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About this book

Computational complexity theory has developed rapidly in the past three decades. The
list of surprising and fundamental results proved since 1990 alone could fill a book: these
include new probabilistic definitions of classical complexity classes (IP = PSPACE and
the PCP Theorems) and their implications for the field of approximation algorithms; Shor’s
algorithm to factor integers using a quantum computer; an understanding of why current
approaches to the famous P versus NP will not be successful; a theory of derandomization
and pseudorandomness based upon computational hardness; and beautiful constructions of
pseudorandom objects such as extractors and expanders.

This book aims to describe such recent achievements of complexity theory in the con-
text of more classical results. It is intended to both serve as a textbook and as a reference
for self-study. This means it must simultaneously cater to many audiences, and it is care-
fully designed with that goal. We assume essentially no computational background and
very minimal mathematical background, which we review in Appendix A. We have also
provided a web site for this book at http://www.cs.princeton.edu/theory/complexity/
with related auxiliary material including detailed teaching plans for courses based on this
book, a draft of all the book’s chapters, and links to other online resources covering related
topics. Throughout the book we explain the context in which a certain notion is useful, and
why things are defined in a certain way. We also illustrate key definitions with examples.
To keep the text flowing, we have tried to minimize bibliographic references, except when
results have acquired standard names in the literature, or when we felt that providing some
history on a particular result serves to illustrate its motivation or context. (Every chapter
has a notes section that contains a fuller, though still brief, treatment of the relevant works.)
When faced with a choice, we preferred to use simpler definitions and proofs over showing
the most general or most optimized result.

The book is divided into three parts:

Part I: Basic complexity classes. This part provides a broad introduction to the field.
Starting from the definition of Turing machines and the basic notions of computability
theory, it covers the basic time and space complexity classes, and also includes a few
more modern topics such as probabilistic algorithms, interactive proofs, cryptography,
quantum computers, and the PCP Theorem and its applications.

Part II: Lower bounds on concrete computational models. This part describes lower
bounds on resources required to solve algorithmic tasks on concrete models such as
circuits, decision trees, etc. Such models may seem at first sight very different from
Turing machines, but looking deeper one finds interesting interconnections.

Part III: Advanced topics. This part is largely devoted to developments since the late
1980s. It includes counting complexity, average case complexity, hardness amplifica-
tion, derandomization and pseudorandomness, the proof of the PCP theorem, and
natural proofs.

Almost every chapter in the book can be read in isolation (though Chapters 1, 2 and 7
must not be skipped). This is by design, because the book is aimed at many classes of
readers:

• Physicists, mathematicians, and other scientists. This group has become increasingly
interested in computational complexity theory, especially because of high-profile re-
sults such as Shor’s algorithm and the recent deterministic test for primality. This
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intellectually sophisticated group will be able to quickly read through Part I. Progress-
ing on to Parts II and III they can read individual chapters and find almost everything
they need to understand current research.

• Computer scientists who do not work in complexity theory per se. They may use the
book for self-study, reference, or to teach an undergraduate or graduate course in
theory of computation or complexity theory.

• All those —professors or students— who do research in complexity theory or plan to do
so. The coverage of recent results and advanced topics is detailed enough to prepare
readers for research in complexity and related areas.

This book can be used as a textbook for several types of courses:

• Undergraduate Theory of Computation. Many Computer Science departments offer
an undergraduate Theory of Computation course, using say Sipser’s book [Sip96]. Our
text could be used to supplement Sipser’s book with coverage of some more modern
topics such as probabilistic algorithms, cryptography and quantum computing. Un-
dergraduate students may find these more exciting than traditional topics such as
automata theory and the finer distinctions of computability theory. The prerequisite
mathematical background would be some comfort with mathematical proofs and dis-
crete mathematics, as covered in the typical “discrete math”/“math for CS” courses
currently offered in many CS departments.

• Introduction to computational complexity for advanced undergrads/beginning grads.
The book can be used as a text for an introductory complexity course aimed at ad-
vanced undergraduate or graduate students in computer science (replacing books such
as Papadimitriou’s 1994 text [Pap94], that do not contain many recent results). Such
a course would probably include many topics from Part I and then a sprinkling from
Parts II and III, and assume some background in algorithms and/or the theory of
computation.

• Graduate Complexity course. The book can serve as a text for a graduate complexity
course that prepares graduate students for research in complexity theory or related
areas like algorithms, machine learning, etc. Such a course can use Part I to review
basic material, and then move on to the advanced topics of Parts II and III. The book
contains far more material than can be taught in one term, and we provide on our
website several alternative outlines for such a course.

• Graduate seminars or advanced courses. Individual chapters from Parts II and III can
be used in seminars or advanced courses on various topics in complexity theory (e.g.,
derandomization, the PCP Theorem, lower bounds).

We provide several teaching plans and material for such courses on the book’s web site.
If you use the book in your course, we’d love to hear about it and get your feedback. We
ask that you do not publish solutions for the book’s exercises on the web though, so other
people can use them as homework and exam questions as well.

As we finish this book, we are sorely aware of many more exciting results that we had
to leave out. We hope the copious references to other texts will give the reader plenty of
starting points for further explorations. We also plan to periodically update the book’s
website with pointers to newer results or expositions that may be of interest to you.

Above all, we hope that this book conveys our excitement about computational com-
plexity and the insights it provides in a host of other disciplines.

Onward to P versus NP!



Acknowledgements

Our understanding of complexity theory was shaped through interactions with our col-
leagues, and we have learned a lot from far too many people to mention here. Boaz would
like to especially thank two mentors— Oded Goldreich and Avi Wigderson— who introduced
to him the world of theoretical computer science and still influence much of his thinking on
this area.

We thank Luca Trevisan for coconceiving the book (7 years ago!) and helping write the
first drafts of a couple of chapters. Several colleagues have graciously agreed to review for us
early drafts of parts of this book. These include Scott Aaronson, Noga Alon, Paul Beame,
Irit Dinur, Venkatesan Guruswami, Valentine Kavanets, Jonathan Katz, Subhash Khot, Jǐŕı
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Introduction

“As long as a branch of science offers an abundance of problems, so long it is
alive; a lack of problems foreshadows extinction or the cessation of independent
development.”
David Hilbert, 1900

“The subject of my talk is perhaps most directly indicated by simply asking
two questions: first, is it harder to multiply than to add? and second, why?...I
(would like to) show that there is no algorithm for multiplication computation-
ally as simple as that for addition, and this proves something of a stumbling
block.”
Alan Cobham, 1964

The notion of computation has existed in some form for thousands of years, in contexts
as varied as routine account-keeping and astronomy. Here are three examples of tasks that
we may wish to solve using computation:

• Given two integer numbers, compute their product.

• Given a set of n linear equations over n variables, find a solution if it exists.

• Given a list of acquaintances and a list of all pairs among them who do not get along,
find the largest set of acquaintances you can invite to a dinner party such that every
two invitees get along with one another.

Throughout history people had a notion of a process of producing an output from a set
of inputs in a finite number of steps, and thought of “computation” as “a person writing
numbers on a scratch pad following certain rules.”

One of the important scientific advances in the first half of the 20th century was that
the notion of “computation” received a much more precise definition. From this definition
it quickly became clear that computation can happen in diverse physical and mathematical
systems —Turing machines, lambda calculus, cellular automata, pointer machines, bouncing
billiards balls, Conway’s Game of life, etc.. Surprisingly, all these forms of computation are
equivalent —in the sense that each model is capable of implementing all computations that
we can conceive of on any other model (see Chapter 1). This realization quickly led to the
invention of the standard universal electronic computer, a piece of hardware that is capable of
executing all possible programs. The computer’s rapid adoption in society in the subsequent
decades brought computation into every aspect of modern life, and made computational
issues important in design, planning, engineering, scientific discovery, and many other human
endeavors. Computer algorithms, which are methods of solving computational problems,
became ubiquitous.

But computation is not “‘merely” a practical tool. It is also a major scientific concept.
Generalizing from physical models such as cellular automata, scientists now view many nat-
ural phenomena as akin to computational processes. The understanding of reproduction in
living things was triggered by the discovery of self-reproduction in computational machines.
(In fact, a book by the physicist Schrödinger [Sch44] predicted the existence of a DNA-like
substance in cells before Watson and Crick discovered it, and was credited by Crick as an
inspiration for that research.) Today, computational models underlie many research areas
in biology and neuroscience. Several physics theories such as QED give a description of
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nature that is very reminiscent of computation, motivating some scientists to even suggest
that the entire universe may be viewed as a giant computer (see Lloyd [Llo06]). In an inter-
esting twist, such physical theories have been used in the past decade to design a model for
quantum computation; see Chapter 10.

Computability versus complexity. After their success in defining computation, researchers
focused on understanding what problems are computable. They showed that several inter-
esting tasks are inherently uncomputable: no computer can solve them without going into
infinite loops (i.e., never halting) on certain inputs. Though a beautiful topic, computability
will not be our focus in this book. We discuss it briefly in Chapter 1 and refer the reader to
standard texts [Sip96, HMU01, Koz97, Rog87] for more details. Instead, we focus on computa-
tional complexity theory, which focuses on issues of computational efficiency —quantifying
the amount of computational resources required to solve a given task. Below, we describe
at an informal level how one can quantify “efficiency,” and after that discuss some of the
issues that arise in connection with its study.

Quantifying computational efficiency

To explain what we mean by computational efficiency, we use the three examples of com-
putational tasks we mentioned above. We start with the task of multiplying two integers.
Consider two different methods (or algorithms) to perform this task. The first is repeated
addition: to compute a · b, just add a to itself b− 1 times. The other is the grade-school al-
gorithm illustrated in Figure 1. Though the repeated addition algorithm is perhaps simpler
than the grade-school algorithm, we somehow feel that the latter is better. Indeed, it is much
more efficient. For example, multiplying 577 by 423 using repeated addition requires 422
additions, whereas doing it with the grade-school algorithm 3 multiplications of a number
by a single digit and 3 additions.

5 7 7
4 2 3

1 7 3 1
1 1 5 4

2 3 0 8
2 4 4 0 7 1

Figure 1 Grade-school algorithm for multiplication. Illustrated for computing 577 · 423.

We will quantify the efficiency of an algorithm by studying how its number of basic
operations scales as we increase the size of the input. For this discussion, let the basic
operations be addition and multiplication of single digits. (In other settings, we may wish
to throw in division as a basic operation.) The size of the input is the number of digits
in the numbers. The number of basic operations used to multiply two n-digit numbers
(i.e., numbers between 10n−1 and 10n) is at most 2n2 for the grade-school algorithm and
at least n10n−1 for repeated addition. Phrased this way, the huge difference between the
two algorithms is apparent: even for 11-digit numbers, a pocket calculator running the
grade-school algorithm would beat the best current supercomputer running the repeated
addition algorithm. For slightly larger numbers even a fifth grader with pen and paper
would outperform a supercomputer. We see that the efficiency of an algorithm is to a
considerable extent much more important than the technology used to execute it.

Surprisingly enough, there is an even faster algorithm for multiplication that uses the
Fast Fourier Transform. It was only discovered some 40 years ago and multiplies two n-digit
numbers using cn logn log log n operations where c is some absolute constant independent
of n; see Chapter 16. We call such an algorithm an O(n logn log logn)-step algorithm: see
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our notational conventions below. As n grows, this number of operations is significantly
smaller than n2.

For the task of solving linear equations, the classic Gaussian elimination algorithm
(named after Gauss but already known in some form to Chinese mathematicians of the
first century) uses O(n3) basic arithmetic operations to solve n equations over n variables.
In the late 1960’s, Strassen found a more efficient algorithm that uses roughly O(n2.81)
operations, and the best current algorithm takes O(n2.376) operations (see Chapter 16).

The dinner party task also has an interesting story. As in the case of multiplication,
there is an obvious and simple inefficient algorithm: try all possible subsets of the n people
from the largest to the smallest, and stop when you find a subset that does not include any
pair of guests who don’t get along. This algorithm can take as much time as the number of
subsets of a group of n people, which is 2n. This is highly unpractical —an organizer of, say,
a 70-person party, would need to plan it at least a thousand years in advance, even if she has
a supercomputer at her disposal. Surprisingly, we still do not know of a significantly better
algorithm for this task. In fact, as we will see in Chapter 2, we have reasons to suspect that
no efficient algorithm exists, since this task turns out to be equivalent to the independent
set computational problem, which, together with thousands of other important problems,
is NP-complete. The famous “P versus NP” question (Chapter 2) asks whether or not any
of these problems has an efficient algorithm.

Proving nonexistence of efficient algorithms

We have seen that sometimes computational tasks turn out to have nonintuitive algorithms
that are more efficient than algorithms used for thousands of years. It would therefore be
really interesting to prove for some computational tasks that the current algorithm is the
best —in other words, no better algorithms exist. For instance, we could try to prove that
the O(n log n log logn)-step algorithm for multiplication cannot be improved upon (thus
implying that multiplication is inherently more difficult than addition, which does have an
O(n)-step algorithm). Or, we could try to prove that there is no algorithm for the dinner
party task that takes fewer than 2n/10 steps. Trying to prove such results is a central goal
of complexity theory.

How can we ever prove such a nonexistence result? There are infinitely many possible
algorithms! So we have to mathematically prove that each one of them is less efficient that
the known algorithm. This may be possible to do, because computation is a mathematically
precise notion. In fact, this kind of result (if proved) would fit into a long tradition of
impossibility results in mathematics, such as the independence of Euclid’s parallel postulate
from the other basic axioms of geometry, or the impossibility of trisecting an arbitrary angle
using a compass and straightedge. Such results count among the most interesting, fruitful,
and surprising results in mathematics.

In complexity theory, we are still only rarely able to prove such nonexistence of algo-
rithms. We do have important nonexistence results in some concrete computational mod-
els that are not as powerful as general computers, which are described in Part II of the
book. Since we are still missing good results for general computers, one important source
of progress in complexity theory is our stunning success in interrelating different complexity
questions, and the rest of the book is filled with examples of these.

Some interesting questions about computational efficiency

Now we give an overview of some important issues regarding computational complexity, all
of which will be treated in greater detail in later chapters. An overview of mathematical
background is given in Appendix A.
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1. Computational tasks in a variety of disciplines such as the life sciences, social sciences
and operations research involve searching for a solution across a vast space of possibil-
ities (for example, the aforementioned tasks of solving linear equations and finding a
maximal set of invitees to a dinner party). This is sometimes called exhaustive search,
since the search exhausts all possibilities. Can this exhaustive search be replaced by a
more efficient search algorithm?

As we will see in Chapter 2, this is essentially the famous “P vs. NP” question,
considered the central problem of complexity theory. Many interesting search problems
are NP-complete, which means that if the famous conjecture P 6= NP is true, then
these problems do not have efficient algorithms; they are inherently intractable.

2. Can algorithms use randomness (i.e., coin tossing) to speed up computation?

Chapter 7 introduces randomized computation and describes efficient probabilistic al-
gorithms for certain tasks. But Chapters 19 and 20 show a surprising recent result
giving strong evidence that randomness does not help speed up computation too much,
in the sense that any probabilistic algorithm can be replaced with a deterministic al-
gorithm (tossing no coins) that is almost as efficient.

3. Can hard problems become easier to solve if we allow the algorithms to err on a small
number of inputs, or to only compute an approximate solution?

Average-case complexity and approximation algorithms are studied in Chapters 11, 18,
19, and 22. These chapters also show fascinating connections between these questions,
the power of randomness, different notions of mathematical proofs, and the theory of
error correcting codes.

4. Can we derive any practical benefit from computationally hard problems? For exam-
ple, can we use them to construct cryptographic protocols that are unbreakable (at
least by any plausible adversary)?

As described in Chapter 9, the security of digital cryptography is intimately related to
the P vs. NP question (see Chapter 2) and average-case complexity (see Chapters 18).

5. Can we use the counterintuitive quantum mechanical properties of matter to build
faster computers?

Chapter 10 describes the fascinating notion of quantum computers that use quantum
mechanics to speed up certain computations. Peter Shor has shown that, if ever built,
quantum computers will be able to factor integers efficiently (thus breaking many
current cryptosystems). However, currently there are many daunting obstacles to
actually building such computers,

6. Do we need people to prove mathematical theorems, or can we generate mathematical
proofs automatically? Can we check a mathematical proof without reading it com-
pletely? Do interactive proofs, involving a dialog between prover and verifier, have
more power than standard “static” mathematical proofs?

The notion of proof, central to mathematics, turns out to be central to computational
complexity as well, and complexity has shed new light on the meaning of mathemat-
ical proofs. Whether mathematical proofs can be generated automatically turns out
to depend on the P vs. NP question (see Chapter 2). Chapter 11 describes proba-
bilistically checkable proofs. These are surprisingly robust mathematical proofs that
can checked by only reading them in very few probabilistically chosen locations, in
contrast to the traditional proofs that require line-by-line verification. Along similar
lines we introduce the notion of interactive proofs in Chapter 8 and use them to derive
some surprising results. Finally, proof complexity, a subfield of complexity studying
the minimal proof length of various statements, is studied in Chapter 15.

At roughly 40 years of age, Complexity theory is still an infant science and many im-
portant results are less than 20 years old. We have few complete answers for any of these
questions. In a surprising twist, computational complexity has also been used to prove some
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metatmathematical theorems: they provide evidence of the difficulty of resolving some of
the questions of . . . computational complexity; see Chapter 23.

We conclude with another quote from Hilbert’s 1900 lecture:

Proofs of impossibility were effected by the ancients ... [and] in later mathemat-
ics, the question as to the impossibility of certain solutions plays a preminent
part. ...

In other sciences also one meets old problems which have been settled in a manner
most satisfactory and most useful to science by the proof of their impossibility.
... After seeking in vain for the construction of a perpetual motion machine, the
relations were investigated which must subsist between the forces of nature if such
a machine is to be impossible; and this inverted question led to the discovery of
the law of the conservation of energy. ...

It is probably this important fact along with other philosophical reasons that gives
rise to conviction ... that every definite mathematical problem must necessarily
be susceptible to an exact settlement, either in the form of an actual answer to the
question asked, or by the proof of the impossibility of its solution and therewith
the necessary failure of all attempts. ... This conviction... is a powerful incentive
to the worker. We hear within us the perpetual call: There is the problem. Seek
its solution. You can find it by pure reason, for in mathematics there is no
ignorance.
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Chapter 0

Notational Conventions

We now specify some of the notations and conventions used throughout this book. We make
use of some notions from discrete mathematics such as strings, sets, functions, tuples, and
graphs. All of these are reviewed in Appendix A.

Standard notation. We let Z = {0,±1,±2, . . .} denote the set of integers, and N denote
the set of natural numbers (i.e., non-negative integers). A number denoted by one of the
letters i, j, k, ℓ,m, n is always assumed to be an integer. If n ≥ 1, then [n] denotes the set
{1, . . . , n}. For a real number x, we denote by ⌈x⌉ the smallest n ∈ Z such that n ≥ x and
by ⌊x⌋ the largest n ∈ Z such that n ≤ x. Whenever we use a real number in a context
requiring an integer, the operator ⌈ ⌉ is implied. We denote by log x the logarithm of x to
the base 2. We say that a condition P (n) holds for sufficiently large n if there exists some
number N such that P (n) holds for every n > N (for example, 2n > 100n2 for sufficiently
large n). We use expressions such as

∑

i f(i) (as opposed to, say,
∑n

i=1 f(i)) when the range
of values i takes is obvious from the context. If u is a string or vector, then ui denotes the
value of the ith symbol/coordinate of u.

Strings. If S is a finite set then a string over the alphabet S is a finite ordered tuple of
elements from S. In this book we will typically consider strings over the binary alphabet
{0, 1}. For any integer n ≥ 0 we denote by Sn the set of length-n strings over S (S0 denotes
the singleton consisting of the empty tuple). We denote by S∗ the set of all strings (i.e.,
S∗ = ∪n≥0S

n). If x and y are strings then we denote their concatenation (the tuple that
contains first the elements of x and then the elements of y) by x ◦ y or sometimes simply
xy. If x is a string and k ≥ 1 is a natural number, then xk denotes the concatenation of k
copies of x. For example, 1k denotes the string consisting of k ones. The length of a string
x is denoted by |x|.

Additional notation. If S is a distribution then we use x ∈
R
S to say that x is a random

variable that is distributed according to S; if S is a set then this denotes that x is distributed
uniformly over the members of S. We denote by Un the uniform distribution over {0, 1}n.
For two length-n strings x, y ∈ {0, 1}n, we denote by x ⊙ y their dot product modulo 2;
that is x ⊙ y =

∑

i xiyi (mod 2). In contrast, the inner product of two n-dimensional real
or complex vectors u,v is denoted by 〈u,v〉 (see Section A.5.1). For any object x, we use

xxy (not to be confused with the floor operator ⌊x⌋) to denote the representation of x as a
string (see Section 0.1 below).

0.1 Representing objects as strings

The basic computational task considered in this book is computing a function. In fact, we
will typically restrict ourselves to functions whose inputs and outputs are finite strings of
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bits (i.e., members of {0, 1}∗).

Representation. Considering only functions that operate on bit strings is not a real re-
striction since simple encodings can be used to represent general objects—integers, pairs of
integers, graphs, vectors, matrices, etc.— as strings of bits. For example, we can represent
an integer as a string using the binary expansion (e.g., 34 is represented as 100010) and a
graph as its adjacency matrix (i.e., an n vertex graph G is represented by an n × n 0/1-
valued matrix A such that Ai,j = 1 iff the edge i j is present in G). We will typically avoid
dealing explicitly with such low level issues of representation, and will use xxy to denote
some canonical (and unspecified) binary representation of the object x. Often we will drop
the symbols xy and simply use x to denote both the object and its representation.

Representing pairs and tuples. We use the notation 〈x, y〉 to denote the ordered pair
consisting of x and y. A canonical representation for 〈x, y〉 can be easily obtained from the
representations of x and y. For example, we can first encode 〈x, y〉 as the string xxy# xyy
over the alphabet {0, 1,#} and then use the mapping 0 7→ 00, 1 7→ 11,# 7→ 01 to convert
this representation into a string of bits. To reduce notational clutter, instead of x〈x, y〉y
we use 〈x, y〉 to denote not only the pair consisting of x and y but also the representation
of this pair as a binary string. Similarly, we use 〈x, y, z〉 to denote both the ordered triple
consisting of x, y, z and its representation, and use similar notation for 4-tuples, 5-tuples
etc..

Computing functions with non-string inputs or outputs. The idea of representation allows
us to talk about computing functions whose inputs are not strings (e.g., functions that take
natural numbers as inputs). In all these cases, we implicitly identify any function f whose
domain and range are not strings with the function g : {0, 1}∗ → {0, 1}∗ that given a
representation of an object x as input, outputs the representation of f(x). Also, using the
representation of pairs and tuples, we can also talk about computing functions that have
more than one input or output.

0.2 Decision problems / languages

An important special case of functions mapping strings to strings is the case of Boolean
functions, whose output is a single bit. We identify such a function f with the subset
Lf = {x : f(x) = 1} of {0, 1}∗ and call such sets languages or decision problems (we use
these terms interchangeably).1 We identify the computational problem of computing f (i.e.,
given x compute f(x)) with the problem of deciding the language Lf (i.e., given x, decide
whether x ∈ Lf ).

Example 0.1
By representing the possible invitees to a dinner party with the vertices of a
graph having an edge between any two people that can’t don’t get along, the
dinner party computational problem from the introduction becomes the problem
of finding a maximum sized independent set (set of vertices without any common
edges) in a given graph. The corresponding language is:

INDSET = {〈G, k〉 : ∃S ⊆ V (G) s.t. |S| ≥ k and ∀u, v ∈ S, u v 6∈ E(G)}

An algorithm to solve this language will tell us, on input a graphG and a number
k, whether there exists a conflict-free set of invitees, called an independent set,
of size at least k. It is not immediately clear that such an algorithm can be used

1The name “language” is perhaps not an ideal choice to denote subsets of {0, 1}∗, but for historical
reasons this is by now standard terminology.
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to actually find such a set, but we will see this is the case in Chapter 2. For
now, let’s take it on faith that this is a good formalization of this problem.

0.3 Big-Oh notation

We will typically measure the computational efficiency of an algorithm as the number of a
basic operations it performs as a function of its input length. That is, the efficiency of an
algorithm can be captured by a function T from the set N of natural numbers to itself such
that T (n) is equal to the maximum number of basic operations that the algorithm performs
on inputs of length n. However, this function T is sometimes overly dependant on the low-
level details of our definition of a basic operation. For example, the addition algorithm will
take about three times more operations if it uses addition of single digit binary (i.e., base
2) numbers as a basic operation, as opposed to decimal (i.e., base 10) numbers. To help us
ignore these low level details and focus on the big picture, the following well known notation
is very useful:

Definition 0.2 (Big-Oh notation) If f, g are two functions from N to N, then we (1) say
that f = O(g) if there exists a constant c such that f(n) ≤ c · g(n) for every sufficiently
large n, (2) say that f = Ω(g) if g = O(f), (3) say that f = Θ(g) is f = O(g) and g = O(f),
(4) say that f = o(g) if for every ǫ > 0, f(n) ≤ ǫ · g(n) for every sufficiently large n, and
(5) say that f = ω(g) if g = o(f).

To emphasize the input parameter, we often write f(n) = O(g(n)) instead of f = O(g),
and use similar notation for o,Ω, ω,Θ. ♦

Example 0.3
Here are some examples for use of big-Oh notation:

1. If f(n) = 100n logn and g(n) = n2 then we have the relations f = O(g),
g = Ω(f), f = o(g), g = ω(f).

2. If f(n) = 100n2+24n+2 logn and g(n) = n2 then f = O(g). We will often
write this relation as f(n) = O(n2). Note that we also have the relation
g = O(f) and hence f = Θ(g) and g = Θ(f).

3. If f(n) = min{n, 106} and g(n) = 1 for every n then f = O(g). We use the
notation f = O(1) to denote this. Similarly, if h is a function that tends
to infinity with n (i.e., for every c it holds that h(n) > c for n sufficiently
large) then we write h = ω(1).

4. If f(n) = 2n then for every number c ∈ N, if g(n) = nc then g = o(f). We
sometimes write this as 2n = nω(1). Similarly, we also write h(n) = nO(1)

to denote the fact that h is bounded from above by some polynomial. That
is, there exist a number c > 0 such that for sufficiently large n, h(n) ≤ nc.
We’ll sometimes also also write h(n) = poly(n) in this case.

For more examples and explanations, see any undergraduate algorithms text such as
[DPV06, KT06, CLRS01] or Section 7.1 in Sipser’s book [Sip96].

Exercises

0.1 For each of the following pairs of functions f, g determine whether f = o(g), g = o(f) or f = Θ(g).
If f = o(g) then find the first number n such that f(n) < g(n):
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(a) f(n) = n2 , g(n) = 2n2 + 100
√
n.

(b) f(n) = n100, g(n) = 2n/100.

(c) f(n) = n100, g(n) = 2n1/100

.

(d) f(n) =
√
n, g(n) = 2

√
log n.

(e) f(n) = n100, g(n) = 2(log n)2 .

(f) f(n) = 1000n, g(n) = n log n.

0.2 For each of the following recursively defined functions f , find a closed (non-recursive) expression
for a function g such that f(n) = Θ(g(n)), and prove that this is the case.

(Note: below we only supply the recursive rule, you can assume that f(1) = f(2) = · · · = f(10) = 1
and the recursive rule is applied for n > 10; in any case regardless of how the base case is defined
it won’t make any difference to the answer - can you see why?)

(a) f(n) = f(n− 1) + 10.

(b) f(n) = f(n− 1) + n.

(c) f(n) = 2f(n − 1).

(d) f(n) = f(n/2) + 10.

(e) f(n) = f(n/2) + n.

(f) f(n) = 2f(n/2) + n.

(g) f(n) = 3f(n/2).

(h) f(n) = 2f(n/2) +O(n2).

H457

0.3 The MIT museum contains a kinetic sculpture by Arthur Ganson called “Machine with concrete”
(see Figure 1). It consists of 13 gears connected to one another in a series such that each gear moves
50 times slower than the previous one. The fastest gear is constantly rotated by an engine at a
rate of 212 rotations per minute. The slowest gear is fixed to a block of concrete and so apparently
cannot move at all. How come this machine does not break apart?

Figure 1 Machine with concrete by Arthur Ganson. Reproduced with permission of the
artist.
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Chapter 1

The computational model —and
why it doesn’t matter

“The idea behind digital computers may be explained by saying that these ma-
chines are intended to carry out any operations which could be done by a
human computer. The human computer is supposed to be following fixed rules;
he has no authority to deviate from them in any detail. We may suppose that
these rules are supplied in a book, which is altered whenever he is put on to
a new job. He has also an unlimited supply of paper on which he does his
calculations.”
Alan Turing, 1950

“[Turing] has for the first time succeeded in giving an absolute definition of an
interesting epistemological notion, i.e., one not depending on the formalism
chosen.”
Kurt Gödel, 1946

The problem of mathematically modeling computation may at first seem insurmountable:
throughout history people have been solving computational tasks using a wide variety of
methods, ranging from intuition and “eureka” moments, to mechanical devices such as
abacus or sliderules, to modern computers. Besides that, other organisms and systems in
nature are also faced with and solve computational tasks every day using a bewildering
array of mechanisms. How can you find a simple mathematical model that captures all of
these ways to compute? The problem is even more exacerbated since in this book we are
interested in issues of computational efficiency. Here, at first glance, it seems that we have
to be very careful about our choice of a computational model, since even a kid knows that
whether or not a new video game program is “efficiently computable” depends upon his
computer’s hardware.

Surprisingly enough, it turns out there there is a simple mathematical model that suffices
for studying many questions about computation and its efficiency —the Turing machine. It
suffices to restrict attention to this single model since it seems able to simulate all physically
realizable computational methods with little loss of efficiency. Thus the set of “efficiently
solvable” computational tasks is at least as large for the Turing Machine as for any other
method of computation. (One possible exception is the quantum computer model described
in Chapter 10, but we do not currently know if it is physically realizable.)

In this chapter we formally define Turing machines and survey some of their basic prop-
erties. Section 1.1 sketches the model and its basic properties. That section also gives an
overview of the results of Sections 1.2 to 1.5 for the casual readers who wish to skip the
somewhat messy details of the model and go on to complexity theory, which begins with
Section 1.6.



14 1 The computational model —and why it doesn’t matter

Since complexity theory is concerned with computational efficiency, Section 1.6 contains
one of the most important definitions in this book: the definition of complexity class P,
which aims to capture mathematically the set of all decision problems that can be efficiently
solved. Section 1.6 also contains some discussion on whether or not the class P truly captures
the informal notion of “efficient computation”. The section also points out how throughout
the book the definition of the Turing Machine and the class P will be a starting point for
definitions of many other models, including nondeterministic, probabilistic and quantum
Turing machines, Boolean circuits, parallel computers, decision trees, and communication
games. Some of these models are introduced to study arguably realizable modes of physical
computation, while others are mainly used to gain insights on Turing machine computations.

1.1 Modeling computation: What you really need to know

Some tedious notation is unavoidable if one talks formally about Turing machines. We
provide an intuitive overview of this material for casual readers who can then skip ahead to
complexity questions, which begin with Section 1.6. Such a reader can always return to the
skipped sections on the rare occasions in the rest of the book when we actually use details
of the Turing machine model.

For thousands of years, the term “computation” was understood to mean application of
mechanical rules to manipulate numbers, where the person/machine doing the manipulation
is allowed a scratch pad on which to write the intermediate results. The Turing Machine
is a concrete embodiment of this intuitive notion. Section 1.2.1 shows that it can be also
viewed as the equivalent of any modern programming language — albeit one with no built-in
prohibition of its memory size.1

Here we describe this model informally along the lines of Turing’s quote at the start of
the chapter. Let f be a function that takes a string of bits (i.e., a member of the set {0, 1}∗)
and outputs, either 0 or 1. An algorithm for computing f is a set of mechanical rules, such
that by following them we can compute f(x) given any input x ∈ {0, 1}∗. The set of rules
being followed is fixed (i.e., the same rules must work for all possible inputs) though each
rule in this set may be applied arbitrarily many times. Each rule involves one or more of
the following “elementary” operations:

1. Read a bit of the input.

2. Read a bit (or possibly a symbol from a slightly larger alphabet, say a digit in the set
{0, . . . , 9}) from the “scratch pad” or working space we allow the algorithm to use.

Based on the values read,

3. Write a bit/symbol to the scratch pad.

4. Either stop and output 0 or 1, or choose a new rule from the set that will be applied
next.

Finally, the running time is the number of these basic operations performed. We measure
it in asymptotic terms, so we say a machine runs in time T (n) if it performs at most T (n)
basic operations time on inputs of length n.

The following are simple facts about this model.

1. The model is robust to almost any tweak in the definition such as changing the alphabet
from {0, 1, . . . , 9} to {0, 1}, or allowing multiple scratchpads, and so on. The most
basic version of the model can simulate the most complicated version with at most

1Though the assumption of a potentially infinite memory may seem unrealistic at first, in the complexity
setting it is of no consequence since we will restrict our study to Machines that use at most a finite number
of computational steps and memory cells any given input (the number allowed will depend upon the input
size).
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polynomial (actually quadratic) slowdown. Thus t steps on the complicated model
can be simulated in O(tc) steps on the weaker model where c is a constant depending
only on the two models. See Section 1.3.

2. An algorithm (i.e., a machine) can be represented as a bit string once we decide on
some canonical encoding. Thus an algorithm/machine can be viewed as a possible
input to another algorithm —this makes the boundary between input, software and
hardware very fluid. (As an aside we note that this fluidity is the basis of a lot of
computer technology.) We denote by Mα the machine whose representation as a bit
string is α.

3. There is a universal Turing machine U that can simulate any other Turing machine
given its bit representation. Given a pair of bit strings (x, α) as input, this machine
simulates the behavior of Mα on input x. This simulation is very efficient: if the
running time of Mα was T (|x|) then the running time of U is O(T (|x|) log T (|x|)). See
Section 1.4.

4. The previous two facts can be used to easily prove the existence of functions that
are not computable by any Turing machine; see Section 1.5. Uncomputability has an
intimate connection to Gödel’s famous Incompleteness Theorem; see Section 1.5.2.

1.2 The Turing Machine

The k-tape Turing machine (TM) concretely realizes the above informal notion in the fol-
lowing way (see Figure 1.1):

Scratch Pad: The scratch pad consists of k tapes. A tape is an infinite one-directional
line of cells, each of which can hold a symbol from a finite set Γ called the alphabet of the
machine. Each tape is equipped with a tape head that can potentially read or write symbols
to the tape one cell at a time. The machine’s computation is divided into discrete time
steps, and the head can move left or right one cell in each step.

The first tape of the machine is designated as the input tape. The machine’s head can
only read symbols from that tape, not write them —a so-called read-only head. The k − 1
read-write tapes are called work tapes and the last one of them is designated as the output
tape of the machine, on which it writes its final answer before halting its computation.

There also are variants of Turing machines with random access memory,2 but it turns
out that their computational powers are equivalent to standard Turing machines (see Exer-
cise 1.9).

Finite set of operations/rules: The machine has a finite set of states, denoted Q. The
machine contains a “register” that can hold a single element of Q; this is the ”state” of the
machine at that instant. This state determines its action at the next computational step,
which consists of the following: (1) read the symbols in the cells directly under the k heads
(2) for the k−1 read/write tapes replace each symbol with a new symbol (it has the option
of not changing the tape by writing down the old symbol again), (3) change its register
to contain another state from the finite set Q (it has the option not to change its state by
choosing the old state again) and (4) move each head one cell to the left or to the right (or
stay in place).

One can think of the Turing machine as a simplified modern computer, with the ma-
chine’s tape corresponding to a computer’s memory, and the transition function and register
corresponding to the computer’s central processing unit (CPU). However, it’s best to think

2Random access denotes the ability to access the ith symbol of the memory within a single step, without
having to move a head all the way to the ith location. The name “random access” is somewhat unfortunate
since this concept involves no notion of randomness— perhaps “indexed access” would have been better.
However, “random access” is widely used and so we follow this convention this book.
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read only head

read/write head
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Figure 1.1 A snapshot of the execution of a 3-tape Turing machine M with an input tape,
a work tape, and an output tape.

of Turing machines as simply a formal way to describe algorithms. Even though algorithms
are often best described by plain English text, it is sometimes useful to express them by
such a formalism in order to argue about them mathematically. (Similarly, one needs to
express an algorithm in a programming language in order to execute it on a computer.)

Formal definition. Formally, a TM M is described by a tuple (Γ, Q, δ) containing:

• A finite set Γ of the symbols that M ’s tapes can contain. We assume that Γ contains
a designated “blank” symbol, denoted �, a designated “start” symbol, denoted ⊲ and
the numbers 0 and 1. We call Γ the alphabet of M .

• A finite set Q of possible states M ’s register can be in. We assume that Q contains a
designated start state, denoted qstart and a designated halting state, denoted qhalt.

• A function δ :Q × Γk → Q × Γk−1 × {L, S,R}k, where k ≥ 2, describing the rules M
use in performing each step. This function is called the transition function of M (see
Figure 1.2.)

IF THEN
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Figure 1.2 The transition function of a two tape TM (i.e., a TM with one input tape and
one work/output tape).

If the machine is in state q ∈ Q and (σ1, σ2, . . . , σk) are the symbols currently being

read in the k tapes, and δ(q, (σ1, . . . , σk)) = (q′, (σ′
2, . . . , σ

′
k), z) where z ∈ {L, S,R}k, then
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at the next step the σ symbols in the last k − 1 tapes will be replaced by the σ′ symbols,
the machine will be in state q′, and the k heads will move Left, Right or Stay in place, as
given by z. (If the machine tries to move left from the leftmost position of a tape then it
will stay in place.)

All tapes except for the input are initialized in their first location to the start symbol
⊲ and in all other locations to the blank symbol �. The input tape contains initially the
start symbol ⊲, a finite non-blank string x (“the input”), and the the blank symbol � on
the rest of its cells. All heads start at the left ends of the tapes and the machine is in the
special starting state qstart. This is called the start configuration of M on input x. Each step
of the computation is performed by applying the function δ as described above. The special
halting state qhalt has the property that once the machine is in qhalt, the transition function δ
does not allow it to further modify the tape or change states. Clearly, if the machine enters
qhalt then it has halted. In complexity theory we are typically only interested in machines
that halt for every input in a finite number of steps.

Example 1.1
Let PAL be the Boolean function defined as follows: for every x ∈ {0, 1}∗, PAL(x)
is equal to 1 if x is a palindrome and equal to 0 otherwise. That is, PAL(x) = 1
if and only if x reads the same from left to right as from right to left (i.e.,
x1x2 . . . xn = xnxn−1 . . . x1). We now show a TM M that computes PAL within
less than 3n steps.
Our TMM will use 3 tapes (input, work and output) and the alphabet {⊲,�, 0, 1}.
It operates as follows:

1. Copy the input to the read/write work tape.

2. Move the input-tape head to the beginning of the input.

3. Move the input-tape head to the right while moving the work-tape head
to the left. If at any moment the machine observes two different values, it
halts and output 0.

4. Halt and output 1.

We now describe the machine more formally: The TM M uses 5 states denoted
by {qstart, qcopy, qleft, qtest, qhalt}. Its transition function is defined as follows:

1. On state qstart, move the input-tape head to the right, and move the work-
tape head to the right while writing the start symbol ⊲; change the state
to qcopy. (Unless we mention this explicitly, the function does not change the
output tape’s contents or head position.)

2. On state qcopy:

• If the symbol read from the input tape is not the blank symbol � then
move both the input-tape and work-tape heads to the right, writing the
symbol from the input-tape on the work-tape; stay in the state qcopy.

• If the symbol read from the input tape is the blank symbol �, then
move the input-tape head to the left, while keeping the work-tape head
in the same place (and not writing anything); change the state to qleft.

3. On state qleft:

• If the symbol read from the input tape is not the start symbol ⊲ then
move the input-head to the left, keeping the work-tape head in the
same place (and not writing anything); stay in the state qleft.

• If the symbol read from the input tape is the start symbol ⊲ then
move the input-tape to the right and the work-tape head to the left
(not writing anything); change to the state qtest.

4. On state qtest:
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• If the symbol read from the input-tape is the blank symbol � and the
symbol read from the work-tape is the start symbol ⊲ then write 1 on
the output tape and change state to qhalt.

• Otherwise, if the symbols read from the input tape and the work tape
are not the same then write 0 on the output tape and change state to
qhalt.

• Otherwise, if the symbols read from the input tape and the work tape
are the same, then move the input-tape head to the right and the
work-tape head to the left; stay in the state qtest.

Clearly, fully specifying a Turing machine is tedious and not always informative. While
it is useful to work out one or two examples for yourself (see Exercise 1.1), in the rest
of this book we avoid such overly detailed descriptions and specify TM’s in a high level
fashion. For readers who know how to write computer programs, Example 1.2 below should
convince them that they know (in principle at least) how to design a Turing machine for
any computational task for which they know how to write computer programs.

1.2.1 The expressive power of Turing machines

At first sight, it may be unclear that Turing machines do indeed encapsulate our intuitive
notion of computation. It may be useful to work through some simple examples, such
as expressing the standard algorithms for addition and multiplication in terms of Turing
machines computing the corresponding functions (see Exercise 1.1). Having done that, you
may be ready for the next example; it outlines how you can translate a program in your
favorite programming language into a Turing machine. (The reverse direction also holds:
most programming languages can simulate a Turing machine.)

Example 1.2 (Simulating a general programming language using Turing machines)
(This example assumes some background in computing.)
We give a hand-wavy proof that for any program written in any of the familiar
programming languages such as C or Java, there is an equivalent Turing machine.
First, recall that programs in these programming languages can be translated
(the technical term is compiled) into an equivalent machine language program.
This is a sequence of instructions, each of one of a few simple types, e.g., (a) read
from memory into one of a finite number of registers (b) write a register’s contents
to memory, (c) Add the contents of two registers and store the result in a third.
(d) Like (c) but with other operations such as multiplication instead of addition.
All these operations can be easily simulated by a Turing machine. The memory
and registers can be implemented using the machine’s tapes, while the instruc-
tions can be encoded by the machine’s transition function. For example, it’s
not hard to design TM’s that add or multiply two numbers. To simulate the
computer’s memory, a two-tape TM can use one tape for the simulated memory
and the other tape to do binary-to-unary conversion that allows it, for a number
i in binary representation, to read or modify the ith location of its first tape. We
leave details to Exercise 1.8.
Exercise 1.10 asks you to give a more rigorous proof of such a simulation for a
simple tailor-made programming language.
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1.3 Efficiency and running time

Now we formalize the notion of running time. As every non-trivial computational task
requires at least reading the entire input, we count the number of basic steps as a function
of the input length.

Definition 1.3 (Computing a function and running time)
Let f : {0, 1}∗ → {0, 1}∗ and let T : N → N be some functions, and let M be a Turing
machine. We say that M computes f if for every x ∈ {0, 1}∗, whenever M is initialized to
the start configuration on input x, then it halts with f(x) written on its output tape. We
say M computes f in T (n)-time3 if its computation on every input x requires at most T (|x|)
steps.

Example 1.4
It is easily checked that the Turing machine for palindrome recognition in Ex-
ample 1.1 runs in 3n time.

Time-constructible functions. A function T : N→ N is time constructible if T (n) ≥ n and
there is a TM M that computes the function x 7→ xT (|x|)y in time T (n). (As usual, xT (|x|)y
denotes the binary representation of the number T (|x|).) Examples for time-constructible
functions are n, n logn, n2, 2n. Almost all functions encountered in this book will be time-
constructible and we will restrict our attention to time bounds of this form. (Allowing
time bounds that are not time-constructible can lead to anomalous results.) The restriction
T (n) ≥ n is to allow the algorithm time to read its input.

1.3.1 Robustness of our definition

Most of the specific details of our definition of Turing machines are quite arbitrary. It is a
simple exercise to see that most changes to the definition do not yield a substantially different
model, since our model can simulate any of these new models. In context of computational
complexity, however, we have to verify not only that one model can simulate another, but
that it can do so efficiently. Now we state a few results of this type, which ultimately lead
to the conclusion that the exact model is unimportant if we are willing to ignore polynomial
factors in the running time. Variations on the model studied include restricting the alphabet
Γ to be {0, 1,�,⊲}, restricting the machine to have a single work tape, or allowing the tapes
to be infinite in both directions. All results in this section are proved sketchily— completing
these sketches into full proofs is a very good way to gain intuition on Turing machines, see
Exercises 1.2, 1.3 and 1.4.

Claim 1.5 For every f : {0, 1}∗ → {0, 1} and time-constructible T : N → N, if f is com-
putable in time T (n) by a TMM using alphabet Γ then it is computable in time 4 log |Γ|T (n)
by a TM M̃ using the alphabet {0, 1,�,⊲}. ♦

Proof Sketch: Let M be a TM with alphabet Γ, k tapes, and state set Q that computes
the function f in T (n) time. We describe an equivalent TM M̃ computing f with alphabet
{0, 1,�,⊲}, k tapes and a set Q′ of states. The idea behind the transformation is simple:
one can encode any member of Γ using log |Γ| bits.4 Thus, each of M̃ ’s work tapes will

3Formally we should write “T -time” instead of “T (n)-time”, but we follow the convention of writing T (n)
to emphasize that T is applied to the input length.

4Recall our conventions that log is taken to base 2, and non-integer numbers are rounded up when
necessary.
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Figure 1.3 We can simulate a machineM using the alphabet {⊲,�, a, b, . . . , z} by a machine
M ′ using {⊲,�, 0, 1} via encoding every tape cell of M using 5 cells of M ′.

simply encode one of M ’s tapes: for every cell in M ’s tape we will have log |Γ| cells in the
corresponding tape of M̃ (see Figure 1.3).

To simulate one step of M , the machine M̃ will: (1) use log |Γ| steps to read from each
tape the log |Γ| bits encoding a symbol of Γ (2) use its state register to store the symbols
read, (3) use M ’s transition function to compute the symbols M writes and M ’s new state
given this information, (4) store this information in its state register, and (5) use log |Γ|
steps to write the encodings of these symbols on its tapes.

One can verify that this can be carried out if M̃ has access to registers that can store
M ’s state, k symbols in Γ and a counter from 1 to log |Γ|. Thus, there is such a machine M̃
utilizing no more than c|Q||Γ|k+1 states for some absolute constant c. (In general, we can
always simulate several registers using one register with a larger state space. For example,
we can simulate three registers taking values in the sets A,B and C respectively with one
register taking a value in the set A×B × C which is of size |A||B||C|.)

It is not hard to see that for every input x ∈ {0, 1}n, if on input x the TM M outputs
f(x) within T (n) steps, then M̃ will output the same value within less than 4 log |Γ|T (n)
steps. �

Now we consider the effect of restricting the machine to use a single tape— one read/write
tape that serves as input, work and output tape (this is the standard computational model
in many undergraduate texts such as [Sip96]). We show that going from multiple tapes to
a single tape can at most square the running time. This quadratic increase is inherent for
some languages, including the palindrome recognition considered in Example 1.1; see the
chapter notes.

Claim 1.6 Define a single-tape Turing machine to be a TM that has only one read/write
tape, that is used as input, work and output tape. For every f : {0, 1}∗ → {0, 1} and
time-constructible T : N → N, if f is computable in time T (n) by a TM M using k tapes
then it is computable in time 5kT (n)2 by a single-tape TM M̃ . ♦
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Encoding this in one tape of M:
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Tape 3:
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Figure 1.4 Simulating a machine M with 3 tapes using a machine M̃ with a single tape.

Proof Sketch: Again the idea is simple: the TM M̃ encodes k tapes of M on a single
tape by using locations 1, k+1, 2k+1, . . . to encode the first tape, locations 2, k+2, 2k+2, . . .
to encode the second tape etc.. (see Figure 1.4). For every symbol a in M ’s alphabet, M̃
will contain both the symbol a and the symbol â. In the encoding of each tape, exactly one
symbol will be of the “̂ type”, indicating that the corresponding head of M is positioned in
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that location (see figure). M̃ will not touch the first n+ 1 locations of its tape (where the
input is located), but rather start by taking O(n2) steps to copy the input bit by bit into
the rest of the tape, while encoding it in the above way.

To simulate one step of M , the machine M̃ makes two sweeps of its work tape: first
it sweeps the tape in the left-to-right direction and records to its register the k symbols
that are marked by “̂ ”. Then M̃ uses M ’s transition function to determine the new state,
symbols, and head movements and sweeps the tape back in the right-to-left direction to
update the encoding accordingly. Clearly, M̃ will have the same output as M . Also, since
on n-length inputs M never reaches more than location T (n) of any of its tapes, M̃ will
never need to reach more than location 2n+kT (n) ≤ (k+2)T (n) of its work tape, meaning
that for each of the at most T (n) steps of M , M̃ performs at most 5 ·k ·T (n) work (sweeping
back and forth requires about 4 · k · T (n) steps, and some additional steps may be needed
for updating head movement and book keeping). �

Remark 1.7 (Oblivious Turing machines.)
With a bit of care, one can ensure that the proof of Claim 1.6 yields a TM M̃ with the
following property: its head movements do not depend on the input but only depend on the
input length. That is, every input x ∈ {0, 1}∗ and i ∈ N, the location of each of M ’s heads
at the ith step of execution on input x is only a function of |x| and i. A machine with this
property is called oblivious and the fact that every TM can be simulated by an oblivious
TM will simplify some proofs later on (see Exercises 1.5, 1.6 and the proof of Theorem 2.10).

Claim 1.8 Define a bidirectional TM to be a TM whose tapes are infinite in both directions.
For every f : {0, 1}∗ → {0, 1}∗ and time constructible T : N → N, if f is computable in
time T (n) by a bidirectional TM M then it is computable in time 4T (n) by a standard
(unidirectional) TM M̃ . ♦
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M uses a larger alphabet to represent it on a standard tape:
~

Figure 1.5 To simulate a machine M with alphabet Γ that has tapes infinite in both
directions, we use a machine M̃ with alphabet Γ2 whose tapes encode the “folded” version
of M ’s tapes.

Proof Sketch: The idea behind the proof is illustrated in Figure 1.5. If M uses alphabet
Γ then M̃ will use the alphabet Γ2 (i.e., each symbol in M̃ ’s alphabet corresponds to a pair
of symbols in M ’s alphabet). We encode a tape of M that is infinite in both direction using
a standard (infinite in one direction) tape by “folding” it in an arbitrary location, with each
location of M̃ ’s tape encoding two locations of M ’s tape. At first, M̃ will ignore the second
symbol in the cell it reads and act according to M ’s transition function. However, if this
transition function instructs M̃ to go “over the edge” of its tape then instead it will start
ignoring the first symbol in each cell and use only the second symbol. When it is in this
mode, it will translate left movements into right movements and vice versa. If it needs to
go “over the edge” again then it will go back to reading the first symbol of each cell, and
translating movements normally. �

Other changes that do not have a very significant effect include having two or three
dimensional tapes, allowing the machine random access to its tape, and making the output
tape write only (see Exercises 1.7 and 1.9; also the texts [Sip96, HMU01] contain more exam-
ples). In particular none of these modifications will change the class P of polynomial-time
computable decision problems defined below in Section 1.6.
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1.4 Machines as strings and the universal Turing machine

It is almost obvious that we can represent a Turing machine as a string: just write the
description of the TM on paper, and encode this description as a sequence of zeros and
ones. This string can be given as input to another TM. This simple observation is actually
profound since it blurs the distinction between software, hardware and data. Historically
speaking it motivated the invention of the general purpose electronic computer, which is a
single machine that can be adapted to any arbitrary task by loading it with an appropriate
program (software).

Because we will use this notion of representing TM’s as strings quite extensively, it may
be worthwhile to spell out our representation a bit more concretely. Since the behavior of a
Turing machine is determined by its transition function, we will use the list of all inputs and
outputs of this function (which can be easily encoded as a string in {0, 1}∗) as the encoding
of the Turing machine.5 We will also find it convenient to assume that our representation
scheme satisfies the following properties:

1. Every string in {0, 1}∗ represents some Turing machine.

This is easy to ensure by mapping strings that are not valid encodings into some
canonical trivial TM, such as the TM that immediately halts and outputs zero on any
input.

2. Every TM is represented by infinitely many strings.

This can be ensured by specifying that the representation can end with an arbitrary
number of 1’s, that are ignored. This has a somewhat similar effect to the comments
mechanism of many programming languages (e.g., the /*...*/ construct in C,C++
and Java) that allows to add superfluous symbols to any program.

We denote by xMy the TM M ’s representation as a binary string. If α is a string then
Mα denotes the TM that α represents. As is our convention, we will also often use M
to denote both the TM and its representation as a string. Exercise 1.11 asks you to fully
specify a representation scheme for Turing machines with the above properties.

1.4.1 The Universal Turing Machine

Turing was the first to observe that general purpose computers are possible, by showing a
universal Turing machine that can simulate the execution of every other TM M given M ’s
description as input. Of course, since we are so used to having a universal computer on our
desktops or even in our pockets, today we take this notion for granted. But it is good to
remember why it was once counterintuitive. The parameters of the universal TM are fixed
—alphabet size, number of states, and number of tapes. The corresponding parameters for
the machine being simulated could be much larger. The reason this is not a hurdle is, of
course, the ability to use encodings. Even if the universal TM has a very simple alphabet,
this suffices to represent the other machine’s state and transition table on its tapes, and
then follow along in the computation step by step.

Now we state a computationally efficient version of Turing’s construction due to Hennie
and Stearns [HS66]. To give the essential idea we first prove a slightly relaxed variant where
the term T logT below is replaced with T 2. But since the efficient version is needed a few
times in the book, a full proof is also given at the end of the chapter (see Section 1.A).

5Note that the size of the alphabet, the number of tapes, and the size of the state space can be deduced
from the transition function’s table. We can also reorder the table to ensure that the special states qstart, qhalt

are the first 2 states of the TM. Similarly, we may assume that the symbols ⊲,�, 0, 1 are the first 4 symbols
of the machine’s alphabet.
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Theorem 1.9 (Efficient Universal Turing machine)
There exists a TM U such that for every x, α ∈ {0, 1}∗, U(x, α) = Mα(x), where Mα denotes
the TM represented by α.

Moreover, if Mα halts on input x within T steps then U(x, α) halts within CT logT steps,
where C is a number independent of |x| and depending only on Mα’s alphabet size, number
of tapes, and number of states.

A common exercise in programming courses is to write an interpreter for a particular
programming language using the same language. (An interpreter takes a program P as
input and outputs the result of executing the program P .) Theorem 1.9 can be considered
a variant of this exercise.

Proof of relaxed version of Theorem 1.9: Our universal TM U is given an input
x, α, where α represents some TM M , and needs to output M(x). A crucial observation is
that we may assume that M (1) has a single work tape (in addition to the input and output
tape) and (2) uses the alphabet {⊲,�, 0, 1}. The reason is that U can transform a repre-
sentation of every TM M into a representation of an equivalent TM M̃ that satisfies these
properties as shown in the proofs of Claims 1.5 and 1.6. Note that these transformations
may introduce a quadratic slowdown (i.e., transform M from running in T time to running
in C′T 2 time where C′ depends on M ’s alphabet size and number of tapes).

Input�
tape

Work�
tapes

Output�
tape

>   0   0  0   1   1  0   1  0   0   0  1  0    0  0   0   

>   0   1

Description of M

Current state of M

(used in the same way as M)

(used in the same way as M)

(used in the same way as M)

Figure 1.6 The universal TM U has in addition to the input and output tape, three work
tapes. One work tape will have the same contents as the simulated machine M , another tape
includes the description M (converted to an equivalent one-work-tape form), and another
tape contains the current state of M .

The TM U uses the alphabet {⊲,�, 0, 1} and three work tapes in addition to its input
and output tape (see Figure 1.6). U uses its input tape, output tape, and one of the work
tapes in the same wayM uses its three tapes. In addition, U will use its first extra work tape
to store the table of values of M ’s transition function (after applying the transformations of
Claims 1.5 and 1.6 as noted above), and its other extra work tape to store the current state
ofM . To simulate one computational step ofM , U scans the table of M ’s transition function
and the current state to find out the new state, symbols to be written and head movements,
which it then executes. We see that each computational step of M is simulated using C
steps of U , where C is some number depending on the size of the transition function’s table.

This high level description can be turned into an exact specification of the TM U , though
we leave this to the reader. To work out the details, it may help to think first how to program
these steps in your favorite programming language and then try to transform this into a
description of a Turing machine. �

Universal TM with time bound. It is sometimes useful to consider a variant of the uni-
versal TM U that gets a number T as an extra input (in addition to x and α), and outputs
Mα(x) if and only if Mα halts on x within T steps (otherwise outputting some special failure
symbol). By adding a time counter to U , the proof of Theorem 1.9 can be easily modified
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to give such a universal TM. The time counter is used to keep track of the number of steps
that the computation has taken so far.

1.5 Uncomputability: An introduction

It may seem “obvious” that every function can be computed, given sufficient time. However,
this turns out to be false: there exist functions that cannot be computed within any finite
number of steps! This section gives a brief introduction to this fact and its ramifications.
Though not this material is not strictly necessary for the study of complexity, it forms the
intellectual background for it.

The next theorem shows the existence of uncomputable functions. In fact it shows the
existence of such functions whose range is {0, 1}, in other words, they represent languages.
Such a language is called undecidable. The theorem’s proof uses a technique called diago-
nalization, which is useful in complexity theory as well; see Chapter 3.

Theorem 1.10 There exists a function UC : {0, 1}∗ → {0, 1} that is not computable by any
TM. ♦

Proof: The function UC is defined as follows: for every α ∈ {0, 1}∗, if Mα(α) = 1 then
UC(α) = 0; otherwise (if Mα(α) outputs a different value or enters an infinite loop), UC(α) =
1.

Suppose for the sake of contradiction that UC is computable and hence there exists a TM
M such thatM(α) = UC(α) for every α ∈ {0, 1}∗. Then, in particular,M( xMy) = UC( xMy).
But this is impossible: by the definition of UC,

UC( xMy) = 1⇔M( xMy) 6= 1 .

�

To see why this proof technique is called “diagnalization,” see Figure 1.7.
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Figure 1.7 Suppose we order all strings in lexicographic order, and write in a table the
value of Mα(x) for all strings α, x, where Mα denotes the TM represented by the string α
and we use ⋆ to denote the case that Mα(x) is not a value in {0, 1} or that Mα does not halt
on input x. Then, function UC is defined by “negating” the diagonal of this table. Since the
rows of the table represent all TMs, we conclude that UC cannot be computed by any TM.
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1.5.1 The Halting Problem (first encounter with reductions)

The reader may well ask why should we care whether or not the function UC described
above is computable— who would want to compute such a contrived function anyway? We
now show a more natural uncomputable function. The function HALT takes as input a
pair 〈α, x〉 and outputs 1 if and only if the TM Mα represented by α halts on input x
within a finite number of steps. This is definitely a function we want to compute: given a
computer program and an input we’d certainly like to know if the program is going to enter
an infinite loop on this input. If computers could compute HALT, the task of designing
bug-free software and hardware would become much easier. Unfortunately, we now show
that computers cannot do this, even if they are allowed to run an arbitrarily long time:

Theorem 1.11 HALT is not computable by any TM. ♦

Proof: Suppose, for the sake of contradiction, that there was a TM MHALT computing
HALT. We will use MHALT to show a TM MUC computing UC, contradicting Theorem 1.10.

The TM MUC is simple: on input α, MUC runs MHALT(α, α). If the result is 0 (meaning
that Mα does not halt on α) then MUC outputs 1. Otherwise, MUC uses the universal TM
U to compute b = Mα(α). If b = 1 then MUC outputs 0; otherwise it outputs 1.

Under the assumption that MHALT(α, α) outputs HALT(α, α) within a finite number of
steps, the TM MUC(α) will output UC(α). �

The proof technique employed to show Theorem 1.11 is called a reduction. We showed
that computing UC is reducible to computing HALT —we showed that if there were a hypo-
thetical algorithm for HALT then there would be one for UC. We will see many reductions
in this book, often used (as is the case here) to show that a problem B is at least as hard as
a problem A by showing an algorithm that could solve A given a procedure that solves B.

There are many other examples of interesting uncomputable (also known as undecidable)
functions, see Exercise 1.12. There are even uncomputable functions whose formulation has
seemingly nothing to do with Turing machines or algorithms. For example, the following
problem cannot be solved in finite time by any TM: given a set of polynomial equations with
integer coefficients, find out whether these equations have an integer solution (i.e., whether
there is an assignment of integers to the variables that satisfies the equations). This is known
as the problem of solving Diophantine equations, and in 1900 Hilbert mentioned finding an
algorithm for solving it (which he presumed to exist) as one of the top 23 open problems
in mathematics. The chapter notes mention some good sources for more information on
computability theory.

1.5.2 Gödel’s Theorem

In the year 1900, David Hilbert, the preeminent mathematician of his time, proposed an
ambitious agenda to base all of mathematics on solid axiomatic foundations, so that even-
tually all true statements would be rigorously proven. Mathematicians such as Russell,
Whitehead, Zermelo, and Fraenkel, proposed axiomatic systems in the ensuing decades, but
nobody was able to prove that their systems are simultaneously complete (i.e., prove all true
mathematical statements) and sound (i.e., prove no false statements). In 1931 Kurt Gödel
shocked the mathematical world by showing that this ongoing effort is doomed to fail —for
every sound system S of axioms and rules of inference, there exist true number theoretic
statements that cannot be proven in S.

Gödel’s work directly motivated the work of Turing and Church on computability. Our
presentation reverses this order: we use uncomputability to sketch a proof of Gödel’s result.
The main observation is the following: in any sufficiently powerful axiomatic system, for any
input 〈α, x〉 we can write a mathematical statement φ〈α,x〉 that is true iff HALT(〈α, x〉) = 1.
(A sketch of this construction appears below.) Now if the system is complete, it must prove
at least one of φ〈α,x〉 or ¬φ〈α,x〉, and if it is sound it cannot prove both. So if the system
is both complete and sound, the following algorithm for the Halting problem is guaranteed
to terminate in finite time for all inputs. “Given input 〈α, x〉, start enumerating all strings
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of finite length, and check for each generated string whether it represents a proof in the
axiomatic system for either φ〈α,x〉 or ¬φ〈α,x〉. If one waits long enough, a proof of one of
the two statements will appear in the enumeration, at which point the correct answer 1 or
0 is revealed, which you then output.” (Note that this procedure implicitly uses the simple
fact that proofs in axiomatic systems can be easily verified by a Turing machine, since each
step in the proof has to follow mechanically from previous steps by applying the axioms.)

Now we sketch the construction of the desired statement φ〈α,x〉. Assume the axiomatic
system has the ability to express statements about the natural number using the operators
plus (+) and times (×), equality and comparison relations (=, >,<), and logical operators
such as AND (∧), OR (∨), and NOT (¬). The language also includes the quantifiers for-all
(∀) and exists (∃) and the constant 1 (we can get any other constant c by adding 1 to itself
c times). For example, the formal expression for “x divides y” will be DIVIDES(x, y) =
∃k : y = x× k, and the expression for “y is prime” will be PRIME(y) = ∀x(x=1) ∨ (x=
y) ∨ ¬DIVIDES(x, y) (where DIVIDES(x, y) is shorthand for the corresponding expression).

We can encode strings (and hence also Turing machines and their inputs and tapes) as
numbers. Then one notes that a basic operation of the Turing machine only influences one
(or a few, if the machine has mutiple tapes) of bits on its tape, which can be viewed as
a simple arithmetic operation on the string/number representing the tape contents. With
some work one obtains an expression ϕα,x(t) that is true if and only if the TM Mα halts on
input x within t steps. Hence, Mα halts on x if and only if ∃tϕα,x(t) is true, which is the
desired mathematical statement. We leave the details as Exercise 1.13.

Note that this construction also implies, as first pointed out by Turing, that the set of
true mathematical statements is undecidable, which showed that Hilbert’s famous Entschei-
dungsproblem has no solution. (Hilbert had asked for a “mechanical procedure” —now
interpreted as “algorithmic procedure”— for deciding truth of mathematical statements.)

1.6 The class P

A complexity class is a set of functions that can be computed within given resource bounds.
We will now introduce our first complexity class. For reasons of technical convenience,
throughout most of this book we will pay special attention to Boolean functions, namely
those that have only one bit of output. These functions define decision problems or lan-
guages. We say that a machine decides a language L ⊆ {0, 1}∗ if it computes the function
fL : {0, 1}∗ → {0, 1} where fL(x) = 1⇔ x ∈ L.

Definition 1.12 (The class DTIME.) Let T : N → N be some function. A language L is
in DTIME(T (n)) iff there is a Turing machine that runs in time c ·T (n) for some constant
c > 0 and decides L. ♦

The “D” in the notation DTIME refers to “deterministic”. The Turing machine intro-
duced in this chapter is more precisely called the deterministic Turing machine since for any
given input x, the machine’s computation can proceed in exactly one way. Later we will see
other types of Turing machines, including nondeterministic and probabilistic TMs.

Now we try to make the notion of “efficient computation” precise. We equate this with
polynomial running time, which means it is at most nc for some constant c > 0. The
following class captures this notion, where P stands for “polynomial.”

Definition 1.13 (The class P)
P = ∪c≥1DTIME(nc)

Thus, we can phrase the question from the introduction as to whether the dinner party
problem has an efficient algorithm as follows: “Is INDSET in P?”, where INDSET is the
language defined in Example 0.1.
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Example 1.14 (Graph Connectivity)
In the graph connectivity problem, we are given a graph G and two vertices s, t
in G. We have to decide if s is connected to t in G. This problem is in P.
The algorithm that shows this uses depth-first search, a simple idea taught in
undergraduate courses. The algorithm explored the graph edge-by-edge starting
from s, marking visited edges. In subsequent edges it also tries to explore all
unvisited edges that are adjacent to previously-visited edges. After at most

(

n
2

)

steps, all edges are either visited or will never be visited.
See Exercise 1.14 for more examples of languages in P.

Example 1.15
We give some examples to emphasize a couple of points about the definition of
the class P. First, the class contains only decision problems. Thus we cannot
say, for example, that “Integer multiplication is in P.” Instead, we may say that
its decision version is in P, namely, the following language:

{

〈x, i〉 : The ith bit of xy is equal to 1
}

.

Second, the running time is a function of the number of bits in the input. Con-
sider the problem of solving a system of linear equations over the rational num-
bers. In other words, given a pair 〈A,b〉 where A is an m×n rational matrix and
b is an m dimensional rational vector, find out if there exists an n-dimensional
vector x such that Ax = b. The standard Gaussian Elimination algorithm
solves this problem in O(n3) arithmetic operations. But on a Turing machine,
each arithmetic operation has to be done in the gradeschool fashion, bit by la-
borious bit. Thus to prove that this decision problem is in P we have to verify
that Gaussian elimination (or some other algorithm for the problem) runs on
a Turing machine in time that is polynomial in the number of bits required to
represent a1, a2, . . . , an. That is, in the case of Gaussian elimination, we need
to verify that all the intermediate numbers involved in the computation can be
represented by polynomially many bits. Fortunately, this does turn out to be
the case (for a related result, see Exercise 2.3).

1.6.1 Why the model may not matter

We defined the classes of “computable” languages and P using Turing machines. Would
they be different if we had used a different computational model? Would these classes be
different for some an advanced alien civilization, which has discovered computation but with
a different computational model than the Turing machine?

We already encountered variations on the Turing machine model, and saw that the
weakest one can simulate the strongest one with quadratic slow down. Thus polynomial
time is the same on all these variants, as is the set of computable problems.

In the few decades after Church and Turing’s work many other models of computation
were discovered, some quite bizarre. It was easily shown that the Turing machine can
simulate all of them with at most polynomial slowdown. Thus the analogue of P on these
models is no larger than that for the Turing machine.

Most scientists believe the Church-Turing (CT) thesis, which states that every phys-
ically realizable computation device— whether it’s silicon-based, DNA-based, neuron-based
or using some alien technology— can be simulated by a Turing machine. This implies that
the set of computable problems would be no larger on any other computational model that
on the Turing machine. (The CT thesis is not a theorem, merely a belief about the nature
of the world as we currently understand it.)
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However, when it comes to efficiently computable problems, the situation is less clear.
The strong form of the CT thesis says that every physically realizable computation
model can be simulated by a TM with polynomial overhead (in other words, t steps on the
model can be simulated in tc steps on the TM, where c is a constant that depends upon the
model). If true, it implies that the class P defined by the aliens will be the same as ours.
However, this strong form is somewhat controversial, in particular because of models such
as quantum computers (see Chapter 10), which do not appear to be efficiently simulatable
on TMs. However, it is still unclear if quantum computers can be physically realized.

1.6.2 On the philosophical importance of P

The class P is felt to capture the notion of decision problems with “feasible” decision
procedures. Of course, one may argue whether DTIME(n100) really represents “feasible”
computation in the real world since n100 is prohibitively huge even for moderate values of
n. However, in practice, whenever we show that a problem is in P, we usually find an n3

or n5 time algorithm (with reasonable constants), and not an n100 time algorithm. (It has
also happened a few times that the first polynomial-time algorithm for a problem had high
complexity, say n20, but soon somebody simplified it to say an n5 time algorithm.)

Note that the class P is useful only in a certain context. Turing machines are a crude
model if one is designing algorithms that must run in a fraction of a second on the latest PC
(in which case one must carefully account for fine details about the hardware). However, if
the question is whether any subexponential algorithms exist for, say, the language INDSET

of Example 0.1, then even an n20 time algorithm would be a fantastic breakthrough.
P is also a natural class from the viewpoint of a programmer. Suppose a programmer

is asked to invent the definition of an “efficient” computation. Presumably, she would
agree that a computation that runs in linear or quadratic time is “efficient.” Next, since
programmers often write programs that call other programs (or subroutines), she might
find it natural to consider a program “efficient” if it performs only “efficient” computations
and calls subroutines that are “efficient”. The resulting notion of “efficient computations”
obtained turns out to be exactly the class P [Cob64].

1.6.3 Criticisms of P and some efforts to address them

Now we address some possible criticisms of the definition of P, and some related complexity
classes that address these.

Worst-case exact computation is too strict. The definition of P only considers algo-
rithms that compute the function on every possible input. Critics point out that not
all possible inputs arise in practice, and our algorithms only need to be efficient on
the types of inputs that do arise. This criticism is partly answered using average-case
complexity and by defining an analog of P in that context; see Chapter 18. We also
note that quantifying “real life” distributions is tricky.

Similarly, in context of computing functions such as the size of the largest independent
set in the graph, users are often willing to settle for approximate solutions. Chapters 11
and 22 contain a rigorous treatment of the complexity of approximation.

Other physically realizable models. We already mentioned the strong form of the Church
Turing thesis, which posits that the class P is not any larger for any physically real-
izable computational model. However, some subtleties need discusssion.

(a) Issue of precision: TM’s compute with discrete symbols, whereas physical quanti-
ties may be real numbers in R. Thus one can conceive of computational models based
upon physics phenomena that may be able to operate over real numbers. Because
of the precision issue, a TM can only approximately simulate such computations. It
seems though that TMs do not suffer from an inherent handicap (though a few re-
searchers disagree). After all, real-life devices suffer from noise, and physical quantities
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can only be measured up to finite precision. Thus physical processes could not involve
arbitrary precision, and the simulating TM can therefore simulate them using finite
precision.

Even so, in Chapter 16 we also consider a modification of the TM model that al-
lows computations in R as a basic operation. The resulting complexity classes have
fascinating connections with the standard classes.

(b) Use of randomness: The TM as defined is deterministic. If randomness exists in
the world, one can conceive of computational models that use a source of random bits
(i.e., ”coin tosses”). Chapter 7 considers Turing Machines that are allowed to also toss
coins, and studies the complexity class BPP, which is the analogue of P for those
machines. However, we will see in Chapters 19 and 20 the intriguing possibility that
randomized computation may be no more powerful than deterministic computation.

(c) Use of quantum mechanics: A more clever computational model might use some
of the counterintuitive features of quantum mechanics. In Chapter 10 we define the
complexity class BQP, that generalizes P in such a way. We will see problems in
BQP that are currently not known to be in P (though there is no known proof that
BQP 6= P). However, it is not yet clear whether the quantum model is truly physically
realizable. Also quantum computers currently seem only able to efficiently solve only
very few problems that are not known to be in P. Hence some insights gained from
studying P may still apply to quantum computers.

(d) Use of other exotic physics, such as string theory. So far it seems that many such
physical theories yield the same class BQP, though much remains to be understood.

Decision problems are too limited. Some computational problems are not easily ex-
pressed as decision problems. Indeed, we will introduce several classes in the book
to capture tasks such as computing non-Boolean functions, solving search problems,
approximating optimization problems, interaction, and more. Yet the framework of
decision problems turn out to be surprisingly expressive, and we will often use it in
this book.

1.6.4 Edmonds’ quote

We conclude this section with a quote from Edmonds [Edm65], who in his celebrated paper
on a polynomial-time algorithm for the maximum matching problem, explained the meaning
of such a result as follows:

“For practical purposes computational details are vital. However, my purpose is
only to show as attractively as I can that there is an efficient algorithm. Accord-
ing to the dictionary, “efficient” means “adequate in operation or performance.”
This is roughly the meaning I want in the sense that it is conceivable for maxi-
mum matching to have no efficient algorithm.

...There is an obvious finite algorithm, but that algorithm increases in difficulty
exponentially with the size of the graph. It is by no means obvious whether or
not there exists an algorithm whose difficulty increases only algebraically with
the size of the graph.

...When the measure of problem-size is reasonable and when the sizes assume
values arbitrarily large, an asymptotic estimate of ... the order of difficulty of an
algorithm is theoretically important. It cannot be rigged by making the algorithm
artificially difficult for smaller sizes.

...One can find many classes of problems, besides maximum matching and its
generalizations, which have algorithms of exponential order but seemingly none
better ... For practical purposes the difference between algebraic and exponential
order is often more crucial than the difference between finite and non-finite.
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...It would be unfortunate for any rigid criterion to inhibit the practical develop-
ment of algorithms which are either not known or known not to conform nicely
to the criterion. Many of the best algorithmic idea known today would suffer by
such theoretical pedantry. ... However, if only to motivate the search for good,
practical algorithms, it is important to realize that it is mathematically sensible
even to question their existence. For one thing the task can then be described in
terms of concrete conjectures.”

What have we learned?

• There are many equivalent ways to mathematically model computational processes;
we use the standard Turing machine formalization.

• Turing machines can be represented as strings. There is a universal TM that can
simulate (with small overhead) any TM given its representation.

• There exist functions, such as the Halting problem, that cannot be computed by any
TM regardless of its running time.

• The class P consists of all decision problems that are solvable by Turing machines in
polynomial time. We say that problems in P are efficiently solvable.

• Low-level choices (number of tapes, alphabet size, etc..) in the definition of Turing
machines are immaterial, as they will not change the definition of P.

Chapter notes and history

Although certain algorithms have been studied for thousands of years, and some forms of computing
devices were designed before the 20th century (most notably Charles Babbage’s difference and
analytical engines in the mid 1800’s), it seems fair to say that the foundations of modern computer
science were only laid in the 1930’s.

In 1931, Kurt Gödel shocked the mathematical world by showing that certain true statements
about the natural numbers are inherently unprovable, thereby shattering an ambitious agenda set
in 1900 by David Hilbert to base all of mathematics on solid axiomatic foundations. In 1936,
Alonzo Church defined a model of computation called λ-calculus (which years later inspired the
programming language LISP) and showed the existence of functions inherently uncomputable in this
model [Chu36]. A few months later, Alan Turing independently introduced his Turing machines
and showed functions inherently uncomputable by such machines [Tur36]. Turing also introduced
the idea of the universal Turing machine that can be loaded with arbitrary programs. The two
models turned out to be equivalent, but in the words of Church himself, Turing machines have “the
advantage of making the identification with effectiveness in the ordinary (not explicitly defined)
sense evident immediately”. The anthology [Dav65] contains many seminal papers on computability.
Part II of Sipser’s book [Sip96] is a good gentle introduction to this theory, while the books [Rog87,
HMU01, Koz97] go into a bit more depth. These books also cover automata theory, which is another
area of the theory of computation not discussed in the current book. This book’s website contains
some additional links for information on both these topics.

During World War II Turing designed mechanical code-breaking devices and played a key role
in the effort to crack the German “Enigma” cipher, an achievement that had a decisive effect
on the war’s progress (see the biographies [Hod83, Lea05]).6 After World War II, efforts to build
electronic universal computers were undertaken in both sides of the Atlantic. A key figure in these
efforts was John von Neumann, an extremely prolific scientist that was involved in everything from
the Manhattan project to founding game theory in economics. To this day essentially all digital
computers follow the “von-Neumann architecture” he pioneered while working on the design of the
EDVAC, one of the earliest digital computers [vN45].

6Unfortunately, Turing’s wartime achievements were kept confidential during his lifetime, and so did not
keep him from being forced by British courts to take hormones to “cure” his homosexuality, resulting in his
suicide in 1954.
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As computers became more prevalent, the issue of efficiency in computation began to take
center stage. Cobham [Cob64] defined the class P and suggested it may be a good formalization
for efficient computation. A similar suggestion was made by Edmonds ([Edm65], see quote above)
in the context of presenting a highly non-trivial polynomial-time algorithm for finding a maximum
matching in general graphs. Hartmanis and Stearns [HS65] defined the class DTIME(T (n)) for
every function T , and proved the slightly relaxed version of Theorem 1.9 we showed above (the
version we stated and prove below was given by Hennie and Stearns [HS66]). They also coined the
name “computational complexity” and proved an interesting “speed-up theorem”: if a function f
is computable by a TM M in time T (n) then for every constant c ≥ 1, f is computable by a TM M̃
(possibly with larger state size and alphabet size than M) in time T (n)/c. This speed-up theorem is
another justification for ignoring constant factors in the definition of DTIME(T (n)). Blum [Blu67]
has given an axiomatic formalization of complexity theory that does not explicitly mention Turing
machines.

We have omitted a discussion of some of the “bizarre conditions” that may occur when con-
sidering time bounds that are not time-constructible, especially “huge” time bounds (i.e., function
T (n) that are much larger than exponential in n). For example, there is a non-time constructible
function T : N → N such that every function computable in time T (n) can also be computed in the
much shorter time log T (n). However, we will not encounter non time-constructible time bounds
in this book.

The result that PAL requires Ω(n2) steps to compute on TM’s using a single read/write tape is
from [Maa84], see also Exercise 13.3. We have stated that algorithms that take less than n steps are
not very interesting as they do not even have time to read their input. This is true for the Turing
machine model. However, if one allows random access to the input combined with randomization
then many interesting computational tasks can actually be achieved in sublinear time. See [Fis04]
for a survey of this line of research.

Exercises

1.1 Let f be the addition function that maps the representation of a pair of numbers x, y to the
representation of the number x+y. Let g be the multiplication function that maps 〈x, y〉 to xx ·yy.
Prove that both f and g are computable by writing down a full description (including the states,
alphabet and transition function) of the corresponding Turing machines. H457

1.2 Complete the proof of Claim 1.5 by writing down explicitly the description of the machine M̃ .

1.3 Complete the proof of Claim 1.6.

1.4 Complete the proof of Claim 1.8.

1.5 Define a TM M to be oblivious if its head movements do not depend on the input but only on the
input length. That is, M is oblivious if for every input x ∈ {0, 1}∗ and i ∈ N, the location of each
of M ’s heads at the ith step of execution on input x is only a function of |x| and i. Show that
for every time-constructible T : N → N, if L ∈ DTIME(T (n)) then there is an oblivious TM that
decides L in time O(T (n)2). Furthermore, show that there is such a TM that uses only two tapes:
one input tape and one work/output tape. H457

1.6 Show that for every time-constructible T : N → N, if L ∈ DTIME(T (n)) then there is an oblivious
TM that decides L in time O(T (n) log T (n)). H457

1.7 Define a two dimensional Turing machine to be a TM where each of its tapes is an infinite grid
(and the machine can move not only Left and Right but also Up and Down). Show that for every
(time-constructible) T : N → N and every Boolean function f , if g can be computed in time T (n)
using a two-dimensional TM then f ∈ DTIME(T (n)2).

1.8 Let LOOKUP denote the following function: on input a pair 〈x, i〉 (where x is a binary string and

i is a natural number), LOOKUP outputs the ith bit of x or 0 if |x| < i. Prove that LOOKUP ∈ P.

1.9 Define a RAM Turing machine to be a Turing machine that has random access memory. We
formalize this as follows: the machine has an infinite array A that is initialized to all blanks. It
accesses this array as follows. One of the machine’s work tapes is designated as the address tape.
Also the machine has two special alphabet symbols denoted by R and W and an additional state
we denote by qaccess. Whenever the machine enters qaccess, if its address tape contains xiyR (where
xiy denotes the binary representation of i) then the value A[i] is written in the cell next to the R
symbol. If its tape contains xiyWσ (where σ is some symbol in the machine’s alphabet) then A[i] is
set to the value σ.

Show that if a Boolean function f is computable within time T (n) (for some time-constructible T )
by a RAM TM, then it is in DTIME(T (n)2).
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1.10 Consider the following simple programming language. It has a single infinite array A of elements in
{0, 1,�} (initialized to �) and a single integer variable i. A program in this language contains a
sequence of lines of the following form:

label : If A[i] equals σ then cmds

Where σ ∈ {0, 1,�} and cmds is a list of one or more of the following commands: (1) Set A[i] to
τ where τ ∈ {0, 1,�}, (2) Goto label, (3) Increment i by one, (4) Decrement i by one, and
(5) Output b and halt. where b ∈ {0, 1}. A program is executed on an input x ∈ {0, 1}n by placing
the ith bit of x in A[i] and then running the program following the obvious semantics.

Prove that for every functions f : {0, 1}∗ → {0, 1} and (time constructible) T : N → N, if f is
computable in time T (n) by a program in this language, then f ∈ DTIME(T (n)).

1.11 Give a full specification of a representation scheme of Turing machines as binary string strings.
That is, show a procedure that transforms any TM M (e.g., the TM computing the function PAL
described in Example 1.1) into a binary string xMy. It should be possible to recover M from xMy,

or at least recover a functionally equivalent TM (i.e., a TM M̃ computing the same function as M
with the same running time).

1.12 A partial function from {0, 1}∗ to {0, 1}∗ is a function that is not necessarily defined on all its
inputs. We say that a TM M computes a partial function f if for every x on which f is defined,
M(x) = f(x) and for every x on which f is not defined M gets into an infinite loop when executed
on input x. If S is a set of partial functions, we define fS to be the Boolean function that on input
α outputs 1 iff Mα computes a partial function in S . Rice’s Theorem says that for every non-trivial
S (a set that is not the empty set nor the set of all partial functions), the fS is not computable.

(a) Show that Rice’s Theorem yields an alternative proof for Theorem 1.11 by showing that the
function HALT is not computable.

(b) Prove Rice’s Theorem. H457

1.13 It is known that there is some constant C such that for every i > C there is a prime larger than i3

but smaller than (i+ 1)3 [Hoh30, Ing37]. For every i ∈ N, let pi denote the smallest prime between
(i + C)3 and (i + C + 1)3. We say that a number n encodes a string x ∈ {0, 1}∗, if for every
i ∈ {1..|x|}, pi divides n if and only if xi = 1.7

(a) Show a logical expression BIT(n, i) that is true if and only if pi divides n.

(b) Show a logical expression COMPARE(n,m, i, j) that is true if and only if the strings encoded
by the numbers n and m agree between the ith and jth position.

(c) A configuration of a TM M is the contents of all its input tapes, its head location and the
state of its register. That is, it contains all the information about M at a particular moment
in its execution. Show that such a configuration can be represented by a binary string. (You
may assume that M is a single-tape TM as in Claim 1.6.)

(d) For a TM M and input x ∈ {0, 1}∗, show an expression INITM,x(n) that is true if and only if
n encodes the initial configuration of M on input x.

(e) For a TM M show an expression HALTM (n) that is true if and only if n encodes a configuration
of M after which M will halt its execution.

(f) For a TM M , show an expression NEXT(n,m) that is true if and only if n,m encode con-
figurations x, y of M such that y is the configuration that is obtained from x by a single
computational step of M .

(g) For a TM M , show an expression VALIDM (m, t) that is true if and only m a tuple of t config-
urations x1, . . . , xt such that xi+1 is the configuration obtained from xi in one computational
step of M .

(h) For a TM M and input x ∈ {0, 1}∗, show an expression HALTM,x(t) that is true if and only
if M halts on input x within t steps.

(i) Let TRUE-EXP denote the function that on input (a string representation of) a number-
theoretic statement ϕ (composed in the formalism above), outputs 1 if ϕ is true, and 0 if ϕ is
false. Prove that TRUE-EXP is uncomputable.

1.14 Prove that the following languages/decision problems on graphs are in P: (You may pick either
the adjacency matrix or adjacency list representation for graphs; it will not make a difference. Can
you see why?)

(a) CONNECTED — the set of all connected graphs. That is, G ∈ CONNECTED if every pair of
vertices u, v in G are connected by a path.

7Technically speaking under this definition a number can encode more than one string. This will not
be an issue, though we can avoid it by first encoding the string x as a 2|x| bit string y using the map
0 7→ 00, 1 7→ 11 and then adding the sequence 01 at the end of y.
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(b) TRIANGLEFREE — the set of all graphs that do not contain a triangle (i.e., a triplet u, v, w
of connected distinct vertices.

(c) BIPARTITE — the set of all bipartite graphs. That is, G ∈ BIPARTITE if the vertices of G
can be partitioned to two sets A,B such that all edges in G are from a vertex in A to a vertex
in B (there is no edge between two members of A or two members of B).

(d) TREE — the set of all trees. A graph is a tree if it is connected and contains no cycles.
Equivalently, a graph G is a tree if every two distinct vertices u, v in G are connected by
exactly one simple path (a path is simple if it has no repeated vertices).

1.15 Recall that normally we assume that numbers are represented as string using the binary basis. That
is, a number n is represented by the sequence x0, x1, . . . , xlog n such that n =

∑n
i=0 xi2

i. However,
we could have used other encoding schemes. If n ∈ N and b ≥ 2, then the representation of n in base
b, denoted by xnyb is obtained as follows: first represent n as a sequence of digits in {0, . . . , b− 1},
and then replace each digit d ∈ {0..d − 1} by its binary representation. The unary representation
of n, denoted by xny !unary is the string 1n (i.e., a sequence of n ones).

(a) Show that choosing a different base of representation will make no difference to the class P.
That is, show that for every subset S of the natural numbers, if we define Lb

S = { xny b : n ∈ S}
then for every b ≥ 2, Lb

S ∈ P iff L2
S ∈ P.

(b) Show that choosing the unary representation may make a difference by showing that the
following language is in P:

UNARYFACTORING = {〈 xny unary, xℓy unary, xky unary〉 : there is a prime j ∈ (ℓ, k) dividing n}

It is not known to be in P if we choose the binary representation (see Chapters 9 and 10).
In Chapter 3 we will see that there is a problem that is proven to be in P when choosing the
unary representation but not in P when using the binary representation.
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1.A Proof of Theorem 1.9: Universal Simulation in O(T log T )-

time

We now show how to prove Theorem 1.9 as stated. That is, we show a universal TM U
such that given an input x and a description of a TM M that halts on x within T steps, U
outputs M(x) within O(T logT ) time (where the constants hidden in the O notation may
depend on the parameters of the TM M being simulated).

The general structure of U will be as in Section 1.4.1. U will use its input and output
tape in the same way M does, and will also have extra work tapes to store M ’s transition
table and current state, and to encode the contents of M ’s work tapes. The main obstacle
we need to overcome is that we cannot use Claim 1.6 to reduce the number of M ’s work
tapes to one, since Claim 1.6 introduces too much overhead in the simulation. Therefore,
we will show a different way to encode all of M ’s work tapes in a single tape of U , which we
call the main work tape of U .

Let k be the number of tapes that M uses (apart from its input and output tapes) and
Γ its alphabet. Following the proof of Claim 1.5, we may assume that U uses the alphabet
Γk (as this can be simulated with a overhead depending only on k, |Γ|). Thus we can encode
in each cell of U ’s main work tape k symbols of Γ, each corresponding to a symbol from one
of M ’s tapes. This means that we can think of U ’s main work tape not as a single tape but
rather as k parallel tapes ; that is, we can think of U as having k tapes with the property
that in each step all their read/write heads go in unison either one location to the left, one
location to the right or they all stay in place. While we can easily encode the contents
of M ’s k work tapes in U ’s k parallel tapes, we still have to deal with the fact that M ’s
k read/write heads can each move independently to the left or right, whereas U ’s parallel
tapes are forced to move together. Paraphrasing the famous saying, our strategy to handle
this is: “If the head cannot go to the tape locations then the locations will go to the head”.

That is, since we can not move U ’s read/write head in different directions at once, we
simply move the parallel tapes “under” the head. To simulate a single step of M we shift
all the non-blank symbols in each of these parallel tapes until the head’s position in these
parallel tapes corresponds to the heads’ positions of M ’s k tapes. For example, if k = 3
and in some particular step M ’s transition function specifies the movements L,R,R then
U will shift all the non-blank entries of its first parallel tape one cell to the right, and shift
the non-blank entries of its second and third tapes one cell to the left (see Figure 1.8). U
can easily perform such shifts using an additional “scratch” work tape.

The approach above is still not good enough to get O(T logT )-time simulation. The
reason is that there may be as many as T non-blank symbols in each parallel tape, and so
each shift operation may cost U as much as T operations per each step of M , resulting in
Θ(T 2)-time simulation. We will deal with this problem by encoding the information on the
tapes in a way that allows us to amortize the work of performing a shift. We will ensure that
we do not need to move the entire non-blank symbols of the tape in each shift operation.
Specifically, we will encode the information in a way that allows half of the shift operations
to be performed using 2c steps, for some constant c, a quarter of them using 4c steps, and
more generally 2−i fraction of the operations will take 2ic steps, leading to simulation in
roughly cT logT time (see below). (This kind of analysis is called amortized analysis and is
widely used in algorithm design.)

Encoding M ’s tapes on U ’s tape. To allow more efficient shifts we encode the information
using “buffer zones”: rather than having each of U ’s parallel tapes correspond exactly to a
tape of M , we add a special kind of blank symbol �⋄ to the alphabet of U ’s parallel tapes
with the semantics that this symbol is ignored in the simulation. For example, if the non-
blank contents of M ’s tape are 010 then this can be encoded in the corresponding parallel
tape of U not just by 010 but also by 0�⋄ 01 or 0�⋄�⋄ 1�⋄ 0 and so on..

For convenience, we think of U ’s parallel tapes as infinite in both the left and right
directions (this can be easily simulated with minimal overhead: see Claim 1.8). Thus, we
index their locations by 0,±1,±2, . . .. Normally we keep U ’s head on location 0 of these
parallel tapes. We will only move it temporarily to perform a shift when, following our



1.A Proof of Theorem 1.9: Universal Simulation in O(T log T )-time 35

c   o  m  p    l  e   t    e   l    y

r   e   p    l  a   c    e  d   b   y

m a  c   h     i  n  e   s

c   o  m  p    l  e   t    e   l    y

r   e   p    l  a   c    e  d  b   y

m a  c   h     i  n  e   s

Figure 1.8 Packing k tapes of M into one tape of U . We consider U ’s single work tape to be
composed of k parallel tapes, whose heads move in unison, and hence we shift the contents
of these tapes to simulate independent head movement.

general approach, we simulate a left head movement by shifting the tape to the right and
vice versa. At the end of the shift we return the head to location 0.

We split each of U ’s parallel tapes into zones that we denote by R0, L0, R1, L1, . . . (we’ll
only need to go up to Rlog T , LlogT ). The cell at location 0 is not at any zone. Zone R0

contains the two cells immediately to the right of location C (i.e., locations +1 and +2),
while Zone R1 contains the four cells +3,+4,+5,+6. Generally, for every i ≥ 1, Zone Ri
contains the 2 ·2i cells that are to the right of Zone Ri−1 (i.e., locations [2i+1−1..2i+2−2]).
Similarly, Zone L0 contains the two cells indexed by −1 and −2, and generally Zone Li
contains the cells [−2i+2 +2..−2i+1 +1]. We shall always maintain the following invariants:

• Each of the zones is either empty, full, or half-full with non-�⋄ symbols. That is, the
number of symbols in zone Ri that are not �⋄ is either 0,2i, or 2 ·2i and the same holds
for Li. (We treat the ordinary � symbol the same as any other symbol in Γ and in
particular a zone full of �’s is considered full.)

We assume that initially all the zones are half-full. We can ensure this by filling half
of each zone with �⋄ symbols in the first time we encounter it.

• The total number of non-�⋄ symbols in Ri ∪ Li is 2 · 2i. That is, either Ri is empty
and Li is full, or Ri is full and Li is empty, or they are both half-full.

• Location 0 always contains a non-�⋄ symbol.

Performing a shift. The advantage in setting up these zones is that now when performing
the shifts, we do not always have to move the entire tape, but we can restrict ourselves to
only using some of the zones. We illustrate this by showing how U performs a left shift on
the first of its parallel tapes (see also Figure 1.9):

1. U finds the smallest i0 such that Ri0 is not empty. Note that this is also the smallest
i0 such that Li0 is not full. We call this number i0 the index of this particular shift.



36 1 The computational model —and why it doesn’t matter

     -  c    o  m  p  l    e   t   e    -   -   -   -    -   -    -    l    y 

                       r  e    p   -   -    l   a  c    e   -   -   -    -

      -    -       m  a  c   h    -   -   -   -    i     n   e   s

R0 R1 R2L1L2
L0

                              ..... -3 -2  -1  0  +1 +2 +3 .....

Before:

     p    l   e   t   -   -   e  -    l     y   -            -   -    -    -   -

                       r  -    e    p   -  l    a  c    e   -   -   -    -

          m  a  c   -   h   i      n  -   -    -   -    -   e   s

R0 R1 R2L1L2
L0

After:

Li  Li-1    Li-2    ...  L1  L0   0  R0  R1 ...  Ri-2    Ri-1   RiZone:

no of�
non-empty�
locations:

2i 2*2i-1 2*2i-2        4  2    1   0    0        0      0      2i

Li  Li-1    Li-2    ...  L1  L0   0  R0  R1 ...  Ri-2    Ri-1   RiZone:

no of�
non-empty�
locations:

2*2i   2i-1     2i-2        2   1    1   1    2        2i-2    2i-1   0

Figure 1.9 Performing a shift of the parallel tapes. The left shift of the first tape involves
zones R0, L0, R1, L1, R2, L2, the right shift of the second tape involves only R0, L0, while
the left shift of the third tape involves zones R0, L0, R1, L1. We maintain the invariant that
each zone is either empty, half-full or full and that the total number of non-empty cells in
Ri ∪Li is 2 · 2i. If before the left shift zones L0, .., Li−1 were full and Li was half-full (and
so R0, ..,Ri−1 were full and Ri half-full), then after the shift zones R0, L0, ..,Ri−1, Li−1

will be half-full, Li will be full and Ri will be empty.

2. U puts the leftmost non-�⋄ symbol of Ri0 in position 0 and shifts the remaining leftmost
2i0 − 1 non-�⋄ symbols from Ri0 into the zones R0, . . . , Ri0−1 filling up exactly half
the symbols of each zone. Note that there is exactly room to perform this since all
the zones R0, . . . , Ri0−1 were empty and indeed 2i0 − 1 =

∑i0−1
j=0 2j .

3. U performs the symmetric operation to the left of position 0. That is, for j starting
fromi0−1 down to 0, U iteratively moves the 2 ·2j symbols from Lj to fill half the cells
of Lj+1. Finally, U moves the symbol originally in position 0 (modified appropriately
according to M ’s transition function) to L0.

4. At the end of the shift, all of the zones R0, L0, . . . , Ri0−1, Li0−1 are half-full, Ri0 has 2i0

fewer non-�⋄ symbols, and Li has 2i additional non-�⋄ symbols. Thus, our invariants
are maintained.

5. The total cost of performing the shift is proportional to the total size of all the zones
involved R0, L0, . . . , Ri0 , Li0 . That is, O(

∑i0
j=0 2 · 2j) = O(2i0 ) operations.

After performing a shift with index i the zones L0, R0, . . . , Li−1, Ri−1 are half-full, which
means that it will take at least 2i−1 left shifts before the zones L0, . . . , Li−1 become empty
or at least 2i−1 right shifts before the zones R0, . . . , Ri−1 become empty. In any case, once
we perform a shift with index i, the next 2i − 1 shifts of that particular parallel tape will
all have index less than i. This means that for every one of the parallel tapes, at most a
1/2i fraction of the total number of shifts have index i. Since we perform at most T shifts,
and the highest possible index is logT , the total work spent in shifting U ’s k parallel tapes
in the course of simulating T steps of M is

O(k ·
log T
∑

i=1

T

2i−1
2i) = O(T logT ) . �



Chapter 2

NP and NP completeness

“(if φ(n) ≈ Kn2)a then this would have consequences of the greatest magni-
tude. That is to say, it would clearly indicate that, despite the unsolvability of
the (Hilbert) Entscheidungsproblem, the mental effort of the mathematician in
the case of the yes-or-no questions would be completely replaced by machines....
(this) seems to me, however, within the realm of possibility.”
Kurt Gödel in a letter to John von Neumann, 1956

aIn modern terminology, if SAT has a quadratic time algorithm

“I conjecture that there is no good algorithm for the traveling salesman prob-
lem. My reasons are the same as for any mathematical conjecture: (1) It is a
legitimate mathematical possibility, and (2) I do not know.”
Jack Edmonds, 1966

“In this paper we give theorems that suggest, but do not imply, that these
problems, as well as many others, will remain intractable perpetually.”
Richard Karp, 1972

If you have ever attempted a crossword puzzle, you know that it is much harder to solve
it from scratch than to verify a solution provided by someone else. Likewise, solving a math
homework problem by yourself is usually much harder than reading and understanding a
solution provided by your instructor. The usual explanation for this difference of effort is
that finding a solution to a crossword puzzle, or a math problem, requires creative effort.
Verifying a solution is much easier since somebody else has already done the creative part.

This chapter studies the computational analog of the above phenomenon. In Section 2.1
we define a complexity class NP that aims to capture the set of problems whose solutions
can be efficiently verified. By contrast, the class P of the previous chapter contains decision
problems that can be efficiently solved. The famous P versus NP question asks whether or
not the two classes are the same.

In Section 2.2 we introduce the important phenomenon of NP-complete problems, which
are in a precise sense the “hardest problems” in NP. The number of real-life problems that
are known to be NP-complete now runs into the thousands. Each of them has a polynomial
algorithm if and only if P = NP. The study of NP-completeness involves reductions, a
basic notion used to relate the computational complexity of two different problems. This
notion and its various siblings will often reappear in later chapters (e.g., in chapters 7, 17
and 18). The framework of ideas introduced in this chapter motivates much of the rest of
this book.

The implications of P = NP are mind-boggling. As already mentioned, NP problems
seem to capture some aspects of “creativity” in problem solving, and such creativity could
become accessible to computers if P = NP. For instance, in this case computers would be
able to quickly find proofs for every true mathematical statement for which a proof exists.
We survey this “P = NP Utopia” in Section 2.7.3. Resolving the P versus NP question is
truly of great practical, scientific and philosophical interest.
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2.1 The class NP

Now we formalize the intuitive notion of efficiently verifiable solutions by defining a com-
plexity class NP. In Chapter 1 we said that problems are “efficiently solvable” if they can
be solved by a Turing machine in polynomial time. Thus it is natural to say that solutions
to the problem are “efficiently verifiable” if they can be verified in polynomial time. Since a
Turing machine can only read one bit in a step this means also that the presented solution
has to be not too long —at most polynomial in the length of the input.

Definition 2.1 (The class NP)
A language L ⊆ {0, 1}∗ is in NP if there exists a polynomial p : N → N and a polynomial-
time TM M (called the verifier for L) such that for every x ∈ {0, 1}∗,

x ∈ L⇔ ∃u ∈ {0, 1}p(|x|) s.t. M(x, u) = 1 .

If x ∈ L and u ∈ {0, 1}p(|x|) satisfy M(x, u) = 1 then we call u a certificate for x (with
respect to the language L and machine M).

Some texts use the term witness instead of certificate. Clearly, P ⊆ NP since the
polynomial p(|x|) is allowed to be 0 (in other words, u can be an empty string).

Example 2.2 (INDSET ∈ NP)
To get a sense for the definition, we show that the INDSET language defined in
Example 0.1 (about the “largest party you can throw”) is in NP. Recall that
this language contains all pairs 〈G, k〉 such that the graph G has a subgraph of
at least k vertices with no edges between them (such a subgraph is called an
independent set). Consider the following polynomial-time algorithm M : given
a pair 〈G, k〉 and a string u ∈ {0, 1}∗, output 1 if and only if u encodes a list
of k vertices of G such that there is no edge between any two members of the
list. Clearly, 〈G, k〉 is in INDSET if and only if there exists a string u such that
M(〈G, k〉, u) = 1 and hence INDSET is in NP. The list u of k vertices forming
the independent set in G serves as the certificate that 〈G, k〉 is in INDSET. Note
that if n is the number of vertices in G then a list of k vertices can be encoded
using O(k logn) bits where n is the number of vertices in G. Thus u is a string
of at most O(n log n) bits, which is polynomial in the size of the representation
of G.

Example 2.3
Here are a few additional examples for decision problems in NP (see also Exer-
cise 2.2):

Traveling salesperson: Given a set of n nodes,
(

n
2

)

numbers di,j denoting the
distances between all pairs of nodes, and a number k, decide if there is a
closed circuit (i.e., a “salesperson tour”) that visits every node exactly once
and has total length at most k. The certificate is the sequence of nodes in
such a tour.

Subset sum: Given a list of n numbers A1, . . . , An and a number T , decide if
there is a subset of the numbers that sums up to T . The certificate is the
list of members in such a subset.

Linear programming: Given a list of m linear inequalities with rational coef-
ficients over n variables u1, . . . , un (a linear inequality has the form a1u1 +
a2u2 + . . .+ anun ≤ b for some coefficients a1, . . . , an, b), decide if there is
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an assignment of rational numbers to the variables u1, . . . , un that satisfies
all the inequalities. The certificate is the assignment (see Exercise 2.4).

0/1 Integer programming: Given a list of m linear inequalities with rational
coefficients over n variables u1, . . . , um, find out if there is an assignment of
zeroes and ones to u1, . . . , un satisfying all the inequalities. The certificate
is the assignment.

Graph isomorphism: Given two n × n adjacency matrices M1,M2, decide
if M1 and M2 define the same graph, up to renaming of vertices. The
certificate is the permutation π : [n] → [n] such that M2 is equal to M1

after reordering M1’s indices according to π.

Composite numbers: Given a number N decide if N is a composite (i.e., non-
prime) number. The certificate is the factorization of N .

Factoring: Given three numbers N,L,U decide if N has a prime factor p in
the interval [L,U ]. The certificate is the factor p.1

Connectivity: Given a graph G and two vertices s, t in G, decide if s is con-
nected to t in G. The certificate is a path from s to t.

In the above list, the Connectivity, Composite Numbers and Linear pro-
gramming problems are known to be in P. For connectivity this follows from
the simple and well known breadth-first search algorithm (see any algorithms
text such as [KT06, CLRS01]). The composite numbers problem was only recently
shown to be in P (see the beautiful algorithm of [AKS04]). For the linear pro-
gramming problem this is again highly non-trivial, and follows from the Ellipsoid
algorithm of Khachiyan [Kha79].
All the other problems in the list are not known to be in P, though we do
not have any proof that they are not in P. The Independent Set (INDSET),
Traveling Salesperson, Subset Sum, and Integer Programming problems
are known to be NP-complete, which, as we will see in Section 2.2, implies that
they are not in P unless P = NP. The Graph Isomorphism and Factoring
problems are not known to be either in P nor NP-complete.

2.1.1 Relation between NP and P

We have the following trivial relationships between NP and the classes P and DTIME(T (n))
of Chapter 1 (see Definitions 1.12 and 1.13):

Claim 2.4 Let EXP =
⋃

c>1. Then P ⊆NP ⊆ EXP. ♦

Proof: (P ⊆ NP): Suppose L ∈ P is decided in polynomial-time by a TM N . Then
L ∈ NP since we can take N as the machine M in Definition 2.1 and make p(x) the zero
polynomial (in other words, u is an empty string).

(NP ⊆ EXP): If L ∈ NP and M,p() are as in Definition 2.1 then we can decide L
in time 2O(p(n)) by enumerating all possible strings u and using M to check whether u is
a valid certificate for the input x. The machine accepts iff such a u is ever found. Since
p(n) = O(nc) for some c > 1 the number of choices for u is 2O(nc), and the running time of
the machine is similar. �

Currently, we do not know of any stronger relation between NP and deterministic time
classes than the trivial ones stated in Claim 2.4. The question whether or not P = NP is
considered the central open question of complexity theory, and is also an important question
in mathematics and science at large (see Section 2.7). Most researchers believe that P 6= NP
since years of effort have failed to yield efficient algorithms for NP-complete problems.

1There is a polynomial-time algorithm to check primality [AKS04]. We can also show that Factoring is
in NP by using the primality certificate of Exercise 2.5.



40 2 NP and NP completeness

2.1.2 Non-deterministic Turing machines.

The class NP can also be defined using a variant of Turing machines called non-deterministic
Turing machines (abbreviated NDTM). In fact, this was the original definition and the
reason for the name NP, which stands for non-deterministic polynomial time. The only
difference between an NDTM and a standard TM (as Defined in Section 1.2) is that an
NDTM has two transition functions δ0 and δ1, and a special state denoted by qaccept. When
an NDTM M computes a function, we envision that at each computational step M makes
an arbitrary choice as to which of its two transition functions to apply. For every input
x, we say that M(x) = 1 if there exists some sequence of these choices (which we call the
non-deterministic choices of M) that would make M reach qaccept on input x. Otherwise— if
every sequence of choices makesM halt without reaching qaccept— then we say that M(x) = 0.
We say that M runs in T (n) time if for every input x ∈ {0, 1}∗ and every sequence of non-
deterministic choices, M reaches either the halting state or qaccept within T (|x|) steps.

Definition 2.5 For every function T : N→ N and L ⊆ {0, 1}∗, we say that L ∈ NTIME(T (n))
if there is a constant c > 0 and a c · T (n)-time NDTM M such that for every x ∈ {0, 1}∗,
x ∈ L⇔M(x) = 1 ♦

The next theorem gives an alternative characterization of NP as the set of languages
computed by polynomial-time non-deterministic Turing machines:

Theorem 2.6 NP = ∪c∈NNTIME(nc) ♦
Proof: The main idea is that the sequence of nondeterministic choices made by an accepting
computation of an NDTM can be viewed as a certificate that the input is in the language,
and vice versa.

Suppose p : N → N is a polynomial and L is decided by a NDTM N that runs in time
p(n). For every x ∈ L, there is a sequence of nondeterministic choices that makes N reach
qaccept on input x. We can use this sequence as a certificate for x. This certificate has length
p(|x|) and can be verified in polynomial time by a deterministic machine, which simulates
the action of N using these nondeterministic choices and verifies that it would have entered
qaccept after using these nondeterministic choices. Thus L ∈ NP according to Definition 2.1.

Conversely, if L ∈ NP according to Definition 2.1, then we describe a polynomial-time
NDTM N that decides L. On input x, it uses the ability to make non-deterministic choices
to write down a string u of length p(|x|). (Concretely, this can be done by having transition
δ0 correspond to writing a 0 on the tape and transition δ1 correspond to writing a 1.) Then
it runs the deterministic verifier M of Definition 2.1 to verify that u is a valid certificate for
x, and if so, enters qaccept. Clearly, N enters qaccept on x if and only if a valid certificate exists
for x. Since p(n) = O(nc) for some c > 1, we conclude that L ∈ NTIME(nc). �

As is the case with deterministic TM’s, NDTM’s can be easily represented as strings
and there exists a universal non-deterministic Turing machine (see Exercise 2.6). In fact,
using non-determinism we can even make the simulation by a universal TM slightly more
efficient.

One should note that, unlike standard TMs, NDTMs are not intended to model any
physically realizable computation device.

2.2 Reducibility and NP-completeness

It turns out that the independent set problem is at least as hard as any other language
in NP: if it has a polynomial-time algorithm then so do all the problems in NP. This
fascinating property is called NP-hardness. Since most scientists conjecture that NP 6= P,
the fact that a language is NP-hard can be viewed as evidence that it cannot be decided in
polynomial time.

How can we prove that a language C is at least as hard as some other language B? The
crucial tool we use is the notion of a reduction (see Figure 2.1):
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Definition 2.7 (Reductions, NP-hardness and NP-completeness)
A language L ⊆ {0, 1}∗ is polynomial-time Karp reducible to a language L′ ⊆ {0, 1}∗ (some-
times shortened to just “polynomial-time reducible”), denoted by L ≤p L′, if there is a
polynomial-time computable function f : {0, 1}∗ → {0, 1}∗ such that for every x ∈ {0, 1}∗,
x ∈ L if and only if f(x) ∈ L′.

We say that L′ is NP-hard if L ≤p L′ for every L ∈ NP. We say that L′ is NP-complete
if L′ is NP-hard and L′ ∈ NP.

Some texts use the names “many-to-one reducibility” or “polynomial-time mapping re-
ducibility” instead of “polynomial-time Karp reducibility”.

L

L
f(L)

Algorithm for L

f
Input: x f(x)

output:�
1 iff

f(L)

f

Figure 2.1 A Karp reduction from L to L′ is a polynomial-time function f that maps
strings in L to strings in L′ and strings in L = {0, 1}∗ \ L to strings in L′. It can be used
to transform a polynomial-time TM M ′ that decides L′ into a polynomial-time TM M for
L by setting M(x) = M ′(f(x)).

The important (and easy to verify) property of polynomial-time reducibility is that if
L ≤p L′ and L′ ∈ P then L ∈ P— see Figure 2.1. This is why we say in this case that L′

is at least as hard as L, as far as polynomial-time algorithms are concerned. Note that ≤p
is a relation among languages, and part 1 of Theorem 2.8 below shows that this relation is
transitive. Later we will define other notions of reduction, and many will satisfy transitivity.
Part 2 of the Theorem suggests the reason for the term NP-hard —namely, an NP-hard
languages is at least as hard as any other NP language. Part 3 similarly suggests the reason
for the term NP-complete: to study the P versus NP question it suffices to study whether
any NP-complete problem can be decided in polynomial time.

Theorem 2.8 1. (Transitivity) If L ≤p L′ and L′ ≤p L′′, then L ≤p L′′.

2. If language L is NP-hard and L ∈ P then P = NP.

3. If language L is NP-complete then L ∈ P if and only if P = NP. ♦

Proof: The main observation underlying all three parts is that if p, q are two functions
that grow at most as nc and nd respectively then composition p(q(n)) grows as at most ncd,
which is also polynomial. We now prove part 1 and leave the others as simple exercises.

If f1 is a polynomial-time reduction from L to L′ and f2 is a reduction from L′ to L′′ then
the mapping x 7→ f2(f1(x)) is a polynomial-time reduction from L to L′′ since f2(f1(x))
takes polynomial time to compute given x. Finally, f2(f1(x)) ∈ L′′ iff f1(x) ∈ L′, which
holds iff x ∈ L. �

Do NP-complete languages exist? In other words, does NP contain a single language
that is as hard as any other language in the class? There is a simple example of such a
language:
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Theorem 2.9 The following language is NP-complete:

TMSAT = {〈α, x, 1n, 1t〉 : ∃u ∈ {0, 1}n s.t. Mα outputs 1 on input 〈x, u〉 within t steps}
where Mα denotes the (deterministic) TM represented by the string α.2 ♦
Proof: Once you internalize the definition of NP, the proof of Theorem 2.9 is straightfor-
ward. Let L be an NP-language. By Definition 2.1 there is a polynomial p and a verifier

TM M such that x ∈ L iff there is a string u ∈ {0, 1}p(|x|) satisfying M(x, u) = 1 and M
runs in time q(n) for some polynomial q. To reduce L to TMSAT we simply map every string
x ∈ {0, 1}∗ to the tuple 〈 xMy, x, 1

p(|x|), 1q(m)〉, where m = |x|+ p(|x|) and xMy denotes the
representation of M as a string. This mapping can clearly be performed in polynomial time
and by the definition of TMSAT and the choice of M ,

〈 xMy, x, 1
p(|x|), 1q(m)〉 ∈ TMSAT⇔

∃u∈{0,1}p(|x|) s.t. M(x, u) outputs 1 within q(m) steps⇔ x ∈ L . �

TMSAT is not a very useful NP-complete problem since its definition is intimately tied
to the notion of the Turing machine. Hence the fact that TMSAT is NP-complete does not
provide much new insight. In Section 2.3 we show examples of more “natural” NP-complete
problems.

2.3 The Cook-Levin Theorem: Computation is Local

Around 1971, Cook and Levin independently discovered the notion of NP-completeness
and gave examples of combinatorial NP-complete problems whose definition seems to have
nothing to do with Turing machines. Soon after, Karp showed that NP-completeness occurs
widely and many problems of practical interest are NP-complete. To date, thousands of
computational problems in a variety of disciplines have been shown to be NP-complete.

2.3.1 Boolean formulae, CNF and SAT.

Some of the simplest examples of NP-complete problems come from propositional logic.
A Boolean formula over the variables u1, . . . , un consists of the variables and the logical
operators AND (∧), OR (∨), and NOT (¬). For example, (u1 ∧ u2) ∨ (u2 ∧ u3) ∨ (u3 ∧ u1)
is a Boolean formula. If ϕ is a Boolean formula over variables u1, . . . , un, and z ∈ {0, 1}n,
then ϕ(z) denotes the value of ϕ when the variables of ϕ are assigned the values z (where
we identify 1 with True and 0 with False). A formula ϕ is satisfiable if there there exists
some assignment z such that ϕ(z) is True. Otherwise, we say that ϕ is unsatisfiable.

The above formula (u1 ∧ u2) ∨ (u2 ∧ u3) ∨ (u3 ∧ u1) is satisfiable, since the assignment
u1 = 1, u2 = 0, u3 = 1 satisfies it. In general, an assignement u1 = z1, u2 = z2, u3 = z3
satisfies the formula iff at least two of the zi’s are 1.

A Boolean formula over variables u1, . . . , un is in CNF form (shorthand for Conjunctive
Normal Form) if it is an AND of OR’s of variables or their negations. For example, the
following is a 3CNF formula: (here and elsewhere, ūi denotes ¬ui)

(u1 ∨ ū2 ∨ u3) ∧ (u2 ∨ ū3 ∨ u4) ∧ (ū1 ∨ u3 ∨ ū4) .

More generally, a CNF formula has the form

∧

i





∨

j

vij



 ,

2Recall that 1k denotes the string consisting of k bits, each of them 1. Often in complexity theory we
include a the string 1k in the input to allow a polynomial TM to run in time polynomial in k.
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where each vij is either a variable uk or its negation ūk. The terms vij are called the literals
of the formula and the terms (∨jvij ) are called its clauses. A kCNF is a CNF formula in
which all clauses contain at most k literals. We denote by SAT the language of all satisfiable
CNF formulae and by 3SAT the language of all satisfiable 3CNF formulae.3

2.3.2 The Cook-Levin Theorem

The following theorem provides us with our first natural NP-complete problems:

Theorem 2.10 (Cook-Levin Theorem [Coo71, Lev73])
1. SAT is NP-complete.

2. 3SAT is NP-complete.

We now prove Theorem 2.10 (an alternative proof, using the notion of Boolean circuits,
is described in Section 6.1). Both SAT and 3SAT are clearly in NP, since a satisfying
assignment can serve as the certificate that a formula is satisfiable. Thus we only need to
prove that they are NP-hard. We do so by (a) proving that SAT is NP-hard and then
(b) showing that SAT is polynomial-time Karp reducible to 3SAT. This implies that 3SAT

is NP-hard by the transitivity of polynomial-time reductions. Part (a) is achieved by the
following lemma:

Lemma 2.11 SAT is NP-hard. ♦

To prove Lemma 2.11 we have to show how to reduce every NP language L to SAT. In
other words, we need a polynomial-time transformation that turns any x ∈ {0, 1}∗ into a
CNF formula ϕx such that x ∈ L iff ϕx is satisfiable. Since we know nothing about the
language L except that it is in NP, this reduction has to rely only upon the definition of
computation, and express it in some way using a Boolean formula.

2.3.3 Warmup: Expressiveness of Boolean formulae

As a warmup for the proof of Lemma 2.11 we show how to express various conditions using
CNF formulae.

Example 2.12 (Expressing equality of strings)
The formula (x1 ∨ y1) ∧ (x1 ∨ y1) is in CNF form. It is satisfied by only those
values of x1, y1 that are equal. Thus, the formula

(x1 ∨ y1) ∧ (x1 ∨ y1) ∧ · · · ∧ (xn ∨ yn) ∧ (xn ∨ yn)

is satisfied by an assignment if and only if each xi is assigned the same value as
yi.
Thus, though = is not a standard Boolean operator like ∨ or ∧, we will use it
as a convenient shorthand since the formula φ1 = φ2 is equivalent to (in other
words, has the same satisfying assignments as) (φ1 ∨ φ2) ∧ (φ1 ∨ φ2).

In fact, CNF formulae of exponential size can express every Boolean function, as shown
by the following simple claim:

3Strictly speaking, a string representing a Boolean formula has to be well-formed: strings such as u1∧∧u2

do not represent any valid formula. As usual, we ignore this issue since it is easy to identify strings that are
not well-formed, and decide that such strings represent some fixed formula.
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Claim 2.13 (Universality of AND, OR, NOT) For every Boolean function f : {0, 1}ℓ →
{0, 1} there is an ℓ-variable CNF formula ϕ of size ℓ2ℓ such that ϕ(u) = f(u) for every

u ∈ {0, 1}ℓ, where the size of a CNF formula is defined to be the number of ∧/∨ symbols it
contains. ♦

Proof Sketch: For every v ∈ {0, 1}ℓ, it is not hard to see that there exists a clause
Cv(z1, z2, . . . , zℓ) in ℓ variables such that Cv(v) = 0 and Cv(u) = 1 for every u 6= v. For
example, if v = 〈1, 1, 0, 1〉, the corresponding clause is z1 ∨ z2 ∨ z3 ∨ z4.

