, involving 
interfaces, shells, programs, languages, conventions and standards. [2]

 UNIX  The specifi c family of operating system products and associated software 
originally developed by AT&T. Compare to Unix. [2]

33614_glo_851_890.indd   88633614_glo_851_890.indd   886 1/9/2008   12:46:57 PM1/9/2008   12:46:57 PM



887Glossary

Chapter references are indicated by the numbers in brackets.

 Unix International  An organization formed in December 1989 by AT&T, Sun, and 
several smaller companies, as an alternative to the Open Software Foundation. 
Abbreviated as UI. [5]

 Unix manual  Same as the online manual. [9]
 UNIX options  With respect to the ps (process status) command, those options that are 

derived from the 1980s version of ps that was part of AT&T UNIX. UNIX options 
start with a single dash. Compare to BSD options. Also called POSIX options and 
standard options. [26]

 unmaximize button  Within a GUI, a small rectangle, usually in the top right-hand 
corner of the window, that, when clicked, will restore a window that was previously 
maximized. [6]

 unmount  (verb) To disable access to a fi lesystem residing on a device by disconnecting 
it from the main Unix fi lesystem. To unmount a fi lesystem, you use the umount 
command. See also mount and fi lesystem. [23]

 unnamed buffer  When using the vi text editor, a storage area containing a copy of your 
last deletion. See also numbered buffer. [22]

 unset
1. Within the shell, to delete a variable. [12] 
2. Within the Bourne shell family (Bash, Korn shell), to turn off an option. See also 

set. [12]
 uppercase  Describes the capital letters, "A" to "Z". [4]
 Usenet  A worldwide system of discussion groups. [3]
 user  A person who uses a Unix system in some way. Unix does not know about users: 

Unix only knows about userids. [4]
 user mask  A three-number octal value that indicates which fi le permissions should be 

withheld from newly created fi les. [25]
 user name completion  Same as userid completion. [13]
 userid  A name, registered with a Unix system, that identifi es a specifi c account. 

Pronounced "user-eye-dee". [4]
 userid completion  A type of autocompletion that completes a partially typed userid, 

when a word begins with a ~ (tilde) character. Userid completion is available with 
Bash, the C-Shell, and the Tcsh. See also autocompletion. [13]

 utility  Any of the hundreds of programs that are distributed with a Unix/Linux operating 
system. [2]

V
 value  Data that is stored in the variable. [12]
 variable

1. A quantity, known by a name, that represents a value. [12] 
2. When using the vi text editor, an option that contains a value. Compare to switch. 

See also option. [22]

33614_glo_851_890.indd   88733614_glo_851_890.indd   887 1/9/2008   12:46:58 PM1/9/2008   12:46:58 PM



888 Harley Hahn’s Guide to Unix and Linux

Chapter references are indicated by the numbers in brackets.

 variable completion  A type of autocompletion that completes a partially typed variable 
name, when a word begins with a $ (dollar) character. Variable completion is available 
with Bash and the Tcsh. See also autocompletion. [13]

 variable data  Within the Unix fi lesystem, data that, by its nature, is expected to change 
over time; for example, a log fi le. Compare to static data. [23]

 version control system  Generic name for a sophisticated system, commonly used by 
software developers and engineers, to manage the development of large programs, 
documents, blueprints, and so on. When used by programmers, usually referred to as 
a source control system or revision control system. [17]

 vi  A powerful, screen-oriented text editor, part of every Unix system. The vi editor is 
the de facto standard Unix text editor. The name vi is pronounced as two separate 
letters "vee-eye". See also Vim. [22]

 vi mode  Within the shell, a mode used with command line editing in which the editing 
commands are the same ones as are used with the vi text editor. See also command 
line editing and Emacs mode. [13]

 Vim  A very powerful, backward compatible replacement for the vi text editor. On many 
Unix and Linux systems, Vim, by default, takes the place of vi. See also vi. [22]

 virtual console  One of several terminal emulation programs running at the same 
time, each of which supports an independent work session. Within Linux, the most 
common default confi guration offers the user 7 virtual consoles: #1-6 are full-screen, 
text-based terminals for using a CLI; #7 is a graphics terminal for running a GUI. In 
such systems, the desktop environment (such as KDE or Gnome) runs within virtual 
console #7. See also terminal. Compare to pseudo terminal. [6]

 virtual fi lesystem  An API (application program interface) that provides a uniform way 
for programs to access data regardless of how that data is stored or generated. The 
virtual fi lesystem is what makes it possible to organize separate, heterogeneous device 
fi lesystems into one large Unix fi lesystem. Abbreviated as VFS. [23]

 visit  Within the Info system, to look at the contents of a particular node. [9]
 VT100  The most popular Unix terminal of all time, introduced in 1978 by the Digital 

Equipment Corporation. The VT100 was so popular that it set a permanent standard. 
Even today, most terminal emulation programs use specifi cations based on the 
VT100. [3]

W
 wait  After a process has forked to create a child process, to pause until the child has 

fi nished running. See also fork, exec and exit. [26]
 weak quotes  When using the shell, a synonym for double quotes ("). Within double 

quotes, only the three metacharacters $ (dollar), ` (backquote), and \ (backslash) 
retain their special meaning. Compare to strong quotes. [13]

 Web server  A computer that stores Web pages and makes them available via a network, 
usually the Internet. [3]

33614_glo_851_890.indd   88833614_glo_851_890.indd   888 1/9/2008   12:46:58 PM1/9/2008   12:46:58 PM



889Glossary

Chapter references are indicated by the numbers in brackets.

 whitespace
1. With the shell, one or more consecutive spaces or tabs. 
2. With some programs, one or more consecutive spaces, tabs or newlines. [10]

 wildcard  When specifying a fi lename, typically within a Unix command, a metacharacter 
used to create a pattern that can match multiple fi les. See also globbing and pathname 
expansion. [24]

 window  When using a GUI, a bounded region of the screen, usually a rectangle. [5]
 window manager  Within a GUI, the program that controls the appearance and 

characteristics of the graphical elements (windows, buttons, scroll bars, icons, and 
so on). [5]

 window operation menu  Within a GUI, when you are using a window, a pull-down 
menu containing a list of actions that pertain to the window itself, such as Move, Resize, 
Minimize, Maximize and Close. To display the Window Operation menu, you click on 
the tiny icon at the top-left of the window (at the left edge of the title bar). [6]

 word
1. The fundamental unit into which bits are organized and manipulated by a particular 

processor. Most modern processors use 32-bit or 64-bit words. [21] 
2. When using a regular expression: a self-contained, contiguous sequence of 

characters consisting of letters, numbers, or underscore characters. [20] 
3. When using the vi text editor: a string of letters, numbers, or underscore characters. 

Various vi commands act upon words when moving the cursor or modifying text. 
See also sentence and paragraph. [22]

 working directory  Also called current directory. The default directory, used when 
entering Unix commands. The working directory is set by the cd (change directory) 
command; the name is displayed by the pwd (print working directory) command. [24]

 workspace  Within the Gnome desktop environment, a desktop. [6]
 write permission  A type of fi le permission. With a fi le, it allows reading. With a directory, 

it allows creating, moving, copying or deleting within the directory. Compare to read 
permission and execute permission. See also fi le permission. [25]

X
 X  Same as X Window. [5]
 X terminal  Any graphics terminal designed to be used with the X Window system. 

Today, the X terminal standard is the basis for graphics terminal emulation, in the 
same way that the VT100 is the basis of character terminal emulation. [3]

 X Window  A widely-used system designed to support graphical user interfaces (GUIs). 
The correct usage of this term is singular, "X Window", not plural, "X Windows". The 
X Window system is often referred to simply as "X". [5]

Y
 yank  (verb) When using the vi text editor, to copy text to the unnamed buffer without 

deleting the text. See also unnamed buffer. [22]

33614_glo_851_890.indd   88933614_glo_851_890.indd   889 1/9/2008   12:46:58 PM1/9/2008   12:46:58 PM



890 Harley Hahn’s Guide to Unix and Linux

Chapter references are indicated by the numbers in brackets.

Z
 zero fi le  The pseudo-fi le /dev/zero. When used as an output target, the zero fi le 

throws away all input. When used as an input source, it always returns a null character. 
The null fi le is one of the two bit buckets, the other being the null fi le. See also pseudo-
fi le and null character. [23]

 zero or more  Indicates that you can use one or more of something or that you can omit 
the item entirely. For example, the syntax for a command might allow you to specify 
zero or more fi le names. This means that you can specify one or more names, or you 
can omit the name entirely. Compare to one or more. [10]

 zombie  A child process that has died, but has not yet been made to vanish by its parent. 
If the child is an orphan (without a parent), it will remain a zombie until the system 
does something to cause the child to vanish. See also die and orphan. [26]

 Zsh  A member of the Bourne shell family, a very powerful, complex shell, originally 
developed in 1990 by Paul Falstad, a student at Princeton University. Zsh is pronounced 
"zee-shell". The name of the Zsh program is zsh.  See also Bourne shell family. [11]

hah33614_glo_851_890.indd   890hah33614_glo_851_890.indd   890 5/20/2009   2:32:18 PM5/20/2009   2:32:18 PM



891

abbreviations 615-616, 832
autoindent option 605-607
autowrite option 605
breaking lines automatically 606-607
breaking/joining lines 607, 830
changing case of letters 602-603
changing text 590-592, 830
command mode 568-569, 857
commands, strategy for learning 575-576
compatibility mode 566, 857
control characters, inserting into editing 

buffer 573
copying deletions 831
copying text 601-602
copying/moving lines 608, 831
correcting mistakes 575, 827
current character 577, 858
current line 577, 858
cursor movement 577-581, 828
deleting text 594-597, 830-831
display control 827
displaying options 605-606
displaying word lists 459
editing buffer

control characters, inserting into 573
data from fi le, inserting 610
defi ned 568, 860
moving through 581-582, 828
processing data in 612-613
reading data into 832
shell output, inserting 610-611

entering data from a fi le 610
entering shell commands 608-609
errorbells option 605
ex commands versus vi commands 574-575
ex text editor

history of 562-563
pronunciation of ex 562

exrc option 605
.exrc initialization fi le 619-621
fi lenames, displaying 566
^I control character 573
ignorecase option 605
initialization fi les 619-621
input mode 568-569, 829
inserting shell output 610-611
inserting text 587-589
lack of screen splitting 623
line numbers 586-587, 829
lines variable 605
list option 605
lowercase, changing to uppercase 602-603
macros 616-618
marking lines 583
moving text 599-601
multiple initialization fi les 621
nonumber option 604
number option 586, 604, 605
numbered buffers 598, 873
options, 603-606
paragraphs 580, 875
pattern searching 584-586, 829-830
pausing 832
practice fi les, creating 577
previous locations, moving to 582-583
processing data 832
processing editing buffer lines 612-613
read-only mode 523, 571
readonly option 605
recovering after system failure 827
recovering deleted lines 598-599
recovering fi les 571-572
redrawing screen 775
regular expressions, special characters in  

829
repeat count 581

TOPICS

Q U I C K  I N D E X 
F O R  T H E  v i  T E X T  E D I T O R

Quick Index for the vi Editor

For a summary of vi commands,  see Appendix C on page 827.

33614_idxvi_891_894.indd   89133614_idxvi_891_894.indd   891 1/9/2008   12:29:21 PM1/9/2008   12:29:21 PM



892 Harley Hahn’s Guide to Unix and Linux

1G 829
"1pu.u.u... 831
A 587-589, 829
a 587-589, 829
B 579, 828
b 579, 828
C 591, 592, 830
c 591, 592, 830
cc 591, 592, 830
D 594, 595, 602, 830
d 594, 595, 602, 830
d) 831
d} 831

d1G 830, 831
db 831
dd 574, 577, 594, 596, 601, 

602, 830
ddp 831
deep 831
dG 830, 831
dgg 831
dW 831
dw 831
E 579, 828
e 579, 828
G 582, 586, 587, 829

gg 587, 829
H 580, 828
h 578, 828
I 587-589, 829
i 587-589, 829
J 607, 830
j 578, 828
k 578, 828
L 580, 828
l 578, 583, 828
M 580, 828
m 583
N 584-586, 829

vi COMMANDS

repeating commands 598
replacing text 592-594
screen display 573
screen splitting 623
sentences 580, 881
setting options 603-604
shell commands 608-609, 832
shell output, inserting 610-611
shiftwidth variable 605
showmatch option 605
showmode option 570, 604-605
starting shell 609
starting 565, 827
startup screen for Vim text editor 567
stopping 572, 614, 827
swap fi les 572, 884
switching to different fi le 615
tabs 573
tabs/spaces, viewing 429
tabstop variable 604, 605
undoing changes 597-598, 830
unnamed buffers 599, 887
uppercase, changing to lowercase 602-603
variables 604-605
vi command 565, 820, 822, 827
vi -R command 571, 827
vi -r command 571, 827
vi commands versus ex commands 574-

575

vi text editor
history of 560-563
importance of 560
learning 559-560
pronunciation of vi 559
See also Appendix C: Summary of vi 

Commands 827-832
view command 571, 820, 822, 827
vim command 566-567, 820, 822, 827
vim -C command 827
Vim text editor 564-565

defi ned 888
displaying help 622
enhancements in 623
initialization fi les 619-621
learning to use 621-622
macros 617
multiple initialization fi les 621
starting 566-567, 827
startup screen 567
swap fi les 572
vi text editor versus 564-565

Vimtutor 622
words 579, 889
wrapmargin option 606-607
wrapscan option 605
writeany option 605
writing data to a fi le 613-614, 832
yanking text 831

TOPICS (continued)

33614_idxvi_891_894.indd   89233614_idxvi_891_894.indd   892 1/9/2008   12:29:22 PM1/9/2008   12:29:22 PM



893

n 584-586, 829
O 587-589, 829
o 587-589, 829
P 598-599, 599-601, 831
p 598-599, 599-601, 831
R 590, 592, 830
r 590, 592, 607, 830
r<Return> 830
S 591, 592, 830
s 590, 592, 830