We let ϕ be the AND of all the clauses Cv for v such that f(v) = 0. In other words

ϕ =
∧

v:f(v)=0

Cv(z1, z2, . . . , zℓ) .

Note that ϕ has size at most ℓ2ℓ. For every u such that f(u) = 0 it holds that Cu(u) = 0
and hence ϕ(u) is also equal to 0. On the other hand, if f(u) = 1 then Cv(u) = 1 for every
v such that f(v) = 0 and hence ϕ(u) = 1. We get that for every u, ϕ(u) = f(u). �

In this chapter we will use Claim 2.13 only when the number of variables is some fixed
constant.

2.3.4 Proof of Lemma 2.11

Let L be an NP language. By definition, there is polynomial time TM M such that that

for every x ∈ {0, 1}∗, x ∈ L ⇔ M(x, u) = 1 for some u ∈ {0, 1}p(|x|), where p : N → N
is some polynomial. We show L is polynomial-time Karp reducible to SAT by describing a
polynomial-time transformation x → ϕx from strings to CNF formulae such that x ∈ L iff
ϕx is satisfiable. Equivalently,

ϕx ∈ SAT iff ∃u ∈ {0, 1}p(|x|) s.t. M(x ◦ u) = 1 , (1)

(where ◦ denotes concatenation).4

How can we construct such a formula ϕx? The trivial idea is to use the transformation

of Claim 2.13 on the Boolean function that maps u ∈ {0, 1}p(|x|) to M(x, u). This would

give a CNF formula ψx, such that ψx(u) = M(x, u) for every u ∈ {0, 1}p(|x|). Thus a string
u such that M(x, u) = 1 exists if and only if ψx is satisfiable. But this trivial idea is not
useful for us, since the size of the formula ψx obtained from Claim 2.13 can be as large as
p(|x|)2p(|x|). To get a smaller formula we use the fact that M runs in polynomial time, and
that each basic step of a Turing machine is highly local (in the sense that it examines and
changes only a few bits of the machine’s tapes). We express the correctness of these local
steps using smaller Boolean formulae.

In the course of the proof we will make the following simplifying assumptions about the
TM M : (i). M only has two tapes: an input tape and a work/output tape and (ii). M is
an oblivious TM in the sense that its head movement does not depend on the contents of its
tapes. That is, M ’s computation takes the same time for all inputs of size n and for every
i the location of M ’s heads at the ith step depends only on i and the length of the input.

We can make these assumptions without loss of generality because for every T (n)-time
TM M there exists a two-tape oblivious TM M̃ computing the same function in O(T (n)2)
time (see Remark 1.7 and Exercise 1.5).5 Thus in particular, if L is in NP then there exists
a two-tape oblivious polynomial-time TM M and a polynomial p such that

x ∈ L⇔ ∃u ∈ {0, 1}p(|x|) s.t. M(x ◦ u) = 1 . (2)

4Because the length p(|x|) of the second input u is easily computable, we can represent the pair 〈x, u〉
simply by x ◦ u, without a need to use a “marker symbol” between x and u.

5In fact, with some more effort we even simulate a non-oblivious T (n)-time TM by an oblivious TM
running in O(T (n) log T (n))-time, see Exercise 1.6. This oblivious machine may have more than two tapes,
but the proof below easily generalizes to this case.
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Note that becauseM is oblivious, we can run it on the trivial input (x, 0p(|x|) to determine
the precise head position of M during its computation on every other input of the same
length. We will use this fact later on.

Denote by Q the set of M ’s possible states and by Γ its alphabet. The snapshot of M ’s
execution on some input y at a particular step i is the triple 〈a, b, q〉 ∈ Γ× Γ×Q such that
a, b are the symbols read by M ’s heads from the two tapes and q is the state M is in at
the ith step (see Figure 2.2). Clearly the snapshot can be encoded as a binary string. Let c
denote the length of this string, which is some constant depending upon |Q| and |Γ|.

Input�
tape

Work/�
output�
tape

>   0   0  0   1   1  0   1  0   0   0  1  0    0  0   0   

>  1    1  0  1   1   1  0   0   0   1

q7State register

read only head

read/write head

snapshot

0   1  q7
  a     b    q

Figure 2.2 A snapshot of a TM contains the current state and symbols read by the TM at
a particular step. If at the ith step M reads the symbols 0, 1 from its tapes and is in the
state q7 then the snapshot of M at the ith step is 〈0, 1, q7〉.

For every y ∈ {0, 1}∗, the snapshot of M ’s execution on input y at the ith step depends
on (a) its state in the i− 1st step and (b) the contents of the current cells of its input and
work tapes.

The insight at the heart of the proof concerns the following thought exercise. Suppose
somebody were to claim the existence of some u satisfying M(x ◦ u) = 1, and as evidence,
present you with the sequence of snapshots that arise from M ’s execution on x ◦ u. How
can you tell that the snapshots present a valid computation that was actually performed by
M?

1 m
inputpos(i)

.... ....

............

1 prev(i) i-1 i T

input:

snapshots:

Figure 2.3 The snapshot of M at the ith step depends on its previous state (contained in
the snapshot at the i − 1st step), and the symbols read from the input tape, which is in
position inputpos(i), and from the work tape, which was last written to in step prev(i).

Clearly, it suffices to check that for each i ≤ T (n), the snapshot zi is is correct given the
snapshots for the previous i−1 steps. However, since the TM can only read/modify one bit at
a time, to check the correctness of zi it suffices to look at only two of the previous snapshots.
Specifically, to check zi we need to only look at the following: zi−1, yinputpos(i), zprev(i) (see
Figure 2.3). Here y is shorthand for x◦u; inputpos(i) denotes the location ofM ’s input tape
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head at the ith step (recall that the input tape is read-only, so it contains x ◦ u throughout
the computation); and prev(i) is the last step before i when M ’s head was in the same cell
on its work tape that it is on during step i.6 The reason this small amount of information
suffices to check the correctness of zi is that the contents of the current cell have not been
affected between step prev(i) and step i.

In fact, sinceM is a deterministic TM, for every triple of values to zi−1, yinputpos(i), zprev(i)
there is at most one value of zi that is correct. Thus there is some function F (derived from

M ’s transition function) that maps {0, 1}2c+1
to {0, 1}c such that a correct zi satisfies:

zi = F (zi−1, zprev(i), yinputpos(i)) . (3)

BecauseM is oblivious, the values inputpos(i) and prev(i) do not depend on the partic-
ular input y. Also, as mentioned above, these indices can be computed in polynomial-time
by simulating M on a trivial input.

Now we turn the above thought exercise into a reduction. Recall that by (2), an input

x ∈ {0, 1}n is in L if and only ifM(x◦u) = 1 for some u ∈ {0, 1}p(n)
. The previous discussion

shows this latter condition occurs if and only if there exists a string y ∈ {0, 1}n+p(n)
and a

sequence of strings z1, . . . , zT (n) ∈ {0, 1}c (where T (n) is the number of steps M takes on
inputs of length n+ p(n)) satisfying the following four conditions:

1. The first n bits of y are equal to x.

2. The string z1 encodes the initial snapshot of M . That is, z1 encodes the triple 〈⊲
,�, qstart〉 where ⊲ is the start symbol of the input tape, � is the blank symbol, and
qstart is the initial state of the TM M .

3. For every i ∈ {2, .., T (n)}, zi = F (zi−1, zinputpos(i), zprev(i)).

4. The last string zT (n) encodes a snapshot in which the machine halts and outputs 1.

The formula ϕx will take variables y ∈ {0, 1}n+p(n)
and z ∈ {0, 1}cT (n)

and will verify
that y, z satisfy the AND of these four conditions. Thus x ∈ L⇔ ϕx ∈ SAT and so all that
remains is to show that we can express ϕx as a polynomial-sized CNF formula.

Condition 1 can be expressed as a CNF formula of size 4n (see Example 2.12). Condi-
tions 2 and 4 each depend on c variables and hence by Claim 2.13 can be expressed by CNF
formulae of size c2c. Condition 3, which is an AND of T (n) conditions each depending on at
most 3c+1 variables, can be expressed as a CNF formula of size at most T (n)(3c+1)23c+1.
Hence the AND of all these conditions can be expressed as a CNF formula of size d(n+T (n))
where d is some constant depending only on M . Moreover, this CNF formula can be com-
puted in time polynomial in the running time of M . �

2.3.5 Reducing SAT to 3SAT.

To complete the proof of Theorem 2.10 it suffices to prove the following lemma:

Lemma 2.14 SAT ≤p 3SAT. ♦

Proof: We give a transformation that maps each CNF formula ϕ into a 3CNF formula ψ
such that ψ is satisfiable if and only if ϕ is. We demonstrate first the case that ϕ is a 4CNF.
Let C be a clause of ϕ, say C = u1∨u2∨u3∨u4. We add a new variable z to the ϕ and replace
C with the pair of clauses C1 = u1∨u2 ∨ z and C2 = u3∨u4 ∨ z. Clearly, if u1∨u2∨u3 ∨u4

is true then there is an assignment to z that satisfies both u1 ∨ u2 ∨ z and u3 ∨ u4 ∨ z and
vice versa: if C is false then no matter what value we assign to z either C1 or C2 will be
false. The same idea can be applied to a general clause of size 4, and in fact can be used to
change every clause C of size k (for k > 3) into an equivalent pair of clauses C1 of size k− 1

6If i is the first step that M visits a certain location, then we define prev(i) = 1.
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and C2 of size 3 that depend on the k variables of C and an additional auxiliary variable z.
Applying this transformation repeatedly yields a polynomial-time transformation of a CNF
formula ϕ into an equivalent 3CNF formula ψ. �

2.3.6 More thoughts on the Cook-Levin theorem

The Cook-Levin theorem is a good example of the power of abstraction. Even though
the theorem holds regardless of whether our computational model is the C programming
language or the Turing machine, it may have been considerably more difficult to discover in
the former context.

The proof of the Cook-Levin Theorem actually yields a result that is a bit stronger than
the theorem’s statement:

1. We can reduce the size of the output formula ϕx if we use the efficient simulation of
a standard TM by an oblivious TM (see Exercise 1.6, Chapter 1), which manages to
keep the simulation overhead logarithmic. Then for every x ∈ {0, 1}∗, the size of the
formula ϕx (and the time to compute it) is O(T logT ), where T is the number of steps
the machine M takes on input x (see Exercise 2.12).

2. The reduction f from an NP-language L to SAT presented in Lemma 2.11 not only
satisfied that x ∈ L ⇔ f(x) ∈ SAT but actually the proof yields an efficient way
to transform a certificate for x to a satisfying assignment for f(x) and vice versa.
We call a reduction with this property a Levin reduction. One can also modify the
proof slightly (see Exercise 2.13) to that it actually supplies us with a one-to-one and
onto map between the set of certificates for x and the set of satisfying assignments
for f(x), implying that they are of the same size. A reduction with this property
is called parsimonious. Most of the known NP-complete problems (including all the
ones mentioned in this chapter) have parsimonious Levin reductions from all the NP
languages . As we will see later in Chapter 17, this fact is useful in studying the
complexity of counting the number of certificates for an instance of an NP problem.

Why 3SAT? The reader may wonder why the fact that 3SAT is NP-complete is so much
more interesting than the fact that, say, the language TMSAT of Theorem 2.9 is NP-
complete. One reason is that 3SAT is useful for proving the NP-completeness of other
problems: it has very minimal combinatorial structure and thus easy to use in reductions.
Another reason is that propositional logic has had a central role in mathematical logic,
which is why Cook and Levin were interested in 3SAT in the first place. A third reason is its
practical importance: 3SAT is a simple example of constraint satisfaction problems, which
are ubiquitous in many fields including artificial intelligence.

2.4 The web of reductions

Cook and Levin had to show how every NP language can be reduced to SAT. To prove the
NP-completeness of any other language L, we do not need to work as hard: by Theorem 2.8
it suffices to reduce SAT or 3SAT to L. Once we know that L is NP-complete we can show
that an NP-language L′ is in fact NP-complete by reducing L to L′. This approach has
been used to build a “web of reductions” and show that thousands of interesting languages
are in fact NP-complete. We now show the NP-completeness of a few problems. More
examples appear in the exercises (see Figure 2.4).

Recall the problem of planning a dinner party where every pair of guests is on speaking
terms, formalized in Example 0.1 as the language

INDSET = {〈G, k〉 : G has independent set of size k} .
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Figure 2.4 Web of reductions between the NP-completeness problems described in
this chapter and the exercises. Thousands more are known.

Theorem 2.15 INDSET is NP-complete. ♦

Proof: As shown in Example 2.2, INDSET is in NP, and so we only need to show that it
is NP-hard, which we do by reducing 3SAT to INDSET. Specifically, we will show how to
transform in polynomial time every m-clause 3CNF formula ϕ into a 7m-vertex graph G
such that ϕ is satisfiable if and only if G has an independent set of size at least m.

The graphG is defined as follows (see Figure 2.5): we associate a cluster of 7 vertices in G
with each clause of ϕ. The vertices in a cluster associated with a clause C correspond to the
7 possible satisfying partial assignments to the three variables on which C depends (we call
these partial assignments, since they only give values for some of the variables). For example,
if C is u2 ∨ u5 ∨ u7 then the 7 vertices in the cluster associated with C correspond to all
partial assignments of the form u1 = a, u2 = b, u3 = c for a binary vector 〈a, b, c〉 6= 〈1, 1, 0〉.
(If C depends on less than three variables then we repeat one of the partial assignments
and so some of the 7 vertices will correspond to the same assignment.) We put an edge
between two vertices of G if they correspond to inconsistent partial assignments. Two
partial assignments are consistent if they give the same value to all the variables they share.
For example, the assignment u2 = 0, u17 = 1, u26 = 1 is inconsistent with the assignment
u2 = 1, u5 = 0, u7 = 1 because they share a variable (u2) to which they give a different
value. In addition, we put edges between every two vertices that are in the same cluster.

Clearly, transforming ϕ into G can be done in polynomial time, and so all that remains
to show is that ϕ is satisfiable iff G has an independent set of size m:

• Suppose that ϕ has a satisfying assignment u. Define a set S of m of G’s vertices
as follows: for every clause C of ϕ put in S the vertex in the cluster associated with
C that corresponds to the restriction of u to the variables C depends on. Because
we only choose vertices that correspond to restrictions of the assignment u, no two
vertices of S correspond to inconsistent assignments and hence S is an independent
set of size m.
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Figure 2.5 We transform a 3CNF formula ϕ withm clauses into a graph G with 7m vertices
as follows: each clause C is associated with a cluster of 7 vertices corresponding to the 7
possible satisfying assignments to the variables C depends on. We put edges between any
two vertices in the same cluster and any two vertices corresponding to inconsistent partial
assignments. The graph G will have an independent set of size m if and only if ϕ was
satisfiable. The figure above contains only a sample of the edges. The three circled vertices
form an independent set.

• Suppose that G has an independent set S of size m. We will use S to construct a
satisfying assignment u for ϕ. We define u as follows: for every i ∈ [n], if there is a
vertex in S whose partial assignment gives a value a to ui, then set ui = a; otherwise
set ui = 0. This is well defined because S is an independent set, and hence each
variable ui can get at most a single value by assignments corresponding to vertices in
S. On the other hand, because we put all the edges within each cluster, S can contain
at most a single vertex in each cluster, and hence there is an element of S in every
one of the m clusters. Thus, by our definition of u, it satisfies all of ϕ’s clauses.

�

We let 0/1 IPROG be the set of satisfiable 0/1 Integer programs, as defined in Exam-
ple 2.3. That is, a set of linear inequalities with rational coefficients over variables u1, . . . , un
is in 0/1 IPROG if there is an assignment of numbers in {0, 1} to u1, . . . , un that satisfies it.

Theorem 2.16 0/1 IPROG is NP-complete. ♦

Proof: 0/1 IPROG is clearly in NP since the assignment can serve as the certificate. To
reduce SAT to 0/1 IPROG note that every CNF formula can be easily expressed as an integer
program by expressing every clause as an inequality. For example, the clause u1 ∨ u2 ∨ u3

can be expressed as u1 + (1− u2) + (1− u3) ≥ 1. �

A Hamiltonian path in a directed graph is a path that visits all vertices exactly once.
Let dHAMPATH denote the set of all directed graphs that contain such a path.

Theorem 2.17 dHAMPATH is NP-complete. ♦

Proof: dHAMPATH is in NP since the ordered list of vertices in the path can serve as a
certificate. To show that dHAMPATH is NP-hard we show a way to map every CNF formula
ϕ into a graph G such that ϕ is satisfiable if and only if G has a Hamiltonian path (i.e. a
path that visits all of G’s vertices exactly once).

The reduction is described in Figure 2.6. The graph G has (1) m vertices for each of
ϕ’s clauses c1, . . . , cm, (2) a special starting vertex vstart and ending vertex vend and (3) n



50 2 NP and NP completeness

......

m vertices corresponding to clauses c1 .... cm

start vertex

end vertex

..........

For every variable ui 4m vertices.

chain 1:

chain n:

c10 = u1  V  u2  V  u3

link in chain 1:

link in chain 2:

link in chain 3:

left-to-right traversal = TRUE, right-to-left = FALSE

vertex c10 can be visited if chain 1 is traversed left-to-right�

or if chains 2 or 3 are traversed right-to-left

u v

chain 2:

Figure 2.6 Reducing SAT to dHAMPATH. A formula ϕ with n variables and m clauses is
mapped to a graph G that has m vertices corresponding to the clauses and n doubly linked
chains, each of length 4m, corresponding to the variables. Traversing a chain left to right
corresponds to setting the variable to True, while traversing it right to left corresponds to
setting it to False. Note that in the figure every Hamiltonian path that takes the edge from
u to c10 must immediately take the edge from c10 to v, as otherwise it would get “stuck”
the next time it visits v.

“chains” of 4m vertices corresponding to the n variables of ϕ. A chain is a set of vertices
v1, . . . , v4m such that for every i ∈ [4m− 1], vi and vi+1 are connected by two edges in both
directions.

We put edges from the starting vertex vstart to the two extreme points of the first chain.
We also put edges from the extreme points of the jth chain to the extreme points to the
j+1th chain for every j ∈ [n− 1]. We put an edge from the extreme points of the nth chain
to the ending vertex vend.

In addition to these edges, for every clause C of ϕ, we put edges between the chains
corresponding to the variables appearing in C and the vertex vC corresponding to C in the
following way: if C contains the literal uj then we take two neighboring vertices vi, vi+1 in
the jth chain and put an edge from vi to C and from C to vi+1. If C contains the literal uj
then we connect these edges in the opposite direction (i.e., vi+1 to C and C to vi). When
adding these edges, we never “reuse” a link vi, vi+1 in a particular chain and always keep an
unused link between every two used links. We can do this since every chain has 4m vertices,
which is more than sufficient for this. We now prove that ϕ ∈ SAT⇔ G ∈ dHAMPATH:

(ϕ ∈ SAT⇒ G ∈ dHAMPATH): Suppose that ϕ has a satisfying assignment u1, . . . , un. We
will show a path that visits all the vertices of G. The path will start at vstart, travel through
all the chains in order, and end at vend. For starters, consider the path that travels the
jth chain in left-to-right order if uj = 1 and travels it in right-to-left order if uj = 0. This
path visits all the vertices except for those corresponding to clauses. Yet, if u is a satisfying
assignment then the path can be easily modified to visit all the vertices corresponding to
clauses: for each clause C there is at least one literal that is true, and we can use one link
on the chain corresponding to that literal to “skip” to the vertex vC and continue on as
before.

(G ∈ dHAMPATH⇒ ϕ ∈ SAT): Suppose that G has an Hamiltonian path P . We first note
that the path P must start in vstart (as it has no incoming edges) and end at vend (as it has no
outgoing edges). Furthermore, we claim that P needs to traverse all the chains in order, and
within each chain traverse it either in left-to-right order or right-to-left order. This would
be immediate if the path did not use the edges from a chain to the vertices corresponding
to clauses. The claim holds because if a Hamiltonian path takes the edge u → w, where u
is on a chain and w corresponds to a clause, then it must at the next step take the edge
w → v where v is the vertex adjacent to u in the link. Otherwise, the path will get stuck
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(i.e., will find every outgoing edge already taken) the next time it visits v; see Figure 2.1.
Now, define an assignment u1, . . . , un to ϕ as follows: uj = 1 if P traverses the jth chain in
left-to-right order, and uj = 0 otherwise. It is not hard to see that because P visits all the
vertices corresponding to clauses, u1, . . . , un is a satisfying assignment for ϕ. �

In praise of reductions

Though originally invented as part of the theory of NP-completeness, the polynomial-
time reduction (together with its first cousin, the randomized polynomial-time reduction
defined in Section 7.6) has led to a rich understanding of complexity above and beyond NP-
completeness. Much of complexity theory and cryptography today (thus, many chapters of
this book) consists of using reductions to make connections between disparate complexity
theoretic conjectures. Why do complexity theorists excel at reductions but not at actually
proving lower bounds on Turing machines? Maybe human creativity is more adaptible
to gadget-making and algorithm-design (after all, a reduction is merely an algorithm to
transform one problem into another) than to proving lower bounds on Turing machines.

2.5 Decision versus search

We have chosen to define the notion of NP using Yes/No problems (“Is the given formula
satisfiable?”) as opposed to search problems (“Find a satisfying assignment to this formula if
one exists”). Clearly, the search problem is harder than the corresponding decision problem,
and so if P 6= NP then neither one can be solved for an NP-complete problem. However,
it turns out that for NP-complete problems they are equivalent in the sense that if the
decision problem can be solved (and hence P = NP) then the search version of any NP
problem can also be solved in polynomial time.

Theorem 2.18 Suppose that P = NP. Then, for every NP language L there exists a
polynomial-time TM B that on input x ∈ L outputs a certificate for x.

That is, if, as per Definition 2.1, x ∈ L iff ∃u ∈ {0, 1}p(|x|) s.t. M(x, u) = 1 where p
is some polynomial and M is a polynomial-time TM, then on input x ∈ L, B(x) will be a

string u ∈ {0, 1}p(|x|) satisfying M(x,B(x)) = 1. ♦

Proof: We start by showing the theorem for the case of SAT. In particular we show that
given an algorithm A that decides SAT, we can come up with an algorithm B that on input
a satisfiable CNF formula ϕ with n variables, finds a satisfying assignment for ϕ using 2n+1
calls to A and some additional polynomial-time computation.

The algorithm B works as follows: we first use A to check that the input formula ϕ
is satisfiable. If so, we first substitute x1 = 0 and then x1 = 1 in ϕ (this transformation,
that simplifies and shortens the formula a little, leaving a formula with n − 1 variables,
can certainly be done in polynomial time) and then use A to decide which of the two is
satisfiable (at least one of them is). Say the first is satisfiable. Then we fix x1 = 0 from
now on and continue with the simplified formula. Continuing this way we end up fixing
all n variables while ensuring that each intermediate formula is satisfiable. Thus the final
assignment to the variables satisfies ϕ.

To solve the search problem for an arbitrary NP-language L, we use the fact that the
reduction of Theorem 2.10 from L to SAT is actually a Levin reduction. This means that
we have a polynomial-time computable function f such that not only x ∈ L⇔ f(x) ∈ SAT

but actually we can map a satisfying assignment of f(x) into a certificate for x. Therefore,
we can use the algorithm above to come up with an assignment for f(x) and then map it
back into a certificate for x. �

The proof of Theorem 2.18 shows that SAT is downward self-reducible, which means that
given an algorithm that solves SAT on inputs of length smaller than n we can solve SAT

on inputs of length n. This property of SAT will be useful a few times in the rest of the
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book. Using the Cook-Levin reduction, one can show that all NP-complete problems have
a similar property.

2.6 coNP, EXP and NEXP

Now we define some additional complexity classes related to P and NP.

2.6.1 coNP

If L ⊆ {0, 1}∗ is a language, then we denote by L the complement of L. That is, L =
{0, 1}∗ \ L. We make the following definition:

Definition 2.19 coNP =
{

L : L ∈ NP
}

. ♦

coNP is not the complement of the class NP. In fact, coNP and NP have a non-empty
intersection, since every language in P is in NP∩ coNP (see Exercise 2.23). The following
is an example of a coNP language: SAT = {ϕ : ϕ is not satisfiable} . Students sometimes
mistakenly convince themselves that SAT is in NP. They have the following polynomial
time NDTM in mind: on input ϕ, the machine guesses an assignment. If this assignment
does not satisfy ϕ then it accepts (i.e., goes into qaccept and halts) and if it does satisfy ϕ then
the machine halts without accepting. This NDTM does not do the job: indeed it accepts
every unsatisfiable ϕ but in addition it also accepts many satisfiable formulae (i.e., every
formula that has a single unsatisfying assignment). That is why pedagogically speaking we
prefer the following definition of coNP (which is easily shown to be equivalent to the first,
see Exercise 2.24):

Definition 2.20 (coNP, alternative definition) For every L ⊆ {0, 1}∗, we say that L ∈
coNP if there exists a polynomial p : N → N and a polynomial-time TM M such that for
every x ∈ {0, 1}∗,

x ∈ L⇔ ∀u ∈ {0, 1}p(|x|) , M(x, u) = 1 ♦

Note the use of the “∀” quantifier in this definition where Definition 2.1 used ∃.
We can define coNP-completeness in analogy to NP-completeness: a language is coNP-

complete if it is in coNP and every coNP language is polynomial-time Karp reducible to
it.

Example 2.21
The following language is coNP-complete:

TAUTOLOGY = {ϕ : ϕ is a tautology— a Boolean formula that is satisfied by every assignment} .

It is clearly in coNP by Definition 2.20 and so all we have to show is that for
every L ∈ coNP, L ≤p TAUTOLOGY. But this is easy: just modify the Cook-
Levin reduction from L (which is in NP) to SAT. For every input x ∈ {0, 1}∗ that
reduction produces a formula ϕx that is satisfiable iff x ∈ L. Now consider the
formula ¬ϕx. It is in TAUTOLOGY iff x ∈ L, and this completes the description
of the reduction.

It’s not hard to see that if P = NP then NP = coNP = P (Exercise 2.25). Put in
the contrapositive, if we can show that NP 6= coNP then we have shown P 6= NP. Most
researchers believe that NP 6= coNP. The intuition is almost as strong as for the P versus
NP question: it seems hard to believe that there is any short certificate for certifying that
a given formula is a TAUTOLOGY, in other words, to certify that every assignment satisfies
the formula.
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2.6.2 EXP and NEXP

In Claim 2.4, we encountered the class EXP = ∪c≥1DTIME(2n
c

), which is the exponential-
time analog of P. The exponential-time analog of NP is the class NEXP, defined as
∪c≥1NTIME(2n

c

).
As was saw before, because every problem in NP can be solved in exponential time

by a brute force search for the certificate, P ⊆ NP ⊆ EXP ⊆ NEXP. Is there any
point to studying classes involving exponential running times? The following simple result
—providing merely a glimpse of the rich web of relations we will be establishing between
disparate complexity questions— may be a partial answer.

Theorem 2.22 If EXP 6= NEXP then P 6= NP. ♦

Proof: We prove the contrapositive: assuming P = NP we show EXP = NEXP. Suppose
L ∈ NTIME(2n

c

) and NDTM M decides it. We claim that then the language

Lpad =
{

〈x, 12|x|c 〉 : x ∈ L
}

(4)

is in NP. Here is an NDTM for Lpad: given y, first check if there is a string z such that

y = 〈z, 12|z|c 〉. If not, output 0 (i.e., halt without going to the state qaccept). If y is of this
form, then simulate M on z for 2|z|

c

steps and output its answer. Clearly, the running time
is polynomial in |y|, and hence Lpad ∈ NP. Hence if P = NP then Lpad is in P. But if
Lpad is in P then L is in EXP: to determine whether an input x is in L, we just pad the
input and decide whether it is in Lpad using the polynomial-time machine for Lpad. �

The padding technique used in this proof, whereby we transform a language by “padding”
every string in a language with a string of (useless) symbols, is also used in several other
results in complexity theory (see, e.g., Section 14.4.1). In many settings it can be used to
show that equalities between complexity classes “scale up”; that is, if two different type
of resources solve the same problems within bound T (n) then this also holds for functions
T ′ larger than T . Viewed contrapositively, padding can be used to show that inequalities
between complexity classes involving resurce bound T ′(n) “scale down” to resource bound
T (n).

Like P and NP, many complexity classes studied in this book are contained in both
EXP and NEXP.

2.7 More thoughts about P, NP, and all that

2.7.1 The philosophical importance of NP

At a totally abstract level, the P versus NP question may be viewed as a question about
the power of nondeterminism in the Turing machine model. Similar questions have been
completely answered for simpler models such as finite automata.

However, the certificate definition of NP also suggests that the P versus NP question
captures a widespread phenomenon of some philosophical importance (and a source of great
frustration): recognizing the correctness of an answer is often much easier than coming up
with the answer. Appreciating a Beethoven sonata is far easier than composing the sonata;
verifying the solidity of a design for a suspension bridge is easier (to a civil engineer anyway!)
than coming up with a good design; verifying the proof of a theorem is easier than coming up
with a proof itself (a fact referred to in Gödel’s letter quoted at the start of the chapter), and
so forth. In such cases, coming up with the right answer seems to involve exhaustive search
over an exponentially large set. The P versus NP question asks whether exhaustive search
can be avoided in general. It seems obvious to most people —and the basis of many false
proofs proposed by amateurs— that exhaustive search cannot be avoided. Unfortunately,
turning this intuition into a proof has proved difficult.
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2.7.2 NP and mathematical proofs

By definition, NP is the set of languages where membership has a short certificate. This
is reminiscent of another familiar notion, that of a mathematical proof. As noticed in the
past century, in principle all of mathematics can be axiomatized, so that proofs are merely
formal manipulations of axioms. Thus the correctness of a proof is rather easy to verify
—just check that each line follows from the previous lines by applying the axioms. In fact,
for most known axiomatic systems (e.g., Peano arithmetic or Zermelo-Fraenkel Set Theory)
this verification runs in time polynomial in the length of the proof. Thus the following
problem is in NP for any of the usual axiomatic systems A:

theorems = {(ϕ, 1n) : ϕ has a formal proof of length ≤ n in system A} .

Gödel’s quote from 1956 at the start of this chapter asks whether this problem can be
solved in say quadratic time. He observes that this is a finite version of Hilbert’s Entschei-
dungsproblem, which asked for an algorithmic decision procedure for checking whether a
given mathematical has a proof (with no upper bound specified on the length of the proof).
He points out that if theorems can be solved in quadtratic time then the undecidability of
the Entscheidungsproblem would become less depressing, since we are usually only interested
in theorems whose proof is not too long (say, fits in a few books).

Exercise 2.11 asks you to prove that theorems is NP-complete. Hence the P versus NP
question is a rephrasing of Gödel’s question, which asks whether or not there is a algorithm
that finds mathematical proofs in time polynomial in the length of the proof.

Of course, you know in your guts that finding correct math proofs is far harder than
verifying their correctness. So presumably, you believe at an intuitive level that P 6= NP.

2.7.3 What if P = NP?

If P = NP —specifically, if an NP-complete problem like 3SAT had a very efficient algo-
rithm running in say O(n2) time— then the world would be mostly a computational Utopia.
Mathematicians could be replaced by efficient theorem-discovering programs (a fact pointed
out in Kurt Gödel’s 1956 letter and discovered two decades later). In general for every search
problem whose answer can be efficiently verified (or has a short certificate of correctness),
we will be able to find the correct answer or the short certificate in polynomial time. AI
software would be perfect since we could easily do exhaustive searches in a large tree of
possibilities. Inventors and engineers would be greatly aided by software packages that can
design the perfect part or gizmo for the job at hand. VLSI designers will be able to whip up
optimum circuits, with minimum power requirements. Whenever a scientist has some ex-
perimental data, she would be able to automatically obtain the simplest theory (under any
reasonable measure of simplicity we choose) that best explains these measurements; by the
principle of Occam’s Razor the simplest explanation is likely to be the right one7. Of course,
in some cases it took scientists centuries to come up with the simplest theories explaining
the known data. This approach can be used to approach also non-scientific problems: one
could find the simplest theory that explains, say, the list of books from the New York Times ’
bestseller list. (Of course even finding the right definition of “simplest” might require some
breakthroughs in artificial intelligence and understanding natural language that themselves
would use NP-algorithms.) All these applications will be a consequence of our study of the
Polynomial Hierarchy in Chapter 5.

Somewhat intriguingly, this Utopia would have no need for randomness. As we will later
see, if P = NP then randomized algorithms would buy essentially no efficiency gains over
deterministic algorithms; see Chapter 7. (Philosophers should ponder this one.)

7Occam’s Razor is a well-known principle in philosophy, but it has found new life in machine learning, a
subfield of computer science. Valiant’s Theory of the Learnable [Val84] gives mathematical basis for Occam’s
razor. This theory is deeply influenced by computational complexity; an excellent treatment appears in the
book of Kearns and Vazirani [KV94]. If P = NP then many interesting problems in machine learning turn
out to have polynomial-time algorithms.
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This Utopia would also come at one price: there would be no privacy in the digital
domain. Any encryption scheme would have a trivial decoding algorithm. There would be
no digital cash, no SSL, RSA or PGP (see Chapter 9). We would just have to learn to get
along better without these, folks.

This utopian world may seem ridiculous, but the fact that we can’t rule it out shows
how little we know about computation. Taking the half-full cup point of view, it shows how
many wonderful things are still waiting to be discovered.

2.7.4 What if NP = coNP?

If NP = coNP, the consequences still seem dramatic. Mostly, they have to do with
existence of short certificates for statements that do not seem to have any. To give an
example, consider the NP-complete problem of finding whether or not a set of multivariate
polynomials has a common root (see Exercise 2.20). In other words, it is NP complete to
decide whether a system of equations of the following type has a solution:

f1(x1, . . . , xn) = 0

f2(x1, . . . , xn) = 0

...

fm(x1, . . . , xn) = 0

where each fi is a polynomial of degree at most 2.

If a solution exists, then that solution serves as a certificate to this effect (of course, we
have to also show that the solution can be described using a polynomial number of bits,
which we omit). The problem of deciding that the system does not have a solution is of
course in coNP. Can we give a certificate to the effect that the system does not have a
solution? Hilbert’s Nullstellensatz Theorem seems to do that: it says that the system is
infeasible iff there is a sequence of polynomials g1, g2, . . . , gm such that

∑

i figi = 1, where
1 on the right hand side denotes the constant polynomial 1.

What is happening? Does the Nullstellensatz prove coNP = NP? No, because the
degrees of the gi’s —and hence the number of bits used to represent them— could be
exponential in n,m. (And it is simple to construct fi’s for which this is necessary.)

However, if NP = coNP then there would be some other notion of a short certificate to
the effect that the system is infeasible. The effect of such a result on mathematics could be
even greater than the effect of Hilbert’s Nullstellensatz. (The Nullstellensatz appears again
in the book in Chapters 15 and 16.)

2.7.5 Is there anything between NP and NP-complete?

NP-completeness has been an extremely useful and influential theory, since thousands of
useful problems are known to be NP-complete (and hence they are presumably not in P).
However, there remain a few interesting NP problems that are neither known to be in P
nor known to be NP-complete. For such problems it would be nice to have some other
way of know that they are nevertheless difficult to solve, but we know of very few ways of
quantifying this. Sometimes researchers turn the more famous problems of this type into
bona fide classes of their own. Some examples are the problem of factoring integers (used in
Chapter 9) or the so called unique games labeling problem (Chapter 22). The complexity of
these problems is related to those of many other problems. Similarly, Papadimitriou [Pap90]

has defined numerous interesting classes between P and NP that similarly capture the
complexity of various interesting problems, the most important of which is P PAD, which
captures the problem of finding Nash Equilibria in 2-person games.

Sometimes we can show that some of these problems are unlikely to be NP-complete.
We do this by showing that if the problem is NP-complete, then this violates some other
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conjecture (that is believed almost as much as p 6= NP); we’ll see such for the graph
isomorphism problem in Section 8.1.3.

Another interesting result in Section 3.3 called Ladner’s Theorem shows that if P 6= NP
then there exist problems that are neither in P nor NP-complete.

2.7.6 Coping with NP hardness.

NP-complete problems turn up in great many applications, from flight scheduling to genome
sequencing. What do you do if the problem you need to solve turns out to be NP-complete?
At the outset, the situation looks bleak8: if P 6= NP then there simply does not exist an
efficient algorithm to solve such a problem. However, there may still be some hope: NP
completeness only means that (assuming P 6= NP) the problem does not have an algorithm
that solves it exactly on every input. But for many applications, an approximate solution
on some of the inputs might be good enough.

A case in point is the traveling salesperson problem (TSP), of computing, given a list
of pairwise distances between n cities, the shortest route that travels through all of them.
Assume that you are indeed in charge of coming up with travel plans for traveling salespeople
that need to visit various cities around your country. Does the fact that TSP is NP-complete
means that you are bound to do a hopelessly suboptimal job? This does not have to be the
case.

First note that you do not need an algorithm that solves the problem on all possible
lists of pairwise distances. We might model the inputs that actually arise in this case as
follows: the n cities are points on a plane, and the distance between a pair of cities is the
distance between the corresponding points (we are neglecting here the difference between
travel distance and direct/arial distance). It is an easy exercise to verify that not all possible
lists of pairwise distances can be generated in such a way. We call those that do Euclidean
distances. Another observation is that computing the exactly optimal travel plan may not
be so crucial. If you could always come up with a travel plan that is at most 1% longer than
the optimal, this should be good enough.

It turns out that neither of these observations on its own is sufficient to make the problem
tractable. The TSP problem is still NP complete even for Euclidean distances. Also if
P 6= NP then TSP is hard to approximate within any constant factor. However, combining
the two observations together actually helps: for every ǫ there is a poly(n(logn)O(1/ǫ))-time
algorithm that given Euclidean distances between n cities comes up with a tour that is at
most a factor of (1 + ǫ) worse than the optimal tour [Aro96].

Discovering that the problem you encounter is NP-complete should not be cause for
immediate despair. Rather you should view this as indication that a more careful modeling
of the problem is needed, letting the literature on complexity and algorithms guide you as
to what features might make the problem more tractable. Alternatives to worst-case exact
computation are explored in Chapters 18 and 11, that investigate average-case complexity
and approximation algorithms respectively.

2.7.7 Finer explorations of time complexity

We have tended to focus the discussion in this chapter on the difference between polynomial
and non-polynomial time. Researchers have also explored finer issues about time complexity.
For instance, consider a problem like INDSET. We believe that it cannot be solved in
polynomial time. But what exactly is its complexity? Is it nO(log n), or 2n

0.2

or 2n/10? Most
researchers believe it is actually 2Ω(n). The intuitive feeling is that the trivial algorithm of
enumerating all possible subsets is close to optimal.

It is useful to test this intuition when the size of the optimum independent set is at most

8Not however that sometimes simple changes in the problem statement can dramatically change its
complexity. Therefore modeling a practical situation with an abstract problem requires great care; one must
take care not to unnecessarily model a simple setting with an NP-complete problem.
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k. The trivial algorithm of enumerating all k-size subsets of vertices takes
(

n
k

)

≈ nk time
when k ≪ n. (In fact, think of k as an arbitrarily large constant.) Can we do any better,
say 2k poly(n) time, or more generally f(k) poly(n) time for some function f? The theory
of fixed parameter intractability studies such questions. There is a large set of NP problems
including INDSET that are complete in this respect, which means that one of them has a
f(k) poly(n) time algorithm iff all of them do. Needless to say, this notion of “completeness”
is with respect to some special notion of reducibility; the book [FG06] is a resource on this
topic.

At the other end of the spectrum, one can wonder if there is an extension of NP-
completeness that butresses the intuition that the true complexity of INDSET and many
other NP-complete problems is 2Ω(n) rather than simply non-polynomial. Impagliazzo,
Paturi and Zane [IPZ98] have such a theory, including a notion of reducibility tailored to
studying this issue.

What have we learned?

• The class NP consists of all the languages for which membership can be certified to
a polynomial-time algorithm. It contains many important problems not known to be
in P. We can also define NP using non-deterministic Turing machines.

• NP-complete problems are the hardest problems in NP, in the sense that they have
a polynomial-time algorithm if and only if P =NP. Many natural problems that
seemingly have nothing to do with Turing machines turn out to be NP-complete.
One such example is the language 3SAT of satisfiable Boolean formulae in 3CNF
form.

• If P = NP then for every search problem for which one can efficiently verify a given
solution, one can also efficiently find such a solution from scratch.

• The class coNP is the set of complements of NP-languages. We believe that coNP 6=
NP. This is a stronger assumption than P 6= NP.

Chapter notes and history

Since the 1950’s, Soviet scientists were aware of the undesirability of using exhaustive or brute force
search, which they called perebor, for combinatorial problems, and asked the question of whether
certain problems inherently require such search (see [Tra84] for a history). In the west the first
published description of this issue is by Edmonds [Edm65], in the paper quoted in the previous
chapter. However, on both sides of the iron curtain it took some time to realize the right way to
formulate the problem and to arrive at the modern definition of the classes NP and P. Amazingly,
in his 1956 letter to von Neumann we quoted above, Gödel essentially asks the question of P vs.
NP, although there is no hint that he realized that one of the particular problems he mentions is
NP-complete. Unfortunately, von Neumann was very sick at the time, and as far as we know, no
further research was done by either on them on this problem, and the letter was only discovered in
the 1980’s.

In 1971 Cook published his seminal paper defining the notion of NP-completeness and show-
ing that SAT is NP complete [Coo71]. Soon afterwards, Karp [Kar72] showed that 21 important
problems are in fact NP-complete, generating tremendous interest in this notion. Meanwhile in
the USSR Levin independently defined NP-completeness (although he focused on search problems)
and showed that a variant of SAT is NP-complete. Levin’s paper [Lev73] was published in 1973, but
he had been giving talks on his results since 1971, also in those days there was essentially zero com-
munication between eastern and western scientists. Trakktenbrot’s survey [Tra84] describes Levin’s
discovery, and also gives an accurate translation of Levin’s paper. See Sipser’s survey [Sip92] for
more on the history of P and NP and a full translation of Gödel’s remarkable letter.

The book by Garey and Johnson [GJ79] and the web site [CK00] contain many more examples
of NP complete problems. Some such problems have been studied well before the invention of
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computers: the traveling salesperson problem has been studied in the 19th century (see [LLKS85]).
Also, a recently discovered letter by Gauss to Schumacher shows that Gauss was thinking about
methods to solve the famous Euclidean Steiner Tree problem —today known to be NP-hard— in
the early 19th century. See also Wigderson’s survey [Wig06] for more on the relations between NP
and mathematics.

Aaronson [Aar05] surveys various attempts to solve NP complete problems via “non-traditional”
computing devices.

Even if NP 6= P, this does not necessarily mean that all of the utopian applications mentioned
in Section 2.7.3 are gone. It may be that, say, 3SAT is hard to solve in the worst case on every input
but actually very easy on the average, See Chapter 18 for a more detailed study of average-case
complexity. Also, Impagliazzo [Imp95a] has an excellent survey on this topic.

An intriguing possibility is that it is simply impossible to resolve the P vs. NP question using
the accepted axioms of mathematics: this has turned out to be the case with some other question,
the most famous of which is Cantor’s “Continuum Hypothesis.” Aaronson’s survey [Aar03] explores
this possibility.

Alon and Kilian (personal communication) showed that in the definition of the language Fac-
toring in Example 2.3, the condition that the factor p is prime is necessary to capture the factoring
problem, since without this condition this language is NP-complete (for reasons having nothing to
do with the hardness of factoring integers).

Exercises

2.1 Prove that allowing the certificate to be of size at most p(|x|) (rather than equal to p(|x|))in
Definition 2.1, makes no difference. That is, show that for every polynomial-time Turing machine
M and polynomial p : N → N, the language

{x : ∃u s.t. |u| ≤ p(|x|) and M(x, u) = 1}

is in NP.

2.2 Prove that the following languages are in NP:

Two coloring: 2COL = {G : graph G has a coloring with 2 colors}, where a coloring of G with c
colors is an assignment of a number in [c] to each vertex such that no adjacent vertices get
the same number.

Three coloring: 3COL = {G : graph G has a coloring with 3 colors}.
Connectivity: CONNECTED = {G : G is a connected graph}.

Which ones of them are in P? H457

2.3 Let LINEQ denote the set of satisfiable rational linear equations. That is, LINEQ consists of the set
of all pairs 〈A,b〉 where A is an m× n rational matrix and b is an m dimensional rational vector,
such that Ax = b for some n-dimensional vector x. Prove that LINEQ is in NP (the key is to prove
that if there exists such a vector x, then there exists an x whose coefficients can be represented
using a number of bits that is polynomial in the representation of A,b).

(Note that LINEQ is actually in P: can you show this?.) H457

2.4 Show that the Linear Programming problem from Example 2.3 is in NP. H457 (Again, this problem
is actually in P, though by a highly non-trivial algorithm.)

2.5 [Pra75] Let PRIMES = { xny : n is prime}. Show that PRIMES ∈ NP. You can use the following
fact: a number n is prime iff for every prime factor q of n−1, there exists a number a ∈ {2, . . . , n− 1}
satisfying an−1 = 1 (mod n) but a(n−1)/q 6= 1 (mod n). H457

2.6 Prove the existence of a non-deterministic Universal TM (analogously to the deterministic universal
TM of Theorem 1.9). That is, prove that there exists a representation scheme of NDTMs, and an
NDTM NU such that for every string α, and input x, NU(x, α) = Mα(x).

(a) Prove that there exists such a universal NDTM NU such that if Mα halts on x within T steps,
then NU halts on x, α within CT log T steps (where C is a constant depending only on the
machine represented by α).

(b) Prove that there is such a universal NDTM that runs on these inputs for at most Ct steps.

H457

2.7 Prove Parts 2 and 3 of Theorem 2.8.
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2.8 Let HALT be the Halting language defined in Theorem 1.11. Show that HALT is NP-hard. Is it
NP-complete?

2.9 We have defined a relation ≤p among languages. We noted that it is reflexive (that is, L ≤p L for
all languages L) and transitive (that is, if L ≤p L

′ and L′ ≤p L
′′ then L′ ≤p L

′′). Show that it is
not symmetric, namely, L ≤p L

′ need not imply L′ ≤p L.

2.10 Suppose L1, L2 ∈ NP. Then is L1 ∪ L2 in NP? What about L1 ∩ L2?

2.11 Mathematics can be axiomatized using for example the Zermelo Frankel system, which has a finite
description. Argue at a high level that the following language is NP-complete.

{〈ϕ, 1n〉 : math statement ϕ has a proof of size at most n in the ZF system} .

H457

The question of whether this language is in P is essentially the question asked by Gödel in the
chapter’s initial quote.

2.12 Show that for every time constructible T : N → N, if L ∈ NTIME(T (n)) then we can give
a polynomial-time Karp reduction from L to 3SAT that transforms instances of size n into 3CNF
formulae of size O(T (n) log T (n)). Can you make this reduction also run in O(T (n) poly(log T (n)))?

2.13 Recall that a reduction f from an NP-language L to an NP-languages L′ is parsimonious if the
number of certificates of f is equal to the number of certificates of f(x).

(a) Prove that the reduction from every NP-language L to SAT presented in the proof of Lemma 2.11
can be made parsimonious. H457

(b) Show a parsimonious reduction from SAT to 3SAT.

2.14 Cook [Coo71] used a somewhat different notion of reduction: a language L is polynomial-time Cook
reducible to a language L′ if there is a polynomial time TM M that, given an oracle for deciding L′,
can decide L. An oracle for L′ is a magical extra tape given to M , such that whenever M writes a
string on this tape and goes into a special “invocation” state, then the string —in a single step!—
gets overwritten by 1 or 0 depending upon whether the string is or is not in L′; see Section 3.4 for
a more precise definition.

Show that the notion of cook reducibility is transitive and that 3SAT is Cook-reducible to TAUTOLOGY.

2.15 In the CLIQUE problem we are given an undirected graph G and an integer K and have to decide
whether there is a subset S of at least K vertices such that every two distinct vertices u, v ∈ S have
an edge between them (such a subset is called a clique of G). In the VERTEX COVER problem we
are given an undirected graph G and an integer K and have to decide whether there is a subset S
of at most K vertices such that for every edge i j of G, at least one of i or j is in S (such a subset
is called a vertex cover of G). Prove that both these problems are NP-complete. H457

2.16 In the MAX CUT problem we are given an undirected graph G and an integer K and have to decide
whether there is a subset of vertices S such that there are at least K edges that have one endpoint
in S and one endpoint in S. Prove that this problem is NP-complete.

2.17 In the Exactly One 3SAT problem, we are given a 3CNF formula ϕ and need to decide if there exists
a satisfying assignment u for ϕ such that every clause of ϕ has exactly one True literal. In the
SUBSET SUM problem we are given a list of n numbers A1, . . . , An and a number T and need to
decide whether there exists a subset S ⊆ [n] such that

∑

i∈S Ai = T (the problem size is the sum
of all the bit representations of all numbers). Prove that both Exactly One3SAT and SUBSET SUM
are NP-complete. H457

2.18 Prove that the language HAMPATH of undirected graphs with Hamiltonian paths is NP-complete.
Prove that the language TSP described in Example 2.3 is NP-complete. Prove that the language
HAMCYCLE of undirected graphs that contain Hamiltonian cycle (a simple cycle involving all the
vertices) is NP-complete.

2.19 Let QUADEQ be the language of all satisfiable sets of quadratic equations over 0/1 variables (a
quadratic equations over u1, . . . , un has the form

∑

i,j∈[n] ai,juiuj = b) where addition is modulo

2. Show that QUADEQ is NP-complete. H458

2.20 Let REALQUADEQ be the language of all satisfiable sets of quadratic equations over real variables.
Show that REALQUADEQ is NP-complete. H458

2.21 Prove that 3COL (see Exercise 2.2) is NP-complete. H458

2.22 In a typical auction of n items, the auctioneer will sell the ith item to the person that gave it the
highest bid. However, sometimes the items sold are related to one another (e.g., think of lots of
land that may be adjacent to one another) and so people may be willing to pay a high price to get,
say, the three items {2, 5, 17}, but only if they get all of them together. In this case, deciding what
to sell to whom might not be an easy task. The COMBINATORIAL AUCTION problem is to decide,
given numbers n, k, and a list of pairs {〈Si, xi〉}m

i=1 where Si is a subset of [n] and xi is an integer,
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whether there exist disjoint sets Si1 , . . . , Siℓ such that
∑ℓ

j=1 xij ≥ k. That is, if xi is the amount a
bidder is willing to pay for the set Si, then the problem is to decide if the auctioneer can sell items
and get a revenue of at least k, under the obvious condition that he can’t sell the same item twice.
Prove that COMBINATORIAL AUCTION is NP-complete. H458

2.23 Prove that P ⊆ NP ∩ coNP.

2.24 Prove that Definitions 2.19 and 2.20 do indeed define the same class coNP.

2.25 Prove that if P = NP then NP = coNP.

2.26 Show that NP = coNP iff 3SAT and TAUTOLOGY are polynomial-time reducible to one another.

2.27 Give a definition of NEXP without using NDTMs, analogous to Definition 2.1 of the class NP,
and prove that the two definitions are equivalent.

2.28 We say that a language is NEXP-complete if it is in NEXP and every language in NEXP is
polynomial-time reducible to it. Describe a NEXP-complete language L. Prove that if L ∈ EXP
then NEXP = EXP.

2.29 Suppose L1, L2 ∈ NP ∩ coNP. Then show that L1 ⊕ L2 is in NP ∩ coNP, where L1 ⊕ L2 =
{x : x is in exactly one of L1, L2}.

2.30 (Berman’s Theorem 1978) A language is called unary if every string in it is of the form 1i (the
string of i ones) for some i > 0. Show that if there exists an NP-complete unary language then
P = NP. (See Exercise 6.9 of Chapter 6 for a strengthening of this result.) H458

2.31 Define the language UNARY SUBSET SUM to be the variant of the SUBSET SUM problem of
Exercise 2.17 where all numbers are represented by the unary representation (i.e., the number k is
represented as 1k). Show that UNARY SUBSET SUM is in P. H458

2.32 Prove that if every unary NP-language is in P then EXP = NEXP. (A language L is unary iff
it is a subset of {1}∗, see Exercise 2.30.)

2.33 Let Σ2SAT denote the following decision problem: given a quantified formula ψ of the form

ψ = ∃x∈{0,1}n∀y∈{0,1}m s.t. ϕ(x, y) = 1 ,

where ϕ is a CNF formula, decide whether ψ is true. That is, decide whether there exists an x such
that for every y, ϕ(x, y) is true. Prove that if P = NP then Σ2SAT is in P.

2.34 Suppose that you are given a graph G and a number K, and are told that either (i) the smallest
vertex cover (see Exercise 2.15) of G is of size at most K or (ii) it is of size at least 3K. Show
a polynomial-time algorithm that can distinguish between these two cases. Can you do it with a
smaller constant than 3? Since VERTEX COVER is NP-hard, why does this algorithm not show
that P = NP?



Chapter 3

Diagonalization

“..the relativized P =?NP question has a positive answer for some oracles and
a negative answer for other oracles. We feel that this is further evidence of
the difficulty of the P =?NP question.”
Baker, Gill, Solovay. [BGS75]

A basic goal of complexity theory is to prove that certain complexity classes (such as
P and NP) are not the same. To do so we need to exhibit a machine in one class which
differs from every machine in the other class in the sense that their answers are different
on at least one input. This chapter describes diagonalization— essentially the only general
technique known for constructing such a machine.

We already encountered diagonalization in Section 1.5, where it was used to show the
existence of uncomputable functions. Here it will be used in more clever ways. We first use
diagonalization in Sections 3.1 and 3.2 to prove hierarchy theorems, which show that giving
Turing machines more computational resources allows them to solve a strictly larger number
of problems. We then use diagonalization in Section 3.3 to show a fascinating theorem of
Ladner: if P 6= NP then there exist problems that are neither in P nor NP-complete.

Though diagonalization led to some of these early successes of complexity theory, re-
searchers concluded in the 1970s that diagonalization alone may not resolve P versus NP
and other interesting questions; Section 3.4 describes their reasoning. Interestingly, these
limits of diagonalization are proved using diagonalization itself.

The results on limitations of diagonalization caused this technique to go out of favor for
many years, and other approaches such as circuit lower bounds became more popular (see
Chapter 14 for an introduction). But now those other approaches are also stuck, whereas
some recent results use diagonalization as a key component (see Section 20.4 for an example).
Thus future complexity theorists should master this simple idea before going on to anything
fancier!

Machines as strings and the universal TM. The one common tool used in all diagonal-
ization proofs is the representation of TMs by strings. We recall some salient aspects of this
representation as mentioned in Section 1.4. First, it is effective in the sense that there is
a universal TM that, given any string x, can simulate the machine represented by x with
a small (i.e. at most logarithmic) overhead. Second, every string x ∈ {0, 1}∗ represents
some TM (denoted by Mx) and every TM is represented by infinitely many strings. Finally,
throughout the chapter, we use the notation Mi, where i ∈ N, for the machine represented
by the string that is the binary expansion of the number i (without the leading 1).
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3.1 Time Hierarchy Theorem

The Time Hierarchy Theorem shows that allowing Turing Machines more computation time
strictly increases the set of languages that they can decide. Recall that for a function
f : N → N, DTIME(f(n)) is the set of languages decided by a TM running in time
O(f(n)). As usual we restrict attention to time-constructible functions f , which means that
the mapping x 7→ f(|x|) can be computed in O(f(n)) time (see sections 1.3 and 1.6).

Theorem 3.1 (Time Hierarchy Theorem [HS65])
If f, g are time-constructible functions satisfying f(n) log f(n) = o(g(n)), then

DTIME(f(n)) ( DTIME(g(n)) (1)

Proof: To showcase the essential idea of the proof of Theorem 3.1 with minimal notation,
we prove the simpler statement DTIME(n)  DTIME(n1.5).

Consider the following Turing Machine D: “On input x, run for |x|1.4 steps the Universal
TM U of Theorem 1.9 to simulate the execution of Mx on x. If U outputs some bit b ∈ {0, 1}
in this time, then output the opposite answer (i.e., output 1− b). Else output 0.” Here Mx

is the machine represented by the string x.
By definition, D halts within n1.4 steps and hence the language L decided by D is in

DTIME(n1.5). We claim that L 6∈ DTIME(n). For contradiction’s sake assume that there
is some TM M and constant c such that TM M , given any input x ∈ {0, 1}∗, halts within
c|x| steps and outputs D(x).

The time to simulate M by the universal Turing machine U on every input x is at
most c′c|x| log |x| for some number c′ that depends on the alphabet size and number of
tapes and states of M , but is independent of |x|. There is some number n0 such that
n1.4 > c′cn logn for every n ≥ n0. Let x be a string representing the machine M whose
length is at least n0 (such a string exists since M is represented by infinitely many strings).
Then, D(x) will obtain the output b = M(x) within |x|1.4 steps, but by definition of D, we
have D(x) = 1− b 6= M(x). Thus we have derived a contradiction.

The proof of the theorem for general f, g is similar, and uses the observation that the
slowdown in simulating a machine using U is at most logarithmic. �

3.2 Nondeterministic Time Hierarchy Theorem

The following is the hierarchy theorem for non-deterministic Turing machines.

Theorem 3.2 (Non-deterministic Time Hierarchy Theorem [Coo72])
If f, g are time constructible functions satisfying f(n+ 1) = o(g(n)), then

NTIME(f(n))  NTIME(g(n)) (2)

Proof: Again, we just showcase the main idea by proving NTIME(n)  NTIME(n1.5).
The first instinct is to duplicate the proof of Theorem 3.1, since there is a universal TM
for non-deterministic computation as well (see Exercise 2.6). However, this alone does not
suffice because the definition of the new machine D requires the ability to ”flip the answer,”
in other words, to efficiently compute, given the description of an NDTM M and an input
x, the value 1 −M(x). It is not obvious how to do this using the universal nondetermin-
istic machine, since as we saw earlier in our discussion of the conjecture NP 6= coNP
(Section 2.6.1), it is unclear how a nondeterministic machine can just ”flip the answer.”
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Specifically, we do not expect that that the complement of an NTIME(n) language will be
in NTIME(n1.5). Now of course, the complement of every NTIME(n) language is triv-
ially decidable in exponential time (even deterministically) by examining all the possibilities
for the machine’s non-deterministic choices, but on first sight this seems to be completely
irrelevant to proving NTIME(n)  NTIME(n1.5). Surprisingly, this trivial exponential
simulation of a nondeterministic machine does suffice to establish a hierarchy theorem.

The key idea will be lazy diagonalization, so named because the new machine D is in no
hurry to diagonalize and only ensures that it flips the answer of each linear-time NDTM Mi

in only one string out of a sufficiently large (exponentially large) set of strings.

Define the function f : N→ N as follows: f(1) = 2 and f(i+ 1) = 2f(i)1.2 . Given n, it’s
not hard to find in O(n1.5) time the number i such that n is sandwiched between f(i) and
f(i + 1). Our diagonalizing machine D will try to flip the answer of Mi on some input in
the set {1n : f(i) < n ≤ f(i+ 1)}. D is defined as follows:

“On input x, if x 6∈ 1∗, reject. If x = 1n, then compute i such that f(i) < n ≤ f(i+ 1)
and

1. If f(i) < n < f(i+ 1) then simulate Mi on input 1n+1 using nondeterminism in n1.1

time and output its answer. (If the simulation takes more time than that then halt and
accept.)

2. If n = f(i+ 1), accept 1n iff Mi rejects 1f(i)+1 in (f(i) + 1)1.1 time.”

Part 2 requires going through all possible 2(f(i)+1)1.1 branches of Mi on input 1f(i)+1,
but that is fine since the input size f(i+ 1) is 2f(i)1.2 . Hence the NDTM D runs in O(n1.5)
time.

Let L be the language decided by D. We claim that L 6∈ NTIME(n). Indeed, suppose
for the sake of contradiction that L is decided by an NDTM M running in cn steps (for some
constant c). Since each NDTM is represented by infinitely many strings, we can find i large
enough such that M = Mi and on inputs of length n ≥ f(i), Mi can be simulated in less
than n1.1 steps. This means that the two steps in the description of D ensure respectively
that

If f(i) < n < f(i+ 1), then D(1n) = Mi(1
n+1), (3)

whereas D(1f(i+1)) 6= Mi(1
f(i)+1). , (4)

By our assumption Mi and D agree on all inputs 1n for n ∈ (f(i), f(i + 1)]. Together
with (3), this implies that D(1f(i+1)) = Mi(1

f(i)+1), contradicting (4). (See Figure 3.1.) �

D(1f(i)+1) D(1f(i)+2) .... D(1f(i+1))

Mi(1
f(i)+1) Mi(1

f(i)+2) .... Mi(1
f(i+1))

= = = = = = = = =

=

Figure 3.1 The values of D and Mi on inputs 1n for n ∈ (f(i), f(i + 1)]. Full lines
denote equality by the design of D, dashed lines denote equality by the assumption that
D(x) = Mi(x) for every x, and the dashed arrow denotes inequality by the design of D.
Combining all these relations leads to a contradiction.
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3.3 Ladner’s Theorem: Existence of NP-intermediate problems

One of the striking aspects of NP-completeness is that a surprisingly large number of NP
problems —including some that were studied for many decades— turned out to be NP-
complete. This phenomenon suggests a bold conjecture: every problem in NP is either in P
or NP complete. If P = NP then the conjecture is trivially true but uninteresting. In this
section we show that if (as widely believed) P 6= NP, then this conjecture is false— there
is a language L ∈ NP \P that is not NP-complete. An interesting feature of the proof is
an interesting and Gödelian definition of a language SATH which ”encodes” the difficulty
of solving itself.

Theorem 3.3 (“NP intermediate” languages [Lad75])
Suppose that P 6= NP. Then there exists a language L ∈ NP\P that is not NP-complete.

Proof: For every function H : N→ N, we define the language SATH to contain all length-n

satisfiable formulae that are padded with nH(n) 1’s; that is, SATH =
{

ψ01n
H(n)

: ψ ∈ SAT and n = |ψ|
}

.

We now define a function H : N→ N as follows:

H(n) is the smallest number i < log logn such that for every x ∈ {0, 1}∗ with
|x| ≤ logn, Mi outputs SATH(x) within i|x|i steps.1 If there is no such number
i then H(n) = log logn.

H is well-defined since H(n) determines membership in SATH of strings whose length is
greater than n, and the definition of H(n) only relies upon checking the status of strings of
length at most logn. In fact, the definition of H directly implies an O(n3)-time recursive
algorithm that computes H(n) from n (see Exercise 3.6).2 We defined H in this way to
ensure the following claim:

Claim: SATH ∈ P iff H(n) = O(1) (i.e., there’s some C such that H(n) ≤ C for every n).
Moreover, if SATH 6∈ P then H(n) tends to infinity with n.

Proof of Claim:

(SATH ∈ P ⇒ H(n) = O(1)): Suppose there is a machine M solving SATH
in at most cnc steps. Since M is represented by infinitely many strings, there
is a number i > c such that M = Mi. The definition of H(n) implies that for

n > 22i , H(n) ≤ i. Thus H(n) = O(1).

(H(n) = O(1) ⇒ SATH ∈ P): If H(n) = O(1) then H can take only one
of finitely many values, and hence there exists an i such that H(n) = i for
infinitely many n’s. But this implies that the TM Mi solves SATH in ini-time:
for otherwise, if there was an input x on which Mi fails to output the right
answer within this bound, then for every n > 2|x| we would have H(n) 6= i.
Note that this holds even if we only assumed that there’s some constant C such
that H(n) ≤ C for infinitely many n’s, hence proving the “moreover” part of
the claim.

Using this claim we can show that if P 6= NP then SATH is neither in P nor NP
complete:

• Suppose that SATH ∈ P. Then by the claim, H(n) ≤ C for some constant C, implying
that SATH is simply SAT padded with at most a polynomial (namely, nC) number
of 1’s. But then a polynomial-time algorithm for SATH can be used to solve SAT in
polynomial time, implying that P = NP!

1Recall that Mi is the machine represented by the binary expansion of i, and SATH(x) is equal to 1 iff
x ∈ SATH .

2“Recursive algorithm” is a term borrowed from standard programming practice, where one calls a
program “recursive” if it has the ability to call itself on some other input.
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• Suppose that SATH is NP-complete. This means that there is a reduction f from
SAT to SATH that runs in time O(ni) for some constant i. Since we already concluded
SATH is not in P, the claim above implies that H(n) tends to infinity. Since the
reduction works in O(ni) time only, for large enough n it must map SAT instances of
size n to SATH instances of size smaller than nH(n). Thus for large enough formulae
ϕ, the reduction f must map it to a string of the type ψ01H(|ψ|) where ψ is smaller
by some fixed polynomial factor, say, smaller than 3

√
n. But the existence of such a

reduction yields a simple polynomial-time recursive algorithm for SAT, contradicting
the assumption P 6= NP! (Completing the details is left as Exercise 3.6.)

�

Though the theorem shows the existence of some non NP-complete language in NP \P
if NP 6= P, this language seems somewhat contrived, and the proof has not been strength-
ened to yield a more natural language. In fact, there are remarkably few candidates for such
languages, since the status of most natural languages has been resolved thanks to clever algo-
rithms or reductions. Two interesting exceptions are the Factoring and Graph isomorphism
languages (see Example 2.3). No polynomial-time algorithm is currently known for these
languages, and there is strong evidence that they are not NP complete (see Chapter 8).

3.4 Oracle machines and the limits of diagonalization

Quantifying the limits of diagonalization is not easy. Certainly, the diagonalization in Sec-
tions 3.2 and 3.3 seems more clever than the one in Section 3.1 or the one that proves the
undecidability of the halting problem in Section 1.5.

For concreteness, let us say that “diagonalization” is any technique that relies solely
upon the following properties of Turing machines:

I The existence of an effective representation of Turing machines by strings.

II The ability of one TM to simulate any another without much overhead in running time
or space.

Any argument that only uses these facts is treating machines as black boxes: the ma-
chine’s internal workings do not matter. We now show a general way to define variants of
Turing Machines called oracle Turing Machines that still satisfy the above two properties.
However, one way of defining the variant results in TMs for which P = NP, whereas another
way results in TMs for which P 6= NP. We conclude that to resolve P versus NP we need
to use some other property in addition to I and II.

Oracle machines are TMs that are given access to a black box or “oracle” that can
magically solve the decision problem for some language O ⊆ {0, 1}∗. The machine has a
special oracle tape on which it can write a string q ∈ {0, 1}∗ and in one step gets an answer
to a query of the form “Is q in O?”. This can be repeated arbitrarily often with different
queries. If O is a difficult language (say, which cannot be decided in polynomial time, or
even undecidable) then this oracle gives an added power to the TM.

Definition 3.4 (Oracle Turing Machines) An oracle Turing machine is a TM M that has
a special read/write tape we call M ’s oracle tape and three special states qquery, qyes, qno. To
execute M , we specify in addition to the input a language O ⊆ {0, 1}∗ that is used as the
oracle for M . Whenever during the execution M enters the state qquery, the machine moves
into the state qyes if q ∈ O and qno if q 6∈ O, where q denotes the contents of the special
oracle tape. Note that, regardless of the choice of O, a membership query to O counts only
as a single computational step. If M is an oracle machine, O ⊆ {0, 1}∗ a language, and
x ∈ {0, 1}∗, then we denote the output of M on input x and with oracle O by MO(x).

Nondeterministic oracle TMs are defined similarly. ♦
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Definition 3.5 For every O ⊆ {0, 1}∗, PO is the set containing every language that can be
decided by a polynomial-time deterministic TMs with oracle access to O and NPO is the
set of every language that can be decided by a polynomial-time non-deterministic TM with
oracle access to O. ♦

Example 3.6
To illustrate the definition of oracle TMs, we show the following simple facts:

1. Let SAT denote the language of unsatisfiable formulae. Then SAT ∈ PSAT.

Indeed, given oracle access to SAT, to decide whether a formula ϕ is in SAT,
a polynomial-time oracle TM can ask its oracle if ϕ ∈ SAT, and then gives
the opposite answer as its output.

2. Let O ∈ P. Then PO = P.

Indeed, allowing an oracle can only help compute more languages and so
P ⊆ PO. If O ∈ P then it is redundant as an oracle, since we can transform
any polynomial-time oracle TM using O into a standard TM (no oracle) by
simply replacing each oracle call with the computation of O. Thus PO ⊆ P.

3. Let EXPCOM be the following language

{〈M,x, 1n〉 : M outputs 1 on x within 2n steps} .

Then PEXPCOM = NPEXPCOM = EXP. (Recall that EXP = ∪cDTIME(2n
c

).)

Clearly, an oracle to EXPCOM allows one to perform an exponential-time
computation at the cost of one call, and so EXP ⊆ PEXPCOM. On the
other hand, if M is a non-deterministic polynomial-time oracle TM, we
can simulate its execution with a EXPCOM oracle in exponential time:
such time suffices both to enumerate all of M ’s non-deterministic choices
and to answer the EXPCOM oracle queries. Thus, EXP ⊆ PEXPCOM ⊆
NPEXPCOM ⊆ EXP.

The key fact about oracle TMs is that regardless of what the oracle O is, the set of
all TM’s with access to O satisfy Properties I and II above. The reason is that we can
represent TMs with oracle O as strings, and use this representation to simulate such TM’s
using a universal TM (that itself also has access to O). Thus any result about TMs or
complexity classes that uses only I and II above also holds for the set of all TMs with oracle
O. Such results are called relativizing results. Many results in this book (and in particular
theorems 3.1, 3.2 and 3.3 of this chapter) are of this type.

The next theorem implies that whichever of P = NP or P 6= NP is true, it cannot be
a relativizing result.

Theorem 3.7 (Baker, Gill, Solovay [BGS75])
There exist oracles A,B such that PA = NPA and PB 6= NPB.

Proof: We set A to be the language EXPCOM of Example 3.6, implying that PA = NPA =
EXP.

For any language B, let UB be the unary language

UB = {1n : some string of length n is in B} .

For every oracle B, the language UB is clearly in NPB, since a non-deterministic TM can
make a non-deterministic guess for the string x ∈ {0, 1}n such that x ∈ B. We now construct
an oracle B such that UB 6∈ PB, implying that PB 6= NPB .
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Construction of B: For every i, we let Mi be the oracle TM represented by the binary
expansion of i. We construct B in stages, where stage i ensures that MB

i does not decide
UB in 2n/10 time. Initially we let B be empty, and gradually add strings to it. Each stage
determines the status of a finite number of strings (i.e., whether or not these strings will
ultimately be in B).

Stage i: So far, we have declared whether or not a finite number of strings are in B.
Choose n large enough so that it exceeds the length of any such string, and run Mi on input
1n for 2n/10 steps. Whenever Mi queries the oracle about strings whose status has been
determined, we answer consistently. When Mi queries strings whose status is undetermined,
we declare that the string is not in B. After letting Mi finish computing on 1n, we now
wish to ensure that the answer of Mi on 1n (whatever it was) is incorrect. The main point
is that we have only decided the fate of at most 2n/10 strings in {0, 1}n, and all of them
were decided to be not in B. So if Mi accepts 1n, we declare that all remaining strings of
length n are also not in B, thus ensuring 1n 6∈ UB. Conversely, if Mi rejects 1n, we pick
any string x of length n that Mi has not queried (such a string exists because Mi made
at most 2n/10 queries) and declare that x is in B, thus ensuring 1n ∈ Bu. In either case,
the answer of Mi is incorrect. Since every polynomial p(n) is smaller than 2n/10 for large
enough n, and every TM M is represented by infinitely many strings, our construction will
ensure that M does not decide UB. Thus we have shown UB is not in PB (and in fact the
same proof shows it is not in DTIMEB(f(n)) for every f(n) = o(2n)). �

Let us now answer our original question: Can diagonalization or any simulation method
resolve P vs NP? Answer: Possibly, but it has to use some fact about TMs that does
not hold in presence of oracles (i.e., a non-relativizing fact). Even though many results
in complexity relativize, there are some notable exceptions such as IP = PSPACE (see
Chapter 8) and the PCP Theorem (see Chapter 11). Of course we still don’t know how to
use these non-relativizing techniques to solve the P vs. NP question!

Remark 3.8
Oracle TMs are useful in many other places in complexity theory. For instance, they crop
up in Theorem 5.12 and in Chapter 17. In the latter setting, the oracle provided to the TM
is not merely a language (i.e., Boolean function) but a general function f :{0, 1}∗ → {0, 1}∗.
Generally an oracle TM is a useful abstraction of an algorithm that uses another function
as a black-box subroutine, without caring how it is implemented.

3.4.1 Logical independence versus relativization

The notion of relativization was inspired by independence results in mathematical logic,
which showed that certain natural mathematical statements cannot be proved or disproved
in a particular system of axioms. Two well-known examples are the independence of Euclid’s
fifth postulate from the first four (which led to discovery of noneuclidean geometries) and
the independence of the Continuum Hypothesis from Zermelo-Fraenkel Set Theory.

Since relativization results show that the statement P = NP can neither be proved
nor disproved using ”known techniques”, they can also be viewed as independence results.
However, they do not have the same feeling of preciseness as, say, the result about the
independence of the Continuum Hypothesis, since the notion of ”known techniques” is left
vague.

An article of Arora, Impagliazzo and Vazirani [AIV93] tries to clarify this issue. It gives
an axiomatic system analogous to Cobham’s axiomatic characterization of P from 1964, and
this axiomatic system is shown to imply exactly those statements about P that relativize.
Thus a non-relativizing statement is one that is not provable in this axiomatic system.

The question then arises: how can we extend this axiomatic system to allow it to prove
non-relativizing results? One idea is to add every nonrelativizing result as a new axiom
whenever it gets discovered. A more conservative approach would be to find a single nonrel-
ativizing fact that implies all known nonrelativizing results. Surprisingly, this can be done:
this single nonrelativizing fact is essentially the Cook-Levin Theorem encountered in Chap-
ter 2. The proof of the Cook-Levin Theorem uses the fact that computation is local (i.e.,
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the fact that each basic step of a Turing machine only examines and modifies a constant
number of tape locations). The article [AIV93] describes a few ways to formalize the fact
that computation is local, and all of these seem to (a) Not relativize (see Exercise 3.7); (b)
imply all known nonrelativizing results in the axiomatic setting; (c) make the axiomatic
system strong enough so that if P versus NP is provable at all, then similarly interesting
statements can be proved in the axiomatic system.

Of course, knowing that the local checkability of computation is going to be key for
resolving P versus NP does not give much insight into how to actually resolve this problem—
no more than the insight that the basic axioms for arithmetic give into how to prove Fermat’s
Last Theorem.

What have we learned?

• Diagonalization uses the representation of Turing machines as strings to separate com-
plexity classes.

• We can use it to show that giving a TM more of the same type of resource (time,
non-determinism, space) allows it to solve more problems, and to show that, assuming
NP 6= P, NP has problems neither in P nor NP-complete.

• Results proven solely using diagonalization relativize in the sense that they hold also
for TM’s with oracle access to O, for every oracle O ⊆ {0, 1}∗. We can use this to
show the limitations of such methods. In particular, relativizing methods alone cannot
resolve the P vs. NP question.

Chapter notes and history

Georg Cantor invented diagonalization in the 19th century to show that the set of real numbers
is uncountable. Kurt Gödel used a similar technique in his proof of the Incompleteness Theo-
rem. Computer science undergraduates often encounter diagonalization when they are taught the
undecidabilty of the Halting Problem.

The time hierarchy theorem is from Hartmanis and Stearns’ pioneering paper [HS65]. The
nondeterministic time hierarchy theorem is from Cook [Coo72], though the simple proof given here
is essentially from [Zak83]. A similar proof works for other complexity classes such as the (levels
of the) polynomial hierarchy discussed in the next chapter. Ladner’s theorem is from [Lad75] but
the proof here is from an unpublished manuscript by Impagliazzo. We only proved a simple form
of Ladner’s Theorem. The full theorem exhibits an infinite hierarchy of classes between P and NP
assuming P 6= NP, in the sense that each class is contained in the higher class, but no class is
polynomial-time reducible to a problem in a lower class. The notion of relativizations of the P
versus NP question is from Baker, Gill, and Solovay [BGS75].

The notion of oracle Turing machines can be used to study interrelationships of complexity
classes. In fact, Cook [Coo71] defined NP-completeness using oracle machines. A subfield of
complexity theory called structural complexity has carried out a detailed study of oracle machines
and classes defined using them; see the book of Hemaspaandra and Ogihara [HO02] for more on
this topic.

The relativitization results of Baker, Gill, and Solovay focused interest on circuit lower bounds
as a way to separate complexity classes, an effort that also stalled a decade later. Chapter 23
formalizes why known proof techniques (”natural proofs”) may not suffice to prove interesting
circuit lower bounds.

The term superiority introduced in the exercises does not appear in the literature per se but it
is related to concepts such as immunity and almost everywhere complexity which have been studied.
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Exercises

3.1 Show that the following language is undecidable:
{

xMy : M is a machine that runs in 100n2 + 200 time
}

.

3.2 Show that SPACE(n) 6= NP. (Note that we do not know if either class is contained in the other.)

3.3 Show that there is a language B ∈ EXP such that NPB 6= PB.

3.4 Say that a class C1 is superior to a class C2 if there is a machine M1 in class C1 such that for every
machine M2 in class C2 and every large enough n, there is an input of size between n and n2 on
which M1 and M2 answer differently.

(a) Is DTIME(n1.1) superior to DTIME(n)?

(b) Why does our proof of the nondeterministic hierarchy theorem not prove that NTIME(n1.1)
superior to NTIME(n)?

3.5 Show that there exists a function that is not time-constructible.

3.6 (a) Prove that the function H defined in the proof of Theorem 3.3 is computable in polynomial
time. H458

(b) Let SATH be defined as in the proof of Theorem 3.3 for a polynomial-time computable function
H : N → N such that limn→∞H(n) = ∞. Prove that if SATH is NP-complete than SAT is in
P. H458

3.7 Show that there is an oracle A and a language L ∈ NPA such that L is not polynomial-time
reducible to 3SAT even when the machine computing the reduction is allowed access to A.

3.8 Suppose we pick a random unary language B in the following way: for every n with probability
1/2 B has no strings of length n and with probability 1/2 it has a single random string x of length
n. Prove that with high probability PB 6= NPB . (To give an answer that is formally correct you
may need to know elementary measure theory.)

3.9 Suppose we pick a random language C by choosing every string to be in C independently with
probability 1/2. Prove that with high probability PC 6= NPC .
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Chapter 4

Space complexity

“(our) construction... also suggests that what makes “games” harder than
“puzzles” (e.g. NP-complete problems) is the fact that the initiative (“the
move”) can shift back and forth between the players.”
Shimon Even and Robert Tarjan, 1976

In this chapter we study the memory requirements of computational tasks. To do this we
define space-bounded computation, which places limits on the number of tape cells a TM can
use during its computation. We define both deterministic and non-deterministic versions
of such machines and study complexity classes of problems solvable by such machines. In
Sections 4.2.1 and 4.3.2 we show some surprising relations between these variants.

As in the case of NP, we define a notion of complete problems for these classes, and iden-
tify concrete and interesting problems that are complete for space-bounded classes. It turns
out that for polynomial space bounds, the complete problems involve finding winning strate-
gies in 2-player games with perfect information such as Chess and Go (see Section 4.2.2). As
pointed out in Even and Tarjan’s quote above, our current understanding is that computing
such strategies is inherently different from (and possibly more difficult than) solving NP
problems such as SAT.

We also study computations that run in sub-linear space —in other words, the input is
much larger than the algorithm’s work space. This notion is both useful and interesting, so
we define the class L corresponding to computations using logarithmic space in Section 4.1.2
and study its non-deterministic variant in Section 4.3.

4.1 Definition of space bounded computation

The formal definition of deterministic and non-deterministic space bounded computation is
as follows (see also Figure 4.1):

Definition 4.1 (Space-bounded computation.)
Let S : N→ N and L ⊆ {0, 1}∗. We say that L ∈ SPACE(s(n)) if there is a constant c and
a TM M deciding L such at most c · s(n) locations on M ’s work tapes (excluding the input
tape) are ever visited by M ’s head during its computation on every input of length n.

Similarly, we say that L ∈ NSPACE(s(n)) if there is an NDTM M deciding L that never
uses more than c · s(n) non-blank tape locations on length n inputs, regardless of its non-
deterministic choices. .

Analogously to time complexity, we will restrict our attention to space bounds S : N→ N
that are space-constructible by which we mean that there is a TM that computes S(|x|) in
O(S(|x|)) space given x as input. Intuitively, if S is space-constructible, then the machine
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Figure 4.1 Space bounded computation. Only cells used in the read/write tapes count
toward the space bound.

“knows” the space bound it is operating under. This is a very mild restriction since all
functions of interest, including log n,n and 2n, are space-constructible.

Since the TM’s work tapes are separated from its input tape, it makes sense to consider
space-bounded machines that use space less than the input length, namely, S(n) < n. This
is in contrast to time-bounded computation, where DTIME(T (n)) for T (n) < n does not
make much sense since the TM does not have enough time to read the entire input. We will
require however that S(n) > logn since the work tape has length n, and we would like the
machine to at least be able to “remember” the index of the cell of the input tape that it is
currently reading.

DTIME(S(n)) ⊆ SPACE(S(n)) since a TM can access only one tape cell per step.
But a SPACE(S(n)) machine can run for much longer than S(n) steps, since space can be
reused : a cell on the work tape can be overwritten an arbitrary number of times. In fact,
a space S(n) machine can easily run for as much as 2Ω(S(n)) steps— think for example of
the machine that uses its work tape of size S(n) to maintain a counter which it increments
from 1 to 2S(n)−1. The next theorem (whose proof appears in Section 4.1.1) shows that this
is tight in the sense that any languages in SPACE(S(n)) (and even NSPACE(S(n))) is
in DTIME(2O(S(n))). Surprisingly enough, up to logarithmic terms, this theorem contains
the only relationships we know between the power of space-bounded and time-bounded
computation. Improving this would be a major result.

Theorem 4.2 For every space constructible S : N→ N,

DTIME(S(n)) ⊆ SPACE(S(n)) ⊆ NSPACE(S(n)) ⊆ DTIME(2O(S(n))) ♦

Remark 4.3
Some texts define a nondeterministic space-bounded machine with the aditional restriction
that it has to halt and produce an answer on every input regardless of the sequence of
nondeterministic choices. However, if we focus on NSPACE(S(n)) where S(n) is space-
constructible, this restriction is unnecessary since the NDTM can be easily modified to
always halt: it simply keeps a counter and halts if the computation runs for more than
2cS(n) steps for some suitable constant c.

4.1.1 Configuration graphs.

To prove Theorem 4.2 we use the notion of a configuration graph of a Turing machine. This
notion will also be quite useful for us later in this chapter and the rest of the book. Let
M be a (deterministic or non-deterministic) TM. A configuration of a TM M consists of
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Cstart

Caccept
αqβ

Figure 4.2 The configuration graph GM,x is the graph of all configurations of M ’s execution
on x where there is an edge from a configuration C to a configuration C′ if C′ can be obtained
from C in one step. It has out-degree one if M is deterministic and out-degree at most two
if M is non-deterministic.

the contents of all non-blank entries of M ’s tapes, along with its state and head position,
at a particular point in its execution. For every space S(n) TM M and input x ∈ {0, 1}∗,
the configuration graph of M on input x, denoted GM,x, is a directed graph whose nodes
correspond to all possible configurations of M where the input contains the value x and
the work tapes have at most S(|x|) non-blank cells. The graph has a directed edge from
a configuration C to a configuration C′ if C′ can be reached from C in one step according
to M ’s transition function (see Figure 4.2). If M is deterministic then the graph has out-
degree one, and if M is non-deterministic then the graph has out-degree at most two. By
modifying M to erase all its work tapes before halting, we can assume that there is only a
single configuration Caccept on which M halts and outputs 1. This means that M accepts the
input x iff there exists a directed path in GM,x from Cstart to Caccept. We will use the following
claim about configuration graphs, where part 2 will be used only in a subsequent section:

Claim 4.4 Let GM,x be the configuration graph of a space-S(n) machine M on some input
x of length n. Then,

1. Every vertex in GM,x can be described using cS(n) bits for some constant c (depending
on M ’s alphabet size and number of tapes) and in particular, GM,x has at most 2cS(n)

nodes.

2. There is an O(S(n))-size CNF formula ϕM,x such that for every two strings C,C′,
ϕM,x(C,C

′) = 1 if and only if C and C′ encode two neighboring configuration in
GM,x. ♦

Proof sketch: Part 1 follows from observing that a configuration is completely described
by giving the contents of all work tapes, the position of the head, and the state that the TM
is in (see Section 1.2). We can encode a configuration by first encoding the snapshot (i.e.,
state and current symbol read by all tapes) and then encoding in sequence the non-blank
contents of all the work tapes, inserting special “marker” symbols to denote the locations
of the heads.

Part 2 follows using similar ideas as in the proof of the Cook-Levin theorem (Theo-
rem 2.10). There we showed that deciding whether two configurations are neighboring can
be expressed as the AND of many checks, each depending on only a constant number of
bits, and such checks can be expressed by constant-sized CNF formulae by Claim 2.13. The
number of variables is proportional to the workspace. �

Now we can prove Theorem 4.2.

Proof of Theorem 4.2: Clearly DTIME(S(n)) ⊆ SPACE(S(n)) ⊆ NSPACE(S(n))
and so we just need to show NSPACE(S(n)) ⊆ DTIME(2O(S(n))). By enumerating over
all possible configurations we can construct the graph GM,x in 2O(S(n))-time and check
whether Cstart is connected to Caccept in GM,x using the standard (linear in the size of the
graph) breadth-first search algorithm for connectivity (e.g., see [CLRS01]). �
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4.1.2 Some space complexity classes.

The following complexity classes will be of particular interest:

Definition 4.5

PSPACE = ∪c>0SPACE(nc)

NPSPACE = ∪c>0NSPACE(nc)

L = SPACE(log n)

NL = NSPACE(logn) ♦
We can think of PSPACE and NPSPACE as the space analogs of the time complexity

classes P and NP respectively. Since time bounds shorter than the input length don’t make
much sense, there are no time analogs for L and NL.

Example 4.6
We show how 3SAT ∈ PSPACE by describing a TM that decides 3SAT in
linear space (that is, O(n) space, where n is the size of the 3SAT instance). The
machine just uses the linear space to cycle through all 2k assignments in order,
where k is the number of variables. Note that once an assignment has been
checked it can be erased from the work tape, and the work tape then reused
to check the next assignment. A similar idea of cycling through all potential
certificates applies to any NP language, so in fact NP ⊆ PSPACE.

Example 4.7
Using the grade school method for arithmetic and the fact that a logspace ma-
chine has enough space to keep a counter up to n, it is easily checked that the
following languages are in L:

EVEN = {x : x has an even number of 1s} .
MULT = {( xny, xmy, xnmy) : n ∈ N} .

It seems difficult to conceive of any complicated computations apart from elementary
arithmetic that use only O(log n) space. Nevertheless, we cannot currently even rule out
that 3SAT ∈ L; in other words it is open whether NP 6= L (see Exercise 4.6). Space-
bounded computations with space S(n)≪ n seem relevant to computational problems such
as web crawling. The world-wide-web may be viewed crudely as a directed graph, whose
nodes are webpages and edges are hyperlinks. Webcrawlers seek to explore this graph for
all kinds of information. The following problem PATH is natural in this context:

PATH = {〈G, s, t〉 : G is a directed graph in which there is a path from s to t} (1)

We show that PATH ∈ NL. Note that if there is a path from s to t, then there is one
of length at most n. Thus a nondeterministic machine can take a “nondeterministic walk”
starting at s, always maintaining the index of the vertex it is at, and using nondeterminism
to select a neighbor of this vertex to go to next. The machine accepts iff the walk ends at t
in at most n steps, where n is the number of nodes. If the nondeterministic walk has run for
n steps already and t has not been encountered, the machine rejects. The work tape only
needs to hold O(log n) bits of information at any step, namely, the number of steps that the
walk has run for, and the identity of the current vertex.

Is PATH in L as well? This is an open problem, which, as we will shortly see, is equivalent
to whether or not L = NL. That is, PATH captures the “essence” of NL just as 3SAT

captures the “essence” of NP. Formally, we will show that PATH is NL-complete. A
recent surprising result shows that the restriction of PATH to undirected graphs is in L; see
Chapters 7 and 20.
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4.1.3 Space Hierarchy Theorem

Analogously to time-bounded classes, there is also a hierarchy theorem for space-bounded
computation:

Theorem 4.8 (Space Hierarchy Theorem [SHL65])
If f, g are space-constructible functions satisfying f(n) = o(g(n)), then

SPACE(f(n)) ( SPACE(g(n)) (2)

The proof is completely analogous to the proof of the time hierarchy theorem (Theo-
rem 3.1) except that one can have a universal TM using only a constant factor of space
overhead, and hence we don’t need the logarithmic term of Theorem 3.1. We leave the
proof of Theorem 4.8 as Exercise 4.1.

4.2 PSPACE completeness

As already indicated, we do not know if P = PSPACE, though we strongly believe that
the answer is NO. Indeed, since NP ⊆ PSPACE, P = PSPACE implies P = NP. Recall
that we denote L ≤p L′ if L is polynomial-time reducible to L′ (see Definition 2.7). We now
present some complete problems for PSPACE.

Definition 4.9 A language L′ is PSPACE-hard if for every L ∈ PSPACE, L ≤p L′. If in
addition L′ ∈ PSPACE then L′ is PSPACE-complete. ♦

Using our observations about polynomial-time reductions from Chapter 2 we see that if
any PSPACE-complete language is in P then so is every other language in PSPACE.
Using the contrapositive, if PSPACE 6= P then a PSPACE-complete language is not in
P. Thus intuitively speaking a PSPACE-complete language is the “most difficult” problem
of PSPACE. The following language can be easily shown to be PSPACE-complete (see
Exercise 4.2):

SPACE TMSAT = {〈M,w, 1n〉 : DTM M accepts w in space n} . (3)

Now we show another PSPACE-complete problem that is more interesting. It uses the
following notion.

Definition 4.10 (Quantified Boolean Formula) A quantified Boolean formula (QBF), is a
formula of the form Q1x1Q2x2 · · ·Qnxnϕ(x1, x2, . . . , xn) where each Qi is one of the two
quantifiers ∀ or ∃, x1, . . . , xn range over {0, 1}, and ϕ is a plain (unquantified) Boolean
formula. The quantifiers ∀ and ∃ have their standard meaning of “for all” and “exists.” ♦

The previous definition restricts attention to quantified Boolean formulae in prenex nor-
mal form, i.e., all quantifiers appear all the way to the left. One can also consider quantified
Boolean formulae where the quantifiers can appear elsewhere in the formula. However, we
can transform every quantified formula into an equivalent formula in prenex form in poly-
nomial time using identities such as ¬∀xφ(x) = ∃x¬φ(x) and ψ ∨ ∃xϕ(x) = ∃x ψ ∨ ϕ(x)
where ψ does not contain x. Unlike in the case of the SAT and 3SAT problems, we do
not require that the inner unquantified formula ϕ is in CNF or 3CNF form. However this
choice is also not important, since using auxiliary variables in a similar way to the proof of
the Cook-Levin theorem, we can in polynomial time transform a general quantified Boolean
formula to an equivalent formula where the inner unquantified formula is in 3CNF form.

Since all the variables of a QBF are bound by some quantifier, the QBF is always either
true or false, something that is best illustrated with an example.
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Example 4.11
Consider the formula ∀x∃y (x ∧ y) ∨ (x ∧ y) where ∀ and ∃ quantify over the
universe {0, 1}. Some reflection shows that this is saying “for every x ∈ {0, 1}
there is a y ∈ {0, 1} that is equal to x”, which we can also informally represent
as ∀x∃y(x = y). This formula is true. (The symbols = and 6= are not logical
symbols per se, but are used as informal shorthand to make the formula more
readable; see also Example 2.12.) However, switching the second quantifier to ∀
gives ∀x∀y (x ∧ y) ∨ (x ∧ y), which is false.

Example 4.12
Recall that the SAT problem is to decide, given a Boolean formula ϕ that
has n free variables x1, . . . , xn, whether or not ϕ has a satisfying assignment
x1, . . . , xn ∈ {0, 1}n such that ϕ(x1, . . . , xn) is true. An equivalent way to
phrase this problem is to ask whether the quantified Boolean formula ψ =
∃x1, . . . , xnϕ(x1, . . . , xn) is true. You should also verify that the negation of the
formulaQ1x1 · · ·Qnxnϕ(x1, x2, . . . , xn) is the same asQ′

1x1 · · ·Q′
nxn¬ϕ(x1, x2, . . . , xn),

where Q′
i is ∃ if Qi was ∀ and vice versa. The switch of ∃ to ∀ in case of SAT

gives instances of TAUTOLOGY, the coNP-complete language we encountered
in Chapter 2.

We define the language TQBF to be the set of quantified Boolean formulae that are true.

Theorem 4.13 ([SM73])
TQBF is PSPACE-complete.

Proof: First we show that TQBF ∈ PSPACE. Let

ψ = Q1x1Q2x2 . . . Qnxnϕ(x1, x2, . . . , xn) (4)

be a quantified Boolean formula with n variables, where we denote the size of ϕ by m. We
show a simple recursive algorithm A that can decide the truth of ψ in O(n+m) space. We
will solve the slightly more general case where, in addition to variables and their negations,
ϕ may also include the constants 0 (i.e., “false”) and 1 (i.e., “true”). If n = 0 (there are no
variables) then the formula contains only constants and can be evaluated in O(m) time and
space, and so we assume n > 0. For b ∈ {0, 1}, denote by ψ↾x1=b the modification of ψ where
the first quantifier Q1 is dropped and all occurrences of x1 are replaced with the constant
b. Algorithm A will work as follows: if Q1 = ∃ then output 1 iff at least one of A(ψ↾x1=0)
and A(ψ↾x1=1) outputs 1. If Q1 = ∀ then output 1 iff both A(ψ↾x1=0) and A(ψ↾x1=1) output
1. By the definition of ∃ and ∀, it is clear that A does indeed return the correct answer on
any formula ψ.

Let sn,m denote the space A uses on formulas with n variables and description size
m. The crucial point is —and here we use the fact that space can be reused—that both
recursive computations A(ψ↾x1=0) and A(ψ↾x1=1) can run in the same space. Specifically,
after computing A(ψ↾x1=0), the algorithm A needs to retain only the single bit of output
from that computation, and can reuse the rest of the space for the computation ofA(ψ↾x1=1).
Thus, assuming that A uses O(m) space to write ψ↾x1=b for its recursive calls, we’ll get that
sn,m = sn−1,m +O(m) yielding sn,m = O(n ·m).1

1This analysis suffices to show that TQBF is in PSPACE, but A can actually be made to use linear
space, specifically, O(m + n). The reason is that A is always invoked on restrictions of the same formula
ψ. So it can keep a global partial assignment array that for each variable xi will contain either 0, 1 or ’q’

(if it’s quantified and not assigned any value). A will use this global space for its operation, where in each
call it will find the first quantified variable, set it to 0 and make the recursive call, then set it to 1 and
make the recursive call, and then set it back to ’q’. We see that A’s space usage is given by the equation
sn,m = sn−1,m + O(1) which resolves to O(n+m).
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We now show that L ≤p TQBF for every L ∈ PSPACE. Let M be a machine that
decides L in S(n) space and let x ∈ {0, 1}n. We show how to construct a quantified Boolean
formula of size O(S(n)2) that is true iff M accepts x. Let m = O(S(n) denote the number
of bits needed to encode a configuration of M on length n inputs. By Claim 4.4, there is
a Boolean formula ϕM,x such that for every two strings C,C′ ∈ {0, 1}m, ϕM (C,C′) = 1
iff C and C′ encode two adjacent configurations in the configuration graph GM,x. We
will use ϕM,x to come up with a polynomial-sized quantified Boolean formula ψ that has
polynomially many variables bound by quantifiers and two unquantified variables such that
for every C,C′ ∈ {0, 1}m, ψ(C,C′) is true iff C has a directed path to C′ in GM,x. By
plugging in the values Cstart and Caccept to ψ we get a quantified Boolean formula that is true
iff M accepts x.

We define the formula ψ inductively. We let ψi(C,C
′) be true if and only if there is a

path of length at most 2i from C to C′ in GM,x. Note that ψ = ψm and ψ0 = ϕM,x. The
crucial observation is that there is a path of length at most 2i from C to C′ if and only if
there is a configuration C′′ with a path of length at most 2i−1 from C to C′′ and a path
of length at most 2i−1 from C′′ to C′. This suggest defining ψi as follows: ψi(C,C

′) =
∃C′′ ψi−1(C,C

′′) ∧ ψi−1(C
′′, C′).

However, this definition is not good, since ψi’s size is at least twice the size of ψi−1, and
so a simple induction shows that ψm has size about 2m, which is way too large. Instead,
we use additional quantified variables to save on description size, using the following more
succinct definition for ψi(C,C

′):

∃C′′∀D1∀D2
(

(D1 = C ∧D2 = C′′) ∨ (D1 = C′′ ∧D2 = C′)
)

⇒ ψi−1(D
1, D2) .

(Here, as in Example 4.11, = and ⇒ are simply used as a convenient shorthand, and can
be replaced by appropriate combinations of the standard Boolean operations.) Note that
size(ψi) ≤ size(ψi−1) + O(m) and hence size(ψm) ≤ O(m2). We leave it to the reader to
verify that the two definitions of ψi are indeed logically equivalent. As noted above we can
convert the final formula to prenex form in polynomial time. �

4.2.1 Savitch’s theorem

The astute reader may notice that because the proof of Theorem 4.13 uses the notion of
a configuration graph and does not require this graph to have out-degree one, it actually
yields a stronger statement: that TQBF is not just hard for PSPACE but in fact even for
NPSPACE! Since TQBF ∈ PSPACE this implies that PSPACE = NSPACE, which is
quite surprising since our intuition is that the corresponding classes for time (P and NP)
are different. In fact, using the same ideas, one can obtain the following theorem:

Theorem 4.14 (Savitch’s Theorem [Sav70])
For any space-constructible S : N → N with S(n) ≥ logn, NSPACE(S(n)) ⊆
SPACE(S(n)2)

Proof: The proof closely follows the proof of Theorem 4.13. Let L ∈ NSPACE(S(n)) be
a language decided by a TM M such that for every x ∈ {0, 1}n, the configuration graph
G = GM,x has at most M = 2O(S(n)) vertices, and determining whether x ∈ L is equivalent
to determining whether Caccept can be reached from Cstart in this graph. We describe a recursive
procedure reach?(u, v, i) that returns “YES” if there is a path from u to v of length at
most 2i and “NO” otherwise. Again, the main observation is that there is a path from u
to v of length at most 2i iff there’s a vertex z with an at most 2i−1 long path from u to z
and at most 2i−1 long path from z to v. Hence on inputs u, v, i, reach? will enumerate
over all vertices z (at a cost of O(logM) space) and output “YES” if it finds one z such
that reach?(u, z, i− 1)=“YES” and reach?(z, v, i− 1)=“YES”. Once again, although the
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algorithm makes n recursive invocations it can reuse the space in each of these invocations.
Thus, if we let sM,i be the space complexity of reach?(u, v, i) on an M -vertex graph, then
sM,i = sM,i−1 + O(logM) and thus sM,logM = O(log2M) = O(S(n)2). Since Caccept is
reachable from Cstart iff it can be reached via a path of length at most M , this concludes the
proof. �

We remark that the running time of the algorithm obtained from the proof of Theo-
rem 4.14 can be as high as 2Ω(s(n)2), which is in contrast to the upper bound of 2O(s(n)) (for
an entirely different algorithm) given in Theorem 4.2.

4.2.2 The essence of PSPACE: optimum strategies for game-playing

Recall that the central feature of NP-complete problems is that a yes answer has a short
certificate (see Definition 2.1). The analogous concept for PSPACE-complete problems
seems to be that of a winning strategy for a 2-player game with perfect information. A
good example of such a game is Chess: two players alternately make moves, and the moves
are made on a board visible to both; hence the term “perfect information.” What does it
mean for a player to have a “winning strategy?” The first player has a winning strategy iff
there is a 1st move for player 1 such that for every possible 1st move of player 2 there is a
2nd move of player 1 such that.... (and so on) such that at the end player 1 wins. Deciding
whether or not the first player has a winning strategy seems to require searching the tree of
all possible moves. This is reminiscent of NP, for which we also seem to require exponential
search. But the crucial difference is the lack of a short “certificate” for the statement “Player
1 has a winning strategy,” since the only certificate we can think of is the winning strategy
itself, which as noticed, requires exponentially many bits to even describe. Thus we seem to
be dealing with a fundamentally different phenomenon than the one captured by NP.

The interplay of existential and universal quantifiers in the description of the the winning
strategy motivates us to invent the following game.

Example 4.15 (The QBF game)
The “board” for the QBF game is a Boolean formula ϕ whose free variables are
x1, x2, . . . , x2n. The two players alternately make moves, which involve pick-
ing values for x1, x2, . . . , in order. Thus player 1 will pick values for the odd-
numbered variables x1, x3, x5, . . . (in that order) and player 2 will pick values for
the even-numbered variables x2, x4, x6, . . . ,. We say player 1 wins iff at the end
ϕ(x1, x2, . . . , x2n) is true.
In order for player 1 to have a winning strategy he must have a way to win for
all possible sequences of moves by player 2, namely, if

∃x1∀x2∃x3∀x4 · · · ∀x2nϕ(x1, x2, . . . , x2n),

which is just saying that this quantified Boolean formula is true.
Thus deciding whether player 1 has a winning strategy for a given board in the
QBF game is PSPACE-complete.

At this point, the reader is probably thinking of familiar games such as Chess, Go,
Checkers etc. and wondering whether complexity theory may help differentiate between
them—for example, to justify the common intuition that Go is more difficult than Chess.
Unfortunately, formalizing these issues in terms of asymptotic complexity (i.e., using an
infinite language) is tricky because these are finite games, and as far as the existence of
a winning strategy is concerned, there are at most three choices: Player 1 has a winning
strategy, Player 2 does, or neither does (they can play to a draw). However, one can study
generalizations of these games to an n × n board where n is arbitrarily large— this may
involve stretching the rules of the game since the definition of chess is tailored to an 8 × 8
board. After generalizing this way, one gets an infinite sequence of game situations, and
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then one can show that for most common games, including chess, determining which player
has a winning strategy in the n × n version is PSPACE-complete (see [Pap94] or [GJ79]).
Thus, if NP 6= PSPACE then there is no short certificate for exhibiting that either player
in such games has a winning strategy.

Proving PSPACE-completeness of games may seem like a frivolous pursuit, but similar
ideas lead to PSPACE-completeness of some practical problems. Usually, these problems
involve repeated moves by an agent who faces an adversary with unlimited computational
power. For instance, many computational problems of robotics involve a robot navigating
in a changing environment. If we wish to be pessimistic about the environment, then its
moves may be viewed as the moves of an adversary. With this assumption, solving many
problems of robotics is PSPACE-complete. Some researchers feel that the assumption
that the environment is adversarial is unduly pessimistic. Unfortunately, even assuming a
benign or “indifferent” environment still leaves us with a PSPACE-complete problem; see
the reference to Games against nature in the chapter notes.

4.3 NL completeness

Now we consider problems that form the “essence” of non-deterministic logarithmic space
computation, in other words, problems that are complete for NL. What kind of reduction
should we use? When choosing the type of reduction to define completeness for a complexity
class, we must keep in mind the complexity phenomenon we seek to understand. In this case,
the complexity question is whether or not NL = L. We cannot use the polynomial-time
reduction since L ⊆ NL ⊆ P (see Exercise 4.3). The reduction should not be more powerful
than the weaker class, which is L. For this reason we use logspace reductions, which, as
the name implies, are computed by a deterministic TM running in logarithmic space. To
define these we must tackle the tricky issue that a logspace machine might not even have
the memory to write down its output. The way out is to require that the reduction should
be able to compute any desired bit of the output in logarithmic space. In other words,
the reduction f is implicitly computable in logarithmic space, in the sense that there is an
O(log |x|)-space machine that on input 〈x, i〉 outputs f(x)i provided that i ≤ |f(x)|.

Definition 4.16 (logspace reduction and NL-completeness)
A function f : {0, 1}∗ → {0, 1}∗ is implicitly logspace computable, if f is polynomially
bounded (i.e., there’s some c such that |f(x)| ≤ |x|c for every x ∈ {0, 1}∗) and the languages
Lf = {〈x, i〉 | f(x)i = 1} and L′

f = {〈x, i〉 | i ≤ |f(x)|} are in L.

A language B is logspace reducible to language C, denoted B ≤l C, if there is a function
f :{0, 1}∗ → {0, 1}∗ that is implicitly logspace computable and x ∈ B iff f(x) ∈ C for every
x ∈ {0, 1}∗.
We say that C is NL-complete if it is in NL and for every B ∈ NL, B ≤l C.

Another way (used by several texts) to think of logspace reductions is to imagine that
the reduction is given a separate “write-once” output tape, on which it can either write a
bit or move to the right, but never move left or read the bits it wrote down previously. The
two notions are easily proved to be equivalent (see Exercise 4.8).

The next lemma shows that logspace reducibility satisfies the usual properties one ex-
pects. It also implies that an NL-complete language is in L iff NL =L.

Lemma 4.17 1. If B ≤l C and C ≤l D then B ≤l D.

2. If B ≤l C and C ∈ L then B ∈ L. ♦

Proof: We prove that if f, g are two functions that are logspace implicitly computable,
then so is the function h where h(x) = g(f(x)). Then part 1 of the Lemma follows by
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letting f be the reduction from B to C and g be the reduction from C to D. Part 2 follows
by letting f be the reduction from B to C and g be the characteristic function of C (i.e.
g(y) = 1 iff y ∈ C).

Let Mf ,Mg be the logspace machines that compute the mappings x, i 7→ f(x)i and
y, j 7→ g(y)j respectively. We construct a machine Mh that given input x, j with j ≤
|g(f(x))|, outputs g(f(x))j . Machine Mh will pretend that it has an additional (fictitious)
input tape on which f(x) is written, and it is merely simulating Mg on this input (see
Figure 4.3). Of course, the true input tape has x, j written on it. To maintain its fiction,
Mh always maintains on its work tape the index, say i, of the cell on the fictitious tape that
Mg is currently reading; this requires only log |f(x)| space. To compute for one step, Mg

needs to know the contents of this cell, in other words, f(x)|i. At this point Mh temporarily
suspends its simulation of Mg (copying the contents of Mg’s work tape to a safe place on its
own work tape) and invokes Mf on inputs x, i to get f(x)|i. Then it resumes its simulation
of Mg using this bit. The total space Mh uses is O(log |g(f(x))|+ s(|x|) + s′(|f(x)|)). Since
|f(x)| ≤ poly(x), this expression is O(log |x|). �

Input�
tape

Work�
tape

Output�
tape

>   0   0  0   1   1  0   1  0   0   0  1  0    0  0   0   

read only head
read/write head

Mf

Work�
tape

Output�
tape

Virtual�
input�
tape

Mg

Figure 4.3 Composition of two implicitly logspace computable functions f, g. The machine
Mg uses calls to f to implement a “virtual input tape”. The overall space used is the space
of Mf + the space of Mg + O(log |f(x)|) = O(log|x|).

Now we exhibit an NL-complete language. Recall from Section 4.1.2 the language PATH

of triples 〈G, s, t〉 such that vertex t can be reached from s in the directed graph G. We
have the following result:

Theorem 4.18
PATH is NL-complete.

Proof: We have already seen that PATH is in NL. Let L be any language in NL and M be
a machine that decides it in space O(log n). We describe a logspace implicitly computable
function f that reduces L to PATH. For any input x of size n, f(x) will be the configuration
graph GM,x whose nodes are all possible 2O(logn) configurations of the machine on input x,
along with the start configuration Cstart and the accepting configuration Cacc. In this graph
there is a path from Cstart to Cacc iff M accepts x. The graph is represented as usual by
an adjacency matrix that contain 1 in the 〈C,C′〉th position (i.e., in the Cth row and C′th

column if we identify the configurations with numbers between 0 and 2O(logn)) iff there’s an
edge C from C′ in GM,x. To finish the proof we need to show that this adjacency matrix can
be computed by a logspace reduction, in other words, to describe a logspace machine that
can compute any desired bit in it. This is easy since given 〈C,C′〉 a deterministic machine
can in space O(|C| + |C′|) = O(log |x|) examine C,C′ and check whether C′ is one of the
(at most two) configurations that can follow C according to the transition function of M .
�
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4.3.1 Certificate definition of NL: read-once certificates

In Chapter 2 we saw an alternative definition of NP that replaced nondeterminism with
the notion of a certificate of membership. Now try to define the class NL using certificates
instead of non-deterministic TM’s. We need to address one tricky issue: a certificate may
be polynomially long, so a logspace machine may not have the space to store it. Thus, the
certificate-based definition of NL assumes that the certificate is provided to the logspace
machine on a separate tape that is “read once,” meaning that the machine’s head on the
tape can only sweep the tape from left to right once, and thus never read the same bit of the
certificate twice. Specifically, at each step the machine’s head on that tape can either stay in
place or move to the right. It is easily seen that the following is an alternative definition of
NL (see also Figure 4.4), since read-once access to bits in a certificate is just an alternative
way to view nondeterministic choices during a computation.
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Figure 4.4 Certificate view of NL. The certificate for input x is placed on a special “read-
once” tape on which the machine’s head can never move to the left.

Definition 4.19 (NL- alternative definition.) A language L is in NL if there exists a deter-
ministic TM M (called the verifier) with an additional special read-once input tape, and a
polynomial p : N→ N such that for every x ∈ {0, 1}∗,

x ∈ L⇔ ∃u ∈ {0, 1}p(|x|) s.t. M(x, u) = 1

where by M(x, u) we denote the output of M where x is placed on its input tape and u is
placed on its special read-once tape, and M uses at most O(log |x|) space on its read/write
tapes for every input x. ♦

In the above scenario, what if we remove the “read-once” restriction and allow the
TM’s head to move back and forth on the certificate, and read each bit multiple times?
Surprisingly, this changes the class from NL to NP; see Exercise 4.7.

4.3.2 NL = coNL

Analogously to coNP, we define coNL as the set of languages that are complements of NL
languages. A simple example for a coNL language is PATH, the complement of the PATH

language. A decision procedure for this language must accept the tuple 〈G, s, t〉 when there
is no path from s to t in the graph. It is easy see that PATH is not only in coNL but is
in fact coNL-complete, which means that every coNL language is logspace reducible to
it. Unlike in the case of PATH, there is no natural certificate for the non-existence of a
path from s to t and thus it seemed “obvious” to researchers that PATH 6∈ NL, until the
discovery of the following theorem in the 1980s proved them wrong.
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Theorem 4.20 (Immerman-Szelepcsényi Theorem [Imm88, Sze87])
PATH ∈ NL.

Proof: By the certificate-based definition of NL from Section 4.3.1, it suffices to show an
O(log n)-space verification algorithm (or “verifier” for short) A such that for every n-vertex
graphG and vertices s and t, there exists a polynomial certificate u such thatA(〈G, s, t〉, u) =
1 if and only if t is not reachable from s in G. Here A has only read-once access to u. Below,
for simplicity we identify G’s vertices with the numbers {1, .., n}.

It is best to approach the rest of the proof from the mindset of the person trying to
design the certificate. Once we describe the certificate, it will be easy to see that it can be
checked by a logspace verifier with read-once access .

Let Ci be the set of vertices that are reachable from s in G within at most i steps. We
will use the simple fact that membership in Ci is easily certified. For every i ∈ [n] and
vertex v, the following is a certificate that v is in Ci: the sequence of vertices v0, v1, . . . , vk
along the path from s to v, where k ≤ i. Note that the certificate is indeed of size at most
polynomial in n. The algorithm can check the certificate using read-once access by verifying
that (1) v0 = s, (2) for j > 0, there is an edge from vj−1 to vj , (3) vk = v and (4) (using
simple counting) that the path ends within at most i steps.

Now we use the fact that membership in Ci is certifiable to design two more sophisticated
types of certificates.

1. A certificate that a vertex v is not in Ci, assuming the verifier has already been told
(i.e., convinced about) the size of Ci.

2. A certificate that |Ci| = c for some number c, assuming the algorithm has already
been convinced about the size of Ci−1.

Since C0 = {s} (and the verifier knows this), we can provide the second kind of certificate
to the verifier iteratively to convince it of the sizes of the sets C1, . . . , Cn. Finally, since Cn
is just the set of all vertices reachable from s, and the verifier has been convinced of |Cn|
we can use the first kind of certificate to convince the verifier t 6∈ Cn.

Certifying that v is not in Ci, given |Ci|. The certificate is simply the list of certificates
to the effect that u is in Ci for every u ∈ Ci sorted in ascending order of vertices (recall that
the vertices are numbers in [n]). The verifier checks that (1) each certificate is valid, (2)
the vertex u for which a certificate is given is indeed larger than the previous vertex, (3)
no certificate is provided for v, and (4) the total number of certificates provided is exactly
|Ci|. If v 6∈ Ci then the verifier will accept the above certificate, but if v ∈ Ci there will not
exist |Ci| certificates that vertices u1 < u2 < . . . < u|Ci| are in Ci where uj 6= v for every j.

Certifying that v is not in Ci, given |Ci−1|. Before showing how we certify that |Ci| = c
given |Ci−1|, we show how to certify that v 6∈ Ci with this information. This is very similar
to the above procedure: the certificate is the list of |Ci−1| certificates to the effect that
u ∈ Ci−1 for every u ∈ Ci−1 in ascending order. The algorithm checks everything as before
except that in step (3) it verifies that no certificate is given for v or for a neighbor of v.
Since v ∈ Ci if and only if there exists u ∈ Ci−1 such that u = v or u is a neighbor of v in
G, the procedure will not accept a false certificate by the same reasons as above.

Certifying that |Ci| = c given |Ci−1|. We have already described how to give, for any
vertex v, certificates to the effect that v ∈ Ci or v 6∈ Ci (whichever is true). The certificate
that |Ci| = c will consist of n certificates for each of the vertices 1 to n in ascending order.
For every vertex u, there will be an appropriate certificate depending on whether u ∈ Ci
or not. The verifier will verify all the certificate and count the vertices which have been
certified to be in Ci. If this count is equal to c, the verifier accepts. �

Using the notion of the configuration graph we can modify the proof of Theorem 4.20 to
prove the following (see Exercise 4.11):

Corollary 4.21 For every space constructible S(n) > log n, NSPACE(S(n)) = coNSPACE(S(n)).♦
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Our understanding of space-bounded complexity .
The following is our understanding of the relations between the various space-bounded and
time-bounded complexity classes.

L ⊆NL ⊆ P ⊆NP ⊆ PSPACE ⊆ EXP

Since the hierarchy theorems imply that L ( PSPACE and P ( EXP, we know that
at least some of these inclusions are strict, but don’t know which. In fact, most researchers
believe all of the inclusions are strict.

Chapter notes and history

The concept of space complexity had already been explored in the 1960s; in particular, the Space
Hierarchy Theorem of Stearns, Hartnmanis and Lewis [SHL65] and Savitch’s theorem [Sav70] predate
the Cook-Levin theorem. Stockmeyer and Meyer [SM73] proved the PSPACE-completeness of
TQBF soon after Cook’s paper appeared. A few years later Even and Tarjan pointed out the
connection to game-playing and proved the PSPACE-completeness of a game called Generalized
Hex. Papadimitriou’s book [Pap94] gives a detailed account of PSPACE-completeness. He also
shows PSPACE-completeness of several Games against nature first defined in [Pap85]. Unlike
the TQBF game, where one player is Existential and the other Universal, here the second player
chooses moves randomly. The intention is to model games played against nature—where “nature”
could mean not just weather for example, but also large systems such as the stock market that
are presumably “indifferent” to the fate of individuals. Papadimitriou describes an alternative
characterization PSPACE using such games. A stronger result, namely, a characterization of
PSPACE using interactive proofs, will be described in Chapter 8.

The trivial bound DTIME(S(n)) ⊆ SPACE(S(n)) of Theorem 4.2 was improved by Hopcroft,
Paul and Valiant [HPV75] to DTIME(S(n)) ⊆ SPACE(S(n)/ log S(n)).

Immerman’s proof 4.20 is part of a larger subarea of complexity theory called descriptive com-
plexity which gives new and machineless characterizations of complexity classes using the language
of mathematical logic. See his book [Imm99] for a survey of this field.

Exercises

4.1 Prove the existence of a universal TM for space bounded computation (analogously to the deter-
ministic universal TM of Theorem 1.9). That is, prove that there exists a a TM SU such that for
every string α, and input x, if the TM Mα represented by α halts on x before using t cells of its
work tapes then SU(α, t, x) = Mα(x), and moreover, SU uses at most Ct cells of its work tapes,
where C is a constant depending only on Mα. (Despite the fact that the bound here is better
than the bound of Theorem 1.9, the proof of this statement is actually easier than the proof of
Theorem 1.9.) Use this to prove Theorem 4.8.

4.2 Prove that the language SPACETM of (3) is PSPACE-complete.

4.3 Prove that every language L that is not the empty set or {0, 1}∗ is complete for NL under
polynomial-time Karp reductions.

4.4 Show that the following language is NL-complete:

{ xGy : G is a strongly connected digraph} .