U 595, 597-598, 830
u 595, 597-598, 830
W 579, 828
w 574, 579, 828
X 594, 595, 830
x 577, 594, 595, 600, 830
xp 831
Y 601-602
y 601-602, 831
y) 831

y} 831
y1G 831
yb 831
yG 831
ygg 831
yW 831
yw 831
yy 601-602, 831
ZZ 572, 573, 827

vi COMMANDS (continued)

:! 608-609, 832
:!! 609, 832
:!csh 832
:$ 829
:%s 830
:1 829
:ab 615-616, 832
:co 608, 831
:d 595, 596
:e 615, 832
:e! 832

:help (Vim) 622
:m 608, 831
:map 616-618
:map g 1G 829
:q! 572, 827
:r 610-611, 832
:r! 459, 832
:r !look 832
:s 592-594, 830
:set 429, 603-606
:set nonumber 586, 827

:set number 586, 827
:set showmode 570
:set wm= 830
:sh 609, 832
:una 616, 832
:unmap 618
:w 613-614, 832
:w>> 832
:wq 827
:x 827

ex COMMANDS

!  612-613, 832
!! 612-613, 832
" 598-599
$ 579, 828
'' 583
( 579, 828
) 579, 828

+ 578, 828
- 578, 828
. 597-598, 830
/ 584-586, 829
: 587
?  584-586, 829
^ 579, 828

` 583
`` 582
{ 579, 828
} 579, 828
~ 602-603, 830
0 579, 828

SPECIAL CHARACTERS

<Backspace> 578, 827-828
<Delete> 827
<Down> 578, 828
<Left> 578, 828
<Return> 575, 578, 828
<Right> 578, 828

<Space> 578, 828
<Up> 578, 828
^B 582, 828
^D 582, 828
^F 582, 828
^L 573, 827

^U 582, 828
^V 573

KEYS

Quick Index for the vi Editor

33614_idxvi_891_894.indd   89333614_idxvi_891_894.indd   893 1/9/2008   12:29:22 PM1/9/2008   12:29:22 PM



33614_idxvi_891_894.indd   89433614_idxvi_891_894.indd   894 1/9/2008   12:29:22 PM1/9/2008   12:29:22 PM



I N D E X

895Index

Page numbers followed by n indicate topics found in footnotes.

SYMBOLS
! (bang)

explained 198, 852
negating fi nd command tests 755-756
shell commands in man pages 197-198

! command 302-305, 817, 824
!! command 817, 824
" (double quotes)

escaping metacharacters 266
quoting metacharacters 282
quoting variables 296-297

# (hash)
comments in shell scripts 336-337
shell prompt 292
superuser prompt 71

$ (dollar sign)
as Bourne shell prompt 292
displaying environment variables 138
displaying value of variables 266
end of line 503
as quoted metacharacter 282
shell prompt 61, 71

$ shell variable 770
% (percent sign)

moving jobs to foreground 785-787
shell prompt 62, 71, 292
Tcsh escape character 297

& (ampersand)
background process execution 773-774
running jobs in background 779
xman program 199

& command 817, 823
&& (double ampersand)

command separation 323
conditional execution 370-372

' (single quote)
quoting metacharacters 282
quoting variables 296-297

( ) (parentheses), commands in 356-357
* (star; asterisk)

fi lename expansion 698-699
repetition operator 511

+ (plus sign)
current job 784
repetition operator 512

- (dash)
in command options 227

in fi lenames 231
previous job 784
in su command 120

.. parent directory 663-666

. (dot)
initialization fi les, names of 329
matching characters 505

repetition operator 511
as working directory in search path 290, 664-666

/ (slash)
in less program 137
pattern searching in less program 195-196
root directory 454, 640-641

; (semicolon)
separating commands on command line 223
typing multiple commands 177n

< (less-than), redirecting standard input 353
= (equal sign), variables in bc program 179
> (greater-than)

redirecting standard output 350
as Tcsh shell prompt 292

>! (greater-than, exclamation point), overriding 
noclobber option 351

>& (greater-than, ampersand), redirecting standard 
error 358

>> (double greater-than), redirecting standard 
output 350

>| (greater-than, vertical bar), overriding 
noclobber option 351

? (question mark)
fi lename expansion 699
pattern searching in less program 196
repetition operator 512

[ ] (square brackets)
character classes 505-506
fi lename expansion 699

\!* notation, original command arguments 324
\< metacharacter

beginning of word 504
\> metacharacter

end of word 504
\b metacharacter, complete word searches 504
\ (backslash)

Bash escape character 297
quoting metacharacters 279-283, 514
quoting newlines 494
as strong quote 283-284
suspending aliases 319, 435

Note: There is a special index for the vi text editor on page 891.
For a summary of vi commands,  see Appendix C, page 827.

33614_idx_895_926.indd   89533614_idx_895_926.indd   895 1/9/2008   12:47:22 PM1/9/2008   12:47:22 PM



896 Harley Hahn’s Guide to Unix and Linux

Page numbers followed by n indicate topics found in footnotes.

^ (caret)
beginning of line 503
fi lename expansion 699
in less program 137
negation operator 507
as shorthand for <Ctrl> key 139

^? abbreviation, for deleting 143
^\ key, sending quit keyboard signal 146
^^ command 817, 824
^Z command 817
_ (underscore), in fi lenames 231
` (backquote), command substitution     299-301
{ } (braces)

bounds in regular expressions 512
displaying value of variables 266
fi lename expansion 701

| (vertical bar) 137
in command syntax 234
less program 228
as pipeline 126, 148, 365-367
repetition operator 513

|| (double vertical bar), conditional 
execution 370-372

~ (tilde) home directory 651, 665-666

NUMBERS
24-hour clock, conversion chart for 841
80-character line 435-436
386/BSD 29, 30
3270 terminal 138

A
abbreviations for pathnames 663-666
aborting pipelines 371
absolute pathnames

defi ned 851
relative pathnames versus 661-663

abstraction layers. See layers of abstraction
accelerator keys 97, 103, 851
accessing terminal emulators 110-115
access time

changing 715-717
defi ned 704, 851

accounts
checking last login 69
defi ned 851
explained 56-72
limits on 57

ACM (Association for Computing Machinery) 19
actions

defi ned 851
in fi nd command 757-760

active window 107, 851
addsuffi x shell variable 849
admins. See system administrators
Adventure game 135
AIX 85, 87

AI Lab 15
aliases

avoiding deleting wrong fi les 319-320
defi ning 435
for directory stack commands 682
displaying working directory in shell 

prompt 322-326
explained 316-318, 851
for grep command 455
history list usage and 320-322
for ls command 707-708
for ls --color command 689
for redirection 365
for removing fi les 725-727
suspending 318-319, 435
for Vim compatibility mode 567

alias command 316-318, 365, 435, 455, 817, 821
allexport shell option 847
allocation units 695-697, 851
alphanumeric characters 277, 851
<Alt> 139
<Alt-F#> 114, 128
<Alt-F4> 103
<Alt-Shift-Tab> 128
<Alt-Tab> 108, 128
ampm shell variable 849
anchors

defi ned 851
matching lines/words with regular 

expressions 502-505
anonymous pipes 635, 851
appending standard output 350
applying diffs 409, 851
apropos command 209, 236, 286, 817, 822
arguments 229-230, 852
Arnold, Ken 135
Arpanet 21
arrays 259n
ASCII 852
ASCII code

defi ned 852
displaying 464, 508
explained 464-466
locales and collating sequences 507-510
order of 466
reference pages 833-837

ASCII fi les 480, 852
aspell command 458
Association for Computing Machinery (ACM) 19
asynchronous processes 776, 852
AT&T 13, 19-23, 29, 41, 82
Athena. See Project Athena
-atime test (fi nd command) 755
autocompletion

defi ned 852
example of 314
fi lename completion 309-311

33614_idx_895_926.indd   89633614_idx_895_926.indd   896 1/9/2008   12:47:23 PM1/9/2008   12:47:23 PM



897Index

Page numbers followed by n indicate topics found in footnotes.

keys for 310
types of 312-313

autocorrect shell variable 849
autoexpand shell variable 849
autolist shell variable 849
autologout shell variable 849
-a shell option 847

B
B programming language 247
-B shell option 847
-b shell option 847
background

moving jobs to 787-788
running jobs in 779-780

background processes
explained 773-774, 852
writing output to screen 774-776

backing up confi guration fi les 124
<Backspace> key 218, 301

<Delete> key versus 142-144
destructive versus non-destructive 

backspace 155
erasing characters 154
^H printed onscreen 144-145
sending erase signal 140

backward compatibility
defi ned 852
of shells 241

back door fi les 291, 852
banknotes, size of 436n
bar 210-211, 852
basename command 300
basenames. See fi lenames
base 2, 852. See also binary numbers
base 8, 852. See also octal numbers
base 10, 853. See also decimal numbers
base 12, 853. See also duodecimal numbers
base 16, 853. See also hexadecimal numbers
bases (of number systems)

in bc program 180-182
explained 544-548

bash command 244, 817, 824
Bash shell 244

defi ned 853
escape character for 297
event number and working directory, displaying 

in shell prompt 308
history list and aliases usage in 322
initialization fi les

names of 329-330
order of execution 333-334

shell prompt for 61, 71
trapping eof signal 149-159

.bash_login fi le 330

.bash_logout fi le 330

.bash_profi le fi le 330

.bashrc fi le 330
basic regular expressions

defi ned 853
escaping metacharacters 501-502
extended regular expressions versus 500-502

BCPL (Basic CPL) 247
bc program 148, 164, 175-176, 817, 825

as based on dc program 184
bases in 180-182
basic calculations 176-179
variables with 179-180

bc -l command 176, 177
beginning of fi le, displaying 541
beginning of line, matching in regular 

expressions 503
beginning of word, in regular expressions 504
Bell Labs 1, 3, 13, 19, 38-39
Ben-Halim, Zeyd 136
Berkeley 19-20. See also BSD (Berkeley Software 

Distribution)
Berkeley Software Distribution. See BSD 
bgnice shell option 847
bg command 787-788, 817, 823
binary digits 853
binary fi les

defi ned 480, 628, 853
displaying 524, 551-555
searching for character strings 480-482

binary numbers
explained 544-548, 853
reading and writing 549-550

binary system 853
bindkey command 315, 817, 824
/bin directory 288, 643

/usr/bin directory versus 649-650
bit bucket 361, 853
bits 545, 853
blank lines, numbering 423
block devices 706, 853
blocks 695-697, 853
book

assumptions in 6
how to use 5-8

boot devices 653, 854
/boot directory 644
/boot/grub/menu.lst fi le 125
boot loaders

defi ned 32, 854
GRUB 33
LILO 33

boot process
defi ned 10, 853
from live CDs 33
runlevels 98-99
viewing messages from 126-127
Windows startup options 100

33614_idx_895_926.indd   89733614_idx_895_926.indd   897 1/9/2008   12:47:23 PM1/9/2008   12:47:23 PM



898 Harley Hahn’s Guide to Unix and Linux

Page numbers followed by n indicate topics found in footnotes.

bounds in regular expressions 512, 854
Bourne, Steve 241-242, 260, 777
Bourne shell family 240-244, 854. See also shells

aliases
creating 316, 455
ls command 707-708
removing fi les 725
Vim compatibility mode 567

combining standard output and standard 
error 359

compiling source programs in 
background 776

discarding output 361
history list size, setting 305
initialization fi les

history of 334-335
names of 328-330
order of execution 333-334

job control in 777, 778
noclobber option 351
notifi cation of background job progress 780
pipelines 366
redirecting standard error 353-355, 693, 756
redirection metacharacters 363
sample initialization fi les 337-341
search path, modifying 289-291
shell options

displaying 273-274
explained 271-272, 846-848
list of 273, 847

shell prompts in 292
modifying 293

variables
naming conventions 260
usage of 267-271

Bovey, John 112
braceexpand shell option 847
brace expansion 701, 854
branch 854
BRE. See basic regular expressions
breaking

lines 433-435
words in fold command 434

browsers 49, 854
BSD (Berkeley Software Distribution) 20, 82, 854

distributions 29-30, 32
divergence from UNIX System V 20-22
license, comparision with GNU GPL 30

BSD options
defi ned 854
for ps command 788-792

building makefi les 776
builtin commands

documentation for 286-287
explained 284-285, 854
man pages for 210
number of 285

buttons (on mouse) 102
buttons (window controls) 106
bytes 545, 854

C
C collating sequence 467, 508-510, 686-687

defi ned 855
wildcards and 700

^C key 140
intr signal 164
sending intr keyboard signal 142, 145

C locale 467-471
-c option (grep command) 450
C programming language 246-247
-C shell option 847
-c shell option 847-848
C# programming language 247
C++ programming language 247
C-Shell family. See also shells

aliases
creating 316, 455
displaying working directory in shell 

prompt 322-326
ls command 707-708
removing fi les 725
usage 322
Vim compatibility mode 567

combining standard output and standard 
error 359

compiling source programs in 
background 776

defi ned 244-246, 855
discarding output 361
dual shell/environment variables 261
history list

size, setting 306
usage 322

initialization fi les
history of 334-335
names of 328-330
order of execution 333-334
sample fi les 341-344

job control in 777-778
noclobber shell variable 351
notifi cation of background job progress 780
pipelines 366
redirecting standard error 358, 693, 756
redirection metacharacters 364
search path, modifying 289-291
shell options

explained 848-849
list of 848

shell prompts in 62, 71, 292
modifying 293

shell variables 265
list of 849-850

trapping eof keyboard signal 150-151

33614_idx_895_926.indd   89833614_idx_895_926.indd   898 1/9/2008   12:47:23 PM1/9/2008   12:47:23 PM



899Index

Page numbers followed by n indicate topics found in footnotes.

variables
naming conventions 260
usage of 269-271

calculator
bc program 148, 164, 175-176

as based on dc program 184
bases in 180-182
basic calculations 176-179
variables with 179-180

dc program 184-188
Reverse Polish notation 182-184

calendars
displaying 165-167
Gregorian 167
Julian 167

calendar command 167-168, 817, 825
cal command 165-167, 223, 817, 825
cal -j command 166-167
canonical 556, 855
canonical format 553, 855
canonical mode

defi ned 855
raw mode versus 530-531

carriage return 59, 855
case sensitivity

of command options 227
defi ned 63-64, 138, 855
in fi lenames 719-720

cat command 148, 363, 365, 377-380, 382-385, 
523, 721, 817, 821-822

extending 380-382
less program versus 534-535

cbreak mode 531, 855
CDE (Common Desktop Environment)

defi ned 856
total cost of ownership (TCO) and 85-87

cdpath shell variable 849
cd command 311, 323, 357, 481, 660, 666-672, 

817, 822
cd -L command 745-747
cd -P command 745-747
central processing unit (CPU) 172
changing

login shell 251-253
shells temporarily 249-250

characters
80-character line 435-436
ASCII code. See ASCII code
counting 424-426
defi ned 424
matching in regular expressions 505-506
printable characters 465
regular expressions. See regular expressions
reversing 389-390
squeezing 482
translating 482-484

options for 486-488
unprintable characters 484-486

character classes
explained 505-506, 856
predefi ned character classes 506-507

in regular expressions 499
usage of 510-511
for wildcards 700

character devices 706, 856
character encoding. See ASCII code
character strings

defi ned 258, 480, 856, 883
searching for, in binary fi les 480-482

character terminals
explained 52-53, 856, 885
types of terminals emulated 53-54

Cherry, Lorinda 184
child 856
child directories 630, 856
child processes

defi ned 258, 769-770, 856
distinguishing from parent processes 771-772
orphans 771

chmod command 737-738, 817, 822
choosing

computers for someone else 90-92
desktop environments 87-90
passwords 67-69

chording 102, 856
Christiansen, Tom 245
chroot command 840
chsh command 251-253, 817, 824
chsh -l command 252
Church, Alonzo 556
CLI (command line interface)

defi ned 856
GUI (graphical user interface) versus 96-97
limitations of 347
as runlevel 3, 99

clicking mouse buttons 102, 856
client/server relationship 49-50
clients 49, 856
clipboard

copying/pasting text 117-118
defi ned 856

close 856
close button (window controls) 106, 856
close system call 769
closing windows 103-107
cluster 856
-cmin test (fi nd command) 755
cmp command 396-397, 817, 821
code 16, 856
collating sequences

ASCII code, explained 464-466
defi ned 856
locales and 466-471, 507-510
ls command and 686-687
wildcards and 700

color, indicating fi le types with 688-689

33614_idx_895_926.indd   89933614_idx_895_926.indd   899 1/9/2008   12:47:23 PM1/9/2008   12:47:23 PM



900 Harley Hahn’s Guide to Unix and Linux

Page numbers followed by n indicate topics found in footnotes.

color shell variable 849
colrm command 392-394, 456, 817, 825
columns

formatting text into 443-446
merging multiple fi les into 444-446

columns of data
changing order of 417
combining 415-419
deleting 392-394
extracting 410-414

column headings in ps command 792
combining

columns of data 415-419
multiple fi les 382-385
standard output and standard error 359-360

comma-separated value (CSV) format 413
commands (vi). See Quick Index for vi Text Editor
command completion 246, 312, 856
command line. See also CLI (command line interface)

defi ned 96, 223, 857
GUI (graphical user interface) versus 96-97
multiple commands on 223-224

command line editing
Emacs mode versus vi mode 314-316
explained 153-154, 857

command line interface. See CLI (command line 
interface)

command processors
defi ned 239, 857
shell as 110

command substitution 299-301, 857
command summary, displaying for Info 

system 216
command syntax 857
comments

defi ned 857
in shell scripts 336-337

commercial market, consumer market versus 85
Common Desktop Environment. See CDE 

(Common Desktop Environment)
communication, interprocess 636
Communications of the ACM (journal) 19
comm command 397-399, 817, 821
comm -123 command 398-399
comparing fi les commands 395

cm 396-397
comm 397-399
diff 399-408
list of 396, 821
sdiff 404-408

Compatible Time-sharing System (CTSS) 814
compiling source programs in background 776
complete shell variable 849
complex interfaces, intuitive interfaces versus 80
computer science, relationship with 

mathematics 556-558
Computer Science Research Group (CSRG) 29
Computer Systems Research Group (CSRG) 21

computers
choosing for someone else 90-92
history of 38-41

Computing Tabulating Recording Company 
(CTR) 436

conditional execution 370-372, 857
confi guration fi les

explained 122-124, 857
viewing contents of 124-125

consoles
explained 45-46, 857
hosts without 48
terminals versus 116

consumer market, commercial market versus 85
content of directories, listing 683-685
context menus 103, 857
conversion charts for 24-hour clock 841
converting

returns to newlines 485
spaces to tabs 432-433
tabs to spaces 430-431

cooked mode
defi ned 857
raw mode versus 530-531

Coordinated Universal Time (UTC) 165, 842-845
copying

defi ned 857
directories to other directories 722
fi les 720-721, 743

between Unix/Windows 157
to different directory 721-722

text 117-118, 128
copyleft 18, 857
copyright 18
core 146, 550, 858
core dump 146, 550, 858
core fi les 146, 858
core memory

explained 146, 858
photo of 147

corporate users, total cost of ownership (TCO) 
and 85-87

correct shell variable 849
Coulouris, George 562
counting lines/words/characters 424-426
CPL (Combined Programming Language) 246-247
CPU (central processing unit) 172, 858
CPU time 768, 858
cp command 67, 224, 577, 654, 703, 720-722, 743, 

817, 822
cp -r command 722
crackers

defi ned 67, 69, 858
punishment for 71

CR code (carriage return) 155
csh command 245-246, 817, 824
.cshrc fi le 329, 334
CSRG (Computer Science Research Group) 29

33614_idx_895_926.indd   90033614_idx_895_926.indd   900 1/9/2008   12:47:23 PM1/9/2008   12:47:23 PM



901Index

Page numbers followed by n indicate topics found in footnotes.

CSRG (Computer Systems Research Group) 21
CSV (comma-separated value) format 413, 858
<Ctrl> 132, 138-139
<Ctrl-Alt-Down> 109, 128
<Ctrl-Alt-F#> 114, 128
<Ctrl-Alt-Left> 109, 128
<Ctrl-Alt-Right> 109, 128
<Ctrl-Alt-Up> 109, 128
<Ctrl-C> 69, 118, 128, 132
<Ctrl-D> 62-63
<Ctrl-Shift-Tab> 128
<Ctrl-Tab> 109, 128
<Ctrl-V> 118, 128
<Ctrl-X> 118, 128
<Ctrl-Z> 118
CTR (Computing Tabulating Recording 

Company) 436
CTSS (Compatible Time-sharing System) 331, 814
culture of Unix 2-3
current directory 858
current fi le 537, 858
current job 784, 858
curses programming interface 134-137
cursor control keys, typing commands 302
cursor movement 153
Curtis, Pavel 136
customizing pagers with environment 

variables 535-536
cut command 410-414, 417, 817, 824
cutting text 117-118, 128, 858
cwd variable 262, 849
Cygwin 31

D
^D key, See also eof (end of fi le) signal

sending eof signal 148-149
stopping programs 164

-d option (sort command) 461
-d shell option 848
daemons

explained 812-813, 859
history of terminology 814
list of 813
ntpd 842n

DAG (directed acyclic graph) 479
DARPA (Defense Advanced Research Projects 

Agency) 20
data

checking if sorted 463
displaying 822
selecting 824
sorting

ASCII code, explained 464-466
locales and 466-471
sort command 459-461

data structures
explained 185, 859
queues 635

recursive data structures 686
trees, info program and 213-214

databases, fi nding fi les via 748-750
date/time, displaying 164-165
date command 51, 62, 65, 110, 164-165, 223, 299, 

818, 825, 842
date -u command 843
Daylight Saving Time (DST) 165, 842
dc program 184-188, 818, 825

Reverse Polish notation 182-184
DEC 82
decimal numbers 544-548, 859
decimal system 859
default 232, 859
default line width for formatting text 443
default pager, setting 535
default runlevel, changing 100
Defense Advanced Research Projects Agency 

(DARPA) 20
defi ning aliases 435
del 859
delaying processes 774-776. See also pausing
deleted fi les, restoring 729
-delete action (fi nd command) 759
<Delete> key 218

<Backspace> key versus 142-144
erasing characters 154
mapped to intr signal 140
sending erase signal 140
sending intr keyboard signal 142

deleting. See also backspacing; removing
columns of data 392-394
headers 442
keyboard signals for 140-141
wrong fi les, avoiding 306-307, 319-320

delimiters 412-414, 474, 859
deprecated 136
design principles

Microsoft Windows 43
Unix 42-43

desktop environments
CDE (Common Desktop Environment). See CDE 
choosing 87-90
explained 79-80, 859
Gnome. See Gnome
icons on 111
in layers of abstraction 81
KDE (Kool Desktop Environment). See KDE 

desktop manager. See desktop environments
desktops. See also workspaces

defi ned 859
moving windows among 110
multiple desktops 108-110
switching 109, 128

destructive backspace 155, 859
/dev directory 645

special fi les 631-632
/dev/null fi le 360-361, 633

33614_idx_895_926.indd   90133614_idx_895_926.indd   901 1/9/2008   12:47:23 PM1/9/2008   12:47:23 PM



902 Harley Hahn’s Guide to Unix and Linux

Page numbers followed by n indicate topics found in footnotes.

/dev/random fi le 634-635
/dev/tty 361, 632-633
/dev/urandom fi le 634-635
/dev/zerol fi le 633
devices, types of 706
device drivers 11, 530, 859
device fi le 859
device fi les. See special fi les
df command 691-694, 818, 823
dictionary collating sequence 468, 508-510, 686-687

defi ned 859
wildcards and 700

dictionary fi les
explained 514-519, 860
searching with look command 458-459

dies (processes) 770, 860
diff command 399-403, 818, 821

diffs and patches, explained 408-410
options for 403-404
output options 404-408

diffs 408-410, 860
Dijkstra, Edsger 246
dircolors command 690
directed acyclic graph (DAG) 479
directories. See also subdirectories

autocompletion 311
checking fi le types in

fi le command 690-691
ls --color command 688-689
ls -F command 687

commands, list of 822
copying fi les to 721-722
copying to other directories 722
creating new 669-672, 743
explained 628-630, 860
fi lesystem structure 638-640
home directories 650-652, 667
listing contents of 683-685
long listings 703-707
moving 675-676
moving among 666-672
moving fi les to 723
naming conventions 672
pathnames 661-666
permissions 666, 729-731
for program fi les 649-650
removing 672-676
renaming 675-676, 723-724
root directory

explained 640-641
top-level directories in 643-646

in search path, displaying 288
symbolic links and 745-747
working directory 134

displaying name of 666-672
pathnames and 659-661
removing 675

directory nodes (Info system) 215, 860
directory stack 676-682, 860
directory tree

displaying 708-710
fi nding fi les via 750-751
removing 727-729

direct costs, in total cost of ownership (TCO) 86
dirs command 676-682, 818, 822
disabling job control 271
discarding output 360-361
discussion groups (Usenet) 50
disk-based fi lesystems, list of 655
disk space usage

blocks and allocation units 695-697
determining 691-694

displaying
ASCII code 464, 508
binary fi les 524, 551-555
calendar 165-167
command summary for Info system 216
data, list of commands 822
date/time 164-165
directory tree 708-710
environment variables 262
event number and working directory in shell 

prompt 307-308
fi les 522

beginning of fi le 541
end of fi le 541-542
growing fi les 542-544
less program. See less program
more program 539-540
programs for 522-524

fi le size 705
initialization fi les 335-336
jobs, list of 784
man pages 193-196

in separate window 196-197
for shells 248
as web pages 198-199

multiple fi les with less program 536-539
names of hidden fi les 702-703
PATH environment variable 288
permissions 734-735
process information 789-792
process states 795-797
process trees 800-803
shell options 273-274
shell PID 770
shell variables 264
system information 168-169
system processes 798-800
user information 169-172
value of variables 264-267
word lists in vi text editor 459
working directory in shell prompt 322-326
working directory name 666-672

33614_idx_895_926.indd   90233614_idx_895_926.indd   902 1/9/2008   12:47:24 PM1/9/2008   12:47:24 PM



903Index

Page numbers followed by n indicate topics found in footnotes.

distributions
BSD distributions 29-30

list of 32
defi ned 28, 860
Linux distributions 28-29

list of 31
distro 860
dmesg command 126-127, 147, 818, 824
documentation 189

for builtin commands 286-287
commands, list of 822
info program 211-214
Info system

commands in 217, 220
jumping between nodes 219-221
reading info fi les 216-219
tutorial for 215-216

man -f command 208
man pages, displaying 193-196
online manual

explained 192-193
organization of 199-201

RTFM 190-191
for shells 249
in Unix tradition 189-190
whatis command 208

Doelle, Lars 112
dotfi les 719

displaying names of 702-703
explained 330-331, 860
pronunciation of 329

double-clicking 102, 860
double-spaced text, formatting 441
<Down> key 154, 219, 302
dragging 103, 860
drivers 530, 860
DST (Daylight Saving Time) 165, 842
dual boot systems 32, 860
dump 550, 860
dumpe2fs command 696-697, 818, 823
duodecimal numbers 558, 860
duplicate lines, fi nding 471-473
du command 691-694, 818, 822-823

E
-E option (grep command) 455
-E option (regular expressions) 501
-E shell option 847
-e shell option 847-848
echo command 138, 153, 264-267, 426, 651, 761, 