4.5 Show that 2SAT is in NL.

4.6 Suppose we define NP-completeness using logspace reductions instead of polynomial-time reduc-
tions. Show (using the proof of the Cook-Levin Theorem) that SAT and 3SAT continue to be
NP-complete under this new definition. Conclude that SAT ∈ L iff NP = L. H458

4.7 Prove that in the certificate definition of NL (Section 4.3.1) if we allow the verifier machine to move
its head back and forth on the certificate, then the class being defined changes to NP. H458

4.8 Define a function f : {0, 1}∗ → {0, 1}∗ to be write-once logspace computable if it can be computed
by an O(log n)-space TM M whose output tape is “write once” in the sense that in each step M
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can either keep its head in the same position on that tape or write to it a symbol and move one
location to the right. The used cells of the output tape are not counted against M ’s space bound.

Prove that f is write-once logspace computable if and only if it is implicitly logspace computable
in the sense of Definition 4.16.

4.9 Show that TQBF is complete for PSPACE also under logspace reductions.

4.10 Show that in every finite 2-person game with perfect information (by finite we mean that there is
an a priori upper bound n on the number of moves after which the game is over and one of the two
players is declared the victor —there are no draws) one of the two players has a winning strategy.

4.11 Prove Corollary 4.21.

4.12 Define polyL to be ∪c>0SPACE(logc n). Steve’s Class SC (named in honor of Steve Cook) is
defined to be the set of languages that can be decided by deterministic machines that run in
polynomial time and logc n space for some c > 0.

It is an open problem whether PATH ∈ SC. Why does Savitch’s Theorem not resolve this question?

Is SC the same as polyL ∩ P?



Chapter 5

The Polynomial Hierarchy and
Alternations

“..synthesizing circuits is exceedingly difficulty. It is even more difficult to
show that a circuit found in this way is the most economical one to realize a
function. The difficulty springs from the large number of essentially different
networks available.”
Claude Shannon 1949

We have already encountered some ways of “capturing” the essence of families of compu-
tational problems by showing that they are complete for some natural complexity class. This
chapter continues this process by studying another family of natural problems (including
one mentioned in the above quote of Shannon) whose essence is not captured by nondeter-
minism alone. The correct complexity class that captures these problems is the polynomial
hierarchy, denoted PH, which is a generalization of P, NP and coNP. It consists of an
infinite number of subclasses (called “levels”) each of which is important in its own right.
These subclasses are conjectured to be distinct, and this conjecture is a stronger form of
P 6= NP. This conjecture tends to crop up (sometimes unexpectedly) in many complexity
theoretic investigations, including Chapters 6, 7 and 17 of this book.

In this chapter we provide three equivalent definitions of the polynomial hierarchy:

1. In Section 5.2 we define the polynomial hierarchy as the set of languages defined via
polynomial-time predicates combined with a constant number of alternating forall
(∀) and exists (∃) quantifiers, generalizing the definitions of NP and coNP from
Chapter 2.

2. In Section 5.3 we show an equivalent characterization of the polynomial hierarchy using
alternating Turing machines, that are a generalization of non-deterministic Turing
machines defined in Section 2.1.2.

3. In Section 5.5 we show the polynomial hierarchy can also be defined using oracle
Turing machines (Section 3.4).

A fourth characterization using uniform families of circuits will be given in Chapter 6.
In Section 5.4 we use the different characterizations of the polynomial hierarchy to show an
interesting result: SAT cannot be solved using simultaneously linear time and logarithmic
space. This represents a frontier of current approaches to P versus NP.

5.1 The class Σ
p
2

To motivate the study of PH we focus on some computational problems that seem to not
be captured by NP-completeness.
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As warmup, let’s recall the following NP problem INDSET (see Example 2.2), for which
we do have a short certificate of membership:

INDSET = {〈G, k〉 : graph G has an independent set of size ≥ k} .

Consider a slight modification to the above problem, namely, determining the largest
independent set in a graph (phrased as a decision problem):

EXACT INDSET = {〈G, k〉 : the largest independent set in G has size exactly k} .

Now there seems to be no short certificate for membership: 〈G, k〉 ∈ EXACT INDSET iff
there exists an independent set of size k in G and every other independent set has size at
most k.

Similarly, consider the problem referred to in Shannon’s quote above, namely, to deter-
mine the smallest Boolean formulae equivalent to a given formula. For convenience, we state
it as a decision problem.

MIN-EQ-DNF = {〈ϕ, k〉 : ∃DNF formula ψ of size ≤ k that is equivalent to the DNF formula ϕ } ,

where a DNF formula is a Boolean formula that is an OR of ANDs and we say that two
formulae are equivalent if they agree on all possible assignments. The complement of this
language is refered to in Shannon’s quote, except Shannon is interested more generally in
small circuits rather than just DNF formulae.

MIN-EQ-DNF = {〈ϕ, k〉 : ∀DNF formula ψ of size ≤ k ∃ assignment u s.t. ϕ(u) 6= ψ(u)} .

Again, there is no obvious notion of a certificate of membership for MIN-EQ-DNF. Thus
to capture languages such as EXACT INDSET and MIN-EQ-DNF we seem to need to allow
not only a single “exists“ quantifier (as in Definition 2.1 of NP) or “for all” quantifier (as
in Definition 2.20 of coNP) but a combination of both quantifiers. This motivates the
following definition:

Definition 5.1 The class Σp
2 is the set of all languages L for which there exists a polynomial-

time TM M and a polynomial q such that

x ∈ L⇔ ∃u ∈ {0, 1}q(|x|) ∀v ∈ {0, 1}q(|x|)M(x, u, v) = 1

for every x ∈ {0, 1}∗. ♦

Note that Σp
2 contains both the classes NP and coNP.

Example 5.2
The language EXACT INDSET above is in Σp

2, since as we noted above, a pair
〈G, k〉 is in EXACT INDSET iff there exists a size-k subset S of G’s vertices such
that for every S′ that is a (K + 1)-sized subset, S is an independent set in G
and S′ is not an independent set in G. (Exercise 5.9 shows a finer placement of
EXACT INDSET.)
The language MIN-EQ-DNF is also in Σp

2, since a pair 〈ϕ, k〉 is in MIN-EQ-DNF

iff there exists a DNF formula ψ such that for every assignment u, ϕ(u) = ψ(u).
It is known to be Σp

2-complete [Uma01].

5.2 The polynomial hierarchy.

The definition of the polynomial hierarchy generalizes those of NP, coNP, and Σp
2. This

class consists of every language that can be defined via a combination of a polynomial-time
computable predicate and a constant number of ∀/∃ quantifiers:
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Definition 5.3 (Polynomial Hierarchy)
For i ≥ 1, a language L is in Σp

i if there exists a polynomial-time TM M and a polynomial
q such that

x ∈ L⇔ ∃u1 ∈ {0, 1}q(|x|) ∀u2 ∈ {0, 1}q(|x|) · · ·Qiui ∈ {0, 1}q(|x|)M(x, u1, . . . , ui) = 1,

where Qi denotes ∀ or ∃ depending on whether i is even or odd respectively.

The polynomial hierarchy is the set PH = ∪iΣp
i .

Note that Σp
1 = NP. For every i, define Πp

i = coΣp
i =

{

L : L ∈ Σp
i

}

. Thus Πp
1 =

coNP. Also, for every i, note that Σp
i ⊆ Πp

i+1 ⊆ Σp
i+2, and hence PH = ∪i>0Π

p
i .

5.2.1 Properties of the polynomial hierarchy.

We believe that P 6= NP and NP 6= coNP. An appealing generalization of these conjec-
tures is that for every i, Σp

i is strictly contained in Σp
i+1. This conjecture is used often in

complexity theory. It is often stated as “the polynomial hierarchy does not collapse”, where
the polynomial hierarchy is said to collapse if there is some i such that Σp

i = Σp
i+1. As

we see below, this would imply Σp
i = ∪j≥1Σ

p
j = PH. In this case we say that the poly-

nomial hierarchy collapses to the ith level. The smaller i is, the weaker —and hence more
believable— it is to conjecture that PH does not collapse to the ith level.

Theorem 5.4 1. For every i ≥ 1, if Σp
i = Πp

i then PH = Σp
i ; that is, the hierarchy

collapses to the ith level.

2. If P = NP then PH = P; that is, the hierarchy collapses to P.

Proof: We do the second part; the first part is similar and is left as Exercise 5.12. Assuming
P = NP we prove by induction on i that Σp

i ,Π
p
i ⊆ P. Clearly this is true for i = 1 by

assumption since Σp
1 = NP and ΠP

1 = coNP. We assume it is true for i−1 and prove that
Σp
i ⊆ P. Since Πp

i consists of complements of languages in Σp
i and P is closed under under

complementation, it would also then follow that Πp
i ⊆ P.

Let L ∈ Σp
i . By definition, there is a polynomial-time Turing machine M and a polyno-

mial q such that

x ∈ L⇔ ∃u1 ∈ {0, 1}q(|x|) ∀u2 ∈ {0, 1}q(|x|) · · ·Qiui ∈ {0, 1}q(|x|)M(x, u1, . . . , ui) = 1, (1)

where Qi is ∃/∀ as in Definition 5.3. Define the language L′ as follows:

〈x, u1〉 ∈ L′ ⇔ ∀u2 ∈ {0, 1}q(|x|) · · ·Qiui ∈ {0, 1}q(|x|)M(x, u1, u2, . . . , ui) = 1.

Clearly, L′ ∈ Πp
i−1 and so under our assumption L′ is in P. This implies that there is a

polynomial-time TM M ′ computing L′. Plugging M ′ in (1) we get

x ∈ L⇔ ∃u1 ∈ {0, 1}q(|x|)M ′(x, u1) = 1 .

But this means L ∈ NP and hence under our assumption that P = NP, L ∈ P. �

5.2.2 Complete problems for levels of PH

Recall that a language B reduces to a language C via a polynomial-time Karp reduction,
denoted by B ≤p C, if there is a polynomial-time computable function f : {0, 1}∗ → {0, 1}∗
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such that x ∈ B ⇔ f(x) ∈ C for every x (see Definition 2.7). We say that a language L is
Σp
i -complete if L ∈ Σp

i and for every L′ ∈ Σp
i , L

′ ≤p L. We define Πp
i -completeness and

PH-completeness in the same way. In this section we show that for every i ∈ N, both Σp
i

and Πp
i have complete problems. By contrast the polynomial hierarchy itself is believed not

to have a complete problem, as is shown by the following simple claim:

Claim 5.5 If there exists a language L that is PH-complete, then there exists an i such
that PH = Σp

i (and hence the hierarchy collapses to its ith level.) ♦
Proof sketch: Since L ∈ PH = ∪iΣp

i , there exists i such that L ∈ Σp
i . Since L

is PH-complete, we can reduce every language of PH to L. But every language that
is polynomial-time reducible to a language in Σp

i is itself in Σp
i and so we have shown

PH ⊆ Σp
i . �

It is not hard to see that just like NP and coNP, PH is also contained in PSPACE.
A simple corollary of Claim 5.5 is that unless the polynomial hierarchy collapses, PH 6=
PSPACE. Indeed, otherwise the PSPACE-complete problem TQBF defined in Section 4.2
would be PH-complete.

Example 5.6
For every i ≥ 1, the class Σp

i has the following complete problem involving
quantified Boolean expression of the following type with a limited number of
alternations:

ΣiSAT = ∃u1∀u2∃ · · ·Qiui ϕ(u1, u2, . . . , ui) = 1, (2)

where ϕ is a Boolean formula not necessarily in CNF form (though the form
does not make any difference), each ui is a vector of Boolean variables, and Qi
is ∀ or ∃ depending on whether i is even or odd respectively. Notice that for
every i, ΣiSAT is a special case of the TQBF problem of Section 4.2. Exercise 5.1
asks you to prove that ΣiSAT is indeed Σp

i -complete. One can similarly define
a problem ΠiSAT that is Πp

i -complete.
In the SUCCINCT SET COVER problem we are given a collection S = {ϕ1, ϕ2, . . . , ϕm}
of 3-DNF formulae on n variables, and an integer k. We need to determine
whether there exists a subset S′ ⊆ {1, 2, . . . ,m} of size at most k for which
∨i∈S′ϕi is a tautology (i.e., evaluates to 1 for every assignment to the variables).
By its definition it’s clear that SUCCINCT SET COVER is in Σp

2. Umans showed
that it is Σp

2-complete [Uma01].

5.3 Alternating Turing machines

Alternating Turing Machines (ATMs) are generalizations of nondeterministic Turing ma-
chines. Recall that even though NDTMs are not a realistic computational model, studying
them helps us to focus on a natural computational phenomenon, namely, the apparent dif-
ference between guessing an answer and verifying it. ATMs plays a similar role for certain
languages for which there is no obvious short certificate for membership and hence cannot
be characterized using nondeterminism alone.

Alternating TMs are similar to NDTMs in the sense that they have two transition
functions between which they can choose in each step, but they also have the additional
feature that every internal state except qaccept and qhalt is labeled with either ∃ or ∀. Similar
to the NDTM, an ATM can evolve at every step in two possible ways. Recall that a non-
deterministic TM accepts its input if there exists some sequence of choices that leads it to
the state qaccept. In an ATM, this existential quantifier over each choice is replaced with the
appropriate quantifier according to the labels at each state. The name “alternating” refers
to the fact that the machine can alternate between states labeled with ∃ and ∀.
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Definition 5.7 (Alternating time)
For every T : N→ N, we say that an alternating TM M runs in T (n)-time if for every input
x ∈ {0, 1}∗ and for every possible sequence of transition function choices, M halts after at
most T (|x|) steps.
We say that a language L is in ATIME(T (n)) if there is a constant c and a c · T (n)-time
ATM M such that for every x ∈ {0, 1}∗, M accepts x iff x ∈ L. The definition of accepting
an input is as follows:

Recall that GM,x denotes the directed acyclic configuration graph of M on input
x, where there is an edge from a configuration C to configuration C′ iff C′ can be
obtained from C by one step of M ’s transition function (see Section 4.1.1). We
label some of the vertices in this graph by “ACCEPT” by repeatedly applying
the following rules until they cannot be applied anymore:

• The configuration Caccept where the machine is in qaccept is labeled “ACCEPT”.

• If a configuration C is in a state labeled ∃ and there is an edge from C to
a configuration C′ labeled “ACCEPT” then we label C “ACCEPT”.

• If a configuration C is in a state labeled ∀ and both the configurations
C′, C′′ reachable from it in one step are labeled “ACCEPT” then we label
C “ACCEPT”.

We say that M accepts x if at the end of this process the starting configuration
Cstart is labeled “ACCEPT”.

We will also be interested in alternating TM’s that are restricted to a fixed number of
alternations:

Definition 5.8 For every i ∈ N, we define ΣiTIME(T (n)) (resp. ΠiTIME(T (n)) to be the
set of languages accepted by a T (n)-time ATM M whose initial state is labeled “∃” (resp.
“∀”) and on which every input and on every (directed) path from the starting configuration
in the configuration graph, M can alternate at most i− 1 times from states with one label
to states with the other label. ♦

Proving the following claim is left as Exercise 5.2:

Claim 5.9 For every i ∈ N, Σp
i = ∪cΣiTIME(nc) and Πp

i = ∪cΠiTIME(nc). ♦

5.3.1 Unlimited number of alternations

Definition 5.8 for PH restricted attention to ATMs whose number of alternations is some
fixed constant i independent of the input size. But let us now go back to considering
polynomial-time alternating Turing machines with no a priori bound on the number of
quantifiers. Letting AP = ∪cATIME(nc), we have the following theorem:

Theorem 5.10 AP = PSPACE.

Proof Sketch: PSPACE ⊆ AP follows since TQBF is trivially in AP (just “guess”
values for each existentially quantified variable using an ∃ state and for universally quantified
variables using a ∀ state, and do a deterministic polynomial-time computation at the end)
and every PSPACE language reduces to TQBF. To show that AP ⊆ PSPACE we can
use a recursive procedure similar to the one used to show that TQBF ∈ PSPACE (see
Exercise 5.5). �

Similarly, one can consider alternating Turing machines that run in polynomial space.
The class of languages accepted by such machines is called APSPACE, and Exercise 5.7
asks you to prove that APSPACE = EXP. Similarly, the set of languages accepted by
alternating logspace machines is equal to P.
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5.4 Time versus alternations: time-space tradeoffs for SAT

Despite the fact that SAT is widely believed to require exponential (or at least super-
polynomial) time to solve, and to require linear (or at least super-logarithmic) space, we
currently have no way to prove these conjectures. In fact, as far as we know, SAT may have
both a linear time algorithm and a logarithmic space one. But we can rule out at least the
most trivial algorithm: one that runs simultaneously in linear time and logarithmic space.
In fact, we can prove the following stronger theorem:

Theorem 5.11 (Time/Space tradeoff for SAT [For97a, FLvMV00])
For every two functions S, T : N → N, define TISP(T (n), S(n)) to be the set of languages
decided by a TM M that on every input x takes at most O(T (|x|)) steps and uses at most
O(S(|x|)) cells of its read/write tapes. Then, SAT 6∈ TISP(n1.1, n0.1).

Most texts define the class TISP(T (n), S(n)) with respect to TM’s with RAM memory
(i.e., TM’s that have random access to their tapes; such machines can be defined in a similar
way to the definition of oracle TM’s in Section 3.4). Theorem 5.11 and its proof carries over
for that model as well. We also note that stronger results are known for both models, see
Exercise 5.6 and the chapter notes.

Proof: We will show that

NTIME(n) * TISP(n1.2, n0.2) . (3)

This implies the result for SAT by following the ideas of the proof of the Cook-Levin Theorem
(Theorem 2.10), since a careful analysis of that proof yields a reduction from the task
of deciding membership in an NTIME(T (n))-language to the task of deciding whether
an O(T (n) logT (n))-sized formula is satisfiable, where every output bit of this reduction
can be computed in polylogarithmic time and space. (See Exercise 4.6; also the proof of
Theorem 6.15 later in the book uses a similar analysis.) Hence, if SAT ∈ TISP(n1.1, n0.1)
then NTIME(n) ⊆ TISP(n1.1 polylog(n), n0.1 polylog(n)). Our main step in proving (3)
is the following claim, showing how to replace time with alternations:

Claim 5.11.1 TISP(n12, n2) ⊆ Σ2TIME(n8). ♦

Proof of Claim 5.11.1: The proof is similar to the proofs of Savitch’s Theo-
rem and the PSPACE-completeness of TQBF (Theorems 4.14 and 4.13). Sup-
pose that L is decided by a machine M using n12 time and n2 space. For every
x ∈ {0, 1}∗, consider the configuration graph GM,x of M on input x. Each con-
figuration in this graph can be described by a string of length O(n2) and x is
in L if and only if there is a path of length n12 in this graph from the starting
configuration Cstart to an accepting configuration. There is such a path if and
only if there exist n6 configurations C1, . . . , Cn6 (requiring a total of O(n8) bits
to specify) such that if we let C0 = Cstart then Cn6 is accepting and for every
i ∈ [n6] the configuration Ci is computed from Ci−1 within n6 steps. Because
the latter condition can be verified in, say, O(n7) time, we get an O(n8)-time
Σ2-TM for deciding membership in L. �

Our next step will show that, under the assumption that (3) does not hold (and hence
NTIME(n) ⊆ TISP(n1.2, n0.2) ⊆ DTIME(n1.2)), we can replace alternations with time:

Claim 5.11.2 Suppose that NTIME(n) ⊆ DTIME(n1.2). Then Σ2TIME(n8) ⊆NTIME(n9.6).♦

Proof of Claim 5.11.2: Using the equivalence between alternating time and
the polynomial hierarchy (see Claim 5.9), L is in Σ2TIME(n8) if and only if
there is an TM M such that

x ∈ L⇔ ∃u ∈ {0, 1}c|x|
8

∀v ∈ {0, 1}d|x|
8

M(x, u, v) = 1
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for some constants c, d, where M runs in time O(|x|8). Yet if NTIME(n) ⊆
DTIME(n1.2) then by a simple padding argument (a la the proof of Theo-
rem 2.22) we have a deterministic algorithm D that on inputs x, u with |x| = n
and |u| = cn8 runs in time O((n8)1.2) = O(n9.6)-time and returns 1 if and only

if there exists some v ∈ {0, 1}dn
8

such that M(x, u, v) = 0. Thus,

x ∈ L⇔ ∃u ∈ {0, 1}c|x|
8

D(x, u) = 0 .

implying that L ∈ NTIME(n9.6). �

Together, Claims 5.11.1 and 5.11.2 show that the assumption that NTIME(n) ⊆
TISP(n1.2, n0.2) leads to contradiction: the assumption plus a simple padding argument im-
plies that NTIME(n10) ⊆ TISP(n12, n2) which by Claim 5.11.1 implies that NTIME(n10) ⊆
Σ2TIME(n8). But together with Claim 5.11.2 this implies that NTIME(n10) ⊆ NTIME(n9.6),
contradicting the non-deterministic time hierarchy theorem (Theorem 3.2). �

5.5 Defining the hierarchy via oracle machines.

Recall the definition of oracle machines from Section 3.4. These are machines that are
executed with access to a special tape they can use to make queries of the form “is q ∈ O”
for some languageO. For every O ⊆ {0, 1}∗, oracle TM M and input x, we denote byMO(x)
the output of M on x with access to O as an oracle. We have the following characterization
of the polynomial hierarchy:

Theorem 5.12 For every i ≥ 2, Σp
i = NPΣi−1SAT, where the latter class denotes the set of

languages decided by polynomial-time NDTMs with access to the oracle Σi−1SAT. ♦

Proof: We showcase the proof idea by showing that Σp
2 = NPSAT. Suppose that L ∈ Σp

2.
Then, there is a polynomial-time TM M and a polynomial q such that

x ∈ L⇔ ∃u1 ∈ {0, 1}q(|x|) ∀u2 ∈ {0, 1}q(|x|)M(x, u1, u2) = 1 .

Yet for every fixed u1 and x, the statement “for every u2, M(x, u1, u2) = 1” is the negation
of an NP-statement and hence its truth can be determined using an oracle for SAT. Thus
there is a simple NDTM N that given oracle access for SAT can decide L: on input x,
non-deterministically guess u1 and use the oracle to decide if ∀u2M(x, u1, u2) = 1. We see
that x ∈ L iff there exists a choice u1 that makes N accept.

On the other hand, suppose that L is decidable by a polynomial-time NDTM N with
oracle access to SAT. Notice, N could make polynomially many queries from the SAT

oracle, and every query could depend upon all preceding queries. At first sight this seems
to give N more power than a Σp

2 machine, which as we saw above, has the capability to
nondeterministically make a single query to a coNP language. The main idea in replacing
N by an equivalent Σp

2 machine is to nondeterministically guess all future queries as well
as the SAT oracle’s answers and then to make a single coNP query whose answer verifies
that all this guessing was correct.

More precisely, x is in L if and only if there exists a sequence of non-deterministic choices
and correct oracle answers that makes N accept x. That is, there is a sequence of choices
c1, . . . , cm ∈ {0, 1} and answers to oracle queries a1, . . . , ak ∈ {0, 1} such that on input x,
if the machine N uses the choices c1, . . . , cm in its execution and receives ai as the answer
to its ith query, then (1) M reaches the accepting state qaccept and (2) all the answers are
correct. Let ϕi denote the ith query that M makes to its oracle when executing on x using
choices c1, . . . , cm and receiving answers a1, . . . , ak. Then, the condition (2) can be phrased
as follows: if ai = 1 then there exists an assignment ui such that ϕi(ui) = 1 and if ai = 0
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then for every assignment vi, ϕi(vi) = 0. Thus, we have that

x ∈ L⇔∃c1, . . . , cm, a1, . . . , ak, u1, . . . , uk∀v1, . . . , vk such that

N accepts x using choices c1, . . . , cm and answers a1, . . . , ak AND

∀i ∈ [k] if ai = 1 then ϕi(ui) = 1 AND

∀i ∈ [k] if ai = 0 then ϕi(vi) = 0

implying that L ∈ Σp
2. �

Because having oracle access to a complete language for a class allows us to solve every
language in that class, some texts use the class name instead of the complete language in
the notation for the oracle, and so denote the class Σp

2 = NPSAT by NPNP, the class Σp
3

by NPNPNP

etc..

What have we learned?

• The polynomial hierarchy is the set of languages that can be defined via a constant
number of alternating quantifiers. It also has equivalent definitions via alternating
TMs and oracle TMs. It contains several natural problems that are not known (or
believed) to be in NP.

• We conjecture that the hierarchy does not collapse in the sense that each of its levels
is distinct from the previous ones.

• We can use the concept of alternations to prove that SAT cannot be solved simulta-
neously in linear time and sublinear space.

Chapter notes and history

In his seminal paper, Karp [Kar72] mentions that “a polynomial-bounded version of Kleene’s Arith-
metic Hierarchy becomes trivial if P = NP,” a result that seems to foreshadow Theorem 5.4.
The definition and careful study of the polynomial hierarchy were initiated by Meyer and Stock-
meyer [MS72], who also proved that if Σp

i = Πp
i then PH = Σp

i and showed the completeness of
ΣiSAT for the ith level of the hierarchy.

The class DP mentioned in Exercise 5.9 below was defined by Papadimitriou and Yannakakis [PY82],
who used it to characterize the complexity of identifying the facets of a polytope.

Our knowledge of complete problems for various levels of PH is not as rich as it is for NP.
See Schaefer and Umans’s surveys [SU02a, SU02b] for a list of some interesting examples. The
SUCCINCT SET-COVER problem is from Umans [Uma01].

A time/space lower bound for satisfiability was first proved by Fortnow [For97a] and later im-
proved by [FLvMV00, Wil05], with the current record set by Diehl and van Melkebeek [DvM05] who
showed that SAT is not in TISP(n1.759, nǫ) for some small constant ǫ > 0. All these works are
inspired by a proof technique in Kannan’s 1983 paper [Kan83].

Exercises

5.1 Show that the language ΣiSAT of (2) is complete for Σp
i under polynomial time reductions. H458

5.2 Prove Claim 5.9.

5.3 Show that if 3SAT is polynomial-time reducible to 3SAT then PH = NP.

5.4 Show that the definition of PH using ATMs coincides with our other definitions.

5.5 Prove Theorem 5.10.



Exercises 93

5.6 Adapt the proof of Theorem 5.11 to show that SAT 6∈ TISP(nc, nd) for every constants c, d such
that c(c+ d) < 2.

5.7 Show that APSPACE = EXP. H458

5.8 Complete the proof of Theorem 5.12 using the sketch given there.

5.9 The class DP is defined as the set of languages L for which there are two languages L1 ∈ NP, L2 ∈
coNP such that L = L1 ∩L2. (Do not confuse DP with NP∩coNP, which may seem superficially
similar.) Show that

(a) EXACT INDSET ∈ Πp
2.

(b) EXACT INDSET ∈ DP.

(c) Every language in DP is polynomial-time reducible to EXACT INDSET.

5.10 Suppose A is some language such that PA = NPA. Then show that PHA ⊆ PA (in other words,
the proof of Theorem 5.4 relativizes).

5.11 Show that SUCCINCT SET-COVER ∈ Σp
2.

5.12 Prove the first part of Theorem 5.4: for every i, if Σp
i = Πp

i then the polynomial hierarchy collapses
to the ith level.

5.13 [Sch96] This problem studies the Vapnik-Chervonenkis (VC) dimension, an important concept in
machine learning theory. If S = {S1, S2, . . . , Sm} is a collection of subsets of a finite set U , the VC
dimension of S , denoted V C(S), is the size of the largest set X ⊆ U such that for every X ′ ⊆ X,
there is an i for which Si ∩X = X ′. (We say that X is shattered by S.)

A Boolean circuit C succinctly represents collection S if Si consists of exactly those elements x ∈ U
for which C(i, x) = 1. Finally,

VC-DIMENSION = {〈C, k〉 : C represents a collection S s.t. V C(S) ≥ k} .

(a) Show that VC-DIMENSION ∈ Σp
3.

(b) Show that VC-DIMENSION is Σp
3-complete. H458
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Chapter 6

Boolean Circuits

“One might imagine that P 6= NP, but SAT is tractable in the following sense:
for every ℓ there is a very short program that runs in time ℓ2 and correctly
treats all instances of size ℓ. ”
Karp and Lipton, 1982

This chapter investigates a model of computation called the Boolean circuit, which is a
generalization of Boolean formulae and a simplified model of the silicon chips used to make
modern computers. It is a natural model for non-uniform computation, which crops up
often in complexity theory (e.g., see chapters 19 and 20). In contrast to the standard (or
uniform) TM model where the same TM is used on all the infinitely many input sizes, a
non-uniform model allows a different algorithm to be used for each input size. Thus Karp
and Lipton’s quote above refers to the possibility that there could be a small and efficient
silicon chip that is tailor made to solve every 3SAT problem on say, 100, 000 variables. The
existence of such chips is not ruled out even if P 6= NP. As the reader might now have
guessed, in this chapter we give evidence that such efficient chip solvers for 3SAT are unlikely
to exist, at least as the number of variables in the 3CNF formula starts to get large.

Another motivation for studying Boolean circuits is that they seem mathematically sim-
pler than Turing machines. Hence proving lower bounds might be easier for circuits than
for Turing machines. In fact, circuit lower bounds could in principle let us prove P 6= NP,
as we see in Section 6.1. Since the late 1970’s, researchers have tried to prove circuit lower
bounds. Chapter 14 will describe the partial successes of this effort and Chapter 23 describes
where and why it is stuck.

In Section 6.1 we define Boolean circuits and the class P/poly of languages computed
by polynomial-sized circuits. We also show that P/poly contains the class P of languages
computed by polynomial-time Turing machines and use them to give an alternative proof
of the Cook-Levin Theorem (Theorem 2.10). In Section 6.2 we study uniformly generated
circuit families and show that such families give rise to an alternative characterization of
P. Going in the reverse direction, we show in Section 6.3 a characterization of P/poly using
Turing machines that “take advice.” In Section 6.4 we study the Karp-Lipton result alluded
to above, namely, if the polynomial hierarchy PH (defined in Chapter 5) does not collapse
then NP 6⊆ P/poly. Of course, proving (unconditionally) that NP 6⊆ P/poly is difficult since
that would imply NP 6= P. However, it is even an open problem to find a function in NEXP
that is not in P/poly! The one thing we do know is that almost all Boolean functions require
exponential-sized circuits; see Section 6.5. In Section 6.6 we give yet another characterization
of the polynomial hierarchy, this time using exponential-sized uniformly generated circuits of
constant depth. Finally in Section 6.7.1 we study some interesting subclasses of P/poly such
as NC and AC and show their relation to parallel computing. We introduce P-completeness
as a way to study whether or not a computational problem has efficient parallel algorithms.
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6.1 Boolean circuits and P/poly
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Figure 6.1 A circuit C computing the XOR function (i.e., C(x1, x2) = 1 iff x1 6= x2).

A Boolean circuit is a procedural diagram showing how to derive an output from a
binary input string by applying a sequence of basic Boolean operations OR (∨), AND (∧)
and NOT (¬) on the input bits. For example, Figure 6.1 shows a circuit computing the
XOR function on two bits. Now we give the formal definition. For convenience we assume
the circuit produces 1 bit of output; it is trivial to generalize the definition to circuits with
more than one bit of output, though we typically will not need this generalization.

Definition 6.1 (Boolean circuits)
For every n ∈ N, an n-input single output Boolean circuit is a directed acyclic graph with
n sources (vertices with no incoming edges) and one sink (vertex with no outgoing edges).
All non-source vertices are called gates and are labeled with one of ∨, ∧ or ¬ (i.e., the
logical operations OR, AND, and NOT). The vertices labeled with ∨ and ∧ have fan-in
(i.e., number of incoming edges) equal to 2 and the vertices labeled with ¬ have fan-in 1.
The size of C, denoted by |C|, is the number of vertices in it.

If C is a Boolean circuit, and x ∈ {0, 1}n is some input, then the output of C on x, denoted
by C(x), is defined in the natural way. More formally, for every vertex v of C we give it a
value val(v) as follows: if v is the ith input vertex then val(v) = xi and otherwise val(v) is
defined recursively by applying v’s logical operation on the values of the vertices connected
to v. The output C(x) is the value of the output vertex.

Though this definition restricts fan-in to 2, this is essentially without loss of generality
since a ∨ or ∧ gate with fan-in f can be easily repaced with a subcircuit consisting of f − 1
gates of fan-in 2. However, fan-in will become important again in Section 6.7.1 when we
study circuits with restricted depth. Note also that the Boolean formulae studied in earlier
chapters are circuits where the fan-out (i.e., number of outgoing edges) of each vertex is 1.
The advantage of fan-out 2 over fan-out 1 is that it allows an intermediate value inside the
circuit to be reused many times. (Note that fan-out 2 can be used to trivially implement
arbitrary fan-out.)

One motivation for this definition is that it models the silicon chips used in modern
computers.1 Thus if we show that a certain task can be solved by a small Boolean circuit
then it can be implemented efficiently on a silicon chip.

As usual, we use asymptotic analysis to study the complexity of deciding a language by
circuits.

Definition 6.2 (Circuit families and language recognition) Let T : N→ N be a function. A
T (n)-size circuit family is a sequence {Cn}n∈N of Boolean circuits, where Cn has n inputs
and a single output, and its size |Cn| ≤ T (n) for every n.

We say that a language L is in SIZE(T (n)) if there exists a T (n)-size circuit family
{Cn}n∈N such that for every x ∈ {0, 1}n, x ∈ L⇔ Cn(x) = 1. ♦

1Actually, the circuits in silicon chips are not acyclic and use cycles to implement memory. However any
computation that runs on a silicon chip with C gates and finishes in time T can be performed by a Boolean
circuit of size O(C · T ).
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Note 6.4 (Straight-line programs)

Instead of modeling Boolean circuits as labeled graphs, we can also model them a straight-
line programs. A program P is straight-line if it contains no branching or loop operations
(such as ifor goto), and hence P ’s running time is bounded by the number of instructions
it contains.
The equivalence between Boolean circuits and straight-line programs is fairly general and
holds (up to polynomial factors) for essentially any reasonable programming language. How-
ever it is most obviously demonstrated using straight-line programs with Boolean operations.
A Boolean straight-line program of length T with input variables x1, x2, . . . , xn ∈ {0, 1} is a
sequence of T statements of the form yi = zi1 OP zi2 for i = 1, 2, . . . , T where OP is either
∨ or ∧ and each zi1 , zi2 is either an input variable, or the negation of an input variable,
or yj for j < i. For every setting of values to the input variables, the straight-line com-
putation consists of executing these simple statements in order, thereby finding values for
y1, y2, . . . , yT . The output of the computation is the value of yT .
It is straightforward to show that a function f on n bits can be computed by an S-line
straight-line program of this form if and only if it can be computed by an S-sized Boolean
circuit (see Exercise 6.2). As an example, we write a straight-line program in input variables
x1, x2 that is equivalent to the circuit in Figure 6.1.

y1 = ¬x1;

y2 = ¬x2;

y3 = y1 ∧ x2;

y4 = x1 ∧ y2;
y5y3 ∨ y4

Example 6.3
The language {1n : n ∈ Z} can be decided by a linear-size circuit family. The
circuit is simply a tree of AND gates that computes the AND of all input bits.
The language {< m,n,m+ n >: m,n ∈ Z} also has linear sized circuits which
implement the grade-school algorithm for addition. Recall that this algorithm
adds two numbers bit by bit. Addition of two bits is done by a circuit of O(1)
size; this produces a carry bit that is used as input for the addition of the bits
in the next position.

Since a CNF formula is a special type of a circuit, Claim 2.13 of Chapter 2 shows that
every function f from {0, 1}n to {0, 1} can be computed by a Boolean circuit size n2n. In
fact, Exercise 6.1 shows that size O(2n/n) also suffices. Therefore, interesting complexity
classes arise when we consider “small” circuits such as the following case:

Definition 6.5 (The class P/poly)
P/poly is the class of languages that are decidable by polynomial-sized circuit families. That
is, P/poly = ∪cSIZE(nc).

Of course, one can make the same kind of objections to the practicality of P/poly as
for P: viz., in what sense is a circuit family of size n100 practical, even though it has
polynomial size. This was answered to some extent in Section 1.6.2. Another answer is that
as complexity theorists we hope (eventually) to show that languages such as SAT are not
in P/poly. Thus the result will only be stronger if we allow even such large circuits in the
definition of P/poly.
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6.1.1 Relation between P/poly and P

What is the relation between P/poly and P? First we show P ⊆ P/poly.

Theorem 6.6
P ⊆ P/poly.

Proof: The proof is very similar to the proof of the Cook-Levin Theorem (Theorem 2.10).
In fact Theorem 6.6 can be used to give an alternative proof to the Cook-Levin Theorem.

Recall that by Remark 1.7 we can simulate every time O(T (n)) TM M by an oblivious
TM M̃ (whose head movement is independent of its input) running in time O(T (n)2) (or
even O(T (n) log T (n)) time if we are more careful). Thus it suffices to show that for every
oblivious T (n)-time TM M , there exists an O(T (n))-sized circuit family {Cn}n∈N such that
Cn(x) = M(x) for every x ∈ {0, 1}n.

Let M be such an oblivious TM, let x ∈ {0, 1}∗ be some input for M and define the
transcript of M ’s execution on x to be the sequence z1, . . . , zT (n) of snapshots (the machine’s
state and symbols read by all heads) of the execution at each step in time. We can encode
each such snapshot zi by a constant sized binary string and furthermore, we can compute
the string zi based on the input x, the previous snapshot zi−1 and the snapshots zi1 , . . . , zik
where zij denotes the last step that M ’s jth head was in the same position as it is in the ith

step.2 Because these are only a constant number of strings of constant length, this means
that we can compute zi from these previous snapshots using a constant-sized circuit.

The composition of all these constant-sized circuits gives rise to a circuit that computes
from the input x the snapshot zT (n) of the last step of M̃ ’s execution on x. There is a
simple constant-sized circuit that, given zT (n) outputs 1 if and only if zT (n) is an accepting
snapshot (in which M outputs 1 and halts). Thus, there is an O(T (n))-sized circuit Cn such
that Cn(x) = M(x) for every x ∈ {0, 1}n. �

Remark 6.7
The proof of Theorem 6.6 actually gives a stronger result than its statement: the circuit
is not only of polynomial size but can also be computed in polynomial time, and even in
logarithmic space. One only needs to observe that it’s possible to simulate every TM M by
an oblivious TM M̃ such that the function that maps n, i to the M̃ ’s position on n-length
inputs in the ith tape can be computed in logarithmic space.

The inclusion P ⊆ P/poly is proper. For instance, there are unary languages that are
undecidable and hence are not in P (or for that matter in EXP), whereas every unary
language is in P/poly.

Claim 6.8 Let L ⊆ {0, 1}∗ be a unary language (i.e., L ⊆ {1n : n ∈ N}). Then, L ∈ P/poly.♦

Proof: We describe a circuit family of linear size. If 1n ∈ L then the circuit for inputs of
size n is the circuit from Example 6.3, and otherwise it is the circuit that always outputs 0.
�

And here is a unary language that is undecidable. It is just the unary version of the
halting problem (see Section 1.5.1).

UHALT = {1n : n’s binary expansion encodes a pair 〈M,x〉 such that M halts on input x.} .

6.1.2 Circuit Satisfiability and an alternative proof of the Cook-Levin Theorem

Boolean circuits can be used to provide an alternative proof for the Cook-Levin Theorem
(Theorem 2.10) using the following language

2Because M is oblivious, the indices i1, . . . , ik depend only on i and not on the actual input x.
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Definition 6.9 (Circuit Satisfiability or CKT-SAT) The language CKT-SAT consists of all
(strings representing) circuits that produce a single bit of output and which have a satisfying
assignment. That is, a string representing an n-input circuit C is in CKT-SAT iff there exists
u ∈ {0, 1}n such that C(u) = 1. ♦

CKT-SAT is clearly in NP because the satisfying assignment can serve as the certificate.
The Cook-Levin Theorem follows immediately from the next two lemmas:

Lemma 6.10 CKT-SAT is NP-hard. ♦

Proof: If L ∈ NP then there is a polynomial-time TM M and a polynomial p such that

x ∈ L iff M(x, u) = 1 for some u ∈ {0, 1}p(|x|). But the proof of Theorem 6.6 yields a
polynomial-time transformation from M,x to a circuit C such that M(x, u) = C(u) for

every u ∈ {0, 1}poly(|x|)
. Thus, x is in L iff C ∈ CKT-SAT. �

Lemma 6.11 CKT-SAT ≤p 3SAT ♦

Proof: If C is a circuit, we map it to a 3CNF formula ϕ as follows: For every node vi of
C we will have a corresponding variable zi in ϕ. If the node vi is an AND of the nodes vj
and vk then we add to ϕ clauses that are equivalent to the condition “zi = (zj ∧ zk)”. That
is, we add the clauses

(zi ∨ zj ∨ zk) ∧ (zi ∨ zj ∨ zk) ∧ (zi ∨ zj ∨ zk) ∧ (zi ∨ zj ∨ zk) .

Similarly, if vi is an OR of vj and vk then we add clauses equivalent to “zi = (zj ∨ zk)”,
and if vi is the NOT of vj then we add the clauses (zi ∨ zj) ∧ (zi ∨ zj). Finally, if vi is the
output node of C then we add the clause (zi) to ϕ (i.e., we add the clause that is true iff zi
is true). It is not hard to see that the formula ϕ is satisfiable if and only if the circuit C is.
Clearly, the reduction also runs in time polynomial in the input size. �

6.2 Uniformly generated circuits

The class P/poly fits rather awkwardly in the complexity world since it contains even un-
decidable languages such as the language UHALT defined in Section 6.1.1. The root of the
problem is that for a language L to be in P/poly it suffices that a circuit family for L exists
even if we have no way of actually constructing the circuits. Thus it may be fruitful to try
to restrict attention to circuits that can actually be built, say using a fairly efficient Turing
machine:

Definition 6.12 (P-uniform circuit families) A circuit family {Cn} is P-uniform if there is
a polynomial-time TM that on input 1n outputs the description of the circuit Cn. ♦

However, restricting circuits to be P-uniform “collapses” P/poly to the class P:

Theorem 6.13 A language L is computable by a P-uniform circuit family iff L ∈ P. ♦

Proof Sketch: If L is computable by a circuit family {Cn} that is generated by a
polynomial-time TM M , then we can come up with a polynomial-time TM M̃ for L as
follows: on input x, the TM M̃ will run M(1|x|) to obtain the circuit C|x| which it will then
evaluate on the input x.

The other direction is obtained by following closely the proof of Theorem 6.6, and noting
that it actually yields a P-uniform circuit family for any L ∈ P. �
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6.2.1 Logspace-uniform families

We can impose an even stricter notion of uniformity: generation by logspace machines.
Recall that a function f : {0, 1}∗ → {0, 1}∗ is implicitly logspace computable if the mapping
x, i 7→ f(x)i can be computed in logarithmic space; see Definition 4.16.

Definition 6.14 (logspace-uniform circuit families) A circuit family {Cn} is logspace uni-
form if there is an implicitly logspace computable function mapping 1n to the description
of the circuit Cn. ♦

Since logspace computations run in polynomial time, logspace-uniform circuits are also
P-uniform. We note that Definition 6.14 is robust to variations in how we represent circuits
using strings. A concrete way is to represent a circuit of size S by the S × S adjacency
matrix of its underlying directed graph and an array of size S that provides the labels (gate
type) of each vertex. Identifying the vertices with numbers in [S], we let the first n vertices
be the input vertices and the last vertex be the output vertex. In other words, the family
{Cn} is logspace uniform if and only if the following functions are computable in O(log n)
space:

• SIZE(n) returns the size S (in binary representation) of the circuit Cn.

• TYPE(n, i), where i ∈ [m], returns the label of the ith vertex of Cn. That is it returns
one of {∨,∧,¬, NONE}.

• EDGE(n, i, j) returns 1 if there is a directed edge in Cn from the ith vertex to the jth

vertex.

Note that both the inputs and the outputs of these functions can be encoded using a
logarithmic (in |Cn|) number of bits. Exercise 6.10 asks you to prove that the class of
languages decided by such circuits does not change if we use the adjacency list (as opposed
to matrix) representation. A closer scrutiny of the proof of Theorem 6.6 shows that it
implies the following theorem (see Exercise 6.4):

Theorem 6.15 A language has logspace-uniform circuits of polynomial size iff it is in P.♦

6.3 Turing machines that take advice

We can define P/poly in an equivalent way using Turing machines that “take advice.” Such
a machine has, for each n, an advice string αn, which it is allowed to use in its computation
whenever the input has size n.

Definition 6.16 Let T, a : N → N be functions. The class of languages decidable by time-
T (n) TM’s with a(n) bits of advice, denoted DTIME(T (n))/a(n), contains every L such

that there exists a sequence {αn}n∈N of strings with αn ∈ {0, 1}a(n) and a TM M satisfying

M(x, αn) = 1⇔ x ∈ L

for every x ∈ {0, 1}n, where on input (x, αn) the machine M runs for at most O(T (n))
steps. ♦

Example 6.17
Every unary language can be be decided by a polynomial time Turing machine
with 1 bit of advice. The advice string for inputs of length n is the single bit
indicating whether or not 1n is in the language. In particular this is true of the
language UHALT defined in Section 6.1.1.
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Turing machines with advice yield the following characterization of P/poly:

Theorem 6.18 (Polynomial-time TM’s with advice decide P/poly)
P/poly = ∪c,dDTIME(nc)/nd

Proof: If L ∈ P/poly then it’s computable by a polynomial-sized circuit family {Cn}. We
can just use the description of Cn as an advice string on inputs of size n, where the TM is
simply the polynomial-time TM M that on input a string x and a string representing an
n-input circuit C outputs C(x).

Conversely, if L is decidable by a polynomial-time Turing machine M with access to an
advice family {αn}n∈N of size a(n) for some polynomial a, then we can use the construction
of Theorem 6.6 to construct for every n a polynomial-sized circuit Dn such that on every

x ∈ {0, 1}n, α ∈ {0, 1}a(n)
, Dn(x, α) = M(x, α). We let the circuit Cn be the polynomial

circuit that given x computes the value Dn(x, αn). That is, Cn is equal to the circuit Dn

with the string αn “hardwired” as its second input. (By “hardwiring” an input into a circuit
we mean taking a circuit C with two inputs x ∈ {0, 1}n , y ∈ {0, 1}m and fixing the inputs
corresponding to y. This gives the circuit Cy that for every x returns C(x, y). It is easy to
do so while ensuring that the size of Cy is not greater than the size of C. This simple idea
is often used in complexity theory.) �

6.4 P/poly
and NP

Karp and Lipton formalized the question of whether or not SAT has small circuits as: Is
SAT in P/poly? They showed that the answer is “NO” if the polynomial hierarchy does not
collapse.

Theorem 6.19 (Karp-Lipton Theorem [KL80])
If NP ⊆ P/poly then PH = Σp

2.

Proof: By Theorem 5.4, to show PH = Σp
2 it suffices to show that Πp

2 ⊆ Σp
2 and in

particular it suffices to show that Σp
2 contains the Πp

2-complete language Π2SAT consisting
of all true formulae of the form

∀u ∈ {0, 1}n ∃v ∈ {0, 1}n ϕ(u, v) = 1 . (1)

where ϕ is an unquantified Boolean formula.
If NP ⊆ P/poly then there exists a polynomial p and a p(n)-sized circuit family {Cn}n∈N

such that for every Boolean formula ϕ and u ∈ {0, 1}n, Cn(ϕ, u) = 1 if and only if there
exists v ∈ {0, 1}n such that ϕ(u, v) = 1. Thus the circuit solves the decision problem.
However, our algorithm of Theorem 2.18 converts any decision algorithm for SAT into an
algorithm that actually outputs a satisfying assignment whenever one exists. Thinking
of this algorithm as a circuit, we obtain from the family {Cn} a q(n)-size circuit family
{C′

n}n∈N, where q(·) is a polynomial, such that for every such formula ϕ and u ∈ {0, 1}n,
if there is a string v ∈ {0, 1}n such that ϕ(u, v) = 1 then C′

n(ϕ, u) outputs such a string v.
(Note: We did not formally define circuits with more than one bit of output, but it is an
obvious generalization of Definition 6.1.)

Of course, the assumption NP ⊆ P/poly only implies the existence of such circuits. The
main idea of Karp-Lipton is that this circuit can be “guessed” using ∃ quantification. Since
the circuit outputs a satisfying assignment if one exists, this answer can be checked directly.
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Formally, since C′
n can be described using 10q(n)2 bits, if (1) holds then the following

quantified formula is true:

∃w∈ {0, 1}10q(n)2 ∀u∈ {0, 1}n s.t. w describes a circuit C′ and ϕ(u,C′(ϕ, u)) = 1 . (2)

Furthermore, if (1) is false then for some u, no v exists such that ϕ(u, v) = 1, and hence
(2) is false as well. Thus (2) holds if and only if (1) does! Finally, since evaluating a circuit
on an input can be done deterministically in polynomial time, the truth of (2) can be verified
in Σp

2. �

Similarly, the following theorem shows that P/poly is unlikely to contain EXP:

Theorem 6.20 (Meyer’s Theorem [KL80])
If EXP ⊆ P/poly then EXP = Σp

2.

Proof Sketch: Let L ∈ EXP. Then L is computable by an 2p(n)-time oblivious TM M ,
where p is some polynomial. Let x ∈ {0, 1}n be some input string. For every i ∈ [2p(n)] we
denote by zi the encoding of the ith snapshot of M ’s execution on input x (see the proof of
Theorem 6.6). If M has k tapes then x ∈ L if and only if for every k+1 indices i, i1, . . . , ik,
the snapshots zi, zi1 , . . . , zik satisfy some easily checkable criteria: if zi is the last snapshot
then it should encode M outputting 1, and if i1, . . . , ik are the last indices where M ’s heads
were in the same locations as in i then the values read in zi should be consistent with the
input and the values written in zi1 , . . . , zik . (Note that these indices can be represented
in polynomial time.) But if EXP ⊆ P/poly, then there is a q(n)-sized circuit C (for some
polynomial q) that computes zi from i. Hence, x ∈ L iff the following condition is true

∃C ∈ {0, 1}q(n) ∀i, i1, . . . , ik ∈ {0, 1}p(n) T (x,C(i), C(i1), . . . , C(ik)) = 1 ,

where T is some polynomial-time TM checking the above conditions. This implies that
L ∈ Σp

2. �

Theorem 6.20 implies that if P = NP then EXP * P/poly. Indeed, by Theorem 5.4 if
P = NP then P = Σp

2, and so if EXP ⊆ P/poly we’d get P = EXP, contradicting the
Time Hierarchy theorem (Theorem 3.1). Thus upper bounds (in this case, NP ⊆ P) can
potentially be used to prove circuit lower bounds.

6.5 Circuit lower bounds

Since P ⊆ P/poly, if we ever prove NP * P/poly then we will have shown P 6= NP. The
Karp-Lipton theorem gives evidence that NP 6⊆ P/poly. Can we resolve P versus NP
by proving NP * P/poly? There is reason to invest hope in this approach as opposed to
proving direct lower bounds on Turing machines. By representing computation using circuits
we seem to actually peer into the guts of it rather than treating it as a black box. Thus
we may be able to get around the limitations of relativizing methods shown in Chapter 3.
Indeed, it is easy to show that some functions do require very large circuits to compute:

Theorem 6.21 (Existence of hard functions [Sha49a])
For every n > 1, there exists a function f : {0, 1}n → {0, 1} that cannot be computed by a
circuit C of size 2n/(10n).

Proof: The proof uses a simple counting argument:
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• The number of functions from {0, 1}n to {0, 1} is 22n .

• Since every circuit of size at most S can be represented as a string of 9 · S logS bits
(e.g., using the adjacency list representation) the number of such circuits is at most
29S log S .

Setting S = 2n/(10n), we see that the number of circuits of size S is at most 29S logS ≤
22n9n/10n < 22n . Hence the number of functions computed by such circuits is smaller than
22n implying that there exists a function that is not computed by circuits of that size. We
note that using a more careful calculation one can obtain a bound of (1− ǫ)2n/n for every
ǫ > 0 and even 2n(1 + logn/n−O(1/n)) (see [FM05]). �

There is another way to phrase this proof. Suppose that we pick a function f : {0, 1}n →
{0, 1} at random by picking for every one of the 2n possible inputs x ∈ {0, 1}n the value
f(x) in {0, 1} uniformly and independently. Then, for every fixed circuit C and input x the
probability that C(x) = f(x) is 1/2 and since these choices are independent, the probability
that C computes f (i.e., C(x) = f(x) for every x ∈ {0, 1}n) is 2−2n . Since there are at most
20.92n circuits of size at most 2n/(10n), we can apply the union bound (see Section A.2) to
conclude that the probability that there exists such a circuit C computing f is at most

20.92n

22n
= 2−0.1·2n ,

a number that tends very fast to zero as n grows. In particular, since this number is smaller
than one, it implies that there exists a function f that is not computed by any circuit of size
at most 2n/(10n). This proof technique (showing an object with a particular property exists
by showing a random object satisfies this property with nonzero probability) is called the
probabilistic method and it is widely used in theoretical computer science and combinatorics
(e.g., see chapters 13, 19, and 21 of this book). Note that it yields a stronger result than
Theorem 6.21: not only does there exist a hard function (not computable by 2n/(10n)-sized
circuits) but in fact the vast majority of the functions from {0, 1}n to {0, 1} are hard. This
gives hope that we should be able to find one such function that also happens to lie in NP,
thus proving NP * P/poly. Sadly, such hopes have not yet come to pass. After two decades,
the best circuit size lower bound for an NP language is only (5−o(1))n [ILMR05]. (However,
see Exercise 6.5 for a better lower bound for a language in PH.) On the positive side, we
have had notable success in proving lower bounds for more restricted circuit models as we
will see in Chapter 14.

6.6 Non-uniform hierarchy theorem

Just like time-bounded Turing machines (deterministic or nondeterministic), and space
bounded machines, Boolean circuits also have a hierarchy theorem. That is, larger circuits
can compute strictly more functions than smaller ones:

Theorem 6.22 (Non-uniform hierarchy theorem)
For every functions T, T ′ : N→ N with 2n/n > T ′(n) > 10T (n) > n,

SIZE(T (n)) ( SIZE(T ′(n))

Proof: Interestingly, the diagonalization methods of Chapter 3 do not seem to apply in
this setting, but nevertheless, we are able to prove 6.22 using the counting argument of
Theorem 6.21. To show the idea, we prove that SIZE(n) ( SIZE(n2).

By Theorem 6.21, for every ℓ there is a function f : {0, 1}ℓ → {0, 1} that is not com-
putable by 2ℓ/(10ℓ)-sized circuits. On the other hand, by Claim 2.13, every function from
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{0, 1}ℓ to {0, 1} is computable by a 2ℓ10ℓ-sized circuit (see also Exercise 6.1 for a tighter
bound).

Therefore, if we set ℓ = 1.1 logn and let g : {0, 1}n → {0, 1} be the function that applies
f on the first ℓ bits of its input, then

g ∈ SIZE(2ℓ10ℓ) = SIZE(11n1.1 logn) ⊆ SIZE(n2)

g 6∈ SIZE(2ℓ/(10ℓ)) = SIZE(n1.1/(11 logn)) ⊇ SIZE(n)

�

6.7 Finer gradations among circuit classes

This section introduces some subclasses of P/poly, which are interesting for two reasons.
First, separating NP from these subclasses may give insight into how to separate NP from
P/poly. Second, these subclasses correspond to interesting computational models in their
own right.

Perhaps the most interesting connection is to massively parallel computers, which we
will now briefly describe. (A detailed understanding is not necessary as the validity of
Theorem 6.27 below does not depend upon it.) In a parallel computer one uses simple
off-the-shelf microprocessors and links them using an interconnection network that allows
them to send messages to each other. Usual interconnection networks such as the hypercube
allows linking n processors such that interprocessor communication is possible —assuming
some upper bounds on the total load on the network—in O(log n) steps. The processors
compute in lock-step (for instance, to the ticks of a global clock) and are assumed to do a
small amount of computation in each step, say an operation on O(log n) bits. Thus each
processor has enough memory to remember its own address in the interconnection network
and to write down the address of any other processor, and thus send messages to it.

We will say that a computational problem has an efficient parallel algorithm if it can be
solved for inputs of size n using a parallel computer with nO(1) processors in time logO(1) n.

Example 6.23
Given two n bit numbers x, y we wish to compute x+y fast in parallel. The grade
school algorithm proceeds from the least significant bit and maintains a carry bit.
The most significant bit is computed only after n steps. This algorithm does
not take advantage of parallelism. A better algorithm called carry lookahead
assigns each bit position to a separate processor and then uses interprocessor
communication to propagate carry bits. It takes O(n) processors and O(log n)
time.
There are also efficient parallel algorithms for integer multiplication and division
(the latter is quite nonintuitive and unlike the grade school algorithm!).
Many matrix computations can be done efficiently in parallel: these include com-
puting the product, rank, determinant, inverse, etc. (See exercises and chapter
notes.)
Some graph theoretic algorithms such as shortest paths and minimum spanning
tree also have fast parallel implementations.
However well-known polynomial-time problems such as maximum flows and lin-
ear programming are not known to have any good parallel implementations and
are conjectured not to have any; see our discussion of P-completeness in Sec-
tion 6.7.2.
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6.7.1 The classes NC and AC

Now we relate parallel computation to circuits. The depth of a circuit is the length of the
longest directed path from an input node to the output node.

Definition 6.24 (The class NC) For every d, a language L is in NCd if L can be decided
by a family of circuits {Cn} where Cn has poly(n) size and depth O(logd n). The class NC
is ∪i≥1NCi. ♦
One can also define uniform NC, by requiring the circuits to be logspace-uniform.

A related class is the following.

Definition 6.25 (AC) The class ACi is defined similarly to NCi except gates are allowed
to have unbounded fan-in (i.e., the OR and AND gates can be applied to more than two
bits). The class AC is ∪i≥0ACi. ♦

Since unbounded (but poly(n)) fan-in can be simulated using a tree of ORs/ANDs of
depth O(log n), NCi ⊆ ACi ⊆ NCi+1. The inclusion is known to be strict for i = 0 as
we will see in Chapter 14. Note that NC0 is extremely limited since the circuit’s output
depends upon a constant number of input bits, but AC0 does not suffer from this limitation.

Example 6.26
The language PARITY ={x : x has an odd number of 1s} is in NC1. The cir-
cuit computing it has the form of a binary tree. The answer appears at the
root; the left subtree computes the parity of the first |x| /2 bits and the right
subtree computes the parity of the remaining bits. The gate at the top computes
the parity of these two bits. Clearly, unwrapping the recursion implicit in our
description gives a circuit of depth O(log n). It is also logspace uniform.
In Chapter 14 we will show that PARITY is not in AC0

It turns out that NC characterizes the languages with efficient parallel algorithms:

Theorem 6.27 (NC and parallel algorithms)
A language has efficient parallel algorithms iff it is in NC.

Proof Sketch: Suppose a language L ∈ NC and is decidable by a circuit family {Cn}
where Cn has size N = O(nc) and depth D = O(logd n). Take a general purpose parallel
computer with N nodes and configure it to decide L as follows. Compute a description of
Cn and allocate the role of each circuit node to a distinct processor. Each processor, after
computing the output at its assigned node, sends the resulting bit to every other circuit
node that needs it. Assuming the interconnection network delivers all messages in O(logN)
time, the total running time is O(logd+1N). (Note that if the circuit is non-uniform, so is
this parallel algorithm. On the other hand, if the circuit is logspace-uniform, then so is the
parallel algorithm.)

The reverse direction is similar, with the circuit having N ·D nodes arranged in D layers,
and the ith node in the tth layer performs the computation of processor i at time t. The
role of the interconnection network is played by the circuit wires. �

6.7.2 P-completeness

A major open question is whether every polynomial-time algorithm has an efficient parallel
implementation, or in other words, whether P = NC. We believe that the answer is NO
(though we are currently even unable to separate PH from NC1). This motivates the theory
of P-completeness, which can be used to study which problems are likely to be efficiently
parallelizably (i.e., are in NC) and which are not.
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Definition 6.28 A language is P-complete if it is in P and every language in P is logspace-
reducible to it (as per Definition 4.16). ♦

The following theorem is left for the reader as Exercise 6.15.

Theorem 6.29 If language L is P-complete then

1. L ∈ NC iff P = NC.

2. L ∈ L iff P = L. (Where L is the set of languages decidable in logarithmic space; see
Definition 4.5.) ♦

The following is a fairly natural P-complete language:

Theorem 6.30 Let CIRCUIT-EVAL denote the language consisting of all pairs 〈C, x〉 where
C is an n-input single-output circuit and x ∈ {0, 1}n is such that C(x) = 1. Then CIRCUIT-

EVAL is P-complete. ♦

Proof Sketch: The language is clearly in P. A logspace-reduction from any other
language in P to this language is implicit in the proof of Theorem 6.15. �

6.8 Circuits of exponential size

As noted, every language has circuits of size O(2n/n). But actually finding these circuits
may be difficult —sometimes even undecidable. If we place a uniformity condition on the
circuits, that is, require them to be efficiently computable then the circuit complexity of
some languages could exceed 2n. In fact it is possible to give alternative definitions of some
familiar complexity classes, analogous to the definition of P in Theorem 6.15.

Definition 6.31 (DC-Uniform) Let {Cn}n≥1 be a circuit family. We say that it is a Direct
Connect uniform (DC uniform) family if there is a polynomial-time algorithm that, given
〈n, i〉 can compute in polynomial time the ith bit of (the adjacency matrix representation
of) the circuit Cn. More precisely, a family {Cn}n∈N is DC uniform iff the functions SIZE,
TYPE and EDGE defined in Section 6.2.1 are computable in polynomial time. ♦

Note that the circuits may have exponential size, but they have a succinct representation
in terms of a TM which can systematically generate any required vertex of the circuit in
polynomial time. Now we give a (yet another) characterization of the class PH, this time
as languages computable by uniform circuit families of bounded depth.

Theorem 6.32 L ∈ PH iff L can be computed by a DC uniform circuit family {Cn} that

• uses AND, OR, NOT gates.

• has size 2n
O(1)

and constant depth.

• gates can have unbounded (exponential) fan-in.

• the NOT gates appear only at the input level (i.e., they are only applied directly to
the input and not to the result of any other gate). ♦

We leave proving Theorem 6.32 as Exercise 6.17. If we drop the restriction that the
circuits have constant depth then we obtain exactly EXP (see Exercise 6.18).
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What have we learned?

• Boolean circuits can be used as an alternative computational model to TMs. The class
P/poly of languages decidable by polynomial-sized circuits is a strict superset of P but
does not contain NP unless the hierarchy collapses.

• Almost every function from {0, 1}n to {0, 1} requires exponential-sized circuits. Find-
ing even one function in NP with this property would show that P 6= NP.

• The class NC of languages decidable by (uniformly constructible) circuits with poly-
logarithmic depth and polynomial size corresponds to computational tasks that can
be efficiently parallelized.

Chapter notes and history

Circuits have been studied in electrical engineering since the 1940s, at a time when gates were
implemented using vacuum tube devices. Shannon’s seminal paper [Sha49a] stated the problem of
finding the smallest circuit implementing a Boolean function, and showed that the circuit complexity
of the hardest Boolean function on n bits is Θ(2n/n). Such topics are studied in fields called
“switching theory” or “Logic Synthesis.” Savage [Sav72] makes some of the first connections between
Turing machine computations and circuits, and describes the tight relationship between circuits and
straight-line programs.

The class P/poly and its characterization as the set of languages computed by polynomial-time
TM’s with polynomial advice (Theorem 6.18) is due to Karp and Lipton [KL80]. They also give a
more general definition that can be used to define the class C/a(n) for every complexity class C and
function a : N → N. However, we do not use this definition in this book since it does not seem to
capture the intuitive notion of advice for classes such as NP ∩ coNP, BPP and others.

Karp and Lipton [KL80] originally proved Theorem 6.19 with the weaker conclusion PH = Σp
3;

they attribute the stronger version given here to Sipser. They also state Theorem 6.20 and attribute
it to A. Meyer.

NC stands for “Nick’s Class,” defined first by Nick Pippenger and named by Steve Cook in
his honor. However, the “A” in AC stands not for a person but for “alternations.” The class of
NC algorithms as well as many related issues in parallel computation are discussed in the text by
Leighton [Lei91].

Boppana and Sipser give an excellent survey of the knowledge on circuits lower bounds circa
1989 [BS90]. Fortunately (or unfortunately) this survey is still fairly representative of the state of
the art. See also Chapter 14.

Exercises

6.1 In this exercise we’ll prove Shannon’s result that every function f : {0, 1}n → {0, 1} can be com-
puted by a circuit of size O(2n/n). (This bound was improved by Lupanov ([Lup58], see also

[Weg87, FM05]) to 2n

n
(1 + o(1)), where o(1) is a term that tends to zero with n.)

(a) Prove that every such f can be computed by a circuit of size less than 10 · 2n. H458

(b) Improve this bound to show that any such function f can be computed by a circuit of size
less than 1000 · 2n/n. H458

6.2 Prove that for every f : {0, 1}n → {0, 1} and S ∈ N, f can be computed by a Boolean circuit of
size S if and only if f can be computed by an S-line program of the type described in Example 6.4.

6.3 Describe a decidable language in P/poly that is not in P.

6.4 Prove Theorem 6.15.

6.5 [Kannan [Kan81]] Show for every k > 0 that PH contains languages whose circuit complexity is
Ω(nk). H458
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6.6 Solve the previous question with PH replaced by Σp
2 (if your solution didn’t already do this).

6.7 (Upper bounds can imply lower bounds) Show that if P = NP then there is a language in EXP
that requires circuits of size 2n/n. H458

6.8 A language L ⊆ {0, 1}∗ is sparse if there is a polynomial p such that |L ∩ {0, 1}n | ≤ p(n) for every
n ∈ N. Show that every sparse language is in P/poly.

6.9 (Mahaney’s Theorem [Mah80]) Show that if a sparse language is NP-complete then P = NP. (This
is a strengthening of Exercise 2.30 of Chapter 2.) H459

6.10 Show a logspace implicitly computable function f that maps any n-vertex graph in adjacency matrix
representation into the same graph in adjacency list representation. You can think of the adjacency
list representation of an n-vertex graph as a sequence of n strings of size O(n log n) each, where the
ith string contains the list of neighbors of the ith vertex in the graph (and is padded with zeros if
necessary).

6.11 (Open Problem) Suppose we make a stronger assumption than NP ⊆ P/poly: every language in
NP has linear size circuits. Can we show something stronger than PH = Σp

2?

6.12 (a) Describe an NC circuit for the problem of computing the product of two given n×n matrices
A,B over a finite field F of size at most polynomial in n. H459

(b) Describe an NC circuit for computing, given an n × n matrix, the matrix An over a finite
field F of size at most polynomial in n. H459

(c) Conclude that the PATH problem (and hence every NL language) is in NC. H459

6.13 A formula is a circuit in which every node (except the input nodes) has outdegree 1. Show that a
language is computable by polynomial-size formulae iff it is in non-uniform NC1, where this denotes
the variant of NC1 dropping requirements that the circuits are generated by logspace algorithms.
H459

6.14 Show that NC1 ⊆ L. Conclude that PSPACE 6= NC1.

6.15 Prove Theorem 6.29. That is, prove that if L is P-complete then L ∈ NC (resp. L) iff P = NC
(resp. L).

6.16 (Csansky’s algorithm: requires some linear algebra) Show that the problem

{< M, k >: M is a matrix with determinant k}

is in NC. (M has integer entries, and you can assume without loss of generality that the underlying
field is C.) H459

6.17 Prove Theorem 6.32 (that PH is the set of languages with constant-depth DC uniform circuits).

6.18 Show that EXP is exactly the set of languages with DC uniform circuits of size 2nc where c is some
constant (c may depend upon the language).

6.19 Show that if linear programming has a fast parallel algorithm then P = NC. H459



Chapter 7

Randomized Computation

“Why should we fear, when chance rules everything, And foresight of the future
there is none; ’Tis best to live at random, as one can.”
Sophocles, Oedipus Rex

“We present here the motivation and a general description of a method dealing
with a class of problems in mathematical physics. The method is, essentially,
a statistical approach to the study of differential equations.”
N. Metropolis and S. Ulam, “The Monte Carlo Method,” 1949

“We do not assume anything about the distribution of the instances of the
problem to be solved. Instead we incorporate randomization into the algorithm
itself... It may seem at first surprising that employing randomization leads to
efficient algorithms. This claim is substantiated by two examples. The first
has to do with finding the nearest pair in a set of n points in Rk. The second
example is an extremely efficient algorithm for determining whether a number
is prime.”
Michael Rabin, 1976

So far, we used the Turing machine (as defined in Chapter 1) as our standard model
of computation. But there is one aspect of reality this model does not seem to capture:
the ability to make random choices during the computation. (Most programming languages
provide a built-in random number generator for this.) While scientists and philosophers
may still debate if true randomness exists in the world, it definitely seems that when tossing
a coin (or measuring the results of other physical experiments) we get an outcome that
is sufficiently random and unpredictable for all practical purposes. Thus it makes sense to
consider algorithms (and Turing machines) that can toss a coin —in other words, use a source
of random bits. A moment’s reflection suggests that such algorithms have been implicitly
studied for a long time. Think for instance of basic procedures in classical statistics such as
an opinion poll —it tries to estimate facts about a large population by taking a small random
sample of the population. Similarly, randomization is also a natural tool for simulating real-
world systems that are themselves probabilistic, such as nuclear fission or the stock market.
Statistical ideas have also been long used in study of differential equations; see the quote by
Metropolis and Ulam above. They named such algorithms Monte Carlo methods after the
famous European gambling resort.

In the last few decades randomization was also used to give simpler or more efficient
algorithms for many problems— in areas ranging from number theory to network routing—
that on the face of it have nothing to do with probability. We will see some examples in
this chapter. We will not address the issue of the quality of random number generators in
this chapter, defering that discussion to Chapters 9, 20 and 21.

As complexity theorists our main interest in this chapter is to understand the power of
Turing machines that can toss random coins. We give a mathematical model for probabilistic
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computation and define in Section 7.1 the complexity class BPP that aims to capture the
set of decision problems efficiently solvable by probabilistic algorithms.1 Section 7.2 gives a
few examples of non-trivial probabilistic algorithms, demonstrating that randomization may
give added power to the algorithm designer. In fact, since random number generators are
ubiquitous (leaving aside for the moment the question of how good they are) the class BPP
(and its sister classes RP, coRP and ZPP) is arguably as important as P in capturing the
notion of “efficient computation.” The examples above suggest that P is a proper subset of
BPP, though somewhat surprisingly, there are reasons to believe that actually BPP may
be the same as P; see Chapter 20.

Our definition of a probabilistic algorithm will allow it to output a wrong answer with
some small probability. At first sight, the reader might be concerned that these errors could
make such algorithms impractical. However, in Section 7.4 we show how to reduce the
probability of error to a minuscule quantity.

This chapter also studies the relationship between BPP and classes studied in earlier
chapters such as P/poly and PH.

Many of the notions studied in the previous chapters can be extended to the probabilistic
setting. For example, in Sections 7.6 and 7.7 we will describe randomized reductions and
probabilistic logspace algorithms. These are probabilistic analogs of reductions and logspace
algorithms studied in Chapters 2 and 4.

The role of randomness in complexity theory extends far beyond a study of randomized
algorithms and classes such as BPP. Entire areas such as cryptography (see Chapter 9) and
interactive and probabilistically checkable proofs (see Chapters 8 and 11) rely on randomness
in an essential way, sometimes to prove results whose statement seemingly did not involve
randomness in any way. Thus this chapter lays the groundwork for many later chapters of
the book.

Throughout this chapter and the rest of the book, we will use some notions from ele-
mentary probability on finite sample spaces; see Appendix A for a quick review.

7.1 Probabilistic Turing machines

A randomized algorithm is an algorithm that may involve random choices such as initializing
a variable with an integer chosen at random from some range, etc.. In practice randomized
algorithms are implemented using a random number generator. In fact, it turns out (see
Exercise 7.1) that it suffices to have a random number generator that generates random
bits—they produce the bit 0 with probability 1/2 and bit 1 with probability 1/2. We will
often describe such generators as tossing fair coins.

Just as we used standard Turing machines in Chapter 1 to model deterministic (i.e.,
non-probabilistic) algorithms, we model randomized algorithms using probabilistic Turing
machines (PTMs) which we now define.

Definition 7.1 A probabilistic Turing machine (PTM) is a Turing machine with two tran-
sition functions δ0, δ1. To execute a PTM M on an input x we choose in each step with
probability 1/2 to apply the transition function δ0 and with probability 1/2 to apply δ1. This
choice is made independently of all previous choices.

The machine only outputs 1 (“Accept”) or 0 (“Reject”). We denote by M(x) the random
variable corresponding to the value M writes at the end of this process. For a function
T : N→ N, we say that M runs in T (n)-time if for any input x, M halts on x within T (|x|)
steps regardless of the random choices it makes. ♦

Recall from Section 2.1.2 that a nondeterministic TM is also a TM with two transition
functions. Thus a PTM is syntactically similar. The difference is in how we interpret
the working of the TM. In a PTM, each transitition is taken with probability 1/2, so a
computation that runs for time t gives rise to 2t branches in the graph of all computations,

1BPP stands for “bounded-error probabilistic polynomial-time;” see chapter notes.
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each of which is taken with probability 1/2t. Thus Pr[M(x) = 1] is simply the fraction of
branches that end with M outputting a 1. The main difference between an NDTM and
a PTM lies in how we interpret the graph of all possible computations: an NDTM is said
to accept the input if there exists a branch that outputs 1, whereas in case of a PTM we
consider the fraction of branches for which this happens. On a conceptual level, PTMs
and NDTMs are very different, as PTMs, like deterministic TMs and unlike NDTMs, are
intended to model realistic computation devices.

The following class BPP aims to capture efficient probabilistic computation. Below, for
a language L ⊆ {0, 1}∗ and x ∈ {0, 1}∗, we define L(x) = 1 if x ∈ L and L(x) = 0 otherwise.

Definition 7.2 (The classes BPTIME and BPP)
For T : N → N and L ⊆ {0, 1}∗ we say that a PTM M decides L in time T (n) if for
every x ∈ {0, 1}∗, M halts in T (|x|) steps regardless of its random choices, and Pr[M(x) =
L(x)] ≥ 2/3.

We let BPTIME(T (n)) be the class of languages decided by PTMs in O(T (n)) time and
define BPP = ∪cBPTIME(nc).

Note that the PTM in the previous definition satisfies a very strong “excluded middle”
property: for every input it either accepts it with probability at least 2/3, or rejects it with
probability at least 2/3. This property makes Definition 7.2 quite robust, as we will see in
Section 7.4. For instance, we will see that the constant 2/3 is arbitrary in the sense that
it can be replaced with any other constant greater than half without changing the classes
BPTIME(T (n)) and BPP. We can also make other modifications such as allowing “unfair”
coins (that output “Heads” with probability different than 1/2) or allowing the machine to
run in expected polynomial-time.

While Definition 7.2 allows the PTM M on input x to output a value different from L(x)
(i.e., output the wrong answer) with positive probability, this probability is only over the
random choices that M makes in the computation. In particular, for every input x, M(x)
will output the right value L(x) with probability at least 2/3. Thus BPP, like P, is still a
class capturing complexity on worst-case inputs.

Since a deterministic TM is a special case of a PTM (where both transition functions
are equal), the class BPP clearly contains P. To study the relationship of BPP with other
classes, it will be helpful to have the following alternative definition.

An alternative definition. As we did with NP, we can define BPP using deterministic
TMs where the sequence of “coin tosses” needed for every step are provided to the TM as
an additional input:

Definition 7.3 (BPP, alternative definition) A language L is in BPP if there exists a
polynomial-time TM M and a polynomial p : N → N such that for every x ∈ {0, 1}∗,
Prr∈

R
{0,1}p(|x|) [M(x, r) = L(x)] ≥ 2/3. ♦

From this definition it is clear that BPP ⊆ EXP since in time 2poly(n) it is possible to
enumerate all the possible random choices of a polynomial-time PTM. Currently researchers
only know that BPP is sandwiched between P and EXP but are even unable to show that
BPP is a proper subset of NEXP.

A central open question of complexity theory is whether or not BPP = P. Based on
previous chapters, the reader would probably guess that complexity theorists believe that
BPP 6= P. Not true! Many complexity theorists actually believe that BPP = P, in other
words, there is a way to transform every probabilistic algorithm to a deterministic algorithm
(one that does not toss any coins) while incurring only a polynomial slowdown. The reasons
for this surprising belief are described in Chapters 19 and 20.
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7.2 Some examples of PTMs

The following examples demonstrate how randomness can be a useful tool in computation.
We will see many more examples in the rest of this book.

7.2.1 Finding a median

A median of a set of numbers {a1, . . . , an} is any number x such that at least
⌊

n
2

⌋

of the ai’s

are smaller or equal to x and at least
⌊

n
2

⌋

of them are larger or equal to x. Finding a median
of a given set of number is useful in many calculations. One simple way to do so is to sort
the numbers and then output the

⌊

n
2

⌋

smallest of them, but this takes O(n logn) time.2

We now show a simple probabilistic algorithm to find the median in O(n) time. There are
known linear time deterministic algorithms for this problem, but the following probabilistic
algorithm is still the simplest and most practical known.

Our algorithm will actually solve a more general problem: finding the kth smallest
number in the set for every k. It works as follows:

Algorithm FindKthElement(k, a1, . . . , an):

1. Pick a random i ∈ [n] and let x = ai.

2. Scan the list {a1, . . . , an} and count the number m of ai’s such that ai ≤ x.

3. If m = k then output x.

4. Otherwise, if m > k then copy to a new list L all elements such that ai ≤ x and run
FindKthElement(k, L).

5. Otherwise (if m < k) copy to a new list H all elements such that ai > x and run
FindKthElement(k −m,H).

FindKthElement(k, a1, . . . , an) clearly outputs the kth smallest element and so the
only issue is analyzing its running time. Intuitively, we expect that in each recursive call the
number of elements will shrink by at least n/10 (since in the worst case, where k = n/2, we
expect to get a new list with roughly 3

4n elements). Thus, if T (n) is the running time of the
algorithm then it is given by the formula T (n) = O(n)+T ( 9

10n) which implies T (n) = O(n).
We now prove this formally:

Claim 7.4 For every input k, a1, . . . , an to FindKthElement, let T (k, a1, . . . , an) be the
expected number of steps the algorithm takes on this input. Let T (n) be the maximum of
T (k, a1, . . . , an) over all length n inputs. Then T (n) = O(n). ♦

Proof: All non-recursive operations of the algorithm can be executed in a linear number
of steps: say cn for some constant c. We’ll prove by induction that T (n) ≤ 10cn. Indeed,
fix some input k, a1, . . . , an. For every j ∈ [n] we choose x to be the jth smallest element of
a1, . . . , an with probability 1

n and then we perform either at most T (j) steps (if j > k) or
T (n− j) steps (if j < k). Thus, we can see that

T (k, a1, . . . , an) ≤ cn+
1

n





∑

j>k

T (j) +
∑

j<k

T (n− j)



 .

Plugging in our inductive assumption that T (j) ≤ 10cj for j < n we get

T (k, a1, . . . , an) ≤ cn+
10c

n





∑

j>k

j +
∑

j<k

(n− j)



 ≤ cn+
10c

n





∑

j>k

j + kn−
∑

j<k

j



 .

2We are assuming here that we can perform basic operations on each number at unit cost. To account
for such operations this bound and the bound below needs to include an additional multiplicative factor of
k, where k is the number of bits needed to represent each of the ai’s.
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Using the fact that
∑

j>k j ≤
n(n−k)

2 and
∑

j<k j ≥ k2

2 (1− o(1)) ≥ k2

2.5 (for large enough k)
we get

T (k, a1, . . . , an) ≤ cn+
10c

n

(

n(n−k)
2 + kn− k2

2.5

)

=

cn+
10c

n

(

n2

2 + kn
2 − k2

2.5

)

≤ cn+
10c

n

9n2

10
= 10cn ,

where the one before last inequality can be shown by considering separately the case k < n/2
and the case k ≥ n/2. �

7.2.2 Probabilistic Primality Testing

In primality testing we are given an integer N and wish to determine whether or not it is
prime. Algorithms for primality testing were sought after even before the advent of comput-
ers, as mathematicians needed them to test various conjectures3. Ideally, we want efficient
algorithms that run in time polynomial in the size of N ’s representation, in other words,
poly(logN) time. For centuries mathematicians knew of no such efficient algorithms for this
problem.4 Then in the 1970’s efficient probabilistic algorithms for primality testing were
discovered, giving one of the first demonstrations of the power of probabilistic algorithms.
We note that in a very recent breakthrough, Agrawal, Kayal and Saxena [AKS04] gave a
deterministic polynomial-time algorithm for primality testing.

Formally, primality testing consists of checking membership in the following language

PRIMES = { xNy : N is a prime number} .
We now sketch an algorithm showing that PRIMES is in BPP (and in fact in coRP; see

Section 7.3). For every number N , and A ∈ [N − 1], define

QRN (A) =



















0 gcd(A,N) 6= 1

+1
A is a quadratic residue modulo N
That is, A = B2(modN) for some B with gcd(B,N) = 1

−1 otherwise

We use the following facts, all of which can be proven using elementary number theory
(e.g., see [Sho05]):

• For every odd prime N and A ∈ [N − 1], QRN (A) = A(N−1)/2 (mod N).

• For every odd N,A define the Jacobi symbol (NA ) as
∏k
i=1QRPi(A) where P1, . . . , Pk

are all the (not necessarily distinct) prime factors of N (i.e., N =
∏k
i=1 Pi). Then, the

Jacobi symbol is computable in time O(logA · logN).

• For every odd composite N , among all A ∈ [N − 1] such that gcd(N,A)=1, at most
half of the A’s satisfy (NA ) = A(N−1)/2 (mod N).

Together these facts imply a simple algorithm for testing primality of N (which we can
assume without loss of generality is odd). Choose a random 1 ≤ A < N . If gcd(N,A) > 1
or (NA ) 6= A(N−1)/2 (mod N) then output “composite”, otherwise output “prime”. This
algorithm will always output “prime” if N is prime, but if N is composite will output
“composite” with probability at least 1/2. Of course this probability can be amplified by
repeating the test a constant number of times.

Curiously, the search problem corresponding to primality testing —finding the factoriza-
tion of a given composite number N— seems very different and much more difficult. The
conjectured hardness of this problem underlies many current cryptosystems, though as we’ll
see in Chapter 10, it can be solved efficiently in the model of quantum computers.

3An interesting anecdote is that Gauss, even though he was very fast human computer himself, used the
help of a human supercomputer —an autistic person who excelled at fast calculations— to do primality
testing.

4In fact, in his letter to von Neumann quoted in Chapter 2, Gödel explicitly mentioned this problem as
an example for an interesting problem in NP not known to be efficiently solvable.
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7.2.3 Polynomial identity testing

We now describe a polynomial-time probabilistic algorithm for a problem that has no known
efficient deterministic algorithm. The problem is the following: we are given a polynomial
with integer coefficients in an implicit form, and we want to decide whether this polynomial
is in fact identically zero. We assume we get the polynomial in the form of an algebraic
circuit. This is analogous to the notion of a Boolean circuit, but instead of the operators
∧,∨ and ¬, we have the operators +,− and × (see also Section 16.1.3). Formally, an n-
variable algebraic circuit is a directed acyclic graph with the sources labeled by a variable
name from the set x1, . . . , xn, and each non-source node having in-degree two and is labeled
by an operator from the set {+,−,×}. There is a single sink in the graph which we call the
output node. The algebraic circuit defines a polynomial from Zn to Z by placing the inputs
on the sources and computing the value of each node using the appropriate operator.5 A
simple induction shows that the circuit computes a function f(x1, x2, . . . , xn) of the inputs
that can be described by a multivariate polynomial in x1, x2, . . . , xn. We define ZEROP to
be the set of algebraic circuits that compute the identically zero polynomial. Determining
membership in ZEROP is also called polynomial identity testing since we can reduce the
problem of deciding whether two circuits C,C′ compute the same polynomial to ZEROP by
constructing the circuit D such that D(x1, . . . , xn) = C(x1, . . . , xn) − C′(x1, . . . , xn). The
polynomial identity testing problem plays an important role in complexity theory; see for
instance Chapters 8, 11, and 20.

The ZEROP problem is nontrivial because a very compact circuit can represent polyno-
mials with a large number of terms. For instance, the polynomial

∏

i(1+xi) can be computed
using a circuit of size 2n but has 2n terms if we open all parentheses. Surprisingly, there is
in fact a simple and efficient probabilistic algorithm for testing membership in ZEROP. At
the heart of this algorithm is the following fact, often known as the Schwartz-Zippel Lemma,
whose proof appears in Appendix A (see Lemma A.36):

Lemma 7.5 Let p(x1, x2, . . . , xm) be a non-zero polynomial of total degree at most d.6 Let
S be a finite set of integers. Then, if a1, a2, . . . , am are randomly chosen with replacement
from S, then

Pr[p(a1, a2, . . . , am) 6= 0] ≥ 1− d

|S| .

A size m circuit C contains at most m multiplications and so defines a polynomial of
degree at most 2m. This suggests the following simple probabilistic algorithm: choose n
numbers x1, . . . , xn from 1 to 10 · 2m (this requires O(n · m) random bits), evaluate the
circuit C on x1, . . . , xn to obtain an output y and then accept if y = 0, and reject otherwise.
Clearly if C ∈ ZEROP then we always accept. By Lemma 7.5, if C 6∈ ZEROP then we will
reject with probability at least 9/10.

However, there is a problem with this algorithm. Since the degree of the polynomial
represented by the circuit can be as high as 2m, the output y and other intermediate values
arising in the computation may be as large as (10 · 2m)2

m

— this is a value that requires
exponentially many bits just to describe!

We solve this problem using a technique called fingerprinting. The idea is to perform
the evaluation of C on x1, . . . , xn modulo a number k that is chosen at random in [22m].
Thus, instead of computing y = C(x1, . . . , xn), we compute the value y (mod k). Clearly,
if y = 0 then y (mod k) is also equal to 0. On the other hand, we claim that if y 6= 0, then
with probability at least δ = 1

4m , k does not divide y— this suffices because we can repeat
this procedure O(1/δ) times and accept only if the output is zero in all these repetitions.
Indeed, assume that y 6= 0 and let B = {p1, . . . , pℓ} denote the set of distinct prime factors
of y. It is sufficient to show that with probability at least δ, the number k will be a prime
number not in B. Yet, by the prime number theorem, for sufficiently large m, the number

5We can also allow the circuit to contain constants such as 0, 1 and other numbers, but this does not
make much difference in this context.

6The total degree of a monomial xe1
1 ·xe2

2 · · ·xem
n is equal to e1+· · ·+em. The total degree of a polynomial

is the largest total degree of its monomials.
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of primes in [22m] is at least 22m

2m . Since y can have at most log y ≤ 5m2m = o(22m

2m ) prime
factors, for sufficiently large m, the number of k’s in [22m] such that k is prime and is not

in B is at least 22m

4m , meaning that a random k will have this property with probability at
least 1

4m = δ.

7.2.4 Testing for perfect matching in a bipartite graph.

Let G = (V,E) be a bipartite graph with two equal parts. That is, V = V1 ∪ V2 where
V1, V2 are disjoint and of equal size, and E ⊆ V1 × V2. A perfect matching in G is a subset
of edges E′ ⊆ E such that every vertex appears exactly once in E′. Alternatively, setting
n = |V1| = |V2| and identifying both these sets with the set [n], we may think of E′ as a
permutation σ : [n] → [n] mapping every i ∈ [n] to the unique j ∈ [n] such that i j ∈ E′.
Several deterministic algorithms are known for detecting if a perfect matching exists in a
given graph. Here we describe a very simple randomized algorithm (due to Lovász) using
the Schwartz-Zippel lemma.

For a 2n-vertex bipartite graph G = (V,E) as above, let X be an n × n matrix of real
variables whose (i, j)th entry Xi,j is equal to the variable xi,j if the edge i j is in E and
equal to 0 otherwise. Recall that the determinant of a matrix A is defined as follows:

det(A) =
∑

σ∈Sn
(−1)sgn(σ)

n
∏

i=1

Ai,σ(i), (1)

where Sn is the set of all permutations of [n] and sgn(σ) is the parity of the number of
transposed pairs in σ (i.e., pairs 〈i, j〉 such that i < j but σ(i) > σ(j)). Thus, det(X) is
a degree n polynomial in the variables {xi,j}i j∈E that has a monomial for every perfect
matching that exists in the graph. In other words, G has a perfect matching if and only if
det(X) is not the identically zero polynomial. Now, even though det(X) may have expo-
nentially many monomials, for every setting of values to the xi,j variables det(X) can be
efficiently evaluated using the well known algorithm for computing determinants.

This leads, in conjunction with Lemma 7.5, to Lovász’s randomized algorithm: pick
random values for xi,j ’s from [2n], substitute them in X and compute the determinant. If
the determinant is nonzero, output “accept” else output “reject.” Besides its simplicity, this
algorithm also has an advantage that it has an efficient parallel implementation (using the
NC algorithm for computing determinants; see Exercise 6.16 in Chapter 6).

7.3 One-sided and “zero-sided” error: RP, coRP, ZPP

The class BPP captures what we call probabilistic algorithms with two sided error. That
is, it allows an algorithm for a language L to output (with some small probability) both 0
when x ∈ L and 1 when x 6∈ L. However, many probabilistic algorithms have the property
of one sided error. For example if x 6∈ L they will never output 1, although they may output
0 when x ∈ L. This type of behavior is captured by the class RP which we now define:

Definition 7.6 RTIME(T (n)) contains every language L for which there is a is a proba-
bilistic TM M running in T (n) time such that

x ∈ L⇒ Pr[M(x) = 1] ≥ 2

3
x 6∈ L⇒ Pr[(x) = 0] = 0

We define RP = ∪c>0RTIME(nc). ♦
Note that RP ⊆ NP, since every accepting branch is a “certificate” that the input is in

the language. In contrast, we do not know if BPP ⊆ NP. The class coRP = {L | L ∈ RP}
captures one-sided error algorithms with the error in the “other direction” (i.e., may output
1 when x 6∈ L but will never output 0 if x ∈ L).
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“Zero sided” error. For a PTM M , and input x, we define the random variable TM,x to be
the running time of M on input x. That is, Pr[TM,x = T ] = p if with probability p over the
random choices of M on input x, it will halt within T steps. We say that M has expected
running time T (n) if the expectation E[TM,x] is at most T (|x|) for every x ∈ {0, 1}∗. We
now define PTMs that never err (also called “zero error” machines).

Definition 7.7 The class ZTIME(T (n)) contains all the languages L for which there is an
expected-time O(T (n)) machine M such that for every input x, whenever M halts on x, the
output M(x) it produces is exactly L(x).

We define ZPP = ∪c>0ZTIME(nc). ♦

The next theorem ought to be slightly surprising, since the corresponding question for
nondeterminism (i.e., whether or not P = NP ∩ coNP) is open.

Theorem 7.8 ZPP = RP ∩ coRP. ♦

We leave the proof of this theorem to the reader (see Exercise 7.6). To summarize, we
have the following relations between the probabilistic complexity classes:

ZPP = RP ∩ coRP

RP ⊆ BPP

coRP ⊆ BPP

7.4 The robustness of our definitions

When we defined P and NP, we argued that our definitions are robust and are likely to
be the same for an alien studying the same concepts in a faraway galaxy. Now we address
similar issues for probabilistic computation.

7.4.1 Role of precise constants: error reduction.

The choice of the constant 2/3 seemed pretty arbitrary. We now show that we can replace
2/3 with any constant larger than 1/2 and in fact even with 1/2 + n−c for a constant c > 0.

Lemma 7.9 For c > 0, let BPP1/2+n−c denote the class of languages L for which there is
a polynomial-time PTM M satisfying Pr[M(x) = L(x)] ≥ 1/2 + |x|−c for every x ∈ {0, 1}∗.
Then BPP1/2+n−c = BPP. ♦

Since clearly BPP ⊆ BPP1/2+n−c , to prove this lemma we need to show that we can
transform a machine with success probability 1/2 + n−c into a machine with success proba-
bility 2/3. We do this by proving a much stronger result: we transform such a machine into
a machine with success probability exponentially close to one!

Theorem 7.10 (Error reduction for BPP)
Let L ⊆ {0, 1}∗ be a language and suppose that there exists a polynomial-time PTM M

such that for every x ∈ {0, 1}∗, Pr[M(x) = L(x)] ≥ 1
2 + |x|−c.

Then for every constant d > 0 there exists a polynomial-time PTM M ′ such that for every

x ∈ {0, 1}∗, Pr[M ′(x) = L(x)] ≥ 1− 2−|x|d.

Proof: The machine M ′ simply does the following: for every input x ∈ {0, 1}∗, run M(x)
for k = 8|x|2c+d times obtaining k outputs y1, . . . , yk ∈ {0, 1}. If the majority of these
outputs is 1 then output 1, otherwise output 0.
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To analyze this machine, define for every i ∈ [k] the random variable Xi to equal 1 if
yi = L(x) and to equal 0 otherwise. Note that X1, . . . , Xk are independent Boolean random
variables with E[Xi] = Pr[Xi = 1] ≥ p for p = 1/2 + |x|−c. The Chernoff bound (see
Corollary A.15) implies that for δ sufficiently small:

Pr
[

∣

∣

k
∑

i=1

Xi − pk
∣

∣ > δpk
]

< e−
δ2

4 pk .

In our case p = 1/2+|x|−c and setting δ = |x|−c/2 guarantees that if
∑k

i=1Xi ≥ pk−δpk
then we will output the right answer. Hence, the probability we output a wrong answer is
bounded by

e
− 1

4|x|2c
1
2 8|x|2c+d ≤ 2−|x|d . �

A similar (and even easier to prove) result holds for the one-sided error classes RP and
coRP; see Exercise 7.4. In that case we can even change the constant 2/3 to values smaller
than 1/2.

These error reduction results imply that we can take a probabilistic algorithm that
succeeds with quite modest probability and transform it into an algorithm that succeeds
with overwhelming probability. In fact, even for moderate values of n an error probability
that is of the order of 2−n is so small that for all practical purposes, probabilistic algorithms
are just as good as deterministic algorithms.

Randomness-efficient repetitions. The proof of Theorem 7.10 uses O(k) independent rep-
etitions to transform an algorithm with success probability 2/3 into an algorithm with success
probability 1− 2−k. Thus, if the original used m random coins then the new algorithm will
use O(km) coins. Surprisingly, we can do better: there is a transformation that only uses
O(m + k) random coins to achieve the same error reduction. This transformation will be
described in Chapter 21 (Section 21.2.5).

7.4.2 Expected running time versus worst-case running time.

When defining RTIME(T (n)) and BPTIME(T (n)) we required the machine to halt in
T (n) time regardless of its random choices. We could have used expected running time
instead, as in the definition of ZPP (Definition 7.7). It turns out this yields an equivalent
definition: we can transform a PTM M whose expected running time is T (n) to a PTM
M ′ that always halts after at most 100T (n) steps by simply adding a counter and halting
with an arbitrary output after too many steps have gone by. By Markov’s inequality (see
Lemma A.7), the probability that M runs for more than 100T (n) steps is at most 1/100
and so this will change the acceptance probability by at most 1/100.

7.4.3 Allowing more general random choices than a fair random coin.

One could conceive of real-life computers that have a “coin” that comes up heads with
probability ρ that is not 1/2. We call such a coin a ρ-coin. Indeed it is conceivable that
for a random source based upon quantum mechanics, ρ is an irrational number, such as
1/e. Could such a coin give probabilistic algorithms new power? The following claim shows
that it will not, at least if ρ is efficiently computable. (The exercises show that if ρ is not
efficiently computable, then a ρ-coin can indeed provide additional power.)

Lemma 7.12 A coin with Pr[Heads] = ρ can be simulated by a PTM in expected time
O(1) provided the ith bit of ρ is computable in poly(i) time. ♦

Proof: Let the binary expansion of ρ be 0.p1p2p3 . . .. The PTM generates a sequence of
random bits b1, b2, . . . , one by one, where bi is generated at step i. If bi < pi then the machine
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Note 7.11 (The Chernoff Bound and Statistical Estimation)

The Chernoff bound is extensively used (sometimes under different names) in many
areas of computer science and other sciences. A typical scenario is the following: there
is a universe U of objects, a fraction µ of them have a certain property, and we wish
to estimate µ. For example, in the proof of Theorem 7.10 the universe was the set of
2m possible coin tosses of some probabilistic algorithm and we wanted to know how
many of them make the algorithm accept its input. As another example, U can be the set
of all the citizens of the United States, and we wish to find out how many of them own a dog.

A natural approach for computing the fraction µ is to sample n members of the universe
independently at random, find out the number k of the sample’s members that have the
property, and then guess that µ is k/n. Of course, a guess based upon a small sample is
unlikely to produce the exact answer. For instance, the true fraction of dog owners may be
10% but in a sample of size say 1000 we may find that only 99 (i.e., 9.9%) people are dog
owners. So we set our goal only to estimate the true fraction µ up to an error of ±ǫ for
some ǫ > 0. Despite allowing ourselves this error margin, we may get really unlucky and
our sample may turn out to be really unrepresentative—e.g., there is a non-zero probability
that the entire sample of 1000 consists of dog owners. So we allow a small probability of
failure δ that our estimate will not lie in the interval [µ− ǫ, µ+ ǫ]. The natural question is
how many samples do we need in order to estimate µ up to an error of ±ǫ with probability
at least 1− δ? The Chernoff bound tells us that (considering µ as a constant) this number
is O(log(1/δ)/ǫ2).

Setting ρ = log(1/δ), this implies that the probability that k is ρ
√
n far from µn decays

exponentially with ρ. That is, this probability has the famous “bell curve” shape:

k

Pr[               ]

0 n
0

1

µn µn+ρn1/2µn-ρn1/2

k have 
property

We will use this exponential decay phenomena many times in this book. See for instance
the proof of Theorem 7.14, showing that BPP ⊆ P/poly.
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outputs “heads” and stops; if bi > pi the machine outputs “tails” and halts; otherwise the
machine goes to step i+ 1. Clearly, the machine reaches step i+ 1 iff bj = pj for all j ≤ i,
which happens with probability 1/2i. Thus the probability of “heads” is

∑

i pi
1
2i , which is

exactly ρ. Furthermore, the expected running time is
∑

i i
c · 1

2i . For every constant c this
infinite sum is bounded by another constant (see Exercise 7.2). �

Conversely, probabilistic algorithms that only have access to ρ-coins do not have less
power than standard probabilistic algorithms:

Lemma 7.13 (von-Neumann [vN51]) A coin with Pr[Heads] = 1/2 can be simulated by a
probabilistic TM with access to a stream of ρ-biased coins in expected time O( 1

ρ(1−ρ) ). ♦

Proof: We construct a TM M that given the ability to toss ρ-coins, outputs a 1/2-coin.
The machine M tosses pairs of coins until the first time it gets a pair containing two
different results (i.e., “Heads-Tails” or “Tails-Heads”). Then, if the first of these two results
is “Heads” it outputs “Heads” and otherwise it outputs “Tails”.

The probability that a pair of coins comes up “Head-Tails” is ρ(1 − ρ), while the prob-
ability it comes up “Tails-Heads” is (1 − ρ)ρ = ρ(1 − ρ). Hence, in each step M halts
with probability 2ρ(1− ρ), and conditioned on M halting in a particular step, the outputs
“Heads” and “Tails” are equiprobable (i.e., M ’s output is a fair coin). Note that we did not
need to know ρ to run this simulation. �

Weak random sources. Physicists (and philosophers) are still not completely certain that
randomness exists in the world, and even if it does, it is not clear that our computers have
access to an endless stream of independent coins. Conceivably, it may be the case that we
only have access to a source of imperfect randomness, that although unpredictable, does not
consist of independent coins. As we will see in Chapter 21, we do know how to simulate
probabilistic algorithms designed for perfect independent 1/2-coins even using such a weak
random source.

7.5 Relationship between BPP and other classes

Below we will show that BPP ⊆ P/poly. Thus P ⊆ BPP ⊆ P/poly. Furthermore, we show
that BPP ⊆ Σp

2∩Πp
2 and so if NP = P then BPP = P. Of course, since we do not believe

P = NP, this still leaves open the possibility that P 6= BPP. However, as mentioned
above (and will be elaborated in Chapters 19 and 20) we can show that if certain plausible
complexity-theoretic conjectures are true then BPP = P. Thus we suspect that BPP is
the same as P and hence (by the Time Hierarchy theorem) BPP is a proper subset of, say,
DTIME(nlog n). Yet currently researchers are not even able to show that BPP is a proper
subset of NEXP.

7.5.1 BPP ⊆ P/poly

Now we show that all BPP languages have polynomial sized circuits. Together with Theo-
rem 6.19 this shows that unless the polynomial-hierarchy collapses, 3SAT cannot be solved
in probabilistic polynomial time.

Theorem 7.14 ([Adl78])
BPP ⊆ P/poly.

Proof: Suppose L ∈ BPP, then by the alternative definition of BPP and the error re-
duction procedure of Theorem 7.10, there exists a TM M that on inputs of size n uses m
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random bits and such that for every x ∈ {0, 1}n, Prr[M(x, r) 6= L(x)] ≤ 2−n−1. Say that a
string r ∈ {0, 1}m is bad for an input x ∈ {0, 1}n if M(x, r) 6= L(x) and otherwise call r good
for x. For every x, at most 2m

2n+1 strings r are bad for x. Adding over all x ∈ {0, 1}n, there

are at most 2n · 2m

2n+1 = 2m/2 strings r that are bad for some x. In particular there exists
a string r0 ∈ {0, 1}m that is good for every x ∈ {0, 1}n. We can hardwire such a string r0
to obtain a circuit C (of size at most quadratic in the running time of M) that on input x
outputs M(x, r0). The circuit C will satisfy C(x) = L(x) for every x ∈ {0, 1}n. �

7.5.2 BPP is in PH

At first glance, BPP seems to have nothing to do with the polynomial hierarchy, so the
next theorem is somewhat surprising.

Theorem 7.15 (Sipser-Gács Theorem)
BPP ⊆ Σp

2 ∩Πp
2.

Proof: It is enough to prove that BPP ⊆ Σp
2 because BPP is closed under complementa-

tion (i.e., BPP = coBPP).
Suppose L ∈ BPP. Then by the alternative definition of BPP and the error reduction

procedure of Theorem 7.10 there exists a polynomial-time deterministic TM M for L that
on inputs of length n uses m = poly(n) random bits and satisfies

x ∈ L⇒ Pr
r

[M(x, r) accepts ] ≥ 1− 2−n

x 6∈ L⇒ Pr
r

[M(x, r) accepts ] ≤ 2−n

For x ∈ {0, 1}n, let Sx denote the set of r’s for which M accepts the input pair 〈x, r〉.
Then either |Sx| ≥ (1 − 2−n)2m or |Sx| ≤ 2−n2m, depending on whether or not x ∈ L. We
will show how to check, using two quantifiers, which of the two cases is true.

Figure 7.1 There are only two possible sizes for the set of r’s such that M(x, r) =Accept:
either this set is almost all of {0, 1}m or a tiny fraction of {0, 1}m. In the former case, a
few random “shifts” of this set are quite likely to cover all of {0, 1}m. In the latter case, the
set’s size is so small that a few shifts cannot cover {0, 1}m

For a set S ⊆ {0, 1}m and string u ∈ {0, 1}m, we denote by S + u the “shift” of the set
S by u: S + u = {x+ u : x ∈ S} where + denotes vector addition modulo 2 (i.e., bitwise
XOR). Let k =

⌈

m
n

⌉

+ 1. Theorem 7.15 is implied by the following two claims:

Claim 1: For every set S ⊆ {0, 1}m with |S| ≤ 2m−n and every k vectors u1, . . . , uk,
∪ki=1(S + ui) 6= {0, 1}m.

Proof: Since |S + ui| = |S|, by the union bound we have | ∪ki=1 (S + ui)| ≤
k|S| < 2m (for sufficiently large n). �

Claim 2: For every set S ⊆ {0, 1}m with |S| ≥ (1 − 2−n)2m, there exist u1, . . . , uk such
that ∪ki=1(S + ui) = {0, 1}m.
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Proof: This follows from the probabilistic method: we claim that if u1, . . . , uk
are chosen independently at random, then Pr[∪ki=1(S + ui) = {0, 1}m] > 0.
Indeed, for r ∈ {0, 1}m, let Br denote the “bad event” that r is not in ∪ki=1(S +
ui). It suffices to prove that Pr[∃r∈{0,1}mBr] < 1 which will follow by the union
bound if we can show for every r that Pr[Br] < 2−m. But Br = ∩i∈[k]B

i
r where

Bir is the event that r 6∈ S+ui, or equivalently, that r+ui 6∈ S (using the fact that
modulo 2, a+b = c⇔ a = c+b). Yet, r+ui is a uniform element in {0, 1}m, and
so it will be in S with probability at least 1− 2−n. Furthermore, the events Bir
are independent for different i’s implying that Pr[Br] = Pr[Bir]

k ≤ 2−nk < 2−m.
�

Together Claims 1 and 2 show that x ∈ L if and only if the following statement is true

∃u1, . . . , uk ∈ {0, 1}m ∀r ∈ {0, 1}m r ∈ ∪ki=1(Sx + ui) ,

or equivalently,

∃u1, . . . , uk ∈ {0, 1}m ∀r ∈ {0, 1}m
k
∨

i=1

M(x, r ⊕ ui) accepts .

which represents a Σp
2 computation since k is poly(n). Hence we have shown L ∈ Σ2. �

7.5.3 Hierarchy theorems and complete problems?

The reader may have wondered if BPP has complete problems, or if probabilistic compu-
tation has a hierarchy theorem. Now we discuss this.

Complete problems for BPP?

Though a very natural class, BPP behaves differently in some ways from other classes we
have seen. For example, we know of no complete languages for BPP. One reason for this
difficulty is that the defining property of BPTIME machines is semantic, namely, that
they accept every input string either with probability at least 2/3 or with probability at
most 1/3. Testing whether a given TM M has this property is undecidable. By contrast,
the defining property of an NDTM is syntactic: given a string it is easy to determine if it
is a valid encoding of an NDTM. Complete problems seem easier to find for syntactically
defined classes than for semantically defined ones. For example, consider the following
natural attempt at a BPP-complete language: define L to contain all tuples 〈M,x, 1t〉 such
that on input x, M outputs 1 within t steps with probability at least 2/3. The language
L is indeed BPP-hard but is not known to be in BPP since for 〈M,x, 1t〉 6∈ L we could
have Pr[M(x) = 1] = 1/2 (say), which is greater than 1/3. In fact, we will see in Chapter 17
that this language is #P-complete and hence unlikely to be in any level of the polynomial
hierarchy unless the hierarchy collapses. However if, as believed, BPP = P, then BPP
does have a complete problem (since P does).

Does BPTIME have a hierarchy theorem?

Is every problem in BPTIME(n2) also in BPTIME(n)? One would imagine not, and this
seems like the kind of result we should be able to prove using the diagonalization techniques
of Chapter 3. However currently we are even unable to show that, say, BPTIME(n) 6=
BPTIME(n(logn)10). The standard diagonalization techniques fail, again apparently be-
cause the defining property of BPTIME machines is semantic. However, recently there has
been some progress on obtaining hierarchy theorem for some closely related classes (see the
chapter notes).
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7.6 Randomized reductions

Since we have defined randomized algorithms, it also makes sense to define a notion of
randomized reduction between two languages. This proves useful in some complexity settings
(e.g., see Chapters 8 and 17).

Definition 7.16 Language B reduces to language C under a randomized polynomial time
reduction, denoted B ≤r C, if there is a probabilistic TM M such that for every x ∈ {0, 1}∗,
Pr[B(M(x)) = C(x)] ≥ 2/3. ♦

Although not transitive, this notion of reduction is useful in the sense that if C ∈ BPP
and B ≤r C then B ∈ BPP. This observation also alerts us to the possibility that we
could have defined NP-completeness using randomized reductions instead of deterministic
reductions, since arguably BPP is as good as P as a formalization of the notion of efficient
computation. Recall that the Cook-Levin theorem shows that NP may be defined as the
set {L : L ≤p 3SAT}. In the previous definition if we replace “deterministic polynomial-time
reduction” with “randomized reduction” then we obtain a somewhat different class.

Definition 7.17 BP ·NP = {L : L ≤r 3SAT}. ♦

We explore the properties of BP ·NP in the exercises, including whether or not it is
likely that 3SAT ∈ BP ·NP.

One interesting application of randomized reductions will be shown in Chapter 17, where
we present a (variant of a) randomized reduction from 3SAT to solving a special case of
3SAT where we are guaranteed that the formula is either unsatisfiable or has a single unique
satisfying assignment.

7.7 Randomized space-bounded computation

We can extend the definition of space-bounded computation from Chapter 4 to the proba-
bilistic setting, saying that a PTM uses space S(n) if in any branch of its computation on a
length n input, the number of work-tape cells that are ever non-blank is at most O(S(n)).
The most interesting case is when the work tape has O(log n) size. The classes BPL and
RL are the two-sided error and one-sided error probabilistic analogs of the class L defined
in Chapter 4.

Definition 7.18 (The classes BPL and RL)
A language L is in BPL if there is an O(log n)-space probabilistic TM M such that
Pr[M(x) = L(x)] ≥ 2/3.
A language L is in RL if there is an O(log n)-space probabilistic TM M such that if x ∈ L
then Pr[M(x) = 1] ≥ 2/3 and if x 6∈ L then Pr[M(x) = 1] = 0.

The reader can verify that the error reduction procedure described in Chapter 7 can
be implemented with only logarithmic space overhead. Hence, also in these definitions the
choice of the precise constant is not significant. We note that RL ⊆ NL, and thus RL ⊆ P.
The exercises ask you to show that BPL ⊆ P as well.

One famous RL-algorithm is the algorithm for solving UPATH, the restriction of the
NL-complete PATH problem (see Chapter 4) to undirected graphs. That is, given an n-
vertex undirected graph G and two vertices s and t, determine whether s is connected to t
in G.

Theorem 7.19 ([AKL+79]) UPATH ∈ RL. ♦
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The algorithm for UPATH is actually very simple: take a random walk of length ℓ = 100n4

starting from s. That is, initialize the variable v to the vertex s and in each step choose
a random neighbor u of v, and set v ← u. Accept iff the walk reaches t within ℓ steps.
This is a logspace algorithm since it only needs to store a counter, the index of the current
vertex, and some scratch space to compute the next neighbor in the walk. Clearly, if s is not
connected to t then the algorithm will never accept. It can be shown that if s is connected
to t then the expected number of steps it takes for a walk from s to hit t is at most 10n4

and hence our algorithm will accept with probability at least 3
4 . We leave the analysis as

Exercise 7.11. Chapter 21 introduces some general tools for the analysis of random walks on
graphs, from which this bound (and better ones) easily follow.7 In Chapter 21 (Section 21.4)
we show a recent deterministic logspace algorithm for the same problem.

More generally, we do know some non-trivial relations between probabilistic and deter-
ministic logspace computation. It is known that BPL (and hence also RL) is contained in

SPACE(log3/2 n). See Section 21.6 and the chapter notes of Chapter 21 for more on this
topic.

What have we learned?

• The class BPP consists of languages that can be solved by a probabilistic polynomial-
time algorithm. The probability is only over the algorithm’s coins and not the choice
of input. It is arguably a better formalization of efficient computation than P.

• RP, coRP and ZPP are subclasses of BPP corresponding to probabilistic algorithms
with one-sided and “zero-sided” error.

• Using repetition, we can considerably amplify the success probability of probabilistic
algorithms.

• We only know that P ⊆ BPP ⊆ EXP, but we suspect that BPP = P.

• BPP is a subset of both P/poly and PH. In particular, the latter implies that if
NP = P then BPP = P.

• Randomness is used in complexity theory in many contexts beyond BPP. Two ex-
amples are randomized reductions and randomized logspace algorithms, but we will
see many more later.

Chapter notes and history

Early researchers realized the power of randomization since their computations —e.g., for design
of nuclear weapons— used probabilistic tools such as Monte Carlo simulations. Turing machines
were defined by De Leeuw et al. [dLMSS56]. The definitions of BPP (bounded-error probabilistic
polynomial time), RP (randomized polynomial time) and ZPP (zero-error probabilistic polynomial
time) are from Gill [Gil77]. The reason BPP is not called simply PP (i.e., “probabilistic time”)
is that Gill (apparently in error) gave the name PP to a much more powerful class in [Gil74] (see
Chapter 17).

The algorithm used to show PRIMES is in coRP is due to Solovay and Strassen [SS77]. Another
primality test from the same era is due to Rabin [Rab80]. Over the years, many better primality
tests were proposed. In a recent breakthrough, Agrawal, Kayal and Saxena finally proved that
PRIMES ∈ P. Both the probabilistic and deterministic primality testing algorithms are described
in Shoup’s book [Sho05]. The fingerprinting technique used in the polynomial identity-testing
algorithm is by Karp and Rabin [KR81]. Lovász’s randomized NC algorithm [Lov79] for deciding

7The best bound known on the expected number of steps for a walk from s to visit all the vertices
connected to s in an n-vertex graph is 4

27
n3 + o(n3) [Fei95] and this is tight, as can be shown by analyzing

the random walk on the “lollipop graph”, consisting of a path of length n/3 connected to a clique of length
2n/3.
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the existence of perfect matchings is unsatisfying in the sense that when it outputs “Accept,” it
gives no clue how to find a matching! Subsequent probabilistic NC algorithms can find a perfect
matching as well; see [KUW85, MVV87]. Readers interested in randomized algorithms are referred
to the books by Mitzenmacher and Upfal [MU05] and Motwani and Raghavan [MR95].

BPP ⊆ P/poly (Theorem 7.14) is from Adelman [Adl78]. BPP ⊆ PH is due to Sipser [Sip83],
and the stronger form BPP ⊆ Σp

2∩Πp
2 (Theorem 7.15) is due to P. Gács. The proof we presented is

due to Lautemann [Lauer]. Recent work shows that BPP is contained in classes that are seemingly
weaker than Σp

2 ∩ Πp
2 [Can96, RS95].

Even though a hierarchy theorem for BPP seems beyond our reach, there has been some success
in showing hierarchy theorems for the seemingly related class BPP/1 (i.e., BPP with a single bit of
non-uniform advice) [Bar02, FS04, GST04]. We note that the problematic issues with both existence
of complete problems and of hierarchy theorems do not occur in the generalization of BPP to
promise problems, or equivalently to Boolean functions that may be defined only on a subset of
{0, 1}∗.

The notation BP ·NP defined in Section 7.6 can be generalized to arbitrary complexity classes
other than NP, see Lecture G of [Koz06]. Under this generalization, BP · P = BPP.

Chapter 21 contains a much more through treatment of random walks, covering both the
randomness-efficient error reduction procedure mentioned in Section 7.4.1 and analysis of the
logspace connectivity algorithm sketched in Section 7.7.

Exercises

7.1 Show that one can efficiently simulate choosing a random number from 1 to N using coin tosses.
That is, show that for everyN and δ > 0 there is a probabilistic algorithm A running in poly(logN log(1/δ))-
time with output in {1, . . . , N, ?} such that (1) conditioned on not outputting ?, A’s output is
uniformly distributed in [N ] and (2) the probability that A outputs ? is at most δ.

7.2 Show that for every c > 0, the infinite sum
∑

i≥1
ic

2i
is bounded by some constant (depending on

c). That is, prove that for every c > 0 there is D such that for every n ≥ 1,
∑n

i=1
ic

2i
≤ D.

7.3 Show, given input the numbers 〈a, n, p〉 (in binary representation), how to compute an (mod p) in
polynomial time. H459

7.4 (Error reduction for RP) Let L ⊆ {0, 1}∗ be such that there exists a polynomial-time PTM M
satisfying for every x ∈ {0, 1}∗: (1) If x ∈ L then Pr[M(x) = 1)] ≥ n−c and (2) if x 6∈ L, then
Pr[M(x) = 1] = 0.

Prove that for every d > 0 there exists a polynomial-time PTM M ′ such that for every x ∈ {0, 1}∗,
(1) if x ∈ L then Pr[M ′(x) = 1] ≥ 1 − 2−nd and (2) if x 6∈ L then Pr[M ′(x) = 1] = 0. H459

7.5 Let us study to what extent Lemma 7.12 truly needs the assumption that ρ is efficiently computable.
Describe a real number ρ such that given a random coin that comes up “Heads” with probability
ρ, a Turing machine can decide an undecidable language in polynomial time. H459

7.6 (a) Prove that a language L is in ZPP iff there exists a polynomial-time PTM M with outputs in
{0, 1, ?} such that for every x ∈ {0, 1}∗, with probability 1, M(x) ∈ {L(x), ?} and Pr[M(x) =
?] ≤ 1/2.

(b) Prove Theorem 7.8: show that ZPP = RP ∩ coRP.

7.7 A nondeterministic circuit has two inputs x, y. We say that C accepts x iff there exists y such that
C(x, y) = 1. The size of the circuit is measured as a function of |x|. Let NP/poly be the languages
that are decided by polynomial size nondeterministic circuits. Show that BP · NP ⊆ NP/poly.

7.8 Show that if 3SAT ∈ BP ·NP then PH collapses to Σp
3. (Thus it is unlikely that 3SAT ≤r 3SAT.)

H459

7.9 Show that BPL ⊆ P. H459

7.10 Show that the random walk idea for solving connectivity does not work for directed graphs. In
other words, describe a directed graph on n vertices and a starting point s such that the expected
time to reach t is Ω(2n) even though there is a directed path from s to t.

7.11 (UPATH ∈ RL worked out) Let G be an n vertex graph where all vertices have the same degree.