818, 822, 826
echo $SHELL command 250, 256
echo shell variable 849
echo_style shell variable 849
echoing keypresses 50-51, 860
ed text editor 347, 448, 500, 561
edit shell variable 849
editing. See also text editors

command line editing 153-154
defi ned 860
initialization fi les 336
text, list of commands 822

editors. See text editors
egrep command 454-455
Ellis, Jim 50
Emacs mode (command line editing)

defi ned 860
vi mode versus 314-316

emacs shell option 847
Emacs text editor 20, 347, 560

GNU Manifesto, displaying 17-18
emulation

defi ned 46, 861
types of terminals emulated 53-54

em text editor 562
en text editor 562
en_US locale 467-471, 686-687
enabling job control 271
end of fi le, displaying 541-542
end of fi le (eof) signal 62, 148-149
end of line in regular expressions 503
end of word in regular expressions 504
<Enter> key 58
env command 262, 818, 826
ENV environment variable 329, 334
environment

explained 257-258, 861
for userid 120

environment fi les. See also initialization fi les
Bourne shell family sample fi le 340
C-Shell family sample fi le 341
defi ned 327, 861
names of 328-330
pronunciation of 330
as rc fi les. See dotfi les
what to include 335

environment variables. See also variables
customizing pagers with 535-536
displaying 262
ENV 329, 334
explained 138, 259-261, 861
HISTSIZE 305
IGNOREEOF 149-150
LC_COLLATE 467-471, 510
listing with autocompletion 314
list of 263
naming conventions 138
PATH 288-291
PS1, 293
in shell prompts, list of 296
TERM 138

eof (end of fi le) signal 62, 148-149
in Bash shell 149-159
in C-shell 150-151
in Korn shell 150

33614_idx_895_926.indd   90333614_idx_895_926.indd   903 1/9/2008   12:47:24 PM1/9/2008   12:47:24 PM



904 Harley Hahn’s Guide to Unix and Linux

Page numbers followed by n indicate topics found in footnotes.

erase keyboard signal 140-141, 301
^H printed onscreen 144-145
keyboard mapping for 143

erase2 keyboard signal 143
erasing. See removing
ERE. See extended regular expressions
errexit shell option 847
error messages in fi nd command 756.   See also 

standard error
escape characters

defi ned 281, 861
for shell prompts 297-299

escaping
defi ned 281, 861
metacharacters 266, 501-502

/etc directory 645
/etc/fstab confi guration fi le 653
/etc/hosts fi le 125
/etc/inittab fi le 125
/etc/passwd fi le 125, 251-252, 414
/etc/profi le fi le 125
/etc/samba/smb.conf fi le 125
/etc/shells fi le 251
Ettrich, Matthias 82-84, 88
European and Indian time zones chart 843
events

defi ned 861
in history list 303

event numbers
defi ned 861
displaying in shell prompt 307-308
in history list 303

ex text editor 347, 562-563
Summary of vi Commands 827-832
See also Quick Index for the vi Text Editor 891

-exec action (fi nd command) 759-760
exec system call 769-770, 861
execute permission 729-730, 861. See also fi le 

modes
executing

defi ned 861
programs 9

exit command 63, 120, 818, 824
exit system call 769-770, 861
expand command 430-431, 818, 825
expense of computers 38-41
export command 260, 267-271, 268, 293, 818, 826
exporting variables 260, 268, 861
expressions. See regular expressions
extended regular expressions

basic regular expressions versus 500-502
defi ned 861

extending fi lters 380-382
extensions 719, 861
external commands 356, 770

defi ned 284, 861
search path and 287-291

extracting
columns of data 410-414
fi elds of data 412-414

F
-f option (sort command) 461
-f shell option 847
Fabry, Bob 19, 20, 21
Falstad, Paul 243
fc command 302-305, 320, 818, 824
fc -s command 303
fg command 152, 780-782, 785-787, 818, 823
fgrep command 454-455
FHS. See fi lesystem hierarchy standard
fi elds 412-414, 474, 862
fi elds of data, extracting 412-414
FIFO 635, 862
fi gnore shell variable 849
fi le command 690-691, 818, 822
fi le comparison commands, list of 821
fi le descriptors 353-355, 862
fi le managers 710-714, 862
fi le modes 735-736, 862
fi le permissions 862
fi le size

determining 695-697
displaying 705

File Transfer Protocol (FTP) 50
fi le type indicators for ls -l command 706
fi le types in directories, checking

with fi le command 690-691
with ls --color command 688-689
with ls -F command 687

fi lec shell variable 310, 849
fi lename completion 309-311, 862
fi lename generation 698, 862
fi lename substitution 698, 862
fi lenames

defi ned 659, 853, 862
hyphens and underscores in 231
spaces in 230
wildcards for 697-701

fi les
combining columns of data 415-419
commands, list of 822-823
comparing 395

cmp command 396-397
commands, list of 396
comm command 397-399
diff command 399-408
sdiff command 404-408

confi guration fi les
explained 122-124
viewing contents of 124-125

copying 720-721, 743
between Unix/Windows 157
to different directory 721-722

33614_idx_895_926.indd   90433614_idx_895_926.indd   904 1/9/2008   12:47:24 PM1/9/2008   12:47:24 PM



905Index

Page numbers followed by n indicate topics found in footnotes.

creating 715-717, 743
displaying 522. See also less program; more 

program
beginning of fi le 541
binary fi les 551-555
end of fi le 541-542
growing fi les 542-544
programs for 522-524

editing. See text editors
explained 94n, 627-628, 862
extensions 719
extracting columns of data 410-414
extracting fi elds of data 412-414
fi nding

fi nd command 750-760
locate command 748-750
processing found fi les 760-766
whereis command 747-748

inodes 740-741
links

creating 742-743
fi le commands and 743-744

modifi cation time/access time, changing 715-717
moving 723, 744
multiple fi les

combining 382-385
as input 380-382

multiple links to 741-742
named pipes 635-636
naming conventions 717-720
organizing in directories 630. See also 

directories; fi lesystems
ownership of 732
permissions 666

changing 737-738
displaying 734-735
explained 729-730
fi le modes 735-736
group permissions 732-734
setuid permission 731-732
user masks 738

preventing creation/replacement during 
redirection 350-352

processes versus 767, 803-804
proc fi les 637-638
program fi les, directories for 649-650
removing 724-725

aliases for 725-727
permanently 739-740

renaming 723-724, 744
restoring deleted fi les 729
reversing characters in 389-390
reversing lines in 388-389
searching within 529-531
selecting lines from beginning/end 391-392
special fi les

explained 631

for hardware 632
for pseudo-devices 633-634
for terminals 632-633

splitting 385-388
symbolic links 744-745
types of 628-629

fi lesystem hierarchy standard 638-640, 863
fi lesystems

commands, list of 823
common fi lesystems, list of 655
defi ned 863
directories 630
mounting/unmounting 642-643
original Unix fi lesystem 641
root fi lesystem 653
structure of 638-640
virtual fi le system (VFS) 653-657

fi lters
cat 377-380, 382-385
cmp 396-397
colrm 392-394
comm 397-399
cut 410-414
diff 399-403

options for 403-404
output options 404-408

egrep 454-455
expand 430-431
explained 374-375, 863
extending functionality of 380-382
fgrep 454-455
fmt 436-439
fold 433-435
grep 447-450

aliases for 455
look versus 457-458
options for 450-454

head 391-392
join 473-477
list of 383
look 455-459

grep versus 457-458
options for 456-457

nl 421-423
paste 415-419
in pipelines 367
pr

formatting text into columns 443-446
formatting text into pages 440-443
history of computer printing 439

problem solving process 376-377
rev 389-390
sdiff 404-408
sed 488-490

long commands in 493-496
specifi c lines, using on 492-493
for substitutions 490-492

33614_idx_895_926.indd   90533614_idx_895_926.indd   905 1/9/2008   12:47:24 PM1/9/2008   12:47:24 PM



906 Harley Hahn’s Guide to Unix and Linux

Page numbers followed by n indicate topics found in footnotes.

sort 459-461
ASCII code, explained 464-466

sort -c 463
sort -dfn 461-462
split 385-388
strings 480-482
tac 388-389
tail 391-392
tr 482-488
tsort 478-482
unexpand 432-433
uniq 471-473
wc 424-426
whether to create 375-376

fi nd command 750-751, 818, 823
actions in 757-760
fi le permission error messages 756
negating tests 755-756
paths in 751-752
tests in 752-755

fi nding
duplicate lines 471-473
fi les

fi nd command 750-760
locate command 748-750
processing found fi les 760-766
whereis command 747-748

man pages 747
Firefox 91
fi xed media 642, 863
fl ags. See options
-fl s action (fi nd command) 758
fmt command 436-439, 612-613, 818, 825

default line width 443
fold command versus 443

focus (of windows)
changing 107-108
defi ned 863

fold 462, 863
fold command 433-435, 818, 825

default line width 443
fmt command versus 443

folders 629, 863. See also directories
follow 863
foo 210-211, 863
foobar 210-211, 864
foreground, moving jobs to 785-787
foreground processes 773-774, 864
forgotten root password, retrieving 838-840
fork 864
fork system call 769-770

distinguishing parent versus child 
processes 771-772

formatting
80-character line 435-436
double-spaced text 441
lines, breaking into shorter lines 433-435

line numbers 423
paragraphs 436-439
text

into columns 443-446
commands, list of 825
default line width 443
into pages 440-443

Forsyth, Charles 243
fortune command 328
found fi les, processing 760-766
Fox, Brian 244
-fprint action (fi nd command) 758
Freax 28
FreeBSD 29-30

installing 32-34
Linux, comparison with 30
runlevels, lack of 98n
when to use 31

FreeBSD shell 243, 864
free software 864
Free Software Foundation (FSF) 23, 864

GNU Manifesto 16-18
GNU utilities 29
GPL (General Public License) 18-19
history of 14-16

French spacing 438, 864
fsck command 645
FSF (Free Software Foundation) 23, 864

GNU Manifesto 16-18
GNU utilities 29
GPL (General Public License) 18-19
history of 14-16

FTP (File Transfer Protocol) 50
full installations, compared to live CDs 34
fuser command 803-804, 818, 823

G
Gaim 84
games 201

Adventure 135
Rogue 135
/usr/games directory 648

Gates, Bill 69
Gauss, Carl Friedrich 556
Gcalctool 84
GE-645 mainframe computer 39
gedit text editor 332, 336, 429
General Public License (GPL) 18-19, 864
getty command 133
gigabytes 695, 864
Gimp (GNU Image Manipulation Program) 84
Gisin, Eric 243
glass houses (for mainframe computers) 39
glob 864
global variables 259, 864
globbing

defi ned 279, 864

33614_idx_895_926.indd   90633614_idx_895_926.indd   906 1/9/2008   12:47:24 PM1/9/2008   12:47:24 PM



907Index

Page numbers followed by n indicate topics found in footnotes.

origin of terminology 702
with wildcards 697-701

GMT (Greenwich Mean Time). See also UTC 
(Coordinated Universal Time)

defi ned 842
origin of 844-845

Gnome 84
corporate offerings of 87
defi ned 864
example of 89
KDE, compared 87-90
for someone else’s computer 90
switching between workspaces 128
Window Operation menu 105

GNU (GNU’s Not Unix) 16, 23, 24, 864
GNU GPL, compared with BSD license 30
GNU Manifesto 16-18, 865
GNU Network Object Model Environment. See 

Gnome
GNU options for ps command 788
GNU project, Texinfo

explained 212
pronunciation of 213

GNU utilities
defi ned 29
options, learning about 374

Gödel, Kurt 556
Google Groups 191
GPL (General Public License)

BSD license, comparison with 30
defi ned 18-19, 865
Linux released under 27

gpm 117
Grandmother Machine (choosing computer for 

someone else) 90-92
Grand Unifi ed Bootloader (GRUB) 33
graphical user interfaces. See GUIs (graphical user 

interfaces)
graphics terminals

explained 52-53, 865
types of terminals emulated 53-54

graph theory 214n
Greenwich Mean Time (GMT). See also UTC 

(Coordinated Universal Time)
defi ned 842
origin of 844-845

Greer, Ken 245, 246, 312
Gregorian calendar 167
grep command 365, 370, 412, 447-450, 516, 523, 

818, 824. See also regular expressions
aliases for 455
look command versus 457-458
options for 450-454

group permissions 732-734
group shell variable 849
-group test (fi nd command) 754
groupids 733, 865

grouping 357, 865
groups

defi ned 733, 865
in regular expressions 513

groups command 732-734, 818, 825
growing fi les, displaying 542-544
GRUB (Grand Unifi ed Bootloader) 33
GUI-based fi le managers 711-712
GUI-based text editors 332
GUIs (graphical user interfaces). See also CDE 

(Common Desktop Environment); Gnome; 
KDE (Kool Desktop Environment); X 
Window

CLI (command line interface) versus 96-97
copying/pasting text 117-118
explained 12, 73-75, 865
on graphics terminals 52-53
intuitive versus complex 80
learning to use 101-102
login/logout process 97-98
menu usage 102-104
mouse usage 102-104
multiple desktops 108-110
pronunciation of 73
resizing/minimizing/maximizing/closing 

windows 104-107
as runlevel 5, 99
selecting/inserting text 116-117
task switching 107-108

H
^H key

backspacing with 143
printed onscreen 144-145

-H shell option 847
-h shell option 847
hackers

defi ned 69, 865
search path usage of 291

hacking 69, 865
Haight, Dick 334
Haley, Charles 562, 563
Hamblin, Charles 183
hardpaths shell variable 849
hardware

defi ned 9, 865
special fi les for 632

hardware profi les in Windows 100-101
hard links 745, 865
hashall shell option 847
hd command 554
headers, deleting 442
header fi le 648, 865
headless systems 48, 865
head command 391-392, 523, 541, 818, 822, 824
head -n command 392
help command 164, 286-287
help -s command 287

33614_idx_895_926.indd   90733614_idx_895_926.indd   907 1/9/2008   12:47:24 PM1/9/2008   12:47:24 PM



908 Harley Hahn’s Guide to Unix and Linux

Page numbers followed by n indicate topics found in footnotes.

--help option 228, 374, 382
help system. See documentation
hex 866
hexadecimal numbers

explained 544-548, 866
popularity versus octal numbers 550-551
reading and writing 549-550

hexdump command 524, 551-555, 818, 822
hidden fi les. See also dotfi les

defi ned 719, 866
displaying names of 702-703

histexpand shell option 847
history of

computers 38-41
daemons 814
Free Software Foundation (FSF) 14-16
initialization fi les 334-335
Internet 21
Linux 24-28
more and less programs 526-527
regular expressions 498-500
Unix 1

in 1970s 19-20
in 1980s 20-22
in 1990s 22-24
host/terminal design 41-43
terminal rooms and terminal servers 43-45

UTC/UT/GMT 844-845
vi text editor 560-563
X Window 75-76

history command 302-305, 320, 818, 824
history list

aliases and 320-322
of commands 154
deleting wrong fi les, avoiding 306-307
event number, displaying in shell prompt  

307-308
explained 302-305, 866
setting size of 305-306

history shell option 847
history shell variable 306, 849
HISTSIZE environment variable 305
holding mouse buttons 103, 866
Hollerith, Herman 436
/home directory 645
/home/<userid>/bin directory 288
home directories

~ (tilde) abbreviation 665-666
explained 650-652, 866
returning to 667

HOME environment variable 651
home shell variable 849
hostname command 169, 818, 824
hostname completion 313, 866
hosts

connections to terminals 46-48
echoing keypresses 50-51
explained 37-38, 866

in history of Unix 41-43
terminal room design 43-45
without consoles 48

HP (Hewlett-Packard) 82, 85, 87
HP/UX 85, 87
human-readable output

defi ned 866
machine-readable output versus 274-276

Hurd 23, 24

I
-i option (grep command) 451
-I shell option 847
-i shell option 848
I/O (input/output). See also pipelines; standard 

error; standard input; standard output
raw mode versus cooked mode 530-531

ibase variable (bc program) 180-182
IBM 82, 85-87, 436
Icaza, Miguel de 84, 89
iconify. See minimizing
icons

defi ned 103, 866
on desktop environments 111

id command 121, 732-734, 818, 825
idle process 772-773, 866
idle time 171, 866
IEEE 1003.2 standard 243
IGNOREEOF environment variable 149-150
ignoreeof shell option 150, 274, 847
ignoreeof shell variable 150-151, 849
IMAP (Internet Message Access Protocol) 49
implicitcd shell variable 849
-iname test (fi nd command) 754
include fi les 648, 866
Incompatible Time-sharing System (ITS) 814
indenting text 428
index nodes. See inodes
index numbers 740, 866
Indian time zones chart 843
indirect costs in total cost of ownership (TCO) 86
indirect usage of Unix 4-5
infi x notation 183, 866
Info 866
info command 214-215, 374, 382, 818, 822
info fi les

explained 211, 867
reading 216-219

Info system 211-213
commands in 217, 220
displaying command summary 216
jumping between nodes 219-221
online manual versus 212
reading info fi les 216-219
starting 214-215
trees and 213-214
tutorial for 215-216

infocmp command 137

33614_idx_895_926.indd   90833614_idx_895_926.indd   908 1/9/2008   12:47:24 PM1/9/2008   12:47:24 PM



909Index

Page numbers followed by n indicate topics found in footnotes.

inheritance 258, 867
.ini fi les 124
init command 125-126, 818, 824
init process

explained 772-773, 867
orphans and 771

initialization fi les
Bourne shell family sample fi les 337-341
C-Shell family sample fi les 341-344
creating 336
displaying 335-336
editing 336
explained 327-329, 867
history of 334-335
in login process 61
names of 328, 329-330
order of execution 333-334
vi text editor 619-621
what to include 335

inner joins 476, 867
inodes 740-741, 866-867
inode tables 740, 867
input, multiple fi les as 380-382.  See also 

standard input
input streams 489, 867
inputmode shell variable 849
inserting

line numbers into text 421-423
text 116-117

installing Unix 32-34
Integrated Offi ce Systems 527
interactive 867
interactive shells 256-257, 867
interfaces. See also CLI (command line interface); 

GUIs (graphical user interfaces)
characteristics of good interfaces 95
explained 37-38, 867
Teletype ASR33 as 41-43

internal commands 356, 770, 867. See also builtin 
commands

Internet
history of 21
Unix usage of 4

Internet Message Access Protocol (IMAP) 49
interprocess communication (IPC)

defi ned 636, 867
signals and 807

intro page in online manual 202
intr (interrupt) keyboard signal 132, 140, 142, 145
intuitive interfaces, complex interfaces versus 80
inumbers 740, 867
IPC (interprocess communication)

defi ned 636, 867
signals and 807

ISO/IEC 9945-2 standard 243
ITS (Incompatible Time-sharing System) 814
iwconfi g command 47

J
^J key

newline character 156-157
resetting terminal settings 157-158
sending linefeed signal 155

Jacobellis v. Ohio (obscenity case) 14
job control

enabling/disabling 271
explained 776-779, 868
multiple windows versus 783

job control commands
job ID in 786
list of 823

job ID 777, 868
in job control commands 786

job table 777, 868
jobs

defi ned 867
displaying list of 784
moving

to background 787-788
to foreground 785-787

pausing 780-781
processes versus 776-779
running in background 779-780
switching between 786

jobs command 779, 784, 818, 823
join command 473-477, 818, 825
join fi elds 475, 868
joins 474, 868
Jolitz, Bill 29
Joy, Bill 19-20, 135, 244, 246, 261, 334, 560-564, 

568-569, 578, 623, 777
Julian calendar 167
jumping. See moving

K
-k shell option 847
KAudioCreator 84
KCalc 84
KDE (Kool Desktop Environment)

corporate offerings of 87
defi ned 868
development of 82-84
example of 88
Gnome, compared 87-90
for someone else’s computer 91
switching between desktops 128
Window Operation window 104

kedit text editor 332, 336, 429
kernels

explained 11-12, 868
Hurd 24
microkernel, Minix as 26
monolithic kernel, Linux as 26
process management 767-768

33614_idx_895_926.indd   90933614_idx_895_926.indd   909 1/9/2008   12:47:24 PM1/9/2008   12:47:24 PM



910 Harley Hahn’s Guide to Unix and Linux

Page numbers followed by n indicate topics found in footnotes.

keyboard layout of Lear Siegler ADM-3A 
terminal 569

keyboard mapping. See mapping
keyboard signals

<Backspace> key versus <Delete> key 142-144
changing mappings 152-153
displaying mappings 151-152
eof 148-149

trapping in Bash shell 149-159
trapping in C-shell 150-151
trapping in Korn shell 150

erase 140-141
explained 139-140
intr 145
kill 140-141, 145, 302
list of 151
quit 146
start 147-148
stop 147-148
werase 140-141

keypresses, echoing 50-51
keys for autocompletion 310
keywords 287, 868
keyword shell option 847
key drives. See USB key drives
kill command 818, 823

sending signals to processes 806-808
terminating processes 804-806

kill -9 command 806
kill keyboard signal 140-141, 302

intr keyboard signal versus 145
kill system call 769
killing 868. See also terminating
kilobytes 695, 868
Kleene, Stephen 498
Knuth, Donald 213
Konqueror 84
Konsole 84, 112, 116
Korn, David 242
Korn shell 242-243

defi ned 868
event number and working directory, displaying 

in shell prompt 308
history list and aliases usage in 322
print command 267
shell prompt for 61, 71
trapping eof keyboard signal 150
whence command 163

ksh command 242, 818, 824
.kshrc fi le 329
kwm window manager 79, 84

L
-L option (grep command) 452
-l option (grep command) 452
lag 51, 868
language of Unix 3-4
last command 69, 818, 825

layers of abstraction
defi ned 868
in X Window 78, 81

desktop environment 79-80
window manager 78-79

LC_COLLATE environment variable 467-471, 
510, 686-687

leaf 214, 869
leap years, determining 166
Lear Siegler ADM-3A terminal 562-563

keyboard layout of 569
leave command 174-175, 818, 825
left-clicking 102, 869
<Left> key 153, 219, 302
left mouse button 102, 869
Lemmke, Ari 28
less /etc/shells command 250
less program 124, 137, 148, 165, 194, 228, 262, 336, 

347, 367, 369, 375, 522, 524-526, 818, 822
cat command versus 534-535
commands within 527-529
customizing with environment variables 

535-536
displaying multiple fi les 536-539
with dmesg command 126-127
history of 526-527
options for 531-534
searching within fi les 529-531

LESS environment variable 536
lesskey command 530
LF code (linefeed) 155
libraries 645, 869
/lib directory 645
licensing

for KDE 84
for XFree86, 77-78
for X Window 77-78

LIFO (last in, fi rst out) 185, 676, 869
LILO (Linux Loader) 33
line disciplines

defi ned 869
raw mode versus cooked mode 530-531

line editors 561, 869
line numbers

inserting into text 421-423
linefeed 59, 869
<Linefeed> key 59-60, 155
lines

80-character line 435-436
breaking 433-435
counting 424-426
defi ned 424
matching, with regular expressions 502-505
selecting

fgrep and egrep commands 454-455
grep command 447-450
look command 455-457

33614_idx_895_926.indd   91033614_idx_895_926.indd   910 1/9/2008   12:47:25 PM1/9/2008   12:47:25 PM



911Index

Page numbers followed by n indicate topics found in footnotes.

links
creating 742-744
defi ned 214, 869
fi le commands and 743-744
hard links 745
in Info system 219-221
inodes 740-741
multiple links to fi les 741-742
removing 744
soft links 745
symbolic links

directories and 745-747
explained 744-745

Linus’s Law 27, 869
Linux

boot loaders 33
corporate offerings of 87
defi ned 35, 869
FreeBSD, comparison with 30
history of 24-28
installing 32-34
offered by IBM 86
proc fi les, list of 638
runlevels in 99
when to use 31

Linux distributions 28-29
list of 31

Linux Loader (LILO) 33
listing

directory contents 683-685
environment variables with 

autocompletion 314
jobs 784

listjobs shell variable 782, 850
live CDs

explained 33, 870
full installations, compared 34
list of 34

ln command 742-744, 818, 823
ln -s command 744-745
local 870
local variables 259, 870
locale command 467, 510, 686-687
locale -a command 467
locales

collating sequences and 466-471, 507-510
defi ned 870
ls command and 686-687

locate command 748-750, 818, 823
locking terminals 172-173
lock command 172-173, 818, 824
logging out with suspended jobs 781
login command 63, 818, 823
.login fi le 329, 334
login fi les. See also initialization fi les

Bourne shell family sample fi le 339
C-Shell family sample fi le 342

defi ned 327, 870
names of 328-330
what to include 335

login messages 59-61
login process

checking last login 69
commands, list of 823
defi ned 870
explained 57-59, 870
in GUIs (graphical user interfaces) 97-98
login messages 59-61
sample Unix session 64-66

login shells
changing 251-253
explained 249, 332-333, 870
pausing 783
for root 253

loginsh shell variable 850
logout command 63, 819, 823
logout fi les

defi ned 327, 870
names of 328-330

logout process
commands, list of 823
explained 62-63, 870
in GUIs (graphical user interfaces) 97-98

long commands, in sed text editor 493-496
long directory listings 703-707
look command 455-459, 611, 819, 824

grep command versus 457-458
options for 456-457

loops, in total orderings 479
/lost+found directory 645
lowercase

explained 63-64, 870
ignoring difference with uppercase 451, 461

lp command 134
lpr command 134
-ls action (fi nd command) 758
ls command 67, 224-225, 233, 235, 307, 318-320, 

330, 426, 450, 481, 516, 640, 643, 819, 822-
823

aliases for 707-708
collating sequences and locales 686-687
importance of 682-683
ps command versus 793

ls --color command 688-689
ls -a command 330, 335, 702-703
ls -CrR1 command 683-685
ls -F command 450, 687
ls -i command 740-741
ls -l command 226, 310, 362, 703-707,  734-735, 

743
ls -r command 228
ls -s command 691-694
LS_COLORS environment variable 690
Lukasiewicz, Jan 183

33614_idx_895_926.indd   91133614_idx_895_926.indd   911 1/9/2008   12:47:25 PM1/9/2008   12:47:25 PM



912 Harley Hahn’s Guide to Unix and Linux

Page numbers followed by n indicate topics found in footnotes.

M
^M key

return character 156-157
sending carriage return signal 155

-m shell option 847
Mach 24
machine-readable output

defi ned 870
human-readable output versus 274-276

macros
defi ned 870
vi text editor 616-618

Mac OS X. See OS X
mail servers 48-49, 870
mail shell variable 850
mainframe computers 39, 870
makefi les, building 776
manual. See online manual
man command 192-193, 202-203, 234, 236, 248, 

286, 374, 382, 819, 822. See also man pages
man -f command 208, 236
man -k command 209, 236
man pages. See also man command

for builtin commands 210, 286-287
command syntax in 235
displaying 193-196

in separate window 196-197
as web pages 198-199

explained 193, 870
fi nding 747
format of 204-208
referencing in 203
running shell commands from 197-198
for shells, displaying 248

map 871
mapped 871
mappings

defi ned 132, 871
for keyboard signals 140

changing 152-153
displaying 151-152

for erase signal 143
margins, setting 442
markdirs shell option 847
Mashey, John 241, 242
match 871
matchbeep shell variable 850
matching in regular expressions

characters 505-506
lines 502-505
words 502-505

mathematics, relationship with computer 
science 556-558

maximize button (window controls) 106, 871
maximizing windows 104-107, 871
Maxwell, James 814
McCulloch, Warren 498
McIlroy, Doug 369

/media directory 645
megabytes 695, 871
memory

core memory 146-147
virtual memory 115

memory dump 550, 871
Mena, Federico 84, 89
menus

defi ned 871
usage of, explained 102-104

menu bar 103, 871
merging

multiple fi les into columns 444-446
sorted data 473-477

messages, login 59-61
metacharacters

escaping 266, 501-502
explained 277-279, 871
list of 280
matching lines/words with regular 

expressions 502-505
quoting 279-283, 514
for redirection

Bourne Shell family 363
in C-Shell family 364

in regular expressions 498
strong quotes and weak quotes 283-284

Metacity window manager 79, 84
Meta key 216
microkernels

explained 11-12, 871
Minix as 26

Microsoft Windows. See Windows
middle-clicking 102, 871
middle mouse button 102, 871
minicomputers 39, 871
minimize button (window controls) 106, 871
minimizing windows 104-107, 866, 871
Minix 23-24, 26
MIT, history of X Window 75-76
MIT Artifi cial Intelligence Lab 15
mkdir command 669-672, 743, 819, 822
mkfi fo command 636, 819, 823
-mmin test (fi nd command) 755
/mnt directory 645
modes 98, 281, 871. See also fi le modes
modifi cation time

changing 715-717
defi ned 704, 872

modifi er keys 138-139, 872
modifying

search path 289-291
shell prompts 293-294

monitor shell option 274, 847
monolithic kernels

explained 11-12, 872
Linux as 26

Moolenaar, Bram 564, 621

33614_idx_895_926.indd   91233614_idx_895_926.indd   912 1/9/2008   12:47:25 PM1/9/2008   12:47:25 PM