(a) We say that a distribution p over the vertices of G (where pi denotes the probability that
vertex i is picked by p) is stationary if when we choose a vertex i according to p and take a
random step from i (i.e., move to a random neighbor j or i) then the resulting distribution is
p. Prove that the uniform distribution on G’s vertices is stationary.
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(b) For p a distribution over the vertices of G, let ∆(p) = maxi{pi − 1/n}. For every k, denote

by pk the distribution obtained by choosing a vertex i at random from p and taking k
random steps on G. Prove that if G is connected then there exists k such that ∆(pk) ≤
(1 − n−10n)∆(p). Conclude that:

(a) The uniform distribution is the only stationary distribution for G.

(b) For every pair of vertices u, v of G, if we take a sufficiently long random walk starting
from u, then with high probability the fraction of times we hit the vertex v is roughly
1/n. That is, for every ǫ > 0, there exists k such that the k-step random walk from u
hits v between (1 − ǫ)k/n and (1 + ǫ)k/n times with probability at least 1 − ǫ.

(c) For a vertex u in G, denote by Eu the expected number of steps it takes for a random walk
starting from u to reach back u. Show that Eu ≤ 10n2. H459

(d) For every two vertices u, v denote by Eu,v the expected number of steps it takes for a random
walk starting from u to reach v. Show that if u and v are connected by a path of length at
most k then Eu,v ≤ 100kn2 . Conclude that for every s and t that are connected in a graph
G, the probability that an 1000n3 random walk from s does not hit t is at most 1/10. H459

(e) Let G be an n-vertex graph that is not necessarily regular (i.e., each vertex may have different
degree). Let G′ be the graph obtained by adding a sufficient number of parallel self-loops to
each vertex to make G regular. Prove that if a k-step random walk in G′ from a vertex s hits
a vertex t with probability at least 0.9, then a 10n2k-step random walk in G from s will hit t
with probability at least 1/2.
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Chapter 8

Interactive proofs

“What is intuitively required from a theorem-proving procedure? First, that it
is possible to “prove” a true theorem. Second, that it is impossible to “prove” a
false theorem. Third, that communicating the proof should be efficient, in the
following sense. It does not matter how long must the prover compute during
the proving process, but it is essential that the computation required from the
verifier is easy.”
Goldwasser, Micali, Rackoff 1985

The standard notion of a mathematical proof is closely related to the certificate definition
of NP. To prove that a statement is true one provides a sequence of symbols on a piece
of paper, and the verifier checks that they represent a valid proof/certificate. A valid
proof/certificate exists only for true statements. However, people often use a more general
way to convince one another of the validity of statements: they interact with one another,
where the person verifying the proof (called verifier from now on) asks the person providing
it (called prover from now on) for a series of explanations before he is convinced.

It seems natural to try to understand the power of such interactive proofs from the
complexity-theoretic perspective. For example, can one prove in a succinct way that a given
formula is not satisfiable? This problem is coNP-complete, and hence is believed to not
have a polynomial-sized proof in the traditional sense. The surprising fact is that it does
have succinct proofs when the verifier is allowed to interact with the prover (Section 8.3), and
in fact so does TQBF and every other problem in PSPACE. (We note that these succinct
interactive proofs require that the verifier be randomized, and this is crucial; see Section 8.1.)
Such facts alone make the study of interactive proofs very important. Furthermore, study
of interactive proofs yields new insights into other issues — cryptographic protocols (see
Remark 8.8 and Section 9.4); limits on the power of approximation algorithms (Section 8.5);
program checking (Section 8.6); and evidence that some some famous problems like graph
isomorphism (see Section 8.1.3) and approximate shortest lattice vector (see Chapter notes)
are not NP-complete.

8.1 Interactive proofs: some variations

As mentioned, interactive proofs introduce interaction into the basic NP scenario. Instead
of the prover sending a written proof to the verifier, the verifier conducts an interrogation
of the prover, repeatedly asking questions and listening to the prover’s responses. At the
end the verifier decides whether or not to accept the input. Of course, the message of each
party at any point in the interaction can depend upon messages sent and received so far.
The prover is assumed to be an all-powerful machine (see the notes following Definition 8.3)
though as we will see, it suffices to assume it is a PSPACE machine; see the remark after
Definition 8.6.
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We have several further choices to make in completing the definition: (a) is the prover
deterministic or probabilistic? (b) is the verifier deterministic or probabilistic? (c) if we
allow probabilistic machines, how do we define “accept” and “reject”? We saw in Chapter 7
several choices for this depending upon the type of error allowed (one-sided versus two-
sided).

Let us explore the effect of some of these choices.

8.1.1 Warmup: Interactive proofs with deterministic verifier and prover

First we consider interactive proofs with deterministic verifier and prover.

Example 8.1
Let us consider a trivial example of such an interactive proof for membership in
3SAT. Proceeding clause by clause, the verifier asks the prover to announce the
values for the literals in the clause. The verifier keeps a record of these answers,
and accepts at the end if all clauses were indeed satisfied, and the prover never
announced conflicting values for a variable.
Thus both verifier and prover are deterministic.
Of course, in this case we may well ask what the point of interaction is, as the
prover could just announce values of all clauses in the very first round, and then
take a nap from then on. In fact, we will soon see this is a subcase of a more
general phenomenon: interactive proofs with deterministic verifiers never need
to last more than a single round.

First, let us clarify the word “interaction” in the above example. By this we mean that
the verifier and prover are two deterministic functions that at each round of interaction com-
pute the next question/response as a function of the input and the questions and responses
of the previous rounds.

Definition 8.2 (Interaction of deterministic functions) Let f, g : {0, 1}∗ → {0, 1}∗ be func-
tions and k ≥ 0 be an integer (allowed to depend upon the input size). A k-round in-
teraction of f and g on input x ∈ {0, 1}∗, denoted by 〈f, g〉(x) is the sequence of strings
a1, . . . , ak ∈ {0, 1}∗ defined as follows:

(1)

a1 = f(x)

a2 = g(x, a1)

. . .

a2i+1 = f(x, a1, . . . , a2i) for 2i < k

a2i+2 = g(x, a1, . . . , a2i+1) for 2i+ 1 < k

The output of f at the end of the interaction denoted outf 〈f, g〉(x) is defined to be
f(x, a1, . . . , ak); we assume this output is in {0, 1}. ♦

Definition 8.3 (Deterministic proof systems) We say that a language L has a k-round deter-
ministic interactive proof system if there’s a deterministic TM V that on input x, a1, . . . , ai
runs in time polynomial in |x|, and can have a k-round interaction with any function P such
that:

(Completeness) x ∈ L⇒∃P : {0, 1}∗ → {0, 1}∗ outV 〈V, P 〉(x) = 1

(Soundness) x 6∈ L⇒∀P : {0, 1}∗ → {0, 1}∗ outV 〈V, P 〉(x) = 0

The class dIP contains all languages with a k(n)-round deterministic interactive proof
system where k(n) is polynomial in n. ♦
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Notice, this definition places no limits on the computational power of the prover P ; this
makes intuitive sense, since a false assertion should not be provable, no matter how clever
the prover. Note also that because we place no such limits, it does not matter that we
allow the prover in the completeness and soundness conditions to depend on x (see also
Exercise 8.2).

As hinted in Example 8.1, dIP actually is a class we know well.

Lemma 8.4 dIP = NP. ♦

Proof: Trivially, every NP language has a 1-round deterministic proof system and thus
is in dIP. Now we prove that if L ∈ dIP then L ∈ NP. If V is the verifier for L then
a certificate that an input is in L is just a transcript (a1, a2, . . . , ak) causing the verifier V
to accept. To verify this transcript, one checks that indeed V (x) = a1, V (x, a1, a2) = a3,
. . ., and V (x, a1, . . . , ak) = 1. If x ∈ L then such a transcript exists. Conversely, if such a
transcript (a1, . . . , ak) exists then we can define a prover function P to satisfy P (x, a1) = a2,
P (x, a1, a2, a3) = a4, etc. This deterministic prover satisfies outV 〈V, P 〉(x) = 1, which
implies x ∈ L. �

8.1.2 The class IP: probabilistic verifier

The message of Section 8.1.1 is that in order for interaction to provide any benefit, we need
to let the verifier be probabilistic. This means that the verifier’s questions will be computed
using a probabilistic algorithm. Furthermore, the verifier will be allowed to come to a wrong
conclusion (e.g., accept a proof for a wrong statement) with some small probability. As in
the case of probabilistic algorithms, this probability is over the choice of the verifier’s coins,
and we require the verifier to reject proofs for a wrong statement with good probability
regardless of the strategy the prover uses. Allowing this combination of interaction and
randomization has a huge effect: as we will see in Section 8.3, the set of languages which
have such interactive proof systems jumps from NP to PSPACE.

Example 8.5
As an intuitive example for the power of combining randomization and inter-
action, consider the following scenario: Marla has one red sock and one yellow
sock, but her friend Arthur, who is color-blind, does not believe her that the
socks have different colors. How can she convince him that this is really the
case?
Here is a way to do so. Marla gives both socks to Arthur, tells him which sock
is yellow and which one is red, and Arthur holds the red sock in his right hand
and the yellow sock in his left hand. Then Marla turns her back to Arthur and
he tosses a coin. If the coin comes up “heads” then Arthur keeps the socks as
they are, and otherwise he switches them between his left and right hands. He
then asks Marla to guess whether he switched the socks or not. Of course Marla
can easily do so by seeing whether the red sock is still in Arthur’s right hand or
not. But if the socks were identical then she would not have been able to guess
the answer with probability better than 1/2. Thus if Marla manages to answer
correctly in all of, say, 100 repetitions of this game, then Arthur can indeed be
convinced that the socks have different colors.
The principle behind this “interactive proof system” actually underlies the sys-
tems for graph non-isomorphism and quadratic non-residuosity that we will see
later in this chapter (Section 8.1.3 and Example 8.9). In the sock example, the
verifier, being colorblind, has less power (i.e., fewer capabilities) than the prover.
In general interactive proofs the verifier —being polynomial-time— also has less
computational power than the prover.
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Now we give a precise definition of an interactive proof with a probabilistic verifier. To
extend Definition 8.2 to model an interaction between f and g where f is probabilistic,
we add an additional m-bit input r to the function f in (1), that is, a1 = f(x, r), a3 =
f(x, r, a1, a2), etc. However, the function g is evaluated only on the ai’s and does not get r
as an additional input. (This models the fact that the prover cannot “see” the verifier’s coins
but only his messages; for this reason this is called the private coins model for interactive
proofs, as opposed to the public coins model of Section 8.2.) The interaction 〈f, g〉(x) is now
a random variable over r ∈

R
{0, 1}m. Similarly the output outf 〈f, g〉(x) is also a random

variable.

Definition 8.6 (Probabilistic verifiers and the class IP)
For an integer k ≥ 1 (that may depend on the input length), we say that a language L is in
IP[k] if there is a probabilistic polynomial-time Turing machine V that can have a k-round
interaction with a function P :{0, 1}∗ → {0, 1}∗ such that

(Completeness) x ∈ L⇒ ∃P Pr[outV 〈V, P 〉(x) = 1] ≥ 2/3 (2)

(Soundness) x 6∈ L⇒ ∀P Pr[outV 〈V, P 〉(x) = 1] ≤ 1/3 . (3)

where all probabilities are over the choice of r.

We define IP = ∪c≥1IP[nc].

Now we study the robustness of this definition. First we show that the probabilities 2/3
and 1/3 in the above definition can be made arbitrarily close to 1 and 0 respectively by
using the same boosting technique we used for BPP (see Section 7.4.1):

Lemma 8.7 The class IP defined in Definition 8.6 is unchanged if we replace the complete-
ness parameter 2/3 by 1 − 2−n

s

and the soundness parameter 1/3 by 2−n
s

for any fixed
constant s > 0. ♦

Proof: The verifier repeats the entire protocol over and over again, say m times, and
accepts at the end iff more than 1/2 the runs resulted in an accept. If x ∈ L, then a prover
that can make the verifier accept with probability 2/3 in each repetition will at the end
succeed with probability 1 − 2−Ω(m) by the Chernoff bound (Theorem A.14). If x 6∈ L,
we have to argue that every prover strategy will fail with high probability. We claim that
that the prover can succeed in each repetition of the protocol with probability only 1/3 —
irrespective of what happened in earlier rounds. The reason is that even though the prover’s
responses in this repetition may depend arbitarily on its responses in the earlier repetitions,
since the expression in (3) holds for all provers, it holds in particular for the prover that
knows the questions of earlier rounds.

Thus Chernoff bounds again imply that the probability that the prover succeed in a
majority of the repetitions only with probability 2−Ω(m). Choosing m = O(ns) completes
the proof. �

We now make several assertions about the class IP. Exercise 8.1 asks you to prove some
of them.

1. Allowing the prover to be probabilistic, that is, allowing the answer function ai to
depend upon some random string used by the prover (and unknown to the verifier),
does not change the class IP. The reason is that for any language L, if a probabilistic
prover P can make a verifier V accept with some probability, then averaging implies
there is a deterministic prover that makes V accept with the same probability.

2. Since the prover can use an arbitrary function, it can in principle use unbounded com-
putational power or even compute undecidable functions. However, we can show that
given any verifier V , we can compute the optimum prover (which, given x, maximizes
the verifier’s acceptance probability) using poly(|x|) space (and hence also 2poly(|x|)

time). Thus IP ⊆ PSPACE.
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3. Replacing the constant 2/3 with 1 in the completeness requirement (2) does not change
the class IP. This is a nontrivial fact. It was originally proved in a complicated way
but today can be proved using our characterization of IP in Section 8.3.

4. By contrast, replacing the constant 1/3 with 0 in the soundness condition (3) is equiv-
alent to having a deterministic verifier and hence reduces the class IP to NP.

5. Private Coins: Thus far the prover functions do not depend upon the verifier’s random
strings, only on the messages/questions the verifier sends. In other words, the verifier’s
random string is private. Often these are called private coin interactive proofs. In
Section 8.2 we also consider the model of public-coin proofs (also knows as Arthur-
Merlin proofs) where all the verifier’s questions are simply obtained by tossing coins
and revealing them to the prover.

6. The proof of Lemma 8.7 sequentially repeats the basic protocol m times and takes the
majority answer. In fact, using a more complicated proof, it can be shown that we
can decrease the probability without increasing the number of rounds using parallel
repetition, where the prover and verifier will runm executions of the protocol in parallel
(that is, by asking all m questions in one go). The proof of this fact is easier for the
case of public coin protocols.

Remark 8.8
Now we briefly touch upon zero-knowledge proofs, a topic related to interactive proofs that
underlies a huge research effort in cryptography. Roughly speaking, a zero-knowledge proof
system for membership in a language is an interactive proof protocol where the verifier is
convinced at the end that the input x is in the language, but learns nothing else. How can
we quantify that the verifier learns nothing else? We do this by showing that the verifier
could have produced the transcript of the protocol in polynomial time with no help from
the prover.

One can see why such a concept might be useful in cryptography. It raises the possibility
of parties being able to prove things to each other without revealing any secrets —e.g., to
prove that you hold the password without revealing the password itself. This was one of
the original motivations for the invention of the notion of interactive proofs. Section 9.4
of Chapter 9 contains a formal definition and some examples of zero knowledge protocols.
(That section does not depend on the other material of Chapter 9 and hence can be read in
isolation from that chapter.)

8.1.3 Interactive proof for graph non-isomorphism

We present another example of a language in IP that is not known to be in NP. The usual
ways of representing graphs —adjacency lists, adjacency matrices— involve labeling each
vertex with a unique number. We say two graphs G1 and G2 are isomorphic if they are
the same up to a renumbering of vertices; in other words, if there is a permutation π of the
labels of the nodes of G1 such that π(G1) = G2, where π(G1) is the labeled graph obtained
by applying π on its vertex labels. The graphs in Figure 8.1, for example, are isomorphic
with π = (12)(3654). (This is the permutation in which 1 and 2 are mapped to each other,
3 to 6, 6 to 5, 5 to 4 and 4 to 1.) If G1 and G2 are isomorphic, we write G1

∼= G2. The GI

problem is the following: given two graphs G1, G2 decide if they are isomorphic.

Clearly GI ∈ NP, since a certificate is simply the description of the permutation π. The
graph isomorphism problem is important in a variety of fields and has a rich history (see
[Hof82]). It is open whether GI is NP-complete and, along with the factoring problem, it
is the most famous NP-problem that is not known to be either in P or NP-complete. In
Section 8.2.4 we show that that GI is not NP-complete, unless the polynomial hierarchy
collapses. The first step of this proof will be an interactive proof for the complement of GI:
the problem GNI of deciding whether two given graphs are not isomorphic.
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Figure 8.1 Two isomorphic graphs.

Protocol: Private-coin Graph Non-isomorphism

V : Pick i ∈ {1, 2} uniformly randomly. Randomly permute the vertices of Gi to
get a new graph H . Send H to P .

P : Identify which of G1, G2 was used to produce H . Let Gj be that graph. Send
j to V .

V : Accept if i = j; reject otherwise.

To see that Definition 8.6 is satisfied by the protocol, note that if G1 6∼= G2 then there
exists a prover such that Pr[V accepts] = 1, because if the graphs are non-isomorphic, an
all-powerful prover can certainly tell which one of the two is isomorphic to H . On the
other hand, if G1

∼= G2 the best any prover can do is to randomly guess, because a random
permutation of G1 looks exactly like a random permutation of G2. Thus in this case for
every prover, Pr[V accepts] ≤ 1/2. This probability can be reduced to 1/3 by sequential or
parallel repetition.

Example 8.9 (Quadratic nonresiduosity)
Here is another example for an interactive proof for a language not known to be
in NP. We say that a number a is a quadratic residue modp if there is another
number b such that a ≡ b2( mod p). Such a b is called the square root of a mod p.
Clearly, −b is another square root, and there are no other square roots since the
equation x2 − a has at most two solutions over GF(p).
The language of pairs (a, p) where p is a prime and a is a quadratic residue mod
p is in NP, since a square root constitutes a membership proof. Of course, the
fact that p is a prime also has a short membership proof, and indeed primality
can be tested in polynomial time; see Chapter 2.
In contrast the language QNR of pairs (a, p) such that p is a prime and a is not
a quadratic residue modulo p has no natural short membership proof and is not
known to be in NP. But it does have a simple interactive proof if the verifier is
probabilistic.
The verifier takes a random number r mod p and a random bit b ∈ {0, 1} (kept
secret from the prover). If b = 0 she sends the prover r2 mod p and if b = 1 she
sends ar2 mod p. She asks the prover to guess what b was, and accepts iff the
prover guesses correctly.
If a is a quadratic residue, then the distribution of ar2 and r2 are identical; both
are random elements of the group of quadratic residues modulo p. (To see this,
note that every quadratic residue a′ can be written as as2 where s is a square
root of a/a′.) Thus the prover has probability at most 1/2 of guessing b.
On the other hand, if a is a nonresidue, then the distributions ar2 and r2 are
completely distinct: the first is a random nonresidue modulo p and the second
is a random quadratic residue modulo p. An all-powerful prover can tell them
apart, and thus guess b with probability 1. Thus it can make the verifier accept
with probability 1.
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8.2 Public coins and AM

Our proof system for graph non-isormorphism and nonresiduosity seemed to crucially rely
on the verifier’s access to a source of private random coins that are not seen by the prover.
Allowing the prover full access to the verifier’s random string leads to the model of interactive
proofs with public-coins.

Definition 8.10 (AM, MA) For every k the complexity class AM[k] is defined as the sub-
set of IP[k] (see Definition 8.6) obtained when we restrict the verifier’s messages to be
random bits, and not allowing it to use any other random bits that are not contained in
these messages.

An interactive proof where the verifier has this form is called a public coin proof, some-
times also known as an Arthur Merlin proof.1 ♦

We denote by AM the class AM[2].2 That is, AM is the class of languages with
an interactive proof that consist of the verifier sending a random string, and the prover
responding with a message, where the verifier’s decision is obtained by applying a deter-
ministic polynomial-time function to the transcript. The class MA denotes the class of
languages with a 2-round public coin interactive proof with the prover sending the first
message. That is, L ∈MA if there’s a proof system for L that consists of the prover first
sending a message, and then the verifier tossing coins and computing its decision by doing
a deterministic polynomial-time computation involving the input, the prover’s message and
the coins.

Remark 8.11
We mention some properties of the class AM[k]:

1. Note that even in a public coins proof, the prover doesn’t get to see immediately all
of the verifier’s random coins, but rather they are revealed to the prover iteratively
message by message. That is, an AM[k]-proof is an IP[k]-proof where the verifier’s
random tape r consists of ⌈k/2⌉ strings r1, . . . , r⌈k/2⌉, his ith message is simply the
string ri, and the decision whether to accept or reject is obtained by applying a
deterministic polynomial-time computable function to the transcript.

2. AM[2] = BP ·NP where BP ·NP is the class in Definition 7.17. In particular it
follows that AM[2] ⊆ Σp

3. (See Exercise 8.3.)

3. For constants k ≥ 2 we have AM[k] = AM[2] (Exercise 8.7). This “collapse” is
somewhat surprising because AM[k] at first glance seems similar to PH with the ∀
quantifiers changed to “probabilistic ∀” quantifiers, where most of the branches lead
to acceptance. See Figure 8.2.

4. It is an open problem whether there is any nice characterization of AM[σ(n)], where
σ(n) is a suitably slowly growing function of n, such as log logn.

8.2.1 Simulating private coins

Clearly for every k, AM[k] ⊆ IP[k]. The interactive proof for GNI seemed to crucially
depend upon the fact that P cannot see the random bits of V . If P knew those bits, P
would know i and so could trivially always guess correctly. Thus it may seem that allowing
the verifier to keep its coins private adds significant power to interactive proofs, and so the
following result should be quite surprising:

1According to an old legend, Arthur was a great king of medieval England and Merlin was his court
magician. Babai [Bab85] used the name “Arthur-Merlin” for this model by drawing an analogy between the
prover’s infinite power and Merlin’s magic. While Merlin cannot predict the coins that Arthur will toss in
the future, Arthur has no way of hiding from Merlin’s magic the results of the coins he tossed in the past.

2 Note that AM = AM[2] while IP = IP[poly]. While this is indeed somewhat inconsistent, this is the
standard notation used in the literature. Some sources denote the class AM[3] by AMA, the class AM[4]
by AMAM etc.
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Theorem 8.12 (Goldwasser-Sipser [GS87])
For every k : N→ N with k(n) computable in poly(n),

IP[k] ⊆ AM[k + 2]

We sketch the central idea of the proof of Theorem 8.12 after proving the next Theorem,
which concerns the sub-case of GNI.

Theorem 8.13 GNI ∈ AM[2]. ♦

The proof of Theorem 8.13 is a good example of how nontrivial interactive proofs can
be designed by recasting the problem. The key idea is to look at graph nonisomorphism
in a different, more quantitative, way. Consider the following set of labeled graphs S =
{H : H ∼= G1 or H ∼= G2}. Note that it is easy to certify that a graph H is a member of
S, by providing the permutation mapping either G1 or G2 to H . An n vertex graph G has
at most n! equivalent graphs. For simplicity assume first that both G1 and G2 have each
exactly n! equivalent graphs. The size of S differs by a factor 2 depending upon whether or
not G1 is isomorphic to G2.

if G1 6∼= G2 then |S| = 2n! (4)

if G1
∼= G2 then |S| = n! (5)

Now consider the general case where G1 or G2 may have less than n! equivalent graphs.
An n-vertex graph G has less than n! equivalent graphs iff it has a nontrivial automorphism,
which is a permutation π that is not the identity permutation and yet π(G) = G. Let
aut(G) denote the set of automorphisms of graph G. We change the definition of S to

S = {(H,π) : H ∼= G1 or H ∼= G2 and π ∈ aut(H)}

Using the fact that aut(G) is a subgroup, one can verify that S satisfies (4) and (5). Also,
membership in this set is easy to certify.

Thus to convince the verifier that G1 6∼= G2, the prover has to convince the verifier that
case (4) holds rather than (5). This is done by using a set lower bound protocol.

8.2.2 Set Lower Bound Protocol.

Suppose there is a set S known to both prover and verifier, such that membership in S is
easily certifiable, in the sense that given some string x that happens to be in S, the prover
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—using its superior computational power—can provide the verifier a certificate to this effect.
(To put it more formally, S is in BP ·NP.) The set lower bound protocol is a public-coins
protocol that allows the prover to certify the approximate size of S. Note that the prover
—using its superior computational power—can certainly compute and announce |S|. The
question is how to convince the verifier that this answer is correct, or even approximately
correct. Suppose the prover’s claimed value for |S| is K. The protocol below has the
property that if and the true value of |S| is indeed at least K then the prover can cause the
verifier to accept with high probability, whereas if the true value of |S| is at most K/2 (the
prover’s answer is grossly on the high side) then the verifier will reject with high probability,
no matter what the prover does. This protocol is called the Set Lower Bound protocol and
it clearly suffices to complete the proof of Theorem 8.13.

Tool: Pairwise independent hash functions.

The main tool in the set lower bound protocol is a pairwise independent hash function collec-
tion, which has also found numerous other applications in complexity theory and computer
science (see Note 8.16).

Definition 8.14 (Pairwise independent hash functions)
Let Hn,k be a collection of functions from {0, 1}n to {0, 1}k. We say that Hn,k is pair-

wise independent if for every x, x′ ∈ {0, 1}n with x 6= x′ and for every y, y′ ∈ {0, 1}k,
Prh∈

R
Hn,k

[h(x) = y ∧ h(x′) = y′] = 2−2k

An equivalent formulation is that for every two distinct but fixed strings x, x′ ∈ {0, 1}n,
when we choose h at random from Hn,k then the random variable 〈h(x), h(x′)〉 is distributed

according to the uniform distribution on {0, 1}k × {0, 1}k.
We can identify the elements of {0, 1}n with the finite field GF(2n) containing 2n ele-

ments (see Section A.4 in the appendix). Recall that the addition (+) and multiplication
(·) operations in this field are efficiently computable and satisfy the usual commutative and
distributive laws, every element x has an additive inverse (denoted by −x) and, if nonzero,
a multiplicative inverse (denoted by x−1). The following theorem provides a construction of
a family of efficiently computable pairwise independent hash functions (see also Exercise 8.4
for a different construction):

Theorem 8.15 (Efficient pairwise independent hash functions) For every n define the col-
lection Hn,n to be {ha,b}a,b∈GF(2n) where for every a, b ∈ GF(2n), the function ha,b :
GF(2n) → GF(2n) maps x to ax + b. Then, Hn,n is a collection of pairwise independent
hash functions. ♦

Theorem 8.15 implies the existence of an efficiently computable family of pairwise in-
dependent hash functions Hn,k for every n, k: if k > n we can use the collection Hk,k and
extend n bit inputs to k bits by padding with zeros. If k < n then we can use the collection
Hn,n and reduce n bit outputs to k bits by truncating the last n− k bits.

Proof: For every x 6= x′ ∈ GF(2n) and y, y′ ∈ GF(2n), ha,b(x) = y and ha,b(x
′) = y′ iff a, b

satisfy the equations:

a · x+ b =y

a · x′ + b =y′

These equations imply that a = (y−y′)(x−x′)−1; this is well-defined because x−x′ 6= 0.
Since b = y − a · x, the pair 〈a, b〉 is completely determined by these equations, and so the
probability that this happens over the choice of a, b is exactly one over the number of possible
pairs, which indeed equals 1

22n . �
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Note 8.16 (The Hashing paradigm [CW77])

In many computer programs, hash functions are used to create a hash table. The goal is
to store a set S ⊆ {0, 1}n so as to be able to efficiently answer membership queries, which
ask whether or not a given element x is in S. The set S could change dynamically (i.e.,
elements may be added or deleted) but its size is guaranteed to be much smaller than 2n,
the number of all possible elements.
To create a hash table of size 2k, we pick a hash function h mapping {0, 1}n to {0, 1}k and
store x ∈ S at location h(x). If we ever need to later determine whether or not x is in S, we
just compute h(x) and go look for x at this location in the hash table. Notice, if h(x) = h(y)
then both x, y are stored in the same location; this is called a collision. Such collisions can
be dealt with, but at a cost to efficiency, and hence we want to minimize them by choosing
a sufficiently “random” hash function.
Instead of using a fixed hash function, it makes sense to use a random function from a hash
function collection, such as the collection in Theorem 8.15. This will guarantee that that
most elements of {0, 1}k have roughly |S|2−k preimages in S (which is the expected number
if h were a completely random function). In particular, if S has size roughly 2k then we
expect the mapping to be one-to-one or almost one-to-one, and so the expected number of
collisions is small. Therefore, the image of S under h should look like this:

{0,1}n

{0,1}k
|S|~2k

2n-k

h

......

Hash tables are a preferred solution in many cases because of the ease with which they
handle sets that change dynamically. The above analysis of the expectation continues to
apply so long as the size of S remains less than 2k and the hash function is picked from a
collection using random bits that are independent of the set S.
In theoretical computer science hash functions have found a variety of uses. One example
is Lemma 17.19, which shows that if the collection is pairwise independent and S ⊆ {0, 1}n
has size roughly 2k, then with good probability the value 0k will have exactly one preimage
in S. Another example is the Leftover Hash Lemma (Lemma 21.26) that shows that if S is
larger than 2k then a random element of S is mapped by h almost perfectly to a random
element of {0, 1}k.
Pairwise independent hash functions are but one example of a hash function collection. Once
can study other collections featuring various tradeoffs between efficiency and uniformity of
output, including almost pairwise independence, k-wise independence, ǫ-biased, and more.
See the survey by Luby and Wigderson [LW06].



8.2 Public coins and AM 137

The lower-bound protocol

The lower-bound protocol is as follows:

Protocol: Goldwasser-Sipser Set Lower bound Protocol

Conditions: S ⊆ {0, 1}m is a set such that membership in S can be certified.
Both parties know a number K. The prover’s goal is to convince the verifier
that |S| ≥ K and the verifier should reject with good probability if |S| ≤ K

2 .
Let k be an integer such that 2k−2 < K ≤ 2k−1.

V: Randomly pick a function h : {0, 1}m → {0, 1}k from a pairwise independent

hash function collection Hm,k. Pick y ∈
R
{0, 1}k. Send h, y to prover.

P: Try to find an x ∈ S such that h(x) = y. Send such an x to V , together with
a certificate that x ∈ S.

V’s output: If h(x) = y and the certificate validates that x ∈ S then accept;
otherwise reject.

Clearly, the prover (being all powerful) can make the verifier accept iff h, y happen to
be such that an x ∈ S exists satisfying h(x) = y. The following claim shows that there is a
gap of 3/8 versus 1/4 in the probability of this happening in the two cases we are interested
in. When |S| < K/2 the probability is at most (K/2)/2k ≤ 1/4, whereas if |S| ≥ K the
probability is at least 3

4 ×K/2k ≥ 3/8.

Claim 8.16.1 Let S ⊆ {0, 1}m satisfy |S| ≤ 2k

2 . Then, for p = |S|/2k

p ≥ Pr
h∈

R
Hm,k,y∈R

{0,1}k
[∃x∈S : h(x) = y] ≥ 3p

4
.

♦

Proof: The upper bound on the probability follows trivially by noticing that the set h(S)
of y’s with preimages in S has size is at most |S|. We now prove the lower bound. In fact,
we show the stronger statement that

Pr
h∈RHm,k

[∃x∈Sh(x) = y] ≥ 3
4p .

for every y ∈ {0, 1}m. Indeed, for every x ∈ S define Ex as the event that h(x) = y. Then,
Pr[∃ x ∈ S : h(x) = y] = Pr[∨x∈SEx]. By the inclusion-exclusion principle (Corollary A.2)
this is at least

∑

x∈S
Pr[Ex]− 1

2

∑

x 6=x′∈S
Pr[Ex ∩ E′

x]

However, by pairwise independence of the hash functions, if x 6= x′, then Pr[Ex] = 2−k and
Pr[Ex ∩E′

x] = 2−2k and so this probability is at least

|S|
2k
− 1

2

|S|2
2k

=
|S|
2k

(

1− |S|
2k+1

)

≥ 3

4
p . �

Proving Theorem 8.13. The public-coin interactive proof system for GNI consists of the
verifier and prover running several iterations of the set lower bound protocol for the set S
as defined above, where the verifier accepts iff the fraction of accepting iterations was at
least 5/16, which is the mean of 3/8 and 1/4. Using the Chernoff bound (Theorem A.14) it
can be easily seen that a constant number of iterations will suffice to ensure completeness
probability at least 2

3 and soundness error at most 1
3 .

Finally, the number of rounds stays at 2 because the verifier can do all iterations in
parallel : pick several choices of h, y and send them all to the prover at once. It is easily
checked that the above analysis of the probability of the prover’s success is unaffected even
if the prover is asked many questions in parallel. �
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Remark 8.17
Note that, unlike the private coins protocol for GNI, the public coins protocol of The-
orem 8.13 does not have perfect completeness (i.e., the completeness parameter is not 1),
since the set lower bound protocol does not satisfy this property. However, we can construct
a public-coins set lower bound protocol with completeness parameter 1 (see Exercise 8.5),
thus implying a perfectly complete public coins proof for GNI. This can be generalized to
show that every private-coins proof system (even one not satisfying perfect completeness)
can be transformed into a perfectly complete public coins system with a similar number of
rounds.

8.2.3 Sketch of proof of Theorem 8.12

Our transformation of the private-coins protocol for GNI into a public-coins protocol suggests
how to do such a transformation for every other private-coins protocol. The idea is that the
public-coin prover demonstrates to the public-coin verifier an approximate lower bound on
the size of the set of random strings which would have made the private-coin verifier accept
in the original protocol.

Think how our public-coins protocol for GNI relates to the private coin protocol of
Section 8.1.3. The set S roughly corresponds to the set of possible messages sent by the
verifier in the protocol, where the verifier’s message is a random element in S. If the two
graphs are isomorphic then the verifier’s message completely hides its choice of a random
i ∈

R
{1, 2}, while if they’re not then it completely reveals it (at least to a prover that has

unbounded computation time). Thus roughly speaking in the former case the mapping from
the verifier’s coins to the message is 2-to-1 while in the latter case it is 1-to-1, resulting in
a set that is twice as large. In fact we can think of the public-coin prover as convincing the
verifier that the private coin verifier would have accepted with large probability. The idea
behind the proof of IP[k] ⊆ AM[k+2] is similar but one has to proceed in a round-by-round
fashion, and the prover has to prove to the verifier that certain messages are quite likely to
be sent by the verifier —in other words, the set of random strings that make the verifier
send these messages in the private-coin protocol is quite large.

8.2.4 Can GI be NP-complete?

As mentioned earlier, it is an open problem if GI is NP-complete. We now prove that if GI

is NP-complete then the polynomial hierarchy collapses.

Theorem 8.18 ([BHZ87]) If GI is NP-complete then Σ2 = Π2. ♦

Proof: We show that under this condition, Σ2 ⊆ Π2; this will imply Σ2 = Π2 because
Σ2 = coΠ2.

If GI is NP-complete then GNI is coNP-complete which implies that there exists a
function f such that for every n variable formula ϕ, ∀yϕ(y) holds iff f(ϕ) ∈ GNI. Consider
an arbitrary Σ2 SAT formula

ψ = ∃x∈{0,1}n∀y∈{0,1}nϕ(x, y) .

The formula ψ is equivalent to

∃x∈{0,1}ng(x) ∈ GNI ,

where g(x) = f(ϕ↾x), and ϕ↾x is the formula obtained from ϕ(x, y) by fixing x.
Using Remark 8.17 and the comments of Section 8.11, GNI has a two round AM proof

with perfect completeness3 and (after appropriate amplification) soundness error less than
2−n. Let V be the verifier algorithm for this proof system, and denote by m the length of

3It is possible to do the rest of this proof without relying on perfect completeness; we leave the details
to the interested reader.
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the verifier’s random tape and by m′ the length of the prover’s message. We claim that ψ
is true if and only if

∀r∈{0,1}m∃x∈{0,1}n∃a∈{0,1}m′ (V (g(x), r, a) = 1) . (6)

Indeed, if ψ is true then perfect completeness clearly implies (6). If on the other hand
ψ is false this means that

∀x∈{0,1}ng(x) 6∈ GNI .

Now, using the fact that the soundness error of the interactive proof is less than 2−n and the
number of x’s is 2n, we conclude (by the “probabilistic method basic principle”) that there
exists a single string r ∈ {0, 1}m such that for every x ∈ {0, 1}n, the prover in the AM
proof for GNI has no response a that will cause the verifier to accept g(x) if the verifier’s
first message is r. In other words,

∃r∈{0,1}m∀x∈{0,1}n∀a∈{0,1}m′ (V (g(x), r, a) = 0) ,

which is exactly the negation of (6). Since deciding the truth of (6) is in Π2 (as it is a
statement of the form ∀x∃yP (x, y) for some polynomial-time computable predicate P ), we
have shown Σ2 ⊆ Π2. �

8.3 IP = PSPACE

It was an open question for a while to characterize IP, the set of languages that have
interactive proofs. All we knew was that NP ⊆ IP ⊆ PSPACE, and there was evidence
(e.g., the protocols for quadratic nonresiduosity and GNI) that the first containment is
proper. Most researchers felt that the second containment would also be proper. They
reasoned as follows. We know that interaction alone does not give us any languages outside
NP (Section 8.1.1). We also suspect (see Chapter 7) that randomization alone does not
add significant power to computation —researchers even suspect that BPP = P, based
upon evidence described in Chapter 20. So how much more power could the combination
of randomization and interaction provide? “Not much,” the evidence up to 1990 seemed
to suggest. For any fixed k, IP[k] collapses to the class AM = AM[2], which equals
BP · NP as mentioned in Remark 8.11, and BP · NP seems not “much different” from
NP.4 Finally, there were simply no protocols known that required k to be superconstant,
so IP = IP[poly(n)] did not seem much bigger than IP[O(1)]. The following result from
1990, giving a surprising characterization of IP, shows that this intuition was drastically
wrong.

Theorem 8.19 (IP in PSPACE [LFKN90, Sha90])
IP = PSPACE.

By our earlier remarks, we only need to show the nontrivial direction PSPACE ⊆ IP,
and for this it suffices to show TQBF ∈ IP[poly(n)] because every L ∈ PSPACE is polytime
reducible to TQBF. We describe a protocol for TQBF that uses public coins and also has
the property that if the input is in TQBF then there is a prover which makes the verifier
accept with probability 1.

Rather than tackle the job of designing a protocol for TQBF right away, let us first think
about how to design one for 3SAT. How can the prover convince the verifier than a given
3CNF formula has no satisfying assignment? We show how to prove something even more
general: the prover can prove to the verifier that the number of satisfying assignments is
exactly K for some number K. That is, we give an interactive proof for membership in the
following language.

4In fact, under plausible complexity conjectures, AM = NP, see Exercise 20.7 in Chapter 20.
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Definition 8.20 (#SAT
D
)

#SATD = {〈φ,K〉 : φ is a 3CNF formula and it has exactly K satisfying assignments} .
♦

This clearly contains SAT as a special case (when K = 0). In Chapter 17 we will see that
#SATD is a complete problem for a powerful class called #P.

Note that the Set Lower Bound protocol of Section 8.2.2 can tackle an approximation
version of this problem, namely, prove the value ofK within a factor 2 (or any other constant
factor). The protocol takes only 2 rounds. By contrast, our protocol for #SATD will use n
rounds. The idea of arithmetization introduced in this protocol will also prove useful in our
protocol for TQBF.

8.3.1 Arithmetization

The key idea will be to take an algebraic view of Boolean formulae by representing them as
polynomials. Note that 0, 1 can be thought of both as truth values and as elements of some
finite field F. Thus xi ∧ xj is true iff xi · xj = 1 in the field, and ¬xi is true iff 1− xi = 1.

Arithmetization refers to the following trick. Given any 3CNF formula ϕ(x1, x2, . . . , xn)
with m clauses and n variables, we introduce field variables X1, X2, . . . , Xn. For any clause
of size 3 we can write an equivalent degree 3 polynomial, as in the following example:

xi ∨ xj ∨ xk ←→ Xi(1−Xj)Xk.

Let us denote the polynomial for the jth clause by pj(X1, X2, . . . , Xn), where the no-
tation allows the polynomial to depend on all n variables even though, as is clear in the
above example, each pj only depends upon at most 3 variables. For every 0, 1 assignment to
X1, X2, · · · , Xn, we have pj(X1, X2, . . . , Xn) = 1 if the assignment satisfies the clause and
pj(X1, X2, . . . , Xn) = 0 otherwise.

Multiplying these polynomials we obtain a multivariate polynomial Pϕ(X1, X2, . . . , Xn) =
∏

j≤m pj(X1, . . . , Xn) that evaluates to 1 on satisfying assignments and to 0 for unsatisfying
assignments. This polynomial has degree at most 3m. We represent such a polynomial as a
product of all the above degree 3 polynomials without opening up the parenthesis, and so
Pϕ(X1, X2, . . . , Xn) has a representation of size O(m). This conversion of ϕ to Pϕ is called
arithmetization. Once we have written such a polynomial, nothing stops us from substitut-
ing arbitrary values from the field F instead of just 0, 1 and evaluating the polynomial. As
we will see, this gives the verifier unexpected power over the prover.

8.3.2 Interactive protocol for #SAT
D

Now we prove the following result.

Theorem 8.21 #SAT
D
∈ IP. ♦

Proof: Given input 〈φ,K〉, where φ is a 3CNF formula of n variables and m clauses, we
construct Pφ by arithmetization, as in Section 8.3.1. The number of satisfying assignments
#φ of φ satisfies:

#φ =
∑

b1∈{0,1}

∑

b2∈{0,1}
· · ·

∑

bn∈{0,1}
Pφ(b1, . . . , bn) . (7)

The prover’s claim is that this sum is exactly K, and from now on, we can forget about the
formula and concentrate only on this claim about the polynomial Pφ.

To start, the prover sends to the verifier a prime p in the interval (2n, 22n]. The verifier
can check that p is prime using a probabilistic or deterministic primality testing algorithm.
All computations described below are done in the field F = Fp of integers modulo p. Note
that since the sum in (7) is between 0 and 2n, this equation is true over the integers iff it
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is true modulo p. Thus, from now on we consider (7) as an equation in the field Fp. We’ll
prove the theorem by showing a general protocol, Sumcheck, for verifying equations such as
(7).

Sumcheck protocol.

Given a degree d polynomial g(X1, . . . , Xn), an integer K, and a prime p, we show how the
prover can provide an interactive proof for the claim

K =
∑

b1∈{0,1}

∑

b2∈{0,1}
· · ·

∑

bn∈{0,1}
g(X1, . . . , Xn) (8)

where all computations are modulo p. To execute the protocol the only property of g that
the verifier needs is that it has a poly(n) size representation and thus for any assignment
of values for the variables from the field GF(p), say X1 = b1, X2 = b2, . . . , Xn = bn, the
verifier can evaluate g(b1, b2, . . . , bn) in polynomial time. As noted earlier, this property is
satisfied by g = Pφ.

For each sequence of values b2, b3, . . . , bn toX2, X3, . . . , Xn, note that g(X1, b2, b3, . . . , bn)
is a univariate degree d polynomial in the variableX1. Thus the following is also a univariate
degree d polynomial:

h(X1) =
∑

b2∈{0,1}
· · ·

∑

bn∈{0,1}
g(X1, b2 . . . , bn) (9)

If Claim (8) is true, then we must have h(0) + h(1) = K.
Consider the following protocol:

Protocol: Sumcheck protocol to check claim (8)

V: If n = 1 check that g(1) + g(0) = K. If so accept, otherwise reject. If n ≥ 2,
ask P to send h(X1) as defined in (9).

P: Sends some polynomial s(X1) (if the prover is not “cheating” then we’ll have
s(X1) = h(X1)).

V: Reject if s(0) + s(1) 6= K; otherwise pick a random number a in GF(p). Re-
cursively use the same protocol to check that

s(a) =
∑

b2∈{0,1}
· · ·

∑

bn∈{0,1}
g(a, b2, . . . , bn).

Claim: If (8) is false, then V rejects with probability at least (1− d
p )
n.

The claim implies the theorem since if (8) is true then the prover can make the V accept
with probability 1, and with our choice of p, the (1 − d

p )
n is roughly 1− dn/p and is very

close to 1.

Proof of claim: Assume that (8) is false. We prove the claim by induction on n. For
n = 1, V simply evaluates g(0), g(1) and rejects with probability 1 if their sum is not K.
Assume the hypothesis is true for degree d polynomials in n− 1 variables.

In the first round, the prover P is supposed to return the polynomial h. If it indeed
returns h then since h(0) + h(1) 6= K by assumption, V will immediately reject (i.e., with
probability 1). So assume that the prover returns some s(X1) different from h(X1). Since
the degree d nonzero polynomial s(X1) − h(X1) has at most d roots, there are at most d
values a such that s(a) = h(a). Thus when V picks a random a,

Pr
a

[s(a) 6= h(a)] ≥ 1− d

p
. (10)

If s(a) 6= h(a) then the prover is left with an incorrect claim to prove in the recursive step.
By the induction hypothesis, the prover fails to prove this false claim with probability at
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least ≥
(

1− d
p

)n−1

. Thus we have

Pr[V rejects] ≥
(

1− d

p

)

·
(

1− d

p

)n−1

=

(

1− d

p

)n

. (11)

This the proof of the claim and hence of Theorem 8.21. �

8.3.3 Protocol for TQBF: proof of Theorem 8.19

We use a very similar idea to obtain a protocol for TQBF. Given a quantified Boolean formula
Ψ = ∀x1∃x2∀x3 · · · ∃xnφ(x1, . . . , xn), we use arithmetization to construct the polynomial Pφ.
Thus Ψ ∈ TQBF if and only if

∏

b1∈{0,1}

∑

b2∈{0,1}

∏

b3∈{0,1}
· · ·

∑

bn∈{0,1}
Pφ(b1, . . . , bn) 6= 0. (12)

A first thought is that we could use the same protocol as in the #SATD case, except since
the first variable x1 is quantified with ∀ we check that s(0) · s(1) = K, and do something
analogous for all other variables that are quantified with ∀. There is nothing basically wrong
with this apart from the running time. Multiplying polynomials, unlike addition, increases
the degree. If we define h(X1) analogously as in (9) by making X1 a free variable in (12)
then its degree may be as high as 2n. This polynomial may have 2n coefficients and so
cannot be transmitted to a polynomial-time verifier.

The solution is to observe that the claimed statement (12) only uses {0, 1} values and
for x ∈ {0, 1}, xk = x for all k ≥ 1. Thus, in principle we can convert any polynomial
p(X1, . . . , Xn) into a multilinear polynomial q(X1, . . . , Xn) (i.e., the degree of q(·) in any
variable Xi is at most one) that agrees with p(·) on all X1, . . . , Xn ∈ {0, 1}. Specifically, we
define a linearization operator on polynomials where for any polynomial p(·) let LXi(p) (or
Li(p) for short) be the polynomial defined as follows

LXi(p)(X1, . . . , Xn) = Xi · p(X1, . . . , Xi−1, 1, Xi+1, . . . , Xn)+

(1−Xi) · p(X1, . . . , Xi−1, 0, Xi+1, . . . , Xn). (13)

Thus Li(p) is linear inXi and agrees with p(·) wheneverXi ∈ {0, 1}. So L1(L2(· · · (Ln(p) · · · )
is a multilinear polynomial agreeing with p(·) on all values in {0, 1}.

We will also think of ∀xi and ∃xi as operators on polynomials where

∀Xip(X1, X2, . . . , Xn) = p(X1, . . . , Xi−1, 0, Xi+1, . . . , Xn) · p(X1, . . . , Xi−1, 1, Xi+1, . . . , Xn)
(14)

∃Xip(X1, X2, . . . , Xn) = p(X1, . . . , Xi−1, 0, Xi+1, . . . , Xn) + p(X1, . . . , Xi−1, 1, Xi+1, . . . , Xn)
(15)

Thus the claim (12) may be rephrased as follows: if we apply the sequence of operators
∀X1∃X2∀X3 · · · ∃Xn (where ∃Xn is applied first and ∀X1 is applied last) on the polynomial
Pφ(X1, . . . , Xn), then we get a nonzero value K.

As observed, since this claim only concerns values taken when variables are in {0, 1}, it is
unaffected if we sprinkle in any arbitrary sequence of the linearization operators in between.
We will sprinkle in linearization operators so that the intermediate polynomials arising in
our sum check protocol all have low degree. Specifically, we use the expression

∀X1L1∃X2L1L2∀X3L1L2L3 · · · ∃XnL1L2L3 · · ·LnPφ(X1, . . . , Xn).

The size of the expression is O(1 + 2 + 3 + · · ·+ n) = O(n2).
Now we give an inductive description of the protocol. Suppose for some polynomial

g(X1, . . . , Xk) the prover has the ability to convince the verifier that g(a1, a2, . . . , ak) = C
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with probability 1 for any a1, a2, . . . , ak, C where this is true and probability less than ǫ
when it is false. Let U(X1, X2, . . . , Xl) be any polynomial on l variables obtained as

U(X1, X2, . . . , Xl) = Og(X1, . . . , Xk),

where O is either ∃Xi , or ∀Xi or LXi for some variable. (Thus l is k − 1 in the first two
cases and k in the third.) Let d be an upperbound (known to the verifier) on the degree
of U with respect to y. (In our case, d ≤ 3m.) We show how the prover can convince the
verifier that U(a1, a2, . . . , al) = C′ with probability 1 for any a1, a2, . . . , ak, C

′ for which it
is true and with probability at most ǫ+ d/p when it is false.

By renaming variables if necessary, assume i = 1. The verifier’s check is as follows.

Case 1: O = ∃X1 . The prover provides a degree d polynomial s(X1) that is supposed to be
g(X1, a2, . . . , ak).

Verifier checks if s(0) + s(1) = C′. If not, it rejects. If yes, it picks a random value
a ∈ Fp and asks prover to prove s(a) = g(a, a2, . . . , ak).

Case 2: O = ∀X1 . Same as above but use s(0) · s(1) instead of s(0) + s(1).

Case 3: O = LX1 . Prover wishes to prove that U(a1, a2, . . . , ak) = C′. Prover provides a
degree d polynomial s(X1) that is supposed to be g(X1, a2, . . . , ak).

Verifier checks if a1s(0) + (1 − a1)s(1) = C′. If not, it rejects. If yes, it picks random
a ∈ Fp and asks prover to prove s(a) = g(a, a2, . . . , ak).

The proof of correctness follows as in case of #SATD, by using the observation that if
s(X1) is not the right polynomial, then with probability 1 − d/p the prover is still stuck
with proving an incorrect statement at the next round. �

An alternative proof of Theorem 8.19 is outlined in Exercise 8.8.

8.4 The power of the prover

A curious feature of many known interactive proof systems is that in order to prove mem-
bership in language L the prover needs to do more powerful computation than just deciding
membership in L. We give some examples.

1. The public coin system for graph nonisomorphism in Theorem 8.13 requires the prover
to produce, for some randomly chosen hash function h and a random element y in the
range of h, a graph H such that h(H) is isomorphic to either G1 or G2 and h(x) = y.
This seems harder than just solving graph non-isomorphism (though we do not know
of any proof that it is).

2. The interactive proof for 3SAT, a language in coNP, requires the prover to at the very
least be able to compute #SATD, which is not known to be computable in polynomial
time even if we have an oracle for 3SAT. In fact we see in Chapter 17 that the ability
to compute #SATD is #P-complete, which implies PH ⊆ P#SATD .

In both cases, it is an open problem whether the protocol can be redesigned to use a
weaker prover. By contrast, the protocol for TQBF is different from the above protocols in
that the prover requires no more computational power than the ability to compute TQBF —
the reason is that, as mentioned, the prover’s replies can be computed in PSPACE, which
reduces to TQBF. This observation underlies the following result, which is in the same
spirit as the Karp-Lipton results described in Chapter 6, except the conclusion is stronger
since MA is contained in Σ2 (indeed, a perfectly complete MA-proof system for L trivially
implies that L ∈ Σ2). See also Lemma 20.18 in Chapter 20 for a related result.

Theorem 8.22 If PSPACE ⊆ P/poly then PSPACE = MA. ♦
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Proof: If PSPACE ⊆ P/poly then the prover in our TQBF protocol can be replaced by
a circuit of polynomial size. Merlin (the prover) can just give this circuit to Arthur (the
verifier) in Round 1, and Arthur then runs the interactive proof using this “prover.” No
more interaction is needed. Note that there is no need for Arthur to put blind trust in
Merlin’s circuit, since the correctness proof of the TQBF protocol shows that if the formula
is not true, then no prover can make Arthur accept with high probability. �

8.5 Multiprover interactive proofs (MIP)

It is also possible to define interactive proofs that involve more than one prover. The
important assumption is that the provers do not communicate with each other during the
protocol. They may communicate before the protocol starts, and in particular, agree upon
a shared strategy for answering questions. The analogy often given is that of the police
interrogating two suspects in separate rooms. The suspects may be accomplices who have
decided upon a common story to tell the police, but since they are interrogated separately
they may inadvertently reveal an inconsistency in the story.

The set of languages with multiprover interactive provers is called MIP. The formal
definition is analogous to Definition 8.6. We assume there are two provers (allowing poly-
nomially many provers does not change the class; see Exercise 8.13), and in each round the
verifier sends a query to each of them —the two queries need not be the same. Each prover
sends a response in each round.

Clearly, IP ⊆MIP since the verifier can always simply ignore one prover. However, it
turns out that MIP is probably strictly larger than IP (unless PSPACE = NEXP). That
is, we have:

Theorem 8.23 ([BFL90]) NEXP = MIP ♦
We will say more about this theorem in Chapter 11, as well as a related class called

PCP. Intuitively, one reason why two provers are more useful than one is that the second
prover can be used to force non-adaptivity. That is, consider the interactive proof as an
“interrogation” where the verifier asks questions and gets back answers from the prover. If
the verifier wants to ensure that the answer of a prover to the question q is a function only
of q and does not depend on the previous questions the prover heard, the prover can ask the
second prover the question q and accept only if both answers agree with one another. This
technique was used to show that multi-prover interactive proofs can be used to implement
(and in fact are equivalent to) a model of a “probabilistically checkable proof in the sky”.
In this model we go back to an NP-like notion of a proof as a static string, but this string
may be huge and so is best thought of as a huge table, consisting of the prover’s answers to
all the possible verifier’s questions. The verifier checks the proof by looking at only a few
entries in this table that are chosen randomly from some distribution. If we let the class
PCP[r, q] be the set of languages that can be proven using a table of size 2r and q queries
to this table then Theorem 8.23 can be restated as

Theorem 8.24 (Theorem 8.23, restated) NEXP = PCP[poly, poly] = ∪cPCP[nc, nc] ♦
It turns out Theorem 8.23 can be scaled down to to obtain NP = PCP[polylog, polylog].

In fact (with a lot of work) the following has been shown; see Chapter 11:

Theorem 8.25 (The PCP theorem, [AS92, ALM+92]) NP = PCP[O(log n), O(1)] ♦
This theorem, which is described in Chapter 11 and proven in Chapter 22, has had

many applications in complexity, and in particular establishes that for many NP-complete
optimization problems, obtaining an approximately optimal solution is as hard as coming
up with the optimal solution itself. Thus, it seems that complexity theory has come full
circle with interactive proofs: by starting with NP and adding interaction, randomization,
and multiple provers, to it, we get to classes as high as NEXP, and then end up with new
and fundamental insights about the class NP.
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8.6 Program Checking

The discovery of the interactive protocol for #SATD was triggered by a research area called
program checking, sometimes also called instance checking. Blum and Kannan initiated this
area motivated by the observation that even though program verification —deciding whether
or not a given program solves a certain computational task on all inputs— is undecidable, in
many situations it would suffice to have a weaker guarantee of the program’s “correctness”
on an input-by-input basis. This is encapsulated in the notion of a program checker. A
checker for a program P is another program that may run P as a subroutine. Whenever P
is run on an input, C’s job is to detect if P ’s answer is incorrect (“buggy”) on that particular
input. To do this, the checker may also compute P ’s answer on some other inputs. Formally,
the checker C is a TM that expects to have the code of another program, which it uses as a
black box. We denote by CP the result of running C when it is provided P as a subroutine.

Definition 8.26 Let T be a computational task. A checker for T is a probabilistic polyno-
mial time TM C that, given any program P that is a claimed program for T and any input
x, has the following behavior:

1. If P is a correct program for T (i.e., ∀y P (y) = T (y)), then P [CP accepts P (x)] ≥ 2
3

2. If P (x) 6= T (x) then P [CP accepts P (x)] < 1
3 ♦

Note that checkers don’t certify the correctness of a program. Furthermore, even in the
case that P is correct on x (i.e., P (x) = C(x)) but the program P is not correct on inputs
other than x, the output of the checker is allowed to be arbitrary.

Surprisingly, for many problems checking seems easier than actually computing the prob-
lem. Blum and Kannan suggested that one should build such checkers into the software for
these problems; the overhead introduced by the checker would be negligible and the program
would be able to automatically check its work.

Example 8.27 (Checker for Graph Non-Isomorphism)
The input for the problem of Graph Non-Isomorphism is a pair of labeled graphs
〈G1, G2〉, and the problem is to decide whether G1

∼= G2. As noted, we do not
know of an efficient algorithm for this problem. But it has an efficient checker.
There are two types of inputs depending upon whether or not the program claims
G1
∼= G2. If it claims that G1

∼= G2 then one can change the graph little by little
and use the program to actually obtain a permutation π mapping G1 to G2 (or
if this fails, finds a bug in the program; see Exercise 8.11). We now show how
to check the claim that G1 6∼= G2 using our earlier interactive proof of Graph
non-isomorphism.
Recall the IP for Graph Non-Isomorphism:

• In case prover admits G1 6∼= G2 repeat k times:

• Choose i ∈R {1, 2}. Permute Gi randomly into H

• Ask the prover whether G1, H are isomorphic and check to see if the answer
is consistent with the earlier answer.

Given a computer program P that supposedly computes graph isomorphism,
how would we check its correctness? The program checking approach suggests
we use an IP while regarding the program as the prover. Let C be a program
that performs the above protocol using as prover the claimed program P .

Theorem 8.28 If P is a correct program for Graph Non-Isomorphism then C
outputs ”correct” always. Otherwise, if P (G1, G2) is incorrect then P [C outputs ”correct” ] ≤
2−k. Moreover, C runs in polynomial time.
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8.6.1 Languages that have checkers

Whenever a language L has an interactive proof system where the prover can be implemented
using oracle access to L, this implies that L has a checker. Thus, the following theorem is
a fairly straightforward consequence of the interactive proofs we have seen:

Theorem 8.29 The problems Graph Isomorphism (GI), #SAT
D

and True Quantified Boolean
Formulae (TQBF) have checkers. ♦

Similarly, it can be shown [Rub90] that problems that are random self-reducible and
downward self-reducible also have checkers. (For a definition of downward self-reducibility,
see Exercise 8.9.)

Using the fact that P-complete languages are reducible to each other via NC-reductions
(in fact, even via the weaker logspace reductions), it suffices to show a checker in NC for
one P-complete language (as was shown by Blum and Kannan) to obtain the following
interesting fact:

Theorem 8.30 For any P-complete language there exists a program checker in NC

Since we believe that P-complete languages cannot be computed in NC, this provides
additional evidence that checking is easier than actual computation.

Blum and Kannan actually provide a precise characterization of languages that have
checkers using interactive proofs, but it is omitted here because it is technical.

8.6.2 Random Self Reducibility and the Permanent

Most checkers are designed by observing that the output of the program at x should be
related to its output at some other points. The simplest such relationship, which holds for
many interesting problems, is random self-reducibility.

Roughly speaking, a problem is random-self-reducible if solving the problem on any input
x can be reduced to solving the problem on a sequence of random inputs y1, y2, . . . , where
each yi is uniformly distributed among all inputs. (The correct definition is more general and
technical but this vague one will suffice here.) This property is important in understanding
the average-case complexity of problems, an angle that is addressed further in Theorem 8.33
and Section 19.4.

Example 8.31
Suppose a function f :GF(2)n → GF(2) is linear, that is there exist coefficients
a1, a2, . . . , an such that f(x1, x2, . . . , xn) =

∑

i aixi.
Then for any x,y ∈ GF(2)n we have f(x) + f(y) = f(x + y). This fact can be
used to show that computing f is random self-reducible. If we want to compute
f(x) where x is aribitrary, it suffices to pick a random y and compute f(y) and
f(x + y), and both y and x + y are random vectors (though not independently
distributed) in GF(2)n (Aside: this simple observation will appear later in a
different context in the linearity test of Chapter 11.)

The above example may appear trivial, but in fact some very nontrivial problems are also
random self-reducible. The permanent of a matrix is superficially similar to the determinant
and defined as follows:

Definition 8.32 Let A ∈ Fn×n be a matrix over the field F . The permanent of A is:

perm(A) =
∑

σ∈Sn

n
∏

i=1

ai,σ(i) (16)

♦
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The problem of calculating the permanent is clearly in PSPACE. In Chapter 17 we will see
that computing the permanent is #P-complete, which means that it is essentially equivalent
to #SATD. In particular, if the permanent can be computed in polynomial time then
P = NP. Here we show that the permanent is random self-reducible. The main observation
used is that if we think of perm(A) as a function of n2 variables (denoting the entries of the
matrix A) then by (16) this function is a polynomial of degree n.

Theorem 8.33 (Lipton [Lip91]) There is a randomized algorithm that, given an oracle that
can compute the permanent on 1− 1

3n fraction of the inputs in Fn×n (where the finite field F
has size > 3n), can compute the permanent on all inputs correctly with high probability.♦

Proof: Let A be some input matrix. Pick a random matrix R ∈R Fn×n and let B(x) =
A+ x ·R for a variable x. Notice that:

• perm(B(x)) is a degree n univariate polynomial.

• For any fixed a 6= 0, B(a) is a random matrix, and hence the probability that the
oracle computes perm(B(a)) correctly is at least 1− 1

3n .

Now the algorithm for computing the permanent of A is straightforward. Fix any n + 1
distinct points a1, a2, . . . , an+1 in the field and query the oracle on all matrices {B(ai)|1 ≤
i ≤ n + 1}. According to the union bound, with probability of at least 1 − n+1

n ≈ 2
3 the

oracle will compute the permanent correctly on all matrices.
Recall the fact (see Theorem A.35 in Appendix A) that given n + 1 (point, value) pairs
{(ai, bi)|i ∈ [n+ 1]}, there exists a unique a degree n polynomial p that satisfies ∀i p(ai) =
bi. Therefore, given that the values B(ai) are correct, the algorithm can interpolate the
polynomial B(x) and compute B(0) = perm(A). �

The hypothesis of Theorem 8.33 be weakened so that the oracle only needs to compute
the permanent correctly on a fraction of 1

2 + ε for any constant ε > 0 of the inputs. This
uses a stronger interpolation theorem; see Section 19.6.

8.7 Interactive proof for the Permanent

Although the existence of an interactive proof for the Permanent follows from that for #SAT

and TQBF, we describe a specialized protocol as well. This is both for historical context
(this protocol was discovered before the other two protocols) and also because this protocol
may be helpful for further research.

The protocol will use the random self-reducibility of the permanent and downward self-
reducibility, a property encountered earlier in Chapter 2 in the context of SAT (see also
Exercise 8.9). In case of permanent, this is the observation that

perm(A) =
n
∑

i=1

a1iperm(A1,i),

where A1,i is a (n−1)× (n−1) sub-matrix of A obtained by removing the first row and i’th
column of A (recall that the analogous formula for the determinant uses alternating signs).
Thus computing the n×n permanent reduces to computing n permanents of (n−1)×(n−1)
matrices.

For ease of notation, we assume the field F is equal to GF(p) for some prime p > n, and
so 1, 2, . . . , n ∈ F, and reserve aij for the (i, j)th element of the matrix. For every n × n
matrix A, and i ∈ [n], we define DA(i) to be the (n− 1)× (n− 1) matrix A1,i. If x ∈ F \ [n],
then we define DA(x) in the unique way such that for every j, k ∈ [n − 1], the function
(DA(x))j,k is a univariate polynomial of degree at most n. Note that since the permanent
of an (n − 1) × (n − 1) matrix is a degree-(n− 1) polynomial in the entries of the matrix,
perm(DA(x)) is a univariate polynomial of degree at most (n− 1)n < n2.
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8.7.1 The protocol

We now show an interactive proof for the permanent. Specifically, define Lperm to contain all
tuples 〈A, p, k〉 such that p > n4 is prime, A is an n×n matrix over GF(p), and perm(A) = k.
We prove the following theorem:

Theorem 8.34 Lperm ∈ IP ♦

Proof: The proof is by induction— we assume that we have an interactive proof for matrices
up to size (n − 1), and show a proof for n × n matrices. That is, we assume inductively
that for each (n− 1)× (n− 1) matrix B, the prover can make the verifier accept the claim
perm(B) = k′ with probability 1 if it is true and with probability at most ǫ if it is false.
(Clearly, in the base case when n − 1 = 1, the permanent computation is trivial for the
verifier and hence ǫ = 0 in the base case.) Then we show that for every n× n matrix A the
prover can make the verifier accept the claim perm(A) = k with probability 1 if it is true
and with probability at most ǫ + (n − 1)2/p if it is false. The following simple exchange
shows this.

• Round 1: Prover sends to verifier a polynomial g(x) of degree (n − 1)2, which is
supposedly perm(DA(x)).

• Round 2: Verifier checks whether: k =
∑m
i=1 a1,ig(i). If not, it rejects at once. Other-

wise, the verifier picks a random element of the field b ∈R Fp and asks the prover to
prove that g(b) = perm(DA(b)). Notice, DA(b) is an (n− 2)× (n− 2) matrix over Fp,
and so now use the inductive hypothesis to design a protocol for this verification.

Now we analyze this protocol. If perm(A) = k, then an all-powerful prover can provide
perm(DA(x)) and thus by the inductive hypothesis make the verifier accept with probability
1.

On the other hand, suppose that perm(A) 6= k. If in the first round, the polynomial g(x)
sent is the correct polynomial perm(DA(x)), then:

m
∑

i=1

a1,ig(i) = perm(A) 6= k,

and the verifier would immediately reject. Hence we only need to consider a prover that
sends g(x) 6= perm(DA(x)). Since two polynomials of degree (n− 1)2 can only agree for less
than (n− 1)2 values of x, the chance that the randomly chosen b ∈ Fp is one of them is at
most (n − 1)2/p. if b is not one of these values, then the prover is stuck with proving an
incorrect claim, which by the inductive hypothesis he can prove with conditional probability
at most ǫ. This finishes the proof of correctness.

Unwrapping the inductive claim, we see that the probability that the prover can convince
this verifier about an incorrect value of the permanent of an n× n matrix is at most

(n− 1)2

p
+

(n− 2)2

p
+ · · ·+ 1

p
≤ n3

p
,

which is much smaller than 1/3 for our choice of p. �
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What have we learned?

• An interactive proof is a generalization of mathematical proofs in which the prover
and polynomial-time probabilistic verifier interact.

• Allowing randomization and interaction seems to add significantly more power to proof
system: the class IP of languages provable by a polynomial-time interactive proofs is
equal to PSPACE.

• All languages provable by a constant round proof system are in the class AM: that is,
they have a proof system consisting of the the verifier sending a single random string
to the prover, and the prover responding with a single message.

• Interactive proofs have surprising connections to cryptography, approximation algo-
rithms (rather, their nonexistence), and program checking.

Chapter notes and history

Interactive proofs were defined in 1985 by Goldwasser, Micali, Rackoff [GMR85] for cryptographic
applications and (independently, and using the public coin definition) by Babai [Bab85]; see also
Babai and Moran [BM88]. The private coins interactive proof for graph non-isomorphism was
given by Goldreich, Micali and Wigderson [GMW87]. Simulations of private coins by public coins
(Theorem 8.12) were given by Goldwasser and Sipser [GS87] (see [Gol08, Appendix A] for a good
exposition of the full proof). It was influenced by earlier results such as BPP ⊆ PH (Section 7.5.2)

and the fact that one can approximate #SATD in pΣ
p
2 . Multi-prover interactive proofs were defined

by Ben-Or et al [BOGKW88] for the purposes of obtaining zero knowledge proof systems for NP
(see also Section 9.4) without any cryptographic assumptions.

The general feeling at the time was that interactive proofs are only a “slight” extension of NP
and that not even 3SAT has interactive proofs. For example, Fortnow and Sipser [FS88] conjectured
that this is the case and even showed an oracle O relative to which coNPO * IPO (thus in the
terms of Section 3.4, IP = PSPACE is a non-relativizing theorem).

The result that IP = PSPACE was a big surprise, and the story of its discovery is very in-
teresting. In the late 1980s, Blum and Kannan [BK95] introduced the notion of program checking.
Around the same time, manuscripts of Beaver and Feigenbaum [BF90] and Lipton [Lip91] appeared
that fleshed out the notion of random self reducibility and the connection to checking. Inspired by
some of these developments, Nisan proved in December 1989 that the permanent problem (hence
also #SATD) has multiprover interactive proofs. He announced his proof in an email to several
colleagues and then left on vacation to South America. This email motivated a flurry of activ-
ity in research groups around the world. Lund, Fortnow, Karloff showed that #SATD is in IP
(they added Nisan as a coauthor and the final paper is [LFKN90]). Then Shamir showed that IP
=PSPACE [Sha90] and Babai, Fortnow and Lund [BFL90] showed MIP = NEXP. This story —as
well as subsequent developments such as the PCP Theorem— is described in Babai’s entertaining
surveys [Bab90, Bab94]. See also the chapter notes to Chapter 11.

The proof of IP = PSPACE using the linearization operator is due to Shen [She92]. The
question about the power of the prover is related to the complexity of decision versus search, as
explored by Bellare and Goldwasser [BG94]; see also Vadhan [Vad00]. Theorem 8.30 has been
generalized to languages within NC by Goldwasser et al. [GGH+07].

The result that approximating the shortest vector to within a
√

n/ log n is in AM[2] and
hence probably not NP-hard (as mentioned in the introduction) is due to Goldreich and Gold-
wasser [GG00]. Aharonov and Regev [AR04] proved that approximating this problem to within

√
n

is in NP ∩ coNP.



150 8 Interactive proofs

Exercises

8.1 Prove the assertions about IP made in Section 8.1. That is, prove:

(a) Let IP′ denote the class obtained by allowing the prover to be probabilistic in Definition 8.6.
That is, the prover’s strategy can be chosen at random from some distribution on functions.
Prove that IP′ = IP.

(b) Prove that IP ⊆ PSPACE.

(c) Let IP′ denote the class obtained by changing the constant 2/3 in (2) to 1. Prove that
IP′ = IP. H459

(d) Let IP′ denote the class obtained by changing the constant 1/3 in (3) to 0. Prove that
IP′ = NP.

8.2 Let IP′ denote the class obtained by requiring in the completeness condition (2) that there exists
a single prover P for every x ∈ L (rather than for every x ∈ L there is a prover). Prove that
IP′ = IP.

8.3 Show that AM[2] = BP · NP.

8.4 Let k ≤ n. Prove that the following family Hn,k is a collection of pairwise independent functions

from {0, 1}n to {0, 1}k: Identify {0, 1} with the field GF(2). For every k× n matrix A with entries
in GF(2), and b ∈ GF(2)k, Hn,k contains the function hA,b : GF(2)n → GF(2)k defined as follows:
hA,b(x) = Ax+ b.

8.5 Prove that there exists a perfectly complete AM[O(1)] protocol for proving a lower bound on set
size. H459

8.6 Prove that for every AM[2] protocol for a language L, if the prover and the verifier repeat the
protocol k times in parallel (verifier runs k independent random strings for each message) and the
verifier accepts only if all k copies accept, then the probability that the verifier accepts x 6∈ L is at
most (1/3)k . (Note that you cannot assume the prover is acting independently in each execution.)
Can you generalize your proof for every k?

8.7 (Babai-Moran [BM88]) Prove that for every constant k ≥ 2, AM[k + 1] ⊆ AM[k]. H459

8.8 In this exercise we explore an alternative way to generalize the proof that coNP ⊆ IP to show
that IP = PSPACE.

(a) Suppose that ϕ is a QBF formula (not necessarily in prenex form) satisfying the following
property: if x1, . . . , xn are ϕ’s variable sorted according to their order of appearance, then
every variable xi there is at most a single universal quantifier involving xj (for j > i) appearing
before the last occurrence of xi in ϕ. Show that in this case, when we run the sumcheck
protocol of Section 8.3.2 with the modification that we use the check s(0) · s(1) = K for
product operations, the prover only needs to send polynomials of degree O(n). H459

(b) Show that we can transform every size n QBF formula ψ into a logically equivalent size O(n2)
formula ϕ with the above property. H460

8.9 Define a language L to be downward self reducible if there’s a polynomial-time algorithm R that
for any n and x ∈ {0, 1}n, RLn−1(x) = L(x) where by Lk we denote an oracle that solves L on
inputs of size at most k. Prove that if L is downward self reducible than L ∈ PSPACE.

8.10 Show that the problem GI is downward self reducible. That is, prove that given two graphs G1,G2

on n vertices and access to a subroutine P that solves the GI problem on graphs with up to n− 1
vertices, we can decide whether or not G1 and G2 are isomorphic in polynomial time.

8.11 Prove that in the case that G1 and G2 are isomorphic we can obtain a permutation π mapping G1

to G2 using the procedure of the above exercise. Use this to complete the proof in Example 8.27
and show that graph isomorphism has a checker. Specifically, you have to show that if the program
claims that G1

∼= G2 then we can do some further investigation (including calling the programs on
other inputs) and with high probability conclude that either (a) conclude that the program was
right on this input or (b) the program is wrong on some input and hence is not a correct program
for graph isomorphism.

8.12 Show that MIP ⊆ NEXP.

8.13 Show that if we redefine multiprover interactive proofs to allow, instead of two provers, as many as
m(n) = poly(n) provers on inputs of size n, then the class MIP is unchanged. H460



Chapter 9

Cryptography

“Human ingenuity cannot concoct a cipher which human ingenuity cannot
resolve.”
E. A. Poe, 1841

“In designing a good cipher ... it is not enough merely to be sure none of
the standard methods of cryptanalysis work– we must be sure that no method
whatever will break the system easily. This, in fact, has been the weakness
of many systems. ... The problem of good cipher design is essentially one of
finding difficult problems, subject to certain other conditions. This is a rather
unusual situation, since one is ordinarily seeking the simple and easily soluble
problems in a field.”
C. Shannon [Sha49b]

“While the NP complete problems show promise for cryptographic use, cur-
rent understanding of their difficulty includes only worst case analysis. For
cryptographic purposes, typical computational costs must be considered.”
W. Diffie and M. Hellman [DH76]

Cryptography is much older than computational complexity. Ever since people began
to write, they invented methods for “secret writing” that would be difficult to decipher
for others. But the numerous methods of encryption or “secret writing” devised over the
years all had one common characteristic— sooner or later they were broken. But everything
changed in 1970’s, when thanks to the works of several researchers, modern cryptography
was born, whereby computational complexity was used to argue about the security of the
encryption schemes. In retrospect this connection seems like a natural one, since the code-
breaker has bounded computational resources (even if she has computers at her disposal)
and therefore to ensure security one should try to ensure that the codebreaking problem is
computationally difficult.

Another notable difference between modern cryptography and the older notion is that the
security of encryption no longer relies upon the the encryption technique being kept secret.
In modern cryptography, the encryption technique itself is well-known, yet nevertheless it is
hard to break. Furthermore, modern cryptography is about much more than just encryption,
and the security of all these schemes is proved by means of reductions similar (though not
identical) to those used in the theory of NP-completeness.

This new focus on building system from basic problems via reductions enabled modern
cryptography to achieve two seemingly contradictory goals. On the one hand these new
schemes are much more secure— systems such as the RSA encryption [RSA78] have withstood
more attacks by talented mathematicians assisted with state of the art computers than every
previous encryption in history. On the other hand, their security requirements are much
more stringent— we require the schemes to remain secure even when the encryption key is
known to the attacker (i.e., public key encryption), and even when the attacker gets access
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to encryptions and decryptions of text of her choice (so-called chosen plaintext and chosen
ciphertext attacks). Moreover, modern cryptography provides schemes that go much beyond
simple encryption— tools such as digital signatures, zero knowledge proofs, electronic voting
and auctions, and more. All of these are shown to be secure against every polynomial-time
attack, and not just attacks we can think of today, as long as the underlying computational
problem is indeed hard.

Research on modern cryptography led to significant insights that had impact and ap-
plications in complexity theory and beyond that. One is the notion of pseudorandomness.
Philosophers and scientists have struggled for years to define when to consider a bit string
“random enough.” Cryptography’s answer to this question is that it suffices if this string
is drawn from a distribution that “looks random” to all efficient (i.e., polynomial-time)
observers (see Section 9.2.3). This notion is crucial for the construction of many crypto-
graphic schemes, but is also extremely useful in other areas where random bits are needed.
For example cryptographic pseudorandom generators can be used to reduce the random-
ness requirements of probabilistic algorithms such as the ones we saw in Chapter 7; see also
Chapter 20. Another insight is the notion of simulation. A natural question in cryptography
is how one can demonstrate that an attacker cannot learn anything about some secret in-
formation from observing the behavior of parties holding this information. Cryptography’s
answer is to show that the attacker’s observations can be simulated without any access to
the secret information. This is epitomized in the notion of zero knowledge proofs covered in
Section 9.4, and used in many other cryptographic applications.

We start the chapter in Section 9.1 with Shannon’s definition of perfectly secret encryp-
tion and the limitations of such systems. These limitations lead us to consider encryptions
that are only computationally secret— secure for polynomial-time eavesdroppers— which
we construct in Section 9.2 using pseudorandom generators. Then, in Section 9.2.3 we
show how these generators can be constructed from weaker assumptions. In Section 9.4
we describe zero knowledge proofs, a fascinating concept that has had deep implications for
cryptography and complexity alike. Finally, in Section 9.5 we mention how these concepts
can be used to achieve security in a variety of settings. Cryptography is a huge topic, and
so naturally this chapter covers only a tiny sliver of it; the chapter notes contain some ex-
cellent choices for further reading. Cryptography is intimately related to notions such as
average-case complexity, hardness amplifications and derandomization, see chapters 18, 19,
and 20.

9.1 Perfect secrecy and its limitations

Secret Message

(plaintext): x {0,1}m

Key: k R {0,1}n

Alice Bob

Ciphertext: y=Ek(x)

Eve

x=Dk(y)

Figure 9.1 In a private key encryption, Alice and Bob share a secret key k chosen at random.
To send a plaintext message x to Bob, Alice sends y = Ek(x) where E(·) is the encryption
function that takes a key k and plaintext x to compute the ciphertext y. Bob can decode x
by running the decryption algorithm D on inputs k, y.

The fundamental task of cryptography is encryption. In this Section we describe this
task at a high level, and discuss what it could possibly mean for encryption to be secure.
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We introduce a simple idea for encryption called the one time pad and discuss its strengths
and limitations.

The basic setting is described in Figure 9.1— Alice wants to send a secret message x
(known as the plaintext) to Bob, but her adversary Eve is eavesdropping on the communi-
cation channel between Alice and Bob. Thus Alice will “scramble” the plaintext x using an
encryption algorithm E to obtain a ciphertext y which she sends to Bob. Presumably it will
be hard or even impossible for Eve to decode the plaintext x from the ciphertext y, but Bob
will be able to do so using the decryption algorithm D.

Of course, Bob is seeing the same information that Eve is, so in order to do something
that Eve cannot, Bob has to know something that Eve doesn’t. In the simple setting of
private key encryption we assume that Alice and Bob share some secret string k (known as
the key) that is chosen at random. (Presumably, Alice and Bob met beforehand and agreed
on the key k.)

Thus, the encryption scheme is composed of a pair of algorithms (E,D) each taking a
key and a message (where we write the key input as a subscript), such that for every key k
and plaintext x

Dk(Ek(x)) = x . (1)

The condition (1) says nothing about the security of the scheme, and could be satisfied by
the trivial “encryption” that just outputs the plaintext message. It turns out that defining
security is quite subtle. A first attempt at a definition might be to say that a scheme is
secure if Eve cannot compute x from Ek(x), but this may not be sufficient, because this does
not rule out the possibility of Eve computing some partial information on x. For example,
if Eve knows that the plaintext is either the message “buy” or “sell” then it will be enough
for her to learn only the first character of the message, even if she can’t recover it completely.
Shannon gave the following definition of secure private key encryption that ensures Eve does
not learn anything about the plaintext from the ciphertext:

Definition 9.1 (Perfect Secrecy) Let (E,D) be an encryption scheme for messages of length
m and with a key of length n satisfying (1). We say that (E,D) is perfectly secret if for every
pair of messages x, x′ ∈ {0, 1}m, the distributions EUn(x) and EUn(x′) are identical.1 ♦

In a perfectly secret encryption, the ciphertext that Eve sees always has the same dis-
tribution, regardless of the plaintext, and so Eve gets absolutely no information on the
plaintext. It might seem like a condition so strong that it’s impossible to satisfy, but in
fact there’s a very simple perfectly secret encryption scheme. In the one-time pad scheme,
to encrypt a message x ∈ {0, 1}n we choose a random key k ∈

R
{0, 1}n and encrypt x by

simply sending x⊕k (⊕ denotes bitwise XOR— vector addition modulo 2). The receiver can
recover the message x from y = x⊕ k by XOR’ing y once again with k. It’s not hard to see
that the ciphertext is distributed uniformly regardless of the plaintext message encrypted,
and hence the one-time pad is perfectly secret (see Exercise 9.1).

Of course, as the name suggests, a “one-time pad” must never be reused on another
message. If two messages x, x′ are encoded using the same pad k, this gives Eve both k⊕ x
and k ⊕ x′, allowing her to compute (k ⊕ x) ⊕ (k ⊕ x′) = x ⊕ x′, which is some nontrivial
information about the messages. In fact, one can show that no perfectly secret encryption
scheme can use a key size shorter than the message size (see Exercise 9.2).

9.2 Computational security, one-way functions, and pseudoran-
dom generators

Though a one-time pad does provide perfect secrecy, it fails utterly as a practical solution
to today’s applications where one wishes to securely exchange megabytes or even gigabytes
of information. Our discussion above implies that perfect secrecy would require private keys

1Recall that Un denotes the uniform distribution over {0, 1}n.
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that are as long as the messages, and it is unclear such huge keys can be securely exchanged
among users. Ideally we want to keep the shared secret key fairly small, say a few hundred
bits long. Obviously, to allow this we must relax the perfect secrecy condition somehow.
As stated in the introduction, the main idea will be to design encryption schemes that are
secure only against eavesdroppers that are efficient (i.e., run in polynomial-time). How-
ever, the next Lemma shows that even with this restriction on the eavesdropper, achieving
perfect secrecy is impossible with small key sizes if P = NP. Hence assuming P 6= NP
will be necessary for proceeding any further. In fact we will rely on assumptions stronger
than P 6= NP —specifically, the assumption that a one-way function exists— and it is
an important research problem to weaken the assumption (ideally to just P 6= NP) under
which cryptographic schemes can be proved secure.

Lemma 9.2 Suppose that P = NP. Let (E,D) be any polynomial-time computable encryp-
tion scheme satisfying (1) with key shorter than the message. Then, there is a polynomial-
time algorithm A satisfying that for every input length m, there is a pair of messages
x0, x1 ∈ {0, 1}m such that

Pr
b∈

R
{0,1}

k∈
R
{0,1}n

[A(Ek(xb)) = b] ≥ 3/4 , (2)

where n < m denotes the key length for messages of length m. ♦

Such an algorithm breaks the security of the encryption scheme since, as demonstrated
by the “buy”/“sell” example of Section 9.1, a minimal requirement from an encryption
is that Eve cannot tell which one of two random messages was encrypted with probability
much better than 1/2.

Proof of Lemma 9.2: Let (E,D) be an encryption for messages of length m and with
key length n < m as in the lemma’s statement. Let S ⊆ {0, 1}∗ denote the support of
EUn(0m). Note that y ∈ S if and only if y = Ek(0

m) for some k, and hence if P = NP then
membership in S can be efficiently verified. Our algorithm A will be very simple— on input
y, it outputs 0 if y ∈ S, and 1 otherwise. We claim that setting x0 = 0m, there exists some
x1 ∈ {0, 1}m such that (2) holds.

Indeed, for every message x, let Dx denote the distribution EUn(x). By the definition of
A and the fact that x0 = 0m, Pr[A(Dx0) = 0] = 1. Because

Pr
b∈

R
{0,1}

k∈
R
{0,1}n

[A(Ek(xb)) = b] =
1

2
Pr[A(Dx0) = 0]+

1

2
Pr[A(Dx1) = 1]

=
1

2
+

1

2
Pr[A(Dx1) = 1] ,

it suffices to show that there’s some x1 ∈ {0, 1}m such that Pr[A(Dx1) = 1] ≥ 1/2. In other
words, it suffices to show that Pr[Dx1 ∈ S] ≤ 1/2 for some x1 ∈ {0, 1}m.

Suppose otherwise that Pr[Dx ∈ S] > 1/2 for every x ∈ {0, 1}m. Define S(x, k) to be 1 if
Ek(x) ∈ S and to be 0 otherwise, and let T = Ex∈R{0,1}m,k∈{0,1}n [S(x, k)]. Then under our
assumption, T > 1/2. But reversing the order of expectations, we see that

T = E
k∈{0,1}n

[

E
x∈{0,1}m

[S(x, k)]
]

≤ 1/2 ,

where the last inequality follows from the fact that for every fixed key k, the map x 7→ Ek(x)
is one-to-one and hence at most 2n ≤ 2m/2 of the x’s can be mapped under it to a set S of
size ≤ 2n. Thus we obtained a contradiction to the assumption that Pr[Dx ∈ S] > 1/2 for
every x ∈ {0, 1}m. �

Before proceeding further, we make a simple definition that will greatly simplify notation
throughout this chapter.

Definition 9.3 (Negligible functions)
A function ǫ : N→ [0, 1] is called negligible if ǫ(n) = n−ω(1) (i.e., for every c and sufficiently
large n, ǫ(n) < n−c).
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Because negligible functions tend to zero very fast as their input grows, events that
happen with negligible probability can be safely ignored in most practical and theoretical
settings.

9.2.1 One way functions: definition and some examples

The above discussion suggests that complexity-theoretic conjectures are necessary to prove
the security of encryption schemes. Now we introduce an object that is useful not only in
this context but also many others in cryptography. This is a one-way function: a function
that is easy to compute but hard to invert for a polynomial-time algorithm:

Definition 9.4 (One way functions)
A polynomial-time computable function f : {0, 1}∗ → {0, 1}∗ is a one-way function if for
every probabilistic polynomial-time algorithm A there is a negligible function ǫ : N→ [0, 1]
such that for every n,

Pr
x∈

R
{0,1}n

y=f(x)

[A(y) = x′ s.t. f(x′) = y] < ǫ(n) .

Conjecture 9.5
There exists a one-way function.

Exercise 9.5 asks you to show that Conjecture 9.5 implies that P 6= NP. Most researchers
believe Conjecture 9.5 is true because there are several examples for functions that no one
has yet been able to invert. Now we describe several.

Multiplication: Simple multiplication turns out to be hard to invert. That is, the function
that treats its input x ∈ {0, 1}n as describing two n/2-bit numbers A and B and
outputs A ·B is believed to be one way. Inverting this function is known as the integer
factorization problem. Of course, it’s easy to factor a number N using at most N (or
even only

√
N) trial divisions. But if N is an n-bit number this is an exponential

in n number of operations. At the moment no polynomial (i.e., polylog(N)) time
algorithm is known for this problem, and the best factoring algorithm runs in time

2O(log1/3N
√

log logN) [LLMP90].2

A more standard implementation of a one-way function based on factoring is the
following. Treat the input x ∈ {0, 1}n as randomness that is used to generate two
random n1/3-bit primes P and Q. (We can do so by generating random numbers and
testing their primality using the algorithm described in Chapter 7.) Then output P ·Q.

Factoring integers has captured the attention of mathematicians for at least two mil-
lennia, way before the invention of computers. Yet no efficient factorization algorithm
was found, leading to the conjecture that no such algorithm exists. Then this func-
tion is indeed one-way, though this conjecture is obviously much stronger than the
conjecture that P 6= NP or the conjecture that some one-way function exists.

RSA and Rabin functions: (These examples require a bit of number theory; see Sec-
tion A.3 for a quick review) The RSA function3 is another very popular candidate
for a one-way function. We assume that for every input length n there is an n-bit
composite integer N that was generated in some way, and some number e that is
coprime to ϕ(N) = |Z∗

N | where Z∗
N is the multiplicative group of numbers coprime

2If A and B are chosen randomly then it’s not hard to find a some prime factor of A ·B, since A ·B will
have a small prime factor with high probability. But finding the all the prime factors or even finding any
representation of A · B as the multiplication of two numbers each no larger than 2n/2 can be shown to be
equivalent (up to polynomial factor) to factoring the product of two random primes.

3RSA are the initials of this function’s discoverers— Rivest, Shamir, and Adleman; see the chapter notes.
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to N . (Typically N would be generated as a product of two n/2-long primes; e is
often set to be simply 3.) The function RSAN,e treats its input as a number X in
Z∗
N and outputs Xe (mod N).4 It can be shown that because e is coprime to ϕ(N),

this function is one-to-one on Z∗
N . A related candidate one-way function is the Rabin

function that given a number N that is the product of two odd primes P,Q such
that P,Q = 1 (mod 4), maps X ∈ QRN into X2 (mod N), where QRN is the set of
quadratic residues modulo N (an element X ∈ Z∗

N is a quadratic residue modulo N
if X = W 2 (mod N) for some W ∈ Z∗

N ). Again, it can be shown that this function is
one-to-one on QRN .

While both the RSA function and the Rabin function are believed to be hard to
invert, inverting them is actually easy if one knows the factorization of N . In the
case of the RSA function, the factorization can be used to compute ϕ(N) and from
that the number d such that d = e−1 (mod ϕ(N)). It’s not hard to verify that the
function Y d (mod N) is the inverse of the function Xe (mod N). In the case of the
Rabin function, if we know the factorization then we can use the Chinese Remainder
Theorem to reduce the problem of taking a square root modulo N to taking square
roots modulo the prime factors of N , which can be done in polynomial time. Because
these functions are conjectured hard to invert but become easy to invert once you
know certain information (i.e., N ’s factorization), they are known as trapdoor one-
way functions, and are crucial to obtaining public key cryptography. It it known that
inverting Rabin’s function is in fact computationally equivalent to factoring N (see
Exercise 9.7). No such equivalence is known for the RSA function.

Levin’s universal one-way function: There is a function fU that has a curious property:
if there exists some one-way function f then fU is also a one-way function. For
this reason, the function fU is called a universal one-way function. It is defined as
follows: treat the input as a list x1, . . . , xlog n of n/ logn bit long strings. Output

Mn2

1 (x1), . . . ,M
n2

logn(xn) where Mi denotes the ith Turing machine according to some

canonical representation and we define M t(x) to be the output of the Turing machine
M on input x if M uses at most t computational steps on input x. If M uses more
than t computational steps on x then we define M t(x) to be the all-zeroes string 0|x|.
Exercise 9.6 asks you to prove the universality of fU .

There are also examples of candidate one-way functions that have nothing to do with
number theory (e.g., one-way functions arising from block ciphers such as the AES [DR02]).

9.2.2 Encryption from one-way functions

Now we show that one-way functions can be used to to design secure encryption schemes
with keys much shorter than the message length.

Theorem 9.6 (Encryption from one-way function)
Suppose that one-way functions exist. Then for every c ∈ N there exists a computationally
secure encryption scheme (E,D) using n-length keys for nc-length messages.

Of course to make sense of Theorem 9.6, we need to define the term “computationally
secure”. The idea is to follow the intuition that a secure encryption should not reveal any
partial information about the plaintext to a polynomial-time eavesdropper, but due to some
subtleties, the actual definition is somewhat cumbersome. Thus, for the sake of presentation
we’ll use a simpler relaxed definition that an encryption is “computationally secure” if any
individual bit of the plaintext chosen at random cannot be guessed by the eavesdropper

4We can map the input to Z∗
N by simply reducing the input modulo N— the probability (over the choice

of the input) that the result will not be coprime to N is negligible.
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with probability non-negligibly higher than 1/2. That is, we say that a scheme (E,D) using
length n keys for length m messages is computationally secure if for every probabilistic
polynomial-time A, there’s a negligible function ǫ : N→ [0, 1] such that

Pr
k∈R{0,1}n
x∈R{0,1}m

[A(Ek(x)) = (i, b) s.t. xi = b] ≤ 1/2 + ǫ(n) . (3)

The full-fledged, stronger notion of computational security (whose standard name is seman-
tic security) is developed in Exercise 9.9, where it is also shown that Theorem 9.6 holds also
for this stronger notion.

9.2.3 Pseudorandom generators

Recall the one-time pad idea of Section 9.1, whose sole limitation was the need for a shared
random string whose length is the same as the combined length of all the messages that
need to be transmitted. The main idea in the proof of Theorem 9.6 is to show how to take
a small random key of length n and stretch it to a much larger string of length m that
is still “random enough” that it provides security against polynomial-time eavesdroppers
when used as a one-time pad. This stretching of the random string uses a tool called a
pseudorandom generator, which has applications even beyond cryptography.

Example 9.7
What is a random-enough string? Scientists have struggled with this question
before. Here is Kolmogorov’s definition: A string of length n is random if no
Turing machine whose description length is < 0.99n (say) outputs this string
when started on an empty tape. This definition is the “right” definition in some
philosophical and technical sense (which we will not get into here) but is not very
useful in the complexity setting because checking if a string is random according
to this definition is undecidable.
Statisticians have also attempted definitions which boil down to checking if the
string has the “right number” of patterns that one would expect by the laws of
statistics, e.g. the number of times 11100 appears as a substring. (See [Knu73] for
a comprehensive discussion.) It turns out that such definitions are too weak in
the cryptographic setting: one can find a distribution that passes these statistical
tests but still will be completely insecure if used to generate the pad for the one-
time pad encryption scheme.

Cryptography’s answer to the above question is simple and satisfying. First, instead of
trying to describe what it means for a single string to be “random-looking” we focus on
distributions on strings. Second, instead of focusing on individual tester algorithms as the
statisticians did, we say that the distribution has to “look” like the uniformly random dis-
tribution to every polynomial-time algorithm. Such a distribution is called pseudorandom.
The distinguisher algorithm is given a sample string that is drawn from either the uniform
distribution or the unknown distribution. The algorithm outputs “1” or “0” depending
upon whether or not this string looks random to it. (An example of such an algorithm is
the statistics-based tester of Example 9.7.) The distribution is said to be pseudorandom if
the probability that the polynomial-time algorithm outputs 1 is essentially the same on the
two distributions, regardless of which algorithm is used5.

5Note that this definition is reminiscent of a “blind test”: for instance we say that an artificial sweetner
is “sugar-like” if the typical consumer cannot tell the difference between it and sugar in a blind-test. How-
ever, the definition of a pseudorandom distribution is more stringent since the distribution has to fool all
distinguisher algorithms. The analogous notion for a sweetner would require it to taste like sugar to every
human.
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Definition 9.8 (Secure pseudorandom generators)
Let G : {0, 1}∗ → {0, 1}∗ be a polynomial-time computable function. Let ℓ : N → N be a
polynomial-time computable function such that ℓ(n) > n for every n. We say that G is a
secure pseudorandom generator of stretch ℓ(n), if |G(x)| = ℓ(|x|) for every x ∈ {0, 1}∗ and
for every probabilistic polynomial-time A, there exists a negligible function ǫ : N → [0, 1]
such that

∣

∣

∣Pr[A(G(Un)) = 1]− Pr[A(Uℓ(n)) = 1]
∣

∣

∣ < ǫ(n) ,

for every n ∈ N.

Theorem 9.9 (Pseudorandom generators from one-way functions [HILL99])
If one-way functions exist, then for every c ∈ N, there exists a secure pseudorandom gener-
ator with stretch ℓ(n) = nc.

Definition 9.8 states that it’s infeasible for polynomial-time adversaries to distinguish
between a completely random string of length ℓ(n) and a string that was generated by
applying the generator G to a much shorter random string of length n. Thus, it’s not hard
to verify that Theorem 9.9 implies Theorem 9.6: if we modify the one-time pad encryption
to generate its nc-length random key by applying a secure pseudorandom generator with
stretch nc to a shorter key of length n, then a polynomial-time eavesdropper would not be
able to tell the difference. To see this, assume there is an adversary A that can predict a bit
of the plaintext with probability noticeably larger than 1/2, thus violating the computational
security requirement (3). Then because such prediction is impossible when the key is truly
random (see Exercise 9.3), A can be used to distinguish between a pseudorandom and truly
random key, thus contradicting the security of the generator as per Definition 9.8. �

9.3 Pseudorandom generators from one-way permutations

We will prove only the special case of Theorem 9.9 when the one-way function is a permu-
tation:

Lemma 9.10 Suppose that there exists a one-way function f : {0, 1}∗ → {0, 1}∗ such that
f is one-to-one for every x ∈ {0, 1}∗, |f(x)| = |x|. Then, for every c ∈ N, there exists a
secure pseudorandom generator with stretch nc. ♦

The proof of Lemma 9.10 does demonstrate some of the ideas behind the proof of the
more general Theorem 9.9. Moreover, these ideas, including the hybrid argument and the
Goldreich-Levin Theorem, are of independent interest and had found several applications in
other areas of Computer Science.

9.3.1 Unpredictability implies pseudorandomness

To prove Lemma 9.10 it will be useful to have the following alternative characterization of
pseudorandom generators. Historically, this definition was the original definition proposed
for the notion of pseudorandom generator and the proof that it is equivalent to Definition 9.8
was a major discovery.

Let G : {0, 1}∗ → {0, 1}∗ be a polynomial-time computable function with stretch ℓ(n)
(i.e., |G(x)| = ℓ(|x|) for every x ∈ {0, 1}∗). We call G unpredictable if for every probabilistic
polynomial-time B there is a negligible function ǫ : N→ [0, 1] such that

Pr
x∈

R
{0,1}n

y=G(x)
i∈R [ℓ(n)]

[B(1n, y1, . . . , yi−1) = yi] ≤ 1/2 + ǫ(n) . (4)
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In other words, predicting the ith bit given the first i−1 bits (where i is a randomly chosen
index) is difficult for every polynomial-time algorithm.

Clearly, if G is a pseudorandom generator then it is also unpredictable. Indeed, if
y1, . . . , yℓ(n) were uniformly chosen bits then it would be impossible to predict yi given
y1, . . . , yi−1, and hence if such a predictor exists when y = G(x) for a random x, then
the predictor can distinguish between the distribution Uℓ(n) and G(Un). Interestingly, the
converse direction also holds:

Theorem 9.11 (Unpredictability implies pseudorandomness [Yao82a])
Let ℓ : N→ N be some polynomial-time computable function, and G : {0, 1}∗ → {0, 1}∗ be a
polynomial-time computable function such that |G(x)| = ℓ(|x|) for every x ∈ {0, 1}∗. If G is
unpredictable then it is a secure pseudorandom generator. Moreover, for every probabilistic
polynomial-time algorithm A, there exists a probabilistic polynomial-time B such that for
every n ∈ N and ǫ > 0, if Pr[A(G(Un)) = 1]− Pr[A(Uℓ(n)) = 1] ≥ ǫ, then

Pr
x∈

R
{0,1}n

y=G(x)
i∈

R
[ℓ(n)]

[B(1n, y1, . . . , yi−1) = yi] ≥ 1/2 + ǫ/ℓ(n)

Proof: First, note that the main result does follow from the “moreover” part. Indeed,
suppose that G is not a pseudorandom generator and hence there is some algorithm A and
constant c such that

∣

∣Pr[A(G(Un)) = 1]− Pr[A(Uℓ(n)) = 1]
∣

∣ ≥ n−c (5)

for infinitely many n’s. Then we can ensure (perhaps by changing A to the algorithm
1 − A that flips the one-bit answer of A), that for infinitely many n’s, (5) holds without
the absolute value. For every such n, we’ll get a predictor B that succeeds with probability
1/2 + n−c/ℓ(n), contradicting the unpredictability property.

We turn now to proving this “moreover” part. Let A be some probabilistic polynomial-
time algorithm that is supposedly more likely to output 1 on input from the distribution
G(Un) than on input from Uℓ(n). Our algorithm B will be quite simple: on input 1n,
i ∈ [ℓ(n)] and y1, . . . , yi−1, Algorithm B will choose zi, . . . , xℓ(n) independently at random,
and compute a = A(y1, . . . , yi−1, zi, . . . , zℓ(n)). If a = 1 then B surmises its guess for zi is
correct and outputs zi; otherwise it outputs 1− zi.

Let n ∈ N and ℓ = ℓ(n) and suppose that Pr[A(G(Un)) = 1] − Pr[A(Uℓ(n)) = 1] ≥ ǫ.
We’ll show that

Pr
x∈

R
{0,1}n

y=G(x)
i∈

R
[ℓ]

[B(1n, y1, . . . , yi−1) = yi] ≥ 1/2 + ǫ/ℓ . (6)

To analyze B’s performance, we define the following ℓ distributions D0, . . . ,Dℓ over {0, 1}ℓ.
(This technique is called the hybrid argument.) For every i, the distribution Di is obtained
as follows: choose x ∈

R
{0, 1}n and let y = G(x), output y1, . . . , yi, zi+1, . . . , zℓ, where

zi+1, . . . , zℓ are chosen independently at random in {0, 1}. Note that D0 = Uℓ while Dℓ =
G(Un). For every i ∈ {0, .., ℓ}, define pi = Pr[A(Di) = 1]. Note that pℓ − p0 ≥ ǫ. Thus,
writing

pℓ − p0 = (pℓ − pℓ−1) + (pℓ−1 − pℓ−2) + · · ·+ (p1 − p0) ,

we get that
∑ℓ

i=1(pi− pi−1) ≥ ǫ or in other words, Ei∈[ℓ][pi− pi−1] ≥ ǫ/ℓ. We will prove (6)
by showing that for every i,

Pr
x∈

R
{0,1}n

y=G(x)

[B(1n, y1, . . . , yi−1) = yi] ≥ 1/2 + (pi − pi−1) .

Recall that B makes a guess zi for yi and invokes A to obtain a value a, and then outputs
zi if a = 1 and 1− zi otherwise. Thus B predicts yi correctly if either a = 1 and yi = zi or
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a 6= 1 and yi = 1− zi, meaning that the probability this event happens is

1/2 Pr[a = 1|zi = yi] + 1/2(1− Pr[a = 1|zi = 1− yi]) . (7)

Yet, one can verify that conditioned on zi = yi, B invokes A with the distribution Di,
meaning that Pr[a = 1|zi = yi] = pi. On the other hand if we don’t condition on zi then
the distribution B invokes A is equal to Di−1. Hence,

pi−1 = Pr[a = 1] =

1/2 Pr[a = 1|zi = yi] + 1/2 Pr[a = 1|zi = 1− yi] =

1/2pi + 1/2 Pr[a = 1|zi = 1− yi] .

Plugging this into (7) we get that B predicts yi with probability 1/2 + pi − pi−1. �

9.3.2 Proof of Lemma 9.10: The Goldreich-Levin Theorem

Let f be some one-way permutation. To prove Lemma 9.10 we need to use f to come up
with a pseudorandom generator with arbitrarily large polynomial stretch ℓ(n). It turns out
that the crucial step is obtaining a pseudorandom generator that extends its input by one
bit (i.e., has stretch ℓ(n) = n+ 1). This is achieved by the following theorem:

Theorem 9.12 (Goldreich-Levin Theorem [GL89])
Suppose that f : {0, 1}∗ → {0, 1} is a one-way function such that f is one-to-one and
|f(x)| = |x| for every x ∈ {0, 1}∗. Then, for every probabilistic polynomial-time algorithm
A there is a negligible function ǫ : N→ [0, 1] such that

Pr
x,r∈

R
{0,1}n

[A(f(x), r) = x⊙ r] ≤ 1/2 + ǫ(n) ,

where x⊙ r is defined to be
∑n
i=1 xiri (mod 2).

Theorem 9.12 immediately implies that the function G(x, r) = f(x), r, x ⊙ r is a secure
pseudorandom generator that extends its input by one bit (mapping 2n bits into 2n+1 bits).
Indeed, otherwise by Theorem 9.11 there would be a predictor B for this function. But
because f is a permutation over {0, 1}n, the first 2n bits of G(U2n) are completely random
and independent, and hence cannot be predicted from their predecessors with probability
better than 1/2. This means that a predictor for this function would have to succeed at
predicting the 2n+1th bit from the previous 2n bits with probability noticeably larger than
1/2, which exactly amounts to violating Theorem 9.12.

Proof of Theorem 9.12: Suppose, for the sake of contradiction, that there is some
probabilistic polynomial-time algorithm A that violates the theorem’s statement. We’ll use
A to show a probabilistic polynomial-time algorithm B that inverts the permutation f , in
contradiction to the assumption that it is one way. Specifically, we will show that if for
some n,

Pr
x,r∈

R
{0,1}n

[A(f(x), r) = x⊙ r] ≥ 1/2 + ǫ , (8)

then B will run in O(n2/ǫ2) time and invert the one-way permutation f on inputs of length
n with probability at least Ω(ǫ). This means that if A’s success probability is more than
1/2 + n−c for some constant c and infinitely many n’s, then B runs in polynomial-time and
inverts the one-way permutation with probability at least Ω(n−c) for infinitely many n’s.

Let n, ǫ be such that (8) holds. Then by a simple averaging argument, for at least an
ǫ/2 fraction of the x’s, the probability over r that A(f(x), r) = x ⊙ r is at least 1/2 + ǫ/2.
We’ll call such x’s good, and show an algorithm B that with high probability inverts f(x)
for every good x.
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To restate the scenario here (and point out its connection to the program checking idea
introduced in Chapter 8, which came later historically speaking) is that we are given a
“black box” that computes an unknown linear function x 7→ x ⊙ r for at least 1/2 + ǫ/2
fraction of r’s, and we have to give an efficient algorithm that runs in poly(|X |+ 1/ǫ) time
that reconstructs x.

As a warm-up, note that if Prr[A(f(x), r) = x⊙ r] = 1, then it is easy to recover x from
f(x): just runA(f(x), e1), . . . , A(f(x), en) where ei is the string whose ith coordinate is equal
to one and all the other coordinates are zero. Clearly, x ⊙ ei is the ith bit of x, and hence
by making these n calls to A we can recover x completely. Of course, this idea breaks down
if Prr[A(f(x), r) = x ⊙ r] is less than 1. Below, we first describe a simpler reconstruction
algorithm that works when this probability is 0.9. The more general algorithm extends this
simpler algorithm.

Recovery for success probability 0.9: Now suppose that for an Ω(ǫ) fraction of x’s, we
had Prr[A(f(x), r) = x⊙ r] ≥ 0.9. For such an x, we cannot trust that A(f(x), ei) = x⊙ ei,
since it may be that e1, . . . , en are among the 2n/10 strings r on which A answers incorrectly.
Still, there is a simple way to bypass this problem: if we choose r ∈

R
{0, 1}n then the string

r ⊕ ei is also uniformly distributed. Hence by the union bound,

Pr
r

[A(f(x), r) 6= x⊙ r or A(f(x), r ⊕ ei) 6= x⊙ (r ⊕ ei)] ≤ 0.2 .

But x ⊙ (r ⊕ ei) = (x ⊙ r) ⊕ (x ⊙ ei), which means that if we choose r at random, and
compute z = A(f(x), r) and z′ = A(f(x), r ⊙ ei), then z ⊕ z′ will be equal to the ith bit
of x with probability at least 0.8. To obtain every bit of x, we amplify this probability to
1− 1/(10n) by taking majorities. Specifically, we use the following algorithm:

Algorithm B:

1. Choose r1, . . . , rm independently at random from {0, 1}n (we’ll specify m
shortly).

2. For every i ∈ [n]:

• Compute the values z1 = A(f(x), r1), z′1 = A(f(x), r1 ⊙ ei), . . . , zm =
A(f(x), rm), z′m = A(f(x), rm ⊕ ei).

• Guess that xi is the majority value among {zj ⊕ z′j}j∈[m].

We claim that if m = 200n then for every i ∈ [n], the majority value will be correct with
probability at least 1− 1/(10n) (and hence B will recover every bit of x with probability at
least 0.9). To prove the claim, we define the random variable Zj to be 1 if both A(f(x), rj) =
x ⊙ rj and A(f(x), rj ⊕ ei) = x ⊙ (rj ⊕ ei); otherwise Zj = 0. Note that the variables
Z1, . . . , Zm are independent and by our previous discussion E[Zj ] ≥ 0.8 for every j. It
suffices to show that with probability 1− 1/(10n), more than m/2 of the Zj ’s are equal to
1. In other words, letting Z = Z1 + . . . Zm, it suffices to show that Pr[Z ≤ m/2] ≤ 1/(10n).
But, since E[Z] =

∑

j E[Zj ] ≥ 0.8m, all we need to do is bound Pr [|Z − E[Z]| ≥ 0.3m]. By

Chebychev’s Inequality (Lemma A.12),6

Pr
[

|Z − E[Z]| ≥ k
√

Var(Z)
]

≤ 1/k2 .

In our case, because the Zj’s are independent 0/1 random variables, Var(Z) =
∑m

j=1 Var(Zj)
and Var(Zj) ≤ 1 for every j, implying that

Pr [|Z − E[Z]| ≥ 0.3m] ≤ 1
(0.3

√
m)2

,

which is smaller than 1/(10n) by our choice of m = 200n.

6We could have gotten an even better bound using the Chernoff Inequality, but this analysis is easier to
extend to the general case of lower success probability.
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Recovery for success probability 1/2 + ǫ/2: The above analysis crucially used the
unrealistic assumption that for many x’s, A(f(x), r) is correct with probability at least 0.9
over r. It’s not hard to see that once this probability falls below 0.75, that analysis breaks
down, since we no longer get any meaningful information by applying the union bound
on the events A(f(x), r) = x ⊙ r and A(f(x), r ⊕ ei) = x ⊙ (r ⊕ ei). Unfortunately, in
general our only guarantee is that if x is good then this probability is at least 1/2 + ǫ/2
(which could be much smaller than 0.75). The crucial insight needed to extend the proof
is that all of the above analysis would still carry over even if the strings r1, . . . , rm are
only chosen to be pairwise independent as opposed to fully independent. Indeed, the only
place where we used independence is to argue that the random variables Z1, . . . , Zm satisfy
Var(

∑

j Zj) =
∑

j Var(Zj) and this condition holds also for pairwise independent random
variables (see Claim A.13).

We’ll now show how to pick r1, . . . , rm in a pairwise indpendent fashion in such a way
that we “know” each x ⊙ ri already. This may seem ridiculous since x is unknown, and
indeed the catch is that we can do it only thanks to some exhaustive guessing, to be made
clear soon. Set k such that m ≤ 2k − 1 and do as follows:

1. Choose k strings s1, . . . , sk independently at random from {0, 1}n.

2. For every j ∈ [m], we associate a unique nonempty set Tj ⊆ [k] with j in some
canonical fashion and define rj =

∑

t∈Tj s
t (mod 2). That is, rj is the XOR of all the

strings among s1, . . . , sk that belong to the jth set.

It can be shown that the strings r1, . . . , rm are pairwise independent (see Exercise 8.4).
Moreover, for every x ∈ {0, 1}n, x ⊙ rj =

∑

t∈Tj x⊙ st. This means that if we know the k

values x⊙ s1, . . . , x⊙ sk then we can deduce the m values x⊙ r1, . . . x⊙ rm. This is where
exhaustive guessing comes in. Since 2k = O(m), we can enumerate over all possible guesses
for x ⊙ s1, . . . , x ⊙ sk in polynomial time. This leads us to the following algorithm B′ to
invert f(·):

Algorithm B′:

Input: y ∈ {0, 1}n, where y = f(x) for an unknown x.

We assume that x is “good” and hence Prr[A(f(x), r) = x ⊙ r] ≥ 1/2 + ǫ/2.
(We don’t care how B performs on x’s that are not good.)

Operation: Let m = 200n/ǫ2 and k be the smallest such that m ≤ 2k−1. Choose

s1, . . . , sk independently at random in {0, 1}k, and define r1, . . . , rm as above.

For every string w ∈ {0, 1}k do the following:

• Run the algorithm B from above under the assumption that x⊙st = wt
for every t ∈ [k]. That is, for every i ∈ [n], we compute our guess
zj for x ⊙ rj by setting zj =

∑

t∈Tj wt. We compute the guess z′j for

x⊙ (rj ⊕ ei) as before by setting z′j = A(y, rj ⊕ ei).
• As before, for every i ∈ [n], our guess for xi is the majority value among
{zj ⊕ z′j}j∈[m].

• We test whether our guess for x = x1, . . . , xn satisfies f(x) = y. If so,
we halt and output x.

The analysis is almost identical to the previous case. In one of the 2k iterations we
will guess the correct values w1, . . . , wk for x ⊙ s1, . . . , x ⊙ sk. We’ll show that in this
particular iteration, for every i ∈ [n] Algorithm B′ guesses xi correctly with probability at
least 1 − 1/(10n). Indeed, fix some i ∈ [n] and define the random variables Z1, . . . , Zm as
we did before: Zj is a 0/1 variable that equals 1 if both zj = x⊙ rj and z′j = x⊙ (rj ⊕ ei).
In the iteration where we chose the right values w1, . . . , wk, it always holds that zj = x⊙ rj
and hence Zj depends only on the second event, which happens with probability at least
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1/2 + ǫ/2. Thus, all that is needed is to show that for m = 100n/ǫ2, if Z1, . . . , Zm are
pairwise independent 0/1 random variables, where E[Zj ] ≥ 1/2 + ǫ/2 for every j, then
Pr[
∑

j Zj ≤ m/2] ≤ 1/(10n). But this follows immediately from Chebychev’s Inequality. �

Getting arbitrarily large expansion

Theorem 9.12 provides us with a secure pseudorandom generator of stretch ℓ(n) = n + 1,
but to complete the proof of Lemma 9.10 (and to obtain useful encryption schemes with
short keys) we need to show a generator with arbitrarily large polynomial stretch. This is
achieved by the following theorem:

Theorem 9.13 If f is a one-way permutation and c ∈ N, then the function G that maps
x, r ∈ {0, 1}n to r, f ℓ(x)⊙r, f ℓ−1(x)⊙r, · · · , f1(x)⊙r, where ℓ = nc is a secure pseudorandom
generator of stretch ℓ(2n) = n + nc. (f i denotes the function obtained by applying the
function f i times to the input.) ♦

Proof: By Yao’s theorem (Theorem 9.11), it suffices to show the difficulty of bit-prediction.
For contradiction’s sake, assume there is a PPT machine A such that when x, r ∈ {0, 1}n
and i ∈ {1, . . . , N} are randomly chosen,

Pr[A predicts f i(x)⊙ r given (r, f ℓ(x) ⊙ r, fN−1(x) ⊙ r, . . . , f i+1(x)⊙ r)] ≥ 1

2
+ ǫ .

We will show a probabilistic polynomial-time algorithm B that on such n’s will predict x⊙r
from f(x), r with probability at least 1/2 + ǫ. Thus, if A has non-negligible success then B
violates Theorem 9.12.

Algorithm B is given r and y such that y = f(x) for some x. It will then pick i ∈
{1, . . . , N} randomly, and compute the values f ℓ−i(y), . . . , f(y) and output a = A(r, f ℓ−i−1(y)⊙
r, . . . , f(y)⊙ r, y⊙ r). Because f is a permutation, this is exactly the same distribution ob-
tained where we choose x′ ∈

R
{0, 1}n and set x = f i(x′), and hence A will predict f i(x′)⊙ r

with probability 1/2 + ǫ, meaning that B predicts x⊙ r with the same probability. �

9.4 Zero knowledge

Normally we think of a proof as presenting the evidence that some statement is true, and
hence typically after carefully reading and verifying a proof for some statement, you learn
much more than the mere fact that the statement is true. But does it have to be this way?
For example, suppose that you figured out how to schedule all of the flights of some airline
in a way that saves them millions of dollars. You want to prove to the airline that there
exists such a schedule, without actually revealing the schedule to them (at least not before
you receive your well-deserved payment). Is this possible?

A similar scenario arises in the context of authentication— suppose a company has a
sensitive building, that only a select group of employees is allowed to enter. One way to
enforce this is to choose two random prime numbers P andQ and reveal these numbers to the
selected employees, while revealing N = P ·Q to the guard outside the building. The guard
will be instructed to let inside only a person demonstrating knowledge of N ’s factorization.
But is it possible to demonstrate such knowledge without revealing the factorization?

It turns out this is in fact possible to do, using the notion of zero knowledge proof.
Zero knowledge proofs are interactive probabilistic proof systems, just like the systems
we encountered in Chapter 8. However, in addition to the completeness property (prover
can convince the verifier to accept with high probability) and soundness property (verifier
will reject false statements with high probability), we require an additional zero knowledge
property, that roughly speaking, requires that the verifier does not learn anything from the
interaction apart from the fact that the statement is true. That is, zero knowledge requires
that whatever the verifier learns after participating in a proof for a statement x, she could
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have computed by herself, without participating in any interaction. Below we give the formal
definition for zero knowledge proofs of NP languages. (One can define zero knowledge also
for languages outside NP, but the zero knowledge condition makes it already highly non-
trivial and very useful to obtain such proof systems even for languages in NP.)

Definition 9.14 (Zero knowledge proofs)
Let L be an NP-language, and let p(·),M be a polynomial and Turing machine that demon-
strate this. That is, x ∈ L⇔ ∃u∈{0,1}p(|x|) s.t. M(x, y) = 1.
A pair P, V of interactive probabilistic polynomial-time algorithms is called a zero knowledge
proof for L, if the following three condition hold:

Completeness: For every x ∈ L and u a certificate for this fact (i.e., M(x, u) = 1),
Pr[outV 〈P (x, u), V (x)〉] ≥ 2/3, where 〈P (x, u), V (x)〉 denotes the interaction of P and
V where P gets x, u as input and V gets x as input, and outV I denotes the output of
V at the end of the interaction I.