913Index

Page numbers followed by n indicate topics found in footnotes.

more program 194, 346-347, 522, 539-540, 819, 
822

customizing with environment variables 535-536
history of 526-527

MORE environment variable 536
Morris, Robert 184
Motif window manager 82
mounting

defi ned 872
fi lesystems 642-643
root partition 839

mount command 642, 819, 823
mount point 642, 872
mouse, usage of 102-104
mouse buttons 74
moused 117
moving. See also dragging

among directories 666-672
directories 675-676
fi les 723, 744
jobs

to background 787-788
to foreground 785-787

text 117-118
windows 104-107, 110

multi-boot systems 33, 872
Multics 3, 38-39, 345
multiple commands on command line 223-224
multiple desktops 108-110
multiple fi les

combining 382-385
displaying with less program 536-539
as input 380-382
merging into columns 444-446

multiple links to fi les 741-742
multiple quotes, need for 324
multiple windows, job control versus 783
multiple workspaces 108-110
multiprogramming 40, 872
multitasking 10, 40, 93-96, 127-129, 872
multiuser mode 99
multiuser systems 10, 40, 872
mv command 675-676, 703, 723-724, 744, 762, 

819, 822-823
mwm (Motif window manager) 82
Myofascial Pain and Dysfunction: The Trigger Point 

Manual (Travell) 175n

N
-n option (grep command) 451-452
-n option (sort command) 461
-n shell option 847, 848
-name test (fi nd command) 753
named pipes 629, 635-636, 872
names

defi ned 872
of variables 258

naming conventions
directories 672
environment variables 138
fi les 717-720
variables 260

Nano text editor 332, 429
NB programming language 247
ncurses programming interface 136
negating fi nd command tests 755-756
negation operator in regular expressions 507
NET/1, 29
NET/2, 29
NetBSD 30-31
network fi lesystems, list of 655
Network Time Protocol (NTP) 842n
networks for host/terminal connections 46-48
newlines

converting returns to 485
defi ned 156-157, 872
quoting 283, 494

News 872
newsgroups 50, 872
newsreaders 50, 872
news servers 50, 872
nice command 808-810, 819, 823
nice number 809, 872
niceness 809, 873
nl command 421-423, 533, 819, 825
nobeep shell variable 850
noclobber shell option 274, 351-352, 847
noclobber shell variable 351, 850
nodes

defi ned 214, 873
jumping between 219-221
reading info fi les 216-219

noexec shell option 847
noglob shell option 847
noglob shell variable 850
nolog shell option 847
non-alphanumeric characters, list of 278
non-destructive backspace 155, 873
non-interactive shells 256-257, 873
non-interactive text editing 488-490
non-login shells 332-333, 873
noncanonical mode. See raw mode
Norton Commander 711
notifi cations of background job progress 779-780
notify shell option 847
notify shell variable 850
nounset shell option 847
Novell Corporation 13, 85
ntpd daemon 842n
ntpdate 842n
NTP (Network Time Protocol) 842n
Nudelman, Mark 527
null 873
null characters 634, 873

33614_idx_895_926.indd   91333614_idx_895_926.indd   913 1/9/2008   12:47:25 PM1/9/2008   12:47:25 PM



914 Harley Hahn’s Guide to Unix and Linux

Page numbers followed by n indicate topics found in footnotes.

null fi le 633, 873
null value 258
numbering lines. See line numbers
number systems

explained 544-548
octal versus hexadecimal numbers, popularity 

of 550-551
reading and writing 549-550

numbers, in options 386

O
obase variable (bc program) 180-182
obscenity case (Jacobellis v. Ohio) 14
octal codes for unprintable characters 485
octal numbers

explained 544-548, 873
popularity versus hexadecimal numbers 550-551
reading and writing 549-550

od command 524, 551-555, 819, 822
offsets 552, 873
-ok action (fi nd command) 760
Olson, Arthur David 843n
Olson database 843n
olwm (Open Look window manager) 82
onecmd shell option 847
“one or more” 231-232, 873
online 190, 873
online manual 189-190. See also documentation; 

man pages
explained 192-193, 870, 874, 887
info command versus 212
organization of 199-201
searching for commands 209

OpenBSD 30
when to use 31

Open Group 13, 86
Open Look window manager 82
Open Offi ce 91

viewing tabs/spaces 429
Open Software Foundation (OSF)

defi ned 13, 874
formation of 81-82

open source movement 18-19, 874
open source software 16, 874
open system call 769
operating systems

explained 9-10, 874
GNU 16
Unix-like systems, defi ning 14

Operating Systems: Design and Implementation 
(Tanenbaum) 24

operations, order of 177
operators

defi ned 874
repetition operators, in regular 

expressions 499
/opt directory 645

options. See also shell options
diff command 403-408
explained 226-229, 863, 874
grep command 450-454
learning 235-237, 374
less program 531-534
look command 456-457
ls command 683-685
numbers in 386
ps command

selecting 793-794
types of 788-789

sort command 456-457, 461-462
tr command 486-488
vi text editor

displaying 605-606
list of 605
setting 603-604

ordinary fi les 628, 874
organization of online manual 199-201
organizing fi les in directories 630.  See also 

directories; fi lesystems
origin of. See history of
original Unix fi lesystem 641
orphans 771, 874
OSF (Open Software Foundation)

defi ned 874
formation of 81-82

OS X, as based on Unix 4-5, 32
outer joins 476, 875
output. See also standard output

of background processes, writing to 
screen 774-776

discarding 360-361
machine-readable versus human-readable  

274-276
output display, pausing 147-148
output options (diff command) 404-408
output streams 489, 875
overriding noclobber option 351
owd shell variable 850
ownership of fi les 732, 875

P
-p shell option 847
<PageDown> key 218
pagers. See also less program; more program

customizing with environment variables 535-536
explained 194, 522, 875

PAGER environment variable 535
pages

defi ned 875
formatting text into 440-443

<PageUp> key 218
paging programs. See pagers
paper tape in Teletype terminals 142
paragraphs, formatting 436-439

33614_idx_895_926.indd   91433614_idx_895_926.indd   914 1/9/2008   12:47:25 PM1/9/2008   12:47:25 PM



915Index

Page numbers followed by n indicate topics found in footnotes.

parent 875
parent directories

.. abbreviation 663-666
defi ned 630, 875

parent processes
distinguishing from child processes 771-772
explained 258, 769-770, 875
tracing with ps command 793-794

parsing
commands 284
defi ned 875
regular expressions 514

parted command 839
partial orderings

creating total ordering from 478-482
defi ned 875

partition managers 33, 875
partition table editor 839
partitions

defi ned 33, 632, 875
mounting root partition 839

Pascal programming language 562
passwd command 66, 67, 252, 819, 823, 840
password aging 66, 875
password fi le 251, 413n, 875
passwords

changing 66
choosing 67-69
explained 56-72, 875
for locking terminals 173
login process 57-59
root password

importance of 119
retrieving forgotten 838-840

for sudo command 122
paste command 415-419, 819, 825
pasting text 117-118, 128, 875
patch command 409
patches 408-410, 875
PATH environment variable 651

displaying 288
modifying 289-291

path shell variable 850
pathnames

abbreviations for 663-666
absolute versus relative pathnames 661-663
basename command 300
defi ned 251, 876
for fuser command 804
for words fi le 515
working directory and 659-661

pathname expansion 698, 876
paths

defi ned 876
in fi nd command 751-752

pattern searching in less program 195-196

patterns. See also regular expressions; searching
at beginning of lines 455-457
at beginning of words 458-459
searching lines for

fgrep and egrep commands 454-455
grep command 447-450

pausing
jobs 780-781
 login shells 783
output display 147-148
processes 774-776
programs 152
shells 782-783

Pdksh shell 243, 876
PDP-7 minicomputer 39
PDP-11 minicomputer 39, 40
permanently removing fi les 739-740
permissions 666

changing 737-738
displaying 734-735
error messages in fi nd command 756
explained 729-730, 876
fi le modes 735-736
group permissions 732-734
for removing fi les 727
setuid permission 731-732
user masks 738

-perm test (fi nd command) 754
pg command 194, 522
Pico text editor 332

viewing tabs/spaces 429
PID

defi ned 767, 876
of shell, displaying 770

pipelines
aborting 371
explained 365-367, 876
fi lters. See fi lters
grep command in 449
importance of 369-370
named pipes 635-636
problem solving process 376-377
splitting 367-369
vertical bar (|) as 126

pipes 366, 876
piping commands 365-367
Pitts, Walter 498
Placeway, Paul 245
Plan 9 operating system 637
pointers 74, 102, 146n, 876
pointing devices 74
Polish notation 183, 876
pop-up menus 103, 876
popd command 676-682, 819, 822
popping (from stack) 185, 676, 876
POP (Post Offi ce Protocol) 49

33614_idx_895_926.indd   91533614_idx_895_926.indd   915 1/9/2008   12:47:25 PM1/9/2008   12:47:25 PM



916 Harley Hahn’s Guide to Unix and Linux

Page numbers followed by n indicate topics found in footnotes.

porting 19, 876
POSIX locale 467-471
POSIX options

defi ned 877
for ps command 789

posix shell option 847
POSIX standards 242, 876

initialization fi les, names of 329-330
postfi x notation 183, 877
Post Offi ce Protocol (POP) 49
pr command 819, 825

default line width 443
formatting text

into columns 443-446
into pages 440-443

history of computer printing 439
precedence of operations 177
precision in dc program 186
predefi ned character classes 506-507

explained 484, 877
in regular expressions 499, 510-511
for wildcards 700

prefi x notation 183, 877
preventing fi le creation/replacement during 

redirection 350-352
previewing changes from sed text editor 490
previous job 784, 877
primary groups 733, 877
-print action (fi nd command) 757
print command 267, 819, 822, 826
printable characters 465, 877
printenv command 138, 262, 819, 826
printing. See also pr command

defi ned 877
history of 439
Unix conventions for 133-134

priority of processes
changing 810-811
defi ned 877
setting 808-810

privileged shell option 847
problem solving process 376-377
/proc directory 637-638
proc fi les 629, 637-638, 803, 877
/proc/kcore fi le 638
processes. See also ps command

asynchronous processes 776
background processes 773-774
commands, list of 823
creating 768-770
daemons 812-813
delaying 774-776
displaying information about 789-792
distinguishing parent versus child 

processes 771-772
explained 94, 257-258, 767, 877

fi les versus 767, 803-804
foreground processes 773-774
idle process 772-773
init process 772-773
interprocess communication 636
jobs versus 776-779
kernel management of 767-768
orphans 771
priority of

changing 810-811
setting 808-810

proc fi les 637-638
sending signals to 806-808
states of, displaying 795-797
stopping 770
system calls 769-770
system processes, displaying 798-800
terminating 804-806

processing found fi les 760-766
process ID 767, 877
process table 767, 877
process trees

defi ned 878
displaying 800-803

.profi le fi le 329-330, 334
programming languages, names of 246-247
programs

defi ned 9, 878
determining availability of 161-164
for displaying fi les 522-524
executing/running 9
output display, pausing 147-148
pausing 152
relationship with commands 161
restarting 152
stopping 164

intr keyboard signal 142, 145
quit keyboard signal 146

program fi les, directories for 649-650
Project Athena 75-76, 878
prompts. See also shell prompts

defi ned 57, 878
for less program 525
secondary prompts 494

prompt shell variable 293, 850
prstat command 798-800, 819, 823
PS1 environment variable 293
pseudo-devices

defi ned 878
special fi les for 633-634

pseudo fi les
explained 629, 878
named pipes 635-636
proc fi les 637-638
special fi les

explained 631
for hardware 632

33614_idx_895_926.indd   91633614_idx_895_926.indd   916 1/9/2008   12:47:25 PM1/9/2008   12:47:25 PM



917Index

Page numbers followed by n indicate topics found in footnotes.

for pseudo-devices 633-634
for terminals 632-633

pseudo terminals 632, 878
pstree command 800-803, 819, 823
psychological needs when choosing computer for 

someone else 91
ps command 67, 637, 779, 819, 823

column headings in 792
displaying process states 795-797
ls command versus 793
option types for 788-789
selecting options for 793-794
UNIX versus BSD options 789-792

ptree command 800-803, 819, 823
PTYs 632, 878
pull-down menus 103, 878
punch cards 436, 878
pushd command 676-682, 819, 822
pushdsilent shell variable 850
pushdtohome shell variable 850
pushing (onto stack) 185, 676, 878
PWB Shell 241
pwd command 134, 666-672, 819, 822
pwd -L command 746-766
pwd -P command 746-766
PWD variable 262

Q
^Q key 148
QED text editor 499
Qt programming toolkit 84
queues 635, 878
quit command 164
quit keyboard signal 146
quitting. See stopping
quota command 170, 691-694, 819, 825
quotes in regular expressions 503
quoting

defi ned 878
metacharacters 279-284, 514
multiple times 324
newlines 283, 494
variables 296-297
wildcards, in fi nd command 754

R
^R key 305
-r option (grep command) 454
-r option (sort command) 461
-r shell option 847
Ramey, Chet 244
RAM disks 34
random numbers, generating 634, 635
range 878
ranges in regular expressions 506-507

locales and collating sequences 507-510
usage of 510-511

ranges of characters in tr command 483
raw mode

cooked mode versus 530-531
defi ned 873, 879

Raymond, Eric 136
RCS (revision control system) 409
rc fi les 330-331
rdate 842n
re. See regular expressions
read-only mode for text editors 523
reading. See also displaying

binary/octal/hexadecimal numbers 549-550
info fi les 216-219

read permissions
explained 729-730, 879
fi le modes and. See fi le modes

read system call 769
reboot 125-126, 879
reboot command 126, 819, 824
recalling commands. See history list
recexact shell variable 850
records 412-414, 879
recursive data structures 686, 879
redirecting

aliases for 365
with cat command 377-380
defi ned 879
examples of 362-364
metacharacters for

in Bourne shell family 363
in C-Shell family 364

standard error 693, 756
in Bourne shell family 353-355
in C-Shell family 358

standard input 352-353
standard output 349-352
with tr command, necessity of 484

redrawing screen 775
referencing in man pages 203
refresh rate for top command, changing 798
regex. See regular expressions
Registry 124
regular expressions

for basic matching 498
basic versus extended 500-502
characters, matching 505-506
explained 497-498, 879
lines, matching 502-505
locales and collating sequences 507-510
origin of 498-500
parsing 514
predefi ned character classes 499, 506-507, 

510-511
puzzle examples 514-519
quotes in 503
ranges in 506-507, 510-511
repetition operators 499, 511-514

33614_idx_895_926.indd   91733614_idx_895_926.indd   917 1/9/2008   12:47:25 PM1/9/2008   12:47:25 PM



918 Harley Hahn’s Guide to Unix and Linux

Page numbers followed by n indicate topics found in footnotes.

with sed text editor 491-492
words, matching 502-505

regular fi les 628, 879
relative pathnames

absolute pathnames versus 661-663
defi ned 879

reminder services 167-168
reminders, scheduling 174-175
remote hosts, login shells and 333
removable media 642, 879
removing. See also deleting

directories 672-676
directory tree 727-729
fi les 724-725

aliases for 725-727
permanently 739-740

links 744
working directory 675

renaming
directories 675-676, 723-724
fi les 723-724, 744

renice command 810-811, 819, 823
repeat counts 879
repetition operators

defi ned 879
in regular expressions 499, 511-514

replacing fi les, preventing during redirection  
350-352

reset command 157-158
resizing windows 104-107, 879
restarting programs 152, 879. See also reboot
restoring

defi ned 879
deleted fi les 729
windows 105

retrieving forgotten root password 838-840
returning to home directory 667
returns

converting to newlines 485
defi ned 879

<Return> key 60, 154,
for carriage return 155
explained 58-59
newline character and 156-157

return values 771-772, 880
Reverse Polish notation 182-184, 880
reversing

characters 389-390
lines in fi les 388-389

revision control system (RCS) 409, 880
rev command 389-390, 819, 825
Richards, Martin 247
right-clicking

context menus 103
defi ned 102, 880

<Right> key 154, 219, 302
right mouse button 102, 880

Ritchie, Dennis 19, 40-42, 131-132, 247, 561
rmdir command 672-676, 744, 819, 822
rmstar shell variable 850
rm command 70, 224, 306-307, 319-320, 364, 469, 

572, 577, 724-725, 744, 819, 822-823
rm -if command 725-727
rm -r command 674, 727-729
Rogue game 135
root

defi ned 214, 840, 880
login shell for 253
shell prompt for 292

/root directory 646, 651
explained 640-641, 880
slash (/) for 454
top-level directories in 643-646

root fi lesystem 653, 880
root partition, mounting 839
root password

importance of 119
retrieving forgotten 838-840

root userid 70-71
sudo command 121-122
working as 118-121

routers 48, 880
RPN (Reverse Polish notation) 182-184, 880
rprompt shell variable 850
RTFM 190-191, 880
<Rubout> key 143
runlevels

changing default 100
explained 98-99, 881
in Linux 99
in Microsoft Windows 100-101
for shutdown/reboot 125-126

runlevel 0, 125
runlevel 1, 99
runlevel 3, 99-100
runlevel 5, 99
runlevel 6, 125
running

defi ned 880
jobs in background 779-780
programs 9
shell commands from man pages 197-198

S
^S key 148, 199
-s option (grep command) 454
-s shell option 847-848
savedirs shell variable 850
savehist shell variable 306, 850
/sbin directory 646
scale factor, in bc program 178-179
SCCS (source code control system) 409, 882
scheduler 94, 768, 881
scheduling reminders 174-175

33614_idx_895_926.indd   91833614_idx_895_926.indd   918 1/9/2008   12:47:25 PM1/9/2008   12:47:25 PM



919Index

Page numbers followed by n indicate topics found in footnotes.

screen, redrawing 775
screen editors 563, 881
scripts. See shell scripts
scrolling 147, 881
sdiff command 404-408, 819, 821
searching. See also fi lters; fi nding

for character strings in binary fi les 480-482
for commands 209
pattern searching in less program 195-196
within fi les with less program 529-531

search path
defi ned 651, 881
external commands and 287-289
hacker usage of 291
modifying 289-291

secondary prompts 494, 881
section numbers in man command 202-203
secure shell (SSH) 49
security

in login messages 60
passwords 57

choosing 67-69
permissions. See permissions
userids 57

sed command 501, 819, 822, 825
sed -i command 490
sed text editor 488-490

long commands in 493-496
specifi c lines, using on 492-493
for substitutions 490-492

segmentation faults 146n
selecting

data 824
lines

from beginning/end of fi le 391-392
fgrep and egrep commands 454-455
grep command 447-450
look command 455-457

options, for ps command 793-794
shell to use 247-249
text 116-117

sending signals to processes 806-808
separating commands 323
servers

client/server relationship 49-50
defi ned 11, 49, 881

services. See daemons
sessions, switching in Konsole 112
set 881
set command 261, 264, 269-271, 274, 293, 819, 826
set +o command 271-275, 846
set -o command 271-275, 846
setenv command 261, 269-271, 819, 826
setting

options (vi text editor) 603-604
shell options 271
variables 268

setuid permission 731-732, 881
shadow fi le 251, 413n, 881
Shao, Zhong 244
shell commands, running from man pages  

197-198
shell options

displaying 273-274
explained 271-272, 882
list of 273

shell prompts 71
event number and working directory, 

displaying 307-308
explained 61-62, 292-293, 882
modifying 293-294
special codes in 297-299
variable values in 294-295

shell scripts 257
comments in 336-337
defi ned 239, 882

shell shell variable 850
shell variables. See also variables

in C-Shell family 265
list of 849-850

displaying 264
explained 257-261, 882
fi lec 310
history 306
noclobber 351
prompt 293
savehist 306

shells. See also Bash shell; Bourne shell family;  
C-Shell family; Korn shell

aliases
avoiding deleting wrong fi les 319-320
displaying working directory in shell 

prompt 322-326
explained 316-318
history list usage and 320-322
suspending temporarily 318-319

autocompletion
example of 314
fi lename completion 309-311
types of 312-313

builtin commands
documentation for 286-287
explained 284-285
number of 285

changing temporarily 249-250
as command processor 110
commands

list of 824
typing 301-302

command line editing 153-154
command substitution 299-301
displaying name of 256
dotfi les 330-331
environment 257-258

33614_idx_895_926.indd   91933614_idx_895_926.indd   919 1/9/2008   12:47:26 PM1/9/2008   12:47:26 PM



920 Harley Hahn’s Guide to Unix and Linux

Page numbers followed by n indicate topics found in footnotes.

environment variables
displaying 262
explained 259-261

eof signal in 149
explained 12, 239-240, 257, 881
external commands

defi ned 284
search path and 287-289

features of 255
history list

aliases and 320-322
deleting wrong fi les, avoiding 306-307
explained 302-305
setting size of 305-306

initialization fi les
Bourne shell family sample fi les  337-341
C-Shell family sample fi les 341-344
creating 336
displaying 335-336
editing 336
explained 327-329
history of 334-335
names of 329-330
order of execution 333-334
what to include 335

interactive shells 256-257
job control. See job control
login shells

changing 251-253
explained 332-333
pausing 783
for root 253

man pages
for builtin commands 210
displaying 248

metacharacters
explained 277-279
list of 280
strong quotes and weak quotes 283-284

names of shell programs, list of 248
non-interactive shells 256-257
non-login shells 332-333
pausing 782-783
PID, displaying 770
processes

creating 770
explained 257-258

processing commands 224-225
rc fi les 330-331
relative complexity of 248, 249
search path

hacker usage of 291
modifying 289-291

secondary prompts 494
selecting which to use 247-249
starting from vi text editor 609

<Shift-Left> 112
<Shift-Right> 112

<Shift> key
explained 139
selecting text 118

shopt command 272, 848
shortcut keys

explained 103, 882
list of 128-129
switching desktops 109

shred command 739-740, 819, 823
shutdown

explained 125-126, 882
viewing messages from 126-127

shutdown command 126, 819, 824
sh command 241, 819, 824
signals

defi ned 882
intr 132
list of 808
sending to processes 806-808

Simple Mail Transport Protocol (SMTP) 49
simplicity, in Unix philosophy 345-348
single user mode 99, 882
size (of history list), setting 305-306
-size test (fi nd command) 754
Slackware 28, 882
sleep command 774-776, 819, 825
SMTP (Simple Mail Transport Protocol) 49
SNUL acronym 466
Socha, John 711
software

choosing for someone else 90-92
defi ned 9, 882

soft links 745, 882
Solaris 85, 87, 455
sorted data, merging 473-477
sorted text fi les, comparing 397-399
sorting data. See also sort command

ASCII code 464-466
locales and 466-471

sort command 262, 412, 459-461, 819, 825
ASCII code 464-466
options for 456-457

sort -c command 463
sort -dfn command 461-462
sort -o command 460
source 16, 882
source code 16, 882
source code control system (SCCS) 409, 882
source programs, compiling in background 776
spaces

converting tabs to 430-431
converting to tabs 432-433
in fi lenames 230
French spacing 438
in pipeline commands 367
tabs versus 428
viewing 429-430

<Space> 194, 218, 230

33614_idx_895_926.indd   92033614_idx_895_926.indd   920 1/9/2008   12:47:26 PM1/9/2008   12:47:26 PM



921Index

Page numbers followed by n indicate topics found in footnotes.

Space Travel (simulator) 1, 38
special-purpose fi lesystems, list of 655
special codes in shell prompts 297-299
special fi les

explained 629, 631, 859, 882
for hardware 632
for pseudo-devices 633-634
for terminals 632-633

spell command 458
splitting

fi les 385-388
pipelines 367-369

split command 385-388, 819, 825
split -a command 387
split -d command 387
split -l command 386
squeezing characters 482, 882
/srv directory 646
SSH (secure shell) 49
ssh command 54, 333
ssh -X command 54
stacks

directory stack 676-682
explained 184-188, 676, 883

Stallman, Richard 20, 23, 24, 26, 212
Free Software Foundation 15-16
GNU 16
GNU Manifesto 16-18
GPL (General Public License) 18-19

standard error
combining with standard output 359-360
discarding 360-361
explained 348-349, 883
redirecting 693, 756

in Bourne shell family 353-355
in C-Shell family 358
examples of 362-364

standard input
explained 156, 348-349, 883
redirecting 352-353

examples of 362-364
standard options

defi ned 883
for ps command 789

standard output
combining with standard error 359-360
discarding 360-361
explained 156, 348-349, 883
redirecting 349-350

examples of 362-364
preventing fi le creation/replacement 350-352

startup options in Windows 100
startx command 100
start keyboard signal 147-148
states

defi ned 883
of processes, displaying 795-797

static data 646, 883

stat command 740-741, 820, 823
STDERR (standard error) 349, 883
STDIN (standard input) 349, 883
STDOUT (standard output) 349, 883
Stewart, Potter (U.S. Supreme Court Justice) 14
stopping. See also pausing; terminating

defi ned 883
processes 770
programs 164

intr keyboard signal 142, 145
quit keyboard signal 146

stop keyboard signal 147-148
storage devices, types of 642
streams 489, 883
strings. See character strings
strings command 480-482, 820, 824
strong quotes

explained 283-284, 883
weak quotes versus 296-297

Stroustrup, Bjarne 247
stty command 133, 139, 152-153, 302, 820, 824
stty -a command 151-152
stty sane command 157-158
STvi text editor 564
subdirectories. See also directories

defi ned 630, 883
in root directory 641, 643-646
in /usr directory 647-649

subshell 883
substitutions, sed text editor for 490-492
sudo command 121-122, 820, 824, 838
suid 883
Summer Time (in Europe and India) 843
Sun Microsystems 20, 82, 85, 87
superblock 697, 884
superusers

explained 70-71, 884
shell prompt for 292
sudo command 121-122
working as 118-121

supplementary groups 733, 884
suspending. See also pausing

aliases 318-319, 435
defi ned 884

suspend command 782-783, 820, 823
su command 118-122, 820, 824
switching

desktops 128
jobs 786
sessions in Konsole 112
tasks 128
userid temporarily 118-121
virtual consoles 114, 128
workspaces 128

symbolic links
directories and 745-747
explained 744-745, 884

33614_idx_895_926.indd   92133614_idx_895_926.indd   921 1/9/2008   12:47:26 PM1/9/2008   12:47:26 PM



922 Harley Hahn’s Guide to Unix and Linux

Page numbers followed by n indicate topics found in footnotes.

symlinks. See symbolic links
synchronization of time settings 841-842
syntax

explained 225-226, 232-234, 884
in man pages 235

sysadmins. See system administrators
system administrators 55-56, 851, 884
system calls

explained 769-770, 884
list of 769

system information, displaying 168-169
system maintenance mode 99, 884
system managers. See system administrators
system processes, displaying 798-800
system tools commands, list of 824
System V. See UNIX System V

T
-t shell option 847-848
tabs

converting spaces to 432-433
converting to spaces 430-431
explained 427-428
spaces versus 428
viewing 429-430

Tabulating Machine Company (TMC) 436
<Tab> key 219

explained 427-428
as whitespace 230

tab settings 416
tab stops

explained 427, 884
setting with expand command 431

tac command 388-389, 820, 825
tail command 379, 391-392, 523, 541-542, 820, 

822, 824
tail -f command 542-544
tail -n command 392
Tanenbaum, Andrew 23-24, 26
task switching 107-108, 884
taskbar 105, 885
tasks

defi ned 108, 884
switching between 128

TCO (total cost of ownership)
CDE (Common Desktop Environment) 85-87
defi ned 885

tcsh command 245-246, 820, 824
Tcsh shell 245-246

defi ned 885
escape characters for 297
event number and working directory, displaying 

in shell prompt 308
history list and aliases usage in 322
shell prompts in 292
starting from vi text editor 609
suspending jobs in 782