Soundness: If x 6∈ L, then for every strategy P ∗ and input u, Pr[outV 〈P ∗(x, u), V (x)〉] ≤
1/3. (The strategy P ∗ needs not run in polynomial time.)

Perfect Zero Knowledge: For every probabilistic polynomial-time interactive strategy
V ∗, there exists an expected probabilistic polynomial-time (stand-alone) algorithm S∗

such that for every x ∈ L and u a certificate for this fact,

outV ∗〈P (x, u), V ∗(x)〉 ≡ S∗(x) . (9)

(That is, these two random variables are identically distributed.) This algorithm S∗

is called the simulator for V ∗, as it simulates the outcome of V ∗’s interaction with the
prover without any access to such an interaction.

The zero knowledge condition means that the verifier cannot learn anything new from
the interaction, even if she does not follow the protocol but rather uses some other strategy
V ∗. The reason is that she could have learned the same thing by just running the stand-
alone algorithm S∗ on the publicly known input x. The perfect zero knowledge condition
can be relaxed by requiring that the distributions in (9) have small statistical distance (see
Section A.2.6) or are computationally indistinguishable (see Exercise 9.17). The resulting
notions are called respectively statistical zero knowledge and computational zero knowledge
and are central to cryptography and complexity theory. The class of languages with statisti-
cal zero knowledge proofs, known as SZK, has some fascinating properties, and is believed
to lie strictly between P and NP (see [Vad99] for an excellent survey). In contrast, it is
known ([GMW86], see also [BCC86]) that if one-way functions exist then every NP language
has a computational zero knowledge proof, and this result has significant applications to the
design of cryptographic protocols (see the chapter notes).

The idea of using simulation to demonstrate security is also central to many aspects of
cryptography. Asides from zero knowledge, it is used in the definition of semantic security
for encryptions (see Exercise 9.9), secure multiparty computation (Section 9.5.4) and many
other settings. In all these cases security is defined as the condition that an attacker cannot
learn or do anything that she could not have done in an idealized and “obviously secure”
setting (e.g., in encryption in the ideal setting the attacker doesn’t see even the ciphertext,
while in zero knowledge in the ideal setting there is no interaction with the prover).

Example 9.15
We show a perfect zero knowledge proof for the language GI of graph isomor-
phism. The language GI is in NP and has a trivial proof satisfying completeness
and soundness— send the isomorphism to the verifier. But that proof is not
known to be zero knowledge, since we do not know of a polynomial-time algo-
rithm that can find the isomorphism between two given isomorphic graphs.
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Zero-knowledge proof for Graph Isomorphism:

Public input: A pair of graphsG0, G1 on n vertices. (For concreteness, assume
they are represented by their adjacency matrices.)

Prover’s private input: A permutation π : [n] → [n] such that G1 = π(G0),
where π(G) denotes the graph obtained by transforming the vertex i into
π(i) (or equivalently, applying the permutation π to the rows and columns
of G’s adjacency matrix).

Prover’s first message: Prover chooses a random permutation π1 : [n] → [n]
and sends to the verifier the adjacency matrix of π1(G1).

Verifier’s message: Verifier chooses b ∈
R
{0, 1} and sends b to the prover.

Prover’s last message: If b = 1, the prover sends π1 to the verifier. If b = 0,
the prover sends π1 ◦ π (i.e., the permutation mapping n to π1(π(n))) to
the verifier.

Verifier’s check: Letting H denote the graph received in the first message and
π the permutation received in the last message, the verifier accepts if and
only if H = π(Gb).

Clearly, if both the prover and verifier follow the protocol, then the verifier will
accept with probability one. For soundness, we claim that if G0 and G1 are not
isomorphic, then the verifier will reject with probability at least 1/2 (this can be
reduced further by repetition). Indeed, in that case regardless of the prover’s
strategy, the graph H that he sends in his first message cannot be isomorphic to
both G0 and G1, and there has to exist b ∈ {0, 1} such that H is not isomorphic
to Gb. But the verifier will choose this value b with probability 1/2, and then the
prover will not be able to find a permutation π such that H = π(Gb), and hence
the verifier will reject.

Let V ∗ be some verifier strategy. To show the zero knowledge condition, we use
the following simulator S∗: On input a pair of graphs G0, G1, the simulator S∗

chooses b′ ∈
R
{0, 1}, a random permutation π on [n] and computes H = π(Gb′ ).

It then feeds H to the verifier V ∗ to obtain its message b ∈ {0, 1}. If b = b′ then
S∗ sends π to V ∗ and outputs whatever V ∗ outputs. Otherwise (if b 6= b′) the
simulator S∗ restarts from the beginning.
The crucial observation is that S∗’s first message is distributed in exactly the
same way as the prover’s first message— a random graph that is isomorphic to
G0 and G1. This also means that H reveals nothing about the choice of b′, and
hence the probability that b′ = b is 1/2. If this happens, then the messagesH and
π that V ∗ sees are distributed identically to the distribution of messages that it
gets in a real interaction with the prover. Because S∗ succeeds in getting b′ = b
with probability 1/2, the probability it needs k iterations is 2−k, which means that
its expected running time is T (n)

∑∞
k=1 2−k = O(T (n)), where T (n) denotes the

running time of V ∗. Thus, S∗ runs in expected probabilistic polynomial-time.7

9.5 Some applications

Now we give some applications of the ideas introduced in the chapter.

7In Chapter 18 we will see a stricter notion of expected probabilistic polynomial-time (see Definition 18.4).
This simulator satisfies this stricter notion as well.
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9.5.1 Pseudorandom functions

Pseudorandom functions are a natural generalization of pseudorandom generators. This is
a family of functions that although are efficiently computable and have a polynomial-size
representation (and hence are far from being random), are indistinguishable from random
functions to an observer with input/output access to the function. This is of course reminis-
cent of the definition of a pseudorandom generator, whose output also has to pass a “blind
test” versus a truly random string. The difference here is that the object being talked about
is a function, whose truth table has exponential size. Hence the distinguishing algorithm
only has the ability to ask for the value of the function at any inputs of its choosing.

Definition 9.16 Let {fk}k∈{0,1}∗ be a family of functions such that fk : {0, 1}|k| → {0, 1}|k|
for every k ∈ {0, 1}∗, and there is a polynomial-time algorithm that computes fk(x) given

k ∈ {0, 1}∗ , x ∈ {0, 1}|k|. We say that the family is pseudorandom if for every probabilistic
polynomial-time oracle8 Turing machine A there is a negligible function ǫ : N→ [0, 1] such
that

∣

∣

∣

∣

Pr
k∈R{0,1}n

[

Afk(·)(1n) = 1
]

− Pr
g∈RFn

[

Ag(1n) = 1
]

∣

∣

∣

∣

< ǫ(n)

for every n, where Fn denotes the set of all functions from {0, 1}n to {0, 1}n. ♦

One can verify that if {fk} is a pseudorandom function family, then for every polynomial
ℓ(n), the function G that maps k ∈ {0, 1}n to fk(1), . . . , fk(ℓ(n)) (where we use some
canonical encoding of the numbers 1, . . . , ℓ(n) as strings in {0, 1}n) is a secure pseudorandom
generator. Thus, pseudorandom functions imply the existence of secure pseudorandom
generators of arbitrary polynomial stretch. It turns out that the converse is true as well:

k

G0(k) G1(k)

y

y0=G0(y) y1=G1(y)
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Figure 9.2 The pseudorandom function fk(x) outputs the label of the xth node in a depth
n binary tree where the root is labeled by k, and the children u0, u1 of every node u labeled
y are labeled by G0(y) and G1(y).

Theorem 9.17 ([GGM84]) Suppose that there exists a secure pseudorandom generator G
with stretch ℓ(n) = 2n. Then there exists a pseudorandom function family. ♦

Proof: Let G be a secure pseudorandom generator as in the theorems statement mapping
length-n strings to length-2n strings. For every x ∈ {0, 1}n, we denote by G0(x) the first n
bits of G(x), and by G1(x) the last n bits of G(x). For every k ∈ {0, 1}n we will define the
function fk(·) as follows:

fk(x) = Gkn(Gkn−1(· · · (Gk1(x)) · · · ) (10)

for every x ∈ {0, 1}n. Note that fk(x) can be computed by making n invocations of G, and
hence clearly runs in polynomial time. Another way to view fk is given in Figure 9.2—
think of a full depth n binary tree whose root is labeled by k, and where we label the two

8See Section 3.4 for the definition of oracle Turing machines.
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children of a vertex labeled by y with the values G0(y) and G1(y) respectively. Then, fk(x)
denotes the label of the xth leaf of this tree. Of course, actually writing the tree down would
take exponential time and space, but as is shown by (10), we can compute the label of each
leaf in polynomial time by following the length n path from the root to this leaf.

Why is this function family pseudorandom? We’ll show this by transforming a T -time
algorithm A that distinguishes between fUn and a random function with bias ǫ into a
poly(n)T -time algorithm B that distinguishes between U2n and G(Un) with bias ǫ/(nT ).

Assume without loss of generality that A makes exactly T queries to its oracle (we can
ensure that by adding superfluous queries). Now, we can implement an oracle O to fUn in
the following way: the oracle O will label vertices of the depth n full binary tree as needed.
Initially, only the root is labeled by a random string k. Whenever, a query of A requires
the oracle to label the children u0, u1 of a vertex v labeled by y, the oracle will invoke G on
y to obtain y0 = G0(y) and y1 = G1(y) and then label u0, u1 with y0, y1 respectively and
delete the label y of u. Note that indeed, once u0 and u1 are labeled, we have no further
need for the label of u. Following the definition of fk, the oracle O answers a query x with
the label of the xth vertex. Note that O invokes the generator G at most Tn times. By
adding superfluous invocations we can assume O invokes the generator exactly Tn times.

Now for every i ∈ {0, . . . , Tn} define the oracle Oi as follows: the oracle Oi follows the
operation of O, but for the first i invocations of G, instead of the labels y0, y1 of the children
of a node labeled y by setting y0 = G0(y) and y1 = G1(y), the oracle Oi chooses both y0
and y1 independently at random from {0, 1}n. Note that O0 is the same as the oracle O
to fUn , but OnT is an oracle to a completely random function. Let pi = Pr[AOi(1n) = 1].
Then, as in the proof of Theorem 9.11, we may assume pTn − p0 ≥ ǫ and deduce that
Ei∈

R
[Tn][pi − pi−1] ≥ ǫ/(Tn). Our algorithm B to distinguish U2n from G(Un) will do as

follows: on input y ∈ {0, 1}2n, choose i ∈
R

[Tn] and execute A with access to the oracle
Oi−1, using random values for the first i− 1 invocations of G. Then, in the ith invocation
use the value y instead of the result of invoking G. In all the rest of the invocations B runs
G as usual, and at the end outputs what A outputs. One can verify that for every choice of
i, if the input y is distributed as U2n then B’s output is distributed as AOi(1n), while if it
is distributed according to G(Un), B’s output is distributed as AOi−1(1n). �

A pseudorandom function generator is a way to turn a random string k ∈ {0, 1}n into an
implicit description of an exponentially larger “random looking” string, namely, the table
of all values of the function fk. This has proved a powerful primitive in cryptography.
For example, while we discussed encryption schemes for a single message, in practice we
often want to encrypt many messages with the same key. Pseudorandom functions allow
Alice and Bob to share an “exponentially large one-time pad”. That is, Alice and Bob can
share a key k {0, 1}n of a pseudorandom function, and whenever she wants to encrypt a
message x ∈ {0, 1}n for Bob, Alice will choose r ∈

R
{0, 1}n, and send (r, fk(r) ⊕ x). Bob

can find x since he knows the key k, but for an adversary that does not know the key, it
looks as if Alice sent two random strings (as long as she doesn’t choose the same string
r to encrypt two different messages, but this can only happen with exponentially small
probability). Pseudorandom functions are also used for message authentication codes. If
Alice and Bob share a key k of a pseudorandom function, then when Alice sends a message
x to Bob, she can append the value fk(x) to this message. Bob can verify that the pair
(x, y) he receives satisfies y = fk(x). An adversary Eve that controls the communication line
between Alice and Bob cannot change the message x to x′ without being detected, since the
probability that Eve can predict the value of fk(x

′) is negligible (after all, a random function
is unpredictable). Furthermore, pseudorandom function generators have also figured in a
very interesting explanation of why current lower bound techniques have been unable to
separate P from NP; see Chapter 23.

9.5.2 Derandomization

The existence of pseudorandom generators implies subexponential deterministic algorithms
for BPP: this is usually referred to as derandomization of BPP. That is, if L ∈ BPP then
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for every ǫ > 0 there is a 2n
ǫ

-time deterministic algorithm A such that for every sampleable
distribution of inputs {Xn} where Xn ∈ {0, 1}n, Pr[A(Xn) = L(Xn)] > 0.99. (Note that
the randomness is only over the choice of the inputs— the algorithm A is deterministic.)
The algorithm A works by simply reducing the randomness of the probabilistic algorithm
for L to nǫ using a pseudorandom generator, and then enumerating over all the possible
inputs for the pseudorandom generator. We will see stronger derandomization results for
BPP in Chapter 20.

9.5.3 Tossing coins over the phone and bit commitment

How can two parties A and B toss a fair random coin over the phone? (Many cryptographic
protocols require this basic primitive.) If only one of them actually tosses a coin, there is
nothing to prevent him from lying about the result. The following fix suggests itself: both
players toss a coin and they take the XOR as the shared coin. Even if B does not trust
A to use a fair coin, he knows that as long as his bit is random, the XOR is also random.
Unfortunately, this idea also does not work because the player who reveals his bit first is at
a disadvantage: the other player could just “adjust” his answer to get the desired final coin
toss.

This problem is addressed by the following scheme, which assumes that A and B are
polynomial time Turing machines that cannot invert one-way permutations. First, A chooses
two strings xA and rA of length n and sends a message (fn(xA), rA), where fn is a one-way
permutation. Now B selects a random bit b and sends it to A. Then A reveals xA and they
agree to use the XOR of b and (xA ⊙ rA) as their coin toss. Note that B can verify that
xA is the same as in the first message by applying fn, therefore A cannot change her mind
after learning B’s bit. (For this reason, we say that A’s first message is a cryptographic
commitment to the bit xA ⊙ rA.) On the other hand, by Theorem 9.12, B cannot predict
xA⊙rA from A’s first message, and so cannot bias her bit according to the choice of xA⊙rA.

9.5.4 Secure multiparty computations

This concerns a vast generalization of the setting in Section 9.5.3. There are k parties
and the ith party holds a string xi ∈ {0, 1}n. They wish to compute f(x1, x2, . . . , xk)

where f :{0, 1}nk → {0, 1} is a polynomial-time computable function known to all of them.
(The setting in Section 9.5.3 is a subcase whereby each xi is a bit —randomly chosen as
it happens—and f is XOR.) Clearly, the parties can just exchange their inputs (suitably
encrypted if need be so that unauthorized eavesdroppers learn nothing) and then each of
them can compute f on his/her own. However, this leads to all of them knowing each
other’s input, which may not be desirable in many situations. For instance, we may wish to
compute statistics (such as the average) on the combination of several medical databases that
are held by different hospitals. Strict privacy and nondisclosure laws may forbid hospitals
from sharing information about individual patients. (The original example Yao gave in
introducing the problem was of k people who wish to compute the average of their salaries
without revealing their salaries to each other.)

We say that a multiparty protocol for computing f is secure if at the end no party learns
anything new apart from the value of f(x1, x2, . . . , xk). The formal definition is inspired
by the definition of zero knowledge and says that whatever a party or a coalition of parties
learn during the protocol can be simulated in an ideal setting where they only get to send
their inputs to some trusted authority that computes f on these inputs and broadcasts the
result. Amazingly, there are protocols to achieve this task securely for every number of
parties and for every polynomial-time computable f— see the chapter notes.9

9Returning to our medical database example, we see that the hospitals can indeed compute statistics
on their combined databases without revealing any information to each other —at least any information
that can be extracted feasibly. It is unclear if current privacy laws allow hospitals to perform such secure
multiparty protocols using patient data— this an example of the law lagging behind scientific progress.
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9.5.5 Lower bounds for machine learning

In machine learning the goal is to learn a succinct function f : {0, 1}n → {0, 1} from a
sequence of type (x1, f(x1)), (x2, f(x2)), . . . , where the xi’s are randomly-chosen inputs.
Clearly, this is impossible in general since a random function has no succinct description.
But suppose f has a succinct description, e.g. as a small circuit. Can we learn f in that
case?

The existence of pseudorandom functions implies that even though a function may be
polynomial-time computable, there is no way to learn it from examples in polynomial time.
In fact it is possible to extend this impossibility result to more restricted function families
such as NC1 (see Kearns and Valiant [KV89]).

Chapter notes and history

We have chosen to model potential eavesdroppers, and hence also potential inverting algorithms
for the one-way functions as probabilistic polynomial-time Turing machines. An equally justifiable
choice is to model these as polynomial-sized circuits or, equivalently, probabilistic polynomial-time
Turing machines that can have some input-length dependent polynomial-sized constants “hard-
wired” into them as advice. All the results of this chapter hold for this choice as well, and in fact
some proofs and definitions become slightly simpler. We chose to use uniform Turing machines to
avoid making this chapter dependant on Chapter 6.

Goldreich’s book [Gol04] is a good source for much of the material of this chapter (and more
than that), while the undergraduate text [KL07] is a gentler introduction for the basics. For more
coverage of recent topics, especially in applied cryptography, see Boneh and Shoup’s upcoming book
[BS08]. For more on computational number theory, see the books of Shoup [Sho05] and Bach and
Shallit [BS96].

Kahn’s book [Kah96] is an excellent source for the fascinating history of cryptography over
the ages. Up until the mid 20th century, this history followed Edgar Alan Poe’s quote in the
chapter’s start— every cipher designed and widely used was ultimately broken. Shannon [Sha49b]
was the first to rigorously study the security of encryptions. He showed the results presented in
Section 9.1, giving the first formal definition of security and showing that to satisfy it it’s necessary
and sufficient to have the key as large as the message. Shannon realized that computational difficulty
is the way to bypass this bound, though he did not have a concrete approach how to do that. This
is not surprising since the mathematical study of efficient computation (i.e., algorithm design and
complexity theory) only really began in the 1960’s, and with this study came the understanding of
the dichotomy between polynomial time and exponential time.

Around 1974, Diffie and Hellman and independently Merkle began to question the age-old no-
tion that secure communication requires sharing a secret key in advance. This resulted in the
groundbreaking paper of Diffie and Hellman [DH76] that put forward the notion of public key cryp-
tography. This paper also suggested the first implementation of this notion— what is known today
as the Diffie-Hellman key exchange protocol, which also immediately yields a public key encryption
scheme known today as El-Gamal encryption. But, to fully realize their agenda of both confidential
and authenticated communication without sharing secret keys, Diffie and Hellman needed trapdoor
permutations which they conjectured to exist but did not have a concrete implementation for.10

The first construction for such trapdoor permutations was given by Rivest, Shamir, and Adleman
[RSA78]. The resulting encryption and signature schemes were quite efficient and are still the most
widely used such schemes today. Rivest et al conjectured that the security of their trapdoor permu-
tation is equivalent to the factoring problem, though they were not able to prove it (and no proof
has been found in the years since). Rabin [Rab79] later showed a trapdoor permutation that is in
fact equivalent to the factoring problem.

Interestingly, similar developments also took place within the closed world of the intelligence
community and in fact somewhat before the works of [DH76, RSA78], although this only came to
light more than twenty years later [Ell99]. In 1970, James Ellis of the British intelligence agency

10Diffie and Hellman actually used the name “public key encryption” for the concept today known as trap-
door permutations. Indeed, trapdoor permutations can be thought of as a variant of public key encryptions
with a deterministic (i.e., not probabilistic) encryption function. But following the work [GM82], we know
that the use of probabilistic encryption is both essential for strong security, and useful to get encryption
without using trapdoor permutations (as is the case in the Diffie-Hellman / El-Gamal encryption scheme).
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GCHQ also realized that it might be possible to have secure encryption without sharing secret keys.
No one in the agency had found a possible implementation for this idea until in 1973, Clifford Cocks
suggested to use a trapdoor permutation that is a close variant of the RSA trapdoor permutation,
and a few months later Malcolm Williamson discovered what we know today as the Diffie-Hellman
key exchange. (Other concepts such as digital signatures, Rabin’s trapdoor permutations, and
public key encryption from the codes/lattices seem not to have been anticipated in the intelligence
community.) Perhaps it is not very surprising that these developments happened in GCHQ before
their discovery in the open literature, since between Shannon’s work and the publication of [DH76],
cryptography was hardly studied outside of the intelligence community.

Despite the well justified excitement they generated, the security achieved by the RSA and
Diffie-Hellman schemes on their own was not fully satisfactory, and did not match the kind of
security that Shannon showed the one-time pad can achieve in the sense of not revealing even
partial information about the message. Goldwasser and Micali [GM82] showed how such strong
security can be achieved, in a paper that was the basis and inspiration for many of the works that
followed achieving strong notions of security for encryption and other tasks. Another milestone was
reached by Goldwasser, Micali and Rivest [GMR84], who gave strong security definitions for digital
signatures and showed how these can be realized under the assumption that integer factorization
is hard.

Pseudorandom generators were used in practice since the early days of computing. Shamir [Sha81]
was the first to explicitly connect intractability to pseudorandomness, by showing that if the RSA
function is one-way then there exists a generator that can be proven to satisfy a certain weak pseudo-
randomness property (block unpredictability). Blum and Micali [BM82] defined the stronger notion
of next bit unpredictability and showed a factoring-based generator satisfying it. Yao [Yao82a]
defined the even stronger definition of pseudorandomness as fooling all polynomial-time tests (Def-
inition 9.8), and proved that this notion is equivalent to next-bit unpredictability (Theorem 9.11).
The Goldreich-Levin theorem was proven in [GL89], though we presented an unpublished proof due
to Rackoff . Theorem 9.9 (pseudorandom generators from one-way functions) and its very technical
proof is by Hȧstad, Impagliazzo, Luby and Levin [HILL99] (the relevant conference publications are
a decade older). The construction of pseudorandom functions in Section 9.5.1 is due to Goldreich,
Goldwasser, and Micali [GGM84].

Zero knowledge proofs were invented by Goldwasser, Micali and Rackoff [GMR85], who also
showed a zero knowledge proof for problem of quadratic residuosity (see also Example 8.9). Gol-
dreich, Micali and Wigderson [GMW86] showed that if one-way functions exist then there is a
computational zero knowledge proof system for every language in NP. The zero knowledge proto-
col for graph isomorphism of Example 9.15 is also from the same paper. Independently, Brassard,
Chaum and Crépeau [BCC86] gave a perfect zero knowledge argument for NP (where the sound-
ness condition is computational, and the zero knowledge condition is with respect to unbounded
adversaries), under a specific hardness assumption.

Yao [Yao82b] suggested the first protocol for realizing securely any two party functionality, as
described in Section 9.5.4, but his protocol only worked for passive (also known as ”eavesdropping”
or “honest but curious”) adversaries. Goldreich, Micali and Wigderson [GMW87] extended this
result for every number of parties and also showed how to use zero knowledge proofs to achieve
security also against active attacks, a paradigm that has been used many times since.

Some early cryptosystems were designed using the SUBSET SUM problem, but many of those
were broken by the early 1980s. In the last few years, interest in such problems —and also the related
problems of computing approximate solutions to the shortest and nearest lattice vector problems—
has revived, thanks to a one-way function described in Ajtai [Ajt96], and a public-key cryptosystem
described in Ajtai and Dwork [AD97] (and improved on since then by other researchers). These
constructions are secure on most instances if and only if they are secure on worst-case instances.
(The idea used is a variant of random self-reducibility.) Oded Regev’s survey [Reg06] as well as
his lecture notes (available from his home page) are a good source for more information on this
fascinating topic (see also the older book [MG02]). The hope is that such ideas could eventually be
used to base cryptography on worst-case type conjectures such as P 6= NP or NP∩coNP * BPP,
but there are still some significant obstacles to achieving this.

Much research has been devoted to exploring the exact notions of security that one needs for
various cryptographic tasks. For instance, the notion of semantic security (see Section 9.2.2 and
Exercise 9.9) may seem quite strong, but it turns out that for most applications it does not suffice
and we need the stronger notion of chosen ciphertext security [RS91, DDN91]. See the Boneh-Shoup
book [BS08] for more on this topic. Zero knowledge proofs play a central role in achieving security
in such settings.
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Exercises

9.1 Prove that the one-time pad encryption is perfectly secret as per Definition 9.1.

9.2 Prove that if (E,D) is a scheme satisfying (1) with message-size m and key-size n < m, then there
exist two messages x, x′ ∈ {0, 1}m such that EUn(x) is not the same distribution as EUn(x′). H460

9.3 Prove that in the one-time pad encryption, no eavesdropper can guess any bit of the plaintext with
probability better than 1/2. That is, prove that for every function A, if (E,D) denotes the one-time
pad encryption then

Pr
k∈

R
{0,1}n

x∈R{0,1}n
[A(Ek(x)) = (i, b) s.t. xi = b] ≤ 1/2 .

Thus, the one-time pad satisfies in a strong way the condition (3) of computational security.

9.4 Exercise 9.2 and Lemma 9.2 show that for security against unbounded time adversaries (or efficient
time if P = NP) we need key as large as the message. But they actually make an implicit subtle
assumption: that the encryption process is deterministic. In a probabilistic encryption scheme,
the encryption function E may be probabilistic: that is, given a message x and a key k, the value
Ek(x) is not fixed but is distributed according to some distribution Yx,k. Of course, because the
decryption function is only given the key k and not the internal randomness used by E, we modify
the requirement (1) to require Dk(y) = x for every y in the support of Ek(x). Prove that even a
probabilistic encryption scheme cannot have key that’s significantly shorter than the message. That
is, show that for every probabilistic encryption scheme (D,E) using n-length keys and n+10-length

messages, there exist two messages x0, x1 ∈ {0, 1}n+10 and function A such that

Pr
b∈

R
{0,1}

k∈R{0,1}n
[A(Ek(xb)) = b] ≥ 9/10 . (11)

Furthermore, prove that if P = NP then this function A can be dun in polynomial time. H460

9.5 Show that if P = NP then one-way functions do not exist.

9.6 (a) Show that if there exists a one-way function f then there exists a one-way function g that is
computable in n2 time. H460

(b) Show that if there exists a one-way function f then the function fU described in Section 9.2.1
is one way.

9.7 Prove that if there’s a polylog(M) algorithm to invert the Rabin function fM (X) = X2 (mod M)
of Section 9.2.1 on a 1/ polylog(M) fraction of its inputs then we can factor M in polylog(M) time.
H460

9.8 Let {(pn, gn)}n∈N be some sequence of pairs of n-bit numbers such that pn is prime and gn is
a generator of the group Z∗

pn , and there is a deterministic polynomial-time algorithm such that
S(1n) = (pn, gn) for every n ∈ N.

Suppose A is an algorithm with running time t(n) that on input gx
n (mod pn), manages to find x

for δ(n) fraction of x ∈ {0, .., pn − 1}. Prove that for every ǫ > 0, there is a randomized algorithm
A′ with running time O( 1

δ log 1/ǫ
(t(n) + poly(n))) such that for every x ∈ {0, .., pn − 1}, Pr[A′(gx

n

(mod pn)) = x] ≥ 1 − ǫ. This property is known as the self reducibility of the discrete logarithm
problem. H460

9.9 We say that a sequence of random variables {Xn}n∈N where Xn ∈ {0, 1}m(n) for some polynomial
m(·) is sampleable if there’s a probabilistic polynomial-time algorithm D such that Xn is equal
to the distribution D(1n) for every n. Let (E,D) be an encryption scheme such that for every n,
(E,D) uses length n keys to encrypt length m(n) messages for some polynomial m(·). We say that

(E,D) is semantically secure, if for every sampleable sequence {Xn} (where Xn ∈ {0, 1}m(n), every
polynomial-time computable function f : {0, 1}∗ → {0, 1}, and every probabilistic polynomial-time
algorithm A, there exists negligible function ǫ : N → [0, 1] and a probabilistic polynomial-time
algorithm B such that

Pr
k∈

R
{0,1}n

x∈RXn

[A(Ek(x)) = f(x)] ≤ Pr
x∈

R
Xn

[B(1n) = f(x)] + ǫ(n) .

That is, A cannot compute f(x) given an encryption of x better than just guessing it using the
knowledge of the distribution Xn.

(a) Prove that if (E,D) is semantically secure then it’s also satisfy the condition of “computational
security” of Section 9.2.2.

(b) Prove that if G is a pseudorandom generator mapping {0, 1}n to {0, 1}m, then the encryption
Ek(x) = x⊕G(k),Dk(y) = y ⊕G(k)is semantically secure. H460
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(c) Prove that semantic security is equivalent to its special case where for every n, Xn is the
uniform distribution over a pair of strings xn

0 , x
n
1 and f is the function that maps xn

0 to 0 and
xn

1 to 1 for every n. H460

9.10 Show that if there exists a secure pseudorandom generator with stretch ℓ(n) = n+1 then for every
c there exists a pseudorandom generator with stretch ℓ(n) = nc. H460

9.11 Show that if f is a one-way permutation then so is fk (namely, f(f(f(· · · (f(x))))) where f is
applied k times) where k = nc for some fixed c > 0.

9.12 Assuming one-way functions exist, show that the above fails for one-way functions. That is, design

a one-way function f where fnc is not one-way for some constant c.

9.13 Suppose x ∈ {0, 1}m is an unknown vector. Let r1, . . . , rm ∈ {0, 1}m be randomly chosen, and x⊙ri

revealed to us for all i = 1, 2, . . . ,m. Describe a deterministic algorithm to reconstruct x from this
information, and show that the probability (over the choice of the ri’s) is at least 1/4 that it
works. This shows that if r1, . . . , rm are fully independent then we cannot guess x⊙ r1, . . . , x⊙ rm

with probability much better than 2−m (and hence it was crucial to move to a merely pairwise
independent collection of vectors in the proof of Theorem 9.12). H460

9.14 Suppose somebody holds an unknown n-bit vector a. Whenever you present a randomly chosen
subset of indices S ⊆ {1, . . . , n}, then with probability at least 1/2 + ǫ, she tells you the parity of
the all the bits in a indexed by S. Describe a guessing strategy that allows you to guess a (an n
bit string!) with probability at least ( ǫ

n
)c for some constant c > 0.

9.15 Say that two sequences {Xn}, {Yn} of random variables, where Xn, Yn ∈ {0, 1}m(n) for some poly-
nomial m(n), are computationally indistinguishable if for every probabilistic polynomial-time A
there exists a negligible function ǫ : N → [0, 1] such that

∣

∣Pr[A(Xn) = 1] − Pr[A(Yn) = 1]
∣

∣ < ǫ(n)

for every n. Prove that:

(a) If f : {0, 1}∗ → {0, 1}∗ is a polynomial-time computable function and {Xn}, {Yn} are compu-
tationally indistinguishable, then so are the sequences {f(Xn)}, {f(Yn)}.

(b) A polynomial-time computable function G with stretch ℓ(n) is a secure pseudorandom gener-
ator if and only if the sequences {Uℓ(n)} and {G(Un)} are computationally indistinguishable.

(c) An encryption scheme (E,D) with ℓ(n)-length messages for n-length keys is semantically se-
cure if and only if for every pair of probabilistic polynomial time algorithms X0,X1, where
|X0(1

n)| = |X1(1
n)| = ℓ(n), the sequences {EUn(X0(1

n))} and {EUn(X1(1
n))} are computa-

tionally indistinguishable.

9.16 Suppose that one-way permutations exist. Prove that there exists a pair of polynomially sampleable
computationally indistinguishable distributions {Gn} and {Hn} over n-vertex graphs such that for
every n, Gn and Hn are n-vertex graphs, and Pr[Gn is 3-colorable] = 1 but Pr[Hn is 3-colorable] =
0. (A graph G is 3-colorable if G’s vertices can be colored in one of three colors so that no two
neighboring vertices have the same color, see Exercise 2.2). H460

9.17 Say that a language L has a computational zero knowledge proof if it satisfies the relaxation of
Definition 9.14 where condition (9) is replaced by the condition that {outv∗〈P (Xn, Un), V ∗(Xn)〉}
and {S∗(Xn)} are computationally indistinguishable for every sampleable distribution (Xn, Un)
such that |Xn| = n and Pr[M(Xn, Un) = 1] = 1,

(a) Prove that if there exists a computational zero knowledge proof for some language L that is
NP-complete via a Levin reduction (Section 2.3.6), then there exists a computational zero
knowledge proof for every L ∈ NP.

(b) Prove that the following protocol (due to Blum [Blu87]) is a computational zero knowledge
proof system with completeness 1 and soundness error 1/2 for the language of Hamiltonian
circuits:11

Common input Graph G on n vertices.

Prover’s private input A Hamiltonian cycle C in the graph.

Prover’s first message Choose a random permutation π on the vertices of G, and let M be
the adjacency matrix of G with its rows and columns permuted according to π. For every
i, j ∈ [n], choose xi,j , ri,j ∈R {0, 1}n and send to the verifier f(xi,j), ri,j , (xi,j⊙ri,j)⊕Mi,j .

Verifier’s message Verifier chooses b ∈R {0, 1} and sends b to prover.

Prover’s last message If b = 0, the prover sends to the verifier all randomness used in the
first message. That is, the prover reveals the permutation π, the matrix M , and reveals
xi,j for every i, j ∈ [n]. If b = 1, the prover computes C′ which is the permuted version
of the cycle C (i.e., C′ contains (π(i), π(j)) for every edge i j ∈ C). It then sends C′ to
the verifier, and reveals only the randomness corresponding to these edges. That is, for
every (i, j) ∈ C′ it sends xi,j to the verifier.

11The soundness error can be reduced by repetition.
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Verifier’s check If b = 0, the verifier checks that the prover’s information is consistent with
its first message— that M is the permuted adjacency matrix of G according to π, and
that the values xi,j are consistent with Mi,j and the values yi,j that the prover sent in its
first message. If b = 1 then the verifier checks that C′ is indeed a Hamiltonian cycle, and
that the values the prover sent are consistent with its first message and with Mi,j = 1
for every (i, j) ∈ C′. The verifier accepts if and only if these checks succeed.
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Chapter 10

Quantum Computation

“Turning to quantum mechanics.... secret, secret, close the doors! we always
have had a great deal of difficulty in understanding the world view that quantum
mechanics represents ... It has not yet become obvious to me that there’s no
real problem. I cannot define the real problem, therefore I suspect there’s no
real problem, but I’m not sure there’s no real problem. So that’s why I like to
investigate things.”
Richard Feynman, 1964

“The only difference between a probabilistic classical world and the equations
of the quantum world is that somehow or other it appears as if the probabilities
would have to go negative..”
Richard Feynman, in “Simulating physics with computers,” 1982

Quantum computing is a new computational model that may be physically realizable and
may provide an exponential advantage over “classical” computational models such as prob-
abilistic and deterministic Turing machines. In this chapter we survey the basic principles
of quantum computation and some of the important algorithms in this model.

One important reason to study quantum computers is that they pose a serious challenge
to the strong Church-Turing thesis (see Section 1.6.3), which stipulates that every physi-
cally reasonable computation device can be simulated by a Turing machine with at most
polynomial slowdown. As we will see in Section 10.6, there is a polynomial-time algorithm
for quantum computers to factor integers, whereas despite much effort, no such algorithm is
known for deterministic or probabilistic Turing machines. If in fact there is no efficient clas-
sical algorithm to factor integers (and indeed society currently relies on this conjecture since
it underlies the presumed security of cryptographic schemes such as RSA) and if quantum
computers are physically realizable, then the strong Church-Turing thesis is wrong. Physi-
cists are also interested in quantum computers because studying them may shed light on
quantum mechanics, a theory which, despite its great success in predicting experiments, is
still not fully understood.

Very little physics is needed to understand the central results of quantum computing.
One basic fact is that the physical parameters (energy, momentum, spin etc.) of an ele-
mentary particle such as an electron are quantized and can only take values in a discrete
set. Second, contrary to our basic intuition, the value of a physical parameter of a particle
(including location, energy, etc.) at any moment in time is not a single number. Rather
the parameter has a kind of probability wave associated with it, involving a “smearing” or
“superposition” over all possible values. The parameter only achieves a definite value when
it is measured by an observer, at which point we say that the probability wave collapses to
a single value.

This smearing of a parameter value until it is observed may seem analogous to philo-
sophical musings such as “if a tree falls in a forest with no one present to hear it, does
it make a sound?” But these probability waves are very real, and their interaction and
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mutual interference creates experimentally measurable effects. Furthermore, according to
quantum mechanics, the probability waves are associated not just with single particles, but
also by any collection of particles (such as humans!). This interaction of probability waves
corresponding to collections of particles is key to the power of quantum computing, and
underlies the apparent exponential speedup provided by this model on certain problems. At
the same time, it is simplistic to describe quantum computing —as many popular science
authors do— as a “vastly parallel” computer. This “vast parallelism” is tightly regulated
by the laws of quantum mechanics, which currently seems to allow exponential speedups
only for a few well-structured problems.

The chapter is organized as follows. In Section 10.1 we describe the 2-slit experiment, one
of many experiments that illustrate the smearing/interference effects of quantum mechanics.
In Section 10.2 we formalize a simple quantum system called “qubit” (short for “quantum
bit”) that is the fundamental unit of quantum computing. We describe operations that
can be performed on systems of one or few qubits, and illustrate them in Section 10.2.1
using the famous EPR paradox, an experiment that serves to demonstrate (and verify)
the counterintuitive nature of quantum mechanics. Then in Section 10.3 we define the n-
qubit quantum register, and operations (including computations) that can be performed
on such registers. We define quantum circuits and the class BQP, which is the quantum
analogue of BPP. The three ensuing sections describe three basic algorithms known for
quantum computers, due to Grover, Simon and Shor respectively. Several important topics
in quantum computing, including lower bounds, quantum cryptography and quantum error
correction, are not covered in this chapter; see the chapter notes for links to further reading.

This chapter utilizes some basic facts of linear algebra and the space Cn. These are reviewed
in Appendix A; see also Section 10.3.1.

10.1 Quantum weirdness: the 2-slit experiment

Electron 
Source

Number of electrons detected per hour

Figure 10.1 In the 2-slit experiment an electron source is placed between a wall with two
slits and a detector array. When one slit is covered then, as expected, the number of electron
detected is largest directly behind the open slit.

Now we describe an experiment, called the 2-slit experiment, that illustrates the fact
that basic physical properties of an elementary particle are “smeared.”

Suppose that, as in Figure 10.1, a source that fires electrons one by one (say, at the rate
of one electron per second) is placed in front of a wall containing two tiny slits. Beyond
the wall we place an array of detectors that light up whenever an electron hits them. We
measure the number of times each detector lights up during an hour. When we cover one
of the slits, we would expect that the detectors that are directly behind the open slit will
receive the largest number of hits, and as Figure 10.1 shows, this is indeed the case. When
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both slits are uncovered we expect that the number of times each detector is hit is the sum
of the number of times it is hit when the first slit is open and the number of times it is hit
when the second slit is open. In particular, uncovering both slits should only increase the
number of times each location is hit.

Surprisingly, this is not what happens. The pattern of hits exhibits the “interference”
phenomena depicted in Figure 10.2. In particular, at several detectors the total hit rate
is lower when both slits are open as compared to when a single slit is open. This defies
explanation if electrons behave as particles or “little balls”.

Number of electrons detected per hour

Figure 10.2 When both slits are open in the 2-slit experiment, the number of electrons
detected at each position is not the sum of numbers when either slit is opened. There are
even positions that are hit when each slit is open on its own, but are not hit when both slits
are open.

According to quantum mechanics, it is wrong to think of an electron as a “little ball”
that can either go through the first slit or the second (i.e., has a definite property). Rather,
somehow the electron instantaneously explores all possible paths to the detectors through
all open slits. Some paths are taken with positive “amplitude” and some with negative “am-
plitude” (see the quote from Feynman at the start of the chapter) and two paths arriving at
a detector with opposite signs will cancel each other. The end result is that the distribution
of hit rates depends upon the number of open slits, since the electron “finds out” how many
slits are open via this exploration of all possible paths.

You might be skeptical about this “path exploration,” and to check if it is actually going
on, you place a detector at each slit that lights up whenever an electron passes through that
slit. Thus if an electron is really going through both slits simultaneously, you hope to detect
it at both slits. However, when you try to make the electron reveal its quantum nature this
way, the quantum nature (i.e., interference pattern) disappears! The hit rates now observed
exactly correspond to what they would be if electrons were little balls: the sum of the
hits when each slit is open. The explanation is that, as stated above, observing an object
“collapses” its distribution of possibilities, and so changes the result of the experiment.1

One moral to draw from this is that quantum computers, if they are ever built, will have
to be carefully isolated from external influences and noise, since noise may be viewed as
a “measurement” performed by the environment on the system. Of course, we can never
completely isolate the system, which means we have to make quantum computation tolerant
of a little noise. This seems to be possible under some noise models, see the chapter notes.

1Of course, it is unclear why humans or detectors placed by humans serve to “collapse” the probability
wave, and inanimate objects such as slits do not. This is one of the puzzles of quantum mechanics, see the
chapter notes.
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10.2 Quantum superposition and qubits

Now we describe quantum superposition using a very simple quantum system called a qubit,
which lays the groundwork for our formal development of quantum computing in the next
section. As a helpful example for readers who are new to quantum mechanics, we also
describe the famous EPR paradox, though understanding it not strictly necessary to under-
stand the rest of the chapter.

Classical computation involves manipulation of storage elements with finite memory: the
tape cell of a Turing Machine, or a bit in case of a Boolean circuit. The analogous unit
of storage in quantum computing is a qubit. We can think of it as an elementary particle
that can be in two basic states (which could correspond to values of energy, or spin or some
other physical parameter), which we denote by zero and one. However, unlike a classical
bit, this particle can be simultaneously in both basic states. Thus the state of a qubit at
any time is called a superposition of these basic states. Formally, we denote the basic states
by |0〉 and |1 〉 and generally allow a qubit to be in any state of the form α0 |0〉 + α1 |1 〉,
where α0, α1 are called amplitudes and are complex numbers satisfying |α0|2 + |α1|2 = 1.2 If
isolated from outside influences, the qubit stays in this superposition, until it is observed by
an observer. When the qubit is observed, with probability |α0|2 it is revealed to be in state

zero (i.e., |0 〉) and with probability |α1|2 it is revealed to be in state one (i.e., |1〉). After
observation the amplitude wave collapses and the values of the amplitudes are irretrievably
lost.

In this section we restrict attention to the case where the amplitudes are real (though
possibly negative) numbers. The power and “weirdness” of quantum computing is already
exhibited in this case (see also Exercise 10.5).

Analogously, a system of two qubits can exist in four basic states |00〉, |01〉, |10〉, |11〉
and the state of a 2-qubit system at any time is described by a superposition of the type

α00 |00〉+ α01 |01〉+ α10 |10〉+ α11 |11〉 .

where
∑

b1,b2
|αb1b2 |2 = 1. When this system is observed, its state is revealed to be |b1b2 〉

with probability |αb1b2 |2.
We will sometimes denote the state |xy 〉 as |x〉 |y 〉. Readers who are mystified by the

|· 〉 notation (which unfortunately is inescapable due to long tradition) may wish to look at
Note 10.1 for a more geometric description.

Example 10.2
The following are two legitimate state vectors for a 1-qubit quantum system:
1√
2
|0〉 + 1√

2
|1〉 and 1√

2
|0 〉 − 1√

2
|1 〉. Even though in both cases, if the qubit is

measured it will contain either 0 or 1 with probability 1/2, these are considered
distinct states and we will see that it is possible to differentiate between them
using quantum operations.
Because states are always unit vectors, we often drop the normalization factor
and so, say, use |0 〉 − |1 〉 to denote the state 1√

2
|0〉 − 1√

2
|1 〉.

We call the state where all coefficients are equal the uniform state. For example,
the uniform state for a 2-qubit system is

|00〉+ |01〉+ |10〉+ |11〉 ,

(where we dropped the normalization factor of 1
2 ). Using our earlier notation of

|x〉 |y 〉 for |xy 〉 (an operation that is easily checked to respect the distributive
law), so we can also write the uniform state of a 2-qubit system as

(|0〉+ |1 〉) (|0 〉+ |1〉)

which shows that this state just consists of two 1-qubit systems in uniform state.

2We note that in quantum mechanics the above is known as a pure quantum state, see also the remarks
following Definition 10.9.
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Note 10.1 (The geometry of quantum states)

It is often helpful to think of quantum states geometrically as vectors. For example, in case
of the single qubit system (with real amplitudes), the two basic states can be visualized as
two orthogonal unit vectors |0 〉 and |1 〉 in R2 (say, |0〉 = (1, 0) and |1 〉 = (0, 1)). The state
of the system, which we denoted by α0 |0〉 + α1 |1 〉, can be interpreted as a vector that is
α0 times the first vector and α1 times the second. Since α0, α1 are real numbers satisfying
α2

0 + α2
1 = 1, there is a unique angle θ ∈ [0, 2π) such that α0 = cos θ, α1 = sin θ. Thus we

can think of the system state as cos θ |0〉+sin θ |1 〉; that is, it is a unit vector that makes an
angle θ with the |0〉 vector and an angle π/2− θ with the |1 〉 vector. When measured, the
system’s state is revealed to be |0〉 with probability cos2 θ and |1〉 with probability sin2 θ.

|1>

|0>
θ

cos θ

s
in

 θ
v = cos θ |0> + sin θ |1>

Although it’s harder to visualize states with complex coefficients or more than one qubit,
geometric intuition can still be useful when reasoning about such states.

To manipulate the state of a qubit, we have to use a quantum operation, which is a
function that maps the current state to the new state. In this section we will only use
operations on single qubits. Quantum mechanics allows only unitary operations, which are
linear operations that preserve the invariant |α0|2 + |α1|2 = 1. In the case of single qubit
operations with real coefficients, this means that the allowed operations involve either a
reflection of the state vector about a fixed vector in R2 or a rotation of the state vector by
some angle θ ∈ [0, 2π).

10.2.1 EPR paradox

The EPR paradox, named after its proposers, Einstein, Podosky, and Rosen [EPR35] was a
thought experiment that shows that quantum mechanics allows systems in two far corners of
the universe to instantaneously coordinate their actions, seemingly contradicting the axiom
of Einstein’s special theory of relativity that nothing in the universe can travel faster than
light. Einstein, who despite his status as a founder of quantum theory (with his 1905 paper
on the photoelectric effect) was never quite comfortable with it, felt that quantum mechanics
must be modified to remove such paradoxes.

In 1964 John Bell showed how to turn the EPR thought experiment into an actual
experiment. Two systems far away from each other in the universe have a shared quantum
state (actually, a 2-qubit system). This shared state allows them to coordinate their actions
in a way that is provably impossible in a “classical” system.

Since then Bell’s experiment has been repeated in a variety of settings, always with the
same result: the predictions of quantum mechanics are correct, contrary to Einstein’s intu-
ition. Today, the EPR paradox is not considered a paradox, since the systems involved do
not transmit information faster than the speed of light— they merely act upon information
that was already shared, albeit in the form of a quantum superposition. Now we describe a
version of Bell’s experiment (or, more accurately, a variant due to Clauser et al [CHSH69]):
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The parity game. We start by describing a game that seems to involve no quantum me-
chanics at all. Two players Alice and Bob are isolated from each other. The experimenter
asks them to participate in the following guessing game.

1. The experimenter chooses two random bits x, y ∈
R
{0, 1}.

2. He presents x to Alice and y to Bob.

3. Alice and Bob respond with bits a, b respectively.

4. Alice and Bob win if and only if a⊕ b = x ∧ y, where ⊕ denotes the XOR operation
(addition modulo 2).

Note that the players’ isolation from each other can be ensured using the special theory
of relativity. The players are separated by a light year (say), each accompanied by an
assistant of the experimenter. At a designated time, the experimenter’s assistants toss their
independent random coins to create x and y, present them to Alice and Bob respectively,
receive their answers, and transmit everything to the experimenter at a central location.
Alice and Bob, being separated by a light year, cannot exchange any information between
the time they received x, y and before they gave their answers.

It is easy for Alice and Bob to ensure that they win with probability at least 3/4 e.g.,
by always sending a = b = 0. Now we show that this is the best they can do, which seems
intuitive since the setup forbids them from coordinating their responses. Thus a strategy for
the players is a pair of functions f, g : {0, 1} → {0, 1} such that the players’ answers a, b are
computed only as functions of the information they see, namely, a = f(x) and b = g(y). A
probabilistic strategy is a distribution on strategies.

Theorem 10.3 ([Bel64, CHSH69]) In the above scenario, no (deterministic or probabilistic)
strategy used by Alice and Bob can cause them to win with probability more than 3/4. ♦

Proof: Assume for the sake of contradiction that there is a (possibly probabilistic) strategy
that causes them to win with probability more than 3/4. By a standard averaging argument
there is a fixed choice of the players’ randomness that succeeds with at least the same
probability, and hence we may assume without loss of generality that the players’ strategy
is deterministic.

The function f : {0, 1} → {0, 1} that Alice uses can be one of only four possible functions:
it can be either the constant function zero or one, the function f(x) = x or the function
f(x) = 1 − x. We analyze the case that f(x) = x; the other cases are similar. Now Alice’s
response a is merely x, so the players win iff b = (x∧ y)⊕ x. On input y, Bob needs to find
b that makes them win. If y = 1 then x ∧ y = x and hence b = 0 will ensure their win with
probability 1. However, if y = 0 then (x ∧ y)⊕ x = x and since Bob does not know x, the
probability that his output b is equal to x is at most 1/2. Thus the total probability of a win
is at most 3/4. �

The Parity Game with sharing of quantum information. Now we show that if Alice and
Bob can share a 2-qubit system (which they created in a certain state, and split between
them before they they were taken a light year apart) then they can circumvent Theorem 10.3
and win the parity game with probability better than 3/4 using the following strategy:

1. Before the game begins, Alice and Bob prepare a 2-qubit system in the state |00〉+|11〉,
which we will call the EPR state.

2. Alice and Bob split the qubits - Alice takes the first qubit and Bob takes the second
qubit. Note that quantum mechanics does not require the individual bits of a 2-qubit
quantum system to be physically close to one another. It is important that Alice and
Bob have not measured these qubits yet.
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3. Alice receives the qubit x from the experimenter, and if x = 1 then she applies a
rotation by π/8 (22.5°) operation to her qubit. Since the operation involves only her
qubit, she can perform it even with no input from Bob. (The semantics of performing
a single qubit operation on a multiple-qubit system follow the natural intuition, but
see Section 10.3.3 for a formal description.)

4. Bob receives the qubit y from the experimenter, and if y = 1 he applies a rotation by
by −π/8 (−22.5°) operation to his qubit.

5. Both Alice and Bob measure their respective qubits and output the values obtained
as their answers a and b.

Note that the order in which Alice and Bob perform their rotations and measurements
does not matter - it can be shown that all orders yield exactly the same distribution (e.g.,
see Exercise 10.6). While splitting a 2-qubit system and applying unitary transformations
to the different parts may sound far fetched, this experiment had been performed several
times in practice, verifying the following prediction of quantum mechanics:

Theorem 10.4 With the above strategy, Alice and Bob win with probability at least 0.8.♦

Proof: Recall that Alice and Bob win the game if they output a different answer when
x = y = 1 and the same answer otherwise. The intuition behind the proof is that unless
x = y = 1, the states of the two qubits will be “close” to one another (with the angle
between being at most π/8 = 22.5°) and in the other case the states will be “far” (having
angle π/4 or 45°). Specifically we will show that (denoting by a Alice’s output and by b
Bob’s):

(1) If x = y = 0 then a = b with probability 1.

(2) If x 6= y then a = b with probability cos2(π/8) ≥ 0.85

(3) If x = y = 1 then a = b with probability 1/2.

Implying that the overall acceptance probability is at least 1
4 · 1 + 1

2 · 0.85 + 1
4 · 1

8 = 0.8.
In the case (1) both Alice and Bob perform no operation on their qubits, and so when

measured it will be either in the state |00〉 or |11〉, both resulting in Alice and Bob’s outputs
being equal. To analyze case (2), it suffices to consider the case that x = 0, y = 1 (the other
case is symmetrical). In this case Alice applies no transformation to her qubit, and Bob
rotates his qubit in a −π/8 angle. Imagine that Alice first measures her qubit, and then
Bob makes his rotation and measurements (this is OK as the order of measurements does
not change the outcome). With probability 1/2, Alice will get the value 0 and Bob’s qubit
will collapse to the state |0〉 rotated by a −π/8 angle, meaning that when measuring Bob
will obtain the value 0 with probability cos2(π/8). Similarly, if Alice gets the value 1 then
Bob will also output 1 with cos2(π/8) probability.

To analyze case (3), we just use direct computation. In this case, after both rotations
are performed, the 2-qubit system has the state

(cos(π/8) |0 〉+ sin(π/8) |1 〉) (cos(π/8) |0 〉 − sin(π/8) |1 〉)+

(− sin(π/8) |0 〉+ cos(π/8) |1 〉) (sin(π/8) |0 〉+ cos(π/8) |1 〉) =
(

cos2(π/8)− sin2(π/8)
)

|00〉 − 2 sin(π/8) cos(π/8) |01〉+
2 sin(π/8) cos(π/8) |10〉+

(

cos2(π/8)− sin2(π/8)
)

|11〉 .

But since

cos2(π/8)− sin2(π/8) = cos(π/4) = 1√
2

= sin(π/4) = 2 sin(π/8) cos(π/8) ,

all coefficients in this state have the same absolute value and hence when measured the 2-
qubit system will yield either one of the four values 00, 01, 10 and 11 with equal probability
1/4. �
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The constant 0.8 can be somewhat improved upon, see Exercise 10.1. Also, there are
known games with more dramatic differences in success probabilities between the classical
and quantum cases. In an interesting twist, in recent years the ideas behind EPR’s and
Bell’s experiments have been used for a practical goal: encryption schemes whose security
depends only on the principles of quantum mechanics, rather than any unproven conjectures
such as P 6= NP (see chapter notes).

10.3 Definition of quantum computation and BQP

In this section we describe quantum operations, which lead to the definition of quantum
gates, quantum computation, and BQP, the class of languages with efficient quantum
decision algorithms.

10.3.1 Some necessary linear algebra

We use in this chapter several elementary facts and notations involving the space CM . These
are reviewed in Section A.5 of the appendix, but here is a quick reminder:

• If z = a + ib is a complex number (where i =
√
−1), then z = a − ib denotes the

complex conjugate of z. Note that zz = a2 + b2 = |z|2.

• The inner product of two vectors u,v ∈ Cm, denoted by 〈u,v〉, is equal to
∑

x∈[M ] uxvx.
3

• The norm of a vector u, denoted by ‖u‖
2
, is equal to

√

〈u,u〉 =
√

∑

x∈[M ] |ux|2.

• If 〈u,v〉 = 0 we say that u and v are orthogonal.

• A set
{

vi
}

i∈[M ]
of vectors in CM is an orthonormal basis of CM if for every i, j ∈ [M ],

〈vi,vj〉 is equal to 1 if i = j and equal to 0 if i 6= j.

• If A is an M ×M matrix, then A∗ denotes the conjugate transpose of A. That is,
A∗
x,y = Ay,x for every x, y ∈ [M ].

• An M ×M matrix A is unitary if AA∗ = I, where I is the M ×M identity matrix.

Note that if z is a real number (i.e., z has no imaginary component) then z = z. Hence,
if all vectors and matrices involved are real then the inner product is equal to the standard
inner product of Rn and the conjugate transpose operation is equal to the standard transpose
operation. Also, for real vectors u,v, 〈u,v〉 = cos θ‖u‖2‖v‖2 , where θ is the angle between
the u and v.

The next claim (left as Exercise 10.2) summarizes properties of unitary matrices:

Claim 10.5 For every M ×M complex matrix A, the following conditions are equivalent:

1. A is unitary (i.e., AA∗ = I).

2. For every vector v ∈ CM , ‖Av‖
2

= ‖v‖
2
.

3. For every orthonormal basis
{

vi
}

i∈[M ]
of CM , the set

{

Avi
}

i∈[M ]
is an orthonormal

basis of CM .

4. The columns of A form an orthonormal basis of CM .

5. The rows of A form an orthonormal basis of CM .

3Some quantum computing texts use
∑

x∈[M] uxvx instead.
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10.3.2 The quantum register and its state vector

In a standard digital computer, we implement a bit of memory by a physical object that has
two states: the ON or 1 state and the OFF or 0 state. By taking m such objects together
we have an m-bit register whose state can be described by a string in {0, 1}m. A quantum
register is composed of m qubits, and its state is a superposition of all 2m basic states
(the “probability wave” alluded to in Section 10.1): a vector v = 〈v0m ,v0m−11, . . . ,v1m〉 ∈
C2m , where

∑

x |vx|2 = 1. According to quantum mechanics, when measuring the register
(i.e., reading its value) we will obtain the value x with probability |vx|2 and furthermore
this operation will collapse the state of the register to the vector |x 〉 (in other words, the
coefficients corresponding to the basic states |y 〉 for y 6= x will become 0). In principle
such a quantum register can be implemented by any collection of m objects that can have
an ON and OFF states, although in practice there are significant challenges for such an
implementation.

10.3.3 Quantum operations

Now we define operations allowed by quantum mechanics.

Definition 10.6 (quantum operation)
A quantum operation for an m-qubit register is a function F : C2m → C2m that maps its
previous state to the new state and satisfies the following conditions:

Linearity: F is a linear function. That is, for every v ∈ C2n , F (v) =
∑

x vxF (|x〉).

Norm preservation: F maps unit vectors to unit vectors. That is, for every v with
‖v‖

2
= 1, ‖F (v)‖

2
= 1.

The second condition (norm preservation) is quite natural given that only unit vectors
can describe states. The linearity condition is imposed by the theory of quantum mechanics.
Together, these two conditions imply that every quantum operation F can be described by
a 2m × 2m unitary matrix. The following is immediate.

Lemma 10.7 (Composition of quantum operations) If A1, A2 are matrices representing any
quantum operations, then their composition (i.e., applying A1 followed by applying A2)
is also a quantum operation whose matrix is A2A1. In particular, since A1A

∗
1 = I, every

quantum operation has a corresponding “inverse” operation that cancels it. (Quantum
computation is “reversible.”) ♦

Since quantum operations are linear, it suffices to describe their behavior on any linear
basis for the space C2m and so we often specify quantum operations by the way they map
the standard basis. However, not every classical operation is unitary, so designing quantum
operations requires care.

10.3.4 Some examples of quantum operations

Here are some examples of quantum operations:

Flipping qubits. If we wish to “flip” the first qubit in an m-qubit register, (i.e., apply the
NOT operation on the first qubit), then this can be done as a quantum operation that maps

the basis state |b, x〉 for b ∈ {0, 1} , x ∈ {0, 1}m−1
to the basis state |1− b, x〉. The matrix of

this operation just performs a permutation on the standard basis, and permutation matrices
are always unitary. Important note on notation: This example involved an operation
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on the first qubit, so the remaining qubits in x are unaffected and unnecessarily cluttering
the notation. From now on, whenever we describe operations on only a subset of qubits,
we will often drop the unaffected qubits from the notation. The above operation can be
described as |0 〉 7→ |1 〉 and |1 〉 7→ |0 〉.

Reordering qubits. If we wish to exchange the values of two qubits the following operation
(again, unitary since it is a permutation of basic states) suffices: |01〉 7→ |10〉 and |10〉 7→
|01〉, with |00〉 and |11〉 being mapped to themselves. This operation is described by the
following 22×22 matrix (where we index the rows and columns according to lexicographical
order |00〉, |01〉, |10〉, |11〉):











1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1











.

Note that by combining such operations we can arbitrarily reorder the qubits of an m-qubit
register.

Copying qubits. Now suppose we wish to copy the first qubit into the second. Proceeding
naively, we might try the following: both |10〉 and |11〉 map to |11〉 whereas both |00〉 and
|01〉 map to |00〉. However, this is not a reversible operation and hence not unitary! In fact,
the so-called no cloning theorem rules out any quantum operation that copies qubits; see the
Chapter notes. However, while designing quantum algorithms it usually suffices to copy a
qubit in “write once” fashion, by keeping around a supply of fresh qubits in a predetermined
state, say |0〉, and only writing them over once. Now the operation |xy 〉 7→ |x(x ⊕ y) 〉
provides the effect of copying the first qubit, assuming the algorithm designer takes care to
apply it only where the second qubit is a fresh (i.e., unused) qubit in state |0〉, and thus
the operation never encounters the states |01〉, |11〉. Since this operation negates the second
qubit y if and only if x is in the state |1〉 it known as the controlled NOT (or CNOT for
short) operation in the literature.

Rotation on single qubit. Thinking of the phase of a qbit as a 2-dimensional vector as in
Note 10.1, we may wish to apply a rotation this state vector by an angle θ. This corresponds
to the operation |0〉 7→ cos θ |0 〉 + sin θ |1 〉, and |1〉 7→ − sin θ |0 〉 + cos γ |1 〉, described by
the matrix

(

cos θ − sin θ
sin θ cos θ

)

, which is unitary. Note that when θ = π (i.e., 180°) this amounts
to flipping the sign of the state vector (i.e., the map v 7→ −v).

AND of two bits. Now consider the classical AND operation, concretely, the operation
that replaces the first qubit of the register by the AND of the first two bits. One would try
to think of this as a linear operation |b1b2 〉 7→ |b1 ∧ b2 〉 |b2 〉 for b1, b2 ∈ {0, 1}. But this is
unfortunately not reversible and hence not unitary.

However, there is a different way to achieve the effect of an AND operation. This uses a
“reversible AND”, which uses an additional scratchpad in the form of a fresh qubit b3. The
operation is |b1 〉 |b2 〉 |b3 〉 7→ |b1 〉 |b2 〉 |b3 ⊕ (b1 ∧ b2) 〉 for all b1, b2, b3 ∈ {0, 1}. This operation
is unitary (in fact, permutation matrix) and thus a valid quantum operation, described by
the following matrix































1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0































.
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As before, the algorithm designer will only apply this operation when b3 is a fresh qubit
in state |0 〉. This operation is also known in quantum computing as the Toffoli gate. One
can similarly obtain a “reversible OR” quantum operation. Together, the reversible OR
and AND gates are key to showing that quantum computers can simulate ordinary Turing
machines (see Section 10.3.7).

The Hadamard operation. The Hadamard gate it is the single qubit operation that (up
to normalization) maps |0 〉 to |0 〉+ |1〉 and |1〉 to |0〉 − |1 〉. More succinctly, the state |b 〉
is mapped to |0〉+ (−1)b |1 〉. The corresponding matrix is 1√

2

(

1 1
1 −1

)

.

Note that if we apply a Hadamard gate to every qubit of an m-qubit register, then for
every x ∈ {0, 1}m, the state |x 〉 is mapped to

(|0 〉+ (−1)x1 |1 〉)(|0〉+ (−1)k2 |1 〉) · · · (|0 〉+ (−1)xm |1〉) =

∑

y∈{0,1}m





∏

i : yi=1

(−1)xi



 |y 〉 =
∑

y∈{0,1}m
−1x⊙y |y 〉 , (1)

where x⊙y denotes the dot product modulo 2 of x and y. The unitary matrix corresponding

to this operation is the 2m× 2m matrix whose (x, y)th entry is −1x⊙y√
2n

(identifying [2m] with

{0, 1}m). This operation plays a key role in quantum algorithms4.

10.3.5 Quantum computation and BQP

Even though the rules of quantum mechanics allow an arbitrary unitary matrix operation to
be applied on the current state of a qantum register, not all such operations can be feasibly
implemented. However, highly ‘local” operations— those that act on only a finite number
of qubits— could perhaps be implemented. We thus define these as elementary steps in
quantum computation.

Definition 10.8 (Elementary quantum operations or quantum gates) An quantum operation
is called elementary, or sometimes a quantum gate, if it acts on three or less qubits of the
register.5 ♦

Note that an elementary operation on an m-qubit register can be specified by three
indices in [m] and an 8×8 unitary matrix. For example, if U is any 8×8 unitary matrix that
has to be applied to the qbits numbered 2, 3, 4 then this can be viewed as a an elementary
quantum operation F : C2m → C2m that maps the basis state |x1x2 . . . xm 〉 to the state
|x1 〉(U |x2x3x4 〉) |x5 . . . xm 〉 for all x1, x2, . . . , xm ∈ {0, 1}.

Now we can define quantum computation: it is a sequence of elementary operations
applied to a quantum register.

4We will encounter this matrix again in Chapters 11 and 19 where we describe the Walsh-Hadamard
error correcting code. (Though there will describe it as a 0/1 matrix over GF(2) rather than ±1 matrix over
C.)

5The constant three is arbitrary in the sense that replacing it with every constant greater or equal to
two would lead to an equivalently powerful model.
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Definition 10.9 (Quantum Computation and the class BQP)
Let f : {0, 1}∗ → {0, 1} and T : N → N be some functions. We say that f is computable

in quantum T (n)-time if there is a polynomial-time classical TM that on input (1n, 1T (n))
for any n ∈ N outputs the descriptions of quantum gates F1, . . . , FT such that for every
x ∈ {0, 1}n, we can compute f(x) by the following process with probability at least 2/3:

1. Initialize an m qubit quantum register to the state |x0n−m 〉 (i.e., x padded with
zeroes), where m ≤ T (n).

2. Apply one after the other T (n) elementary quantum operations F1, . . . , FT to the
register.

3. Measure the register and let Y denote the obtained value. (That is, if v is the final
state of the register, then Y is a random variable that takes the value y with probability
|vy|2 for every y ∈ {0, 1}m.)

4. Output Y1.

A Boolean function f : {0, 1}∗ → {0, 1} is in BQP if there is some polynomial p : N → N
such that f is computable in quantum p(n)-time.

Some remarks are in order:

1. This definition easily generalizes to functions with more than one bit of output.

2. Elementary operations are represented by 8×8 matrices of complex numbers, which a
TM cannot write per se. However, it suffices for the TM to write the most significant
O(log T (n)) bits of the complex number; see Exercise 10.8.

3. It can be shown that the set of elementary operations or gates (which is an infinite set)
can be reduced without loss of generality to two universal operations ; see Section 10.3.8

4. Readers familiar with quantum mechanics or quantum computing may notice that
our definition of quantum computation disallows several features that are allowed by
quantum mechanics, such as mixed states that involve both quantum superposition
and probability and measurement in different bases than the standard basis. However,
none of these features adds to the computing power of quantum computers. Another
feature that we do not explicitly allow is performing partial measurements of some of
the qubits in the course of the computation. Exercise 10.7 shows that such partial
measurements can always be eliminated without much loss of efficiency, though it will
sometime be convenient for us to describe our algorithms as using them.

Quantum versus probabilistic computation: At this point the reader may think that
the quantum model “obviously” gives exponential speedup as the states of registers are
described by 2m-dimensional vectors and operations are described by 2m × 2m matrices.
However, this is not the case. One can describe even ordinary probabilistic computation
in a similar way: we can think of the state of an m-qubit register as a 2m-dimensional
vector whose xth coordinate denotes the probability that the register contains the string x,
and considering probabilistic operations as linear stochastic maps from R2m to R2m : see
Exercise 10.4. The added power of quantum computing seems to derive from the fact that
here we allow vectors to have negative coefficients (recall Feynman’s quote from the start
of the chapter), and the norm that is preserved at each step is the Euclidean (i.e., ℓ2)
norm rather than the sum (i.e., ℓ1) norm (see also Exercise 10.5). Note also that classical
computation, whether deterministic or probabilistic, is a subcase of quantum computation,
as we see in Section 10.3.7.
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10.3.6 Quantum circuits

Definition 10.9 is reminiscent of the the definition of classical straight-line programs, which
as we saw in Chapter 6 is an equivalent model to Boolean circuits (see Note 6.4). Similarly,
one can define quantum computation and BQP also in terms of quantum circuits (in fact,
this is the definition appearing in most texts). Quantum circuits are similar to Boolean cir-
cuits: these are directed acyclic graphs with sources (vertices with in-degree zero) denoting
the inputs, sinks (vertices with out-degree zero) denoting the outputs, and internal nodes
denoting the gates. One difference is that this time the gates are labeled not by the opera-
tions AND,OR and NOT but by 2× 2, 4× 4 or 8× 8 unitary matrices. Another difference
is that (since copying is not allowed) the out-degree of gates and even inputs cannot be
arbitrarily large but rather the out-degree of each input vertex is one, and the in-degree and
out-degree of each gate are equal (and are at most 3). We also allow special “workspace”
or “scratchpad” inputs that are initialized to the state |0 〉.

Such circuits are often described in the literature using diagrams such as the one below,
depicting a circuit that on input |q0 〉 |q1 〉 first applies the Hadamard operation on |q0 〉 and
then applies the mapping |q0q1 〉 7→ |q0(q0 ⊕ q1) 〉:

|q0〉 H •

|q1〉 ⊕

10.3.7 Classical computation as a subcase of quantum computation

In Section 10.3.3, we saw quantum implementations of the classical NOT and AND opera-
tions. More generally, we can efficiently simulate any classical computation using quantum
operations:

Lemma 10.10 (Boolean circuits as a subcase of quantum circuits) If f : {0, 1}n → {0, 1}m
is computable by a Boolean circuit of size S then there is a sequence of 2S+m+n quantum
operations computing the mapping |x 〉

∣

∣02m+S 〉 7→ |x 〉 |f(x) 〉
∣

∣0S+m 〉. ♦

Proof: Replace each Boolean gate (AND,OR, NOT) by its quantum analog as already
outlined. The resulting computation maps |x〉

∣

∣02m 〉
∣

∣0S 〉 7→ |x〉 |f(x)0m 〉 |z 〉, where z is
the string of values taken by the internal wires in the Boolean circuit (these correspond
to “scratchpad” memory used by the quantum operations at the gates) and the string 0m

consists of qubits unused so far. Now copy f(x) onto the string 0m using m operations of the
form |bc 〉 7→ |b(b⊕ y) 〉. Then run the operations corresponding to the Boolean operations
in reverse (applying the inverse of each operation). This erases the original copy of f(x) as
well as |z 〉 and leaves behind clean bits in state |0〉, together with one copy of f(x). �

Since a classical Turing machine computation running in T (n) steps has an equivalent
Boolean circuit of size O(T (n) logT (n)) it also follows that P ⊆ BQP. Using the Hadamard
operation that maps |0〉 to |0 〉+ |1〉 we can get a qubit that when measured gives |0〉 with
probability 1/2 and |1 〉 with probability 1/2, simulating a coin toss. Thus the following
corollary is immediate:

Corollary 10.11 BPP ⊆ BQP. ♦

10.3.8 Universal operations

Allowing every 3-qubit quantum operation as “elementary” seems problematic since this
set is infinite. By contrast, classical Boolean circuits only need the gates AND, OR and
NOT. Fortunately, a similar result holds for quantum computation. The following theorem
(whose proof we omit) shows that there is a set of few operations that suffice to construct
any quantum operation:
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Theorem 10.12 (Universal basis for quantum operations [Deu89, Kit97])
For everyD ≥ 3 and ǫ > 0 there is ℓ ≤ 100(D log 1/ǫ)3 such that the following is true. Every
D ×D unitary matrix U can be approximated as a product of unitary matrices U1, . . . , Uℓ
in the sense that its (i, j)the entry for each i, j ≤ D satisfies

∣

∣

∣Ui,j −
(

Uℓ · · ·U1

)

i,j

∣

∣

∣ < ǫ ,

and each Ur corresponds to applying either the Hadamard gate 1√
2

(

1 1
1 −1

)

, the Toffoli gate

|abc 〉 7→ |ab(c⊕ a ∧ b)〉 or the phase shift gate
(

1 0
0 i

)

, on at most 3 qubits.

It can be shown that such ǫ-approximation for, say, ǫ < 1
10T suffices for simulating any T -

time quantum computation (see Exercise 10.8), and hence we can replace any computation
using T arbitrary elementary matrices by a computation using only one of the above three
gates. Other universal gates are also known and in particular Shi [Shi03] showed that for the
purpose of quantum computation, the Hadamard and Toffoli gates alone suffice (this uses the
fact that complex numbers are not necessary for quantum computation, see Exercise 10.5).

One corollary of Theorem 10.12 is that 3-qubit gates can be used to simulate k-qubit
gates for every constant k > 3 (albeit at a cost exponential in k). This means that when
designing quantum algorithms we can consider every k-qubit gate as elementary as long as k
is smaller than some absolute constant. We can use this fact to obtain a quantum analog of
the “if cond then” construct of classical programming languages. That is, given a T step
quantum circuit for an n-qubit quantum operation U then we can compute the quantum
operation Controlled-U in O(T ) steps, where Controlled-U maps a vector |x1 . . . xnxn+1 〉 to
|U(x1 . . . xn)xn+1 〉 if xn+1 = 1 and to itself otherwise. The reason is that we can transform
every elementary operation F in the computation of U to the analogous “Controlled-F”
operation. Since the “Controlled-F” operation depends on at most 4 qubits, it too can be
considered elementary.

10.4 Grover’s search algorithm.

We now describe Grover’s algorithm, one of the basic and quite useful algorithms for quan-
tum computers. This section can be read independently of sections 10.5 and 10.6, that
describe Simon’s and Shor’s algorithms, and so the reader who is anxious to see the integer
factorization algorithm can skip ahead to Section 10.5.

Consider the NP-complete problem SAT of finding, given an n-variable Boolean formula
ϕ, whether there exists an assignment a ∈ {0, 1}n such that ϕ(a) = 1. Using “classical”
deterministic or probabilistic TM’s, we do not know how to solve this problem better than
the trivial poly(n)2n-time algorithm.6 We now show a beautiful algorithm due to Grover
that solves SAT in poly(n)2n/2-time on a quantum computer. This is a significant improve-
ment over the classical case, even if it falls way short of showing that NP ⊆ BQP. In fact,
Grover’s algorithm solves an even more general problem, namely, satisfiability of a circuit
with n inputs.

Theorem 10.13 (Grover’s Algorithm [Gro96])
There is a quantum algorithm, that given as input every polynomial-time computable func-

tion f : {0, 1}n → {0, 1} (i.e., represented as a circuit computing f) finds in poly(n)2n/2

time a string a such that f(a) = 1 (if such a string exists).

6There are slightly better algorithms for special cases such as 3SAT.
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Grover’s algorithm is best described geometrically. We assume that the function f has
a single satisfying assignment a. (The techniques described in Chapter 17, Section 17.4.1
allow us to reduce the general problem to this case.) Consider an n-qubit register, and let
u denote the uniform state vector of this register. That is, u = 1

2n/2

∑

x∈{0,1}n |x〉. The

angle between u and the basis state |a 〉 is equal to the inverse cosine of their inner product
〈u, |a 〉〉 = 1

2n/2
. Since this is a positive number, this angle is smaller than π/2 (90°), and

hence we denote it by π/2− θ, where sin θ = 1
2n/2

and hence (using the inequality θ ≥ sin θ

for θ > 0), θ ≥ 2−n/2.
The algorithm starts with the state u, and at each step it gets nearer the state |a 〉. If

its current state makes an angle π/2 − α with |a 〉 then at the end of the step it makes an
angle π/2 − α − 2θ. Thus, in O(1/θ) = O(2n/2) steps it will get to a state v whose inner
product with |a 〉 is larger than, say, 1/2, implying that a measurement of the register will
yield a with probability at least 1/4.

The main idea is that to rotate a vector w towards the unknown vector |a〉 by an angle
of θ, it suffices to take two reflections around the vector u and the vector e =

∑

x 6=a |a 〉 (the
latter is the vector orthogonal to |a 〉 on the plane spanned by u and |a 〉). See Figure 10.3
for a “proof by picture”.

|a>

u

θ~2-n/2

w

α

e

α+θ

|a>

u

θ~2-n/2
e

θ+α

α+2θ

Step 1: Reflect around e Step 2: Reflect around u

Figure 10.3 We transform a vector w in the plane spanned by |a 〉 and u into a vector
w′′ that is 2θ radians close to |a 〉 by performing two reflections. First, we reflect around
e =

∑

x 6=a |x 〉 (the vector orthogonal to |a 〉 on this plane), and then we reflect around

u. If the original angle between w and |a 〉 was π/2 − θ − α then the new angle will be
π/2 − θ − α − 2θ. We can restrict our attention to the plane spanned by u and |a 〉 as the
reflections leave all vectors orthogonal to this plane fixed.

To complete the algorithm’s description, we need to show how we can perform the
reflections around the vectors u and e. That is, we need to show how we can in polynomial
time transform a state w of the register into the state that is w’s reflection around u
(respectively, e). In fact, we will not work with an n-qubit register but with an m-qubit
register for m that is polynomial in n. However, the extra qubits will only serve as “scratch
workspace” and will always contain zero except during intermediate computations (thanks
to the “cleanup” idea of the proof of Lemma 10.10), and hence can be safely ignored.

Reflecting around e. Recall that to reflect a vector w around a vector v, we express w
as αv + v⊥ (where v⊥ is orthogonal to v) and output αv − v⊥. Thus the reflection of w
around e is equal to

∑

x 6=awx |x〉 −wa |a 〉. Yet, it is easy to perform this transformation:

1. Since f is computable in polynomial time, we can compute the transformation |xσ 〉 7→
|x(σ ⊕ f(x)) 〉 in polynomial time (this notation ignores the extra workspace that may
be needed, but this won’t make any difference). This transformation maps |x0 〉 to
|x0 〉 for x 6= a and |a0〉 to |a1〉.
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2. Then, we apply the elementary transformation (known as a Z gate) |0 〉 7→ |0 〉, |1 〉 7→
− |1 〉 on the qubit σ. This maps |x0 〉 to |x0〉 for x 6= a and maps |a1〉 to − |a1 〉.

3. Then, we apply the transformation |xσ 〉 7→ |x(σ ⊕ f(x)) 〉 again, mapping |x0 〉 to |x0 〉
for x 6= a and maps |a1〉 to |a0〉.

The final result is that the vector |x0 〉 is mapped to itself for x 6= a, but |a0〉 is mapped
to − |a0〉. Ignoring the last qubit, this is exactly a reflection around |a 〉.

Reflecting around u. To reflect around u, we first apply the Hadamard operation to each
qubit, mapping u to |0 〉. Then, we reflect around |0〉 (this can be done in the same way
as reflecting around |a〉, just using the function g : {0, 1}n → {0, 1} that outputs 1 iff its
input is all zeroes instead of f). Then, we apply the Hadamard operation again, mapping
|0 〉 back to u.

Together these operations allow us to take a vector in the plane spanned by |a 〉 and u
and rotate it 2θ radians closer to |a 〉. Thus if we start with the vector u, we will only need
to repeat them O(1/θ) = O(2n/2) to obtain a vector that, when measured, yields |a 〉 with
constant probability.

This completes the proof of Theorem 10.13. For the sake of completeness, Figure 10.4
contains the full description of Grover’s algorithm. �
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Grover’s Search Algorithm.

Goal: Given a polynomial-time computable f : {0, 1}n → {0, 1} with a unique a ∈ {0, 1}n such that
f(a) = 1, find a.

Quantum register: We use an n+1+m-qubit register, where m is large enough so we can compute
the transformation |xσ0m 〉 7→ |x(σ ⊕ f(x))0m 〉.
Operation State (neglecting normalizing factors)

Initial state:
∣

∣0n+m+1 〉
Apply Hadamard operation to first n qubits. u

∣

∣0m+1 〉 (where u denotes
∑

x∈{0,1}n |x 〉)

For i = 1, . . . , 2n/2 do: vi
∣

∣0m+1 〉
We let v1 = u and maintain the invariant that
〈vi, |a 〉〉 = sin(iθ), where θ ∼ 2−n/2 is such that
〈u, |a 〉〉 = sin(θ)

Step 1: Reflect around e =
∑

x 6=a |x 〉:
1.1 Compute |xσ0m 〉 7→ |x(σ ⊕ f(x))0m 〉 ∑

x 6=a vi
x |x 〉

∣

∣0m+1 〉 + vi
a |a 〉 |10m 〉

1.2 If σ = 1 then multiply vector by −1, otherwise
do not do anything.

∑

x 6=a vi
x |x 〉

∣

∣0m+1 〉 − vi
a |a 〉 |10m 〉

1.3 Compute |xσ0m 〉 7→ |x(σ ⊕ f(x))0m 〉. wi
∣

∣0m+1 〉 =
∑

x 6=a vi
x |x 〉

∣

∣0m+1 〉 − vi
a |a 〉 |00m 〉.

(wi is vi reflected around
∑

x 6=a |x 〉.)
Step 2: Reflect around u:

2.1 Apply Hadamard operation to first n qubits. 〈wi,u〉 |0n 〉
∣

∣0m+1 〉 +
∑

x 6=0n αx |x 〉
∣

∣0m+1 〉,
for some coefficients αx’s (given by αx =
∑

z(−1)x⊙zwi
z |z 〉).

2.2 Reflect around |0 〉:
2.2.1 If first n-qubits are all zero then flip n+ 1st

qubit.
〈wi,u〉 |0n 〉 |10m 〉 +

∑

x 6=0n αx |x 〉
∣

∣0m+1 〉

2.2.2 If n+ 1st qubit is 1 then multiply by −1 −〈wi,u〉 |0n 〉 |10m 〉 +
∑

x 6=0n αx |x 〉
∣

∣0m+1 〉
2.2.3 If first n-qubits are all zero then flip n+ 1st

qubit.
−〈wi,u〉 |0n 〉

∣

∣0m+1 〉 +
∑

x 6=0n αx |x 〉
∣

∣0m+1 〉

2.3 Apply Hadamard operation to first n qubits. vi+1
∣

∣0m+1 〉 (where vi+1 is wi reflected around u)

Measure register and let a′ be the obtained value
in the first n qubits. If f(a′) = 1 then output a′.
Otherwise, repeat.

Figure 10.4 Grover’s Search Algorithm
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10.5 Simon’s Algorithm

Although beautiful, Grover’s algorithm still has a significant drawback: it is merely quadrat-
ically faster than the best known classical algorithm for the same problem. In contrast, in
this section we show Simon’s algorithm that is a polynomial-time quantum algorithm solving
a problem for which the best known classical algorithm takes exponential time.

Simon’s problem: Given: A polynomial-size classical circuit for a function f : {0, 1}n →
{0, 1}n such that there exists a ∈ {0, 1}n satisfying f(x) = f(y) iff x = y ⊕ a for every
x, y ∈ {0, 1}n.
Goal: find this string a.

Theorem 10.14 (Simon’s Algorithm [Sim94])
There is a polynomial-time quantum algorithm for Simon’s problem.

Two natural questions are (1) why is this problem interesting? and (2) why do we believe
it is hard to solve for classical computers? The best answer to (1) is that, as we will see in
Section 10.6, a generalization of Simon’s problem turns out to be crucial in the quantum
polynomial-time algorithm for the famous integer factorization problem. Regarding (2), of
course we do not know for certain that this problem does not have a classical polynomial-
time algorithm (in particular, if P = NP then there obviously exists such an algorithm).
However, some intuition why it may be hard can be gleaned from the following black box
model: suppose that you are given access to a black box (or oracle) that on input x ∈ {0, 1}n,
returns the value f(x). Would you be able to learn a by making at most a subexponential
number of queries to the black box? It is not hard to see that if a is chosen at random from
{0, 1}n and f is chosen at random subject to the condition that f(x) = f(y) iff x = y⊕a then
no algorithm can successfully recover a with reasonable probability using significantly less
than 2n/2 queries to the black box. Indeed, an algorithm using fewer queries is very likely
to never get the same answer to two distinct queries, in which case it gets no information
about the value of a.

10.5.1 Proof of Theorem 10.14

Simon’s algorithm is actually quite simple. It uses a register of 2n+m qubits, where m is
the number of workspace bits needed to compute f . (Below we will ignore the last m qubits
of the register, since they will be always set to all zeroes except in intermediate steps of
f ’s computation.) The algorithm first uses n Hadamard operations to set the first n qubits
to the uniform state and then apply the operation |xz 〉 7→ |x(z ⊕ f(x) 〉 to the register,
resulting (up to normalization) in the state

∑

x∈{0,1}n
|x〉 |f(x) 〉 =

∑

x∈{0,1}n
(|x 〉+ |x⊕ a 〉) |f(x) 〉 . (2)

We then measure the second n bits of the register, collapsing its state to

|xf(x) 〉+ |(x⊕ a)f(x) 〉 (3)

for some string x (that is chosen uniformly from {0, 1}n). You might think that we’re done
as the state (3) clearly encodes a, however we cannot directly learn a from this state: if we
measure the first n bits we will get with probability 1/2 the value x and with probability 1/2
the value x⊕a. Even though a can be deduced from these two values combined, each one of
them on its own yields no information about a. (This point is well worth some contemplation,
as it underlies the subtleties involved in quantum computation and demonstrates why a
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quantum algorithm is not generally equivalent to performing exponentially many classical
computation in parallel.)

However, consider now what happens if we perform another n Hadamard operations on
the first n bits. Since this maps x to the vector

∑

y(−1)x⊙y |y 〉, the new state of the first n
bits will be

∑

y

(

(−1)x⊙y + (−1)(x⊕a)⊙y
)

|y 〉 =
∑

y

(

(−1)x⊙y + (−1)x⊙y(−1)a⊙y
)

|y 〉 . (4)

For every y ∈ {0, 1}m, the yth coefficient in the state (4) is nonzero if and only if if and only
if a ⊙ y = 0, and in fact if measured, the state (4) yields a uniform y ∈ {0, 1}n satisfying
a⊙ y = 0.

Repeating the entire process k times, we get k uniform strings y1, . . . , yk satisfying
y ⊙ a = 0 or in other words, k linear equations (over the field GF(2)) on the variables
a1, . . . , an. It can be easily shown that if, say, k ≥ 2n then with high probability there will
be n− 1 linearly independent equations among these (see Exercise 10.9), and hence we will
be able to retrieve a from these equations using Gaussian elimination. This completes the
proof of Theorem 10.14. For completeness, a full description of Simon’s algorithm can be
found in Figure 10.5. �

Simon’s Algorithm.

Goal: Given a polynomial-time computable f : {0, 1}n → {0, 1}n such that there is some a ∈
{0, 1}n satisfying f(x) = f(y) iff y = x⊕ a for every x, y ∈ {0, 1}n, find a.

Quantum register: We use an 2n+m-qubit register, where m is large enough so we can compute
the transformation |xz0m 〉 7→ |x(z ⊕ f(x))0m 〉. (Below we ignore the last m qubits of the register
as they will always contain 0m except in intermediate computations of f .)

Operation State (neglecting normalizing factors)

Initial state:
∣

∣02n 〉
Apply Hadamard operation to first n qubits.

∑

x |x0n 〉
Compute |xz 〉 7→ |x(y ⊕ f(x)) 〉 ∑

x |xf(x) 〉 =
∑

x (|x 〉 + |x⊕ a 〉) |f(x) 〉
Measure second n bits of register. (|x 〉 + |x⊕ a 〉) |f(x) 〉
Apply Hadamard to first n bits.

(

∑

y(−1)x⊙y(1 + (−1)a⊙y) |y 〉
)

|f(x) 〉 =

2
∑

y:a⊙y=0(−1)x⊙y |y 〉 |f(x) 〉

Measure first n qubits of register to obtain a
value y such that y ⊙ a = 0. Repeat until we
get a sufficient number of linearly independent
equations on a.

Figure 10.5 Simon’s Algorithm

10.6 Shor’s algorithm: integer factorization using quantum com-
puters

The integer factorization problem is to find, given an integerN , the set of all prime factors of
N (i.e., prime numbers that divide N). By a polynomial-time algorithm for this problem we
mean an algorithm that runs in time polynomial in the description of N , i.e., poly(log(N))
time. Although people have thought about factorization for at least 2000 years, we still do
not know of a polynomial-time algorithm for it: the best classical algorithm takes roughly

2(logN)1/3 steps to factor N [LLMP90]. In fact, the presumed difficulty of this problem
underlies many popular encryption schemes (such as RSA, see Section 9.2.1). Therefore, it
was quite a surprise when in 1994 Peter Shor showed the following result, which is now the
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most famous algorithm for quantum computers, and the strongest evidence that BQP may
contain problems outside of BPP.

Theorem 10.15 (Shor’s Algorithm: Factoring in BQP [Sho97])
There is a quantum algorithm that given a numberN , runs in time poly(log(N)) and outputs
the prime factorization of N .

Shor’s ideas in nutshell. The algorithm uses the following observations. First, since N
has at most logN factors, it clearly suffices to show how to find a single factor of N in
poly(logN) time because we can then repeat the algorithm with N divided by that factor,
and thus find all factors. Second, it is a well-known fact that in order to find a single
factor, it suffices to be able to find the order of a random number A (mod N), in other
words, the smallest r such that Ar ≡ 1 (mod N). This is detailed in Section 10.6.4, but the
idea is that with good probability, the order r of A will be even and furthermore Ar/2−1

will have a non-trivial common factor with N , which we can find using a GCD (greatest
common divisor) computation. Third, the mapping A 7→ Ax (mod N) is computable in
poly(logN) time even on classical TMs (and so in particular by quantum algorithms) using
fast exponentiation; see Exercise 10.10.

Using these observations we can come up with a simple polylog(N)-time quantum al-
gorithm that transforms a quantum register initialized to all zeros into the state that is
the uniform superposition of all states of the type |x〉, where x ≤ N and satisfies Ax ≡ y0
(mod N) for some randomly chosen y0 ≤ N − 1. By elementary number theory, the set of
such x’s form an arithmetic progression of the type x0 + ri for i = 1, 2, . . . where Ax0 ≡ y0
(mod N) and r is the order of A.

By now the problem is beginning to look quite a bit like Simon’s problem, since we have
created a quantum state involving a strong periodicity (namely, an arithmetic progression)
and we are interested in determining its period. In engineering and mathematics, a classical
tool for detecting periods is the Fourier Transform (see Section 10.6.1). Below, we describe
the quantum Fourier transform (QFT), which allows us to detect periods in a quantum
state. This is a quantum algorithm that takes a register from some arbitrary state f ∈ CM
into a state whose vector is the Fourier transform f̂ of f . The QFT takes only O(log2M)
elementary steps and is thus very efficient. Note that we cannot say that this algorithm
“computes” the Fourier transform, since the transform is stored in the amplitudes of the
state, and as mentioned earlier, quantum mechanics give no way to “read out” the ampli-
tudes per se. The only way to get information from a quantum state is by measuring it,
which yields a single basis state with probability that is related to its amplitude. This is
hardly representative of the entire fourier transform vector, but sometimes (as is the case
in Shor’s algorithm) this is enough to get highly non-trivial information, which we do not
know how to obtain using classical (non-quantum) computers.

10.6.1 The Fourier transform over ZM

We now define the Fourier transform over ZM (the group of integers in {0, . . . ,M − 1} with
addition modulo M). We give a definition that is specialized to the current context. For
more discussion on the Fourier transform, a tool that has found numerous uses in complexity
theory, see Chapter 22.

Definition 10.16 For every vector f ∈ CM , the Fourier transform of f is the vector f̂ where
the xth coordinate of f̂ is7

f̂(x) = 1√
M

∑

y∈ZM

f(x)ωxy ,

7In the context of Fourier transform it is customary and convenient to denote the xth coordinate of a
vector f by f(x) rather than fx.
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where ω = e2πi/M . ♦
The Fourier transform is simply a representation of f in the Fourier basis {χx}x∈ZM ,

where χx is the vector/function whose yth coordinate is 1√
Mωxy

. Now the inner product of

any two vectors χx, χz in this basis is equal to

〈χx, χz〉 = 1
M

∑

y∈ZM

ωxyωzy = 1
M

∑

y∈ZM

ω(x−z)y .

But if x = z then ω(x−z) = 1 and hence this sum is equal to 1. On the other hand, if x 6= z,

then this sum is equal to 1
M

1−ω(x−y)M

1−ωx−y = 1
M

1−1
1−ωx−y = 0 using the formula for the sum of a

geometric series. In other words, this is an orthonormal basis which means that the Fourier
transform map f 7→ f̂ is a unitary operation.

What is so special about the Fourier basis? For one thing, if we identify vectors in CM

with functions mapping ZM to C, then it’s easy to see that every function χ in the Fourier
basis is a homomorphism from ZM to C in the sense that χ(y + z) = χ(y)χ(z) for every
y, z ∈ ZM . Also, every function χ is periodic in the sense that there exists r ∈ ZM such that
χ(y+ r) = χ(z) for every y ∈ ZM (indeed if χ(y) = ωxy then we can take r to be ℓ/x where
ℓ is the least common multiple of x and M). Thus, intuitively, if a function f : ZM → C
is itself periodic (or roughly periodic) then when representing f in the Fourier basis, the
coefficients of basis vectors with periods agreeing with the period of f should be large, and
so we might be able to discover f ’s period from this representation. This does turn out to
be the case, and is a crucial point in Shor’s algorithm.

Fast Fourier Transform.

Denote by FTM the operation that maps every vector f ∈ CM to its Fourier transform
f̂ . The operation FTM is represented by an M ×M matrix whose (x, y)th entry is ωxy.
The trivial algorithm to compute it takes M2 operations. The famous Fast Fourier Trans-
form (FFT) algorithm computes the Fourier transform in O(M logM) operations. We now
sketch the idea behind this algorithm as the same idea will be used in the quantum Fourier
transform algorithm described in Section 10.6.2.

Note that

f̂(x) = 1√
M

∑

y∈ZM

f(y)ωxy =

1√
M

∑

y∈ZM ,y even

f(y)ω−2x(y/2) + ωx 1√
M

∑

y∈ZM ,y odd

f(y)ω2x(y−1)/2 .

Now since ω2 is an M/2th root of unity and ωM/2 = −1, letting W be the M/2×M/2
diagonal matrix with diagonal entries ω0, . . . , ωM/2−1, we get that

FTM (f)low = FTM/2(feven) +WFTM/2(fodd) (5)

FTM (f)high = FTM/2(feven)−WFTM/2(fodd) (6)

where for an M -dimensional vector v, we denote by veven (resp. vodd) the M/2-dimensional
vector obtained by restricting v to the coordinates whose indices have least significant bit
equal to 0 (resp. 1) and by vlow (resp. vhigh) the restriction of v to coordinates with most
significant bit 0 (resp. 1).

Equations (5) and (6) are the crux of the divide-and-conquer idea of the FFT algorithm,
since they allow to replace a size-M problem with two size-M/2 subproblems, leading to
a recursive time bound of the form T (M) = 2T (M/2) + O(M) which solves to T (M) =
O(M logM).

10.6.2 Quantum Fourier Transform over ZM

The quantum Fourier transform is an algorithm to change the state of a quantum register
from f ∈ CM to its Fourier transform f̂ .
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Lemma 10.17 (Quantum Fourier Transform [BV93])
For every m and M = 2m there is a quantum algorithm that uses O(m2) elementary
quantum operations and transforms a quantum register in state f =

∑

x∈Zm f(x) |x〉 into

the state f̂ =
∑

x∈ZM f̂(x) |x 〉, where f̂(x) = 1√
M

∑

y∈Zm ω
xyf(x).

Proof: The crux of the algorithm is Equations (5) and (6), which allow the problem of
computing FTM , the problem of size M , to be split into two identical subproblems of size
M/2 involving computation of FTM/2, which can be carried out recursively using the same
elementary operations. (Aside: Not every divide-and-conquer classical algorithm can be
implemented as a fast quantum algorithm; we are really using the structure of the problem
here.)

Quantum Fourier Transform FTM

Initial state: f =
∑

x∈ZM
f(x) |x 〉

Final state: f̂ =
∑

x∈ZM
f̂(x) |x 〉.

Operation State (neglecting normalizing factors)

f =
∑

x∈ZM
f(x) |x 〉

Recursively run FTM/2 on m−1 most signif-
icant qubits

(FTM/2feven) |0 〉 + (FTM/2fodd) |1 〉

If LSB is 1 then compute W on m − 1 most
significant qubits (see below).

(FTM/2feven) |0 〉 + (WFTM/2fodd) |1 〉

Apply Hadmard gate H to least significant
qubit.

(FTM/2feven)(|0 〉 + |1 〉) +
(WFTM/2fodd)(|0 〉 − |1 〉) =

(FTM/2feven + WFTM/2fodd) |0 〉 +
(FTM/2feven −WFTM/2fodd) |1 〉

Move LSB to the most significant position |0 〉(FTM/2feven + WFTM/2fodd) +

|1 〉(FTM/2feven −WFTM/2fodd) = f̂

The transformation W on m − 1 qubits can be defined by |x 〉 7→ ωx = ω
∑m−2
i=0 2ixi

(where xi is the ith qubit of x). It can be easily seen to be the result of applying for
every i ∈ {0, . . . ,m− 2} the following elementary operation on the ith qubit of the register:

|0 〉 7→ |0 〉 and |1〉 7→ ω2i |1〉.
The final state is equal to f̂ by (5) and (6). (We leave verifying this and the running

time to Exercise 10.14.) �

10.6.3 Shor’s Order-Finding Algorithm.

We now present the central step in Shor’s factoring algorithm: a quantum polynomial-time
algorithm to find the order of an integer A modulo an integer N .

Lemma 10.18 There is a polynomial-time quantum algorithm that on input A,N (repre-
sented in binary) finds the smallest r such that Ar = 1 (mod N). ♦

Proof: Let m = ⌈5 logM⌉ and let M = 2m. Our register will consist of m + polylog(N)
qubits. Note that the function x 7→ Ax (mod N) can be computed in polylog(N) time
(see Exercise 10.10) and so we will assume that we can compute the map |x〉 |y 〉 7→
|x〉 |y ⊕ xA

x (mod N)y 〉 (where xXy denotes the representation of the numberX ∈ {0, . . . , N − 1}
as a binary string of length logN).8 Now we describe the order-finding algorithm. It uses a
tool of elementary number theory called continued fractions which allows us to approximate

8To compute this map we may need to extend the register by some additional polylog(N) many qubits,
but we can ignore them as they will always be equal to zero except in intermediate computations.
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(using a classical algorithm) an arbitrary real number α with a rational number p/q where
there is a prescribed upper bound on q (see Section 10.6.5).

Order finding algorithm.

Goal: Given numbers N and A < N such that gcd(A,N) = 1, find the smallest r such that Ar = 1
(mod N).

Quantum register: We use an m + polylog(N)-qubit register, where m = ⌈5 logN⌉. Below we
treat the first m bits of the register as encoding a number in ZM .

Operation State (including normalizing factors)

Apply Fourier transform to the first m bits. 1√
M

∑

x∈ZM
|x 〉) |0n 〉

Compute the transformation |x 〉 |y 〉 7→
|x 〉 |y ⊕ (Ax (mod N)) 〉.

1√
M

∑

x∈ZM
|x 〉 |Ax (mod N) 〉

Measure the second register to get a value y0.
1√
K

∑K−1
ℓ=0 |x0 + ℓr 〉 |y0 〉 where x0 is the smallest

number such that Ax0 = y0 (mod N) and K =
⌊(M − 1 − x0)/r⌋.

Apply the Fourier transform to the first register. 1√
M

√
K

(

∑

x∈Zn

∑K−1
ℓ=0 ω(x0+ℓr)x |x 〉

)

|y0 〉
Measure the first register to obtain a number x ∈ ZM . Find a rational approximation a/b with a, b
coprime and b ≤ N that approximates the number x

M
within 1/(10M) accuracy (see Section 10.6.5).

If found such approximation and Ab = 1 (mod N) then output b.

In the analysis, it will suffice to show that this algorithm outputs the order r with probability
at least Ω(1/ logN) (we can always amplify the algorithm’s success by running it several
times and taking the smallest output).

Analysis: the case that r|M
We start by analyzing the algorithm in the case that M = rc for some integer c. Though
very unrealistic (remember that M is a power of 2!) this gives the intuition why Fourier
transforms are useful for detecting periods.

claim: In this case the value x measured will be equal to ac for a random a ∈ {0, . . . , r − 1}.
The claim concludes the proof since it implies that x/M = a/r where a is random integer

less than r. Now for every r, at least Ω(r/ log r) of the numbers in [r − 1] are co-prime to
r. Indeed, the prime number theorem (see Section A.3 in the appendix) says that there
at least this many primes in this interval, and since r has at most log r prime factors, all
but log r of these primes are co-prime to r. Thus, when the algorithm computes a rational
approximation for x/M , the denominator it will find will indeed be r.

To prove the claim, we compute for every x ∈ ZM the absolute value of |x 〉’s coefficient
before the measurement. Up to some normalization factor this is

∣

∣

∣

∣

∣

c−1
∑

ℓ=0

ω(x0+ℓr)x

∣

∣

∣

∣

∣

=
∣

∣

∣ωx0c
′c
∣

∣

∣

∣

∣

∣

∣

∣

c−1
∑

ℓ=0

ωrℓx

∣

∣

∣

∣

∣

= 1 ·
∣

∣

∣

∣

∣

c−1
∑

ℓ=0

ωrℓx

∣

∣

∣

∣

∣

. (7)

If c does not divide x then ωr is a cth root of unity, so
∑c−1
ℓ=0 w

rℓx = 0 by the formula
for sums of geometric progressions. Thus, such a number x would be measured with zero
probability. But if x = cj then ωrℓx = wrcjℓ = ωMj = 1, and hence the amplitudes of all
such x’s are equal for all j ∈ {0, 2, . . . , r − 1}. �

The general case

In the general case, where r does not necessarily divide M , we will not be able to show that
the measured value x satisfiesM |xr. However, we will show that with Ω(1/ log r) probability,
(1) xr will be “almost divisible” by M in the sense that 0 ≤ xr (mod M) < r/10 and (2)
⌊xr/M⌋ is coprime to r. Condition (1) implies that |xr − cM | < r/10 for c = ⌊xr/M⌋.
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Figure 10.6 A complex number z = a+ ib can be thought of as the two-dimensional vector
(a, b) of length |z| =

√
a2 + b2. The number β = eiθ corresponds to a unit vector of angle

θ from the x axis.For any such β, if k is not too large (say k < 1/θ) then by elementary

geometric considerations |1−βk|
|1−β| = 2 sin(θ/2)

2 sin(kθ/2)
. We use here the fact (proved in the dotted

box above) that in a unit cycle, the chord corresponding to an angle α is of length 2 sin(α/2).

Dividing by rM gives
∣

∣

x
M − c

r

∣

∣ < 1
10M . Therefore, cr is a rational number with denominator

at most N that approximates x
M to within 1/(10M) < 1/(4N4). It is not hard to see that

such an approximation is unique (Exercise 10.11) and hence in this case the algorithm will
come up with c/r and output the denominator r (see Section 10.6.5).

Thus all that is left is to prove the next two lemmas. The first shows that there are
Ω(r/ log r) values of x that satisfy the above two conditions and the second shows that each
is measured with probability Ω((1/

√
r)2) = Ω(1/r).

Lemma 10.19 There exist Ω(r/ log r) values x ∈ ZM such that:

1. 0 < xr (mod M) < r/10

2. ⌊xr/M⌋ and r are coprime ♦

Lemma 10.20 If x satisfies 0 < xr (mod M) < r/10 then, before the measurement in the
final step of the order-finding algorithm, the coefficient of |x 〉 is at least Ω( 1√

r
). ♦

Proof of Lemma 10.19: We prove the lemma for the case that r is coprime to M ,
leaving the general case as Exercise 10.15. In this case, the map x 7→ rx (mod M) is a
permutation of Z∗

M . There are at least Ω(r/ log r) numbers in [1..r/10] that are coprime
to r (take primes in this range that are not one of r’s at most log r prime factors) and
hence Ω(r/ log r) numbers x such that rx (mod M) = xr − ⌊xr/M⌋M is in [1..r/10] and
coprime to r. But this means that ⌊rx/M⌋ can not have a nontrivial shared factor with r,
as otherwise this factor would be shared with rx (mod M) as well. �

Proof of Lemma 10.20: Let x be such that 0 < xr (mod M) < r/10. The absolute
value of |x 〉’s coefficient in the state before the measurement is

1√
K

√
M

∣

∣

∣

∣

∣

K−1
∑

ℓ=0

ωℓrx

∣

∣

∣

∣

∣

, (8)

where K = ⌊(M − x0 − 1)/r⌋. Note that M
2r < K < M

r since x0 < N ≪M .
Setting β = ωrx (note that since M 6 |rx, β 6= 1) and using the formula for the sum of a

geometric series, this is at least

√
r

2M

∣

∣

∣

1−β⌈M/r⌉

1−β

∣

∣

∣ =
√
r

2M
sin(θ⌈M/r⌉/2)

sin(θ/2) , (9)

where θ = rx (mod M)
M is the angle such that β = eiθ (see Figure 10.6 for a proof by picture

of the last equality). Under our assumptions ⌈M/r⌉ θ < 1/10 and hence (using the fact that

sinα ∼ α for small angles α), the coefficient of x is at least
√
r

4M ⌈M/r⌉ ≥ 1
8
√
r

�

This completes the proof of Lemma 10.18 �
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10.6.4 Reducing factoring to order finding.

The reduction of the factoring problem to the order-finding problem is classical (in partic-
ular, predates quantum computing) and follows from the following two Lemmas:

Lemma 10.21 For every nonprime N that is not a prime power, the probability that a ran-
dom X in the set Z∗

N = {X ∈ [N − 1] : gcd(X,N) = 1} has an even order r and furthermore,
Xr/2 6= −1 (mod N) is at least 1/4. ♦
Lemma 10.22 For every N and Y , if Y 2 = 1 (mod N) but Y (mod N) 6∈ {+1,−1} then
gcd(Y − 1, N) 6∈ 1, N . ♦

Together, lemmas 10.21 and 10.22 show that given a composite N that is not a prime
power if we choose A at random in [N − 1] then with good probability either gcd(A,N)
or gcd(Ar/2 − 1, N) will yield a non-trivial factor F of N . We can then use recursion to
find the prime factors of F and N/F respectively, leading to a polylog(N) time factorization
algorithm. (Note that if N is a prime power then it is easy to find its factorization by simply
going over all ℓ ∈ [logN ] and trying the ℓth root of N .) Thus to prove Theorem 10.15 all
that is left is to prove lemmas 10.21 and 10.22. The proofs rely on some basic facts from
number theory; see Section A.3 in the Appendix for a quick review.

Proof of Lemma 10.22: Under our assumptions, N divides Y 2 − 1 = (Y − 1)(Y + 1)
but does not divide neither Y − 1 or Y + 1. But this means that gcd(Y − 1, N) > 1 since
if Y − 1 and N were coprime, then since N divides (Y − 1)(Y + 1), it would have to divide
Y + 1 (Exercise 10.12). Since Y − 1 < N , obviously gcd(Y − 1, N) < N and hence we’re
done. �

Proof of Lemma 10.21: We prove the lemma for the case N = PQ for primes P,Q: the
proof can be suitably generalized for every N . Now, by the Chinese Remainder Theorem
every X ∈ Z∗

N is isomorphic to the pair 〈X (mod P ), X (mod Q)〉. In particular, choosing
a random number X ∈ Z∗

N is equivalent to choosing two random numbers Y, Z in Z∗
P and Z∗

Q

respectively and setting X to be the unique number corresponding to the pair 〈Y, Z〉. Now
for every k, Xk (mod N) is isomorphic to 〈Y k (mod P ), Zk (mod Q)〉 and so the order of
X is the least common multiple of the orders of Y and Z modulo P and Q respectively. We
will complete the proof by showing that with probability at least 1/2, the order of Y is even:
a number of the form 2kc for k ≥ 1 and c odd. We then show that with probability at least
1/2, the order of Z has the form 2ℓd for d odd and ℓ 6= k. This implies that the order of X
is r = 2max{k,ℓ}lcm(c, d) (where lcm denotes the least common multiple) which, means that
Xr/2 will be equal to 1 in at least one coordinate. Since −1 (mod N) is isomorphic to the
tuple 〈−1,−1〉 this means that Xr/2 6= −1 (mod P ).

Thus all that is left is to prove the following:

• Y has even order with probability at least 1/2.

Indeed, the set of numbers in Z∗
P with odd order is a subgroup of Z∗

P : if Y, Y ′ have

odd orders r, r′ respectively then (Y Y ′)rr
′

= 1 (mod P ), which means that the order
of Y Y ′ divides the odd number rr′. Yet −1 has even order, implying that this is a
proper subgroup of Z∗

P , taking at most 1/2 of Z∗
P .

• There is a number ℓ0 such that with probability exactly 1/2, the order of of a random
Z ∈ Z∗

Q is a number of the form 2ℓc for ℓ ≤ ℓ0. (This implies that for every fixed k,

the probability that the order has the form 2kd is at most 1/2.)

For every ℓ, define Gℓ to be the subset of Z∗
Q whose order modulo Q is of the form

2jc where j ≤ ℓ and c is odd. It can be verified that for every ℓ, Gℓ is a subgroup
of Gℓ+1 and furthermore, because modulo a prime P the mapping x 7→ x2 (mod P )
is two-to-one and maps Gℓ+1 into Gℓ (Exercise 10.13), |Gℓ| ≥ |Gℓ+1|/2. It follows
that if we take ℓ0 to be the largest such that Gℓ0 is a proper subgroup of Z∗

P , then
|Gℓ0 | = |Z∗

P |/2.

�
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10.6.5 Rational approximation of real numbers

In many settings, including Shor’s algorithm, we are given a real number in the form of a
program that can compute its first t bits in poly(t) time. We are interested in finding a
close approximation to this real number of the form a/b, where there is a prescribed upper
bound on b. Continued fractions is a tool in number theory that is useful for this.

A continued fraction is a number of the following form:

a0 +
1

a1 + 1

a2+
1

a3+...

for a0 a non-negative integer and a1, a2, . . . positive integers.
Given a real number α > 0, we can find its representation as an infinite fraction as

follows: split α into the integer part ⌊α⌋ and fractional part α − ⌊α⌋, find recursively the
representation R of 1/(α− ⌊α⌋), and then write

α = ⌊α⌋+
1

R
.

If we continue this process for n steps, we get a rational number, denoted by [a0, a1, . . . , an],
which can be represented as pn

qn
with pn, qn coprime. The following facts can be proven using

induction:

• p0 = a0, q0 = 1 and for every n > 1, pn = anpn−1 + pn−2, qn = anqn−1 + qn−2.

•
pn
qn
− pn−1

qn−1
= (−1)n−1

qnqn−1

Furthermore, it is known that

∣

∣

∣

pn
qn
− α

∣

∣

∣< 1
qnqn+1

, (10)

which implies that pn
qn

is the closest rational number to α with denominator at most qn. It

also means that if α is extremely close to a rational number, say,
∣

∣α− a
b

∣

∣ < 1
4b4 for some

coprime a, b then we can find a, b by iterating the continued fraction algorithm for polylog(b)
steps. Indeed, let qn be the first denominator such that qn+1 ≥ b. If qn+1 > 2b2 then (10)
implies that

∣

∣

pn
qn
−α

∣

∣ < 1
2b2 . But this means that pn

qn
= a

b since there is at most one rational

number of denominator at most b that is so close to α. On the other hand, if qn+1 ≤ 2b2

then since pn+1

qn+1
is closer to α than a

b ,
∣

∣

pn+1

qn+1
− α

∣

∣ < 1
4b4 , again meaning that pn+1

qn+1
= a

b . It’s

not hard to verify that qn ≥ 2n/2, implying that pn and qn can be computed in polylog(qn)
time.

10.7 BQP and classical complexity classes

What is the relation between BQP and the classes we already encountered such as P,
BPP and NP? This is very much an open questions. It not hard to show that quantum
computers are at least not infinitely powerful compared to classical algorithms:

Theorem 10.23 BQP ⊆ PSPACE ♦

Proof Sketch: To simulate a T -step quantum computation on an m qubit register,
we need to come up with a procedure Coeff that for every i ∈ [T ] and x ∈ {0, 1}m, the
xth coefficient (up to some accuracy) of the register’s state in the ith execution. We can
compute Coeff on inputs x, i using at most 8 recursive calls to Coeff on inputs x′, i − 1
(for the at most 8 strings that agree with x on the three bits that the Fi’s operation reads
and modifies). Since we can reuse the space used by the recursive operations, if we let S(i)
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denote the space needed to compute Coeff(x, i) then S(i) ≤ S(i− 1) +O(ℓ) (where ℓ is the
number of bits used to store each coefficient).

To compute, say, the probability that if measured after the final step the first qubit of
the register is equal to 1, just compute the sum of Coeff(x, T ) for every x ∈ {0, 1}n. Again,
by reusing the space of each computation this can be done using polynomial space. �

In Exercise 17.7 later in the book you are asked to improve Theorem 10.23 to show that
BQP ⊆ P#P (where #P is the counting version of NP described in Chapter 17). One can
even show show BQP ⊆ PP [ADH97] (see Definition 17.6). But these are essentially the
best bounds we know on BQP.

Does BQP = BPP? The main reason to believe this is false is the polynomial-time
quantum algorithm for integer factorization, whereas no similar algorithm is believed to
exist for probabilistic computation. Although this is not as strong as the evidence for, say
NP * BPP (after all NP contains thousands of well-studied problems that have resisted
efficient algorithms), the factorization problem is one of the oldest and most well-studied
computational problems, and the fact that we still know no efficient algorithm for it makes
the conjecture that none exists appealing. Also note that unlike other famous problems
that eventually found an algorithm (e.g., linear programming [Kha79] and primality testing
[AKS04]), we do not even have a heuristic algorithm that is conjectured to work (even without
proof) or experimentally works on, say, numbers that are product of two random large
primes.

What is the relation between BQP and NP? It seems that quantum computers only
offer a quadratic speedup (using Grover’s search) on NP-complete problems. There are
also oracle results showing that NP problems require exponential time on quantum com-
putersl [BBBV97]. So most researchers believe that NP * BPP. On the other hand, there
is a problem in BQP (the Recursive Fourier Sampling or RFS problem [BV93]) that is not
known to be in the polynomial-hierarchy, let alone in NP. Thus it seems that BQP and
NP may be incomparable classes.

10.7.1 Quantum analogs of NP and AM

Can we define an analog of NP in the quantum computing world? The class NP was
defined using the notion of a certificate that is checked by a deterministic polynomial-time
(classical) TM. However, quantum computation includes probabilistic classical computation
as a subcase. Therefore the correct classical model to look at is the one where the certificate
is verified by a polynomial-time randomized algorithm, namely, MA (see Definition 8.10).
Thus the quantum analog of NP is denoted by QMA. More generally, one can define
quantum interactive proofs, which generalize the definition of AM[k]. These turn out to be
surprisingly powerful. Three-round quantum interactive proofs suffice to capture PSPACE,
as shown by Watrous [Wat03]. If the same were true of classical interactive proofs, then PH
would collapse.

A “Quantum Cook-Levin Theorem” was proven by Kitaev (unpublished, see Umesh
Vazirani’s lecture notes, which are linked from this book’s website). This shows that a
quantum analog of 3SAT, called Q 5SAT, is complete for QMA. In this problem are given
m elementary quantum operations H1, H2, . . . , Hm on an n-bit quantum register. Each
operation acts upon only 5 bits of the register (and hence is represented by a 25×25 matrix,
which implicitly defines a 2n × 2n matrix). Let H be the 2n × 2n matrix

∑

j Hj . We are
promised that either all eigenvalues of H are ≥ b or there is an eigenvalue of H that is ≤ a
where 0 ≤ a ≤ b ≤ 1 and b− a is at least 1/nc where c is a constant. We have to determine
which case holds.

The reader could try to prove this completeness result as an exercise. As a warmup, first
show how to reduce 3SAT to Q 5SAT.
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Chapter notes and history

Since a quantum computer is reversible (Lemma 10.7), an important precursor of quantum com-
puting was a field called reversible computing [Ben87], which seeks to find thermodynamic limits to
the speed of classical computers. Toffoli’s gate was invented in that context.

In 1982, Feynman [Fey82] pointed out that there seems to be no efficient simulation of quantum
mechanics on classical Turing machines, and suggested that building quantum computers might
allow us to run such simulations. (In fact, this still might be their most important application if
they are ever built.) He also raised the possibility that quantum TMs may have more computational
power than classical TMs. In 1985 Deutsch [Deu85] formally defined a quantum Turing machine,
though in retrospect his definition is unsatisfactory. Better definitions then appeared in Deutsch-
Josza [DJ92] and Bernstein-Vazirani [BV93]. The latter paper was the first to demonstrate the
existence of a universal quantum TM that can simulate all other quantum TMs with only polynomial
slowdown. Yao [Yao93] generalized these results to quantum circuits, and our definition of quantum
computation follows Yao. (The Bernstein-Vazirani quantum TM model is known to be less noise-
tolerant than the circuit model, and thus less likely to be realized.) Deutsch [Deu89] showed that
a certain 3-qubit gate is universal for quantum circuits, while Solovay (unpublished manuscript,
1995) and, independently, Kitaev [Kit97], showed that universal gates can approximate every unitary
matrix with precision exponentially small in the number of gates, yielding Theorem 10.12 (though
we stated it with a particular universal basis mentioned in the book [NC00]).

Bernstein and Vazirani also introduced the quantum algorithm for computing the fourier trans-
form, and gave evidence that it provides superpolynomial speedups over classical algorithms. The
papers of Simon and Shor gave further evidence along these lines, and in particular Shor’s paper
caught the imagination of the scientific world, as well as of governments worldwide (who now feared
for the security of their cryptosystems).