.tcshrc fi le 329
tee command 367-369, 820-821
tee -a command 368
Teletype ASR33, 41-43, 59, 60, 131-132

carriage return and linefeed 155
Unix conventions, effect on 133-134

Teletype keyboard, <Ctrl> key 138
Teletype terminals, paper tape in 142
temporarily changing shells 249-250
TENEX operating system 246, 312
Termcap 134-137, 525, 885
terminals

character terminals 52-53
commands, list of 824
connections to host 46-48
as console 45-46
console versus 116
determining type used 137-138
explained 37-38, 885
graphics terminals 52-53
in history of Unix 41-43
keypresses and 50-51
Lear Siegler ADM-3A 562-563, 569
locking 172-173
resetting settings 157-158
special fi les for 632-633
Teletype ASR33. See Teletype ASR33
Termcap, Terminfo, curses programming 

interface 134-137
Unix conventions, effect on 133-134

terminal drivers 530, 885
terminal emulation

accessing emulators
with terminal windows 110-112
with virtual consoles 113-115

defi ned 46
types of terminals emulated 53-54, 137
in X Window 112

terminal rooms 43-45, 885
terminal servers 43-45, 885
terminal settings for job control 778
terminal windows

explained 110-112
non-login shells and 332

terminates (processes) 770, 804-806, 885. See also 
stopping

Terminfo 134-137, 885
TERM environment variable 138
term shell variable 850
test command 720
tests

defi ned 885
in fi nd command 752-756

Texinfo
explained 212, 885
pronunciation of 213

33614_idx_895_926.indd   92233614_idx_895_926.indd   922 1/9/2008   12:47:26 PM1/9/2008   12:47:26 PM



923Index

Page numbers followed by n indicate topics found in footnotes.

text
80-character line 435-436
breaking lines into shorter lines 433-435
converting spaces to tabs 432-433
converting tabs to spaces 430-431
copying 117-118, 128
counting lines/words/characters 424-426
cutting 117-118, 128
defi ned 885
double-spaced text, formatting 441
editing, list of commands 822
formatting

into columns 443-446
commands, list of 825
default line width 443
into pages 440-443
paragraphs 436-439

headers, deleting 442
indenting, tabs versus spaces 428
inserting 116-117
line numbers, inserting 421-423
margins, setting 442
moving 117-118
pasting 117-118, 128
selecting 116-117
tabs, explained 427-428
viewing tabs/spaces 429-430

text-based fi le managers 711-712
text-based interface. See command line
text-based terminals. See character terminals
text editors. See also sed text editor; vi text editor; 

vim text editor
defi ned 331-332, 559, 860, 885
displaying fi les 523
ed 347, 448, 500, 561
em 562
Emacs 17-18, 20, 347
en 562
ex 347, 574-575, 562-563
Gedit 429
Kedit 429
Nano 429
Pico 429
QED 499
read-only mode 523
STvi 564
word processors versus 559

text fi les
defi ned 480, 885
described 628
displaying. See fi les: displaying

Thompson, Ken 1, 3, 13, 19, 38-42, 131-132, 240, 
247, 334, 369, 499, 561-562

threads 94n
throwing away output 360-361
time-checking 842n
time-sharing systems 40, 886

time/date, displaying 164-165
time command 65, 165
time settings. See also time zones

24-hour clock 841
origin of UTC/UT/GMT 844-845
synchronization 841-842
UTC (Coordinated Universal Time)  842-845

time slices 94, 768, 886
time zones

European and Indian time zones chart 843
example scenarios 844
explained 842-845
U.S. time zones chart 842

title bar 103, 886
TMC (Tabulating Machine Company) 436
/tmp directory 646
tools, list of commands 825
top-level directories 643-646, 886
top (of stack) 676, 886
top command 94n, 798-800, 820, 823
top nodes (Info system) 217, 886
Torvalds, Linus 24-28, 30
total cost of ownership (TCO)

CDE (Common Desktop Environment) 85-87
defi ned 886

total ordering
creating from partial orderings 478-482
defi ned 886

touch command 310, 362, 715-717, 820, 823
Toy, Michael 135
trackall shell option 847
translating characters 482-484

defi ned 886
options for 486-488
unprintable characters 484-486

trapping signals
defi ned 145, 807, 886
eof keyboard signal

in Bash shell 149-159
in C-shell 150-151
in Korn shell 150

Travell, Janet G. 175
tree command 708-710, 820, 822
trees

defi ned 629, 886
displaying 708-710
info program and 213-214
removing directory tree 727-729

triple-clicking 102, 886
Trolltech 84
troubleshooting

forgotten root password 838-840
login process 58

Truscott, Tom 50
tr command 482-488, 820, 825
tsort command 478-482, 820, 825
tty command 133, 134, 171, 632-633, 820, 824

33614_idx_895_926.indd   92333614_idx_895_926.indd   923 1/9/2008   12:47:26 PM1/9/2008   12:47:26 PM



924 Harley Hahn’s Guide to Unix and Linux

Page numbers followed by n indicate topics found in footnotes.

TTYs, terminals as 133
Turing, Alan 556
tutorial for Info system 215-216
twm window manager 79, 82
type command 163, 284-285, 318, 820, 821
-type test (fi nd command) 752
typing commands 301-302
tz database 843n

U
^U key 141, 302
-u option (sort command) 462
-u shell option 847
U.S. time zones chart 842
Ubuntu Linux 90
UI (Unix International)

defi ned 886-887
formation of 81-82

umask command 738, 820, 823
umount command 642, 820, 823
unalias command 317, 820-821
uname command 169, 820, 824
uname -a command 169
undoing operations 118
unexpand command 432-433, 820, 825
uniq command 462, 471-473, 820, 825
uniq -c command 412
Universal Time (UT) 842

origin of 844-845
University of California at Berkeley. See Berkeley
UNIX 886
UNIX options

defi ned 887
for ps command 788-792

UNIX Seventh Edition 23
UNIX System Development Lab 21
UNIX System III 20-21
UNIX System V

BSD (Berkeley Software Distribution), 
divergence from 20-22

defi ned 20, 884
Unix

benefi ts of 2-3
case sensitivity of 63-64
commercial types of 22
components explained 12-13
copying fi les to Windows 157
culture of 2-3
defi ned 13, 35, 886
design principle behind 42-43
enjoying while respecting 71
as generic name 14
history of 1

in 1970s 19-20
in 1980s 20-22
in 1990s 22-24
host/terminal design 41-43
terminal rooms and terminal servers 43-45

installing 32-34
language of 3-4
origin of name 3
sample session 64-66
terminals, determining type used 137-138
as trademark 13
types to choose from 30-32
users of 4-5

Unix conventions, effect on terminals 133-134
Unix International (UI)

defi ned 886-887
formation of 81-82

Unix manual. See online manual
Unix philosophy 345-348
Unix Systems Laboratory (USL) 13
Unix tradition 189-190
unmaximize button (window controls) 107, 887
unmounting fi lesystems 642-643, 887
unprintable characters, translating 484-486
unset command 267-271, 820, 826
unsetenv command 269-271, 820, 826
unsetting

defi ned 887
shell options 271
variables 269

unsorted text fi les, comparing 399-404
uppercase

explained 63-64, 887
ignoring difference with lowercase 451, 461

uptime command 168, 820, 824
<Up> key 154, 219, 302
USB key drives 34
Usenet 50, 191, 887
userids

commands, list of 825
environment for 120
explained 56-72, 887
login process 57-59
root 70-71
switching temporarily 118-121

userid completion 313, 887
users

commands, list of 825
defi ned 70, 887

users command 170, 820, 825
user information, displaying 169-172
user masks 738, 887
user name completion 313, 887
user shell variable 850
-user test (fi nd command) 754
USL (Unix Systems Laboratory) 13
/usr directory 646

subdirectories in 647-649
/usr/bin directory 288, 648

/bin directory versus 649-650
/usr/games directory 648
/usr/include directory 648
/usr/lib directory 648

33614_idx_895_926.indd   92433614_idx_895_926.indd   924 1/9/2008   12:47:26 PM1/9/2008   12:47:26 PM



925Index

Page numbers followed by n indicate topics found in footnotes.

/usr/local directory 648
/usr/local/bin directory 288
/usr/sbin directory 648
/usr/share directory 648
/usr/src directory 649
/usr/ucb directory 288
/usr/X11 directory 649
UTC (Coordinated Universal Time) 165, 842-845
utilities

defi ned 887
GNU utilities 29
role of 12-13

UT (Universal Time) 842
origin of 844-845

uwm window manager 79

V
V operating system 77
-v option (grep command) 453
-V shell option 847-848
-v shell option 847-848
value

defi ned 887
of variables 258

displaying 264-267
in shell prompts 294-295

Vandevoorde, Mark 112
/var directory 646
variable completion 313, 888
variable data 646, 888
variables

in bc program 179-180
commands, list of 826
displaying value of 264-267
environment variables. See environment 

variables
explained 257-258, 887
exporting 260, 268
global variables 259
for job control 778
local variables 259
naming conventions 260
quoting 296-297
setting 268
in shell prompts 294-295
shell variables. See shell variables
unsetting 269
usage of

Bourne shell family 267-271
C-Shell family 269-271

verbose shell option 847
verbose shell variable 850
version control 408-410, 888
--version option 228
VFS (virtual fi le system) 653-657, 888
vi mode (command line editing)

defi ned 888
Emacs mode versus 314-316

vi shell option 847
vi text editor 559-626

Summary of vi Commands 827-832
See also Quick Index for the vi Text Editor 891

viewing
boot/shutdown process messages 126-127
confi guration fi le contents 124-125
environment variables 138
tabs/spaces 429-430

Vim text editor 566-565, 566-567, 621-623
See also Quick Index for vi Text Editor
See also Appendix C: Summary of vi 

Commands 827-832
Vimtutor 622
viraw shell option 847
virtual 115
virtual consoles

explained 113-115, 888
job control versus 783
login shells and 332
selecting/inserting text 117
switching between 128

virtual fi le system (VFS) 653-657, 888
virtual memory 115
visiblebell shell variable 850
visiting nodes 214, 888
Volkerding, Patrick 28
von Neumann, John 556
VT100 terminals 53-54, 138, 888
VT220 terminals 138

W
^W key 141, 302
-w option (grep command) 452-453
W windowing interface 77
wait 888
wait system call 769-770
wc command 365, 424-426, 820, 825
wc -c command 430
wc -l command 685
weak quotes

explained 283-284, 888
strong quotes versus 296-297

web pages, displaying man pages as 198-199
Web servers 48-49, 888
werase keyboard signal 140-141, 302
whatis command 208, 236, 820, 822
whence command 163, 820, 821, 823
whereis command 480, 747-748, 820, 823
which command 161-164, 820, 821
whitespace 230, 889
Whittier, John Greenleaf 622
who command 62, 65-66, 70, 170, 234, 368, 411, 

426, 820, 825
whoami command 62, 169, 820, 825
Wichman, Glenn 135
wiconfi g command 47

33614_idx_895_926.indd   92533614_idx_895_926.indd   925 1/9/2008   12:47:26 PM1/9/2008   12:47:26 PM



926 Harley Hahn’s Guide to Unix and Linux

Page numbers followed by n indicate topics found in footnotes.

wildcards
defi ned 889
for fi lenames 697-701
origin of terminology 702
quoting in fi nd command 754

window controls 106-107
window managers

explained 78-79, 889
for KDE and Gnome 84
in layers of abstraction 81
mwm (Motif window manager) 82
olwm (Open Look window manager) 82

Window Operation menu
explained 103, 889
in Gnome 105
in KDE 104
resizing windows 104

Windows
copying fi les to Unix 157
design principle behind 43
runlevels 100-101
running Unix on 31

windows
displaying man pages in 196-197
explained 74, 889
focus, changing 107-108
moving among desktops 110
in multiple desktops 109
multiple windows, job control versus 783
resizing/minimizing/maximizing/closing  

103-107
restoring 105
terminal windows 110-112

Wirth, Niklaus 246n
word lists, displaying in vi text editor 459
word processing documents, usage in Unix 

programs 441n
word processors, text editors versus 559
words

avoiding breaking in fold command 434
beginning with patterns 458-459
counting 424-426
defi ned 424, 551, 889

in regular expressions 505
matching with regular expressions 502-505

words fi le 515
working directory

. abbreviation 664-666
absolute versus relative pathnames 661-663
adding to search path 290
defi ned 134, 889
directory stack and 677-682
displaying in shell prompt 307-308, 322-326
displaying name of 666-672
pathnames and 659-661
removing 675

workspaces. See also desktops
defi ned 889
multiple workspaces 108-110
switching between 128

write permissions
explained 729-730, 889
fi le modes and. See fi le modes

write system call 769
writing binary/octal/hexadecimal numbers 549-550

X
X. See X Window
^X key 141, 302
-x option (grep command) 453-454
-X shell option 848
-x shell option 847-848
X terminal 53-54, 889
X Window

development responsibility for 77-78
explained 75, 889
history of 75-76
layers of abstraction 78, 81

desktop environment 79-80
window manager 78-79

licensing 77-78
name of, explained 77
selecting/inserting text 116-117
terminal emulators in 112
versions of 76

X.Org 77
X/Open 13
xargs command 760-766, 820-821
XFree86, licensing for 77-78
xman command 199, 820, 822
xterm 112
xterm terminal 138
xtrace shell option 847
xvt 112
xwm window manager 79

Y

Z
^Z key 823

pausing jobs 780-781
pausing programs 152

zero fi le 633, 890
“zero or more” 231-232, 890
zombies

explained 770, 890
as orphans 771

zoneinfo database 843n
zsh command 243
Zsh shell 243-244, 890

33614_idx_895_926.indd   92633614_idx_895_926.indd   926 1/9/2008   12:47:26 PM1/9/2008   12:47:26 PM