Quantum computation has a fascinating connection with cryptography. On the one hand,
if quantum computers are ever built then Shor’s algorithm and various generalizations thereof
could be used to completely break the security of RSA and all other factoring or discrete-log
based cryptosystems. On the other hand, it turns out that using quantum mechanics and the
ideas underlying the EPR/Bell “paradox”, it is possible to have unconditionally secure public key
cryptography, a concept known as quantum key distribution [BB84] and more generally as quantum
cryptography. That is, these cryptosystem are secure against even computationally unbounded
adversaries. In fact, constructing these systems does not require the full-fledged power of quantum
computers, and prototype implementations already exist. Still, there are very significant engineering
challenges and issues that can compromise the real-world applicability and security of these systems.
One should note however that even if quantum computers are built, it may very well be possible
to still have conventional computational cryptography that is resistant even to polynomial-time
quantum algorithms. For example, as far as we know quantum computers can at best invert one-
way functions (Definition 9.4) quadratically faster than classical algorithms (using Grover’s search).
Thus, most researchers believe that private key cryptography (including even digital signatures!)
will be just as resistant against quantum computers as it is against “classical” Turing machines.
Even for public key cryptography, there are (few) candidates systems that are based on problems
not known to have efficient quantum algorithms. Perhaps the most promising direction is basing
such schemes on certain problems on integer lattices (see the notes for Chapter 9).

Grover’s and Simon’s algorithm actually operate in a more general model known as the quantum
black-box model, in which an algorithm is given black-box access to an oracle computing the unitary
transformation |x 〉 |y 〉 7→ |x 〉 |y ⊕ f(x) 〉 for some function f and tries to discover properties of f .
There have been interesting upper bounds and lower bounds on the power of such algorithms.
In particular, we know that Grover’s algorithm is optimal in this model [BBBV97]. We also have
several other “Grover-like” algorithms in this model; see the survey [Amb04]. One can view Grover’s
algorithm as evaluating an OR over N = 2n-variables. Thus a natural question is whether it can
be generalized into more general formulae; a particularly interesting special case is AND-OR trees
(i.e., OR of ANDs of ORs ...) that arise in various applications such game strategies. This was
question was open for a while, and in particular we didn’t know if quantum algorithms can beat
the best randomized algorithm for the full binary balanced AND-OR tree, which needs to look at

O(N log(
1+

√
33

4
)) = O(N0.753..) variables [Sni81, SW86]. In a recent breakthrough, Farhi, Goldstone

and Gutmann [FGG07] showed an O(N1/2+o(1))-time quantum algorithm for this problem, a result
that was generalized by Ambainis et al [ACR+07] to hold for all AND-OR trees.

Research on quantum computing has generated some interesting insights on both “classical”
computational complexity, and “non-computational” physics. A good example for a result of the
first kind is the paper of Aharonov and Regev [AR04], that uses quantum insights to show a classical



Exercises 203

computational complexity result (that a
√
n-approximation of the lattice shortest vector problem

is in coNP). Examples for the results of the second kind include the works on quantum error
correction (see below) and results on adiabatic computation [AvDK+04, AGIK07, vDMV01], that
clarified this model and refuted some of the physicists’ initial intuitions about it.

The chapter did not discuss the issue of quantum error correction, which tackles the following
important issue: how can we run a quantum algorithm when at every possible step there is a
probability of noise interfering with the computation? The issue is undoubtedly crucial, since an
implementation of Shor’s algorithms for interesting values of N requires hundreds of thousands of
particles to stay in quantum superposition for large-ish periods of time. Thus far it is an open
question whether this is practically achievable. Physicists’ original intuition was that noise and
decoherence will make quantum computing impractical; one obstacle cited was the no-cloning the-
orem [WZ82], which seems to rule out use of classical error-correction ideas in quantum computing.
However, Shor’s followup paper on quantum error correction [Sho95] contradicted this intuition and
spurred much additional work. We now know that under reasonable noise models, so long as the
probability of noise at a single step is lower than some constant threshold, one can perform arbitrar-
ily long computations and get the correct answer with high probability; see the articles by Preskill
[Pre97, Pre98]. Unfortunately, there are no estimates of the true noise rate in physical systems.

In fact it is unclear what the correct model of noise should be; this question is related to
the issue of what is the reality underlying the quantum description of the world. Though the
theory has had fantastic success in predicting experimental results (which perhaps is the criteria
by which a physical theory is judged), some physicists are understandably uncomfortable with the
description of nature as maintaining a huge array of possible states, and changing its behavior when
it is observed. The popular science book [Bru04] contains a good (even if a bit biased) review of
physicists’ and philosophers’ attempts at providing more palatable descriptions that still manage
to predict experiments.

On a more technical level, while no one doubts that quantum effects exist at microscopic scales,
scientists question why they do not manifest themselves at the macrosopic level (or at least not to
human consciousness). Physicist Penrose [Pen90] has gone so far as to make a (highly controversial)
suggestion about a link between human consciousness and the collapse of the probability wave. A
Scientific American article by Yam [Yam97] describes various other explanations that have been
advanced over the years, including decoherence (which uses quantum theory to explain the absence
of macroscopic quantum effects) and hidden variable theories (which restore a deterministic order
to world). No single explanation seems to please all researchers.

Finally, we note that since qubits are such a simple example of a quantum system, there is a
growing movement to teach quantum mechanics using qubits and quantum computing rather than,
say, the standard model of the hydrogen atom or electron-in-a-box. This is an interesting example
of how the computational worldview (as opposed to computation in the sense of number-crunching)
is seeping into the sciences.

For details of these and many other topics in quantum computing and information, see the books
by Kitaev, Shen, and Vyalyi [KVS02] and Nielsen and Chuang [NC00]. Some excellent lecture notes
and surveys can be found on the home pages of Umesh Vazirani and Scott Aaronson. Aaronson’s
Scientific American article [Aar08] provides an excellent popular-science exposition of the field.

Exercises

10.1 Show a quantum strategy that enables Alice and Bob to win the parity game of theorems 10.3
and 10.4 with probability 0.85.

10.2 Prove Claim 10.5. H460

10.3 For each one of the following operations: Hadamard, NOT, controlled-NOT, rotation by π/4, and
Toffoli, write down the 8×8 matrix that describes the mapping induced by applying this operation
on the first qubits of a 3-qubit register.

10.4 Define a linear function F : R2m → R2m to be an elementary probabilistic operation if it satisfies
the following conditions:

• F is stochastic: that is, for every v ∈ Rm such that
∑

x vx = 1,
∑

x(Av)x = 1.

• F depends on at most three bits. That is, there is a linear function G : R23 → R23

and three
coordinates i < j < k ∈ [m] such that for every vector of the form |x1x2 · · ·xm 〉,

F |x1 · · ·xm 〉 =
∑

a,b,c∈{0,1}
(G |xixjxk 〉)abc |x1..xi−1axi+1..xj−1bxj+1...xk−1cxk+1..xm 〉 .
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Let f : {0, 1}∗ → {0, 1} and T : N → N be some functions. We say that f is computable in
probabilistic T (n)-time if for every n ∈ N and x ∈ {0, 1}n, f(x) can be computed by the following
process:

(a) Initialize an m bit register to the state
∣

∣x0n−m 〉 (i.e., x padded with zeroes), where m ≤ T (n).

(b) Apply one after the other T (n) elementary operations F1, . . . , FT to the register (where we

require that there is a polynomial-time TM that on input 1n, 1T (n) outputs the descriptions
of F1, . . . , FT ).

(c) Measure the register and let Y denote the obtained value. (That is, if v is the final state of
the register, then Y is a random variable that takes the value y with probability vy for every
y ∈ {0, 1}n.)

We require that the first bit of Y is equal to f(x) with probability at least 2/3.

Prove that a function f : {0, 1}∗ → {0, 1} is computable in p(n)-probabilistic p(n)-time per the
above definition for some polynomial p iff f ∈ BPP.

10.5 Prove that if f ∈ BQP then f has a quantum polynomial-time algorithm in which all of the matrices
are real— contain no numbers of the form a + ib for b 6= 0. (This exercise can be thought of as
showing that the power of quantum mechanics as opposed to classical probabilistic computation
comes from the fact that we allow negative numbers in state representations, and not from the fact
that we allow complex numbers.)

H460

10.6 Suppose that a two-qubit quantum register is in an arbitrary state v. Show that the following three
experiments will yield the same probability of output:

(a) Measure the register and output the result.

(b) First measure the first qubit and output it, then measure the second qubit and output it.

(c) First measure the second qubit and output it, then measure the first qubit and output it.

10.7 Suppose that f is computed in T time by a quantum algorithm that uses a partial measurements
in the middle of the computation, and then proceeds differently according to the result of that
measurement. Show that f is computable by O(T ) elementary operations.

10.8 Show that in a quantum computation that runs for T steps, we can replace each gate with any
other gate (i.e., 8× 8 matrix) which is the same in the 10 log T most significant bits. Show that the
amplitudes in the resulting final states are the same in the first T bits.

10.9 Prove that if for some a ∈ {0, 1}n, the strings y1, . . . , yn−1 are chosen uniformly at random from
{0, 1}n subject to yi ⊙ a = 0 for every i ∈ [n− 1], then with probability at least 1/10, there exists
no nonzero string a′ 6= a such that yi ⊙ a′ = 0 for every i ∈ [n − 1]. (In other words, the vectors
y1, . . . , yn−1 are linearly independent.)

10.10 Prove that given A,x ∈ {0, . . . ,M − 1}, we can compute (using a classical TM!) Ax (mod M) in
time polynomial in logM . H460

10.11 Prove that for every α < 1, there is at most a single rational number a/b such that b < N and
|α− a/b| < 1/(2N2).

10.12 Prove that if A,B are numbers such that N and A are coprime but N divides AB, then N divides
B. H460

10.13 Complete the proof of Lemma 10.21:

(a) Prove that for every prime P , the map x 7→ x2 (mod P ) is two-to-one on Z∗
P .

(b) Prove that if X’s order modulo P is of the form 2jc for some j ≥ 1 and odd c, then the order
of X2 is of the form 2j−1c′ for odd c′.

(c) Complete the proof of Lemma 10.21 for an arbitrary composite N that is not a prime power.

10.14 Prove Lemma 10.17.

10.15 Complete the proof of Lemma 10.19 for the case that r and M are not coprime. That is, prove
that also in this case there exist at least Ω(r/ log r) values x’s such that 0 ≤ rx (mod M) ≤ r/2
and ⌈M/x⌉ and r are coprime. H460

10.16 (Uses knowledge of continued fractions) Suppose j, r ≤ N are mutually coprime and unknown to
us. Show that if we know the first 2 logN bits of j/r then we can recover j, r in polynomial time.



Chapter 11

PCP Theorem and Hardness of
Approximation: An introduction

“...most problem reductions do not create or preserve such gaps...To create
such a gap in the generic reduction (cf. Cook)...also seems doubtful. The in-
tuitive reason is that computation is an inherently unstable, non-robust math-
ematical object, in the the sense that it can be turned from non-accepting to
accepting by changes that would be insignificant in any reasonable metric.”
Papadimitriou and Yannakakis [PY88]

This chapter describes the PCP Theorem, a surprising discovery of complexity theory,
with many implications to algorithm design. Since the discovery of NP-completeness in
1972 researchers had mulled over the issue of whether we can efficiently compute approxi-
mate solutions to NP-hard optimization problems. They failed to design such approxima-
tion algorithms for most problems (see Section 11.1 for an introduction to approximation
algorithms). They then tried to show that computing approximate solutions is also hard,
but apart from a few isolated successes this effort also stalled. Researchers slowly began to
realize that the Cook-Levin-Karp style reductions do not suffice to prove any limits on ap-
proximation algorithms (see the above quote from an influential Papadimitriou-Yannakakis
paper that appeared a few years before the discoveries described in this chapter). The PCP
theorem, discovered in 1992, gave a new definition of NP and provided a new starting point
for reductions. It was considered very surprising at the time (see the note at the end of
Section 11.2.2).

As we discuss in Section 11.2, there are two ways to view the PCP theorem. One view
of the PCP Theorem is that it constructs locally testable proof systems: the PCP Theorem
gives a way to transform every mathematical proof into a form that is checkable by only
looking at very few (probabilistically chosen) symbols of the proof. (The acronym “PCP”
stands for Probabilistically Checkable Proofs.) Another view of the PCP Theorem is that it
is a hardness of approximation result: the PCP theorem shows that for many NP-complete
optimization problems, computing an approximate solution is as hard as computing the exact
solution (and hence cannot be done efficiently unless P = NP.) We show the equivalence
of these two views in Section 11.3.

In Section 11.4 we demonstrate the usefulness of the PCP Theorem by using it to derive
a very strong hardness of approximation result for the INDSET and MIN-VERTEX-COVER

problems.
Although only one result is known as the PCP Theorem (Theorem 11.5 below) several

related “PCP theorems” have been discovered, differing in various setting of parameters. In
this chapter we prove such a theorem (Theorem 11.19 in Section 11.5) giving a weaker —but
still useful— result than the full-fledged PCP Theorem. Another motivation for showing
Theorem 11.19 is that it will play a part in the proof of the PCP Theorem, which appears
in full in Chapter 22.
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The various PCP theorems have revolutionized our understanding of the approximability
of NP-hard problems. Chapter 22 will surveys several of these theorems.

11.1 Motivation: approximate solutions to NP-hard optimization

problems

As mentioned in Chapter 2, one of the main motivations for the theory of NP-completeness
was to understand the computational complexity of computing optimum solutions to com-
binatorial problems such as TSP or INDSET. Since P 6= NP implies that thousands of
NP-hard optimization problems do not have efficient algorithms, attention then focused
on whether or not they have efficient approximation algorithms. In many practical settings,
obtaining an approximate solution to a problem may be almost as good as solving it exactly,
and could be a lot easier. Researchers are therefore interested in finding the best possible
approximation algorithms for NP-hard optimization problems. For instance, it would be
good to understand whether or not we could approximate interesting NP-problema within
an arbitrary precision: if we could, then P 6= NP would not be such a a big deal in practice.
Many researchers suspected that there are inherent limits to approximation, and proving
such limits was the main motivation behind the discovery of the PCP theorem.

In this section we illustrate the notion of approximation algorithms with an example.
Let MAX-3SAT be the problem of finding, given a 3CNF Boolean formula ϕ as input, an
assignment that maximizes the number of satisfied clauses. This problem is of course NP-
hard, because the corresponding decision problem, 3SAT, is NP-complete. We define an
approximation algorithm for MAX-3SAT in the following way.

Definition 11.1 (Approximation of MAX-3SAT)
For every 3CNF formula ϕ, the value of ϕ, denoted by val(ϕ), is the maximum fraction of
clauses that can be satisfied by any assignment to ϕ’s variables. In particular, ϕ is satisfiable
iff val(ϕ) = 1.
For every ρ ≤ 1, an algorithm A is a ρ-approximation algorithm for MAX-3SAT if for every
3CNF formula ϕ with m clauses, A(ϕ) outputs an assignment satisfying at least ρ · val(ϕ)m
of ϕ’s clauses.

Now we give two simple examples of approximation algorithms; see the Chapter notes
for references to more nontrivial algorithms.

Example 11.2 (1/2-approximation for MAX-3SAT)
We describe a polynomial-time algorithm that computes a 1/2-approximation for
MAX-3SAT. The algorithm assigns values to the variables one by one in a greedy
fashion, whereby the ith variable is assigned the value that results in satisfying at
least 1/2 the clauses in which it appears. Any clause that gets satisfied is removed
and not considered in assigning values to the remaining variables. Clearly, the
final assignment will satisfy at least 1/2 of all clauses, which is certainly at least
half of the maximum that the optimum assignment could satisfy.
Using semidefinite programming one can also design a polynomial-time (7/8−ǫ)-
approximation algorithm for every ǫ > 0 (see chapter notes). Obtaining such
a ratio is trivial if we restrict ourselves to 3CNF formulae with three distinct
variables in each clause. Then a random assignment has probability 7/8 to satisfy
it. Linearity of expectations (Claim A.3) implies that a random assignment is
expected to satisfy a 7/8 fraction of the clauses. This observation can be turned
into a simple probabilistic or even deterministic 7/8-approximation algorithm
(see Exercise 11.3).
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For a few problems, one can even design (1 − ǫ)-approximation algorithms for
every ǫ > 0. Exercise 11.12 asks you to show this for the NP-complete knapsack
problem.

Example 11.3 (1/2-approximation for MIN-VERTEX-COVER)
The decision problem VERTEX-COVER was introduced in Example 2.15 in Chap-
ter 2. The optimization version is MIN-VERTEX-COVER, in which we are given
a graph and wish to determine the size of the minimum vertex cover (which, re-
call, is a set of vertices such that every graph edge contains one these vertices).
For ρ ≤ 1, a ρ-approximation algorithm for MIN-VERTEX-COVER is an algo-
rithm that on input a graph G outputs a vertex cover whose size is at most 1/ρ
times the size of the minimum vertex cover.1 We now show a 1/2-approximation
algorithm for MIN-VERTEX-COVER:
Start with S ← ∅. Pick any edge in the graph e1, and add both its endpoints
to S. Delete these two vertices from the graph as well as all edges adjacent to
them. Iterate this process, picking edges e2, e3, . . . and adding their endpoints
to S until you arrive at the empty graph.
Clearly, the set S at the end is such that every graph edge has an endpoint in
S. Thus S is a vertex cover. Furthermore, the sequence of edges e1, e2, . . . used
to build up S are pairwise disjoint; in other words, they form a matching. The
cardinality of S is twice the number of edges in this matching. Furthermore,
the minimum vertex cover must include at least one endpoint of each matching
edge. Thus the cardinality of S is at most twice the cardinality of the minimum
vertex cover.

11.2 Two views of the PCP Theorem.

The PCP Theorem can be viewed in two alternative ways, and internalizing both these
ways is crucial to understanding both the theorem and its proof. One view of this theorem
is that it talks about new, extremely robust proof systems. The other is that it talks about
approximating combinatorial optimization problems.

11.2.1 PCP Theorem and locally testable proofs

The first view of the PCP Theorem (and the reason for its name) is as providing a new
kind of proof systems. Suppose someone wants to convince you that a Boolean formula is
satisfiable. He could present the usual certificate, namely, a satisfying assignment, which
you could then check by substituting back into the formula. However, doing this requires
reading the entire certificate. The PCP Theorem shows an interesting alternative: this
person can easily rewrite his certificate so you can verify it by probabilistically selecting
a constant number of locations—as low as 3 bits— to examine in it. Furthermore, this
probabilistic verification has the following properties: (1) A correct certificate will never
fail to convince you (that is, no choice of your random coins will make you reject it) and (2)
If the formula is unsatisfiable, then you are guaranteed to reject every claimed certificate
with high probability.

Of course, since Boolean satisfiability is NP-complete, every other NP language can be
deterministically and efficiently reduced to it. Thus the PCP Theorem applies to every NP
language. We mention one counterintuitive consequence. Let A be any one of the usual

1Many texts call such an algorithm a 1/ρ-approximation algorithm instead.
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axiomatic systems of mathematics for which proofs can be verified by a deterministic TM
in time that is polynomial in the length of the proof. Recall the following language is in
NP:

L = {〈ϕ, 1n〉 : ϕ has a proof in A of length ≤ n} .

The PCP Theorem asserts that L has probabilistically checkable certificates. Such cer-
tificate can be viewed as an alternative notion of “proof” for mathematical statements that
is just as valid as the usual notion. However, unlike standard mathematical proofs, where
every line of the proof has to be checked to verify its validity, this new notion guarantees
that proofs are probabilistically checkable by examining only a constant number of bits in
them.2

We now make a more formal definition. Recall that a language L is in NP if there
is a poly-time Turing machine V (“verifier”) that, given input x, checks certificates (or
membership proofs) to the effect that x ∈ L (see Definition 2.1). In other words,

x ∈ L⇒ ∃π s.t. V π(x) = 1

x /∈ L⇒ ∀π V π(x) = 0,

where V π denotes “a verifier with access to certificate π”.

The class PCP is a generalization of this notion, with the following changes. First, the
verifier is probabilistic. Second, the verifier has random access to the proof string Π. This
means that each bit of the proof string can be independently queried by the verifier via a
special address tape: if the verifier desires say the ith bit in the proof string, it writes i on
the address tape and then receives the bit π[i].3 The definition of PCP treats queries to
the proof as a precious resource, to be used sparingly. Note also that since the address size
is logarithmic in the proof size, this model in principle allows a polynomial-time verifier to
check membership proofs of exponential size.

Verifiers can be adaptive or nonadaptive. A nonadaptive verifier selects its queries based
only on its input and random tape. In other words, no query depends upon the responses to
any of the prior queries. By contrast, an adaptive verifier can rely upon bits it has already
queried in π to select its next queries. We restrict verifiers to be nonadaptive, since most
PCP Theorems can be proved using nonadaptive verifiers, but Exercise 11.2 explores the
power of adaptive queries.

Verifier

Input: x in {0,1}n�
r(n) coins 

q(n) queries

proof: π 

Figure 11.1 A PCP verifier for a language L gets an input x and random access to a string
π. If x ∈ L then there exists a string π that makes the verifier accepts, while if x 6∈ L then
the verifier rejects every proof π with probability at least 1/2.

2One newspaper article about the discovery of the PCP Theorem carried the headline “New shortcut
found for long math proofs!”

3For a precise formalization, see Exercise 1.9 discussing RAM Turing machines or Section 5.5 discussing
oracle Turing machines.
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Definition 11.4 (PCP verifier)
Let L be a language and q, r : N → N. We say that L has an (r(n), q(n))-PCP verifier if
there’s a polynomial-time probabilistic algorithm V satisfying:

Efficiency: On input a string x ∈ {0, 1}n and given random access to a string π ∈ {0, 1}∗
(which we call the proof ), V uses at most r(n) random coins and makes at most
q(n) non-adaptive queries to locations of π (see Figure 11.1). Then it outputs “1”(for
“accept”) or “0” (for “reject”). We let V π(x) denote the random variable representing
V ’s output on input x and with random access to π.

Completeness: If x ∈ L then there exists a proof π ∈ {0, 1}∗ such that Pr[V π(x) = 1] = 1.
We call this string π the correct proof for x.

Soundness: If x 6∈ L then for every proof π ∈ {0, 1}∗, Pr[V π(x) = 1] ≤ 1/2.

We say that a language L is in PCP(r(n), q(n)) if there are some constants c, d > 0 such
that L has a (c · r(n), d · q(n))-PCP verifier.

The PCP Theorem says that every NP language has a highly efficient PCP verifier:

Theorem 11.5 (The PCP Theorem [AS92, ALM+92])
NP = PCP(log n, 1).

Remark 11.6
Some notes are in order:

1. The soundness condition stipulates that if x 6∈ L then the verifier has to reject every
proof with probability at least 1/2. Establishing this is the most difficult part of the
proof.

2. We may assume without loss of generality that proofs checkable by an (r, q)-verifier
are of length at most q2r, since such a verifier can look on at most this number of
locations with nonzero probability.

3. The previous remark implies that PCP(r(n), q(n)) ⊆ NTIME(2O(r(n))q(n)) since a
nondeterministic machine could guess the proof in 2O(r(n))q(n) time, and verify it de-
terministically by running the verifier for all 2O(r(n)) possible choices of its random coin
tosses. If the verifier accepts for all these possible coin tosses then the nondeterministic
machine accepts.

As a special case, PCP(logn, 1) ⊆ NTIME(2O(log n)) = NP: this is the trivial
direction of the PCP Theorem.

4. The statement of the PCP Theorem allows verifiers for different NP languages to
use a different number of query bits (so long as this number is constant). However,
since every NP language is polynomial-time reducible to SAT, all these numbers can
be upper bounded by a universal constant, namely, the number of query bits required
by a verifier for SAT.

5. The constant 1/2 in the soundness requirement of Definition 11.4 is arbitrary, in the
sense that changing it to any other positive constant smaller than 1 will not change
the class of languages defined. Indeed, a PCP verifier with soundness 1/2 that uses r
coins and makes q queries can be converted into a PCP verifier using cr coins and cq
queries with soundness 2−c by just repeating its execution c times (see Exercise 11.1).
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Example 11.7
To get a better sense for what a PCP proof system looks like, we sketch two
nontrivial PCP systems:

1. The language GNI of pairs of non-isomorphic graphs is in PCP(poly(n), 1).
Say the input for GNI is 〈G0, G1〉, where G0, G1 have both n nodes. The
verifier expects π to contain, for each labeled graph H with n nodes, a bit
π[H ] ∈ {0, 1} corresponding to whether H ≡ G0 or H ≡ G1 (π[H ] can
be arbitrary if neither case holds). In other words, π is an (exponentially
long) array of bits indexed by the (adjacency matrix representations of) all
possible n-vertex graphs.

The verifier picks b ∈ {0, 1} at random and a random permutation. She
applies the permutation to the vertices ofGb to obtain an isomorphic graph,
H . She queries the corresponding bit of π and accepts iff the bit is b.

If G0 6≡ G1, then clearly a proof π can be constructed which makes the
verifier accept with probability 1. If G1 ≡ G2, then the probability that
any π makes the verifier accept is at most 1/2.

2. The protocols in Chapter 8 can be used (see Exercise 11.7) to show that
the permanent has PCP proof system with polynomial randomness and
queries. Once again, the length of the proof will be exponential.

In fact, both of these results are a special case of the following theorem:

Theorem 11.8 (Scaled-up PCP, [BFLS91, ALM+92, AS92]) PCP(poly(n), 1) = NEXP

Above we use PCP(poly(n), 1) to denote the class ∪c≥1PCP(nc, 1). Theo-
rem 11.8 can be thought of us a “scaled-up” version of the PCP Theorem. We
omit the proof which uses similar techniques to the original proof of the PCP
Theorem and Theorem 8.19 (IP = PSPACE). ♦

11.2.2 PCP and Hardness of Approximation

Another view of the PCP Theorem is that it shows that for many NP optimization prob-
lems, computing approximate solutions is no easier than computing exact solutions.

For concreteness, we focus for now on MAX-3SAT. Until 1992, we did not know whether
or not MAX-3SAT has a polynomial-time ρ-approximation algorithm for every ρ < 1. It
turns out that the PCP Theorem means that the answer is NO (unless P = NP). The
reason is that it can be equivalently stated as follows:

Theorem 11.9 (PCP Theorem: Hardness of Approximation view)
There exists ρ < 1 such that for every L ∈ NP there is a polynomial-time function f
mapping strings to (representations of) 3CNF formulae such that:

x ∈ L⇒ val(f(x)) = 1 (1)

x 6∈ L⇒ val(f(x)) < ρ . (2)

This immediately implies the following corollary:

Corollary 11.10 There exists some constant ρ < 1 such that if there is a polynomial-time
ρ-approximation algorithm for MAX-3SAT then P = NP. ♦

Indeed, Theorem 11.9 shows for every L ∈ NP, a way to convert a ρ-approximation
algorithm A for MAX-3SAT into an algorithm deciding L, since (1) and (2) together imply
that x ∈ L iff A(f(x)) yields an assignment satisfying at least a ρ fraction of f(x)’s clauses.
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Later, in Chapter 22, we show a stronger PCP Theorem by H̊astad which implies
that for every ǫ > 0, if there is a polynomial-time (7/8+ ǫ)-approximation algorithm for
MAX-3SAT then P = NP. Hence the approximation algorithm for this problem mentioned
in Example 11.2 is very likely optimal. The PCP Theorem (and the other PCP theorems
that followed it) imply a host of such hardness of approximation results for many important
problems, often showing that known approximation algorithms are optimal unless P = NP.

Why doesn’t the Cook-Levin reduction suffice to prove Theorem 11.9? The first thing
one would try to prove Theorem 11.9 is the reduction from any NP language to 3SAT in the
Cook-Levin Theorem (Theorem 2.10). Unfortunately, it doesn’t give such an f because it
does not satisfy property (2): Exercise 11.11 asks you to show that we can satisfy almost all
of the clauses in the formulae produced by the reduction. (This is what Papadimitriou and
Yannakakis referred to in their quote.) Hence val(·) is almost 1 for these formulae whereas
Theorem 11.9 requires that val(·) < ρ in one case.

11.3 Equivalence of the two views

We now show the equivalence of the “proof view” and the “hardness of approximation view”
of the PCP Theorem. That is, we show that Theorem 11.5 is equivalent to Theorem 11.9.
To do so we introduce the notion of constraint satisfaction problems (CSP). This is a
generalization of 3SAT that turns up in many applications and also plays an important role
in the proof of the PCP Theorem. A CSP problem generalizes 3SAT by allowing clauses of
arbitrary form (instead of just OR of literals), including those depending upon more than
3 variables.

Definition 11.11 (Constraint satisfaction problems (CSP))
If q is a natural number then a qCSP instance ϕ is a collection of functions ϕ1, . . . , ϕm (called
constraints) from {0, 1}n to {0, 1} such that each function ϕi depends on at most q of its
input locations. That is, for every i ∈ [m] there exist j1, . . . , jq ∈ [n] and f : {0, 1}q → {0, 1}
such that ϕi(u) = f(uj1 , . . . , ujq) for every u ∈ {0, 1}n.
We say that an assignment u ∈ {0, 1}n satisfies constraint ϕi if ϕi(u) = 1. The fraction of

constraints satisfied by u is
∑m
i=1 ϕi(u)

m , and we let val(ϕ) denote the maximum of this value
over all u ∈ {0, 1}n. We say that ϕ is satisfiable if val(ϕ) = 1. We call q the arity of ϕ.

Example 11.12
3SAT is the subcase of qCSP where q = 3, and the constraints are OR’s of the
involved literals.

Notes:

1. We define the size of a qCSP-instance ϕ to be m, the number of constraints it has.
Because variables not used by any constraints are redundant, we always assume n ≤
qm. Note that a qCSP instance over n variables with m constraints can be described
usingO(mnq2q) bits. (In all cases we are interested in, q will be a constant independent
of n,m.)

2. The simple greedy approximation algorithm for 3SAT can be generalized for the
MAX qCSP problem of maximizing the number of satisfied constraints in a given qCSP

instance. For any qCSP instance ϕ with m constraints, this algorithm will output an

assignment satisfying val(ϕ)
2q m constraints.
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11.3.1 Equivalence of theorems 11.5 and 11.9.

We now show the equivalence of the two formulations of the PCP Theorem (theorems 11.5
and 11.9) by showing that they are both equivalent to the NP-hardness of a certain gap
version of qCSP.

Definition 11.13 (Gap CSP) For every q ∈ N, ρ ≤ 1, define ρ-GAPqCSP to be the problem
of determining for a given qCSP-instance ϕ whether (1) val(ϕ) = 1 (in which case we say
ϕ is a YES instance of ρ-GAPqCSP) or (2) val(ϕ) < ρ (in which case we say ϕ is a NO
instance of ρ-GAPqCSP) .

We say that ρ-GAPqCSP is NP-hard if there is a polynomial-time function f mapping strings
to (representations of) qCSP instances satisfying:

Completeness x ∈ L⇒ val(f(x)) = 1

Soundness x 6∈ L⇒ val(f(x)) < ρ

Theorem 11.14 There exist constants q ∈ N, ρ ∈ (0, 1) such that ρ-GAPqCSP is NP-hard.♦

We now show that theorems 11.5, 11.9 and 11.14 are all equivalent to one another.

Theorem 11.5 implies Theorem 11.14. Assume that NP ⊆ PCP(logn, 1). We will
show that 1/2-GAPqCSP is NP-hard for some constant q. It is enough to reduce a single
NP-complete language such as 3SAT to 1/2-GAPqCSP for some constant q. Under our
assumption, 3SAT has a PCP system in which the verifier V makes a constant number of
queries, which we denote by q, and uses c logn random coins for some constant c. Given
every input x and r ∈ {0, 1}c log n

, define Vx,r to be the function that on input a proof π
outputs 1 if the verifier will accept the proof π on input x and coins r. Note that Vx,r depends
on at most q locations. Thus for every x ∈ {0, 1}n, the collection ϕ = {Vx,r}r∈{0,1}c logn

is a polynomial-sized qCSP instance. Furthermore, since V runs in polynomial-time, the
transformation of x to ϕ can also be carried out in polynomial-time. By the completeness
and soundness of the PCP system, if x ∈ 3SAT then ϕ will satisfy val(ϕ) = 1, while if
x 6∈ 3SAT then ϕ will satisfy val(ϕ) ≤ 1/2. �

Theorem 11.14 implies Theorem 11.5. Suppose that ρ-GAPqCSP is NP-hard for some
constants q,ρ < 1. Then this easily translates into a PCP system with q queries, ρ soundness
and logarithmic randomness for any language L: given an input x, the verifier will run the
reduction f(x) to obtain a qCSP instance ϕ = {ϕi}mi=1. It will expect the proof π to be
an assignment to the variables of ϕ, which it will verify by choosing a random i ∈ [m] and
checking that ϕi is satisfied (by making q queries). Clearly, if x ∈ L then the verifier will
accept with probability 1, while if x 6∈ L it will accept with probability at most ρ. The
soundness can be boosted to 1/2 at the expense of a constant factor in the randomness and
number of queries (see Exercise 11.1). �

Theorem 11.9 is equivalent to Theorem 11.14. Since 3CNF formulas are a special case
of 3CSP instances, Theorem 11.9 implies Theorem 11.14. We now show the other direction.

Let ǫ > 0 and q ∈ N be such that by Theorem 11.14, (1−ǫ)-GAPqCSP is NP-hard.
Let ϕ be a qCSP instance over n variables with m constraints. Each constraint ϕi of ϕ
can be expressed as an AND of at most 2q clauses, where each clause is the OR of at
most q variables or their negations. Let ϕ′ denote the collection of at most m2q clauses
corresponding to all the constraints of ϕ. If ϕ is a YES instance of (1−ǫ)-GAPqCSP (i.e.,
it is satisfiable) then there exists an assignment satisfying all the clauses of ϕ′. If ϕ is a
NO instance of (1−ǫ)-GAPqCSP then every assignment violates at least an ǫ fraction of the
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constraints of ϕ and hence violates at least an ǫ
2q fraction of the constraints of ϕ. We can

use the Cook-Levin technique of Chapter 2 (Theorem 2.10), to transform any clause C on q
variables u1, . . . , uq to a set C1, . . . , Cq of clauses over the variables u1, . . . , uq and additional
auxiliary variables y1, . . . , yq such that (1) each clause Ci is the OR of at most three variables
or their negations, (2) if u1, . . . , uq satisfy C then there is an assignment to y1, . . . , yq such
that u1, . . . , uq, y1, . . . , yq simultaneously satisfy C1, . . . , Cq and (3) if u1, . . . , uq does not
satisfy C then for every assignment to y1, . . . , yq, there is some clause Ci that is not satisfied
by u1, . . . , uq, y1, . . . , yq.

Let ϕ′′ denote the collection of at most qm2q clauses over the n+ qm variables obtained
in this way from ϕ′. Note that ϕ′′ is a 3SAT formula. Our reduction will map ϕ to ϕ′′.
Completeness holds since if ϕ were satisfiable then so would be ϕ′ and hence also ϕ′′.
Soundness holds since if every assignment violates at least an ǫ fraction of the constraints
of ϕ, then every assignment violates at least an ǫ

2q fraction of the constraints of ϕ′, and so
every assignment violates at least an ǫ

q2q fraction of the constraints of ϕ′′ �

11.3.2 Review of the two views of the PCP Theorem

It is worthwhile to review this very useful equivalence between the “proof view” and the
“hardness of approximation view” of the PCP Theorem:

Proof view Hardness of approximation view
PCP verifier (V ) ←→ CSP instance (ϕ)
PCP proof (π) ←→ Assignment to variables (u)
Length of proof ←→ Number of variables (n)

Number of queries (q) ←→ Arity of constraints (q)
Number of random bits (r) ←→ Logarithm of number of constraints (logm)

Soundness parameter (typically 1/2) ←→ Maximum of val(ϕ) for a NO instance
Theorem 11.5 (NP ⊆ PCP(logn, 1)) ←→ Theorem 11.14 (ρ-GAPqCSP is NP-hard) ,

Theorem 11.9 (MAX-3SAT is NP-hard to ρ-approximate)

Table 11.1 Two views of the PCP Theorem.

11.4 Hardness of approximation for vertex cover and independent
set

The PCP Theorem implies hardness of approximation results for many more problems
than just 3SAT and CSP. As an example we show a hardness of approximation result
for the maximum independent set (MAX-INDSET) problem we encountered in Chapter 2
(Example 2.2) and for the MIN-VERTEX-COVER problem encountered in Example 11.3.
Note that the inapproximability result for MAX-INDSET is stronger than the result for
MIN-VERTEX-COVER.

Theorem 11.15 There is some γ < 1 such that computing a γ-approximation to MIN-VERTEX-COVER

is NP-hard. For every ρ < 1, computing a ρ-approximation to INDSET is NP-hard. ♦

Since a vertex cover is a set of vertices touching all edges of the graph, its complement
is an an independent set. Thus the two problems are trivially equivalent with respect to
exact solution: the largest independent set is simply the complement of the smallest vertex
cover. However, this does not imply that they are equivalent with respect to approximation.
Denoting the size of the minimum vertex cover by VC and the size of the largest independent
set by IS we see that VC = n − IS. Thus a ρ-approximation for INDSET would produce
an independent set of size ρ · IS, and if we wish to use this to compute an approximation
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to MIN-VERTEX-COVER then we obtain a vertex cover of size n − ρ · IS. This yields an
approximation ratio of n−ρIS

n−IS for MIN-VERTEX-COVER, which could be arbitrarily small if
IS is close to n. In fact, Theorem 11.15 shows that if P 6= NP, then the approximability
of the two problems is inherently different: we already saw that MIN-VERTEX-COVER has
a polynomial-time 1/2-approximation algorithm (Example 2.2) whereas if P 6= NP then
INDSET does not have a ρ-approximation algorithm for every ρ < 1.

We first show using the PCP Theorem that there is some constant ρ < 1 such that both
problems cannot be ρ-approximated in polynomial-time (unless P = NP). We then show
how to “amplify” the approximation gap and make ρ as small as desired in case of INDSET.

Lemma 11.16 There exist a polynomial-time computable transformation f from 3CNF for-
mulae to graphs such that for every 3CNF formula ϕ, f(ϕ) is an n-vertex graph whose
largest independent set has size val(ϕ)n7 . ♦

Proof sketch: We apply the “normal” NP-completeness reduction for INDSET (see proof
of Theorem 2.15) on this 3CNF formula, and observe that it satisfies the desired property.
We leave verifying the details as Exercise 11.5. �

The following Corollary is immediate.

Corollary 11.17 If P 6= NP then are some constants ρ < 1, ρ′ < 1 such that the problem
INDSET cannot be ρ-approximated in polynomial time and MIN-VERTEX-COVER cannot
be ρ′-approximated. ♦

Proof: Let L be any NP language. Theorem 11.9 implies that the decision problem for L
can be reduced to approximating MAX-3SAT. Specifically, the reduction produces a 3CNF
formula ϕ that is either satisfiable or satisfies val(ϕ) < ρ, where ρ < 1 is some constant.
Then we can apply the reduction of Lemma 11.16 on this 3CNF formula and conclude that
a ρ-approximation to INDSET would allow us to do a ρ-approximation to MAX-3SAT on ϕ.
Thus it follows that ρ-approximation to INDSET is NP-hard.

The result for MIN-VERTEX-COVER follows from the observation that the minimum
vertex cover in the graph resulting from the reduction of the previous paragraph has size
n−val(ϕ)n7 . It follows that if MIN-VERTEX-COVER had a ρ′-approximation for ρ′ = 6/(7−ρ)
then it would allow us to find a vertex cover of size 1

ρ′ (n − n
7 ) in the case val(ϕ) = 1, and

this size is at most n− ρn/7. Thus we conclude that such an approximation would allow us
to distinguish the cases val(ϕ) = 1 and val(ϕ) < ρ, which by Theorem 11.9 is NP-hard. �

To complete the proof of Theorem 11.15 we need to amplify this approximation gap for
INDSET. Such amplification is possible for many combinatorial problems thanks to a certain
“self-improvement” property. In case of INDSET, a simple self-improvement is possible using
a graph product.

For any n-vertex graph G, define Gk to be a graph on
(

n
k

)

vertices whose vertices corre-
spond to all subsets of vertices of G of size k Two subsets S1, S2 are adjacent if S1∪S2 is an
independent set in G. It is easily checked that the largest independent of Gk corresponds
to all k-size subsets of the a largest independent set in G, and therefore has size

(

IS
k

)

, where
IS is the size of the largest independent set in G. Thus if we take the graph produced by
the reduction of Corollary 11.17 and take its k-wise product, then the size of the largest
independent set differs in the two cases by a factor ρk. Choosing k large enough, ρk can be
made smaller than any desired constant. The running time of the reduction becomes nk,
which is polynomial for every fixed k. �

Remark 11.18 (Levin reductions)
In Chapter 2, we defined L′ to be NP-hard if every L ∈ NP reduces to L′. The reduction
was a polynomial-time function f such that x ∈ L ⇔ f(x) ∈ L′. In all cases, we proved
that x ∈ L ⇒ f(x) ∈ L′ by showing a way to map a certificate for the fact that x ∈ L
to a certificate for the fact that x′ ∈ L′. Although the definition of a Karp reduction does
not require that this mapping is efficient, this was often the case. Similarly we proved that
f(x) ∈ L′ ⇒ x ∈ L by showing a way to map a certificate for the fact that x′ ∈ L′ to
a certificate for the fact that x ∈ L. Again the proofs typically yield an efficient way to



11.5 NP ⊆ PCP(poly(n), 1): PCP from the Walsh-Hadamard code 215

compute this mapping. We call reductions with these properties “Levin reductions” (see
the proof of Theorem 2.18). It is worthwhile to observe that the PCP reductions of this
chapter also satisfy this property. For example, the proof of Theorem 11.16 actually yields
a way not just to map, say, a CNF formula ϕ into a graph G such that ϕ is satisfiable
iff G has a “large” independent set, but actually shows how to efficiently map a satisfying
assignment for ϕ into a large independent set in G and a not-too-small independent set in
G into a satisfying assignment for ϕ. This will become clear from our proof of the PCP
Theorem in Chapter 22.

11.5 NP ⊆ PCP(poly(n), 1): PCP from the Walsh-Hadamard code

We now prove a weaker version of the PCP Theorem, showing that every NP statement
has an exponentially-long proof that can be locally tested by only looking at a constant
number of bits. In addition to giving a taste of how one proves PCP Theorems, techniques
from this section will be used in the proof of the full-fledged PCP theorem in Chapter 22.

Theorem 11.19 (Exponential-sized PCP system for NP [ALM+92])
NP ⊆ PCP(poly(n), 1)

We prove this theorem by designing an appropriate verifier for an NP-complete language.
The verifier expects the proof to contain an encoded version of the usual certificate. The
verifier checks such an encoded certificate by simple probabilistic tests.

11.5.1 Tool: Linearity Testing and the Walsh-Hadamard Code

We use the Walsh-Hadamard code (see also Section 19.2.2, though the treatment here is self-
contained). It is a way to encode bit strings of length n by linear functions in n variables
over GF(2). The encoding function WH : {0, 1}∗ → {0, 1}∗ maps a string u ∈ {0, 1}n to the
truth table of the function x 7→ u⊙x, where for x,y ∈ {0, 1}n we define x⊙y =

∑n
i=1 xiyi

(mod 2). Note that this is a very inefficient encoding method: an n-bit string u ∈ {0, 1}n is

encoded using |WH(u)| = 2n bits. If f ∈ {0, 1}2
n

is equal to WH(u) for some u then we say

that f is a Walsh-Hadamard codeword. Such a string f ∈ {0, 1}2
n

can also be viewed as a
function from {0, 1}n to {0, 1}.

Below, we repeatedly use the following fact (see Claim A.31):

random subsum principle: If u 6= v then for 1/2 the choices of x, u ⊙ x 6=
v ⊙ x.

The random subsum principle implies that the Walsh-Hadamard code is an error cor-
recting code with minimum distance 1/2, by which we mean that for every u 6= v ∈ {0, 1}n,
the encodings WH(u) and WH(v) differ in at least half the bits. Now we talk about local
tests for the Walsh-Hadamard code (i.e., tests making only O(1) queries).

Local testing of Walsh-Hadamard code. Suppose we are given access to a function f :
{0, 1}n → {0, 1} and want to test whether or not f is actually a codeword of Walsh-
Hadamard. Since the Walsh-Hadamard codewords are precisely the set of all linear functions
from {0, 1}n to {0, 1}, we can test f by checking that

f(x + y) = f(x) + f(y) (3)
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for all the 22n pairs x,y ∈ {0, 1}n (where “+” on the left side of (3) denotes vector addi-
tion over GF(2)n and on the right side denotes addition over GF(2)). This test works by
definition, but it involves reading all 2n values of f .

Can we test f by reading only a constant number of its values? The natural test is
to choose x,y at random and verify (3). Clearly, even such a local test accepts a linear
function with probability 1. However, now we can no longer guarantee that every function
that is not linear is rejected with high probability! For example, if f is very close to being a
linear function, meaning that f is obtained by modifying a linear function on a very small
fraction of its inputs, then such a local test will encounter the nonlinear part with very low
probability, and thus not be able to distinguish f from a linear function. So we set our goal
less ambitiously: a test that on one hand accepts every linear function, and on the other
hand rejects with high probability every function that is far from linear. The natural test
above suffices for this job.

Definition 11.20 Let ρ ∈ [0, 1]. We say that f, g : {0, 1}n → {0, 1} are ρ-close if Prx∈R{0,1}n [f(x) =
g(x)] ≥ ρ. We say that f is ρ-close to a linear function if there exists a linear function g
such that f and g are ρ-close. ♦

Theorem 11.21 (Linearity Testing [BLR90]) Let f : {0, 1}n → {0, 1} be such that

Pr
x,y∈

R
{0,1}n

[f(x + y) = f(x) + f(y)] ≥ ρ

for some ρ > 1/2. Then f is ρ-close to a linear function. ♦

We defer the proof of Theorem 11.21 to Section 22.5 of Chapter 22. For every δ ∈ (0, 1/2),
we can obtain a linearity test that rejects with probability at least 1/2 every function that is
not (1−δ)-close to a linear function, by testing Condition (3) repeatedly O(1/δ) times with
independent randomness. We call such a test a (1−δ)-linearity test.

Local decoding of Walsh-Hadamard code. Suppose that for δ < 1
4 the function f :

{0, 1}n → {0, 1} is (1−δ)-close to some linear function f̃ . Because every two linear functions
differ on half of their inputs, the function f̃ is uniquely determined by f . Suppose we are
given x ∈ {0, 1}n and random access to f . Can we obtain the value f̃(x) using only a
constant number of queries? The naive answer is that since most x’s satisfy f(x) = f̃(x),
we should be able to learn f̃(x) with good probability by making only the single query x
to f . The problem is that x could very well be one of the places where f and f̃ differ.
Fortunately, there is still a simple way to learn f̃(x) while making only two queries to f :

1. Choose x′ ∈
R
{0, 1}n.

2. Set x′′ = x + x′.

3. Let y′ = f(x′) and y′′ = f(x′′).

4. Output y′ + y′′.

Since both x′ and x′′ are individually uniformly distributed (even though they are de-
pendent), by the union bound with probability at least 1 − 2δ we have y′ = f̃(x′) and
y′′ = f̃(x′′). Yet by the linearity of f̃ , f̃(x) = f̃(x′ + x′′) = f̃(x′) + f̃(x′′), and hence
with at least 1 − 2δ probability f̃(x) = y′ + y′′. (We use here the fact that over GF(2),
a+ b = a− b.) This technique is called local decoding of the Walsh-Hadamard code since it
allows to recover any bit of the correct codeword (the linear function f̃) from a corrupted
version (the function f) while making only a constant number of queries. It is also known
as self correction of the Walsh-Hadamard code.
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11.5.2 Proof of Theorem 11.19

We will show a (poly(n), 1)-verifier proof system for a particular NP-complete language L.
The result that NP ⊆ PCP(poly(n), 1) follows since every NP language is reducible to
L. The NP-complete language L we use is QUADEQ, the language of systems of quadratic
equations over GF(2) = {0, 1} that are satisfiable.

Example 11.22
The following is an instance of QUADEQ over the variables u1, . . . , u5:

u1u2 + u3u4 + u1u5 = 1

u2u3 + u1u4 = 0

u1u4 + u3u5 + u3u4 = 1

This instance is satisfiable since the all-1 assignment satisfies all the equations.

QUADEQ is NP-complete, as can be checked by reducing from the NP-complete lan-
guage CKT-SAT of satisfiable Boolean circuits (see Section 6.1.2). The idea is to have a
variable represent the value of each wire in the circuit (including the input wires) and to ex-
press AND and OR using the equivalent quadratic polynomial: x∨y = 1 iff (1−x)(1−y) = 0,
and so on. Details are left as Exercise 11.15.

Since ui = (ui)
2 in GF(2), we can assume the equations do not contain terms of the

form ui (i.e., all terms are of degree exactly two). Hence m quadratic equations over the
variables u1, . . . , un can be described by an m× n2 matrix A and an m-dimensional vector
b (both over GF(2)). Indeed, the problem QUADEQ can be phrased as the task, given such
A,b, of finding an n2-dimensional vector U satisfying (1) AU = b and (2) U is the tensor
product u⊗ u of some n-dimensional vector u.4

WH(u) WH(uOu)x

Figure 11.2 The PCP proof that a set of quadratic equations is satisfiable consists of
WH(u) and WH(u⊗ u) for some vector u. The verifier first checks that the proof is close to
having this form, and then uses the local decoder of the Walsh-Hadamard code to ensure
that u is a solution for the quadratic equation instance. In the figure above the dotted areas
represent corrupted coordinates.

The PCP verifier. We now describe the PCP system for QUADEQ. Let A,b be an
instance of QUADEQ and suppose that A,b is satisfiable by an assignment u ∈ {0, 1}n.
The verifier V gets access to a proof π ∈ {0, 1}2

n+2n
2

, which we interpret as a pair of

functions f : {0, 1}n → {0, 1} and g : {0, 1}n
2

→ {0, 1}. In the correct PCP proof π for
A, b, the function f will be the Walsh-Hadamard encoding for u and the function g will be
the Walsh-Hadamard encoding for u ⊗ u. That is, we will design the PCP verifier V in a
way ensuring that it accepts proofs of this form with probability one, hence satisfying the
completeness condition. The analysis repeatedly uses the random subsum principle.
Step 1: Check that f , g are linear functions. As already noted, this isn’t something
that the verifier can check per se using local tests. Instead, the verifier performs a 0.999-
linearity test on both f, g, and rejects the proof at once if either test fails.

Thus, if either of f, g is not 0.999-close to a linear function, then V rejects with high
probability. Therefore for the rest of the procedure we can assume that there exist two

4If x,y are two n-dimensional vectors then their tensor product, denoted x ⊗ y, is the n2-dimensional
vector (or n× n matrix) whose 〈i, j〉th entry is xiyj (identifying [n2] with [n] × [n] in some canonical way).
See also Section 21.3.3.



218 11 PCP Theorem and Hardness of Approximation: An introduction

linear functions f̃ : {0, 1}n → {0, 1} and g̃ : {0, 1}n
2

→ {0, 1} such that f̃ is 0.999-close to
f , and g̃ is 0.999-close to g. (Note: in a correct proof, the tests succeed with probability 1
and f̃ = f and g̃ = g.)

In fact, we will assume that for Steps 2 and 3, the verifier can query f̃ , g̃ at any desired
point. The reason is that local decoding allows the verifier to recover any desired value of
f̃ , g̃ with good probability, and Steps 2 and 3 will only use a small (less than 20) number
of queries to f̃ , g̃. Thus with high probability (say > 0.9) local decoding will succeed on all
these queries.

notation: To simplify notation and in the rest of the procedure we use f, g for f̃ , g̃
respectively. (This is OK since as argued above, V can query f̃ , g̃ at will.) In particular we
assume both f and g are linear, and thus they must encode some strings u ∈ {0, 1}n and

w ∈ {0, 1}n
2

. In other words, f, g are the functions given by f(r) = u⊙ r and g(z) = w⊙z.

Step 2: Verify that g encodes u⊗u, where u ∈ {0, 1}n is the string encoded by f .
The verifier does the following test ten times using independent random bits: “Choose r, r′

independently at random from {0, 1}n, and if f(r)f(r′) 6= g(r⊗ r′) then halt and reject.”
In a correct proof, w = u⊗ u, so

f(r)f(r′) =





∑

i∈[n]

uiri









∑

j∈[n]

ujr
′
j



 =
∑

i,j∈[n]

uiujrir
′
j = (u⊗ u)⊙ (r⊗ r′),

which in the correct proof is equal to g(r⊗ r′). Thus Step 2 never rejects a correct proof.
Suppose now that, unlike the case of the correct proof, w 6= u⊗u. We claim that in each

of the ten trials V will halt and reject with probability at least 1
4 . (Thus the probability of

rejecting in at least one trial is at least 1− (3/4)10 > 0.9.) Indeed, let W be an n×n matrix
with the same entries as w, let U be the n× n matrix such that Ui,j = uiuj and think of r
as a row vector and r′ as a column vector. In this notation,

g(r⊗ r′) = w ⊙ (r⊗ r′) =
∑

i,j∈[n]

wi,jrir
′
j = rWr′

f(r)f(r′) = (u⊙ r)(u ⊙ r′) = (

n
∑

i=1

uiri)(

n
∑

j=1

ujr
′
j) =

∑

i,j∈[n]

uiujrir
′
j = rUr′

And V rejects if rWr′ 6= rUr′. The random subsum principle implies that if W 6= U
then at least 1/2 of all r satisfy rW 6= rU . Applying the random subsum principle for each
such r, we conclude that at least 1/2 the r′ satisfy rWr′ 6= rUr′. We conclude that the trial
rejects for at least 1/4 of all pairs r, r′.

Step 3: Verify that f encodes a satisfying assignment. Using all that has been
verified about f, g in the previous two steps, it is easy to check that any particular equation,
say the kth equation of the input, is satisfied by u, namely,

∑

i,j

Ak,(i,j)uiuj = bk. (4)

Denoting by z the n2 dimensional vector (Ak,(i,j)) (where i, j vary over [1..n]), we see
that the left hand side is nothing but g(z). Since the verifier knows Ak,(i,j) and bk, it simply
queries g at z and checks that g(z) = bk.

The drawback of the above idea is that in order to check that u satisfies the entire
system, the verifier needs to make a query to g for each k = 1, 2, . . . ,m, whereas the number
of queries is required to be independent of m. Luckily, we can use the random subsum
principle again! The verifier takes a random subset of the equations and computes their
sum mod 2. (In other words, for k = 1, 2, . . . ,m multiply the equation in (4) by a random
bit and take the sum.) This sum is a new quadratic equation, and the random subsum
principle implies that if u does not satisfy even one equation in the original system, then
with probability at least 1/2 it will not satisfy this new equation. The verifier checks that
u satisfies this new equation.
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Overall, we get a verifier V such that (1) if A,b is satisfiable then V accepts the correct
proof with probability 1 and (2) if A,b is not satisfiable then V accepts every proof with
probability at most 0.8. The probability of accepting a proof for a false statement can be
reduced to 1/2 by simple repetition, completing the proof of Theorem 11.19. �

Chapter notes and history

The notion of approximation algorithms predates the discovery of NP-completeness; for instance
Graham’s 1966 paper [Gra66] already gives an approximation algorithm for a scheduling prob-
lem that was later proven NP-complete. Shortly after the discovery of NP-completeness, John-
son [Joh74] formalized the issue of computing approximate solutions, gave some easy approximation
algorithms (such as the 1/2-approximation for MAX-SAT) for a variety of problems and posed the
question of whether better algorithms exist. Over the next 20 years, although a few results were
proven regarding the hardness of computing approximate solutions (such as for general TSP in
Sahni and Gonzalez [SG76]) and a few approximation algorithms were designed, it became increas-
ingly obvious that we were lacking serious techniques for proving the hardness of approximation.
One of the problems seemed to be that there were no obvious interreducibilies among problems
that preserved approximability. The paper by Papadimitriou and Yannakakis [PY88] showed such
interreducibilities among a large set of problems they called MAX-SNP, and showed further that
MAX-3SAT is complete for this class. This made MAX-3SAT an attractive problem to study both
from point of view of algorithm design and for proving hardness results.

Soon after this work, seemingly unrelated developments occurred in study of interactive proofs,
some of which we studied in Chapter 8. The most relevant for the topic of this chapter was the
result of Babai, Fortnow and Lund [BFL90] that MIP = NEXP, which was soon made to apply to
NP in the paper of Babai, Fortnow, Levin, and Szegedy [BFLS91]. After this there were a sequence
of swift developments. In 1991 came a stunning result by Feige, Goldwasser, Lovasz, Safra and
Szegedy [FGL+91] which showed that if SAT does not have subexponential time algorithms then

the INDSET problem cannot be approximated within a factor 2log1−ǫ n for any ǫ > 0. This was the
first paper to connect hardness of approximation with PCP-like theorems, though at the time many
researchers felt (especially because the result did not prove NP-completeness per se) that this was
the “wrong idea” and the result would ultimately be reproven with no mention of interactive proofs.
(Intriguingly, Dinur’s gap amplification lemma brings us closer to that dream.) However, a year
later Arora and Safra [AS92] further refined the ideas of [BFL90] (together with the idea of verifier
composition) to prove that approximating INDSET is actually NP-complete. They also proved a
surprising new characterization of NP in terms of PCP, namely, NP = PCP(log n,

√
log n). At

that point it became clear that if the query parameter could be sublogarithmic, it might well be
made a constant! The subsequent paper of Arora, Lund, Motwani, Sudan, and Szegedy [ALM+92]
took this next step (in the process introducing the constant-bit verifier of Section 11.5, as well as
other ideas) to prove NP = PCP(log n, 1), which they showed also implied the NP-hardness of
approximating MAX-3SAT. Since then many other PCP theorems have been proven, as surveyed
in Chapter 22. (Note that in this chapter we derived the hardness result for INDSET from the result
for MAX-3SAT, even though historically the former happened first.)

The overall idea in the AS-ALMSS proof of the PCP Theorem (as indeed the one in the proof
of MIP = NEXP) is similar to the proof of Theorem 11.19. In fact Theorem 11.19 is the only
part of the original proof that still survives in our writeup; the rest of the proof in Chapter 22 is a
more recent proof due to Dinur. However, in addition to using encodings based upon the Walsh-
Hadamard code the AS-ALMSS proof also used encodings based upon low degree multivariate
polynomials. These have associated procedures analogous to the linearity test and local decoding,
though the proofs of correctness are a fair bit harder. The proof also drew intuition from the topic
of self-testing and self-correcting programs [BLR90, RS92].

The PCP Theorem led to a flurry of results about hardness of approximation. See Tre-
visan [Tre05] for a recent survey and Arora-Lund [AL95] for an older one.

The PCP Theorem, as well as its cousin, MIP = NEXP, does not relativize [FRS88].

In this chapter we only talked about some very trivial approximation algorithms, which are
unfortunately not very representative of the state of the art. See Hochbaum [Hoc97] and Vazi-
rani [Vaz01] for a good survey of the many ingenious approximation algorithms that have been
developed.
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Exercises

11.1 Prove that for every two functions r, q : N → N and constant s < 1, changing the constant in the
soundness condition in Definition 11.4 from 1/2 to s will not change the class PCP(r, q).

11.2 Prove that any language L that has a PCP-verifier using r coins and q adaptive queries also has a
standard (i.e., non-adaptive) verifier using r coins and 2q queries.

11.3 Give a probabilistic polynomial-time algorithm that given a 3CNF formula ϕ with exactly three
distinct variables in each clause, outputs an assignment satisfying at least a 7/8 fraction of ϕ’s
clauses. H461

11.4 Give a deterministic polynomial-time algorithm with the same approximation guarantee as in Ex-
ercise 11.3. H461

11.5 Prove Lemma 11.16.

11.6 Prove that PCP(0, log n) = P. Prove that PCP(0, poly(n)) = NP.

11.7 Let L be the language of pairs 〈A,k〉 such that A is a 0/1 matrix and k ∈ Z satisfying perm(A) = k
(see Section 8.6.2). Prove that L is in PCP(poly(n), poly(n)).

11.8 ([AS92]) Show that if SAT ∈ PCP(r(n), 1) for r(n) = o(log n) then P = NP. This shows that the
PCP Theorem is probably optimal up to constant factors. H461

11.9 (A simple PCP Theorem using logspace verifiers) Using the fact that a correct tableau can be
verified in logspace, we saw the following exact characterization of NP:

NP = {L : there is a logspace machine M s.t x ∈ L iff ∃y : M accepts (x, y).} .

Note that M has two-way access to y. Let L-PCP(r(n)) be the class of languages whose membership
proofs can be probabilistically checked by a logspace machine that uses O(r(n)) random bits but
makes only one pass over the proof. (To use the terminology from above, it has 2-way access to
x but 1-way access to y.) As in the PCP setting, “probabilistic checking of membership proofs”
means that for x ∈ L there is a proof y that the machine accepts with probability 1 and if not,
the machine rejects with probability at least 1/2. Show that NP = L-PCP(log n). Don’t assume
the PCP Theorem! H461 (This simple PCP Theorem is implicit in Lipton [Lip90]. The suggested
proof is due to van Melkebeek.)

11.10 Suppose we define J − PCP (r(n)) similarly to L− PCP (r(n)), except the verifier is only allowed
to read O(r(n)) successive bits in the membership proof. (It can decide which bits to read.) Then
show that J − PCP (logn) ⊆ L.

11.11 This question explores why the reduction used to prove the Cook-Levin Theorem (Section 2.3) does
not suffice to prove the hardness of approximation MAX-3SAT. Recall that for every NP language
L, we defined a reduction f such that if a string x ∈ L then f(x) ∈ 3SAT. Prove that there is a
x 6∈ L such that f(x) is a 3SAT formula with m constraints having an assignment satisfying more
than m(1 − o(1)) of them, where o(1) denotes a function that tends to 0 with |x|. H461

11.12 Show a poly(n, 1/ǫ)-time (1+ ǫ)-approximation algorithm for the knapsack problem. That is, show
an algorithm that given n + 1 numbers a1, . . . , an ∈ N (each represented by at most n bits) and
k ∈ [n], finds a set S ⊆ [n] with |S| ≤ k such that

∑

i∈S ai ≥ opt

1+ǫ
where

opt = max
S⊆[n],|S|≤k

∑

i∈S

ai

H461

11.13 Show a polynomial-time algorithm that given a satisfiable 2CSP-instance ϕ (over binary alphabet)
finds a satisfying assignment for ϕ.

11.14 Show a deterministic poly(n, 2q)-time algorithm that given a qCSP-instance ϕ (over binary alpha-
bet) with m clauses outputs an assignment satisfying m/2q of these assignment. H461

11.15 Prove that QUADEQ is NP-complete. H461

11.16 Consider the following problem: Given a system of linear equations in n with coefficients that
are rational numbers, determine the largest subset of equations that are simultaneously satisfiable.
Show that there is a constant ρ < 1 such that approximating the size of this subset is NP-hard.
H461

11.17 Prove the assertion in the previous question when the equations are over GF(2) and each equation
involves only 3 variables each.
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Chapter 12

Decision Trees

Currently, resolving many of the basic questions on the power of Turing machines seems
out of reach. Thus it makes sense to study simpler, more limited computing devices, as a
way to get some insight into the elusive notion of efficient computation. Moreover, such
limited computational models often arise naturally in a variety of applications, even outside
Computer Science, and hence studying their properties is inherently worthwhile.

Perhaps the simplest such model is that of decision trees. Here the “complexity” measure
for a Boolean function f is the number of bits we need to examine in an input x in order
to compute f(x). This chapter surveys the basic results and open questions regarding
decision trees. Section 12.1 defines decision trees and decision tree complexity. We also
define nondeterministic and probabilistic versions of decision trees just as we did for Turing
machines; these are described in Sections 12.2 and 12.3 respectively. Section 12.4 contains
some techniques for proving lower bounds on decision trees. We also present Yao’s Min
Max Lemma (see Note 12.8), which is useful for proving lower bounds for randomized
decision tree complexity and more generally, lower bounds for randomized complexity in
other computational models.

12.1 Decision trees and decision tree complexity

Let f : {0, 1}n → {0, 1} be some function. A decision tree for f is a tree for which each
internal node is labeled with some xi, and has two outgoing edges, labeled 0 and 1. Each
tree leaf is labeled with an output value 0 or 1. The computation on input x = x1x2 . . . xn
proceeds at each node by inspecting the input bit xi indicated by the node’s label. If xi = 1
the computation continues in the subtree reached by taking the 1-edge. The 0-edge is taken
if the bit is 0. Thus input x follows a path through the tree. The output value at the leaf
is f(x). For example, Figure 12.1 describes a decision tree for the majority function.

Decision trees often arise in medical setting, as a compact way to describe how to reach a
diagnosis from data of symptoms and test results. They are also used in operations research
(to describe algorithms to make business decisions) and machine learning (where the goal is
to discover such trees by looking at many examples). However, our focus is to use decision
trees as a simple computational model for which we are able to prove some non-trivial lower
bounds.

The decision tree complexity of a function is the number of bits examined by the most
efficient decision tree on the worst case input to that tree. That is, we make the following
definition:
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x1

x2 x2

x3 x3

0 1

0 1

0 1
0

0 1

1
0

0 1 0 1

1

Figure 12.1 A decision tree for computing the majority function Maj(x1, x2, x3) on three
bits. That is, the output is 1 if at least two of the input bits are 1, and otherwise the output
is 0.

Definition 12.1 (Decision tree complexity)
The cost of tree t on input x, denoted by cost(t, x), is the number of bits of x examined by
t.

The decision tree complexity of a function f , is defined as

D(f) = min
t∈Tf

max
x∈{0,1}n

cost(t, x) ,

where Tf denotes the set of all decision trees that compute f .

Since every Boolean function f on {0, 1} can be computed by the full binary tree of
depth n (and 2n vertices), D(f) ≤ n for every f : {0, 1}n → {0, 1}. We’ll be interested in
finding out for various interesting functions whether this trivial bound is the best possible
or they have more efficient decision trees.

Example 12.2
Here are some examples for the decision tree complexity of some particular func-
tions:

OR Function: Let f(x1, x2, . . . xn) =
∨n
i=1 xi. In this case we can show that

there is no decision tree with smaller depth than the trivial bound of n.
To do that we use an adversary argument. Let t be some decision tree
solving f . We think of an execution of t, where some adversary answers
t’s questions on the value of every input bit. The adversary will always
respond that xi equals 0 for the first n− 1 queries. Thus the decision tree
will be “in suspense” until the value of the nth bit is revealed, whose value
will determine whether or not the OR of the bits is 1 or 0. Thus D(f) is n.
(To state this argument another way, we have shown that if there is some
branch on which the tree asks at most n−1 questions, then there is are two
inputs x, x′ consistent with all the adversary’s answers such that f(x) = 0
but f(x′) = 1, implying that the tree will make a mistake on one of those
inputs.)

Graph connectivity Suppose that we are given an m-vertex graph G as input,
represented as a binary string of length n =

(

m
2

)

binary string, with the eth

coordinate equal to 1 if the edge e is in G, and equal to 0 otherwise. We
would like to know how many bits of the adjacency matrix a decision tree
algorithm might have to inspect in order to determine whether or not G is
connected (i.e., every two points are connected by a path of edges). Once
again, we show that it’s not possible to beat the trivial

(

m
2

)

bound.

We again give an adversary argument. The adversary constructs a graph,
edge by edge, as it responds to the algorithm’s queries. At each step, the
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answers to the preceding queries defines a partial graph such that it can be
extended to both a connected and disconnected graph using the edges that
have not been queried so far. Thus the algorithm (i.e., decision tree) is in
“suspense” until every single possible edge has been queried.

For every query of an edge e made by the tree, our adversary will answer 0
(i.e., that the edge is not present), unless such an answer forces the current
partial graph to become disconnected, in which case it answers 1. An easy
induction shows that this strategy ensures that the current partial graph is
a “forest” (i.e., consists of trees that are vertex-disjoint), and furthermore
this forest does not turn into a connected graph until the very last edge
gets queried. Thus the algorithm remains ”in suspense” as long as it didn’t
query all possible

(

m
2

)

edges.

AND-OR Function For every k, we define fk to be the following function
taking inputs of length n = 2k:

fk(x1, . . . , xn) =











fk−1(x1, . . . x2k−1) ∧ fk−1(x2k−1 , . . . x2k+1) if k is even

fk−1(x1, . . . x2k−1) ∨ fk−1(x2k−1 , . . . x2k+1) if k > 1 and is odd

xi if k = 1

The AND-OR function fk can be computed by a circuit of depth k (see Fig-
ure 12.2). By contrast, its decision tree complexity is 2k (see Exercise 12.2).

Address function Suppose that n = k + 2k and let f be the function that
maps x1, . . . , xk, y1, . . . , y2k to the input yx. That is, the function treats
the first k ∼ logn bits as an index to an array specified by the last n − k
bits. Clearly, this function has a decision tree of depth k + 1 (examine the
first k bits, and use that to find out which bit to examine among the last
n− k bits), and hence D(f) ≤ logn+ 1. On the other hand, Exercise 12.1
implies that D(f) ≥ Ω(logn).

.  .  .  .  .  .  .  .  .  . 

.  .  .  .
 x2x1 x3 x4 .  .  .x(n-1) xn

Figure 12.2 A circuit computing the AND-OR function. The circuit has k layers of alter-
nating gates, where n = 2k ..

12.2 Certificate Complexity

We now introduce the notion of certificate complexity. This can be viewed as the non-
deterministic version of decision tree complexity, analogous to the relation between non-
deterministic and deterministic Turing machine (see Chapter 2).
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Definition 12.3 (Certificate complexity)
Let f : {0, 1}n → {0, 1} and x ∈ {0, 1}n. A 0-certificate for x is a subset S ⊆ {0, 1}n, such
that f(x′) = 0 for every x′ such that x′|S = x|S (where x|S denotes the substring of x in
the coordinates in S). Similarly, if f(x) = 1 then a 1-certificate for x is a subset S ⊆ {0, 1}n
such that f(x′) = 1 for every x′ satisfying x|S = x′|S .

The certificate complexity of f is defined as the minimum k such that every string x has a
f(x)-certificate of size at most k. (Note that a string cannot have both a 0-certificate and
a 1-certificate.)

If f has a decision tree t of depth k, then C(f) ≤ k, since the set of locations examined
by t on input x serves as an f(x)-certificate for x. Thus, C(f) ≤ D(f). But sometimes
C(f) can be strictly smaller than D(f):

Example 12.4
We show the certificate complexity of some of the functions described in Exam-
ple 12.2

Graph connectivity Let f be the graph connectivity function. Recall that
for an m-vertex graph, the decision tree complexity of f is D(f) =

(

m
2

)

=
m(m−1)

2 . A 1-certificate for a graph G is a set of edges whose existence
in G implies that it is connected. Thus every connected m-vertex graph
G has a 1-certificate of size m − 1— any spanning tree for G will do. A
0-certificate for G is a set of edges whose non-existence forces G to be
disconnected— a cut. Since the number of edges in a cut is maximized
when its two sides are equal, every m-vertex graph has a 0-certificate of
size at most (m/2)2 = m2/4. On the other hand, for some graphs (e.g.,
the graph consisting of two disjoint cliques of size n/2) do not have smaller
0-certificate. Thus C(f) = m2/4.

AND-OR function Let fk be the AND-OR function on n = 2k-length inputs.
Recall that D(f) = 2k. We show that C(f) ≤ 2⌈k/2⌉, which roughly equals√
n.Recall that fk is defined using a circuit of k layers. Each layer contains

only OR-gates or only AND-gates, and the layers have alternative gate
types. The bottom layer receives the bits of input x as input and the single
top layer gate outputs the answer fk(x). If f(x) = 1, we can construct a
1-certificate as follows. For every AND-gate in the tree of gates we have to
prove that both its children evaluate to 1, whereas for every OR-gate we
only need to prove that some child evaluates to 1. Thus the 1-certificate
is a subtree in which the AND-gates have two children but the OR gates
only have one each. This mean that the subtree only needs to involve 2⌈k/2⌉

input bits. If f(x) = 0, a similar argument applies, but the role of OR-gates
and AND-gates, and values 1 and 0 are reversed.

Recall in Chapter 2 (Definition 2.1) we defined NP to be the class of functions f for
which an efficient Turing machine can be convinced that f(x) = 1 via a short certificate.
Similarly, we can think of 1-certificates as a way to convince a decision tree that f(x) = 1,
and hence we have the following analogies

low decision tree complexity↔ P

low 1-certificate complexity↔ NP

low 0-certificate complexity↔ coNP

Thus, the following result should be quite surprising, since it shows that, unlike what is
believed to hold for Turing machines, in the decision tree world “P = NP ∩ coNP”.
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Theorem 12.5 For function f , D(f) ≤ C(f)2. ♦

Proof: Let f : {0, 1}n → {0, 1} be some function satisfying C(f) = k. For every x ∈
{0, 1}n, denote by Sx the k-sized subset of [n] that is the f(x)-certificate for x. The rest of
the proof relies on the observation that every 1-certificate must intersect every 0-certificate,
since otherwise there exists a single string that contains both certificates, which is impossible.

The following decision tree algorithm determines the value of f in at most k2 queries. It
maintains a set X consisting of all inputs that are consistent with the replies to queries so
far.

Initially X = {0, 1}n. If there is some b ∈ {0, 1} such that f(x) = b for every
x ∈ X then halt and output b. Otherwise, choose any x0 ∈ X such that f(x0) = 0
and query all the bits in Sx0 that have not been queried so far. Remove from X
every string x′ ∈ {0, 1} that is not consistent with the answers to the queries.

Because every input x has some certificate proving the correct answer f(x), this algorithm
will eventually output the correct answer for every input. Furthermore, each time it queries
the bits in a 0-certificate, all 1-certificates effectively shrink by at least one since, as noted,
each 1-certificate must intersect each zero certificate. (Of course, the 1-certificate could
be completely eliminated if the answer to some query is inconsistent with it. The same
elimination could also happen to a 0-certificate.) Thus in k iterations of the above step,
all 1-certificates must shrink to 0, which means that all remaining strings in X only have
0-certificates and hence the algorithm can answer 0. Since each iteration queries at most k
bits, we conclude that the algorithm finishes after making at most k2 queries.

�

12.3 Randomized Decision Trees

As in the case of Turing machines, we can define a randomized analog of decision trees.
In a randomized decision tree, the choice of which input location to query is determined
probabilistically. An equivalent, somewhat more convenient description is that a randomized
decision tree is a probability distribution over deterministic decision trees. We will consider
randomized trees that always output the right answer, but use randomization to possibly
speed up their expected cost (this is analogous to the class ZPP of Section 7.3).

Definition 12.6 (Randomized decision trees)
For every function f , let Pf denote the set of probability distributions over decision trees
that compute f . The randomized tree complexity of f is defined as

R(f) = min
P∈Pf

max
x∈{0,1}n

E
t∈

R
P
[cost(t, x)] . (1)

The randomized decision tree complexity thus expresses how well the best possible prob-
ability distribution of trees will do against the worst possible input. Obviously, R(f) ≤
D(f)— a deterministic tree is just a special case of such a probability distribution. It’s
also not hard to verify that R(f) ≥ C(f), because for every input x ∈ {0, 1}n, every tree
t deciding f yields an f(x)-certificate of x of size cost(t, x). Thus the expectation in (1) is
bounded below by the size of the smallest certificate for x. (This is analogous to the fact
that ZPP ⊆NP ∩ coNP.)

Example 12.7
Consider the majority function, f = Maj(x1, x2, x3). It is straightforward to see
that D(f) = 3. We show that R(f) ≤ 8/3. We’ll use a randomized decision
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tree that picks a random permutation of x1, x2, x3 and makes its queries by this
order, stopping when it got two identical answers. If all of x’s bits are the same,
then this tree will always stop after two queries. If two bits are the same and
the third is different, say x1 = 1 and x2 = x3 = 0, then the algorithm will make
two queries if it orders x1 last, which happens with probability 1/3. Otherwise
it makes three queries. Thus the expected cost is 2 · 1/3 + 32/3 = 8/3. Later in
Example 12.9, we’ll see that in fact R(f) = 8/3.

12.4 Some techniques for decision tree lower bounds

We’ve seen the adversary method for showing lower bounds on deterministic decision tree
complexity, but it does not always seem useful, especially when considering certificate com-
plexity and randomized decision tree complexity. We now discuss some more sophisticated
techniques for showing such lower bounds. These techniques have also found other uses in
complexity theory and beyond.

12.5 Lower bounds on Randomized Complexity

Randomized decision trees are complicated creatures— distributions over decision trees—
and hence are harder to argue about than deterministic decision trees. Fortunately, Yao had
shown that we can prove lower bounds on randomized trees by reasoning about deterministic
trees. Specifically, Yao’s Min-Max Lemma (see Note 12.8) shows that for every function f
we can lower bound R(f) by k if we can find a distribution D over the inputs {0, 1}n for
which we prove that Ex∈

R
D[cost(t, x)] ≥ k (in words, the average cost of t on an input drawn

according to distribution D is at least k) for every deterministic decision tree for f . In other
words, rather than arguing about distributions on trees and specific inputs, we can also
argue about distributions on inputs and specific trees.

Example 12.9
We return to considering the function f that is the majority of three bits, and
we seek to find a lower bound on R(f). Consider a distribution over inputs
such that inputs in which all three bits match, namely 000 and 111, occur with
probability 0. All other inputs occur with probability 1/6. For any decision tree,
that is, for any order in which the three bits are examined, there is exactly a
1/3 probability that the first two bits examined will be the same value, and thus
there is a 1/3 probability that the cost is 2. There is then a 2/3 probability that
the cost is 3. Thus for every decision tree for majority, the overall expected cost
for this distribution is 8/3. This implies by Yao’s Lemma that R(f) ≥ 8/3. By
Example 12.7, R(f) = 8/3.

12.5.1 Sensitivity

The sensitivity of a function is another method that allows us to prove lower bounds on
decision tree complexity.

Definition 12.10 (Sensitivity and Block Sensitivity) If f :{0, 1}n → {0, 1} is a function and
x ∈ {0, 1}n then the sensitivity of f on x, denoted sx(f), is the number of bit positions i
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Note 12.8 (Yao’s Min-Max Lemma)

Yao’s min-max lemma is used in a variety of settings to prove lower bounds on randomized
algorithms. Let X be a finite set of inputs and A be a finite set of deterministic algorithms
that solve some computational problem f on these inputs. For x ∈ X and A ∈ A, we denote
by cost(A, x) the cost incurred by algorithm A on input x (the cost could be running time,
decision tree complexity, etc..). A randomized algorithm can be viewed as a probability
distribution R on A. The cost of R on input x, denoted by cost(R, x), is EA∈

R
R[cost(A, x)].

The randomized complexity of the problem is

min
R

max
x∈X

cost(R, x) . (2)

Let D be a distribution on inputs. For any deterministic algorithm A, the cost incurred
by it on D, denoted cost(A,D), is Ex∈

R
D[cost(A, x)]. The distributional complexity of the

problem is
max
D

min
A∈A

cost(A,D) . (3)

Yao’s Lemma says that the two quantities (2) and (3) are equal. It is easily derived from von
Neumann’s minmax theorem for zero-sum games (see Note 19.4). The switch of quantifiers
featured in Yao’s lemma is typically useful for lower bounding randomized complexity. To do
so, one defines (using some insight and some luck) a suitable distribution D on the inputs for
some function f . Then one proves that every deterministic algorithm for f incurs high cost,
say C, on this distribution. By Yao’s Lemma, it follows that the randomized complexity
then is at least C.

such that f(x) 6= f(xi), where xi is x with its ith bit flipped. The sensitivity of f , denoted
by s(f), is maxx {sx(f)}.

The block sensitivity of f on x, denoted bsx(f), is the maximum number b such that
there are disjoint blocks of bit positions B1, B2, . . . , Bb such that f(x) 6= f(xBi) where
xBi is x with all its bits flipped in block Bi. The block sensitivity of f denoted bs(f) is
maxx {bsx(f)}. ♦

Clearly s(f) ≤ bs(f). It is conjectured that there is a constant c such that bs(f) =
O(s(f)c) for all f but this is wide open (though it is known that it must holds that c ≥ 2).
It’s not hard to show that both the sensitivity and block sensitivity of f lower bound its
deterministic decision tree complexity:

Lemma 12.11 For any function, s(f) ≤ bs(f) ≤ D(f). ♦

Proof: Let x be such that bsx(f) = bs(f) = s for some s and B1, . . . , Bs be the corre-
sponding blocks. For every decision tree t for f , when given b as input t has to query at
least one coordinate in each of the blocks Bi for i ∈ [s] in order to distinguish between x
and xBi . �

On the other hand, the sensitivity squared also upper bounds the certificate complexity
of f :

Theorem 12.12 C(f) ≤ s(f)bs(f). ♦

Proof: For any input x ∈ {0, 1}n we describe a certificate for x of size s(f)bs(f). This
certificate for an input x is obtained by considering the largest number of disjoint blocks
of variables B1, B2, . . . , Bb that achieve b = bsx(f) ≤ bs(f). We’ll take each Bi to be of
minimal size— if f(x) 6= f(xB

′
i) for some strict subset B′

i of Bi then we’ll use B′
i instead.

This means that setting x′ = xBi , f(x′) 6= f(x′j) for every j ∈ Bi, implying that |Bi| ≤ s(f)
for every i ∈ [b]. Thus the certificate size is at most s(f)bs(f).

We claim that setting these variables according to x constitutes a certificate for x. Sup-
pose not, and let x′ be an input such that f(x′) 6= f(x) but x′ is consistent with the above
certificate. Let Bb+1 denote the variables that need to be flipped to make x equal x′. That is,
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D(f) Deterministic decision-tree complexity (corresponds to P)
R(f) Randomized decision-tree complexity (corresponds to ZPP)
C(f) Certificate complexity (corresponds to NP ∩ coNP)
s(f) Sensitivity of f (maximum number of bits that flip f(x))
bs(f) Block sensitivity of f (maximum number of blocks that flip f(x))
deg(f) Degree of multilinear polynomial for f

C(f) ≤ R(f) ≤ D(f) ≤ C(f)2

s(f) ≤ bs(f) ≤ D(f) ≤ bs(f)3

C(f) ≤ s(f)bs(f)
bs(f) ≤ 2deg(f)

D(f) ≤ deg(f)2bs(f) ≤ 2deg(f)4

Table 12.1 Summary of notions introduced in this chapter and relations between them.
We only proved that D(f) ≤ bs(f)4, but the stronger relation D(f) ≤ bs(f)3 is known
[BBC+98].

x′ = xBb+1 . Then Bb+1 must be disjoint from B1, B2, . . . Bb, which contradicts b = bsx(f).
�

12.5.2 The degree method

Recent work on decision tree lower bounds has used polynomial representations of Boolean
functions. Recall that a multilinear polynomial is a polynomial whose degree in each variable
is 1.

Definition 12.13 An n-variate polynomial p(x1, x2, . . . , xn) over the reals represents f :
{0, 1}n → {0, 1} if p(x) = f(x) for all x ∈ {0, 1}n.

The degree of f , denoted deg(f), is the degree of the multilinear polynomial that repre-
sents f . (Exercise 12.7 asks you to show that the multilinear polynomial representation is
unique, so deg(f) is well-defined.)

Example 12.14
The AND of n variables x1, x2, . . . , xn is represented by the multilinear polyno-
mial

∏n
i=1 xi and OR is represented by 1−∏n

i=1(1− xi).

The degree of AND and OR is n, and so is their decision tree complexity. In fact,
deg(f) ≤ D(f) for very function f (see Exercise 12.7). A rough inequality in the other
direction is also known, though we omit the proof.

Theorem 12.15 1. bs(f) ≤ 2 · deg(f)

2. D(f) ≤ deg(f)2bs(f) ♦

Table 12.1 contains summary of the various complexity measures introduced in this chapter.
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What have we learned?

• The decision tree complexity of a function f is the number of input bits that need
to be examined to determine f ’s value. There are randomized and non-deterministic
variants of this notion.

• Unlike what we believe to hold in the Turing machine model, all notions of decision
tree complexity (deterministic, randomized, and non-deterministic) are polynomially
related to one another.

• Yao’s Min-Max Lemma reduces the task of proving worst-case bounds on probabilistic
algorithms to proving average-case bounds for deterministic algorithms.

• Other techniques to prove lower bounds on decision trees include the adversary
method, sensitivity and block sensitivity, and the degree method.

Chapter notes and history

Decision trees have been used to encode decisions in medicine and operations research since the early
days of computing. Pollack [Pol65] describes algorithm to transform decision trees into computer
program, minimizing either the total program size or the the running time (i.e., decision tree
complexity). Garey[Gar72] formally defined decision trees and gave some algorithms to evaluate
them, while Hyafil and Rivest proved an early NP-completeness result for the task of finding an
optimal decision tree for a classification problem [HR76].

Buhrman and de Wolf [BdW02] give a good survey of decision tree complexity. The result that
the decision tree complexity of connectivity and many other problems is

(

n
2

)

has motivated the
following conjecture (attributed variously to Anderaa, Karp, and Rosenberg): Every non-constant
monotone graph property f on m-vertex graphs satisfies D(f) =

(

m
2

)

. Here “monotone” means that
adding edges to the graph cannot make it go from having the property to not having the property
(e.g., connectivity). “Graph property” means that the property does not depend upon the vertex
indices (e.g., conditions such as connectivity, having a k-clique etc.. are graph properties while the
condition that vertex 1 and vertex 2 have an edge between them is not). This conjecture was shown
to be true by Rivest and Vuillemin [RV76] if m is a prime power, but in general it’s only known to
hold up to a constant factor [KSS83]; the proof uses topology and is excellently described in Du and
Ko [DK00]. Another conjecture is that even the randomized decision tree complexity of monotone
graph properties is Ω(n2) but here the best lower bound is close to n4/3 [Yao87, Kin88, Haj90]. See
[LY02] for a survey on these conjectures and the progress so far.

The notion of sensitivity was defined by Cook, Dwork and Reischuk [CDR86], while the notion
of Block sensitivity was defined by Nisan [Nis89], who also proved Theorem 12.12. In both cases
the motivation was to prove lower bounds for parallel random access machines.

Part 1 of Theorem 12.15 is due to Nisan and Szegedi [NS92]. Part 2 is due to Nisan and
Smolensky (unpublished), see [BdW02] for a proof.

The polynomial method for decision tree lower bounds is surveyed in [BdW02]. The method
can be used to lower bound randomized decision tree complexity (and more recently, quantum
decision tree complexity) but then one needs to consider polynomials that approximately represent
the function.

Exercises

12.1 Suppose f is any function that depends on all its bits; in other words, for each bit position i there
is an input x such that f(x) 6= f(xi) (where xi denotes the string obtained by flipping x’s ith bit).
Show that s(f) = Ω(log n). H461

12.2 For every k ∈ N, let fk be the AND-OR function on strings of length 2k (see Example 12.2). Prove
that D(fk) = 2k. H461
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12.3 Let f be a function on n = k2 variables that is the AND of k OR’s, each of disjoint k variables.
Prove that s(f) = bs(f) = C(f) =

√
n, deg(f) = D(f) = n,R(f) ≥ Ω(n)

12.4 Let f be a function on n = k2 variables that is the OR of k applications of g : {0, 1}k → {0, 1},
each on a disjoint block of k variables, where g(x1, . . . , xk) = 1 if there exists i ∈ [k − 1] such that
xi = xi=1 = 1 and xj = 0 for all j 6= i. Prove that s(f) =

√
n and bs(f) = n/2.

12.5 Show that for every f : {0, 1}n → {0, 1}, there exists a unique multilinear polynomial that represents
f .

12.6 Find the multilinear representation of the PARITY of n variables.

12.7 Show that deg(f) ≤ D(f).



Chapter 13

Communication Complexity

Communication complexity concerns the following scenario. There are two players with
unlimited computational power, each of whom holds an n bit input, say x and y. Neither
knows the other’s input, and they wish to collaboratively compute f(x, y) where the function
f :{0, 1}n×{0, 1}n → {0, 1} is known to both. Furthermore, they had foreseen this situation
(e.g., one of the parties could be a spacecraft and the other could be the base station on
earth), so they had already —before they knew their inputs x, y— agreed upon a protocol
for communication.1 The cost of this protocol is the number of bits communicated by the
players for the worst-case choice of inputs x, y.

Researchers have studied many modifications of the above basic scenario, including ran-
domized protocols, nondeterministic protocols, and average-case protocols. Furthermore,
lower bounds on communication complexity have uses in a variety of areas, including lower
bounds for parallel and VLSI computation, circuit lower bounds, polyhedral theory, data
structure lower bounds, and more. Communication complexity has been one of the most
successful models studied in complexity, as it strikes the elusive balance of being simple
enough so that we can actually prove strong lower bounds, but general enough so we can
obtain important applications of these lower bounds.

In this chapter we only give a very rudimentary introduction to this area. In Section 13.1
we provide the basic definition of two-party deterministic communication complexity. In Sec-
tion 13.2 we survey some of the techniques used to prove lower bounds for the communication
complexity of various functions, using the equality function (i.e., f(x, y) = 1 iff x = y) as a
running example. In Section 13.3 we define multiparty communication complexity and show
a lower bound for the generalized inner product function. Section 13.4 contains a brief sur-
vey of other models studied, including probabilistic and non-deterministic communication
complexity. The chapter notes mention some of the many applications of communication
complexity.

13.1 Definition of two-party communication complexity.

Now we formalize the informal description of communication complexity given above:

1Do not confuse this situation with information theory, where an algorithm is given messages that have to
be transmitted over a noisy channel, and the goal is to transmit them robustly while minimizing the amount
of communication. In communication complexity the channel is not noisy and the players determine what
messages to send.



234 13 Communication Complexity

Definition 13.1 (Two party communication complexity)
Let f : {0, 1}2n → {0, 1} be a function. A t-round two party protocol Π for computing f is
a sequence of t functions P1, . . . , Pt : {0, 1}∗ → {0, 1}∗. An execution of Π on inputs x, y
involves the following: Player 1 computes p1 = P1(x) and sends p1 to Player 2, Player 2
computes p2 = P2(y, p1) and sends p2 to Player 1, and so on. Generally, at the ith round,
if i is odd then Player 1 computes pi = Pi(x, p1, . . . , pi−1) and sends pi to Player 2, and
similarly if i is even then Player 2 computes pi = Pi(y, p1, . . . , pi−1) and sends pi to Player 1.

The protocol Π is valid if for every pair of inputs x, y, the last message sent (i.e., the message
pt) is equal to the value f(x, y). The communication complexity of Π is the maximum number
of bits communicated (i.e., maximum of |p1|+ . . .+ |pt|) over all inputs x, y ∈ {0, 1}n. The
communication complexity of f , denoted by C(f) is the minimum communication complexity
over all valid protocols Π for f .

For every function, C(f) ≤ n+ 1 since the trivial protocol is for first player to commu-
nicate his entire input, whereupon the second player computes f(x, y) and communicates
that single bit to the first. Can they manage with less communication?

Example 13.2 (Parity)
Suppose the function f(x, y) is the parity of all the bits in x, y. Then C(f) = 2.
Clearly, C(f) ≥ 2 since the function depends nontrivially on each input, so each
player must transmit at least one bit. The fact that C(f) ≤ 2 is demonstrated by
the following protocol: Player 1 sends the parity a of the bits in x and Player 2
sends a XOR’d with the parity of the bits in y.

Example 13.3 (Halting Problem)
Consider the function H:{0, 1}n × {0, 1}n → {0, 1} defined as follows. If x = 1n

and y = code(M) for some Turing Machine M such that M halts on x then
H(x, y) = 1 otherwise H(x, y) = 0. The communication complexity of this is
at most 2; first player sends a bit indicating whether or not his input is 1n.
The second player then determines the answer and sends it to the first player.
This example emphasizes that the players have unbounded computational power,
including ability to solve the Halting Problem.

Sometimes students ask whether a player can communicate by not saying anything?
(After all, they have three options in each round: send a 0, or 1, or not send anything.) We
can regard such protocols as having one additional bit of communication, and analyze them
analogously.

13.2 Lower bound methods

Now we discuss methods for proving lower bounds on communication complexity. As a
running example in this chapter, we will use the equality function:

EQ(x, y) =

{

1 if x = y

0 otherwise

It turns out that almost no improvement is possible over the trivial n+ 1 bit communi-
cation protocol for this function:
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Theorem 13.4 (Equality has linear communication complexity)
C(EQ) ≥ n

We will prove Theorem 13.4 by several methods below.

13.2.1 The fooling set method

The first proof of Theorem 13.4 uses an idea called fooling sets. For any communication
protocol for any function, suppose x, x′ are any two different n-bit strings such that the
communication pattern (i.e., sequence of bits transmitted) is the same on the input pairs
(x, x) and (x′, x′). Then we claim that the players’ final answer must be the same on all
four input-pairs (x, x), (x, x′), (x′, x), (x′, x′). This is shown by an easy induction. If player
1 communicates a bit in the first round, then by hypothesis this bit is the same whether
his input is x or x′. If player 2 communicates in the 2nd round, then his bit must also be
the same on both inputs x and x′ since he receives the same bit from player 1. And so on.
We conclude that at the end, the players’ answer on (x, x) must agree with their answer on
(x, x′).

To show C(EQ) ≥ n it suffices to note that if a protocol exists whose complexity is at
most n − 1, then there are only 2n−1 possible communication patterns. But there are 2n

choices for input pairs of the form (x, x) and so by the pigeonhole principle, there exist two
distinct pairs (x, x) and (x′, x′) on which the communication pattern is the same. But then
the protocol must be incorrect, since EQ(x, x′) = 0 6= EQ(x, x). This completes the proof.
This argument can be easily generalized as follows (Exercise 13.1):

Lemma 13.5 Say that a function f : {0, 1}n × {0, 1}n → {0, 1} has a size M fooling set if
there is an M -sized subset S ⊆ {0, 1}n × {0, 1}n and a value b ∈ {0, 1} such that (1) for
every 〈x, y〉 ∈ S, f(x, y) = b and (2) for every distinct 〈x, y〉, 〈x′, y′〉 ∈ S, either f(x, y′) 6= b
or f(x′, y) 6= b.

If f has a size-M fooling set then C(f) ≥ logM . ♦

Example 13.6 (Disjointness)
Let x, y be interpreted as characteristic vectors of subsets of {1, 2, . . . , n}. Let
DISJ(x, y) = 1 if these two subsets are disjoint, otherwise DISJ(x, y) = 0. As
a corollary of Lemma 13.5 we obtain that C(DISJ) ≥ n since the following 2n

pairs constitute a fooling set:

S =
{

(A,A) : A ⊆ {1, 2, . . . , n}
}

.

13.2.2 The tiling method

The tiling method for lower bounds takes a more global view of the function f . Consider
the matrix of f , denoted M(f), which is a 2n× 2n matrix whose (x, y)’th entry is the value
f(x, y) (see Figure 13.1.) We visualize the communication protocol in terms of this matrix.
A combinatorial rectangle (or just rectangle for short) in the matrix M is a submatrix of M
that corresponds to entries in A×B where A ⊆ {0, 1}n, B ⊆ {0, 1}n, we say that A×B is
monochromatic if for all x in A and y in B, Mx,y is the same. If the protocol begins with the
first player sending a bit, then M(f) partitions into two rectangles of the type A0×{0, 1}n,
A1×{0, 1}n, where Ab is the subset of the input for which the first player communicates the
bit b. Notice, A0 ∪ A1 = {0, 1}n. If the next bit is sent by the second player, then each of
the two rectangles above is further partitioned into two smaller rectangles depending upon
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Figure 13.1 Matrix M(f) for the equality function when the inputs to the players have 3
bits. The numbers in the matrix are values of f .

what this bit was. Finally, if the total number of bits communicated is k then the matrix
gets partitioned into 2k rectangles. Note that each rectangle in the partition corresponds
to a subset of input pairs for which the communication pattern thus far has been identical.
(See Figure 13.2 for an example.) When the protocol stops, the value of f is determined by
the sequence of bits sent by the two players, and thus must be the same for all pairs x, y in
that rectangle. Thus the set of all communication patterns must lead to a partition of the
matrix into monochromatic rectangles.
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00 01

10 11 10

Figure 13.2 Two-way communication matrix after two steps. The large number labels are
the concatenation of the bit sent by the first player with the bit sent by the second player.

Definition 13.7 A monochromatic tiling ofM(f) is a partition ofM(f) into disjoint monochro-
matic rectangles. We denote by χ(f) the minimum number of rectangles in any monochro-
matic tiling of M(f). ♦

We have the following connection to communication complexity.

Theorem 13.8 (Tiling and communication complexity [AUY83])
log2 χ(f) ≤ C(f) ≤ 16(log2 χ(f))2.

Proof: The first inequality follows from our above discussion, namely, if f has communi-
cation complexity k then it has a monochromatic tiling with at most 2k rectangles. The
second inequality is left as Exercise 13.5. �
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The following observation shows that for every function f whose communication com-
plexity can be lower bounded using the fooling set method, the communication complexity
can also be lower bounded by the tiling method. Hence the latter method subsumes the
former.

Lemma 13.9 If f has a fooling set with m pairs, then χ(f) ≥ m. ♦

Proof: If (x1, y1) and (x2, y2) are two of the pairs in the fooling set, then they cannot be in
a monochromatic rectangle since not all of (x1, y1), (x2, y2), (x1, y2), (x2, y1) have the same
f value. �

13.2.3 The rank method

Now we introduce an algebraic method to lower bound χ(f) (and hence the communication
complexity of f). Recall the notion of rank of a square matrix: the size of the largest subset
of rows that are linearly independent. The following lemma (left as Exercise 13.6) gives an
equivalent characterization of the rank:

Lemma 13.10 The rank of an n× n matrix M over a field F, denoted by rank(M), is the
minimum value of ℓ such that M can be expressed as

M =

ℓ
∑

i=1

Bi ,

where each Bi is an n× n matrix of rank 1. ♦

Note that 0, 1 are elements of every field, so we can compute the rank of a binary matrix
over any field we like. The choice of field can be crucial; see Exercise 13.10.

Observing that every monochromatic rectangle can be viewed (by filling out entries
outside the rectangle with 0’s) as a matrix of rank at most 1 , we obtain the following
theorem:

Theorem 13.11 For every function f , χ(f) ≥ rank(M(f)). ♦

Example 13.12
The matrix for the equality function is simply the identity matrix, and hence
rank(M(Eq)) = 2n. Thus, C(EQ) ≥ logχ(EQ) ≥ n, yielding another proof of
Theorem 13.4.

13.2.4 The discrepancy method

For this method it is convenient to transform f into a ±1-valued function by using the map
b 7→ (−1)b (i.e., 0 7→ +1, 1 7→ −1. Thus M(f) will also be a ±1 matrix. We defined the
discrepancy of a rectangle A×B in a 2n × 2n matrix M to be

1

22n

∣

∣

∣

∣

∣

∣

∑

x∈A,y∈B
Mx,y

∣

∣

∣

∣

∣

∣

.

The discrepancy of the matrix M(f), denoted by Disc(f), is the maximum discrepancy
among all rectangles. The following easy lemma relates it to χ(f).

Lemma 13.13 χ(f) ≥ 1

Disc(f)
. ♦
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Proof: If χ(f) ≤ K then there exists a monochromatic rectangle having at least 22n/K
entries. Such a rectangle will have discrepancy at least 1/K. �

Lemma 13.13 can be very loose. For the equality function, the discrepancy is at least
1−2−n (namely, the discrepancy of the entire matrix), which would only give a lower bound
of 2 for χ(f). However, χ(f) is at least 2n, as already noted.
Now we describe a method to upper bound the discrepancy using eigenvalues.

Lemma 13.14 (Eigenvalue bound) For any real matrix M , the discrepancy of a rectangle
A × B is at most λmax(M)

√

|A| |B|/22n, where λmax(M) is the magnitude of the largest
eigenvalue of M . ♦

Proof: Let 1S ∈ R2n denote the characteristic vectors of a subset S ⊆ {0, 1}n (i.e., the xth

coordinate of 1S is equal to 1 if x ∈ S and to 0 otherwise). Note ‖1S‖2 =
√
∑

x∈S 12 =
√

|S|.
Note also that for every A,B ⊆ {0, 1}n,

∑

x∈A,y∈BMx,y = 1†
AM1B.

The discrepancy of the rectangle A×B is

1

22n
1†
AM1B ≤

1

22n
λmax(M)

∣

∣

∣1
†
A1B

∣

∣

∣ ≤ 1

22n
λmax(M)

√

|A| |B| ,

where the last inequality uses Cauchy-Schwartz. �

Example 13.15
The mod 2 inner product function defined as f(x, y) = x ⊙ y =

∑

i xiyi(mod2)
has been encountered a few times in this book. To bound its discrepancy, let
N be the pm1 matrix corresponding to f (i.e., Mx,y = (−1)x⊙y). It is easily
checked that every two distinct rows (columns) of N are orthogonal, every row
has ℓ2 norm 2n/2, and that NT = N . Thus we conclude that N2 = 2nI where
I is the unit matrix. Hence every eigenvalue is either +2n/2 or −2n/2, and
thus Lemma 13.14 implies that the discrepancy of a rectangle A×B is at most
2−3n/2

√

|A| |B| and the overall discrepancy is at most 2−n/2 (since |A| , |B| ≤
2n).

13.2.5 A technique for upper bounding the discrepancy

We describe an upper bound technique for the discrepancy that will later be useful also in
the multiparty setting (Section 13.3). As in Section 13.2.4, we assume that f is a ±1-valued
function. We define the following quantity:

Definition 13.16 E(f) = Ea1,a2,b1,b2

[

∏

i=1,2

∏

j=1,2 f(ai, bj)
]

. ♦

Note that E(f) can be computed, like the rank, in time polynomial in the size of the
matrix M(f). By contrast, the definition of discrepancy involves a maximization over all
possible subsets A,B, and a naive algorithm for computing it would take time exponential
in the size of M(f). (Indeed, the discrepancy is NP-hard to compute exactly, though it can
be approximated efficiently— see the chapter notes.) The following Lemma relates these
two quantities.

Lemma 13.17
Disc(f) ≤ E(f)1/4.

Proof: We need to show that for every rectangle A×B,

E(f) ≥





1
22n

∣

∣

∣

∣

∣

∣

∑

a∈A,b∈B
f(a, b)

∣

∣

∣

∣

∣

∣





4

.
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Let g, h the characteristic functions of A and B respectively. (That is g(a) equals 1 if a ∈ A
and 0 otherwise; h(b) equals 1 if b ∈ B and 0 otherwise.) Then, the right hand side is simply
(

Ea,b∈{0,1}n [f(a, b)g(a)h(b)]
)4

. But,

E(f) = E
a1,a2



 E
b1,b2





∏

i=1,2

∏

j=1,2

f(ai, bj)









= E
a1,a2

[

(

E
b
[f(a1, b)f(a2, b)]

)2
]

≥ E
a1,a2

[

g(a1)
2g(a2)

2

(

E
b
[f(a1, b)f(a2, b)]

)2
]

(using g(a) ≤ 1)

= E
a1,a2

[

(

E
b
[f(a1, b)g(a1)f(a2, b)g(a2)]

)2
]

≥
(

E
a1,a2

[

E
b
[f(a1, b)g(a1)f(a2, b)g(a2)]

])2

(using E[X2] ≥ E[X ]2)

=

(

E
b

[

(

E
a

[f(a, b)g(a)]
)2
])2

≥
(

E
a,b

[f(a, b)g(a)h(b)]

)4

. (repeating previous steps)

�

Exercise 13.12 asks you to derive a lower bound for the inner product function using this
technique. We will see another example in Section 13.3.

13.2.6 Comparison of the lower bound methods

The tiling argument is the strongest lower bound technique, since bounds on rank, dis-
crepancy and fooling sets imply a bound on χ(f), and hence can never prove better lower
bounds than the tiling argument. Also, as Theorem 13.10, logχ(f) fully characterizes the
communication complexity of f up to a constant factor. The rank and fooling set methods
are incomparable, meaning that each can be stronger than the other for some function.
However, if we ignore constant factors, the rank method is always at least as strong as
the fooling set method (see Exercise 13.8). Also, we can separate the power of these lower
bound arguments. For instance, we know functions for which a polynomial gap exists be-
tween logχ(f) and log rank(M(f)). However, the following conjecture (we only state one
form of it) says that rank is in fact optimal up to a polynomial factor.

Conjecture 13.18 (log rank conjecture)
There is a constant c > 1 such that C(f) = O(log(rank(M(f)))c) for all f and all input
sizes n, where rank is taken over the reals.

Of course, the difficult part of the above conjecture is to show that low rank implies
a low-complexity protocol for f . Though we are still far from proving this, Nisan and
Wigderson have shown that at least low rank implies low value of 1/Disc(f).

Theorem 13.19 ([NW94]) 1/Disc(f) = O(rank(f)3/2). ♦

13.3 Multiparty communication complexity

There is more than one way to generalize communication complexity to a multiplayer setting.
The most interesting model turns out to be the “number on the forehead” model: each player
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has a string on his head which everybody else can see but he cannot. That is, there are
k players and k strings x1, . . . , xk, and Player i gets all the strings except for xi. The
players are interested in computing a value f(x1, x2, . . . , xk) where f : ({0, 1}n)k → {0, 1}
is some fixed function. As in the 2-player case, the k players have an agreed-upon protocol
for communication (which was decided before they were given their strings), and all their
communication is posted on a “public blackboard” that all of them can see (the protocol
also determines the order in which the players write on the blackboard). The last message
sent should contain (or at least easily determine) the value f(x1, . . . , xk) of the function on
the inputs. By analogy with the 2-player case, we denote by Ck(f) the number of bits that
must be exchanged by the best protocol. Note that it is at most n+ 1, since it suffices for
any j 6= i to write xi on the blackboard, at which point the ith player knows all k strings
and can determine and publish f(x1, . . . , xk).

Example 13.20
Consider computing the function

f(x1, x2, x3) =

n
⊕

i=1

maj(x1i, x2i, x3i)

in the 3-party model where x1, x2, x3 are n bit strings. The communication
complexity of this function is 3: each player counts the number of i’s such that
she can determine the majority of x1i, x2i, x3i by examining the bits available to
her. She writes the parity of this number on the blackboard, and the final answer
is the parity of the players’ bits. This protocol is correct because the majority
for each row is known by either 1 or 3 players, and both are odd numbers.

Example 13.21 (Generalized Inner Product)
The generalized inner product function GIPk,n maps nk bits to 1 bit as follows

f(x1, . . . , xk) =
n
⊕

i=1

k
∧

j=1

xji. (1)

Notice, for k = 2 this reduces to the mod 2 inner product of Example 13.15.

For the 2-player model we introduced the notion of a monochromatic rectangle in order
to prove lower bounds. Specifically, a communication protocol can be viewed as a way of
partitioning the matrixM(f): if the protocol exchanges c bits, then the matrix is partitioned
into 2c rectangles, all of which must be monochromatic if the protocol is valid.

The corresponding notion in the k-party case is a cylinder intersection. A cylinder in di-
mension i is a subset S of the inputs such that if (x1, . . . , xk) ∈ S then (x1, . . . , xi−1, x

′
i, xi+1, . . . , xk) ∈

S for all x′i also. A cylinder intersection is ∩ki=1Ti where Ti is a cylinder in dimension i.
Since player i’s communication does not depend upon xi, it can be viewed as partitioning
the set of inputs according to cylinders in dimension i. Thus we conclude that at the end of
the protocol, the cube {0, 1}nk is partitioned using cylinder intersections, and if the proto-
col communicates c bits, then the partition consists of at most 2c monochromatic cylinder
intersections. Thus we have proved:

Lemma 13.22 If every partition of M(f) into monochromatic cylinder intersections re-
quires at least R cylinder intersections, then the k-party communication complexity is
at least ⌈log2R⌉, where M(f) is the k-dimensional table whose (x1, . . . , xk)

th entry is
f(x1, . . . , xk). ♦



13.3 Multiparty communication complexity 241

Discrepancy-based lower bound

In this section, we will assume as in our earlier discussion of discrepancy that the range of
the function f is {−1, 1}. We define the k-party discrepancy of f by analogy to the 2-party
case

Disc(f) =
1

2nk
max
T

∣

∣

∣

∣

∣

∣

∑

(a1,a2,...,ak)∈T
f(a1, a2, . . . , ak)

∣

∣

∣

∣

∣

∣

,

where T ranges over all cylinder intersections.
To upper bound the discrepancy we introduce the k-party analogue of E(f). Let a (k, n)-

cube be (multi) subsetD of {0, 1}nk of 2k points of the form {a1, a
′
1}×{a2, a

′
2}×· · ·×{ak, a′k},

where each ai, a
′
i ∈ {0, 1}n. We define

E(f) = E
D

(k, n) cube

[

∏

a∈D
f(a)

]

.

Notice that the definition of E(f) for the 2-party case is recovered when k = 2. The next
lemma is also an easy generalization.

Lemma 13.23
Disc(f) ≤ (E(f))1/2

k

.

The proof is analogous to the proof of Lemma 13.17 and is left as Exercise 13.14. The
only difference is that we need to repeat the basic step of that proof k times instead of 2
times.

Now we can prove a lower bound for the Generalized Inner Product (GIP) function.
Note that since we changed the range to {−1, 1}, this function is now defined as

GIPk,n(x1, x2, . . . , xk) = (−1)
∑

i≤n

∏

j≤k xji (2)

(we can omit the reduction modulo 2 since (−1)m = (−1)m (mod 2) for every m).

Theorem 13.24 (Lower bound for generalized inner product )
The function GIPk,n has k-party communication complexity Ω(n/4k).

Proof: By Lemma 13.23 it suffices to upper bound E(GIPk,n). Using (2) we see that for
every k, n,

GIPk,n(x1, . . . , xk) =

n
∏

i=1

GIPk,1(x1,i, . . . , xk,i) .

where we define GIPk,1(x1, . . . , xk) = (−1)
∏

j≤k xi . Thus

E(GIPk,n) = E
D

(k, n)-cube

[
∏

a∈D

n
∏

i=1

GIPk,1(ai)] ,

where for a vector a = (a1, . . . , ak) in ({0, 1}n)k, ai denotes the k bit string a1,i, . . . , ak,i.
But because each coordinate is chosen independently, the right hand side is equal to

n
∏

i=1

E
C

(k, 1) cube

[
∏

a∈C
GIPk,1(a)] = E(GIPk,1)n .

But E(GIPk,1) ≤ 1 − 2−k. Indeed a random (k, 1)-cube C = {a1, a
′
1} × · · · × {ak, a′k} has

probability 2−k to satisfy the event E that for every i the pair (ai, a
′
i) is either (0, 1) or

(0, 1). But since GIPk,1(a) = −1 if and only if a is the all ones vector, if E happens then
there is exactly one k-bit vector a in C such that GIPk,1(a) = −1 and for all other vectors
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b ∈ C, GIPk,1(b) = 1. Hence if E happens then
∏

a∈C GIPk,1(a) = −1, and since this
product is always at most 1,

E(GIPk,1) = E
C

(k, 1) cube

[
∏

a∈C
GIPk,1(a)] ≤ 2−k · −1 + (1 − 2−k) · 1 ≤ 1− 2−k .

Hence E(GIPk,n) ≤ (1 − 2−k)n ≤ e−n/2
k

= 2−Ω(n/2k). Thus Disc(GIPk,n) ≤ 2−Ω(n/4k),
implying that the k-party communication complexity of GIPk,n is Ω(n/4k).�

At the moment, we do not know of any explicit function f for which Ck(f) ≥ n2−o(k)

and in particular have no non-trivial lower bound for computing explicit functions f :
({0, 1}n)k → {0, 1} for k ≥ logn. Such a result could be useful to obtain new circuit lower
bounds; see Section 14.5.1.

13.4 Overview of other communication models

We outline some of the alternative settings in which communication complexity has been
studied.

Randomized protocols: One can consider randomized protocols for jointly computing
the value of a function. In such protocols, all players have access to a shared random
string r, which they use in determining their actions. We define R(f) to be the expected
number of bits communicated by the players. It turns out that randomization can
sometimes make a significant difference. For example, the equality function has a
randomized communication protocol with O(log n) complexity (see Exercise 13.15).
Nevertheless, there are techniques to prove lower bounds for such protocols as well.

Non-deterministic protocols: One can also define non-deterministic communication com-
plexity analogously to the definition of the class NP. In a non-deterministic protocol,
the players are both provided an additional third input z (“nondeterministic guess”)
of some length m that may depend on x, y. Apart from this guess, the protocol is
deterministic. We require that f(x, y) = 1 iff there exists a string z that makes the
players output 1, and the cost of the protocol is m plus the number of bits commu-
nicated. Once again, this can make a significant difference. For example both the
inequality and intersection functions (i.e., the negations of the functions EQ and the
function DISJ of Example 13.6) are easily shown to have logarithmic non-deterministic
communication complexity. Analogously to the definition of coNP, one can define the
co-non-deterministic communication complexity of f to be the non-deterministic com-
munication complexity of the function g(x, y) = 1 − f(x, y). Interestingly, it can
be shown that if f has non-deterministic communication complexity k and co-non-
deterministic communication complexity ℓ, then C(f) ≤ 10kℓ, hence implying that in
the communication complexity world the intersection of the classes corresponding to
NP and coNP is equal to the class corresponding to P. In contrast, we believe that
P 6= NP ∩ coNP.

Average case protocols: Just as we can study average-case complexity in the Turing
machine model, we can study communication complexity when the inputs are chosen
from a distribution D. This is defined as

CD(f) = min
Pprotocol for f

E
(x,y)∈

R
D
[Number of bits exchanged by P on x, y.]

Computing a non Boolean function: Here the function’s output is not just {0, 1} but
an m-bit number for some m. We discuss one example in the exercises.

Asymmetric communication: In this model the “cost” of communication is asymmetric:
there is some B such that it costs the first player B times as much to transmit a bit
than it does the second player. The goal is to minimize the total cost.
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Computing a relation: One can consider protocols that aim to hit a relation rather than
computing a function. That is, we have a relation R ⊆ {0, 1}n×{0, 1}n×{1, 2, . . . ,m}
and given x, y ∈ {0, 1}n the players seek to agree on any b ∈ {1, 2, . . . ,m} such that
(x, y, b) ∈ R. See Exercise 13.16.

These and many other settings are discussed in [KN97].

What have we learned?

• The communication complexity of a two input function f is the number of bits that a
player holding x and a player holding y need to exchange to compute f(x, y).

• Methods to lower bound the communication complexity of specific functions include
the fooling set, tiling, rank, and discrepancy methods. Using these methods we have
several examples of explicit functions on two n-bit inputs whose communication com-
plexity is at least n.

• The multiparty communication complexity of a k-input function f is the number of bits
that k parties need to exchange to compute f where the ith player has all the inputs
except the ith input. The best known lower bound of the k-party communication
complexity of an explicit function is of the form n/2−Ω(k).

• Other models of communication complexity studies include probabilistic, non-
deterministic, and average-case communication complexity, and the communication
complexity of computing relations.

Chapter notes and history

This chapter barely scratched the surface of this self-contained mini-world within complexity theory;
an excellent and detailed treatment can be found in the book by Kushilevitz and Nisan [KN97]
(though it does not contain some of the newer results).

Communication complexity was first defined by Yao [Yao79]. Other early papers that founded
the field were Papadimitriou and Sipser [PS82], Mehlhorn and Schmidt [MS82] (who introduced the
rank lower bound) and Aho, Ullman and Yannakakis [AUY83].

We briefly discussed parallel computation in Chapter 6. Yao [Yao79] invented communication
complexity as a way to lower bound the running time of parallel computers for certain tasks. The
idea is that the input is distributed among many processors, and if we partition these processors
into two halves, we may lower bound the computation time by considering the amount of com-
munication that must necessarily happen between the two halves. A similar idea is used to prove
time/space lower bounds for VLSI circuits. For instance, in a VLSI chip that is an m×m grid, if
the communication complexity for a function is greater than c, then the time required to compute
it is at least c/m.

Communication complexity is also useful in time-space lower bounds for Turing machines (see
Exercise 13.4), and circuit lower bounds (see Chapter 14).

Data structures such as heaps, sorted arrays, lists etc. are basic objects in algorithm design.
Often, algorithm designers wish to determine if the data structure they have designed is the best
possible. Communication complexity lower bounds can be used to establish such results; see [KN97].
Streaming algorithms, in which an algorithm can only make one pass on a very large input, is
another area where communication complexity bounds imply various optimality and impossibility
results. Alon, Matias and Szegedy [AMS96] were the first to use communication complexity as a
tool for proving lower bounds on streaming algorithms. Ever since then, there has been extensive
research on both the application of communication complexity to lower bound problems in stream
algorithms, as well as in the development of new tools for communication complexity inspired
by the need to tighten existing gaps in streaming problems like frequency estimation (see e.g.,
[CSWY01, BYJKS02]).

Yannakakis [Yan88] has shown how to use communication complexity lower bounds to prove
lower bounds on the size of polytopes representing NP-complete problems. Solving the open
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problem mentioned in Exercise 13.13 would prove a lower bound for the polytope representing
vertex cover.

Theorem 13.24 is due to Babai, Nisan and Szegedy, though our proof follows Raz’s simplification
[Raz00] of Chung’s proof [Chu90].

Computing the discrepancy (also known as the cut norm) of a given real matrix, and even
approximating it to an arbitrarily small constant is NP-hard. But it can be approximated using
semi-definite programming within some constant factor KG; see Alon and Naor [AN04]. (KG is a
number between 1.5 and 1.8 that is known as Grothendieck’s constant ; determining its exact value
is a major open problem.) The notion of discrepancy is known as regularity in the context of the
famous Szemerédi regularity lemma [Sze76]. In that context the parameter E(f) is analogous to the
fraction of 4-cycles in a given bipartite graph, which is again related to the regularity of the graph.
Multi-party discrepancy is related to the hypergraph regularity lemma, and the parameter E(f)
was used by Gowers [Gow07] in his proof of his lemma. A closely related group-theoretic parameter
(sometimes known as Gowers’s norm or Gowers’s uniformity) was used by Gowers [Gow01] in his
proof of the quantitatively improved version of Szemerédi’s Theorem guaranteeing the existence of
large arithmetic progression in dense sets. The book by Tau and Vu [TV06] contains an excellent
exposition of these topics.

Lovasz and Saks [LS88] have observed that the log rank conjecture is related to a conjecture
in discrete mathematics concerning chromatic number and rank of the adjacency matrix. The
original log rank conjecture was that C(f) = O(log rank(M(f))) but this was disproved by Raz
and Spieker [RS93]. A comparison of rank and fooling set arguments appears in the paper by
Dietzfelbinger, Hromkovic and Schnitger [DHS94].

In general, the complexity of computing C(f) and Ck(f) is not understood, and this may have
some connection to why it is difficult in practice for us to prove lower bounds on these quantities.
It is also intriguing that the lower bounds that we do prove involve quantities such as rank and
fooling sets that are computable in polynomial time given M(f). (This is an instance of the more
widespread phenomenon of natural proofs encountered in Chapter 23.) In this regard, it is interest-
ing to note that the Discrepancy parameter is NP-hard to compute, but can be approximated within
a constant multiplicative factor in the 2-player setting by a polynomial-time algorithm [AN04]. By
contrast, computing the discrepancy in the 3-player setting seems very hard (though no hardness
results seem to appear anywhere); this may perhaps explain why lower bounds are so difficult in
the multiplayer setting.

One relatively recent area not mentioned in this chapter is quantum communication complexity,
where the parties may exchange quantum states with one another, see [Bra04]. Interestingly, some

techniques developed in this setting [She07] were used to obtain new Ω(n1/(k−1)/22k ) lower bounds
on the k-party communication complexity of the disjointness function [LS07, CA08], thus obtaining
a strong separation of non-deterministic and deterministic k-party communication complexity.

Exercises

13.1 Prove Lemma 13.5.

13.2 Prove that for every set S ⊆ {(x, x) : x ∈ {0, 1}n} and any communication protocol Π that correctly
computes the equality function on n-bit inputs, there exists a pair of inputs in S on which Π uses
at least log |S| bits.

13.3 Prove that a single tape TM (one whose input tape is also its read/write work tape) takes at least
O(n2) to decide the language of palindromes PAL = {xn · · ·x1x1 · · ·xn : x1, . . . , xn ∈ {0, 1}n , n ∈ N}
of Example 1.1. H461

13.4 If S(n) ≤ n, show that a space S(n) TM takes at least Ω(n2/S(n)) steps to decide the language
{x#x : x ∈ {0, 1}∗}. H461

13.5 Prove the second inequality of Theorem 13.8. That is, prove that for every f : {0, 1}n × {0, 1}n →
{0, 1}, C(f) = O(log2 χ(f)). H462

13.6 Prove Lemma 13.10. H462

13.7 Show that for almost all functions f :{0, 1}n × {0, 1}n → {0, 1} the rank of M(f) over GF(2) is n
whereas the size of the largest fooling set is less than 3 log n. This shows that the rank lowerbound
can be exponentially better than the fooling set lowerbound.

13.8 For two n× n matrices A,B, define its tensor product A ⊗B as the n2 × n2 matrix whose entries
are indexed by 4-tuples from [n]. Show that the rank of A ⊗ B (over any field) is the product of
the ranks of A and B.
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Use the above fact to show that if a function f has a fooling set of size S then the rank method can
be used to give a lowerbound of at least 1/2⌈log S⌉ on the communication complexity. This shows
that the rank method is never much worse than the fooling set method.

13.9 Show that if M is 0/1 real matrix, and M ′ is the ±1 matrix obtained by applying the transformation
a 7→ (−1)a to the entries of M , then rank(M) − 1 ≤ rank(M ′) ≤ rank(M) + 1. H462

13.10 Consider x, y as vectors over GF (2)n and let f(x, y) be their inner product mod 2. Prove using the
rank method that the communication complexity is n. H462

13.11 Let f :{0, 1}n×{0, 1}n → {0, 1} be such that all rows of M(f) are distinct. Show that C(f) ≥ log n.
H462

13.12 Prove that E(IP ) ≤ 2−n, where IP is the inner product function. Derive a lower bound for the
communication complexity of IP . H462

13.13 For any graph G with n vertices, consider the following communication problem: Player 1 receives
a clique C in G, and Player 2 receives an independent set I . They have to communicate in order
to determine |C ∩ I |. (Note that this number is either 0 or 1.) Prove an O(log2 n) upper bound on
the communication complexity.

Can you improve your upper bound or prove a lower bound better than Ω(log n)? (Open question)

13.14 Prove Lemma 13.23.

13.15 Prove that the randomized communication complexity of the equality function (i.e., R(EQ)) is at
most O(log n). (Note that a randomized communication protocol is allowed to output the wrong
answer with probability at most 1/3.) H462

13.16 (Karchmer-Wigderson games [KW88]) Consider the following problem about computing a relation.
Associate the following communication problem with any function f : {0, 1}n → {0, 1}. Player 1
gets any input x such that f(x) = 0 and player 2 gets any input y such that f(y) = 1. They have to
communicate in order to determine a bit position i such that xi 6= yi. Show that the communication
complexity of this problem is exactly the minimum depth of any circuit that computes f . (The
maximum fan-in of each gate is 2.) H462

13.17 Use the previous question to show that computing the parity of n bits requires depth at least 2 log n.

13.18 Show that the following computational problem is in EXP: given the matrix M(f) of a Boolean
function, and a number K, decide if C(f) ≤ K.

(Open since Yao [Yao79]) Can you show this problem is complete for some complexity class?

13.19 ([AMS96]) A space-S(n) streaming algorithm is a space-S(n) TM M that makes only one sweep
of its input. This setup naturally occurs in many applications. Prove that there is no space-o(n)
streaming algorithm that solves the following problem: given a sequence x1, . . . , xm in [n], compute
the frequency of the most frequent element— maxx∈[n] | {i : xi = x} |. Can you show that one cannot
even approximate this problem to within a 3/4 factor in o(n)? H462
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Chapter 14

Circuit lower bounds

Complexity theory’s Waterloo

In Chapter 2 we saw that if there is any NP language that cannot be computed by
polynomial-sized circuits then NP 6= P. Thus proving circuit lower bounds is a potential
approach for proving NP 6= P. Furthermore, there is a reason to hope that this is a viable
approach, since the Karp-Lipton Theorem (Theorem 6.19) shows that if the polynomial
hierarchy PH does not collapse then there exists an NP language that does not have
polynomial size circuits.

In the 1970s and 1980s, many researchers came to believe that proving circuit lower
bounds represented the best route to resolving P versus NP, since circuits seem easier to
reason about than Turing machines. The success in this endeavor was mixed.

Progress on general circuits has been almost nonexistent: a lower bound of n is trivial for
any function that depends on all its input bits. We are unable to prove even a superlinear
circuit lower bound for any NP problem— the best we can do after years of effort is 5n−o(n).

To make life (comparatively) easier, researchers focussed on restricted circuit classes, and
were successful in proving some good lower bounds. We prove some of the major results of
this area, specifically, for bounded depth circuits (Section 14.1), bounded depth circuits with
“counting” gates (Section 14.2), and monotone circuits (Section 14.3). In all these resuls we
have a notion of “progress” of the computation. We show that small circuits simply cannot
achieve the amount of progress necessary to compute the output from the inputs.

In Section 14.4 we indicate the questions at the frontier of circuit lower bound research,
where we are currently stuck. A researcher starting work on this area may wish to focus on
one of the open questions described there. Later in Chapter 23 we’ll explain some of the
inherent obstacles that need to be overcome to make further progress.

14.1 AC0 and Håstad’s Switching Lemma

As we saw in Chapter 6, AC0 is the class of languages computable by circuit families of
constant depth, polynomial size, and whose gates have unbounded fan-in. (We need to
allow the fan-in in the circuit to be unbounded since otherwise the output cannot receive
information from all input bits.)

We saw in Chapter 2 (Claim 2.13) that every Boolean function can be computed by a
circuit of depth 2 and exponential size— that is a CNF (or DNF) formula. When students
study digital logic design they learn how to do “circuit minimization” using Karnaugh
maps, and the circuits talked about in that context are depth 2 circuits. Indeed, it is easy
to show (using for example the Karnaugh map technique) that the minimum DNF or CNF
representing even very simple functions (such as the parity function described below) has to
be of exponential size. However, those techniques do not seem to generalize to even depth
3 circuits, not to mention the class AC0 of (arbitrarily large) constant depth circuits of
polynomial size that we encountered in Section 6.7.1.
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The burning question in the late 1970s was whether problems like Clique and TSP have
AC0 circuits. In 1981, Furst, Saxe and Sipser and independently, Ajtai, showed that they
do not. In fact their lower bound applied to a much simpler function:

Theorem 14.1 ([FSS81, Ajt83])
Let

⊕

be the parity function. That is, for every x ∈ {0, 1}n, ⊕(x1, . . . , xn) =
∑n

i=1 xi
(mod 2). Then

⊕ 6∈ AC0.

The main tool in the proof of Theorem 14.1 is the concept of random restrictions. Let
f be a function computable by a depth d circuit of polynomial size and suppose that we
choose at random a vast majority (i.e., n− nǫ for some constant ǫ > 0 depending on d) of
the input variables and fix each such variable to be either 0 or 1 at random. We’ll prove
that with positive probability, the function f subject to this restriction is constant (i.e., it
is either always zero or always one). Since the parity function cannot be made a constant
by fixing values to a subset of the variables, it follows that it cannot be computed by a
constant depth polynomial-sized circuit.

14.1.1 Håstad’s switching lemma

As in Section 2.3, we define a k-CNF to be a Boolean formula that is an AND of OR’s
where each OR involves at most k variables. Similarly, a k-DNF is an OR of AND’s where
each AND involves at most k variables. If f is a function on n variables and ρ is a partial
assignment (also known as a restriction) to the variables of f , then we denote by f |ρ the
restriction of f under ρ. That is, f |ρ takes an assignment τ to the variables not assigned by
ρ as input, and outputs f applied to ρ and τ . Now we prove the main lemma about how a
circuit simplifies under a random restriction.

Lemma 14.2 (H̊astad’s switching lemma [H̊as86])
Suppose f is expressible as a k-DNF, and let ρ denote a random restriction that assigns
random values to t randomly selected input bits. Then for every s ≥ 2.

Pr
ρ

[f |ρ is not expressible as s-CNF ] ≤
(

(n− t)k10

n

)s/2

(1)

where f |ρ denotes the function f restricted to the partial assignment ρ.

We defer the proof of Lemma 14.2 to Section 14.1.2. We’ll typically use this lemma with
k, s constants and t ≈ n− √n in which case the guaranteed bound on the probability will
be n−c for some constant c. Note that by applying Lemma 14.2 to the function ¬f , we can
get the same result with the terms DNF and CNF interchanged.

Proving Theorem 14.1 from Lemma 14.2. Now we show how H̊astad’s lemma implies
that parity is not in AC0. We start with any AC0 circuit and assume that the circuit has
been simplified as follows (these simplifications are straightforward to do and are left as
Exercises 14.1 and 14.2): (a) All fanouts are 1; the circuit is a tree. (b) All not gates are
at the input level of the circuit; equivalently, the circuit has 2n input wires, with the last
n of them being the negations of the first n (c) The ∨ and ∧ gates alternate (i.e., at each
level of the tree there are either only ∨ gates or only ∧ gates). (d) The bottom level has ∧
gates of fan-in 1.

Let nb denote an upper bound on the number of gates in the circuit with the above
properties. We randomly restrict more and more variables, where each step with high
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probability will reduce the depth of the circuit by 1 and will keep the bottom level at a
constant fan-in. Specifically, letting ni stand for the number of unrestricted variables after
step i, we restrict ni −

√
ni variables at step i+ 1. Since n0 = n, we have ni = n1/2i . Let

ki = 10b2i. We’ll show that with high probability, after the ith restriction we’re left with a
depth-(d − i) circuit with at most ki fan-in in the bottom level. Indeed, suppose that the
bottom level contains ∧ gates and the level above it contains ∨ gates. The function each such

∨ gate computes is a ki-DNF and hence by Lemma 14.2, with probability 1−
(

k10
i

n1/2i+1

)ki+1/2

,

which is at least 1 − 1/(10nb) for large enough n, the function such a gate computes after
the i+ 1th iteration will be expressible as a ki+1-CNF. Since the top gate of a CNF formula
is ∧, we can merge those ∧ gates with the ∧-gate above them, reducing the depth of the
circuit by one (see Figures 14.1 and 14.2). The symmetric reasoning applies in the case the
bottom level consists of ∨ gates— in this case we use the lemma to transform the ki-CNF
of the level above it into a ki+1-DNF. Note that we apply the lemma at most once per each
of the at most nb gates of the original circuit. By the union bound, with probability 9/10,
if we continue this process for d− 2 steps, we’ll get a depth two circuit with fan-in k = kd−2

at bottom level. That is, either a k-CNF or k-DNF formula. But such a formula can be
made constant by fixing at most k of the variables (e.g., in a DNF ensuring that the first
clause has value 1). Since the parity function is not constant under any restriction of less
than n variables, this proves Theorem 14.1. �

k k k k k k k k k

Figure 14.1 Circuit before H̊astad switching transformation.

s s s s s s s s s

Figure 14.2 Circuit after H̊astad switching transformation. Notice that the new layer of ∧
gates can be collapsed with the single ∧ parent gate, to reduce the number of levels by one.

14.1.2 Proof of the switching lemma (Lemma 14.2)

Now we prove the Switching Lemma. The original proof was more complicated; this one is
due to Razborov.

We need a few definitions. Let a min-term of a function f be a partial assignment
to f ’s variables that makes f output 1 irrespective of the assignments to the remaining
variables. Thus every clause in a k-DNF formula for f yields a size-k min-term of f . A
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max-term is a partial assignment to f ’s variables that makes f output 0 regardless of the
other variables. Thus every clause in a k-CNF formula for f yields a size-k max-term of
f . We will assume throughout that min-terms (respectively max-terms) are minimal, in the
sense that no assignment to a proper subset of the term’s variables would make the function
1 (respectively, 0). Thus a function that is not expressible as an s-CNF must have at least
one max-term of length s+ 1 (see Exercise 14.3).

If π and ρ are restrictions on disjoint sets of variables, then we denote by πρ their union
(i.e., if π assigns values to variables in S and ρ assigns values to variables in T then πρ
assigns value to variables in S ∪ T according to either π or ρ respectively).

Let Rt denote the set of all restrictions of t variables, where t ≥ n/2. Note that
|Rt| =

(

n
t

)

2t. Denote by B the set of bad restrictions— those ρ ∈ Rt for which f |ρ is
not expressible as an s-CNF. To prove the lemma we need to show that B is small, which
we do by showing a one-to-one mapping from it to the cartesian product of the set Rt+s of

restrictions to (t + s) variables and {0, 1}ℓ for some ℓ = O(s log k). This cartesian product
has size

(

n
t+s

)

2t+s2O(s log k) =
(

n
t+s

)

2tkO(s). Hence the probability |B|/|Rt| of picking a bad
restriction is bounded by

(

n
t+s

)

2tkO(s)

(

n
t

)

2t
=

(

n
t+s

)

kO(s)

(

n
t

) . (2)

Intuitively, this ratio is small because k, s are thought of as constants and hence for t that is
very close to n, it holds that

(

n
t+s

)

≈
(

n
t

)

/ns and ns ≫ kO(s), meaning that (2) is bounded

by n−Ω(s). Formally, we can prove the bound (1) using the approximation
(

n
a

)

≈ (ne/a)a;
we leave it as Exercise 14.4.

Thus to prove the lemma it suffices to describe the one-to-one mapping mentioned above.
Let us reason about a restriction ρ that is bad for the k-DNF formula f . None of the terms
of f becomes 1 under ρ, as otherwise f |ρ would be the constant function 1. Some terms
become 0, but not all, since that would also fix the overall output. In fact, since f |ρ is not
expressible as an s-CNF, it has some max-term, say π, of length at least s. That is, π is
a restriction of some variables not set by ρ such that f |ρπ is the sero function but f |ρπ′ is
non-zero for every subrestriction π′ of π. The rough intuition is that the one-to-one mapping
will map ρ to ρσ, where σ is a suitably defined restriction of π’s variables, and hence ρσ
restricts at least t+ s variables.

Order the terms of f in some arbitrary order t1, t2, . . . ,, and within the terms, order the
variables in some arbitrary order. By definition, ρπ is a restriction that sets f to 0, and
thus sets all terms of f to 0. We split π into m ≤ s subrestrictions π1, π2, . . . πm as follows.
Assume we have already found π1, π2, . . . , πi−1 such that π1π2 · · ·πi−1 6= π. Let tli be the
first term in our ordering of terms that is not set to 0 under ρπ1π2 · · ·πi−1. Such a term
must exist since π is a max-term, and π1π2 · · ·πi−1 being a proper subset of it cannot be a
max-term. Let Yi be the variables of tli that are set by π but are not set by ρπ1 · · ·πi−1.
Since π sets the term tli to 0, Yi cannot be empty. We define πi to be the restriction that
coincides with π on Yi (and hence sets tli to 0). We define σi to be the restriction of Yi
that keeps tli from being 0 (such a restriction must exist since otherwise tli would be 0).
This process continues until the first time where defining πm as above would mean that
π1, . . . , πm (and hence also σ1, σ2, . . . , σm) together assign at least s variables. If necessary,
we trim πm in some arbitrary way (i.e., make it assign values to fewer variables) so that
these restrictions together assign exactly s variables.

Our mapping will map ρ to (ρσ1σ2 . . . σm, c) where c is an O(s log k) length string defined
below. To show that the mapping is one-to-one we need to show how to invert it uniquely.
This is harder than it looks since a priori there is no way to identify ρ from ρσ1σ2 . . . σm.
Indeed the purpose of the auxiliary information in c is to help us do precisely that, as
described next.

Suppose we are given the assignment ρσ1σ2 . . . σm. We can plug this assignment into f
and then infer which term serves as tl1 : it is the first one to that is not fixed to 0. (It is the
first term not fixed to 0 by ρ, this property is maintained by σ1, and σ2, . . . , σm do not assign
values to variables in the term tl1 .) Let s1 be the number of variables in π1. The string c
will contain the number s1, the indices in tl1 of the variables in π1, and the values that π1

assigns to these variables. Note once we know tl1 this information is sufficient to reconstruct
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π1. Moreover, since each term has at most k variables, we only need O(s1 log k) bits to store
this information. Having reconstructed π1, we can change the restriction ρσ1σ2 · · ·σm to
ρπ1σ2 · · ·σm and work out which term is t2: it is once again the first non-zero term under
the new restriction (note that π1 sets tl1 to 0). The next O(s2 log k) bits of c will give us the
assignment π2 (where s2 is the number of variables in π2). We continue this process until
we have processed all m terms and figured out what π1, . . . , πm are. Now we can “undo”
them to reconstruct ρ, thus demonstrating that the mapping is one-to-one. The total length
of auxiliary information required is O((s1 + s2 + . . .+ sm) log k) = O(s log k). �

14.2 Circuits With “Counters”:ACC

After the AC0 lower bounds of the previous section were proved, researchers were inspired
to extend them to more general classes of circuits. The simplest extension seemed to be to
allow gates other than ∨ and ∧ in the circuit, while continuing to insist that the depth stays
O(1). A simple example of such a gate is the parity gate, which computes the parity of its
input bits. Clearly, an AC0 circuit provided with even a single parity gate can compute
the parity function. But are there still other explicit functions that it cannot compute?
Razborov proved the first lower bound for such circuits using his Method of Approximations.
Smolensky later extended this work and clarified this method for the circuit class considered
here.

Definition 14.3 (ACC 0) For any integer m, the MODm gate outputs 0 if the sum of its
inputs is 0 modulo m, and 1 otherwise.

For integers m1,m2, . . . ,mk > 1 we say a language L is in ACC0(m1,m2, . . . ,mk) if there
exists a circuit family {Cn} with constant depth and polynomial size (and unbounded fan-in)
consisting of ∧, ∨, ¬ and MODm1 , . . . ,MODmk gates accepting L.

The class ACC0 contains every language that is in ACC0(m1,m2, . . . ,mk) for some
k ≥ 0 and m1,m2, . . . ,mk > 1. ♦

Good lower bounds are known only when the circuit has one kind of modular gate.

Theorem 14.4 (Razborov-Smolensky [Raz87, Smo87])
For distinct primes p and q, the function MODp is not in ACC0(q).

We exhibit the main idea of this result by proving that the parity function cannot be
computed by an ACC0(3) circuit.

Proof: The proof proceeds in two steps.

Step 1. In the first step, we show (using induction on h) that for any depth h MOD3

circuit on n inputs and size S, there is a polynomial of degree (2l)h which agrees with
the circuit on 1 − S/2l fraction of the inputs. If our circuit C has depth d then we

set 2l = n1/2d to obtain a degree
√
n polynomial that agrees with C on 1−S/2n1/2d/2

fraction of inputs.

Step 2 We show that no polynomial of degree
√
n agrees with MOD2 on more than 49/50

fraction of inputs.

Together, the two steps imply that S > 2n
1/2d/2/50 for any depth d circuit computing

MOD2, thus proving the theorem. Now we give details.
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Step 1. Consider a node v in the circuit at a depth h . (If v is an input node then
we say it has depth 0.) If g(x1, · · · , xn) is the function computed at the node v, then we
desire a polynomial g̃(x1, · · · , xn) over GF(3) with degree (2l)h, such that g(x1, . . . , xn) =
g̃(x1, . . . , xn) for “most” x1, . . . , xn ∈ {0, 1}. We will also ensure that on every input in
{0, 1}n ⊆ GF (3), polynomial g̃ takes a value in {0, 1}. This is without loss of generality
since we can just square the polynomial. (Recall that the elements of GF (3) are 0,−1, 1
and 02 = 0, 12 = 1 and (−1)2 = 1.)

We construct the approximating polynomial by induction. When h = 0 the “gate” is an
input wire xi, which is exactly represented by the degree 1 polynomial xi. Suppose we have
constructed approximators for all nodes up to height h− 1 and g is a gate at height h.

1. If g is a NOT gate, then g = ¬f1 for some other gate f1 that is at height h− 1 or less.
The inductive hypothesis gives an approximator f̃1 for f1. Then we use g̃ = 1 − f̃1
as the approximator polynomial for g; this has the same degree as f̃1. Whenever
f̃1(x) = f1(x) then g̃(x) = g(x), so we introduced no new error.

2. If g is aMOD3 gate with inputs f1, f2, . . . , fk, we use the approximation g̃ = (
∑k

i=0 f̃i)
2.

The degree increases to at most 2× (2l)h−1 < (2l)h. Since 02 = 0 and (−1)2 = 1, we
introduced no new error.

3. If g is an AND or an OR gate, we need to be more careful. We give the solution for
OR; De Morgan’s law allows AND gates to be handled similarly. Suppose g = ∨ki=0fi.

The naive approach would be to replace g with the polynomial 1 − ∏k
i=0(1 − f̃i).

Unfortunately, this multiplies the degree by k, the fan-in of the gate, which could
greatly exceed 2l. The correct solution involves introducing some error.

If g = ∨ki=0fi, then on input x, g(x) = 1 if and only if at least one of the fi’s outputs
1 on x. Furthermore, by the random subsum principle (see Claim A.31) if there is
some i such that fi(x) = 1, then the sum (over GF(3)) of a random subset of {fi(x)}
is nonzero with probability at least 1/2.

Randomly pick l subsets T1, · · · , Tl of {1, . . . , k}. Compute the l polynomials (
∑

j∈T1
f̃j)

2, . . . , (
∑

j∈Tl f̃j)
2,

each of which has degree at most twice than that of the largest input polynomial. Com-
pute the OR of these l terms using the naive approach. We get a polynomial of degree
at most 2l × (2l)h−1 = (2l)h. For any x, the probability over the choice of subsets
that this polynomial differs from OR(f̃1, . . . , f̃k) is at most 1

2l
. So, by the probabilistic

method, there exists a choice for the l subsets such that the probability over the choice
of x that this polynomial differs from OR(f̃1, · · · , f̃k) is at most 1

2l
. We use this choice

of the subsets to construct the approximator.

Applying the above procedure for each gate gives an approximator for the output gate
of degree (2l)d where d is depth of the entire circuit. Each operation of replacing a gate by
its approximator polynomial introduces error on at most 1/2l fraction of all inputs, so the
overall fraction of erroneous inputs for the approximator is at most S/2l. (Note that errors
at different gates may affect each other. Error introduced at one gate may be canceled out
by errors at another gate higher up. Thus, we are being pessimistic in applying the union
bound to upper bound the probability that any of the approximator polynomials anywhere
in the circuit miscomputes.)

Step 2. Suppose that a polynomial f agrees with the MOD2 function for all inputs in a
set G′ ⊆ {0, 1}n. If the degree of f is bounded by

√
n, then we show that |G′| <

(

49
50

)

2n.
Consider the change of variables yi = 1 + xi (mod 3). (Thus 0→ 1 and 1→ −1.) This

changes the input domain from {0, 1} to {±1}n. Under this transformation f is some other
polynomial, say say g(y1, y2, . . . , yn), which still has degree

√
n. The set G′ is transformed

to a subset G of {±1}n of the same size on which g and the (transformed version) of MOD2

agree.
But it’s not hard to see that MOD2 is transformed to the function

∏n
i=1 yi. Thus

g(y1, y2, . . . , yn), a degree
√
n polynomial, agrees with Πn

i=1yi on G. This is decidedly odd,
and we show that any such G must be small. Specifically, let FG be the set of all functions
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S :G → {0, 1,−1}. Clearly, |FG| = 3|G|, and we will show |FG| ≤ 3(4950)2
n

, whence Step 2
follows.

Lemma 14.5 For every S ∈ FG, there exists a polynomial gS which is a sum of monomials
aI
∏

i∈I yi where |I| ≤ n
2 +
√
n such that gS(x) = S(x) for all x ∈ G. ♦

Proof: Let Ŝ :GF (3)n → GF (3) be any function which agrees with S on G. Then Ŝ can
be written as a polynomial in the variables yi. However, we are only interested in its values
on (y1, y2, . . . , yn) ∈ {−1, 1}n, when y2

i = 1 and so every monomial Πi∈Iy
ri
i has, without

loss of generality, ri ≤ 1. Thus Ŝ is a polynomial of degree at most n. Now consider any of
its monomial terms Πi∈Iyi of degree |I| > n/2. We can rewrite it as

Πi∈Iyi = Πn
i=1yiΠi∈Īyi, (3)

which takes the same values as g(y1, y2, . . . , yn)Πi∈Īyi over G. Thus every monomial in Ŝ
can be replaced with a monomial with degree at most n

2 +
√
n. �

To conclude, we bound the number of possible polynomials gS as in Lemma 14.5. This
number is at most 3 to the power of the number of possible monomials. But the number of
possible such monomials is

∣

∣

{

I ⊂ [n] : |I| ≤ n/2 +
√
n
}∣

∣ =

n/2+
√
n

∑

i=0

(

n

i

)

.

Using bounds on the tail of the binomial distribution (or direct calculation) it can be shown
that this is less than 49

502n. �

14.3 Lower bounds for monotone circuits

A Boolean circuit is monotone if it contains only AND and OR gates, and no NOT gates.
Such a circuit can only compute monotone functions, defined as follows.

Definition 14.6 For x, y ∈ {0, 1}n, we denote x 4 y if every bit that is 1 in x is also 1 in y.
A function f :{0, 1}n → {0, 1} is monotone if f(x) ≤ f(y) for every x 4 y. ♦

An alternative characterization is that f is monotone if for every input x, changing a
bit in x from 0 to 1 cannot change the value of the function from 1 to 0.

It is easy to check that every monotone circuit computes a monotone function, and every
monotone function can be computed by a (sufficiently large) monotone circuit. CLIQUE is a
monotone function since adding an edge to the graph cannot destroy any clique that existed
in it. It is therefore natural to try to show that CLIQUE cannot be computed by polynomial-
size monotone circuits. Razborov was first to prove such a result. This was soon improved
by Andreev and further improved by Alon and Boppana, who proved the following theorem.

Theorem 14.7 (Monotone-circuit lower bound for CLIQUE [Raz85a, And85, AB87])
Denote by CLIQUEk,n : {0, 1}(

n
2) → {0, 1} be the function that on input an adjacency matrix

of an n-vertex graph G outputs 1 iff G contains a k-vertex clique.
There exists some constant ǫ > 0 such that for every k ≤ n1/4, there’s no monotone circuit

of size less than 2ǫ
√
k that computes CLIQUEk,n.

Of course, we believe that the above theorem holds (at least roughly) for non monotone
circuits as well (i.e., that NP * P/poly). In fact, one of the original hopes behind considering
monotone circuits was that there is some connection between monotone and nonmonotone
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circuit complexity. One plausible conjecture was that for every monotone function f , the
monotone circuit complexity of f is polynomially related to its general (non-monotone)
circuit complexity. Alas, this conjecture was refuted by Razborov ([Raz85b]), and in fact the
gap between the two complexities is now known to be exponential [Tar88].

14.3.1 Proving Theorem 14.7

Clique indicators

To get some intuition as to why this theorem might be true, let’s show that CLIQUEk,n
cannot be computed (or even approximated) by subexponential monotone circuits of a very

special form. For every S ⊆ [n], let CS denote the function on {0, 1}(
n
2) that outputs 1 on

a graph G iff the set S is a clique in G. We call CS the clique indicator of S. Note that
CLIQUEk,n =

∨

S⊆[n],|S|=k CS . We’ll now prove that CLIQUEk,n can’t be computed by an

OR of less than n
√
k/20 clique indicators.

Let Y be the following distribution on n-vertex graphs: choose a setK ⊆ [n] with |K| = k
at random, and output the graph that has a clique on K and no other edges. Let N be the
following distribution on n-vertex graphs: choose a function c : [n]→ [k−1] at random, and
place an edge between u and v iff c(u) 6= c(v). With probability one, CLIQUEn,k(Y) = 1

and CLIQUEn,k(N ) = 0. The fact that CLIQUEn,k requires an OR of at least n
√
k/20 clique

indicators follows immediately from the following lemma:

Lemma 14.8 Let n be sufficiently large, k ≤ n1/4 and S ⊆ [n]. Then either Pr[CS(N ) =

1] ≥ 0.99 or Pr[CS(Y) = 1] ≤ n−
√
k/20 ♦

Proof: Let ℓ =
√
k − 1/10. If |S| ≤ ℓ then by the birthday bound (see Example A.4), we

expect a random f : S → [k − 1] to have less than 0.01 collisions and hence by Markov’s
inequality the probability that f is one to one is at least 0.99. This implies that Pr[CS(N ) =
1] ≥ 0.99.

If |S| > ℓ then Pr[CS(Y) = 1] is equal to the probability that S ⊆ K for a random
K ⊆ [n] of size k. This probability is equal to

(

n−ℓ
k−ℓ
)

/
(

n
k

)

which, by the formula for the

binomial coefficients, is less than
(

2k
n

)ℓ ≤ n−0.7ℓ < n−
√
k/20 (for sufficiently large n). �

Approximation by clique indicators.

Together with Lemma 14.8, the following lemma implies Theorem 14.7:

Lemma 14.9 Let C be a monotone circuit of size s < 2
√
k/2. Then, there exist sets

S1, . . . , Sm with m ≤ n
√
k/20 such that

Pr
G∈

R
Y
[
∨

i

CSi(G) ≥ C(G)] >0.9 (4)

Pr
G∈

R
N

[
∨

i

CSi(G) ≤ C(G)] >0.9 (5)

(6)

♦

Proof: Set ℓ =
√
k/10, p = 10

√
k log n and m = (p − 1)ℓℓ!. Note that m ≪ n

√
k/20. We

can think of the circuit C as a sequence of s monotone functions f1, . . . , fs from {0, 1}(
n
2)

to {0, 1} where each function fk is either the AND or OR of two functions fk′ , fk′′ for
k′, k′′ < k or is the value of an input variable xu,v for u, v ∈ [n] (i.e., fk = C{u,v}). The

function that C computes is fs. We’ll show a sequence of functions f̃1, . . . , f̃s such that
each function f̃k is (1) an OR of at most m clique indicators CS1 , . . . ,CSm with |Si| ≤ ℓ
and (2) f̃k approximates fk, in the sense that the two agree with good probabiity on inputs
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drawn from the distributions Y and N . (Thus conditions (4) and (5) are a special case of
this notion of approximation.) We call any function f̃k satisfying (1) an (ℓ,m)-function.

We construct the functions f̃1, . . . , f̃s by induction. For 1 ≤ k ≤ s, if fk is an input
variable then we let f̃k = fk. If fk = fk′ ∨fk′′ then we let f̃k′ ⊔ f̃k′′ and if fk = fk′ ∧fk′′ then
we let f̃k′ ⊓ f̃k′′ , where the operations ⊔,⊓ will be defined below. We’ll prove that for every

f, g : {0, 1}(
n
2) → {0, 1} (a) if f and g are (m, ℓ)-functions then so is f ⊔ g (resp. f ⊓ g) and

(b) PrG∈
R
Y [f⊔g (G) < f∨g (G)] < 1/(10s) (resp. PrG∈

R
Y [f⊓g (G) < f∧g (G)] < 1/(10s))

and PrG∈
R
N [f⊔g (G) > f∨g (G)] < 1/(10s) (resp. PrG∈

R
Y [f⊓g (G) < f∧g (G)] < 1/(10s)).

The lemma will then follow by showing using the union bound that with probability ≥ 0.9
the equations of Condition (b) hold for all f̃1, . . . , f̃s. We’ll now describe the two operations
⊔,⊓. Condition (a) will follow from the definition of the operations, while Condition (b)
will require a proof.

The operation f ⊔ g. Let f, g be two (m, ℓ)-functions: that is f =
∨m
i=1 CSi and g =

∨m
j=1 CTj (if f or g is the OR of less than m clique indicators we can add duplicate sets

to make the number m). Consider the function h = CZ1 ∨ · · · ∨ CZ2m where Zi = Si and
Zm+j = Tj for 1 ≤ i, j ≤ m. The function h is not an (m, ℓ)-function since it is the OR of 2m
clique indicators. We make it into an (m, ℓ)-function in the following way: as long as there
are more than m distinct sets, find p subsets Zi1 , . . . , Zip that are in a sunflower formation.
That is, there exists a set Z ⊆ [n] such that for every 1 ≤ j, j′ ≤ p, Zij ∩ Zij′ = Z. (The
name “sunflower” comes from viewing the sets Zi1 \Z,. . .,Zip\Z as the petals of a sunflower
with center Z.) Replace the functions CZi1 , . . . ,CZip in the function h with the function CZ .
Once we obtain an (m, ℓ)-function h′ we define f ⊔ g to be h′. We won’t get stuck because
of the following lemma (whose proof we defer):

Lemma 14.10 (Sunflower lemma [ER60]) Let Z be a collection of distinct sets each of car-
dinality at most ℓ. If |Z| > (p − 1)ℓℓ! then there exist p sets Z1, . . . , Zp ∈ Z and a set Z
such that Zi ∩ Zj = Z for every 1 ≤ i, j ≤ p. ♦

The operation f ⊓ g. Let f, g be two (m, ℓ)-functions: that is f =
∨m
i=1 CSi and g =

∨m
j=1 CTj . Let h be the function

∨

1≤i,j≤m CSi∪Tj . We perform the following steps on h: (1)
Discard any function CZ for |Z| > ℓ. (2) Reduce the number of functions to m by applying
the sunflower lemma as above.

Proving Condition (b). To complete the proof of the lemma, we prove the following four
equations:

• PrG∈
R
Y [f⊔g (G) < f∨g (G)] < 1/(10s).

If Z ⊆ Z1, . . . , Zp then for every i, CZi(G) implies that CZ(G) and hence the operation
f ⊔ g can’t introduce any “false negatives”.

• PrG∈
R
N [f⊔g (G) > f∨g (G)] < 1/(10s).

We can introduce a “false positive” on a graph G only if when we replace the clique
indicators for a sunflower Z1, . . . , Zp with the clique indicator for the common intersec-
tion Z, it is the case that CZ(G) holds even though CZi(G) is false for every i. Recall
that we choose G ∈

R
N by choosing a random function c : [n] → [k − 1] and adding

an edge for every two vertices u, v with c(u) 6= c(v). Thus, we get a false positive if
c is one-to-one on Z (we denote this event by B) but not one-to-one on Zi for every
1 ≤ i ≤ p (we denote these events by A1, . . . , Ap). We’ll show that the intersection of
B and A1, . . . , Ap happens with probability at most 2−p which (by the choice of p) is
less than 1/(10m2s). Since we apply the reduction step at most m times the equation
will follow.

For every i, Pr[Ai|B] < 1/2. Indeed, since |Zi| = ℓ <
√
k − 1/10, the birthday bound

says that Pr[Ai] < 1/2 and conditioning on having no collisions in Z only makes
this event less likely. Conditioned on B, the events A1, . . . , Ap are independent, since
they depend on the values of c on disjoint sets, and hence Pr[A1 ∧ · · · ∧ Ap ∧ B] ≤
Pr[A1 ∧ · · · ∧Ap|B] =

∏p
i=1 Pr[Ap|B] ≤ 2−p.
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• PrG∈
R
Y [f⊓g (G) < f∧g (G)] < 1/(10s).

By the distributive law f ∧ g =
∨

i,j(CSi ∧ CTj ). A graph G in the support of Y
consists of a clique over some set K. For such a graph CSi ∧ CTj holds iff Si, Tj ⊆ K
and thus CSi ∧ CTj holds iff CSi∪Tj holds. We can introduce a false negative when
we discard functions of the form CZ for |Z| > ℓ, but by Lemma 14.8, for such sets

Z, Pr[CZ(Y) = 1] < n−
√
k/20 < 1/(10sm2). The equation follows since we discard at

most m2 such sets.

• PrG∈
R
N [f⊓g (G) > f∧g (G)] < 1/(10s).

Since CS∪T implies both CS and CT , we can’t introduce false positives by moving
from f ∧ g to

∨

i,j CSi∪Tj . We can’t introduce false positives by discarding functions
from the OR. Thus, the only place where we can introduce false positives is where we
replace the clique indicators of a sunflower with the clique indicator of the common
intersection. We bound this probability in the same way as this was done for the ⊔
operator.

�

Proof of the sunflower lemma (Lemma 14.10). The proof is by induction on ℓ. The
case ℓ = 1 is trivial since distinct sets of size 1 must be disjoint (hence forming a sunflower
with center Z = ∅). For ℓ > 1 let M be a maximal subcollection of Z containing only
disjoint sets. We can assume that |M| < p since otherwiseM is already a sufficiently large
sunflower. Because of M’s maximality for every Z ∈ Z there exists x ∈ ∪M = ∪M∈MM
such that x ∈ Z. Since | ∪M| ≤ (p− 1)ℓ, by averaging there’s an x ∈ ∪M that appears in
at least a 1

ℓ(p−1) fraction of the sets in Z. Let Z1, . . . , Zt be the sets containing x, and note

that t > (p − 1)ℓ−1(ℓ − 1)!. Thus, by induction there are p sets among the ℓ − 1-sized sets
Z1 \ {x}, · · · , Zt \ {x} that form a sunflower, adding back x we get the desired sunflower
among the original sets. Note that the statement (and proof) assume nothing about the
size of the universe the sets in Z live in. �

14.4 Circuit complexity: The frontier

Now we sketch the “frontier” of circuit lower bounds, namely, the dividing line between what
we can prove and what we cannot. Along the way we also define multi-party communication,
since it may prove useful for proving some new circuit lower bounds.

14.4.1 Circuit lower bounds using diagonalization

We already mentioned that the best lower bound on circuit size for an NP problem is
5n − o(n). For PH better lower bounds are known: Exercises 6.5–6.6 of Chapter 6 asked
you to show using diagonalization that for every k > 0, some language in PH (in fact in
Σp

2) requires circuits of size Ω(nk). One imagines that classes “higher up” than PH should
have even harder languages. Thus a natural open question is:

Frontier 1: Does NEXP have languages that require super-polynomial size circuits?

If we go a little above NEXP, we can actually prove a super-polynomial lower bound:
we know that MAEXP * P/poly where MAEXP is the set of languages accepted by a one
round proof system with an all powerful prover and an exponential time probabilistic verifier.
(This is the exponential time analog of the class MA defined in Section 8.2.) This follows
from the fact that if MAEXP ⊆ P/poly then in particular PSPACE ⊆ P/poly. However,
by IP = PSPACE (Theorem 8.19) in this case PSPACE = MA (the prover can send in



14.4 Circuit complexity: The frontier 257

one round the circuit for computing the prover strategy in the interactive proof). By simple
padding this implies that MAEXP equals the class of languages in exponential space, which
can be directly shown to not contain P/poly using diagonalization. Interestingly, this lower
bound does not relativize— there is an oracle under which MANEXP ⊆ P/poly [BFT98].
(The result that IP = PSPACE used in the proof also does not relativize.)

14.4.2 Status of ACC versus P

The result that PARITY is not in AC0 separates NC1 from AC0. The next logical step
would be to separate ACC0 from NC1. Less ambitiously, we would like to show even a
function in P or NP that is not in ACC0.

The Razborov-Smolenksy method seems to fail when we allow the circuit even two types
of modular gates, say MOD2 and MOD3. In fact if we allow the bounded depth circuit
modular gates that do arithmetic mod q, when q is not a prime —a prime power, to be
exact— we reach the limits of our knowledge. (The exercises ask you to figure out why the
proof of Theorem 14.4 does not seem to apply when the modulus is a composite number.)
To give one example, it is consistent with current knowledge that the CLIQUE function can
be computed by linear size circuits of constant depth consisting entirely of MOD6 gates.
The problem seems to be that low-degree polynomials modulo m where m is composite are
surprisingly expressive [BBR92].

Frontier 2: Show CLIQUE is not in ACC0(6).

Or even less ambitiously:

Frontier 2.1: Exhibit a language in NEXP that is not in ACC0(6).

It is worth noting that thus far we are talking about non-uniform circuits (to which The-
orem 14.4 also applies). Stronger lower bounds are known for uniform circuits: Allender and
Gore [AG94] have shown that a decision version of the Permanent (and hence the Permanent
itself) requires exponential size “Dlogtime-uniform” ACC0 circuits. (A circuit family {Cn}
is Dlogtime uniform if there exists a deterministic Turing machine M that given a number
n and a pair of gates g, h determines in O(log n) time what types of gates g and h are and
whether g is h’s parent in Cn.)

But going back to non-uniform ACC0, we wish to mention an alternative representation
of ACC0 circuits that may be useful in further lower bounds. A symmetric gate is a gate
whose output depends only on the number of inputs that are 1. For example, majority and
mod gates are symmetric. Yao has shown that ACC0 circuits can be simplified to give an
equivalent depth 2 circuits with a symmetric gate at the output (Figure 14.3). Beigel and
Tarui subsequently improved Yao’s result:

Theorem 14.11 ([Yao90, BT91]) If f ∈ ACC0, then f can be computed by a depth 2 circuit

C with a symmetric gate with quasipolynomial (i.e., 2logk n) fan-in at the output level and
∧ gates that has polylogarithmic fan-in at the input level. ♦

We will revisit this theorem below in Section 14.5.1.

14.4.3 Linear Circuits With Logarithmic Depth

When we restrict circuits to have bounded fan-in we necessarily need to allow them to have
nonconstant (in fact, Ω(logn)) depth to allow the output to depend on all bits of the input.
With this in mind, the simplest interesting circuit class seems to be the class of bounded
fan-in circuits having O(n) size and O(log n) depth.

Frontier 3: Find an explicit n-bit Boolean function that cannot be computed by circuits
of O(n) size and O(log n) depth.
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Quasipolynomial Fan-In

Polylogarithmic Fan-In
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Figure 14.3 The depth 2 circuit with a symmetric output gate from Theorem 14.11.

Subfrontier: Find such a function which is not Boolean and maps {0, 1}n to {0, 1}n.
(Note that by counting one can easily show that some function on n bits requires su-

perpolynomial size circuits and hence bounded fan-in circuits with more than logarithmic
depth; see the exercises in Chapter 6. Hence we want to show this for an explicit function,
e.g. CLIQUE.)

Valiant thought about this problem in the ’70s. His initial candidates for lower bounds
boiled down to showing that a certain graph called a superconcentrator needed to have
superlinear size. He failed to prove this and instead ended up proving that such supercon-
centrators do exist! However a side product of Valiant’s investigations was the following
important lemma concerning depth-reduction for such circuits.

Lemma 14.12 ([Val75a]) In any directed acyclic graph with m edges and depth d, there is
a set S of km/ ⌈log d⌉ edges whose removal leaves the graph with depth at most d/2k−1. ♦

Proof Sketch: Sort the graphs into d levels such that if −→u v is an edge, then u is at a
lower level than v. Letting ℓ = ⌈log d⌉, we can use the binary basis to represent every level
as an ℓ-bit string. We label each edge −→u v with the number i ∈ [ℓ] such that i is the most
significant bit in which the levels of u and v differ. We let I be the k “least popular” labels,
and let S be the set of edges that are labeled with a number in I. Clearly, |S| ≤ km/ℓ.
Moreover, it can be shown that every path longer than 2ℓ−k ≤ d/2k−1 must contain more
than ℓ − k distinct labels (and hence an edge in S). We leave completing this proof as
Exercise 14.10. �

This lemma can be applied as follows. Suppose we have an O(n)-size circuit C of depth
c logn with n inputs {x1, . . . , xn} and n outputs {y1, . . . , yn}, and suppose 2k ∼ c/ǫ where
ǫ > 0 is arbitrarily small. One can find O(n/ log logn) edges in C whose removal results in
a circuit with depth at most ǫ logn. But then, since C has bounded fan-in, we must have
that each output yi is connected to at most 2ǫ logn = nǫ inputs. So each output yi in C is
completely determined by nǫ inputs and the values of the removed wires. So the removed
wires somehow allowed some kind of “compression” of the truth tables of y1, y2, . . . , yn. We
do not expect this to be the case for any reasonably complex function. Surprisingly, no one
has been able to exhibit an explicit function for which this is not the case.

14.4.4 Branching Programs

Just as circuits are used to investigate time requirements of Turing Machines, branching
programs are used to as a combinatorial tool to investigate space complexity. A branching
program on n input variables x1, x2, . . . , xn is a directed acyclic graph all of whose nodes of
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nonzero outdegree are labeled with a variable xi. It has two nodes of outdegree zero that
are labeled with an output value, ACCEPT or REJECT. The edges are labeled by 0 or 1.
One of the nodes is designated the start node. A setting of the input variables determines
a way to walk on the directed graph from the start node to an output node. At any step, if
the current node has label xi, then we take an edge going out of the node whose label agrees
with the value of xi. The branching program is deterministic if every nonoutput node has
exactly one 0 edge and one 1 edge leaving it. Otherwise it is nondeterministic. The size of
the branching program is the number of nodes in it. The branching program complexity of
a language is defined analogously with circuit complexity. Sometimes one may also require
the branching program to be leveled, whereby nodes are arranged into a sequence of levels
with edges going only from one level to the next. Then the width is the size of the largest
level.

Theorem 14.13 If S(n) ≥ logn and L ∈ SPACE(S(n)) then L has branching program
complexity at most cS(n) for some constant c > 1. ♦

Proof: Essentially mimics our proof of Theorem 4.2 that SPACE(S(n)) ⊆ DTIME(2O(S(n))).
The nodes of the branching program correspond to the configurations of the space-bounded
TM, and it is labeled with variable xi if the configuration shows the TM reading the ith bit
in the input. �

A similar result holds for NDTMs and nondeterministic branching program complexity.

Frontier 4 : Describe a problem in P (or even NP) that requires branching programs of
size greater than n1+ǫ for some constant ǫ > 0.

There is some evidence that branching programs are more powerful than one may imag-
ine. For instance, branching programs of constant width (reminiscent of a TM with O(1)
bits of memory) seem inherently weak. Thus the next result is unexpected.

Theorem 14.14 (Barrington [Bar86]) A language has polynomial size, width 5 branching
programs iff it is in NC1. ♦

14.5 Approaches using communication complexity

Here we outline a concrete approach (rather, a setting) in which better lower bounds may
lead to a resolution of some of the questions above. It relates to generalizations of com-
munication complexity introduced earlier. Mostly we will use multiparty communication
complexity, (in the “number on the forehead model” defined in Section 13.3), though Sec-
tion 14.5.4 will use communication complexity of a relation.

14.5.1 Connection to ACC0 Circuits

Suppose f(x1, . . . , xn) has a depth-2 circuit with a symmetric gate with fan-in N at the
output and ∧ gates with fan-in k − 1 at the input level (see Figure 2). Razborov and
Wigderson [RW93] observed that in this case f ’s k-party communication complexity is at
most k logN . To see this, first partition the ∧ gates amongst the players. Each bit is not
known to exactly one player, so the input bits of each ∧ gate are known to at least one
player; assign the gate to such a player with the lowest index. Players then broadcast how
many of their gates output 1. Since this number has at most logN bits, the claim follows.

Our hope is to employ this connection with communication complexity in conjunction
with Theorem 14.11 to obtain lower bounds on ACC0 circuits. For example, note that
by Theorem 13.24, there is an explicit n-bit function requiring Ω(n/4k) k-party communi-
cation complexity, and hence this function cannot by computed by a polynomial (or even
quasipolynomial) depth-2 circuit as above with bottom fan-in k − 1 < logn/4. However,
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Figure 14.4 If f is computed by the above circuit, then f has a k-party protocol of com-
plexity k logN .

this is not enough to obtain a lower bound on ACC0 circuits since we need to show that k
is not polylogarithmic to employ Theorem 14.11. But a k-party communication complexity
lower bound of Ω(n/ poly(k)) for say the CLIQUE function would close Frontier 2.

14.5.2 Connection to Linear Size Logarithmic Depth Circuits

Suppose that f : {0, 1}n×{0, 1}logn → {0, 1}n has bounded fan-in circuits of linear size and
logarithmic depth. If f(x, j, i) denotes the ith bit of f(x, j), then Valiant’s Lemma implies
that f(x, j, i) has a simultaneous 3-party protocol—that is, a protocol where all parties
speak only once and write simultaneously on the blackboard (i.e., non-adaptively)—where,

• (x, j) player sends O(n/ log logn) bits;

• (x, i) player sends nǫ bits; and

• (i, j) player sends O(log n) bits.

So, if we can show that a function does not have such a protocol, then we would have a lower
bound for the function on linear size logarithmic depth circuits with bounded fan-in. For
example even the simple function f(x, j, i) = xj⊕i, where j⊕ i is the bitwise xor, not known
to have such a protocol, and hence may not be computable by a bounded fan-in circuit of
linear size and logarithmic depth.

14.5.3 Connection to branching programs

The notion of multiparty communication complexity (at least the “number on the forehead”
model discussed here) was invented by Chandra, Furst and Lipton [CFL83] for proving lower
bounds on branching programs, especially the constant-width branching programs discussed
in Section 14.4.4.

14.5.4 Karchmer-Wigderson communication games and depth lower bounds

The result that PARITY is not in AC0 separates NC1 from AC0. The next step would be
to separate NC2 from NC1. (Of course, ignoring for the moment the issue of separating
ACC0 from NC1.) Karchmer and Wigderson described how communication complexity
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can be used to prove lower bounds on the minimum depth required to compute a function.
They showed the following result about monotone circuits, whose proof we omit:

Theorem 14.15 ([KW88]) Detecting whether a graph has a perfect matching is impossible
for monotone circuits of bounded fan-in and depth O(log n) ♦

However, we do describe the basic Karchmer-Wigderson game used to prove the above
result, since it is relevant for nonmonotone circuits as well. For a function f :{0, 1}n → {0, 1}
this game is defined as follows.

There are two players, ZERO and ONE. Player ZERO receives an input x such that
f(x) = 0 and Player ONE receives an input y such that f(y) = 1. They communicate bits
to each other, until they can agree on an i ∈ {1, 2, . . . , n} such that xi 6= yi.

The mechanism of communication is defined similarly as in Chapter 13; there is a protocol
that the players agree on in advance before receiving the input. Note that the key difference
from the scenario in Chapter 13 is that the final answer is not a single bit, and furthermore,
the final answer is not unique (the number of acceptable answers is equal to the number of
bits that x, y differ on). Sometimes this is described as computing a relation. The relation
in this case consists of all triples (x, y, i) such that f(x) = 0, f(y) = 1 and xi 6= yi.

We define CKW (f) as the communication complexity of the above game; namely, the
maximum over all x ∈ f−1(0), y ∈ f−1(1) of the number of bits exchanged in computing
an answer for x, y. The next theorem shows that this parameter has a suprising alternative
characterization. It assumes that circuits don’t have NOT gates and instead the NOT gates
are pushed down to the inputs using De Morgan’s law. (In other words, the inputs may
be viewed as x1, x2, . . . , xn, x1, x2, . . . , xn.) Furthermore, AND and OR gates have fan-in 2.
(None of these assumptions is crucial and affects the theorem only marginally.)

Theorem 14.16 ([KW88]) CKW (f) is exactly the minimum depth among all circuits that
compute f . ♦

Proof: First, we show that if there is a circuit C of depth K that computes f then
CKW (f) ≤ K. Each player has a copy of C, and evaluates this circuit on the input given
to him. Of course, it evaluates to 0 for Player ZERO and to 1 for Player ONE. Suppose
that the top gate is an OR. Then for Player ONE at least one of the two incoming wires
to this gate must be 1, and so in the first round, Player ONE sends one bit communicating
which of these wires it was. Note that this wire is 0 for Player ZERO. In the next round
the players focus on the gate that produced the value on this wire. (If the top gate is an
AND on the other hand, then in the first round Player ZERO speaks, conveying which of
the two incoming wires was 0. This wire will be 1 for Player ONE.) This goes on and
the players go deeper down the circuit, always maintaining the invariant that the current
gate has value 1 for Player ONE and 0 for Player ZERO. Finally, after at most K steps
they arrive at an input bit. According to the invariant being maintained, this bit must be
1 for Player ONE and 0 for Player ZERO. Thus they both know an index i that is a valid
answer.

For the reverse direction, we have to show that if CKW (f) = K then there is a circuit
of depth at most K that computes f . We prove a more general result. For any two disjoint
nonempty subsets A ⊆ f−1(0) and B ⊆ f−1(1), let CKW (A,B) be the communication
complexity of the Karchmer-Wigderson game when x always lies in A and y in B. We show
that there is a circuit of depth CKW (A,B) that outputs 0 on every input from A and 1 on
every input from B. Such a circuit is called a distinguisher for sets A,B. The proof is by
induction on K = CKW (A,B). The base case K = 0 is trivial since this means that the
players do not have to communicate at all to agree on an answer, say i. Hence xi 6= yi for
all x ∈ A, y ∈ B, which implies that either (a) xi = 0 for every x ∈ A and yi = 1 for every
y ∈ B or (b) xi = 1 for every x ∈ A and yi = 0 for every y ∈ B. In case (a) we can use the
depth 0 circuit xi and in case (b) we can use the circuit xi to distinguish A,B.

For the inductive step, suppose CKW (A,B) = K, and at the first round Player ZERO
speaks. Then A is the disjoint union of two sets A0, A1 where Ab is the set of inputs in
A for which Player ZERO sends bit b. Then CKW (Ab, B) ≤ K − 1 for each b, and the
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inductive hypothesis gives a circuit Cb of depth at most K− 1 that distinguishes Ab, B. We
claim that C0 ∧ C1 distinguishes A,B (note that it has depth at most K). The reason is
that C0(y) = C1(y) = 1 for every y ∈ B whereas for every x ∈ A, C0(x) ∧ C1(x) = 0 since
if x ∈ Ab then Cb(x) = 0. �

Thus we have the following frontier.

Frontier 5: Show that some function f in P (or even NEXP!) has CKW (f) = Ω(logn log logn).

Karchmer, Raz, and Wigderson [KRW95] describe a candidate function that may work.
It uses the fact that a function on k bits has a truth table of size 2k, and that most functions
on k bits are hard (e.g., require circuit size Ω(2k/k), circuit depth Ω(k), etc.). They define
the function by assuming that part of the n-bit input encodes a very hard function, and this
hard function is applied to the remaining input in a “tree” fashion.

For any function g :{0, 1}k → {0, 1} and s ≥ 1 define g◦s :{0, 1}k
s

→ {0, 1} as follows. If

s = 1 then g◦s = g. Otherwise express the input x ∈ {0, 1}k
s

as x1x2x3 · · ·xk where each

xi ∈ {0, 1}k
s−1

and define

g◦s(x1x2 · · ·xk) = g(g◦(s−1)(x1)g
◦(s−1)(x2) · · · g◦(s−1)(xk)).

Clearly, if g can be computed in depth d then g◦s can be computed in depth sd. But, it
seems hard to reduce the depth beyond that for an arbitrary choice of the function g.

Now we describe the KRW candidate function f :{0, 1}n → {0, 1}. Let k =
⌊

log n
2

⌋

and

s be the largest integer such that ks ≤ n/2 (thus s = Θ( logn
log logn ).) For any n-bit input x,

let gx be the function whose truth table is the first 2k bits of x. Let x|2 be the string of the
last ks bits of x. Then

f(x) = g◦sx (x|2).

According to our earlier intuition, when the first 2k bits of x represent a really hard
function —as they must for many choices of the input— then g◦sx (x|2) should require depth

Ω(sk) = Ω( log2 n
log log n ). Of course, proving this seems difficult.

This type of complexity questions, whereby we are asking whether s instances of a
problem are s times as hard as a single instance, are called direct sum questions. Similar
questions have been studied in a variety of computational models, and sometimes counter-
intuitive results have been proven for them. One example is that by a counting argument
there exists an n × n matrix A over {0, 1}, such that the smallest circuit computing the
linear function v 7→ Av for v ∈ {0, 1}n is of size Ω(n2). However, computing this function
on n independent instances v1, . . . , vn can be done significantly faster than n3 steps using
fast matrix multiplication [Str69] (the current record is roughly O(n2.38) [CW90]).

Chapter notes and history

Shannon defined circuit complexity, including monotone circuit complexity, in 1949. The topic was
studied in Russia since the 1950s. (See Trakhtenbrot [Tra84] for some references.) Savage [Sav72]
was the first to observe the close relationship between time required to decide a language on a TM
and its circuit complexity, and to suggest circuit lower bounds as a way to separate complexity
classes. A burst of results in the 1980s, such as the separation of P from AC0 [FSS81, Ajt83]
and Razborov’s separation of monotone NP from monotone P/poly [Raz85a] raised hopes that a
resolution of P versus NP might be near. These hopes were dashed by Razborov himself [Raz89]
when he showed that his method of approximations was unlikely to apply to nonmonotone circuits.
Later Razborov and Rudich [RR94] formalized what they called natural proofs to show that all lines
of attack considered up to that point were unlikely to work. (See Chapter 23.)

Our presentation in Sections 14.2 and 14.3 closely follows that in Boppana and Sipser’s excellent
survey of circuit complexity [BS90], which is still useful and current 15 years later. (It omits
discussion of lower bounds on algebraic circuits; see [Raz04a] for a recent result.)
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H̊astad’s switching lemma [H̊as86] is a stronger form of results from [FSS81, Ajt83, Yao85].
The Razborov-Smolensky method of using approximator polynomials is from [Raz87], strength-
ened in [Smo87]. Valiant’s observations about superlinear circuit lower bounds are from a 1975
paper [Val75b] and an unpublished manuscript—lack of progress on this basic problem gets more
embarrassing by the day!.

The 5n − o(n) lower bound on general circuits is by Iwama and Morizumi, improving on a
previous 4.5n− o(n) by Lachish and Raz; the full version of both results is [ILMR05].

Barrington’s theorem is a good example of how researchers’ intuition about circuits can some-
times be grossly incorrect. His theorem can be seen as a surprisingly simple way to compute
NC1 functions, and has proved very influential in cryptography research (e.g., see [GMW87, Kil88,
AIK04]).

Exercises

14.1 Suppose that f is computable by an AC0 circuit C of depth d and size S. Prove that f is computable
by an AC0 circuit C′ of size < 10S and depth d that does not contain NOT gates but instead has
n additional inputs that are negations of the original n inputs. H462

14.2 Suppose that f is computable by an AC0 circuit C of depth d and size S. Prove that f is computable
by an AC0 circuit C′ of size < (10S)d and depth d where each gate has fan-out 1.

14.3 Prove that if all the max-terms of a Boolean function f are of size at most s then f is expressible
as an s-CNF. H462

14.4 Prove that for t > n/2,
(

n
t+k

)

≤
(

n
t

)(

e(n−t)
n

)k
. Use this to complete the proof of Lemma 14.2

(Section 14.1.2). H462

14.5 Show that ACC0 ⊆ NC1.

14.6 Identify reasons why the Razborov-Smolensky method does not work when the circuit has MOD
m gates, where m is a composite number.

14.7 Show that representing the OR of n variables x1, x2, . . . , xn exactly with a polynomial over GF (q)
where q is prime requires degree exactly n.

14.8 The Karchmer-Wigderson game can be used to prove upper bounds, and not just lower bounds.
Show using this game that PARITY and MAJORITY are in NC1.

14.9 Show that for every constant c, if a language is computed by a polynomial-size branching program
of width c then it is in NC1.

14.10 Complete the full proof of Valiant’s Lemma (Lemma 14.12). H462



264 14 Circuit lower bounds



Chapter 15

Proof complexity

In defining NP we sought to capture the phenomenon whereby if certain statements (such as
”this Boolean formula is satisfiable”) are true, then there is a short certificate to this effect.
Furthermore, we introduced the conjecture NP 6= coNP according to which certain types of
statements (such as “this Boolean formula is not satisfiable”) do not have short certificates
in general. In this short chapter we are interested in investigating this phenomenon more
carefully, especially in settings where the existence of a short certificate is not obvious.

We start in Section 15.1 with some motivating examples. In Section 15.2 we formalize the
notion of a proof system using a very simple example, propositional proofs. We also prove
exponential lower bounds for the resolution proof system using two methods that serve as
simple examples of important techniques in proof complexity. Section 15.3 surveys some
other proof systems that have been studied, and lower bounds known for them. Finally,
Section 15.4 presents some metamathematical ruminations about whether proof complexity
can shed some light on the difficulty of resolving P versus NP. There is a related, equally
interesting question of finding short certificates assuming they exist, which we will mostly
ignore except in the chapter notes.

15.1 Some examples

We start with a few examples, many of which were studied before the notion of computa-
tional complexity arose. Consider the following computational tasks:

1. Infeasibility of systems of linear inequalities. You are given a system

〈a1,x〉 ≤ b1
〈a2,x〉 ≤ b2

...
...

〈am,x〉 ≤ bm
where ai ∈ Rn and bi ∈ R for every i. Prove that there is no non-negative vector
x ∈ Rn satisfying this system.

2. Infeasibility of systems of linear inequalities over the integers. The same
setting as above, but with each ai ∈ Zn and bi ∈ Z, and the solution x also has to be
in Zn.

3. Infeasibility of systems of polynomial equations. Given a system of polynomials
g1(x1, x2, . . . , xn), g2(x1, x2, . . . , xn), . . . , gm(x1, x2, . . . , xn) with real coefficients, cer-
tify that the system gi(x1, . . . , xn) = 0 ∀i = 1, 2, . . . ,m has no common solution.

4. Contradictions. Given a Boolean formula ϕ in n variables, certify that it has no
satisfying assignment.
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5. Nontrivial words in a finitely presented group. We are given a group over finite
set S (meaning every group element is a word of the form sρ11 s

ρ2
2 · · · sρnn where n is any

positive integer and each ρi is an integer, possibly negative). The group is implicitly
described by means of a finite set of relations of the type sρ11 s

ρ2
2 · · · sρnn = e where each

si ∈ S, ρi ∈ Z and e ∈ S is some designated identity element. These relations imply
that given a word w, it is nontrivial to know whether it simplifies to e by repeatedly
applying the relations. If a word can be simplified to e, then this has a finite proof,
namely, the sequence of relations that need to be applied during the simplification.
We are interested in the problem where, given a word w, we have to certify that it is
not equal to e (i.e., is nontrivial).

In each of the above examples, there seems to be no obvious short certificate. But
sometimes such intuition can lead us astray. For instance, an old result called Farkas’
Lemma (see Note 19.4) implies that there is indeed a short certificate for the first problem:
the system is infeasible if and only if there is a combination of the inequalities that leads
to a clear contradiction, in other words a y ∈ Rm such that

∑n
i=1 yiai is non-negative but

∑

i yibi < 0. The “size” of such a certificate y is small— it can be represented using a
number of bits that is polynomial in the number of bits used to represent the inputs ai’s
and bi’s.

The next three problems are coNP-hard (and the word problem is undecidable in general
and coNP-hard for specific groups; see chapter notes) and therefore if NP 6= coNP we do
not expect short proofs for them. Nevertheless, it is interesting to study the length of the
shortest proof for specific instances of the problem. For instance, certifying unsatisfiability
(or the computationally equivalent problem of certifying tautologyhood, see Example 2.21) is
a natural problem that arises in fields such as artificial intelligence and formal verification of
computer systems and circuits, and there we are interested in the tautologyhood of a single,
carefully constructed, instance. In fact, in our metamathematical musings in Section 15.4
you can read about a single formula (or family of formulae) related to the P versus NP
question that we complexity theorists suspect is a tautology but whose tautologyhood seems
difficult to prove. Similarly, in algebraic geometry, one may be interested in understanding
the behavior of a single system of equations.

We note that there are languages / decision problems that are unconditionally proven
not to have short certificates, namely languages outside of coNP (such languages can be
shown to exist by diagonalization arguments a la Chapter 3). Also, a famous language that
does not have any finite certificate at all is the language of true statements on the natural
numbers in first-order logic (this is the famous Gödel’s incompleteness theorem, see also
Section 1.5.2).

15.2 Propositional calculus and resolution

Propositional logic formalizes simple modes of reasoning that have been used in philosophy
for two millennia. The basic object of study is the Boolean formula, and an important
task is to verify that a given formula is a tautology (i.e., evaluates to True on every
assignment). For convenience, we study the complement problem of verifying that the
formula is a contradiction, namely, has no satisfying assignment. We also study this only for
CNF formulae as we know how to reduce the general case to it. Specifically, to verify that
a general Boolean formula ψ is a tautology, it suffices to use our reduction from Chapter 2
to transform ¬ψ into an equivalent CNF formula (with additional new variables) and verify
that this new formula is a contradiction.

Now we describe a simple procedure called resolution that tries to produce a proof that
a given formula is a contradiction. Let ϕ be a CNF formula on the variables x1, x2, . . . , xn.
Denote by C1, . . . , Cm the clauses of ϕ. For j = m+ 1,m+ 2, . . ., the resolution procedure
derives a new clause Cj that is implied by the previous clauses C1, . . . , Cj−1 using the
following rule: suppose that there is a variable xi and clauses C,D such that both the clause
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xi ∨C and ¬xi ∨D have been derived before (i.e., are in {C1, . . . , Cj−1}) then Cj = C ∨D.
Note that the procedure may have many possible choices for Cj (the proof will be the
sequence of choices). The procedure ends when it had derived an obvious contradiction:
namely both the clause xi and ¬xi for some variable xi. The resolution refutation for ϕ is a
sequence of clauses C1, . . . , CT containing such an obvious contradiction where C1, . . . , Cm
are ϕ’s clauses and for j > i, Cj is derived from C1, . . . , Cj−1 using the above rule. Clearly,
every clause we derive is in fact logically implied by the previous ones, and hence resolution
is a sound proof system: there exists a resolution refutation for ϕ only if ¬ϕ is a tautology. It
is also not to hard to show that resolution is complete: if ¬ϕ is a tautology then there exists
a resolution refutation for ϕ of length 2O(n) (see Exercise 15.1). The question is whether
there are formulae that require such long refutations, or perhaps every unsatisfiable formula
has a polynomial-sized refutation? Since Boolean unsatisfiability is coNP-complete and we
believe that NP 6= coNP, we believe that the answer is NO. Below we prove this is indeed
the case.

15.2.1 Lower bounds using the bottleneck method

We describe Haken’s bottleneck technique [Hak85] for proving lower bounds for resolution.
We will also encounter a version of the restriction idea used earlier in Chapter 6 in context
of circuit lower bounds.

The tautology considered here is elementary yet basic to mathematics: the pigeonhole
principle. Colloquially, it says that if you put m pigeons into n holes, where m > n, then at
least one hole must contain more than one pigeon. Mathematically, it asserts that there is
a no one-to-one and onto mapping from a set of size m to a set of size n. Though obvious,
this principle underlies many nontrivial facts in mathematics such as the famous Minkowski
convex body theorem. (See Chapter notes.) Thus it is plausible that a simple proof system
like resolution would have trouble proving it succinctly, and this is what we will show.

The propositional version of the pigeonhole principle consists of the class of tautologies
{¬PHPmn : m > n} where ¬PHPmn is the following CNF formula. For integers i ≤ m, j ≤ n
its has a variable Pij which is supposed to be assigned “true” if pigeon i is assigned to hole
j. It has m+

(

m
2

)

n ≤ m3 clauses, which are: (i) Pi,1 ∨ Pi,2 ∨ · · · ∨ Pi,n for each i ≤ m; this
says that the ith pigeon is assigned to some hole. (ii) ¬Pik ∨¬Pj,k for each i, j ≤ m, k ≤ n;
this says that the kth hole does not get both the ith pigeon and the jth pigeon. Thus the
entire ensemble of this type of clauses says that no hole gets more than 1 pigeon.

Theorem 15.1 For any n ≥ 2, every resolution refutation of ¬PHPnn−1 has size at least

2n/20. ♦

We will think of “testing” a resolution refutation by assigning values to the variables.
A correct refutation proof shows that no assignment can satisfy all the given set of clauses.
We will allow refutations that only show that a certain subset of assignments cannot satisfy
all the given clauses. In other words, when we substitute any assignment from this subset,
the refutation correctly derives a contradiction. Of course, the refutation may not correctly
derive a contradiction for other assignments, so this is a relaxation of the notion of resolution
refutation. However, any lower bound for this relaxed notion will also apply to the general
notion.

The set of assignments used to test the proof will correspond to mappings that map
n− 1 pigeons to n− 1 holes in a one-to-one manner, and leave the nth pigeon unassigned.
In other words, the set of variable Pij ’s that are assigned true constitute a matching of size
n− 1. There are n! such assignments. If the index of the sole unassigned pigeon is k we call
such an assignment k-critical.

Restricting attention to these test assignments simplifies notation since it allows us to
make all clauses in the refutation monotone; i.e., with no occurence of negated variables.
For each clause C in the resolution proof we produce a monotonized clause by replacing each
negated variable ¬Pij by ∨l 6=iPlj . It is easily checked that after this transformation the new
clause is satisfied by exactly the same set of test assignments as the original clause. The
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next lemma (proved a little later) shows that monotonized refutations must always have a
large clause.

Lemma 15.2 Every monotonized resolution refutation of ¬PHPnn−1 must contain a clause
with at least 2n2/9 variables. ♦

With this lemma in hand, we can prove Theorem 15.1 as follows. Say that a clause in
the monotonized refutation is large if it has at least n2/10 variables. Let L be the number
of large clauses; the lemma shows that L ≥ 1. We define a restriction to some of the
variables that greatly reduces the number of large clauses. Averaging shows that there
exists a variable Pij that occurs in 1/10th of the large clauses. Define a restriction such that
Pij = 1 and Pi,j′ = 0 for j′ 6= j and Pi′,j = 0 for i′ 6= i. This sets all monotonized clauses
containing Pij to true, which means they can be removed from the resolution proof, leaving
at most 9/10L large clauses. Furthermore, one pigeon and one hole have been removed from
contention by the restriction, so we now have a monotonized resolution proof for ¬PHPn−1

n−2.
Repeating the above step t = log10/9 L times, we obtain a monotonized resolution proof

for ¬PHPn−tn−1−t that has no large clauses. The proof of Theorem 15.1 follows by noticing

that if L < 2n/20 then t < n/3, and so we have a monotonized refutation of ¬PHPn−tn−t−1

with no clauses larger than n2/10, which is less than 2(n− t)2/9, and hence this contradicts
Lemma 15.2.

Thus to finish we prove Lemma 15.2.
Proof: (or Lemma 15.2) For each clause C in the monotonized refutation, let

witness(C) = {i : there is an i-critical assignment α falsifying C} .
The complexity of a clause, comp(C) is |witness(C)|. Whenever resolution is used to

derive clause C from two previous clauses C′, C” then comp(C) ≤ comp(C′) + comp(C”)
since every assignment that falsifies C must falsify at least one of C′, C”. Thus if C is the
first clause in the refutation whose complexity is > n/3 then n/3 < comp(C) < 2n/3. We
show that such a C is large.

Specifically, we show that if comp(C) = t then it contains at least t(n−t) distinct literals,
which finishes the proof since t(n− t) > 2n2/9.

Fix any i ∈ witness(C) and any i-critical assignment α that falsifies C. For each j 6∈
witness(C), consider the j-critical assignment α′ obtained by replacing i by j, that is, if
α mapped pigeon j to hole l then α′ leaves j unassigned and maps pigeon i to l. Since
j 6∈ witness(C), this j-critical assignment must satisfy C and so we conclude that C contains
variable Pi,l. By running over all n − t values of j 6∈ witness(C) and using the same α, we
conclude that C contains n− t distinct variables of the type Pi,l. Repeating the argument
for all i ∈ witness(C) we conclude that C contains at least t(n− t) variables. �

15.2.2 Interpolation theorems and exponential lower bounds for resolution

This section describes a different lower bound technique for resolution that uses an inter-
esting idea called the Interpolation theorem, which plays a role in several results in proof
complexity. The lower bound is also interesting because it uses the lower bound for mono-
tone circuits presented in Chapter 14.

First we state the classical (and folklore) version of the Interpolation theorem.

Theorem 15.3 (Classical Interpolation Theorem)
Let ϕ be a Boolean formula over the variables x1, . . . , xn, z1, . . . , zk and ψ be a Boolean
formula over the variables y1, . . . , ym, z1, . . . , zk (i.e., the only shared variables are z1, . . . , zk).

Then ϕ(x, z) ∨ψ(y, z) is a tautology if and only if there is a Boolean function I : {0, 1}k →
{0, 1} such that

(ϕ(x, z) ∨ I(z)) ∧ (ψ(y, z) ∨ ¬I(z)) (1)

is a tautology.
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Proof: It’s easy to see that (1) is a tautology if and only if for every fixed assignment c
to the z variables, either ϕ(x, c) is a tautology or ψ(y, c) is a tautology. Hence if (1) is a
tautology then ϕ(x, z) ∨ ψ(y, z) is true for every assignment to the x,y, z variables. On
the other hand, suppose that there exists some c such that neither ϕ(x, c) nor ψ(y, c) are
tautologies. Then this means that there are assignments a to the x variables, b to the y
variables such that both ϕ(a, c) and ψ(b, c) are false. �

We will be interested in a quantitative version of this interpolation theorem that up-
per bounds the computational complexity of I(·) as a function of the size of the smallest
resolution refutation.

Theorem 15.4 (Feasible Interpolation Theorem)
In the setting of Theorem 15.3, if ¬ (ϕ(x, z) ∨ ψ(y, z)) has a resolution refutation of size S,
then a function I satisfying the conditions of Theorem 15.3 can be computed by a circuit of
size O(S2).
Furthermore, if the variables of z appear only positively in ψ then the above circuit is
monotone (i.e., contains no negation gates). Similarly, if the variables of z appear only
negatively in ϕ then the above circuit is monotone.

Proof: To prove Theorem 15.4 we need to show how, given a length S resolution refutation
for ¬(ϕ(x, z) ∨ ψ(y, z)) and an assignment c to the z variables, we can find in O(S2) time
a value I(c) ∈ {0, 1} such that if I(c) = 0 then ϕ(x, c) is a tautology and if I(c) = 1 then
ψ(y, c) is a tautology. (We know such a value I(c) exists by Theorem 15.3.)

We show, given C, how to compute I(c) by transforming the size S refutation of
¬(ϕ(x, z) ∨ ψ(y, z)) to a refutation of either ¬ϕ(x, c) or a refutation of ¬ψ(y, c) in O(S2)
time. To do so, we “strip” the clauses of z variables. That is, we will transform the resolution
refutation C1, . . . , CS of ¬(ϕ(x, z) ∨ ψ(y, z)) into a valid resolution refutation C̃1, . . . , C̃S
of ¬(ϕ(x, c) ∨ ψ(y, c)) where each clause C̃i contains either only x variables (i.e., is an
“x-clause”) or only y variables (is a y-clause). But since at the end we derive either a
contradiction of the form xi and ¬xi or a contradiction of the form yi and ¬yi it follows
that we have proven that one of these formulae is a contradiction.

We do this transformation step by step. Suppose that clauses C1, . . . , Cj−1 were “stripped”

of the z variables to obtain C̃1, . . . , C̃j−1, and furthermore each clause C̃j contains either
only x-variables or only y-variables, and we now want to “strip” the clause Cj . It is of
the form C ∨ D where the clauses C′ = w ∨ C and D′ = ¬w ∨ D were derived before for
some variable w. By induction we have already obtained “stripped” versions C̃ and D̃ of
the clauses C′, D′. If C̃ and D̃ are both x-clauses then w must be an x-variable contained
in both1 and we proceed with the usual resolution rule. The case that C̃ and D̃ are both
y-clauses is treated similarly. If C̃ is a x-clause and D̃ is a y-clause, then w must be a
z-variable, in which case we can just plug in its value according to c and so if w = 0 we
simply set C̃j = C̃ and if w = 1 we set C̃j = D̃. We think of the last step in the refutation
as containing the empty clause (the one obtained by using the resolution rule on two clauses
containing a variable w and its negation ¬w). Since the clause C̃j is implied by Cj for every
j, the last step in the stripped version contains the empty clause as well, implying that the
new resolution proof also ends with an obvious contradiction.

We leave the “furthermore” part as Exercise 15.2. However, note that it makes sense
since if the z variables appear only positively in ψ then changing any of them from zero
to one is only more likely to make ψ a tautology and hence change I(c) from zero to one.
Similar reasoning applies if the z variables only appear negatively in ϕ. �

We are now ready to prove a lower bound on resolution:

1We maintain the invariant that we never remove an x-variable from an x-clause or a y-variable from a
y-clause.
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Theorem 15.5 (Exponential resolution lower bound)
There is a constant ǫ such that if for every n ∈ N we let ϕn, ψn : {0, 1}O(n2) → {0, 1} be the
following Boolean functions:

• ϕn(x, z) = True iff the string x represents a clique of size n1/4 in the graph represented
by z.

• ψn(y, z) = True iff the string y represents a proper n1/4 − 1 coloring for the graph
represented by z.

Then, the smallest resolution refutation for ϕn(x, z) ∧ ψn(y, z) has size at least 2ǫn
1/8

.

Note that because a graph with a k-clique has no k − 1 coloring, the formula ϕn(x, z) ∧
ψn(y, z) is indeed unsatisfiable. Also, it is not hard to express both ϕn and ψn as O(n2)-
sized CNFs such that ϕn contains the z variables positively and ψn contains them negatively
(Exercise 15.3).

Theorem 15.5 follows immediately from Theorem 15.4 and the proof of Theorem 14.7
that gave an exponential lower bound for the monotone circuit complexity of the clique

function. This is because that proof actually showed that for k < n1/4, there is no 2o(
√
k)-

sized monotone circuit that distinguishes between graphs having a k-clique and graphs whose
chromatic number is at most k − 1. �

15.3 Other proof systems: a tour d’horizon

Now we briefly explain some other proof systems that have been considered. Several of these
are related to the computational problems we mentioned in Section 15.1.

Cutting Planes: This proof system addresses the problem of certifying infeasibility of
a set of linear inequalities with integer coefficients and variables. As mentioned in the
introduction, this problem is coNP-complete. For instance, given any 3CNF formula ϕ we
can represent it by such a set so that the formula is a contradiction iff this set is infeasible. To
do so, for each Boolean variable xi in ϕ put an integer variable Xi satisfying 0 ≤ Xi ≤ 1 (in
other words, Xi ∈ {0, 1}). For a clause xi∨xj∨xk write a linear inequalityXi+Xj+Xk ≥ 1.
(If any variable xi appears negated in the clause, use 1−Xi in the corresponding inequality.)

The cutting planes proof system, given an infeasible set of linear inequalities with integer
variables and coefficients, produces a proof of infeasibility by deriving the inequality 0 ≥ 1
in a finite number of steps. It produces a sequence of inequalities l1 ≥ 0, l2 ≥ 0, ...lT ≥ 0
where the rth inequality is either (a) an inequality appearing in the linear system, (b)
αlu + βlv ≥ 0 where α, β are nonnegative integers and u, v < r, or (c) is derived from some
lu for u < r using the following rule: if lu has the form

n
∑

i=1

aixi − b ≥ 0,

where the numbers a1, a2, . . . , an have a greatest common divisor D that is at least 2 (i.e.,
is nontrivial) then the new inequality is

n
∑

i=1

ai
D
xi − ⌈

b

D
⌉ ≥ 0.

(The interesting case is when D does not divide b, and hence ⌈b/D⌉ is different from b/D.)
There is an interpolation theorem for cutting planes and it has been used to prove expo-
nential lower bounds in [BPR97, Pud97].
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Nullstellensatz and Polynomial calculus. These concern infeasibility of sets of equations
defined by polynomials. Note that we can also represent infeasibility of 3SAT by such
equations. For each variable xi in the 3CNF formula, have a variable Xi and an equation
X2
i −Xi = 0, thus ensuring that every solution satisfies Xi ∈ {0, 1}. We can then transform

each clause to a degree-3 equation. For example the clause xi ∨ xj ∨ xk is transformed to
the equation (1−Xi)(1−Xj)Xk = 0.

Hilbert’s Nullstellensatz is a basic result in algebra that gives an exact criterion for infea-
sibility: a set of equations p1(X1, . . . , Xn) = 0, p2(X1, X2, . . . , Xn) = 0, . . . , pm(X1, . . . , Xm) =
0 in a field F is infeasible iff there exist polynomials g1, g2, . . . , gm such that

∑

i

gi(X1, . . . , Xn)pi(X1, . . . , Xn) = 1. (2)

Notice, these gi’s (if they exist) prove that there can be no assignment of X1, . . . , Xn

that satisfies all the pi’s, since plugging in any such assignment into (2) would lead to the
contradiction 0 = 1. Thus the nontrivial part of Hilbert’s theorem is the fact that such gi’s
exist for every infeasible set. (Note that in general the gi’s may have coefficients in some
extension field, but in this particular case where the set of polynomials includes Xi(Xi − 1)
for all i the solution if any must be 0/1 and then gi’s also must have coefficients in the field.)

Now we define the Nullstellensatz proof system. The axioms are the pi’s and the proof
of infeasibility is a sequence of gi’s that satisfy (2). Hilbert’s theorem shows that this proof
system is sound and complete. We assume that all polynomials are written out explicitly
with all coefficients, and the size of the proof is the number of bits required to write these
coefficients.

Polynomial calculus is similar, except the gi’s can be computed using a straight-line
computation instead of being explicitly written out with all coefficients. (Recall that every
polynomial can be computed by a straight line program.) Concretely, a refutation in Poly-
nomial calculus is a finite sequence of polynomials f1, f2, . . . , fT such that each fr is either
(a) one of the input polynomials pi, (b) αfu + βfv where α, β are constants and u, v < r,
or (c) xifu where xi is a variable and u < r. The size of the refutation is T and the degree
is the maximum degree of any fu.

Exponential lower bounds for the above two proof systems are proved by proving a lower
bound of nΩ(1) on the degree; such lower bounds were first proven in [BCE+95].

Frege and Extended Frege: The Frege proof system is a general system of reasoning in
predicate calculus using a finite set of axiom schemes and inference rules. Resolution is a
special case, where all formulae used in the proof are clauses (i.e., disjunctions). An inter-
mediate family is bounded depth Frege, where all formulae used in the proof have bounded
depth. Ajtai [Ajt88] gave the first lower bounds for bounded depth Frege systems using a
clever restriction argument inspired by the restriction argument for AC0 that is described
in Chapter 14.

Extended Frege is a variant whereby the proof is allowed to introduce new variables
y1, y2, . . . , and at any step declare that yi = ψ for some formula ψ. The advantage of this is
that now we can use yi as a bona-fide variable in rules such as resolution, potentially saving
a lot of steps. (In general, allowing a proof system to introduce new variables can greatly
add to its power.)

No lower bounds are known for Frege and Extended Frege systems, and it is known that
existing techniques such as interpolation theorems will likely not work (assuming reasonable
complexity assumptions such as ”RSA cryptosystem is secure”).

15.4 Metamathematical musings

Several researchers suspect that the P versus NP question may be independent of the
axioms of mathematics. Even if it is not independent, it sure seems difficult to prove for
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us. Could this question can be a source of tautologies that are difficult to prove in concrete
proof systems?

For instance, consider resolution and Frege-like systems for certifying tautologies. We
can try to consider the minimum proof size required for a concrete propositional formula
that says “SAT instances of size n cannot be solved by circuits of size n100.” This formula
(first defined in [Raz98]) has O(n100) variables denoted Z and has the form

Z is an encoding of an n-input circuit of size n100

⇒ circuit Z does not compute SAT. (3)

Note that the conclusion part of (3) is an OR over all 2n inputs of size n and it says that
the value computed by circuit Z on one of these inputs is not the true value of SAT. Thus
such a formula has size 2O(n) and we think it is a tautology for large enough n. The trivial
proof of tautologyhood has size 2O(n100), however, which is superpolynomial in the size of
the formula. Can we show that the proof complexity of this formula is superpolynomial for
resolution and Frege systems? Razborov [Raz98] showed a superpolynomial lower bound for
Polynomial Calculus. He also proposed a different encoding of the above formula for which
even resolution lower bounds seemed difficult.

Raz showed that this formula is either not a tautology or requires resolution proofs of
superpolynomial size [Raz01, Raz03a, Raz04b]. But similar lower bounds for much stronger
systems, say Frege, have not been obtained.

Independence from weak theories of arithmetic. Most results in mathematics can be
derived using popular axiomatic systems such as Zermelo-Fraenkel (with axiom of choice)
or Peano Arithmetic. But many results in combinatorics, since they have a more finitary
character, do not seem to require the full power of these axiomatic systems. Instead, one
can use weaker axiomatic systems such as the PV system of Cook [Coo75] or the ”Bounded
Arithmetic” hierarchy S1

i of Buss [Bus90]. Researchers who wish to prove the independence
of P versus NP from say Peano Arithmetic should perhaps first try to prove independence
from such weaker theories. There are deep connections between these theories and the
Extended Frege proof system, and lower bounds for the ”circuit lower bound formulae” for
Extended Frege will imply such independence (see the survey [Raz04c]).

What have we learned?

• Proof complexity aims at proving lower bounds on proof size for tautological formulae
in various proof systems.

• Assuming that NP 6= coNP then for every complete proof and efficiently verifiable
proof system there should exist tautological formulae that do not have polynomial-
sized proofs.

• For some proof systems, such as Resolution, Polynomial Calculus and Cutting Plane,
there are known exponential lower bounds on proof sizes of various tautologies. How-
ever, no super-polynomial lower bounds are known for the Frege and Extended Frege
proof systems.

Chapter notes and history

Since proof systems are “nondeterministic”, there is in general no obvious algorithm to produce a
short proof (if one exists). Nevertheless, heuristic algorithms exist for producing short proofs for
many of these systems, and these heuristics are extremely important in practice. In fact, in most
cases, the definition of the proof system was inspired by the corresponding heuristic algorithm.
Thus proof size lower bounds for all these proof systems prove lower bounds on running times of
the corresponding heuristic algorithm.
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For instance, the definition of resolution is inspired by the Davis-Putnam heuristic [DP60],
which inspired a slew of other heuristics such as “resolve the two clauses that produces the smallest
resolvent.” Haken [Hak85] gave the first superpolynomial lower bounds on the running time of such
heuristics; see also [Urq87, CS88] for extensions of this work.

Similarly, the definition of the cutting plane proof system by Chvatal [Chv73] was inspired by
Gomory’s cutting plane method [Gom63], an important heuristic in commercial software for integer
programming.

The word problem for finitely presented groups was articulated by mathematician Dehn in the
early 20th century, who gave algorithms for it in many interesting groups. Novikov showed in
1955 that the problem is undecidable in general. Recent work shows that the word problem is in
NP-complete for some groups [SBR02], implying that the problem of deciding that a given word is
not trivial is coNP-complete. See the book [BMMS00] for a survey.

The feasible interpolation theorem and its use in lower bounds was developed in the string of
papers [Kra94, Raz95a, BPR97, Kra97, Pud97].

The polynomial calculus is related to algorithms for solving systems of polynomial equations
by computing Groebner bases.

The pigeon hole principle is a source of hard-to-prove tautologies for several weak proof systems
including resolution and the polynomial calculus. However, it has a polynomial sized proof in the
Frege system.

See the book by Krajicek [Kra95] for an introduction to proof complexity and bounded arith-
metic.

Exercises

15.1 Prove that if ϕ is an unsatisfiable CNF formula on n variables, then there exists a 2O(n)-length
resolution refutation for ϕ. H462

15.2 Complete the proof of Theorem 15.4 by showing:

(a) If ψ contains the z variables only positively (without negations) then the algorithm for com-
puting I(c) can be implemented by an O(S2)-sized monotone circuit.

H462

(b) If ϕ contains the z variables only negatively (always with negations) then then the algorithm
for computing I(c) can be implemented by an O(S2)-sized monotone circuit. H463

15.3 Show that both the functions ϕn and ψn described in the statement of Theorem 15.5 can be
expressed by CNF formulae of size O(n2). Furthermore, show that the formula ϕn contains the z
variables only positively and the formula ψn contains them only negatively.

15.4 Prove that the cutting plane proof system is sound and complete. H463

15.5 Write down the tautology described in words in (3).

15.6 Write down a tautology expressing the pigeonhole principle mentioned in the chapter notes. H463
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Chapter 16

Algebraic computation models

“Is Horner’s rule optimal for the evaluation of a polynomial?”
Ostrowski (1954)

The Turing machine model captures computations on bits (equivalently, integers), but
many natural and useful algorithms are most naturally described as operating on uncount-
able sets such as the real numbers R or complex numbers C. A simple example is Newton’s
method for finding roots of a given real-valued function f . It iteratively produces a sequence
of candidate solutions x0, x1, x2, . . . ,∈ R where xi+1 = xi−f(xi)/f

′(xi). Under appropriate
conditions this sequence can be shown to converge to a root of f . Likewise, a wide variety of
algorithms in numerical analysis, signal processing, computational geometry, robotics, and
symbolic algebra typically assume that a basic computational step involves an operation
(+,×, /) in some arbitrary field F. Such algorithms are studied in a field called computer
algebra [vzGG99].

One could defensibly argue that allowing arbitrary field operations in an algorithm is
unrealistic (at least for fields such as R) since real-life computers can only do arithmetic using
finite precision. Indeed, in practice algorithms like Newton’s method have to be carefully
implemented within the constraints imposed by finite precision arithmetic. In this chapter
though, we take a different approach and study models which do allow arithmetic operations
on real numbers (or numbers from fields other than R). Such an idealized model may not be
directly implementable but it provides a useful approximation to the asymptotic behavior as
computers are allowed to use more and more precision in their computations. Furthermore,
from the perspective of lower bounds, one can hope that techniques from well-developed
areas of mathematics such as algebraic geometry and topology may prove handy. As we’ve
seen in Chapter 14, so far we have not been able to prove strong lower bounds for Boolean
circuits.

Example 16.1 (Pitfalls awaiting designers of such models)
Devising a meaningful, well-behaved model of algebraic computation is not an
easy task: allowing (arbitrary precision) arithmetic on real numbers as a basic
step can quickly lead to unrealistically strong models. For instance, with n
iterations of the basic operation x ← x2 one can compute 22n , a number with
2n bits. In fact, Shamir has shown how to factor any integer N in poly(logN)
time on any model that allows arithmetic (including the mod operation) with
arbitrary precision (see Exercise 16.10) whereas factoring is a notoriously hard
problem for classical TMs.
Furthermore, a real number can encode infinite amount of information. For
example, a single real number is enough to encode the answer to every instance
of SAT (or any other language, in general). Thus, we have to be careful in defining
a model that allows even a single hardwired real number in its programs. By
contrast, we can easily allow a normal Turing Machine to have any constant
number of integers built into its program.
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The usual way to avoid such pitfalls is to restrict the algorithm’s ability to access in-
dividual bits. Alternatively, when the goal is proving non-trivial lower bounds it is OK to
consider unrealistically powerful models. After all, lower bounds for unrealistically powerful
models will apply to more realistic (and hence, weaker) models as well.

This chapter is a sketchy introduction to algebraic complexity. It introduces three al-
gebraic computation models: algebraic circuits, algebraic computation trees, and algebraic
Turing Machines. The algebraic TM is closely related to the standard Turing Machine
model and allows us to study the issues such as decidability and complexity for inputs over
arbitrary fields just we did them earlier for inputs over {0, 1}. We introduce an undecidable
problem (namely, deciding membership in the Mandelbrot set) and an NP-complete prob-
lem (decision version of Hilbert’s Nullstellensatz) in this model. In general, there seems to
be a close connection between algebraic complexity and complexity in the Turing machine
world; see Section 16.1.4.

Throughout this chapter, we will consider algorithms that get as input a tuple of numbers
over a field or a ring F (typically R or C). The input (x1, x2, . . . , xn) ∈ Fn is said to have
size n. A language over a field/ring F is a subset of ∪n≥1Fn.

16.1 Algebraic straight-line programs and algebraic circuits

In this section we define two simple models of algebraic computation, which turn out to be
equivalent. Different authors sometimes prefer one model over the other for reasons of taste
or ease of notation. We will also define analogues of P and NP for these models, and survey
the known results, including notions of reductions and completeness for these classes.

16.1.1 Algebraic straight line programs

An algebraic straight line program over field F (or more generally, F could be a ring) is
defined by analogy with Boolean straight line programs (see Note 6.4). It is reminiscent
of a fragment of a standard programming language like C or C++, but it has only simple
“assignment” statements; no looping or conditional (e.g., if-then-else) statements. The
formal definition follows:

Definition 16.2 (Algebraic straight-line program over F)
An algebraic straight line program of length T with input variables x1, x2, . . . , xn ∈ F and
built-in constants c1, c2, . . . , ck ∈ F is a sequence of T statements of the form yi = zi1 OP zi2
for i = 1, 2, . . . , T where OP is one of the field operations + or × and each of zi1 , zi2 is either
an input variable, or a built-in constant, or yj for j < i. For every setting of values to the
input variables, the straight-line computation consists of executing these simple statements
in order, finding values for y1, y2, . . . , yT . The output of the computation is the value of yT .
We can analogously define straight line programs with multiple outputs.

Example 16.3 (Polynomial evaluation)
For any a ∈ F the function

∑

i a
ixi is computable by a straight line program of

length at most 3n− 2. We provide the program with a single built-in constant,
namely, a. The inputs are x1, x2, . . . , xn. (These inputs are being thought of
as the coefficients of a degree n− 1 polynomial, which is being evaluated at the
constant a.) Then computing a, a2, a3, . . . , an takes n− 1 steps. Multiplying ai
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with xi for i = 1, 2, . . . , n takes another n steps. Accumulating the sum
∑

i a
ixi

takes another n− 1 steps.

As is clear, the model defined above is nonuniform, since a different straight line program
could be used for each input length. As usual, we are interested in asymptotic complex-
ity, that is, the length (as a function of n) of the shortest family of algebraic straight line
programs that compute a family of functions {fn} where fn is a function of n variables.
Exercise 16.1 asks you to show that straight line programs over GF(2) are essentially equiv-
alent to Boolean circuits, and the same is true for circuits over any finite field. Thus, the
case when F is infinite is usually of greatest interest.

Recall that the degree of a multivariate polynomial p(x1, . . . , xn) is defined to be the
maximum degree among all its monomials, where the degree of the monomial c

∏

i x
di
i is

∑

i di. As the following lemma shows, every straight line program computes a multivariate
polynomial of degree related to its length.

Lemma 16.4 The output of a straight line program of length T with variables x1, x2, . . . , xn
is a polynomial p(x1, x2, . . . , xn) of degree at most 2T . ♦

Proof: Follows by an easy induction. Each input variable xi is a polynomial of degree 1,
and every step either adds two previous polynomials, or multiplies them. The degree of the
product of two polynomials is at most the sum of their degrees. Hence the degree can at
most double at each of the T steps. �

What if we allow the division operator ÷ as a standard operation in a straight line
program? Since there is no way for the program to test a value for being nonzero, it
could divide by 0 and then the output could be undefined. Another subtlety is that even
division by a nonzero polynomial p(x) could lead to undefined result if x is a root of p.
Nevertheless, if we consider the formal object being computed, it is well-defined: the next
lemma shows that this formal object is a rational function, that is, a function of the type
f(x1, x2, . . . , xn)/g(x1, . . . , xn) where f, g are polynomials. The degree of the rational func-
tion f/g is the sum of degrees of f and g. We omit the (easy) proof.

Lemma 16.5 If ÷ (only by nonzero polynomials and scalars) is allowed as an elementary
operation, then for every straight line program Π of size t there exists a rational function r
of degree at most 2T that agrees with Π on every input value on which Π is defined. ♦

Strassen [Str73] gave a general method to transform programs that use division into
programs that do not use this operator and have similar size, see also Remark 16.8 below.

16.1.2 Examples

Here are some examples for interesting functions that are computable by polynomial length
algebraic straight line programs.

polynomial multiplication Given (a0, a1, . . . , an) and (b0, b1, . . . , bn) compute the prod-
uct of the polynomials

∑

i aix
i and

∑

j bjx
j , in other words the vector (c0, c1, . . . , c2n−1)

where ck =
∑

i+j=k aibj. Using the ideas of Example 16.3, one obtains a trivial al-

gorithm with straight line complexity O(n2). Using the Fast Fourier Transform (next
example), this can be improved to O(n logn) for fields that have a primitive mth root
of unity, where m is the smallest power of 2 greater than 2n. The idea is to evaluate
the polynomials at m points using the FFT, multiply these values, and use interpola-
tion (inverse FFT) to recover the ci’s. A similar approach also works for all fields but
with slightly higher O(n logn log logn) run time (Schoenhage and Strassen [SS71]).

Fast Fourier Transform The discrete fourier transform of a vector x = (x0,x1, . . . ,xn−1) ∈
Cn is the vector M · x, where M is the n× n matrix whose (i, j)th entry is ωij where
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ω is a primitive nth root of 1 (i.e., a complex number satisfying ωn = 1 and not
satisfying ωr 6= 1 for any nonzero r < n). See Section 10.6.1.

The trivial idea for a straight line program is to do something like Polynomial Evalu-
ation (the first example above) for each row of M where ω is a built-in constant; this
would give a straight line program of length O(n2). Surprisingly, one can do much bet-
ter: there is a program of length O(n logn) to compute the discrete Fourier transform
using the famous fast fourier transform algorithm due to Cooley and Tukey [CT65]

outlined in Section 10.6.1. It is not known if this algorithm is optimal, though Mor-
genstern [Mor73] has shown that it is optimal in a more restricted model where the only
“built in” constants are 0, 1. Some extensions of this result are also known, see [Cha94].

Matrix Multiplication The matrix multiplication problem is to compute, given two n×n
matrices X = (Xi,j) and Y = (Yi,j) their product, which is the n× n matrix Z such
that

Zi,j =

n
∑

k=1

Xi,kYk,j (1)

The equation (1) yields an straight-line program for this problem of size O(n3). (As
mentioned above, the definition of straight-line programs can be easily generalized
to handle multiple outputs.) It may seem “obvious” that this is the best one can
do, as each of the n2 outputs requires n operation to compute. However, starting
with the work of Strassen in 1969 [Str69], a series of surprising new algorithms have
been discovered with complexity O(nω) for ω < 3 (see Exercise 16.4). The current
record is ω ∼ 2.376.. [CW90]. It is known that the complexity of matric multiplication is
equivalent to several other linear algebra problems (see the survey [vzG88]). Raz [Raz02]

has proven that in the model where the only built-in constants are 0, 1, straight-line
programs for matrix multiplication must have size at least Ω(n2 logn).

Determinant The determinant of an n× n matrix X = (Xi,j) is defined as

det(X) =
∑

σ∈Sn
(−1)sgn(σ)

n
∏

i=1

Xi,σ(i) .

where Sn is the set of all n! permutations on {1, 2, . . . , n} and sgn(σ) is the parity of
the number of transposed pairs in σ (i.e., pairs 〈i, j〉 with i > j but σ(i) < σ(j)). The
determinant can be computed using the familiar Gaussian elimination algorithm, but
in fact there are improved algorithms (see Exercise 16.6) that also take small depth
(as defined below in Section 16.1.3).

The determinant function is a good illustration of how the polynomial defining a function
may have exponentially many terms —in this case n!—but nevertheless be computable
with a polynomial length straight line program. The status of lower bounds for algebraic
straight line programs is very bad, as the reader probably expects by now. We do know
that computing the middle symmetric polynomial requires Ω(n logn) operations but do not
know of any better bounds for any explicit polynomial [BCS97].

16.1.3 Algebraic circuits

An algebraic circuit over a field F is defined by analogy with a Boolean circuit (see Chap-
ter 6). It consists of a directed acyclic graph. The leaves are called input nodes and labeled
x1, x2, . . . , xn; these take values in F rather than being Boolean variables. We also allow the
circuit to have k additional special input nodes that are labeled with arbitrary constants
c1, . . . , xk from the field. Each internal node, called a gate, is labeled with one of the arith-
metic operations {+,×} rather than with the Boolean operations ∨,∧,¬ used in Boolean
circuits. We consider only circuits with a single output node and with the in-degree of each
gate being 2. The size of the circuit is the number of gates in it. The depth of the circuit is
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the length of the longest path from input to output in it. One can also consider algebraic
circuits that allow division (÷) at the gates. An algebraic formula is a circuit where each
gate has out-degree equal to 1.

To evaluate a circuit, we perform each gate’s operation by applying it on the numbers
present on the incoming wires (= edges), and then passing this output to all its outgoing
wires. The output of the circuit is the number present on the wire of its output node at the
end of this process. The next lemma (left as an easy Exercise 16.7) shows that this model
is equivalent to algebraic straight-line programs.

Lemma 16.6 Let f : Fn → F be some function. If f has an algebraic circuit of size S then
it has an algebraic circuit of size 3S. If f is computable by an algebraic circuit of size S
then it is computable by an algebraic straight line program of length S. Moreover, if the
circuit is a formula then the equivalent straight line program is use once (i.e., every variable
yi that is not an input occurs on the right hand side of an assignment only once). ♦

Note that the equivalence is only up to a small constant factor (3) because in a circuit
we don’t allow parallel edges and hence the operation x 7→ x2 will require first copying x by
adding to it zero.

16.1.4 Analogs of P, NP for algebraic circuits

There are functions which are conjectured to require superpolynomial or even exponential
algebraic circuit complexity. The permanent (see Sections 8.6.2 and 17.3.1) is one such
function. For an n× n matrix X , the permanent of X is defined as

perm(X) =
∑

σ∈Sn

n
∏

i=1

Xi,σ(i) .

At first sight seems the permanent seems very similar to the determinant. However, unlike
the determinant that has a polynomial-time algorithm (and also a polynomial length alge-
braic straight-line program), the permanent is conjectured to not have such an algorithm.
(As shown in Chapter 17, the permanent is #P-complete, which in particular means that
it does not have a polynomial-time algorithm unless P = NP.)

Valiant [Val79a] defined analogs of P and NP for algebraic circuits, as well as as a notion
of reducibility. The determinant and permanent functions turn out to play a vital role in
this theory, since they are complete problems for the following important classes.

Definition 16.7 (AlgP/poly
, AlgNP/poly

)

Let F be a field, we say that a family of polynomials {pn}n∈N (where pn takes n variables
over F) has polynomially-bounded degree if there is a constant c such that for every n the
degree of pn is at most cnc.
The class AlgP/poly

(or AlgPF
/poly

when we wish to emphasize the underlying field) contains
all polynomially-bounded degree families of polynomials that are computable by algebraic
circuits (using no ÷) of polynomial size and polynomial degree.
The class AlgNP/poly

is the class of polynomially-bounded degree families {pn} that are
definable as

pn(x1, x2, . . . , xn) =
∑

e∈{0,1}m−n

gm(x1, x2, . . . , xn, en+1, . . . , em) ,

where gm ∈ AlgP/poly
and m is polynomial in n.

Many texts use the names VP and VNP for the classes AlgP/poly
and AlgNP/poly

,
where V stands for Valiant, who defined these classes and proved several fundamental results



280 16 Algebraic computation models

on their properties. We chose to use the notation AlgP/poly
,AlgNP/poly

to emphasize the
non-uniformity of these classes.

Remark 16.8
Disallowing the ÷ operation in the definition of AlgP/poly

may seem like a strong restriction,
but Strassen [Str73] has shown that for infinite fields, the class AlgP/poly

is unchanged
whether or not ÷ is allowed. Similarly, the class AlgNP/poly

is unchanged if we require gm
to have polynomial formula size in addition to being in AlgP/poly

[Val79a].

Example 16.9
To illustrate the definition of AlgNP/poly

we show that permanent is in AlgNP/poly
.

A permutation on [n] will be represented by an n×n permutation matrix whose
each entry is 0/1 and whose each row/column contains exactly one 1. The crux
of the proof is to express the condition that values to some n2 variables form a
permutation.
For any set of n variables c1, c2, . . . , cn let the polynomial Exactly-one be such
that for any 0/1 assignment to the ci’s this polynomial is 1 if exactly one of ci’s
is 1, and zero otherwise.

Exactly-one(c1, c2, . . . , cn) =
∑

i≤n
ci
∏

j 6=i
(1− cj).

Now define a polynomial Is-permutation with n2 binary variables σij for 1 ≤
i, j ≤ n that verifies that each row and column contains exactly one 1.

Is-permutation(σ) =
∏

i

Exactly-one(σi1, σi2, . . . , σin)Exactly-one(σ1i, σ2i, . . . , σni).

Finally, let Permpoly be a polynomial of n2 variables σij for 1 ≤ i, j ≤ n and n2

variables Xij for 1 ≤ i, j ≤ n defined as

Permpoly(σ,X) = Is-permutation(σ)
∏

i

(
∑

j

Xijσij).

Clearly, Permpoly ∈ AlgP/poly
. Finally, the permanent of X can be written as

∑

σ∈{0,1}n2

Permpoly(σ,X),

we have shown that the permanent function is in AlgNP/poly
.

The definition of AlgNP/poly
is somewhat unexpected and merits some discussion.

Valiant was motivated by the view that + is the algebraic analog of the Boolean OR.
Recall that a language A is in NP if there is a language B ∈ P such that x ∈ A ⇔
∃e s.t.(x, e) ∈ B. Thus the definition of NP involves ∃e∈{0,1}m−n , which is equivalent to
an OR, viz,

∨

e∈{0,1}m−n . Thus the algebraic analog is the operation
∑

e∈{0,1}m−n , and this
is the defining feature of AlgNP/poly

. Note that this makes AlgNP/poly
closer to #P in

spirit than to NP.
Now we arrive at a key notion: reduction between algebraic problems that preserve al-

gebraic circuit complexity. As usual, we want a reduction f from problem A to problem
B to satisfy the property that an efficient algorithm (i.e., polynomial-length straight line
program or polynomial size circuit) for B should give us an efficient algorithm for A. Some
thought suggests that it suffices to let the reduction be an arbitrary polynomially-bounded
degree family that is computable by a polynomial-length straight-line program. The defi-
nition suggested by Valiant is much stricter: it requires the reduction to be an extremely
trivial “change of variables.” Obviously, the stricter the definition of reduction, the harder
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it is to prove completeness results. So the fact that such a simple reduction suffices here
is surprising. (Of course, if we think about most classical NP-completeness results from
the 1970s, they also involve simple local transformations using gadgets, instead of arbitrary
polynomial-time transformations.)

Definition 16.10 (Projection reduction) A function f(x1, . . . , xn) is a projection of a func-
tion g(y1, y2, . . . , ym) if there is a mapping σ from {y1, y2, . . . , ym} to {0, 1, x1, x2, . . . , xn}
such that f(x1, x2, . . . , xn) = g(σ(y1), σ(y2), . . . , σ(ym)).

We say that f is projection-reducible to g if f is a projection of g. ♦

Example 16.11
The function f(x1, x2) = x1 +x2 is projection reducible to g(y1, y2, y3) = y2

1y3 +
y2 since f(x1, x2) = g(1, x1, x2).

One way to think of a projection reduction is that if we had a silicon chip for computing g
then we could convert it to a chip for f by appropriately hardwiring its input wires, feeding
either some xi or 0 or 1 into each input wire. The next theorem shows that a chip for the
Determinant or Permanent would be fairly “universal” in that it can be made to compute
large families of other functions. Its proof uses clever gadget constructions, and is omitted
here.

Theorem 16.12 (Completeness of determinant and permanent [Val79a])
For every field F and every polynomial family on n variables that is computable by an
algebraic formula of size u is projection reducible to the Determinant function (over the
same field) on u+ 2 variables.

For every field except those that have characteristic 2, every polynomial family in
AlgNP/poly

is projection reducible to the Permanent function (over the same field) with
polynomially more variables.

Moreover, it was shown by Valiant et al [VSBR81] that every function in AlgP/poly
has an

algebraic formula of size 2O(log2 n) (see also Exercise 16.6). Thus separating AlgP/poly
and

AlgNP/poly
will follow from this purely mathematical conjecture that makes no mention of

computation:

Conjecture 16.13 (Valiant)
For every field that does not have characteristic 2, the n×n permanent cannot be obtained

as a projection of the m×m determinant where m = 2O(log2 n).

Conjecture 16.13 is a striking example of the close connection between computational
complexity and interesting questions in pure mathematics. Another intriguing fact is that
that it is necessary to show AlgP/poly

6= AlgNP/poly
before one can show P 6= NP (see

Chapter notes).

16.2 Algebraic Computation Trees

Now we move to a more powerful computational model, the algebraic computation tree.
This can be defined for computations over an arbitrary ring (see the comments after Defini-
tion 16.15) but for simplicity we define it for for computations on real-valued inputs. This
model augments the straight line program model (with ÷) with the ability to do conditional
branches based upon whether or not a variable yv is greater than 0. Depending upon the
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result of this comparison, the computation proceeds in one of two distinct directions. Thus
the overall structure is a binary tree rather than a straight line (as the name suggests). The
ability to branch based upon a variable value is somewhat reminiscent of a Boolean decision
tree of Chapter 12 but here the variables (indeed, also the input) are real numbers instead
of bits.

Formally, the model can be used to solve decision problems on real inputs; it computes
a Boolean-valued function f :Rn → {0, 1} (i.e., a language).

Example 16.14 (Some decision problems)
The following examples illustrate some of the languages (over real numbers)
whose complexity we might want to study.

Element Distinctness Given n numbers x1, x2, . . . , xn, determine whether
they are all distinct. This is equivalent to the question whether

∏

i6=j(xi −
xj) 6= 0.

Real-valued subset sum Given a list of n real numbers x1, . . . , xn, determine
whether there is a subset S ⊆ [n] such that

∑

i∈S xi = 1.

As motivation for the definition of the model, consider the trivial algorithm for Element Distinctness:
sort the numbers in O(n logn) steps and then check in another O(n) steps if any two ad-
jacent numbers in the sorted order are the same. Is this trivial algorithm actually optimal,
or can we solve the problem in o(n logn) steps? The answer must clearly depend on the
computational model we allow. The algebraic computation tree model studied in this sec-
tion is powerful enough to implement known algorithms for the problem. As we will see
in Section 16.2.1 below, it turns out that in this model the above trivial algorithm for
Element Distinctness is optimal up to constant factors.

Recall that comparison-based sorting algorithms only ask questions of the type “Is xi >
xj?”, which is the same as asking whether xi − xj > 0. The left hand side term of this
last inequality is a linear function. We can imagine other algorithms that may use more
complicated functions. In Algebraic Computation Trees, we allow a) the ability to use any
rational function and b) the introduction of new variables together with the ability to do
arithmetic on them and ask questions about them. The cost is the number of arithmetic
operations and branching steps on the worst case input.
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yu = xi - xj

yv = yu
o yu

yu>0

yu>0 yu<0

Figure 16.1 An Algebraic Computation Tree

Definition 16.15 (Algebraic Computation Tree over R)
An Algebraic Computation Tree is a way to represent a function f :Rn → {0, 1} by showing
how to compute f(x1, x2, . . . , xn) for any input vector (x1, x2, . . . , xn). It is a binary tree
where each of the nodes is of one of the following types:

• Leaf labeled “Accept” or “Reject”.

• Computation node v labeled with yv, where yv = yu OP yw and yu, yw are either
one of {x1, x2, . . . , xn} or the labels of ancestor nodes and the operator OP is in
{+,−,×,÷,√ }.

• Branch node with out-degree 2. The branch that is taken depends on the evaluation
of some condition of the type yu = 0 or yu ≥ 0 or yu ≤ 0 where yu is either one of
{x1, x2, . . . , xn} or the labels of an ancestor node in the tree.

The computation on any input (x1, x2, . . . , xn) follows a single path from the root to a leaf,
evaluating functions at internal nodes (including branch nodes) in the obvious way, until it
reaches a leaf. It reaches a leaf marked “Accept” iff f(x1, x2, . . . , xn) = 1. The complexity
of the computation on the path is measured using the following costs (which reflect real-life
costs to some degree):

• +,− are free.

• ×,÷,√ and branch nodes are charged unit cost.

The depth of the tree is the maximum cost of any path in it.

This definition allows
√

as an elementary operation, which may not make sense for all

fields (such as the rational numbers). The notion of algebraic computation tree extends to
arbitrary ordered fields by omitting the

√
as an operation. The notion also extends to fields

that are not ordered by only allowing decision nodes that have a 2-way branch based upon
whether or not a variable is = 0.

A fragment of an algebraic computation tree is shown in Figure 16.1.

Definition 16.16 (algebraic computation tree complexity)
Let f :Rn → {0, 1}. The algebraic computation tree complexity of f is

AC(f) = min
computation
tree T for f

{depth of T }



284 16 Algebraic computation models

x1,x2,...,xn

y1,y2,...,yd

Figure 16.2 A computation path p of length d defines a set of constraints over the n input
variables xi and d additional variables yj , which correspond to the nodes on p.

The algebraic computation tree model is much more powerful than a real-life program-
ming language. The reason is that a tree of depth d could have 2d nodes, so a depth d
algebraic computation tree would yield (in the worst case) only a classical algorithm with
a description of size 2d. This is why the following theorem (whose proof we omit) does not
imply an efficient algorithm for the NP-complete subset sum problem:

Theorem 16.17 (Meyer auf der Heide [adH88]) The real number version of subset sum can
be solved using an algebraic computation tree of depth O(n5). ♦

This theorem suggests that Algebraic Computation Trees are best used to investigate
lower bounds such as n logn or n2 rather than something more ambitious like a super-
polynomial lower bound for the real number version of subset sum.

16.2.1 The topological method for lower bounds

To prove lower bounds for the minimum cost of an algebraic computation tree algorithm for
a function f , we will use the topology of the sets f−1(1) and f−1(0), specifically, the number
of connected components.

Definition 16.18 (connected components) A set S ⊆ Rn is connected if for all x,y ∈ S there
is path p from x to y that lies entirely in S (in other words, a continuous function mapping
[0, 1] ⊆ R to Rn such that f(0) = x, f(1) = y and f(t) ∈ S for all t ∈ [0, 1]). A connected
component of W ⊆ Rn is a connected subset of W that is not a proper subset of any other
connected subset of W . We let #(W ) denote the number of connected components of W .♦

The following theorem relates the number of connected components to the algebraic
computation tree complexity:

Theorem 16.19 (Topological lower bound on algebraic tree complexity [BO83])
For every f : Rn → {0, 1},

AC(f) = Ω
(

log (max {#(f−1(1)),#(Rn \ f−1(1))})− n
)

Before proving this theorem, let us first use it to prove the promised lower bound for
Element Distinctness. This bound follow directly from the following theorem, since logn! =
Ω(n logn).
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Theorem 16.20 Let W = {(x1, . . . , xn)|
∏

i6=j (xi − xj) 6= 0}. Then,

#(W ) ≥ n! ♦

Proof: For each permutation σ let

Wσ = {(x1, . . . , xn) | xσ(1) < xσ(2) < . . . < xσ(n)}.

That is, let Wσ be the set of n-tuples (x1, . . . , xn) which respect the (strict) order given by
σ. Note that Wσ ⊆W for all σ. It suffices to prove for all σ′ 6= σ that the sets Wσ and Wσ′

are not connected.
For any two distinct permutations σ and σ′, there exist two distinct i, j with 1 ≤ i, j ≤ n,

such that σ−1(i) < σ−1(j) but σ′−1(i) > σ′−1(j). Thus, in Wσ we have Xj−Xi > 0 while in
Wσ′ we have Xi−Xj > 0. Consider any path from Wσ to Wσ′ . Since Xj −Xi has different
signs at the endpoints, the intermediate value principle says that somewhere along the path
this term must become 0. That point can belong in neither Wσ nor Wσ′ , so Definition 16.18
then implies that Wσ and Wσ′ cannot be connected. �

Now we turn to the proof of Theorem 16.19. This theorem is proved in two steps. First,
we try to identify the property of functions with algebraic computation tree complexity:
they can be defined as solution sets of a “few” systems of equations.

Lemma 16.21 If f :Rn → {0, 1} has a decision tree of depth d then f−1(1) (and also f−1(0))
is a union of at most 2d sets C1, C2, . . . ,⊆ Rn where Ci can be described as follows: there
is a system of up to d equations of the form

pir (y1, . . . , yd, x1, . . . , xn) ⊲⊳ 0,

where pir for r ≤ d is a degree 2 polynomial, ⊲⊳ is in {≤,≥,=, 6=}, and y1, . . . , yd are new
variables. Then Ci is the set of (x1, x2, . . . , xn) for which there are some y1, y2, . . . , yd such
that (y1, . . . , yd, x1, . . . , xn) is a solution to the above system. Additionally, we may assume
without loss of generality (at the cost of doubling the number of yi’s) that there are no 6=
constraints in this system of equations. ♦

Proof: The tree has 2d leaves, so it suffices to associate a set Ci with each leaf, which
is the set of (x1, x2, . . . , xn) that end up at that leaf. Associate a variable y1, y2, . . . , yd
with the (at most) d computation or branching nodes appearing along the path from root
to this leaf. For each computation node, we associate an equation with it in the obvious
way (see Figure 16.2). For example, if the node computes yv = yu ÷ yw then it implies
the constraint yvyw − yu = 0. For each branch node, we associate an obvious inequality.
Thus any (x1, x2, . . . , xn) that end up at the leaf is a vector for which there exist values
of y1, y2, . . . , such that the combined vector is a solution to this system of d equations and
inequalities.

To replace the “ 6=” constraints with “=” constraints we take a constraint like

pi(y1, . . . , ym) 6= 0,

introduce a new variable zi and impose the constraint

qi(y1, . . . , ym, zi) ≡ 1− zipi(y1, . . . , ym) = 0.

(This transformation, called Rabinovitch’s trick, holds for all fields.) Notice, the maximum
degree of the constraint remains 2, because the trick is used only for the branch yu 6= 0
which is converted to 1− zvyu = 0.

Similarly, the constraint pi(y1, . . . , ym) > 0 is handled by introducing a new variable zi
and imposing the constraint pi(y1, . . . , ym) = z2

i . �

We find Rabinovitch’s trick useful also in Section 16.3.2 where we prove a completeness
result for Hilbert’s Nullstellensatz.

Now to prove lower bounds on AC(W ) via the topological argument, we need some result
about the number of connected components of the set of solutions to an algebraic system.
The following is a central result in mathematics.
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x2

x1

S1

S2

S3

S'1 S'2

Figure 16.3 Projection can merge but not add connected components

Theorem 16.22 (Consequence of Milnor-Thom Theorem) If S ⊆ Rn is defined by degree d
constraints with m equalities and h inequalities then

#(S) ≤ d(2d− 1)n+h−1 ♦

Note that the above upper bound is independent of m. Now we can prove Ben-Or’s
Theorem.

Proof of Theorem 16.19: Suppose that the depth of a computation tree for W is d,
so that there are at most 2d leaves. We will use the fact that if S ⊆ Rn and S|k is the
set of points in S with their last n − k coordinates removed (i.e., projection on the first k
coordinates) then #(S|k) ≤ #(S) (Figure 16.3).

For every leaf there is a set of degree 2 constraints. So, consider a leaf ℓ and the
corresponding constraints Cℓ, which are in variables y1, . . . , yd, x1, . . . , xn. Let Wℓ ⊆ Rn be
the subset of inputs that reach ℓ and Sℓ ⊆ Rn+d the set of points that satisfy the constraints
Cℓ. Note that Wℓ = Cℓ|n i.e., Wℓ is the projection of Cℓ onto the first n coordinates. So, the
number of connected components in Wℓ is upperbounded by #(Cℓ). By Theorem 16.22 it
holds that #(Cℓ) ≤ 2 ·3n+d−1 ≤ 3n+d. Therefore the total number of connected components
is at most 2d3n+d, so d ≥ Ω(log(#(W ))) − O(n). By repeating the same argument for
Rn −W we have that d ≥ Ω(log(#(Rn −W )))−O(n). �

16.3 The Blum-Shub-Smale Model

The models for algebraic complexity introduced so far were nonuniform. Now we introduce
a uniform model due to Blum, Shub and Smale [BSS89]. This involves Turing Machines that
compute over some arbitrary field or ring F (e.g., F = R,C,GF(2)); the input is a string
in Fn for n ≥ 1 and the output is Accept/Reject. Each cell can hold an element of F, and
initially, all but a finite number of cells are “blank.” Thus the model is a generalization
of the standard Turing Machine model with bit operations, which can be seen as operating
over the field GF(2); see Exercise 16.9. The machine has a finite set of internal states. Each
state belongs to one of the following three categories:

• Shift state: move the head to the left or to the right of the current position.

• Branch state: if the content of the current cell is a then goto state q1 else goto state
q2.
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• Computation state: This state has a hardwired function f associated with it. When
the machine is in this state, it reads the contents of the current cell, say a ∈ F∪{blank},
and replaces it with a new value f(a). If F is a ring, f is a polynomial over F, while if
F is a field then we allow f to be any rational function of the form g/h where g, h are
polynomials and h is non-zero. In either case, f is represented using a constant number
of elements of F. These can be viewed as “hardwired” constants for the machine.

Note that in our standard model of the TM, the computation and branch operations
can be executed in the same step, whereas here they have to be performed separately. This
is purely for notational ease. But, now in order to branch, the machine has to be able to
“remember” the value it just read one step ago. For this reason the machine has a single
“register” onto which it can copy the contents of the cell currently under the head, and
whose value can be used in the next step.

Like other models for algebraic complexity we have studied, the BSS model seems more
powerful than real-world computers. For instance, by repeating the operation x ← x2, the
BSS machine can compute and store in one cell (without overflow) the number x2n in n
steps.

However, the machine has only limited ability to benefit from such computations because
it can only branch using tests like “Is the content of this cell equal to a?” The slight variant
of this test, featuring an inequality test: “Is the content of the cell greater than a?” would
give the machine much more power, including the ability to decide every language in P/poly

(thus in particular, an undecidable language) in polynomial time. The reason is that the
circuit family of a language in P/poly circuit family can be represented by a single real number
that is a hardwired “constant” into the Turing machine (specifically, as the coefficient of
some polynomial p(x) belonging to a state). The individual bits of this coefficient can be
accessed by dividing by 2 an appropriate number of times and then using the branch test
to check if the number is greater than 0. (The details are left as Exercise 16.12.) Thus the
machine can extract the polynomial length encoding of each circuit.

Similarly, if we allow rounding (computation of ⌊x⌋) as a basic operation then it is
possible to factor integers in polynomial time on the BSS model, using the ideas of Shamir
mentioned earlier (see Exercise 16.10).

Note also that the BSS model is closely related to a more classical model: algebraic
circuits with “branch” gates and a “uniformity” condition (so the circuits for different input
sizes have to be constructible by some conventional Turing machine).

16.3.1 Complexity Classes over the Complex Numbers

It is now time to define some complexity classes related to the BSS model. For simplicity
we restrict attention to machines over the field C. As usual, the complexity of these Turing
Machines is defined with respect to the input size (i.e., number of cells occupied by the
input). The following complexity classes correspond to P and NP over C:

Definition 16.23 (PC,NPC) PC contains every language over C that can be decided by a
BSS Turing Machine over C in polynomial time. A language L is said to be in NPC if there
exists a language L0 ∈ PC and a number d > 0, such that an input x is in L iff there exists

a string (y1, . . . , ynd) in Cn
d

such that (x, y) is in L0. ♦

It is also interesting to study the complexity of standard languages (i.e., whose inputs
are bit strings) with respect to this model. Thus, we make the following definition:

0-1-NPC = {L ∩ {0, 1}∗ | L ∈ NPC}

Note that the input for a 0-1-NPC machine is binary but the nondeterministic “witness”
may consist of complex numbers. Trivially, NP is a subset of 0-1-NPC. The reason is that
even though the “witness” for the BSS machine consists of a string of complex numbers, the
machine can first check if they are all 0 or 1 using equality checks. Having verified that the
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witness is actually a Boolean string, the machine continues as a normal Turing Machine to
verify it.

Is 0-1-NPC much larger than NP? We know that that 0-1-NPC ⊆ PSPACE. In 1997
Koiran [Koi97] proved that if one assumes the Riemann hypothesis, then 0-1-NPC ⊆ AM.
As shown in Chapter 20 (see Exercise 20.7), under reasonable assumptions AM = NP and
so Koiran’s result suggests that it’s likely that 0-1-NPC = NP.

16.3.2 Complete problems and Hilbert’s Nullstellensatz

The language HNC is defined as the decision version of Hilbert’s Nullstellensatz over C.
(We encountered this principle in Section 2.7 and it also appears in Section 15.3.) The
input consists of m polynomials p1, p2, . . . , pm of degree d over x1, . . . , xn. The output is
“yes” iff the polynomials have a common root a1, . . . , an. Note that this problem is general
enough to encode SAT, since we can represent each clause by a polynomial of degree 3:

x ∨ y ∨ z ↔ (1− x)(1 − y)(1− z) = 0.

Next we use this fact to prove that the language 0-1-HNC (where the polynomials have 0-1
coefficients) is complete for 0-1-NPC.

Theorem 16.24 ([BSS89]) 0-1-HNC is complete for 0-1-NPC. ♦

Proof Sketch: It is straightforward to verify that 0-1-HNC is in 0-1-NPC . To prove the
hardness part we imitate the proof of the Cook-Levin Theorem (Theorem 2.10). Recall that
there we reduced every NP-computation into an AND of many local tests, each depending
on only a constant number of variables. Here, we do the same, reasoning as in the case of
algebraic computation trees (see Lemma 16.21) that we can express these local checks with
polynomial constraints of bounded degree. The computation states c ← q(a, b)/r(a, b) are
easily handled by setting p(c) ≡ q(a, b)− cr(a, b). For the branch states p(a, b) 6= 0 we can
use Rabinovitch’s trick to convert them to equality checks q(a, b, z) = 0. Thus the degree
of our constraints depends upon the degree of the polynomials hardwired into the machine.
Also, the polynomial constraints use real coefficients (involving real numbers hardwired into
the machine). Converting these polynomial constraints to use only 0 and 1 as coefficients
requires work. The idea is to show that the real numbers hardwired into the machine have
no effect since the input is a binary string. We omit this argument here. �

16.3.3 Decidability Questions: Mandelbrot Set

Since the Blum-Shub-Smale model is more powerful than the ordinary Turing Machine, it
makes sense to also revisit decidability questions. In this section we mention an interesting
undecidable problem for this model: membership problem for the Mandelbrot set, a famous
fractal. The chapter notes mention one motivation for studying such questions, connected
to Roger Penrose’s claim that Artificial Intelligence is impossible.

Definition 16.25 (Mandelbrot set decision problem) Let PC(Z) = Z2 +C. Then, the Man-
delbrot set is defined as

M = {C ∈ C | the sequence PC(0), PC(PC(0)), PC(PC(PC(0))) . . . is bounded }. ♦

Note that the complement ofM is recognizable if we allow inequality constraints. This
is because the sequence is unbounded iff some number P kC(0) has complex magnitude greater
than 2 for some k (exercise!) and this can be detected in finite time. However, detecting
that P kC(0) is bounded for every k seems harder. Indeed, we have:

Theorem 16.26 M is undecidable by a machine over C. ♦
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Proof sketch: The proof uses some mathematical tools that are beyond the scope of
this book and hence we only give a rough sketch here. The proof uses the topology of the
Mandelbrot set, and the notion of Hausdorff dimension. A ball of radius r in a metric space
is a set of the form B(x0, r) = {y : dist(x0, y) < r}. Very roughly speaking, the Hausdorff
dimension of a space is d if as r → 0 then the minimum number of balls of radius r required
to cover a set grows as 1/rd as r goes to 0.

Let N be any TM over the complex numbers that supposedly decides this set. Consider
T steps of the computation of this TM. Reasoning as in Theorem 16.24 and in our theorems
about algebraic computation trees, we conclude (see also Exercise 16.11) that the sets of
inputs accepted in T steps is a finite union of semialgebraic sets (i.e., sets defined using
solutions to a system of polynomial equations). Hence the language accepted by N is a
countable union of semi-algebraic sets, which is known to imply that its Hausdorff dimension
is 1. But it is known that the Mandelbrot set has Hausdorff dimension 2, hence M cannot
decide it. �

What have we learned?

• It is possible to study computational complexity in more algebraic settings where a
basic operation is over a field or ring. We saw analogs of Boolean circuits, straight
line programs, decision trees, and Turing machines.

• One can define complete problems in some algebraic complexity classes, and even study
decidability.

• Proving lower bounds for algebraic computation trees involves interesting topological
methods involving the number of connected components in the set of solutions to a
system of polynomial equations.

• There are interesting connections between algebraic complexity and the notions of
complexity used in the rest of the book. Two examples: (a) Valiant’s result that the
permanent is complete for AlgNP/poly

; (b) complexity classes defined using the BSS
model of TMs using complex-valued inputs have connections to standard complexity
classes.

Chapter notes and history

It is natural to consider the minimum number of arithmetic operations required to produce a
desired output from the input. The first formalization of this question appears to be by A. Scholz
in 1937 [Sch37], roughly contemporaneous with Turing’s work on undecidability. The notion of a
straight line program goes back to Ostrowski’s [Ost54] investigation of the optimality of Horner’s
rule for evaluating a polynomial. The formal definitions of the straight line program and algebraic
computation tree models first appear in Strassen [Str72] and Rabin [Rab72] respectively, though
Rabin restricted attention to linear functions instead of general polynomials. The work of Strassen
in the 1960s and 1970s did much to establish algebraic complexity theory. Volume 2 of Knuth’s
book from 1969 [Knu69] gives a nice survey of the state of knowledge at that time. Algebraic
computation trees attracted attention in computational geometry, where three-way branching on a
linear function can be interpreted as the query that asks wheter a point x ∈ Rn is on the hyperplane
defined by the linear function, or to the left/right of it.

The classes AlgP/poly
and AlgNP/poly

were defined by Valiant [Val79a], though he used the term
“P-definable” for AlgNP/poly

and AlgP for AlgP/poly
. Later works also used the names VNP

and VP for these classes. The theory was fleshed out by Skyum and Valiant [SV85], who also gave
an extension of Valiant’s theory of completeness via projections to the standard NP class. This
extension relies on the observation that the Cook-Levin reduction itself is a projection reduction.
One interesting consequence of this extended theory is that it shows AlgP/poly? = AlgNP/poly

must necessarily be resolved before resolving P? = NP.
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The NC algorithm for computing the determinant mentioned in Section 16.1.4 is due to
Csanky [Csa76]. It works for fields of characteristic 0. Many generalizations of this algorithm
exist. The fact that determinant has algebraic formulae of size 2poly(log n) is due to Valiant et
al. [VSBR81]. In fact, they show a general transformation of any algebraic circuit of size S comput-
ing a polynomial f to a circuit computing f of depth O(log S log deg(f)). (The depth of a circuit
is, as usual, the length of longest path from input to output in the graph).

The problem of proving lower bounds on algebraic computation trees has a long history, and
Ben-Or’s theorem (Theorem 16.19) falls somewhere in the middle of it. More recent work by Bjorner
et al [BLY92] and Yao [Yao94] shows how to prove lower bounds for cases where the #(W ) parameter
is small. These rely on other topological parameters associated with the set, such as Betti numbers.

A general reference on algebraic complexity (including algorithms and lower bounds) is the 1997
book by Bürgisser et al. [BCS97]. A good modern survey of computer algebra is the book by von
zur Gathen and Gerhad [vzGG99].

One important topic not covered in the chapter is Strassen’s lower bound technique for algebraic
circuits based upon the notion of degree of an algebraic variety. It leads to optimal Ω(n log n) lower
bounds for several problems. A related topic is the famous Baur-Strassen lemma which shows
that one can compute the partial derivatives of f in the same resources required to compute f .
See [BCS97] for details on both.

The best survey of results on the BSS model is the book by Blum et al. [BCSS97]. The question of
decidability of the Mandelbrot fractal set is from Roger Penrose’s controversial criticism of Artificial
Intelligence [Pen89]. The full story of this debate is long, but in a nutshell, one of the issues Roger
Penrose raised was that humans have an intuitive grasp of many things that seem beyond the
capabilities of the Turing machine model. He mentioned computation over R — exemplified by our
definition of the Mandelbrot set— as an example. He suggested that such mathematical objects are
beyond the purview of computer science —he suggested that one cannot talk about the decidability
of such sets. The BSS work shows that actually such questions can be easily studied using simple
variations of the TM model. A careful evaluation of the BSS model appears in a recent survey
of Braverman and Cook [BC06], who point out some of its conceptual limitations, and propose
modeling real computations using a bit-based model (i.e., closer to the standard TM).

Exercises

16.1 Show for every finite field F there is a constant c such that for every Boolean function f : {0, 1}n →
{0, 1} with Boolean circuit complexity S, the size of the smallest algebraic circuit over F that
computes S is between S/c and c · S.

16.2 Sketch the O(n log n) size straight line program for the fast fourier transform.

16.3 Sketch a algorithm for multiplying two degree n univariate polynomials with complex coefficients
in O(n log n) operations (+ and ×) over the complex numbers.

16.4 ([Str69])

(a) Prove that for every ω > 2, if there exists k ∈ N and an algebraic straight-line program Πk

that computes the matrix multiplication of k × k matrices using at most kω multiplication
gates, then for every n ∈ N there is an algebraic straight program of size O(nω) that computes
matrix multiplication for n× n matrices. H463

(b) Prove that there exists an algebraic straight-line program using 7 multiplication gates that
computes the matrix multiplication of 2 × 2 matrices. Conclude that there is an algebraic
straight-line program of size O(n2.81) for multiplying n× n matrices. H463

16.5 Prove that any function that can be computed by an algebraic circuit of depth d can be computed
by an algebraic formula of size O(2d).

16.6 ([Berch]) In this exercise we show a small depth polynomial-size algebraic circuit for the determinant.
Such a circuit can also be obtained by following the Gaussian elimination and using Stassen’s [Str73]
technique of eliminating division operations.

(a) Show that there is an O(n3)-size algebraic circuit of O(log n) depth to multiply two n × n
matrices.

(b) Show that for every i ∈ [n] there is an O(n3)-size algebraic circuit of depth O(log2 n) that
computes M i for any n× n matrix M .
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(c) Recall that for a matrix A, the characteristic polynomial pA is defined as pA(x) = det(A−xI),
prove that if A = A1,1 r

c M
, (where M is an (n− 1)× (n− 1) matrix, r is an n− 1-dimensional

row vector, c is an n− 1-dimensonal column vector) then pA = CpM (treating p, q as column
vectors ordered from highest to lowest coefficient), where C is the following (n−1)×n matrix:

Ci,j =



















0 i < j

1 i = j

−A1,1 i = j + 1

−rM i−j−2c i ≥ j + 2

H463

(d) Prove that the determinant can be computed by an algebraic circuit of size poly(n) and depth
O(log2 n). (By making various optimizations the size of the circuit can be made as small as
O(nω+1+ǫ) for every constant ǫ > 0, where ω is the number such that there is an O(nω)-sized
O(log n) depth algebraic circuit for matrix multiplication.)

16.7 Prove Lemma 16.6

16.8 Suppose we are interested in the problem of computing the number of Hamilton cycles in graphs.
Model this as an algebraic computational problem and show that this function is in AlgNP/poly.
H463

16.9 Show that the BSS model over the field GF(2) is equivalent to the standard TM model.

16.10 (Shamir [Sha79]) Show that any computational model that allows arithmetic (including “mod” or
integer division) on arbitrarily large numbers can factor any given integer n in poly(log n) time.
H463

16.11 Show that if a function f :Rn → {0, 1} can be computed in time T on algebraic TM then it has an
algebraic computation tree of depth O(T ).

16.12 Prove that if we give the BSS model (over R) the power to test “a > 0?” with arbitrary precision,
then all of P/poly can be decided in polynomial time. (Hint: the machine’s “program” can contain
a constant number of arbitrary real numbers.)
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Part III

Advanced topics





Chapter 17

Complexity of counting

“It is an empirical fact that for many combinatorial problems the detection of
the existence of a solution is easy, yet no computationally efficient method is
known for counting their number.... for a variety of problems this phenomenon
can be explained.”
L. Valiant 1979

The class NP captures the difficulty of finding certificates. However, in many contexts,
one is interested not just in a single certificate, but actually in counting the number of
certificates. This chapter studies #P, (pronounced “sharp p”), a complexity class that
captures this notion.

Counting problems arise in diverse fields such as such as statistical estimation, statistical
physics, network design, and economics, often in situations having to do with estimations of
probability. Counting problems are also studied in a field of mathematics called enumera-
tive combinatorics, which tries to obtain closed-form mathematical expressions for counting
problems. To give an example, in 1847 Kirchoff showed how the resistance of a network can
be determined by counting the number of spanning trees in it, for which he gave a formula
involving a simple determinant computation. Results in this chapter will show that for
many other natural counting problems, such efficiently computable expressions are unlikely
to exist.

In Section 17.1 we give an informal introduction to counting problems and how they
arise in statistical estimation. We also encounter an interesting phenomenon: a counting
problem can be difficult even though the corresponding decision problem is easy.

Then in Section 17.2 we initiate a formal study of counting problems by defining the class
#P. The quintessential problem in this class is #SAT, the problem of counting the number
of satisfying assignments to a Boolean formula. We then introduce #P-completeness and
prove the #P-completeness of an important problem, computing the permanent of a 0, 1
matrix.

We then consider whether #P is related to the concepts we have studied before. Sec-
tion 17.4 shows a surprising result of Toda: an oracle for #SAT can be used to solve every
problem in PH in polynomial time. The proof involves an interesting probabilistic argu-
ment, even though the statement of the Theorem involves no probabilities.

17.1 Examples of Counting Problems

In counting problems the output is a number rather than just 0, 1 as in a decision problem.
Counting analogues of the usual decision problems are of great interest in complexity theory.
We list a couple of examples.

• #CYCLE is the problem of computing, given a directed graph G, the number of sim-
ple cycles in G. (A simple cycle is one that does not visit any vertex twice.) The
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corresponding decision problem of deciding if the graph has a cycle is trivial and can
be solved in linear time.

• #SAT is the problem of computing, given a Boolean formula φ, the number of satis-
fying assignments for φ. Here of course, the corresponding decision problem is NP-
complete, so presumably the counting problem is even harder.

17.1.1 Counting problems and probability estimation

Counting problems often arise in situations where we have to do estimations of probability.

Example 17.1
In the GraphReliability problem we are given a directed graph on n nodes. Sup-
pose we are told that each node can fail with probability 1/2 and want to compute
the probability that node 1 has a path to n.
A moment’s thought shows that under this simple node failure model, the re-
maining graph is uniformly chosen at random from all induced subgraphs of the
original graph. Thus the correct answer is

1

2n
(number of subgraphs in which node 1 has a path to n.)

Again, it is trivial to determine the existence of a path from 1 to n.

Example 17.2 (Maximum Likelihood Estimation in Bayes Nets)
Suppose some data is generated by a probabilistic process but some of the data
points are missing. This setting is considered in a variety of fields including
machine learning and economics. In maximum likelihood estimation we try to
come up with the most likely value of the missing data points.
A simple model of data generation is Bayes Net, and we restrict attention to
a particularly simple example of a Bayes Net. There are n hidden variables
x1, . . . , xn ∈ {0, 1}, whose values are picked be nature by tossing n fair random
coins independently. These values are hidden from us. The values actually
available to us are m visible random variables y1, y2, . . . , yn, each of which is
an OR of up to 3 hidden variables or their negations. We observe that all of
y1, y2, . . . , yn are 1. We now have to estimate the a posteriori probabilty that
x1 is 1.
Of course, a complexity theorist can immediately realize that an OR of 3 literals
is a 3CNF clause, and thus recast the problem as follows: we are given a 3CNF
Boolean formula with n variables and m clauses. What is the fraction of satis-
fying assignments that have x1 = 1? This problem turns out to be equivalent to
#SAT (see Exercise 17.1 and also the Chapter Notes).

Example 17.3 (Estimation problems in statistical physics)
One of the most intensively studied models in statistical physics is the Ising
model, introduced in the 1920s by Lenz and Ising to study ferromagnetism. An
instance of the model is given by a set of n sites, a set of interaction energies Vij
for each unordered pair of sites i, j, a magnetic field intensity B, and an inverse
temperature β. A configuration of the system defined by these parameters is
one of 2n possible assignments σ of ±1 spins to each site. The energy of a
configuration σ is given by the Hamilton H(σ) defined by:

H(σ) = −
∑

{i,j}
Vijσiσj −B

∑

k

σk. (1)
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The important part of this sum is the first term, consisting of a contribution from
pairs of sites. The importance of this expression comes from the Gibbs distri-
bution, according to which the probability that the system is in configuration σ
is proportional exp(−βH(σ)). This implies that the probability of configuration
σ is 1/Z × exp(−βH(σ)), where the normalizing factor Z, called the partition
function of the system, is

Z =
∑

σ∈{1,1}n
exp(−βH(σ)).

Computing the exact partition function also turns out to be equivalent to #SAT

(see Chapter notes).

17.1.2 Counting can be harder than decision

What is the complexity of #SAT and #CYCLE? Clearly, if #SAT has a polynomial-time
algorithm then SAT ∈ P and so P = NP. How about #CYCLE? The corresponding decision
problem —given a directed graph decide if it has a cycle—can be solved in linear time by
breadth-first-search. The next theorem suggests that the counting problem may be much
harder.

u v

1 2 m

Figure 17.1 Reducing Ham to #CYCLE: by replacing every edge in G with the above
gadget to obtain G′, every simple cycle of length ℓ in G becomes (2m)ℓ simple cycles in G′.

Theorem 17.4 If #CYCLE has a polynomial-time algorithm, then P = NP. ♦

Proof: We show that if #CYCLE can be computed in polynomial time, then Ham ∈ P,
where Ham is the NP-complete problem of deciding whether or not a given digraph has a
Hamiltonian cycle (i.e., a simple cycle that visits all the vertices in the graph). Given a
graph G with n vertices, we construct a graph G′ such that G has a Hamiltonian cycle iff
G′ has at least nn

2

cycles.

To obtain G′, replace each edge (u, v) in G by the gadget shown in Figure 17.1. The
gadget has m = n logn levels. It is an acyclic digraph, so cycles in G′ correspond to cycles
in G. Furthermore, there are 2m directed paths from u to v in the gadget, so a simple cycle
of length ℓ in G yields (2m)ℓ simple cycles in G′.

Notice, if G has a Hamiltonian cycle, then G′ has at least (2m)n > nn
2

cycles. If G has
no Hamiltonian cycle, then the longest cycle in G has length at most n− 1. The number of
cycles is bounded above by nn−1. So G′ can have at most (2m)n−1 × nn−1 < nn

2

cycles. �

17.2 The class #P

We now try to capture the above counting problems using the complexity class #P. Note
that it contains functions whose output is a natural number, and not just 0/1.
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Definition 17.5 (#P)
A function f : {0, 1}∗ → N is in #P if there exists a polynomial p : N → N and a
polynomial-time TM M such that for every x ∈ {0, 1}∗:

f(x) =
∣

∣

∣

{

y ∈ {0, 1}p(|x|) : M(x, y) = 1
}∣

∣

∣ .

Of course, the definition implies that f(x) can be expressed using poly(|x|) bits.
As in case of NP, we can also define #P using non-deterministic TMs. That is, #P

consists of all functions f such that f(x) is equal to the number of paths from the initial
configuration to an accepting configuration (in brief, “accepting paths”) in the configuration
graph GM,x of a polynomial-time NDTM M on input x (see Section 4.1.1). Clearly, all the
counting problems in Section 17.1 fall in this class.

The big open question regarding #P is whether all problems in this class are efficiently
solvable. We define FP to be the set of functions from {0, 1}∗ to {0, 1}∗ equivalently, from
{0, 1}∗ to N) computable by a deterministic polynomial-time Turing machine, is the analog
of efficiently computable functions (i.e., the analog of P for functions with more than one
bit of output). Then the question is whether #P = FP. Since computing the number of
certificates is at least as hard as finding out whether a certificate exists, if #P = FP then
NP = P. We do not know whether the other direction also holds: whether NP = P implies
that #P = FP. We do know that if PSPACE = P then #P = FP, since counting the
number of certificates can be done in polynomial space.

17.2.1 The class PP: decision-problem analog for #P.

Similar to the case of search problems, even when studying counting complexity, we can
often restrict our attention to decision problems. The following is one such problem:

Definition 17.6 (PP) A language L is in PP if there exists a polynomial-time TM M and
a polynomial p : N→ N such that for every x ∈ {0, 1}∗,

x ∈ L⇔
∣

∣

∣

{

u ∈ {0, 1}p(|x|) : M(x, u) = 1
}∣

∣

∣ ≥ 1

2
· 2p(|x|) ♦

That is, for x to be in L it does not need just one certificate (as is the case in NP— see
Definition 2.1) but rather a majority of certificates.

Lemma 17.7 PP = P⇔#P = FP ♦

Proof: The non-trivial direction is that if PP = P then #P = FP. Let f be a function in
#P. Then for every input x, f(x) there is some polynomial-time TM M such that f(x) the
number #M (x) of strings u ∈ {0, 1}m such that M(x, u) = 1, where m is some polynomial
in |x| that is the length of certificates that M takes.

For every two TM’s M0,M1 taking m-bit certificates denote in this proof by “M0 +M1”
the TM M ′ that takes n+1 bit certificate where M ′(x, bu) = Mb(x, u). Then #M0+M1(x) =
#M0(x) + #M1(x). Also, for N ∈ {0..2m}, we denote by MN the TM that on input
x, u outputs 1 iff the string u, when considered as a number, is smaller than N . Clearly
#MN (x) = N . If PP = P then we can determine in polynomial time if

#MN+M (x) = N + #M (x) ≥ 2m . (2)

Thus, to compute #M (x) we can use binary search to find the smallest N that makes satisfy
(2), which will equal 2m −#M (x). �

Intuitively speaking, PP corresponds to computing the most significant bit of functions
in #P: if the range is [0, N − 1] we have to decide whether the function value is ≥ N/2.



17.3 #P completeness. 299

One can also consider decision problems corresponding to the least significant bit; this is
called ⊕P (see Definition 17.15 below).

Another related class is BPP (see Chapter 7), where we are guaranteed that the fraction
of accepting paths of an NDTM is either ≥ 2/3 or ≤ 1/3 and have to determine which is
true. But PP seems very different from BPP because the fraction of accepting paths in
the two cases could be ≥ 1/2 or ≤ 1/2 − exp(−n), and the lack of a “gap” between the
two cases means that random sampling would require exp(n) trials to distuinguish between
them. (By contrast, the sampling problem for BPP is easy, and we even think it can be
replaced by a deterministic algorithm; see Chapter 20.)

17.3 #P completeness.

Now we define #P-completeness. Loosely speaking, a function f is #P-complete if it is
in #P and a polynomial-time algorithm for f implies that #P = FP. To formally define
#P-completeness, we use the notion of oracle TMs, as defined in Section 3.4. Recall that
a TM M has oracle access to a language O ⊆ {0, 1}∗ if it can make queries of the form
“Is q ∈ O?” in one computational step. We generalize this to non-Boolean functions by
saying that M has oracle access to a function f : {0, 1}∗ → {0, 1}∗, if it is given access to
the language O = {〈x, i〉 : f(x)i = 1}. We use the same notation for functions mapping
{0, 1}∗ to N, identifying numbers with their binary representation as strings. For a function
f : {0, 1}∗ → {0, 1}∗, we define FPf to be the set of functions that are computable by
polynomial-time TMs that have oracle access to a function f .

Definition 17.8 A function f is #P-complete if it is in #P and every g ∈#P is in FPf♦
If f ∈ FP then FPf = FP. Thus the following is immediate.

Proposition 17.9 If f is #P-complete and f ∈ FP then FP = #P. ♦
Counting versions of many NP-complete languages such as 3SAT,Ham, and CLIQUE

naturally lead to #P-complete problems. We demonstrate this with #SAT:

Theorem 17.10 #SAT is #P-complete ♦
Proof: Consider the Cook-Levin reduction from any L in NP to SAT we saw in Section 2.3.
This is a polynomial-time computable function f : {0, 1}∗ → {0, 1}∗ such that for every
x ∈ {0, 1}∗, x ∈ L ⇔ f(x) ∈ SAT. However, the proof that the reduction works actually
gave us more information than that. In Section 2.3.6 we saw that it provides a Levin
reduction, by which we mean the proof showed a way to transform a certificate that x is
in L into a certificate (i.e., satisfying assignment) showing that f(x) ∈ SAT, and also vice
versa (transforming a satisfying assignment for f(x) into a witness that x ∈ L).

In fact, for the reduction in question, this mapping from the certificates of x to the
assignments of f(x) is one-to-one and onto (i.e., a bijection). Thus the number of satisfying
assignments for f(x) is equal to the number of certificates for x. Such reductions are called
parsimonious. (More generally, the definition allows the witness mapping to be k-to-1 or
1-to-k, so the number of witnesses for the two problems are still the same up to scaling by
k. �

As shown below, there are #P-complete problems for which the corresponding decision
problems are in fact in P.

17.3.1 Permanent and Valiant’s Theorem

Now we study another problem. The permanent of an n× n matrix A is defined as

perm(A) =
∑

σ∈Sn

n
∏

i=1

Ai,σ(i) (3)
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where Sn denotes the set of all permutations of n elements. Recall that the expression for
the determinant is similar

det(A) =
∑

σ∈Sn
sgn(σ)

n
∏

i=1

Ai,σ(i)

except for an additional “sign” term.1 This similarity does not translate into computational
equivalence: the determinant can be computed in polynomial time, whereas computing the
permanent seems much harder, as we see below. (For another perspective on the hardness
of the permanent see Chapter 16.)

The permanent function can also be interpreted combinatorially. First, suppose the
matrix A has each entry in {0, 1}. Then it may be viewed as the adjacency matrix of a
bipartite graph G(X,Y,E), with X = {x1, . . . , xn}, Y = {y1, . . . , yn} and {xi, yj} ∈ E iff
Ai,j = 1. For each permutation σ the term

∏n
i=1 Ai,σ(i) is 1 iff σ is a perfect matching

(which is a set of n edges such that every node is in exactly one edge). Thus if A is a
0, 1 matrix then perm(A) is simply the number of perfect matchings in the corresponding
graph G. Note that the whether or not a perfect matching exists can be determined in
polynomial time. In particular, computing perm(A) is in #P. If A is a {−1, 0, 1} matrix,
then perm(A) =

∣

∣

{

σ :
∏n
i=1 Ai,σ(i) = 1

}∣

∣ −
∣

∣

{

σ :
∏n
i=1 Ai,σ(i) = −1

}∣

∣. Thus one can make
two calls to a #SAT oracle to compute perm(A). Finally, if A has general integer entries
(possibly negative) the combinatorial view of perm(A) is as follows. Consider matrix A as
the the adjacency matrix of a weighted n-node complete digraph with self loops and 0 edge
weights allowed. Associate with each permutation σ a cycle cover, which is a subgraph on
the same set of vertices but only a subset of the original edges, where each node has in-
degree and out-degree 1. Such a subgraph must decompose into disjoint cycles. The weight
of the cycle cover is the product of the weights of the edges in it. Then perm(A) is equal
to the sum of weights of all possible cycle covers. Using this observation one can show that
computing the permanent is in FP#SAT (see Exercise 17.2).

The next theorem came as a surprise to researchers in the 1970s, since it implies that if
perm ∈ FP then P = NP. Thus, unless P = NP, computing the permanent is much more
difficult then computing the determinant.

Theorem 17.11 (Valiant’s Theorem [Val79b])
perm for 0, 1 matrices is #P-complete.

Theorem 17.11 involves very clever gadget constructions. As warmup, we introduce a
simple idea.

Convention: In drawings of gadgets in the rest of the chapter, the underlying graph is
a complete digraph, but edges that are missing from the figure have weight 0 and hence
can be ignored while considering cycle covers. Unmarked edges have weight +1. We will
also sometimes allow parallel edges (with possibly different weights) from a node to another
node. This is not allowed per se in the definition of permanent, where there is a single edge
of weight Ai,j from i to j. But since we are describing reductions, we have the freedom
to later replace each parallel edge of weight w by a path of length 2 whose two edges of
weight 1 and w. This just requires adding a new node (not connected to anything else) in
the middle of each parallel edge.

1It is known that every permutation σ ∈ Sn can be represented as a composition of transpositions,
where a transposition is a permutation that only switches between two elements in [n] and leaves the other
elements intact (one proof for this statement is the Bubblesort algorithm). If τ1, . . . , τm is a sequence of
transpositions such that their composition equals σ, then the sign of σ is equal to (−1)m. It can be shown
that the sign is well-defined in the sense that it does not depend on the representation of σ as a composition
of transpositions. need to move this where first used.
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+1

+1

+1
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-1

-1

+1

+1
-1

+1

-1

-1

weight= -1

weight= +1

Figure 17.2 The above graph G consists of two vertex-disjoint subgraphs, one called G′ and
the other is the “gadget” shown. The gadget has only two cycle covers of nonzero weight,
namely, weight −1 and 1. Hence the total weight of cycle covers of G is zero regardless
of the choice of G′, since for every cycle cover of weight w in G′, there exist two covers of
weight +w and −w in the graph G.

Example 17.12
Consider the graph in Figure 17.2. Even without knowing what the subgraph
G′ is, we show that the permanent of the whole graph is 0. For each cycle cover
in G′ of weight w there are exactly two cycle covers for the three nodes, one
with weight +w and one with weight −w. Any non-zero weight cycle cover of
the whole graph is composed of a cycle cover for G′ and one of these two cycle
covers. Thus the sum of the weights of all cycle covers of G is 0.

Proof of Valiant’s Theorem (Theorem 17.11): We reduce the #P-complete problem
#3SAT to perm. Given a Boolean 3CNF formula φ with n variables and m clauses, first we
shall show how to construct an integer matrix, or equivalently, a weighted digraph G′, with
some negative entries such that perm(G′) = 43m · (#φ), where #φ stands for the number
of satisfying assignments of φ. Later we shall show how to to get a digraph G with weights
0, 1 from G′ such that knowing perm(G) allows us to compute perm(G′).

The main idea is that our construction will result in two kinds of cycle covers in the
digraph G′: those that correspond to satisfying assignments of φ (we will make this precise)
and those that don’t. Using reasoning similar to that used in Example 17.12, we will use
negative weights to ensure that the contribution of the cycle covers that do not correspond
to satisfying assignments cancels out. On the other hand, we will show that each satisfying
assignment contributes 43m to perm(G′), and so perm(G′) = 43m · (#φ).

To construct G′ from φ, we combine three kinds of gadgets shown in Figure 17.3. There
is a variable gadget for each variable, a clause gadget for each clause, and a way to connect
them using gadgets called XOR gadgets. All are shown in Figure 17.3.

XOR gadget. Suppose we have a weighted digraph H and wish to ensure for some pair of

edges
−−→
u u′ and

−→
v v′, exactly one of these edges is present in any cycle cover that counts

towards the final sum. To do so, we can construct a new digraph H ′ in which this
pair of edges is replaced by the XOR gadget of Figure 17.3.

Every cycle cover of H of weight w that uses exactly one of the edges
−−→
u u′ and

−→
v v′ is

mapped to a set of cycle covers in H ′ whose total weight is 4w (i.e., the set of covers
that enter the gadget at u and exit at u′ or enter it at v and exit it at v′), while
all the other cycle covers of H ′ have total weight 0 ( this uses reasoning similar to
Example 17.12, see Exercise 17.3).

Variable gadget. The variable gadget has both internal edges (that are not involved with
any other part of the graph) and external edges (that will be connected via XOR
gadgets to other edges of the graph). We partition the external edges to “true”
edges and “false” edges. The variable gadget has only two possible cycle covers,
corresponding to an assignment of 0 or 1 to that variable. Assigning 1 corresponds
to using cycle taking all the “true” external edges, and covering all other vertices
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variable gadget:

....

external false edges

Symbolic description:

...

Gadget:

clause gadget:

external edges - one per variable

external false edges

variable gadget

clause gadget

XOR gadget:

u

v

-1

-1

-1
2

3

u

v ‘    

The overall construction:

external edges

...
variable gadget for xi

clause gadget for�
C containing xi

variable gadget�
for every variable

clause gadget�
for every clause

....

external true edges 

...

external true edges

...

false external edge

 external edge

Figure 17.3 The gadgets used in the proof of Valiant’s Theorem (Theorem 17.11).



17.3 #P completeness. 303

with self loops. Similarly, assigning 0 correspond to taking all the “false” external
edges. Each external edge of a variable gadget is associated with a clause in which the
variable appears— a true edge is associated with a clause where the variables appears
in a positive (non-negated) form, while a false edge is associated with a clause where
the variable appears in negated form.

Clause gadget. The clause gadget consists of four vertices. The edges labeled with “ex-
ternal edge” are the only ones that will connect to the rest of the graph. Specifically,
the external edge will connect via a XOR gadget with an external edge of a variable
gadget corresponding to one of the three variables in the clause. The only possible
cycle covers of the Clause gadget are those that omit at least one external edge. Also
for a given proper subset of the three external edges there is a unique cycle cover of
weight 1 that contains them.

The overall construction is shown at the bottom of Figure 17.3. If a clause C contains
the variable x then we connect the corresponding external edge of C’s gadget with the
corresponding (true) external edge of x’s gadget using the XOR gadget (if C contains the
negation of x then the edge corresponding to X in x’s gadget will be a false external edge).

To analyze this construction, note that because each variable gadget has exactly two
cycle covers corresponding to the 0 and 1 assignments, there is a one-to-one correspondence
between assignments to the variables x1, . . . , xn and the cycle covers of the variable gadgets
of G′. Now for every such assignment x, let Cx denote the set of cycle covers in G′ that
cover the variable gadgets according to the assignment x. That is, we cover variable xi’s
gadget using the true external edges if xi = 1 and cover it using the false external edges if
xi = 0. Let w(x) denote the total weight of assignments in Cx. It suffices to show that if x
is a satisfying assignment then w(x) = 43m, and if x is not satisfying then w(x) = 0.

Indeed, by the properties of the XOR gadget and the way we connected clauses and
variables, if xi = 1 then in cycle covers in Cx the corresponding external edge has to be
omitted in the gadget of every clause in which xi appears positively, and has to be included
for clauses containing xi negatively, and similarly if xi = 0 then the corresponding edges
have to be included or omitted accordingly. (More accurately, covers without this property
do not contribute toward the final sum.) But because every cover for the clause gadget has
to omit at least one external edge, we see that unless every clause has a literal that evaluates
to “true” in the assignment x (i.e., unless x satisfies φ) then the total weight of covers in Cx
is zero. If x does satisfy ϕ then this total weight will be 43m (since x determines a unique
cycle cover for all clause gadgets that passes through the XOR gadget exactly 3m times).
Thus perm(G′) = 43m(#φ).

Reducing to the case of 0, 1 matrices. This transformation goes in two steps. First we
create a graph G′′ with edge weights in {−1, 0, 1} and the same permanent as G′. Then we
remove negative weights to create a graph G whose permanent contains enough information
to compute perm(G′) = perm(G′′). The transformations may blow up the number of vertices
by a factor O(nL2 logn), where L is the number of bits required to describe all the weights
in G′.

Notice, an edge whose weight is a power of 2, say 2k, can be replaced by a path (consisting
of new nodes not connected to anything else) of k edges, each of weight 2. Similarly, an
edge whose weight is 2k + 2k

′

can be replaced by two parallel paths of weight 2k and 2k
′

respectively. Combining these observations, we can replace an edge whose weight is not a
power of 2 by a set of parallel paths determined by its binary expansion; the total number
of nodes in these paths is quadratic in the number of bits required to represent the original
weight. This gives a graph G′′ with weights in {−1, 0, 1} and at most O(L2) new vertices.

To get rid of the negative weights, we use modular arithmetic. The permanent of an
n-vertex graph with edge weights in {±1} is a number x in [−n!,+n!] and hence it suffices to
compute this permanent modulo 2m + 1 where m = n2. But −1 ≡ 2m (mod 2m+1), so the
permanent modulo 2m+1 is unchanged if we replace all weight−1 edges with edges of weight
2m. Such edges can be replaced by an unweighted subgraph of size O(m) = O(n log n) as
before. Thus we obtain a graph G with all weights 0, 1 and whose permanent can be used



304 17 Complexity of counting

to compute the original permanent (specifically, by taking the remainder modulo 2m + 1).
The number of new vertices is at most O(nL2 logn). �

17.3.2 Approximate solutions to #P problems

Since computing exact solutions to #P-complete problems is presumably difficult, a nat-
ural question is whether we can approximate the number of certificates in the sense of the
following definition.

Definition 17.13 Let f :{0, 1}∗ → N and α < 1. An algorithm A is an α-approximation for
f if for every x, αf(x) ≤ A(x) ≤ f(x)/α. ♦

Not all #P problems behave identically with respect to this notion. Approximating
certain problems within any constant factor α > 0 is NP-hard (see Exercise 17.4). For
other problems such as 0/1 permanent, there is a Fully polynomial randomized approximation
scheme (FPRAS), which is an algorithm which, for any ǫ, δ, computes a (1−ǫ)-approximation
to the function with probability 1− δ (in other words, the algorithm is allowed to give an
incorrect answer with probability δ) in time poly(n, log 1/δ, log 1/ǫ). Such approximation
of counting problems is sufficient for many applications, in particular those where counting
is needed to obtain estimates for the probabilities of certain events (e.g., see our discussion
of the graph reliability problem in Example 17.1). Interestingly, if P = NP then every
#P problem has an FPRAS (and in fact an FPTAS: i.e., a deterministic polynomial-time
approximation scheme), see Exercise 17.5.

Now we explain the basic idea behind the approximation algorithm for the permanent
—as well as other similar algorithms for a host of #P-complete problems. This is only a
sketch; the Chapter notes contain additional references.

One result that underlies these algorithms is due to Jerrum, Valiant and Vazirani [JVV86].
It shows that under fairly general conditions there is a close connection (in the sense the
two are interreducible in polynomial time) between

1. having an approximate formula for the size of a set S and

2. having an efficient algorithm for generating a uniform random (or approximately uni-
form) element of S.

The basic idea is a counting version of the downward self-reducibility idea we saw in Chap-
ter 2.

Suppose we are trying to use sampling to do approximate counting and S is a subset
of {0, 1}n. Let S = S0 ∪ S1 where Sb is the subset of strings in S whose first bit is 1. By
sampling a few random elements of S we can estimate p1 = |S1| / |S| up to some reasonabable
accuracy. Then we fix the first bit of the string, and use our algorithm recursively to estimate
|S1| and multiply it by our estimate of 1/p1 to obtain an estimate |S|.

To produce a random sample from S using approximate counting, one again proceeds in
a bit by bit fashion, and reverses the above argument. First we estimate |S1| , |S| and use
their ratio to estimate p1. Produce a bit b by tossing a random coin with bias p1; i.e., if the
coin comes up heads make the bit 1 else make it 0. Then make b the first bit of the sample
and recursively use the same algorithm to produce a sample from Sb.

The main point is that in order to do approximate counting it suffices to draw a random
sample from S. All the algorithms try to sample from S using the Markov Chain Monte
Carlo method. One defines a connected d-uniform digraph on S, and does a random walk on
this graph. Since the graph is d-regular for some d, the stationary distribution of the walk
is uniform on S. Under appropriate conditions on the expansion of the graph (establishing
which is usually the meat of the argument) the walk “mixes” and the sample becomes close
to uniform.
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17.4 Toda’s Theorem: PH ⊆ P#SAT

An important open question in the 1980s concerned the relative power of the polynomial-
hierarchy PH and the class of counting problems #P. Both are natural generalizations of
NP, but it seemed that their features— alternation and the ability to count certificates,
respectively — are not directly comparable to each other. Thus it came as big surprise when
in 1989 Toda showed:

Theorem 17.14 (Toda’s Theorem [Tod91])
PH ⊆ P#SAT.

That is, we can solve any problem in the polynomial hierarchy given an oracle to a
#P-complete problem.

Note that we already know, even without Toda’s theorem, that if #P = FP then
NP = P and so PH = P. However, this does not imply that any problem in PH can be
computed in polynomial-time using an oracle to #SAT. For example, one implication of

Toda’s theorem is that a subexponential (i.e., 2n
o(1)

-time) algorithm for #SAT will imply
such an algorithm for any problem in PH. Such an implication is not known to hold from

a 2n
o(1)

-time algorithm for SAT.
To prove Toda’s theorem, we first consider formulae with odd number of satisfying

assignments. The following is the underlying complexity class.

Definition 17.15 A language L is in the class ⊕P (pronounced “parity P”) iff there is a
polynomial time NTM M such that x ∈ L iff the number of accepting paths of M on input
x is odd. ♦

As in the proof of Theorem 17.10, the fact that the standard NP-completeness reduction
is parsimonious implies the following problem ⊕ SAT is ⊕P-complete (under many-to-one
Karp reductions):

Definition 17.16 (
⊕

quantifier and ⊕ SAT)
Define the quantifier

⊕

as follows: for every Boolean formula ϕ on n variables.
⊕

x∈{0,1}n ϕ(x) is true if the number of x’s such that ϕ(x) is true is odd.a The language

⊕ SAT consists of all the true quantified Boolean formula of the form
⊕

x∈{0,1}n ϕ(x) where

ϕ is an unquantified Boolean formula (not necessarily in CNF form).

aNote that if we identify true with 1 and 0 with false then
⊕

x∈{0,1}n ϕ(x) =
∑

x∈{0,1}n ϕ(x) (mod 2).

Also note that
⊕

x∈{0,1}n ϕ(x) =
⊕

x1∈{0,1} · · ·⊕xn∈{0,1} ϕ(x1, . . . , xn).

⊕P can be considered as the class of decision problems corresponding to the least signifi-
cant bit of a #P-problem. One imagines that therefore it is not too powerful. For instance,
it is even unclear whether we can reduce NP to this class. The first half of Toda’s proof
shows, surprisingly, a randomized reduction from PH to ⊕ SAT. The second half is going
to be a clever “derandomization” of this reduction, and is given in Section 17.4.4.

Lemma 17.17 (Randomized reduction from PH to ⊕ SAT)
Let c ∈ N be some constant. There exists a probabilistic polynomial-time algorithm A that
given a parameter m and any quantified Boolean formula ψ of size n with with c levels of
alternations, runs in poly(n,m) times and atisfies

ψ is true⇒Pr[A(ψ) ∈ ⊕ SAT] ≥ 1− 2−m

ψ is false⇒Pr[A(ψ) ∈ ⊕ SAT] ≤ 2−m.
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Of course, to reduce PH to ⊕ SAT we better first figure out how to reduce NP to
⊕ SAT, which is already unclear. This will involve a detour into Boolean formulae with
unique satisfying assignments.

17.4.1 A detour: Boolean satisfiability with unique solutions

Suppose somebody gives us a Boolean formula and promises us that it has either no satisfying
assignment, or a unique satisfying assignment. Such formulae arise if we encode some classic
math problems using satisfiability (see e.g. the number-theoretic discrete log problem
in Chapter 9 that is the basis of some encryption schemes). Let USAT be the language
of Boolean formulae that have a unique satisfying assignment. Is it still difficult to decide
satisfiability of such special instances (in other words, to answer “yes” if the formula is in
USAT and “no” if the formula is in SAT, and an arbitrary answer in every other case)? The
next result of Valiant and Vazirani shows that if we had a polynomial-time algorithm for
this problem then NP = RP. This was a surprise to most researchers in the 1980s.

Theorem 17.18 (Valiant-Vazirani Theorem [VV86])
There exists a probabilistic polynomial-time algorithm f such that for every n-variable
Boolean formula ϕ

ϕ ∈ SAT⇒ Pr[f(ϕ) ∈ USAT] ≥ 1
8n

ϕ 6∈ SAT⇒ Pr[f(ϕ) ∈ SAT] = 0

We emphasize that the conclusion in the second part is not just that f(ϕ) 6∈ USAT but in
fact f(ϕ) 6∈ SAT.

The proof of Theorem 17.18 uses the following lemma on pairwise independent hash
functions, which were introduced in Section 8.2.2:

Lemma 17.19 (Valiant-Vazirani Lemma) LetHn,k be a pairwise independent hash function

collection from {0, 1}n to {0, 1}k and S ⊆ {0, 1}n such that 2k−2 ≤ |S| ≤ 2k−1. Then,

Pr
h∈

R
Hn,k

[there is a unique x ∈ S satisfying h(x) = 0k] ≥ 1
8 ♦

Proof: For every x ∈ S, let p = 2−k be the probability that h(x) = 0k when h ∈
R
Hn,k.

Note that for every x 6= x′, Pr[h(x)=0k ∧ h(x′)=0k] = p2. Let N be the random variable
denoting the number of x ∈ S satisfying h(x) = 0k. Note that E[N ] = |S|p ∈ [14 ,

1
2 ]. By the

inclusion-exclusion principle

Pr[N ≥ 1] ≥
∑

x∈S
Pr[h(x)=0k]−

∑

x<x′∈S
Pr[h(x)=0k ∧ h(x′)=0k] = |S|p−

(|S|
2

)

p2

and by the union bound we get that Pr[N ≥ 2] ≤
(|S|

2

)

p2. Thus

Pr[N = 1] = Pr[N ≥ 1]− Pr[N ≥ 2] ≥ |S|p− 2

(|S|
2

)

p2 ≥ |S|p− |S|2p2 ≥ 1

8

where the last inequality is obtained using the fact that 1
4 ≤ |S|p ≤ 1

2 . �

Now we prove Theorem 17.18.
Proof of Theorem 17.18: Given a formula ϕ on n variables, choose k at random from
{2, . . . , n+ 1} and a random hash function h ∈

R
Hn,k. Consider the statement

∃x∈{0,1}nϕ(x) ∧ (h(x) = 0k) . (4)

If ϕ is unsatisfiable then (4) is false since no x satisfies ϕ(x). If ϕ is satisfiable, then with
probability at least 1/8n there exists a unique assignment x satisfying (4). After all if S is the
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set of satisfying assignments of ϕ, then with probability 1/n, k satisfies 2k−2 ≤ |S| ≤ 2k−1,
conditioned on which, with probability 1/8, there is a unique x such that ϕ(x)∧ h(x) = 0n.

The idea of the preceding paragraph is implemented as follows. The reduction consists of
using the Cook-Levin transformation to express the (deterministic) computation inside the
∃u sign in (4). Write a formula τ on variables x ∈ {0, 1}n , y ∈ {0, 1}m (for m = poly(n))
such that h(x) = 0 if and only if there exists a unique y such that τ(x, y) = 1. Here
the y variables come from the need to represent a TM’s computation in the Cook-Levin
reduction2. The output Boolean formula is

ψ = ϕ(x) ∧ τ(x, y) .

where x, y are the variables. �

17.4.2 Properties of
⊕

and proof of Lemma 17.17 for NP, coNP

In Lemma 17.17 the reduction is allowed to fail only with extremely low probability 2−m,
where m is arbitrary. If we are willing to settle for a much higher failure probability, then
the Valiant-Vazirani trivially implies a reduction from NP to ⊕ SAT. Specifically, in the
conclusion of Theorem 17.18 the formula has a unique satisfying assignment in the first
case, and 1 is an odd number. In the second case of the conclusion the formula has no
satisfying assignment, and 0 is an even number. Thus the following is a trivial corollary of
Theorem 17.18

Corollary 17.20 (Consequence of Valiant-Vazirani) There exists a probabilistic polynomial-
time algorithm A such that for every n-variable Boolean formula ϕ

ϕ ∈ SAT⇒ Pr[A(ϕ) ∈ ⊕ SAT] ≥ 1
8n

ϕ 6∈ SAT⇒ Pr[A(ϕ) ∈ ⊕ SAT] = 0 ♦

It is an open problem to boost the probability of 1/8n in the Valiant-Vazirani reduction
to USAT (Theorem 17.18) to even a constant, say 1/2. However, such a boosting is indeed
possible for ⊕ SAT, since it turns out to be much more expressive than USAT. Let us
examine some facts about the

⊕

quantifier.
For a Boolean formula ϕ on n variables, let #(ϕ) denote the number of satisfying assign-

ments of ϕ. Given two formulae ϕ, ψ on variables x ∈ {0, 1}n , y ∈ {0, 1}m we can construct
in polynomial-time an n + m variable formula ϕ · ψ and a (max{n,m} + 1)-variable for-
mula ϕ + ψ such that #(ϕ · ψ) = #(ϕ)#(ψ) and #(ϕ + ψ) = #(ϕ) + #(ψ). Indeed, take
(ϕ · ψ)(x, y) = ϕ(x) ∧ ϕ(y) and

(ϕ+ψ)(z) =
(

(z0 = 0)∧ϕ(z1, . . . , zn)
)

∨
(

(z0 = 1)∧(zm+1 = 0)∧· · ·∧(zn = 0)∧ψ(z1, . . . , zm)
)

,

where we are assuming m < n. For a formula ϕ, we use the notation ϕ + 1 to denote the
formula ϕ+ ψ where ψ is some canonical formula with a single satisfying assignment.

Since the product of numbers is even iff one of the numbers is even, and since adding
one to a number flips the parity, for every two formulae ϕ, ψ as above

(

⊕

x

ϕ(x)
)

∧
(

⊕

y

ψ(y)
)

⇔
⊕

x,y

(ϕ · ψ)(x, y) (5)

¬
⊕

x

ϕ(x)⇔
⊕

x,z

(ϕ+ 1)(x, z) (6)

(

⊕

x

ϕ(x)
)

∨
(

⊕

y

ψ(y)
)

⇔
⊕

x,y,z

((ϕ+ 1) · (ψ + 1) + 1)(x, y, z) (7)

2For some implementations of hash functions, such as the one described in Exercise 8.4, one can construct
such a formula directly without using the y variables or going through the Cook-Levin reduction.
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The meaning of the observation in (6) is that ⊕P is closed under complementation,
namely, for any ϕ we can write another formula ψ in polynomial time such that ¬⊕x ϕ(x)
is equivalent to

⊕

y ψ(y). The meaning of observations in (5) and (7) is that a polynomial
number of ANDs and ORs of ⊕ SAT instances can also be converted in polynomial time to
a single ⊕ SAT instance that is equivalent.

Now we prove Lemma 17.17 for NP and coNP (i.e., when the formula ϕ has a single
∀ or ∃ quantifier). In fact it suffices to give a reduction from just NP. Since ⊕P is closed
under complementation, that same reduction will be a probabilistic reduction of coNP to
⊕P, and hence to ⊕P.

Proof: (Lemma 17.17; when ϕ has only ∃ quantifier) Suppose ϕ is a Boolean formula,
i.e., a quantified formula with one ∃ quantifier. The idea for reducing it to ⊕ SAT is the
obvious one: run the reduction of Corollary 17.20 R = O(mn) times, each time producing
a
⊕

formula. The final formula is the OR of these formulae. If the original formula was
satisfiable then this new formula is true with probability at least 1− (1−1/8n)R = 1−2−m,
and if the original formula was not satisfiable, this new formula is never true. Finally, apply
the observation in (7) R times to turn this new formula into a single

⊕

formula, while
possibly blowing up the formula’s size by a polynomial factor. �

17.4.3 Proof of Lemma 17.17; general case

The proof of the general case involves an induction on c, the number of quantifier alternations
in ϕ. The base case c = 1 (i.e., NP or coNP) was already proved. To prove the general
case, we need a more abstract version of the Valiant-Vazirani lemma, where we observe
that the reduction never looks at what formula it is working with, so this formula could
be an arbitrary Boolean function. (Using terminology from Chapter 3, the Valiant-Vazirani
lemma relativizes.)

Lemma 17.21 (Valiant-Vazirani, oblivious version) There is a probabilistic polynomial-time
procedure that, given input 1n, produces a Boolean formula τ(x, y) where x is a vector of
n Boolean variables and y is also a vector of Boolean variables, such that for any Boolean
function β :{0, 1}n → {0, 1},

∃x1β(x1)⇒ Pr[
⊕

x1,y

τ(x1, y) ∧ (β(x1) = 1)] ≥ 1

8n
(8)

¬∃x1β(x1)⇒ Pr[
⊕

x1,y

τ(x1, y) ∧ (β(x1) = 1)] = 0 . (9)

♦
Now we can prove Lemma 17.17.

Proof: (Lemma 17.17) Let ϕ have c quantifier alternations. As observed in Section 17.4.2,
⊕ SAT is closed under complementation, so we may assume wlog that the first quantifier is
an ∃. Thus

ϕ = ∃x1ψ(x1)

where ψ(x1) is a quantified Boolean formula with at most c − 1 quantifier alternations,
in which the variables in x1 are free. Suppose x1 consists of n Boolean variables. By
the inductive hypothesis, there is a randomized reduction such that for each value of x1

it produces a ⊕ SAT formula β(x1) = ⊕zψ(z, x1) that is equivalent to the formula ψ(x1)
with probability at least 1− 2−(m+2). Now imagine running the reduction of Lemma 17.21
K = O(mn) times with independent random bits, and let τ1(x1, y), τ2(x1, y), . . . , τK(x1, y)
be the Boolean formulae produced. Consider the formula

α =

K
∨

j=1

(τj(x1, y) ∧ β(x1)).

If ∃x1β(x1) is true then according to Lemma 17.21, Pr[α is true] ≥ 1 − (1 − 1/8n)K =
1− 2−O(m). Conversely if ∃x1β(x1) is false then Pr[α is true] = 0.
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To finish, note that since the inductive hypothesis implies β(x1) is a ⊕ SAT instance,
we can convert α also into a ⊕ SAT instance (with polynomial blowup in size) by using the
transformations of Section 17.4.2. The two sources of error are: (a) the conversion of ψ(x1)
into an equivalent ⊕ SAT instance, which by the inductive hypothesis fails with probability
2−(m+2) and (b) the Valiant-Vazirani error when we replace ∃x1 to construct α as above,
which also has failure probability 2−(m+2). Thus the overall error probability is 2×2−(m+2),
which is less than 2−m. �

17.4.4 Step 2: Making the reduction deterministic

Now we derandomize the randomized reduction of Lemma 17.17 to complete the proof of
Toda’s Theorem (Theorem 17.14). The following deterministic reduction will be the key
tool.

Lemma 17.22 There is a (deterministic) polynomial-time transformation T that, for every
formula Boolean α formula β = T (α, 1ℓ) is such that

α ∈ ⊕ SAT⇒#(β) = −1 (mod 2ℓ+1)

α 6∈ ⊕ SAT⇒#(β) = 0 (mod 2ℓ+1) ♦

Proof: Recall that for every pair of formulae ϕ,τ we defined formulas ϕ + τ and ϕ · τ
satisfying #(ϕ+ τ) = #(ϕ)+ #(τ) and #(ϕ · τ) = #(ϕ)#(τ), and note that these formulae
are of size at most a constant factor larger than ϕ, τ . Consider the formula 4τ3 +3τ4 (where
τ3 for example is shorthand for τ · (τ · τ)). One can easily check that

#(τ) = −1 (mod 22i)⇒#(4τ3 + 3τ4) = −1 (mod 22i+1

) (10)

#(τ) = 0 (mod 22i)⇒#(4τ3 + 3τ4) = 0 (mod 2)2
i+1

(11)

Let ψ0 = α and ψi+1 = 4ψ3
i +3ψ4

i . Let β = ψ⌈log(ℓ+1)⌉. Repeated use of equations (10), (11)

shows that if #(ψ) is odd, then #(β) = −1 (mod 2ℓ+1) and if #(ψ) is even, then #(β) = 0
(mod 2ℓ+1). Also, the size of β is only exp(O(log ℓ)) times larger than size of α, so the
reduction runs in time polynomial in the input length. �

Proof of Theorem 17.14 using Lemmas 17.17 and 17.22.: Let f be the reduction in
Lemma 17.17 obtained by setting the parameter m = 2. Since it is a randomized reduction,
we may think of it as a deterministic function taking two inputs, the quantified formula ψ
and the random string r. Let R be the number of bits in the random string. Then let T be
the reduction in Lemma 17.22 obtained by setting ℓ = R + 2, and which therefore runs in
poly(R, |f(ψ)|) time.

Consider the combined reduction T ◦ f (i.e., apply f followed by T ) as a deterministic
function applied to the input ϕ, r, and focus on the value of the following sum modulo 2ℓ+1:

∑

r∈{0,1}R
#(T ◦ f(ψ, r)) . (12)

If ψ is true then at least 3/4 of the terms are −1 modulo 2ℓ+1 and the remaining terms
are 0 modulo 2ℓ+1. Thus the sum modulo 2ℓ+1 lies between −2R and −⌈3/4× 2R⌉ in this
case.

If ψ is false on the other hand then at least 3/4 of the terms are 0 modulo 2ℓ+1 and the
remaining terms are −1 modulo 2ℓ+1. Thus the sum modulo 2ℓ+1 is between −⌈ 14 × 2R⌉
and 0 in this case.

Since 2ℓ+1 > 2R+2, these two ranges are disjoint. So if we can somehow evaluate the
expression in (12) using a query to a #SAT oracle, we can tell which of the two ranges its
value lies in, and hence determine if ψ is true.

But it is straightforward to come up with such a query for the #SAT oracle using the
Cook-Levin construction to express the deterministic computation represented by T ◦ f .
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Specifically, denote the vector of variables of the Boolean formula T ◦f(ϕ, r) by y. We write
a Boolean formula Γ(r, y, z) that is 1 for an assignment (r, y, z) iff y is a satisfying assignment
T ◦F (ϕ, r). Such a formula can be written by applying the Cook-Levin construction on the
circuit that first computes T ◦ f(ϕ, r) (where ϕ is “hardwired” into the circuit), and then
substitutes the assignment y into this formula. The variables z correspond to values of inner
wires of this circuit, and since the circuit is deterministic, its value is uniquely determined
given y, r.

Hence #(Γ(r, y, z)) mod 2ℓ+1 is exactly (12), and so the query for the #SAT oracle is to
ask for #(Γ). �

What have we learned?

• The class #P consists of functions that count the number of certificates for a given
instance. If P 6= NP then it is not solvable in polynomial time.

• Counting analogs of many natural NP-complete problems are #P-complete, but there
are also #P-complete counting problems for which the corresponding decision problem
is in P. For example the problem perm of finding the permanent of a matrix —
equivalent to counting the number of perfect matchings in a graph —is #P-complete,
whereas deciding whether a graph has a perfect matching is in P.

• Surprisingly, counting is more powerful than alternating quantifiers: we can solve every
problem in the polynomial hierarchy using an oracle to a #P-complete problem.

• The classes PP and ⊕P contain the decision problems that correspond to the most
significant and least significant bits (respectively) of a #P function. The class PP is
as powerful as #P itself, in the sense that if PP = P then #P = FP. We do not
know if this holds for ⊕P but do know that every language in PH randomly reduces
to ⊕P.

17.5 Open Problems

• What is the exact power of ⊕SAT and #SAT ?

• What is the average case complexity of n×n permanent modulo small prime, say 3 or
5 ? Note that for a prime p > n, random self reducibility of permanent implies that
if permanent is hard to compute on the worst case for randomized algorithms, then it
is hard to compute on 1−O(n/p) fraction of inputs, i.e. hard to compute on average
(see Theorem 8.33).

Chapter notes and history

The definition of #P as well as several interesting examples of #P problems appeared in Valiant’s
seminal paper [Val79c]. The #P-completeness of the permanent is from his other paper [Val79b].
The #P-completeness of computing the partition function of the Ising model (Example 17.3) is
due to Jerrum and Sinclair [JS93], where an FPRAS for the problem is also given. The #P-
completeness of bayes net max likelihood estimation (Example 17.2) first appears in Roth [Rot93].
Dagum and Luby [DL93] had showed that even approximating the probabilities is NP-hard. Welsh’s
book [Wel93] shows the rich mathematical structure of the class #P and the mathematical problems
(involving knot theory, graph colorings, tilings etc.) it captures.

For an introduction to FPRAS’s for computing approximations to many counting problems,
see the relevant chapter in Vazirani [Vaz01] (an excellent resource on approximation algorithms in
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general) and the survey article by Jerrum and Sinclair [Hoc97]. The FPRAS for the permanent
problem is due to Jerrum, Sinclair, and Vigoda [JSV01].

Toda’s Theorem is proved in [Tod91]. This result had a very beneficial effect on complexity
theory, because it showed the power of using arithmetic arguments in reasoning about complexity
classes (a theme developed further in Chapters 8 and 11).

In addition to classes covered in this chapter such as #P, ⊕P, etc., many other complexity
classes also involve some notion of counting. See the survey by Fortnow [For97b].

Exercises

17.1 Show that the problem of Example 17.2 is indeed equivalent to #SAT and hence #P-complete.

17.2 Show that computing the permanent for matrices with integer entries is in FP#SAT.

17.3 Complete the analysis of the XOR gadget in the proof of Theorem 17.11. Let G be any weighted

graph containing a pair of edges
−−→
uu′ and

−→
v v′, and let G′ be the graph obtained by replacing these

edges with the XOR gadget. Prove that every cycle cover of G of weight w that uses exactly one of

the edges
−−→
uu′ is mapped to a set of cycle covers in G′ whose total weight is 4w, and all the other

cycle covers of G′ have total weight 0.

17.4 Show that if there is a polynomial-time algorithm that approximates #CYCLE within a factor 1/2,
then P = NP.

17.5 Show that if NP = P then for every f ∈ #P there is a randomized polynomial-time algorithm that
approximates f within a factor of 1/2. Can you show the same for a factor of 1 − ǫ for arbitrarily
small constant ǫ > 0? Can you make these algorithms deterministic?

Note that we do not know whether P = NP implies that exact computation of functions in #P
can be done in polynomial time. H463

17.6 Show that every for every language in AC0 there is a depth 3 circuit of npoly(log n) size that decides
it on 1 − 1/poly(n) fraction of inputs and looks as follows: it has a single ⊕ gate at the top and
the other gates are ∨,∧ of fan-in at most poly(log n). H463

17.7 Improve Theorem 10.23 to show that BQP ⊆ P#P. H463
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Chapter 18

Average Case Complexity: Levin’s
Theory

So far we only studied the complexity of algorithms that solve computational task on every
possible input; that is, worst-case complexity. With few exceptions (such as Chapter 9)
most complexity classes we defined also concerned worst-case complexity; NP-completeness
being a canonical example.

One frequent objection to this whole framework is that practitioners are only interested in
instances of the problem that arise “in practice,” and the worst-case behavior of algorithms
may never be encountered. Of course, it is not always easy to quantify what these real-life
instances are. Algorithm designers have tried to formalize this in various ways and to design
efficient algorithm that work for “many” or “most” of these instances —this body of work
is known variously as average-case analysis or analysis of algorithms. It has been discovered
that several NP-hard problems are actually quite easy on the “average” graph, depending
upon how one formulates “average.” One way to formalize an ”average” graph is that it is
generated randomly. The simplest model of generating an n-vertex random graph is to toss
an unbiased coin for each of the

(

n
2

)

potential edges to decide whether or not to include it in

the graph. This method ends up generating each n-vertex graph with probability 2−(n2). (If
each edge is picked with probability p instead of 1/2, then the resulting distribution is called
G(n, p), also well-studied.) On such random graphs, many NP-complete problems are easy.
3-COLOR can be solved in linear time with high probability. CLIQUE and INDSET can be
solved in n2 logn time which is only a little more than polynomial and much less than 2ǫn,
the running time of the best algorithms on worst-case instances. At the same time, our
study of one-way functions in Chapter 9 also suggests that not all NP problems are easy
on random instances.

The question arises whether we can come up with a theory analogous to NP-completeness
for average-case complexity, and to identify problems that are ‘hardest” or “complete” with
respect to some appropriate notion of reducibility. This chapter surveys such a theory due to
L. Levin (the same person involved in the Cook-Levin Theorem). For simplicity we restrict
our study to decision problems.

The first goal in this theory is to make precise what we mean by “average” instances of a
problem. This is done by assuming that inputs are drawn from a specific distribution. But
then the question arises: what is the class of distributions that arise “in practice”? Levin
makes a daring suggestion: we allow any distribution from which we can draw samples
in polynomial time (P-samplable distribution) . Levin’s reasoning was that the “real-life”
instances must be produced by the actions of the world around us. If we believe in the
strong form of the Church-Turing thesis (Section 1.6.1) then the world can be simulated
on a Turing machine, and it is fair to assume that the “computation” that produced our
instance was not very complicated, i.e., efficient. Hence we can assume the time to produce
the instance was polynomial in the instance size. See Section 18.2 for details.

Thus an “average case problem” consists of a decision problem together with a distribu-
tion on inputs that is poly-time samplable. Then the question arises how one should define
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an “efficient algorithm” for such an average-case problem —in other words, the analog of
the class P. This turns out to be slightly subtle, and we give the precise definition of the
class distP in Section 18.1. In Section 18.3 we try to define an analog of NP-completeness
for average-case complexity. This has some subtleties, especially the notion of “reduction”
needed. We define the class distNP— the average-case analog of NP— a corresponding
notion of distNP-completeness and show that there exist a few problems that are distNP
complete. However, unlike the case of NP completeness, we do not have a rich variety of
natural problems that have been proven distNP complete.

Finding out the true average case complexity of NP problems is one of complexity
theory’s most important goals. In Section 18.4 we examine our current knowledge in this
area, and how it connects to the broader study of complexity.

18.1 Distributional Problems and distP

The average case complexity of a problem is only well-defined with respect to a particular
distribution on inputs. We now make this more precise:

Definition 18.1 (Distributional problem)
A distributional problem is a pair 〈L,D〉 where L ⊆ {0, 1}∗ is a language, and D = {Dn} is
a sequence of distributions, with Dn being a distribution over {0, 1}n.

Example 18.2
Here are some examples for distributional problems.

Planted clique Let Gn,p be the distribution over n-vertex graph where each
edge is chosen to appear in the graph independently with probability p. This
distribution is clearly P-computable. The most common case is p = 2, in
which case every graph in Gn,p has equal probability and we call a graph
drawn from this distribution a “random graph”.

Let k : N → N be some function such that k(n) ≤ n. A naive way to give
an average-case analog of the CLIQUE problem would be to decide whether
a random graph has a k(n)-clique. However, it turns out this problem
is not so difficult, since with very high probability the clique number of
a random graph is equal to an easily computable value (roughly equal to
2 logn) [BE76, Mat76].1

Thus, the “right” average-case analog of the k(n)-clique problem uses the
following distribution Dn. With probability 1/2 output a random n-vertex
graph and with probability 1/2 choose a random k(n)-sized subset S of the
vertices and output a random graph conditioned on S being a clique in
the graph. The problem is to decide whether the given graph has a clique
of size at least k(n). Note that for k(n) ≫ 2 logn, the probability that a
random graph has such a clique is very small. Using spectral methods, it is
known how to solve this problem efficiently for k(n) ∼ √n [Kuc95, AKS98].
But for, say k(n) = n0.49 the problem is wide open.

Random 3SAT A random 3CNF formula on n vertices and m clauses can
be obtained by choosing each clause as the OR of three random literals.
Clearly, the larger the number m of clauses, the less likely the formula to

1For infinitely many n’s, with probability 1 − o(1) the clique number of a random n-vertex graph will
be equal to g(n) where g(n) = ⌊2(logn− log logn+ log(e) + 1)⌋. For every n with probability 1− o(1) this
number will be in the set {g(n) − 1, g(n), g(n) + 1}. See also Exercise 18.2.
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be satisfiable. If can be easily shown that there exists constant c1 < c2
such that if the number of clauses m is less than c1n then the formula will
be satisfiable with very high probability and if m > c2n then it will be
unsatisfiable with very high probability (e.g., c1 = 1, c2 = 8 will do). In
fact, it was shown by Friedgut [Fri99] that there is a function f(n) (where
c1n ≤ f(n) ≤ c2(n) for every n) such that for every ǫ > 0, if the number
of clauses m is smaller than (1− ǫ)f(n) then the formula will be satisfiable
with high probability, and if his number is larger than (1 + ǫ)f(n) then it
will be unsatisfiable with high probability. It is believed that f(n) = c∗n
for some constant c∗ ∼ 4.26. For m that is very close to this value, the
problem of determining satisfiability of a random n-variablem-clause 3CNF
formula seems hard. In fact, because in this chapter we require average-case
algorithms to always output the correct answer (see Definition 18.4 below),
the problem remains hard for much larger value m. At the moment no
expected polynomial-time algorithm is known even in the case of m = n1.1,
despite the fact that such a formula will be unsatisfiable with overwhelming
probability (some partial progress was made in [GK01, FO04, FKO06]).

Decoding a random linear code Let A be an m × n matrix over GF(2),
where m > n (say, m = 10n). The decoding problem of A is to find,
given a vector z ∈ GF(2)m, the closest vector y to z such that y is in the
image of A (i.e., y = Ax for some x ∈ GF(2)n). (This is motivated by
considering A as the generating matrix for an error correcting code; see
also Section 19.2.) There are efficient algorithms to do this for matrices A
of various special forms, but for a random matrix A no efficient algorithm
is known. This problem is also known as the problem of learning parity
with noise.

The decoding problem is of course a search problem. Fix ǫ > 0 to some
constant. The following analogous decision problem (L,Dn) is not known
to be in distP. We let (a) L contain all pairs 〈A,y〉 such that y is within
Hamming distance at most ǫm to a vector in A’s image and (b) the dis-
tribution Dn outputs with probability 1/2 a random m × n matrix A and
a random vector y ∈

R
GF(2)m, and with probability 1/2, a random m× n

matrix A, and y = Ax + e where x is chosen at random in GF(2)n and e
is a random vector in GF(2)m having exactly ⌊ǫm⌋ entries equal to 1.

Both these problems are related to the subset sum problem and problems
on discrete lattices in Rn that have proven useful in cryptography; see the
notes to Chapter 9.

Our next step is to define the class distP— the average-case analog of P— that aims
to capture the set of distributional problems 〈L,D〉 that are efficiently solvable.2 For every
algorithm A and input x, let timeA(x) denote the number of steps A takes on input x.
A natural candidate definition is to say that 〈L,D〉 is solvable in polynomial-time on the
average if there is an algorithm A such that A(x) = L(x) for every x and a polynomial p
such that for every n, Ex∈

R
Dn [timeA(x)] ≤ p(n).

Unfortunately, it turns out that this definition is not robust in the following sense:
if we change the model of computation to a different model with quadratic slow down
(for example, change from multiple tape Turing machines to one-tape Turing machines)
then a polynomial-time algorithm can suddenly turn into an exponential-time algorithm, as
demonstrated by the following simple claim:

Claim 18.3 There is an algorithm A such that for every n we have Ex∈
R
{0,1}n [timeA(x)] ≤

n+ 1 but Ex∈
R
{0,1}n [time2

A(x)] ≥ 2n. ♦
2In this chapter we restrict ourselves to deterministic algorithms, although the theory extends naturally

to probabilistic algorithms, yielding average-case analogs of classes such as BPP,RP, coRP and ZPP.
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Proof: Consider an algorithm A that halts in n steps on every input except for the all-zeros
input, on which it runs for 2n steps. The expected running time of A is (1−2−n)n+2−n2n ≤
n + 1. On the other hand, if we square the running time then the expectation becomes
(1− 2−n)n2 + 2−n22n ≥ 2n. �

This motivates the following definition:

Definition 18.4 (Polynomial on average and distP)
A distributional problem 〈L,D〉 is in distP if there is an algorithm A for L and constants
C and ǫ > 0 such that for every n

E
x∈

R
Dn

[

timeA(x)ǫ

n

]

≤ C . (1)

Notice that P ⊆ distP: if a language can be decided deterministically by an algorithm
A in time O(|x|c), then timeA(x)1/c = O(|x|) and the expectation in (1) is bounded by
a constant regardless of the distribution. Second, the definition is robust to changes in
computational models: if the running times get squared, we just multiply c by 2 and the
expectation in (1) is again bounded.

Another feature of this definition is that there is a high probability that the algorithm
runs in polynomial time. Indeed, by Markov’s inequality, (1) implies that for every K > 1,

Pr[ timeA(x)ǫ

n ≥ KC] = Pr[timeA(x) ≥ (KCn)1/ǫ] is at most 1/K.
Finally, we note that the definition is robust to minor changes. For instance, for every

d > 0, the following condition is equivalent to (1): there exist ǫ, C such that

E
x∈RDn

[

timeA(x)ǫ

nd

]

≤ C , (2)

see Exercise 18.6.

18.2 Formalization of “real-life distributions”

Real-life problem instances arise out of the world around us (images that have to be un-
derstood, a building that has to be navigated by a robot, etc.), and the world does not
spend a lot of time tailoring instances to be hard for our algorithm —arguably, the world is
indifferent to our algorithm. One may formalize this indifference in terms of computational
ease, by hypothesizing that the instances are produced by an efficient algorithm (see also
the discussion of Section 1.6.3). We can formalize this in two ways.

Polynomial time computable (or P-computable) distributions. Such distributions
have an associated deterministic polynomial time machine that, given input x ∈
{0, 1}n, can compute the cumulative probability µDn(x), where

µDn(x) =
∑

y∈{0,1}n:y≤x
Pr
Dn

[y]

Here PrDn [y] denotes the probability assigned to string y and y ≤ x means y either
precedes x in lexicographic order or is equal to x.

Denoting the lexicographic predecessor of x by x− 1, we have

Pr
Dn

[x] = µDn(x) − µDn(x − 1),

which shows that if µDn is computable in polynomial time, then so is PrDn [x]. The
converse is known to be false if P 6= NP (Exercise 18.3). The uniform distribution is
P-computable as are many other distributions that are defined using explicit formulae.
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Polynomial time samplable (or P-samplable) distributions. These distributions have
an associated probabilistic polynomial time machine that can produce samples from
the distribution. Specifically, we say that D = {Dn} is P-samplable if there is a poly-
nomial p and a probabilistic p(n)-time algorithm S such that for every n, the random
variables A(1n) and Dn are identically distributed.

If a distribution is P-computable then it is P-samplable, but the converse is not true
if P 6= P#P (see exercises 18.4–18.5). In this chapter we mostly restrict attention to P-
computable distributions, but the theory can be extended to P-samplable distributions; see
Section 18.3.2.

18.3 distNP and its complete problems

The following complexity class is at the heart of our study of average case complexity; it is
the average-case analog of NP.

Definition 18.5 (The class distNP)
A distributional problem 〈L,D〉 is in distNP if L ∈ NP and D is P-computable.

We now define reduction between distributional problems:

Definition 18.6 (Average-case reduction)
We say that a distributional problem 〈L,D〉 average-case reduces to a distributional problem
〈L′,D′〉, denoted by 〈L,D〉 ≤p 〈L′,D′〉, if there is a polynomial-time computable f and
polynomials p, q : N→ N satisfying:

1. (Correctness) For every x ∈ {0, 1}∗,x ∈ L⇔ f(x) ∈ L′

2. (Length regularity) For every x ∈ {0, 1}∗, |f(x)| = p(|x|).

3. (Domination) For every n ∈ N and y ∈ {0, 1}p(n)
, Pr[y = f(Dn)] ≤ q(n) Pr[y = D′

p(n)].

The first condition is the standard reduction condition, ensuring that a decision algorithm
for L′ easily converts into a decision algorithm for L. The second condition is technical, and
is used to simplify the definition and also to show that the reducibility relation is transitive
(see Exercise 18.7). We now motivate the third condition, which says that D′ “dominates”
(up to a polynomial factor) the distribution f(D) obtained by applying f on D. Realize
that the goal of the definition is to ensure that “if 〈L,D〉 is hard, then so is 〈L′,D′〉”, or
equivalently, the contrapositive “if 〈L′,D′〉 is easy, then so is 〈L,D〉.” Thus if an algorithm
A′ is efficient for problem (L′,D′), then it would be nice if the “obvious” algorithm for
the problem (L,D) worked: namely, on input x obtained from the distribution D, compute
y = f(x) and run algorithm A′ on y. A priori, one cannot rule out the possibility that A′

is very slow on some input that is unlikely to be sampled according to distribution D′ but
which has a high probability of showing up as f(x) when we sample x according to D. The
domination condition rules this possibility out:

Theorem 18.7 If 〈L,D〉 ≤p 〈L′,D′〉 and 〈L′,D′〉 ∈ distP then 〈L,D〉 ∈ distP. ♦

Proof: Suppose that A′ is a polynomial-time algorithm for 〈L′,D′〉. That is, there are
constants C, ǫ > 0 such that for every m

E[
timeA′ (D′

m)ǫ

m ] ≤ C . (3)
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Let f be the reduction from 〈L,D〉 to 〈L′,D′〉 and let A be the “obvious” algorithm for
deciding L: given input x it computes f(x) and then outputs A′(f(x)). Since A decides L,
all that is left to show is that A runs in time polynomial on the average with respect to the
distribution D.

For simplicity, assume that for every x, |f(x)| = |x|d and that computing f on length
n inputs is faster than the running time of A′ on length nd inputs and hence timeA(x) ≤
2timeA′(f(x)). (The proof easily extends when we drop these assumptions.) We prove the
Lemma by showing that

E[
( 1
2 timeA(D)ǫ)

q(n)nd
] ≤ C ,

where q denotes the polynomial occuring in the domination condition. By Exercise 18.6,
this suffices to show that 〈L,D〉 ∈ distP.

Indeed, by the definition of A and our assumptions,

E[
(1
2 timeA(Dn))ǫ
q(n)nd

] ≤
∑

y∈{0,1}nd
Pr[y = f(Dn)] timeA′(y)ǫ

q(n)nd

≤
∑

y∈{0,1}nd
Pr[y = D′

nd ]
timeA′ (y)ǫ

nd (by domination)

= E[
timeA′(D′

nd)
ǫ

nd
] ≤ C by (3). �

18.3.1 A complete problem for distNP

Of course, Theorem 18.7 is useful only if we can find reductions between interesting problems.
Now we show that this is the case: we exhibit a problem (albeit an artificial one) that is
complete for distNP. We say that 〈L′,D′〉 is distNP-complete if 〈L′,D′〉 is in distNP and
〈L,D〉 ≤p 〈L′,D′〉 for every 〈L,D〉 ∈ distNP. We have the following theorem:

Theorem 18.8 (Existence of a distNP-complete problem [Lev86])
Let U contain all tuples 〈M,x, 1t〉 where there exists a string y ∈ {0, 1}ℓ such that the
non-deterministic TM M outputs 1 on input x within t steps.

For every n, we let Un be the following distribution on length n tuples 〈M,x, 1t〉: the string
representing M is chosen at random from all strings of length at most logn, t is chosen at

random in the set {0, . . . , n− |M |} and x is chosen at random from {0, 1}n−t−|M|
. This

distribution is polynomial-time computable (Exercise 18.8).3

Then, 〈U,U〉 is distNP-complete.

The problem U is of course NP-complete via a trivial reduction: given a language L
decidable by a p(n)-time NDTM M , we can reduce L to U by mapping the string x into
the tuple 〈M,x, 1t〉. However, this reduction does not necessarily work as an average case
reduction, since it may not satisfy the domination condition. The problem is that we need
to reduce every distributional problem 〈L,D〉 to 〈U,U〉 and will run into trouble if D has any
“peaks”, namely inputs x of length n that are obtained with significantly higher than 2−n

probability in D, whereas the output of the reduction is a predetermined string 〈M,x, 1t〉
whose probability in Un is no more than 2−n.

The obstacle is surmounted using the following lemma, which shows that for polynomial-
time computable distributions, we can apply a simple transformation on the inputs such that
the resulting distribution has no “peaks.”

3Strictly speaking, the inputs might be represented by a few more than n bits to account for separators
etc.. but these details can be easily taken care of and are ignored below.
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Lemma 18.9 (Peak Elimination) Let D = {Dn} be a P-computable distribution. Then,
there is a polynomial-time computable function g : {0, 1}∗ → {0, 1}∗ such that:

1. g is one-to-one: g (x) = g (z) iff x = z.

2. For every x ∈ {0, 1}∗, |g(x)| ≤ |x|+ 1.

3. For every string y ∈ {0, 1}m, Pr[y = g(Dm)] ≤ 2−m+1. ♦

Proof: For any string x ∈ {0, 1}n, define h(x) to be the largest common prefix of the
binary representations of µDn(x) and µDn(x − 1). Note that if PrDn [x] ≥ 2−k then since
µDn(x) − µDn(x − 1) = PrDn(x), the values µDn(x) and µDn(x − 1) must differ in the
somewhere in the first k bits, implying that |h(x)| ≤ k. Note also that because D is P-
samplable, the function h is computable in polynomial time. Furthermore, h is one-to-one
because only two binary strings s1 and s2 can have the longest common prefix z; a third
string s3 sharing z as a prefix must have a longer prefix with either s1 or s2.

Now define for every x ∈ {0, 1}n

g(x) =

{

0x if PrDn [x] ≤ 2−n

1h(x) otherwise

Clearly, g is one to one and satisfies |g(x)| ≤ |x| + 1. We now show that Pr[y =

g(Dn)] ≤ 2−n for every y ∈ {0, 1}n+1
. If y is not g(x) for any x, this is trivially true since

Prg◦D(y) = 0. If y = 0x, where PrD (x) ≤ 2−|x|, then Prg◦D(y) ≤ 2−|y|+1 and we also have
nothing to prove. Finally, if y = g(x) = 1h(x) where PrD (x) > 2−|x|, then as already noted,
|h(x)| ≤ log 1/PrD(x) and so Prg◦D(y) = PrD(x) ≤ 2−|y|+1. �

Now we are ready to prove Theorem 18.8.

Proof of Theorem 18.8: Let 〈L,D〉 be in distNP and let M be the polynoimal-time
non-deterministic TM M accepting L. Define the following NDTM M ′: on input y, guess
x such that y = g(x) (where g is the function obtained by Lemma 18.9) and execute M(x).
Let p be the polynomial running time of M ′.

To reduce 〈L,D〉 to 〈U,U〉, we simply map every string x into the tuple 〈M ′, g(x), 1k〉
where k = p(n) + logn + n − |M ′| − |g(x)| (we may assume that for sufficiently large n,
the description length |M ′| of M ′ is at most log n). This reduction obviously satisfies the
length regularity requirement. Also, because the function g is one-to-one, it satisfies the
correctness condition as well. Hence, all that is left is to show the domination condition.

But indeed by Lemma 18.9, the probability that a length m tuple 〈M ′, y, 1t〉 is obtained
by the reduction is at most 2−|y|+1. Yet this tuple is obtained with probability at least
2− logm2−|y| 1

m by Um, and hence the domination condition is satisfied.�

The proof relies crucially on the fact that every TM can be described by a string of con-
stant size (i.e., independent of the input length). In fact, the proof suffers a loss exponential
in this constant in the probability of hard instances. Since this constant may be quite large
for typical NP languages, this would be a consideration in practice.

18.3.2 P-samplable distributions

Arguably some distributions arising in nature could be samplable even if they are not com-
putable. Define sampNP to be the set of distributional problems 〈L,D〉 such that L ∈ NP
and D is P-samplable, and say that 〈L′,D′〉 is sampNP-complete if 〈L′,D′〉 ∈ sampNP and
〈L,D〉 ≤p 〈L′,D′〉 for every 〈L,D〉 ∈ sampNP. Fortunately, we can transform results such
as Theorem 18.8 to sampNP-completeness via the following result:

Theorem 18.10 ([IL90]) If 〈L,D〉 is distNP-complete then it is also sampNP-complete. ♦

The (omitted) proof uses techniques from derandomization, and specifically the leftover
hash lemma (Lemma 21.26).
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18.4 Philosophical and practical implications

The reader has seen many complexity classes and conjectures by now, so it may be useful
to consider all possible scenarios for the world of complexity. Impagliazzo [Imp95a] has
partitioned these scenarios nicely under highly memorable names. At the moment, we do
not know which of the scenarios is true true (i.e., which of the following worlds is the one
we live in):

Algorithmica: Algorithmica is the world where P = NP or its moral equivalent (e.g.,
NP ⊆ BPP). To be more concrete, let’s define Algorithmica as the world where
there exists a simple and magical linear time algorithm for the SAT problem. As
discussed in Section 2.7.3, this world is a computational utopia. We would be able
to automate various tasks that currently require significant creativity: engineering,
programming, mathematics, and perhaps even writing, composing, and painting. On
the other hand, this algorithm could also be used to break cryptographic schemes, and
hence almost all of the cryptographic applications currently used will disappear.

Heuristica: Heuristica is the world where P 6= NP and yet distNP, sampNP ⊆ distP.
That is, we have an efficient and magical algorithm that “almost” solves every NP
problem. There may exist inputs on which it fails or runs for a long time, but it’s hard
to find such inputs, and we almost never encounter them in real life. In some respects,
Heuristica is very similar to Algorithmica— after all, it seems hard to distinguish
between the two if we can’t find an input on which the algorithm magical algorithm
fails! Indeed, many applications of NP = P still hold in this world, including solving
NP-optimization problems, coming up with short mathematical proofs, and breaking
cryptographic schemes. However, some applications might not hold. In particular,
even though we know that if P = NP then the polynomial hierarchy PH collapses to
P (see Theorem 5.4), we don’t have an analogous result for average case complexity.

Pessiland: Pessiland is the world where distNP and sampNP are not in distP, but still
there do not exist any one-way functions (see Chapter 9). Impagliazzo called this world
Pessiland because in some sense it is the worst possible world. On the one hand, we
don’t have any of the exciting algorithmic wonders of Algorithmica and Heuristica, but
on the other hand, we don’t have most of cryptography either. (Recall from Chapter 9
that one-way functions are known to be essential to most cryptographic applications.)

Minicrypt: Minicrypt is the world where one-way functions exist (and hence distNP *
distP, see Exercise 18.10), but all the highly structured problems in NP such as in-
tegers factoring etc are solvable in polynomial time. More formally, this is the world
where although one-way functions exist, there are no public key encryption schemes
or key exchange protocols. While many cryptographic applications (private key en-
cryption, pseudorandom generators and functions, digital signatures) are achievable
using only one-way functions, there are several important and exciting ones (public
key encryption, secure multiparty computation) that are not known to be achievable
using such functions.

Cryptomania: Cryptomania is the world where the problem of factoring large integers
(or some other highly structured problem such as discrete log, shortest lattice vector
etc..) is exponentially hard on the average case. Most researchers believe this is the
world we live in. While we don’t have general purpose algorithms in this world, and
have to resort to heuristics, approximations, creativity and hard work to solve many
important computational tasks, we do seem to have a host of exciting cryptographic
applications. These include the ability of two parties to communicate secretly without
prior sharing of keys (public key encryption, currently widely used to enable online
commerce) and even more sophisticated cryptographic applications such secure online
auction and voting schemes and more.

Strictly speaking, Impagliazzo has left out some intermidiate scenarios, which we lump
into “Weirdland.” Say, where the complexity of SAT is a not linear or quadratic but a very
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large polynomial like n100 or a very slow growing superpolynomial function like nlogn. Or
where the complexity of problems like SAT shifts wildly for different input sizes, so that it is
feasible for some input sizes and infeasible for others. But, qualitatively speaking, the above
five scenarios are the main possibilities for the average-case hardness of NP. Narrowing this
list down is in some sense the central task of computational complexity.

What have we learned?

• Average case complexity is defined with respect to a particular distribution on the
inputs. The same problem might be easy with one distribution and hard with another.

• The class distP is the average case analog of the class P, and models distributional
problems with efficient algorithms.

• The average-case analog of NP is either distNP or sampNP, depending on whether
we pick P-computable or P-samplable distributions as our model of “real-life” dis-
tributions. The distributional problem 〈U,U〉 of Theorem 18.8 is complete for both
classes.

• Like the P vs. NP question, the average-case hardness of NP is still open. At the
moment we do not even know any non-trivial relation between the two questions. For
example, we do not know if NP * P implies that distNP * distP.

Chapter notes and history

One of the most natural distributions over inputs to algorithms is the distribution of random graphs.
Study of such graphs started with a 1959 paper of Erdos and Renyi [ER59]; a good survey of this vast
area is the text by Bollobas [Bol01]. Analysis of average case behavior of algorithms is also known
as probabilistic analysis of algorithms; see the survey by Reed [FR98]. Spielman and Teng [ST01]
introduced smoothed analysis of algorithms— a notion that lies between worst-case analysis and
probabilistic analysis, for which it would be fascinating to have an analog of the theory of NP-
completeness.

Levin outlined his theory and Theorem 18.8 in [Lev86]. His formalization is more general than
the one in this chapter. For instance, almost all the algorithms occurring in his version of the
theory —e.g., the algorithm that computes a P-computable distribution, or the one that computes
a reduction— are allowed to be randomized.

The extension of Levin’s theorem to P-samplable distributions is from Impagliazzo and Levin [IL90].
Many basic facts about Levin’s theory, such as the effect of changing the assumptions, or the in-
terrelationship among assumptions such as P-samplability and P-computability, are discussed in
Ben-David et al. [BDCGL89]; see the survey by Goldreich [Gol97]. Johnson’s survey [Joh84] of aver-
age case complexity is old (it appeared around the time of Levin’s original paper) but still highly
readable. One of the goals in this area has been to prove the average-case completeness of “natural”
NP problems. A recent paper of Livne [Liv06] gives the strongest such result (where the problems
are “natural”, though the distributions are not).

Exercises

18.1 Describe an algorithm that decides 3-colorability on the uniform distribution of graphs (each edge
is chosen with probability 1/2) in expected polynomial-time. H463

18.2 Describe an algorithm that solves the CLIQUE problem on the distribution 〈G, k〉 where G is a
uniformly chosen n-vertex graph and k is chosen at random from [n] in n2 log n expected time.
H463

18.3 Show that if P 6= NP then there is a family D = {Dn} of distributions on n-bit strings such that
for every x ∈ {0, 1}n, there is an algorithm to compute Pr[Dn = x] but D is not P-computable.
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18.4 Show that if a distribution is P-computable, then it is P-samplable.

18.5 Show that if P#P 6= P then there is a polynomial time samplable distribution that is not polynomial
time computable. H463

18.6 Show that if an algorithm satisfies (2) then it satisfies (1), with possibly different constants ǫ, C.
H463

18.7 Show that the notion of reducibility defined in this chapter is transitive. In other words, if
〈L1,D1〉 ≤p 〈L2,D2〉 and 〈L2,D2〉 ≤p 〈L3,D3〉 then 〈L1,D1〉 ≤p 〈L3,D3〉.

18.8 Show that the distribution U of Theorem 18.8 is P-computable.

18.9 Show that the function g defined in Lemma 18.9 (Peak Elimination) is efficiently invertible in the

following sense: if y = g(x), then given y we can reconstruct x in |x|O(1) time.

18.10 Show that if one-way functions exist, then distNP 6⊆ distP.



Chapter 19

Hardness Amplification and Error
Correcting Codes

Complexity theory studies the computational hardness of functions. In this chapter we
are interested in functions that are hard to compute on the “average” instance, continuing
a topic that played an important role in Chapters 9 and 18, and will do so again in
Chapter 20. The special focus in this chapter is on techniques for amplifying hardness,
which is useful in a host of contexts. In cryptography (see Chapter 9), hard functions are
necessary to achieve secure encryption schemes of non-trivial key size. Many conjectured
hard functions like factoring are only hard on a few instances, not all. Thus these functions
do not suffice for some cryptographic applications, but via hardness amplification we can
turn them into functions that do suffice. Another powerful application will be shown in
Chapter 20— derandomization of the class BPP under worst-case complexity theoretic
assumptions. Figure 19.1 contains a schematic view of this chapter’s sections and the way
their results are related to that result. In addition to their applications in complexity
theory, the ideas covered in this chapter have had other uses, including new constructions
of error-correcting codes and new algorithms in machine learning.

For simplicity we study hardness amplification in context of Boolean functions though
this notion can apply to functions that are not Boolean-valued. Section 19.1 introduces the
first technique for hardness amplification, namely, Yao’s XOR Lemma. It allows us to turn
weakly hard functions into strongly hard functions. Roughly speaking, a Boolean function
f is said to be weakly hard if every moderate-sized circuit fails to compute it on some
nonnegligible fraction of inputs, say 0.01 fraction. The function is strongly hard if every
moderate-sized circuit fails to compute it on almost half the inputs, say 1/2 − ǫ fraction
of inputs. (Note that every Boolean function can be computed correctly on at least half
the inputs by a trivial circuit, namely one that always outputs 1 or always outputs 0.) The
Section describes a way to transform every function using a simple “XOR” construction that
does not greatly increase the complexity of computing it but has the property that if the
function we started with was weakly hard then it becomes strongly hard. This construction
is very useful in cryptographic applications, as mentioned in Chapter 9.

We then turn our attention to a different technique for hardness amplification that
produces strongly hard functions starting with functions that are merely guaranteed to be
hard in the worst case. This is highly non-trivial as there is often quite a difference between
the worst-case and average-case complexity of computational problems. (For example, while
finding the smallest factor of a given integer seems difficult in general, it’s trivial to do for
half the integers— namely, the even ones.) The main tool we use is error correcting codes.
We review the basic definition and constructions in sections 19.2 and 19.3, while Section 19.4
covers local decoding which is the main notion needed to apply error-correcting codes in our
setting. As a result we obtain a way to transform every function f that is hard in the worst
case into a function f̂ that is mildly hard in the average case.

Combining the transformation of Section 19.4 with Yao’s XOR Lemma of Section 19.1, we
are able to get functions that are extremely hard on the average case from functions that are
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∃ worst-case hard f ∈ E

∃ mildly avg-case hard f ∈ E

∃ strongly avg-case hard f ∈ E

	

Error Correcting Codes

Local Decoding

Sections 19.2–19.4

Yao’s XOR Lemma

Section 19.1

Local List Decoding

Sections 19.5, 19.6

Derandomization of BPP

Chapter 20

NW generator

?~

?

Figure 19.1 Organization of Chapter 19

only hard on the worst case. Alas, quantitatively speaking the above transformation is not
optimal, in the sense that even if the original function was worst-case hard for exponential
sized (i.e. size 2Ω(n)) circuits, we are only able to guarantee that the transformed function

will only be hard in the average case for sub-exponential sized (i.e., size 2n
Ω(1)

) circuits.
In Sections 19.5 and 19.6 we show a stronger result, that transforms in one fell swoop a
function f that is hard on the worst case to a function f̂ that is extremely hard on the
average case. This transformation uses error correcting codes in a more sophisticated way,
via an independently interesting notion called list decoding. List decoding is covered in
Section 19.5 while Section 19.6 describes local list decoding which is the extension of list
decoding needed for our purposes.

Readers who are familiar with the theory of error-correcting codes can skim through Sec-
tions 19.2 and 19.3 in a first reading (pausing to remind themselves of the Reed-Solomon and
Reed-Muller codes in Definitions 19.10 and 19.12 and their associated decoding algorithms)
and go on to Section 19.4.

19.1 Mild to strong hardness: Yao’s XOR Lemma.

Yao’s XOR Lemma transforms a function that has “mild” average-case hardness to a func-
tion that has strong average-case hardness. The transformation is actually quite simple and
natural, but its analysis is somewhat involved (yet, in our opinion, beautiful). To state the
Lemma we need to define precisely the meaning of worst-case hardness and average-case
hardness of a function:
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Definition 19.1 (Average-case and worst-case hardness)
For f : {0, 1}n → {0, 1} and ρ ∈ [0, 1] we define the ρ-average case hardness of f , denoted
Hρ

avg
(f), to be the largest S such that for every circuit C of size at most S, Prx∈

R
{0,1}n [C(x) =

f(x)] < ρ. For an infinite f : {0, 1}∗ → {0, 1}, we let Hρ
avg
(f)(n) denote Hρ

avg
(fn) where fn is

the restriction of f to {0, 1}n.
We define the worst-case hardness of f , denoted Hwrs(f), to equal H1

avg
(f) and define the

average-case hardness of f , denoted Havg(f), to equal max
{

S : H
1/2+1/S
avg

(f) ≥ S
}

. That is,
Havg(f) is the largest number S such that Prx∈

R
{0,1}n [C(x) = f(x)] < 1/2 + 1/S for every

Boolean circuit C on n inputs with size at most S.

Note that for every function f : {0, 1}n → {0, 1}, Havg(f) ≤ Hwrs(f) ≤ O(2n/n) (see
Exercise 6.1). This definition of average-case hardness is tailored to the application of
derandomization, and in particular only deals with the uniform distribution over the inputs.
See Chapter 18 for a more general treatment of average-case complexity. We can now state
Yao’s lemma:

Theorem 19.2 (Yao’s XOR Lemma [Yao82a])
For every f : {0, 1}n → {0, 1}, δ > 0 and k ∈ N, if ǫ > 2(1− δ)k then

H1/2+ǫ
avg

(f⊕k) ≥ ǫ2

400nH1−δ
avg

(f) ,

where f⊕k : {0, 1}nk → {0, 1} is defined by f⊕k(x1, . . . , xk) =
∑k

i=1 f(xi) (mod 2).

Yao’s Lemma says that if small circuits cannot compute f with probability better than
1 − δ then somewhat smaller circuits cannot compute f⊕k with probability better than
1/2+2(1− δ)k. Intuitively, it makes sense that if you can only compute f on a 1− δ fraction
of the inputs, then given a random k tuple x1, . . . , xk, unless all of these k inputs fall into
this “good set” of inputs (which happens with probability (1− δ)k), you will have to guess

the answer to
∑k
i=1 f(xi) (mod 2) at random and be successful with probability at most

1/2; see also Exercise 19.1. But making this intuition into a proof takes some effort. The
main step is the following beautiful result of Impagliazzo.

Lemma 19.3 (Impagliazzo’s Hardcore Lemma [Imp95b]) Say that a distributionH over {0, 1}n
has density δ if for every x ∈ {0, 1}∗, Pr[H = x] ≤ 1/(δ2n). For every δ > 0, f : {0, 1}n →
{0, 1}, and ǫ > 0, if H1−δ

avg
(f) ≥ S then there exists a density-δ distribution H such that for

every circuit C of size at most ǫ2S
100n ,

Pr
x∈

R
H

[C(x) = f(x)] ≤ 1/2 + ǫ . ♦

A priori, one can think that a function f that is hard to compute by small circuits with
probability 1 − δ could have two possible forms: (a) the hardness is sort of “spread” all
over the inputs (different circuits make mistakes on different inputs), and the function is
roughly 1− δ-hard on every significant set of inputs or (b) there is a subset H of roughly a
δ fraction of the inputs such that on H the function is extremely hard (cannot be computed
better than 1

2 + ǫ for some tiny ǫ) and on the rest of the inputs the function may be even
very easy. Such a set may be thought of as lying at the core of the hardness of f and is
sometimes called the hardcore set. Impagliazzo’s Lemma shows that actually every hard
function has the form (b). (While the Lemma talks about distributions and not sets, it is
possible to transform it into a result on sets, see Exercise 19.2.)
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19.1.1 Proof of Yao’s XOR Lemma using Impagliazzo’s Hardcore Lemma.

We now show how to use Impagliazzo’s Hardcore Lemma (Lemma 19.3) to prove Yao’s XOR
Lemma (Theorem 19.2). Let f : {0, 1}n → {0, 1} be a function such that H1−δ

avg
(f) ≥ S, let

k ∈ N and suppose, towards a contradiction, that there is a circuit C of size S′ = ǫ2

400nS
such that

Pr
(x1,...,xk)∈R

Ukn

[

C(x1, . . . , xk) =

k
∑

i=1

f(xi) (mod 2)

]

≥ 1/2 + ǫ , (1)

where ǫ > 2(1 − δ)k. We will first prove the lemma for the case k = 2 and then indicate
how the proof can be generalized for every k.

Let H be the hardcore density-δ distribution obtained from Lemma 19.3, on which every
S′-sized circuit fails to compute f with probability better than 1/2 + ǫ/2. We can think
of the process of picking a uniform element in {0, 1}n as follows: first toss a biased coin
that comes up “Heads” with probability δ. Then, if the coin came up “Heads” then pick
a random element according to H , and if it came up “Tails” pick an element according
to the distribution G which is the “complement” of H . Namely, G is defined by setting
Pr[G = x] = (2−n− δ Pr[H = x])/(1− δ). (Exercise 19.3 asks you to verify that G is indeed
a distribution and that this process does indeed yield a uniform element.) We shorthand
this and write

Un = (1− δ)G+ δH . (2)

If we consider the distribution (Un)
2 of picking two independent random strings and

concatenating them, then by (2) we can write

(Un)
2 = (1− δ)2G2 + (1− δ)δGH + δ(1− δ)HG+ δ2H2 , (3)

where we use G2 to denote the concatenation of two independent copies of G, GH to denote
the concatenation of a string chosen from G and a string chosen independently from H , and
so on.

Now for every distribution D over {0, 1}2n, let PD be the probability of the event of the
left-hand side of (1). That is, PD is the probability that C(x1, x2) = f(x1)+ f(x2) (mod 2)
where x1, x2 are chosen from D. Combining (1) and (3) we get

1/2 + ǫ ≤ P(Un)2 = (1− δ)2PG2 + (1− δ)δPGH + δ(1− δ)PHG + δ2PH2 (4)

But since ǫ > 2(1− δ)2 and PG2 ≤ 1, (4) implies

1/2 + ǫ/2 ≤ (1− δ)δPGH + δ(1− δ)PHG + δ2PH2 . (5)

Since the coefficients on the right hand side of (5) sum up to less than 1, the averaging
principle implies that at least one of these probabilities must be larger than the left hand
side. For example, assume that PHG ≥ 1/2 + ǫ/2 (the other cases are symmetrical). This
means that

Pr
x1∈R

H,x2∈R
G
[C(x1, x2) = f(x1) + f(x2) (mod 2)] > 1/2 + ǫ/2 .

Thus by the averaging principle, there exists a fixed string x2 such that

Pr
x1∈R

H
[C(x1, x2) = f(x1) + f(x2) (mod 2)] > 1/2 + ǫ/2 ,

or, equivalently,

Pr
x1∈R

H
[C(x1, x2) + f(x2) (mod 2) = f(x1)] > 1/2 + ǫ/2 .

But this means that we have an S′-sized circuit D (the circuit computing the mapping
x1 7→ C(x1, x2)+f(x2) (mod 2)) that computes f on inputs chosen from H with probability
better than 1/2 + ǫ/2, contradicting the fact that H is hard-core!
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This completes the proof for the case k = 2. The proof for general k follows along the
same lines, using the equation

(Un)
k = (1− δ)kGk + (1− δ)k−1δGk−1H + · · ·+ δkHk

in place of (3); we leave verifying the details to the reader as Exercise 19.4. �

19.1.2 Proof of Impagliazzo’s Lemma

We now turn to proving Impagliazzo’s Hardcore Lemma (Lemma 19.3). Let f be a function
with H1−δ

avg
(f) ≥ S and let ǫ > 0. To prove the lemma we need to show a density δ distribution

H on which every circuit C of size S′ = ǫ2S
100n cannot compute f with probability better

than 1/2 + ǫ.
Let’s think of this task as a game between two players named Russell and Noam. Noam

wants to compute the function f and Russell wants Noam to fail. The game proceeds as
follows: Russell first chooses a δ-density distribution H , and then Noam chooses a circuit
C of size at most S′. At the game’s conclusion, Russell pays Noam v dollars, where v =
Prx∈

R
H [C(x) = f(x)]. Assume towards a contradiction that the lemma is false, and hence

for every δ-density distribution H chosen by Russell, Noam can find an S′-sized circuit C
on which Prx∈

R
H [C(x) = f(x)] ≥ 1/2 + ǫ.

Now this game is a zero-sum game, and so we can use von-Neumann’s min-max theorem
(see Note 19.4) that says that if we allow randomized (also known as mixed) strategies then
Noam can achieve the same value even if he plays first. By randomized strategies we mean
that Noam and Russell can also select arbitrary distributions over their choices. In Russell’s
case this makes no difference as a distribution over density-δ distributions is still a density-δ
distribution.1 However in Noam’s case we need to allow him to choose a distribution C over
S′-sized circuits. Our assumption, combined with the min-max theorem, means that there
exists such a distribution C satisfying

Pr
C∈

R
C,x∈

R
H

[C(x) = f(x)] ≥ 1/2 + ǫ (6)

for every δ-density H .
Call a string x ∈ {0, 1}n “bad” if PrC∈

R
C [C(x) = f(x)] < 1/2 + ǫ and call x “good”

otherwise. There are less than δ2n bad x’s. Indeed, otherwise we could let H be the uniform
distribution over the bad x’s and it would violate (6). Now let us choose a circuitC as follows:
set t = 50n/ǫ2, pick C1, . . . , Ct independently from C, and define C(x) to equal the majority
of C1(x), . . . , C(x) for every x ∈ {0, 1}n. Note that the size of C is tS′ < S. We claim that if
we choose the circuit C in this way then for every good x ∈ {0, 1}n, Pr[C(x) 6= f(x)] < 2−n.
Indeed, this follows by applying the Chernoff bound (see Corollary A.15). Since there are at
most 2n good x’s, we can apply the union bound to deduce that there exists a size S circuit
C such that C(x) = f(x) for every good x. But since there are less than δ2n bad x’s this
implies that Prx∈

R
Un [C(x) = f(x)] > 1− δ, contradicting the assumption that H1−δ

avg
(f) ≥ S.

�

Taken in the contrapositive, Lemma 19.3 implies that if for every significant chunk of
the inputs there is some circuit that computes f with on this chunk with some advantage
over 1/2, then there is a single circuit that computes f with good probability over all inputs.
In machine learning such a result (transforming a way to weakly predict some function into
a way to strongly predict it) is called Boosting of learning methods. Although the proof
we presented here is non-constructive, Impagliazzo’s original proof was constructive, and
was used to obtain a boosting algorithm yielding some new results in machine learning, see
[KS99].

1In fact, the set of density δ distributions can be viewed as the set of distributions over δ2n-flat distri-
butions, where a distribution is K-flat if it is uniform over a set of size K (see Exercise 19.7). This fact
means that we can think of the game as finite and so use the min-max theorem in the form it is stated in
Note 19.4.
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Note 19.4 (The Min-Max Theorem)

A zero sum game is, as the name implies, a game between two parties in which whatever
one party loses is won by the other party. It is modeled by an m × n matrix A = (ai,j) of
real numbers. The game consists of only two moves. One party, called the minimizer or
column player, chooses an index j ∈ [n] while the other party, called the maximizer or row
player, chooses an index i ∈ [m]. The outcome is that the column player has to pay ai,j
units of money to the row player (if ai,j is negative then the row player pays the column
player |ai,j | units). Clearly, the order in which players make their moves is important. The
min-max theorem says that, surprisingly, if we allow the players randomized strategies, then
the order of play is immaterial.

By randomized (also known as mixed) strategies we mean that the column player chooses a
distribution over the columns; that is, a vector p ∈ [0, 1]n with

∑n
i=1 pi = 1. Similarly, the

row player chooses a distribution q over the rows. The amount paid is the expectation of
ai,j for j chosen from p and i chosen from q. If we think of p as a column vector and q as
a row vector then this is equal to qAp. The min-max theorem says that

min
p∈[0,1]n

Σipi=1

max
q∈[0,1]m

Σiqi=1

qAp = max
q∈[0,1]m

Σiqi=1

min
p∈[0,1]n

Σipi=1

qAp , (7)

As discussed in Exercise 19.6, the Min-Max Theorem can be proven using the following re-
sult, known as the Separating Hyperplane Theorem: if C andD are disjoint convex subsets of
Rm, then there is a hyperplane that separates them. (A subset C ⊆ Rm is convex if whenever
it contains a pair of points x,y, it contains the line segment {αx + (1− α)y : 0 ≤ α ≤ 1}
with x and y as its endpoints.) We ask you to prove (a relaxed variant of) the separating
hyperplane theorem in Exercise 19.5 but here is a “proof by picture” for the two dimensional
case:

C

D

hyperplane
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19.2 Tool: Error correcting codes

Our next goal will be to construct average-case hard functions using functions that are only
worst-case hard. Our main tool will be error correcting codes. An error correcting code
maps strings into slightly larger strings in a way that “amplifies differences” in the sense
that every two distinct strings (even if they differ by just one bit) get mapped into two
strings that are “very far” from one another. The formal definition follows:

Definition 19.5 (Error Correcting Codes)
For x, y ∈ {0, 1}m, the fractional Hamming distance of x and y, denoted ∆(x, y), is equal

to 1
m |{i : xi 6= yi}|.

For every δ ∈ [0, 1], a function E : {0, 1}n → {0, 1}m is an error correcting code (ECC)
with distance δ, if for every x 6= y ∈ {0, 1}n, ∆(E(x), E(y)) ≥ δ. We call the set Im(E) =
{E(x) : x ∈ {0, 1}n} the set of codewords of E.

δ/2 δ/2
E(x)

E( )

y E(x)

y

Figure 19.2 In a δ-distance error correcting code, ∆(E(x), E(x′)) ≥ δ for every x 6= x′. We
can recover x from every string y in which less than δ/2 coordinates were corrupted (i.e.,
∆(y, E(x)) < δ/2) since the δ/2-radius balls around every codeword are disjoint. In the
figure above the dotted areas represent corrupted coordinates.

Note that some texts define an error correcting code not as a function E : {0, 1}n →
{0, 1}m but rather as a 2n-sized subset of {0, 1}m (corresponding to Im(E) in our notation).
Error correcting codes have had a vast number of practical and theoretical applications in
Computer Science and engineering, but their motivation stems from the following simple
application: suppose that Alice wants to transmit a string x ∈ {0, 1}m to Bob, but her
channel of communication to Bob is noisy and every string y she sends might be corrupted
in as many as 10% of its coordinates. That is, her only guarantee is that Bob would receive
a string y′ satisfying ∆(y, y′) ≤ 0.1. Alice can perform this task using an error correcting
code E : {0, 1}n → {0, 1}m of distance δ > 0.2. The idea is that she sends to Bob y = E(x)
and Bob receives a string y′ satisfying ∆(y, y′) ≤ 0.1. Since ∆(y,E(w)) > 0.2 for every
w 6= x, it follows that y is the unique codeword of E that is of distance at most 0.1 from
y′ and so Bob can find y and from it find x such that E(x) = y (see Figure 19.2). One can
see from this example that we’d want codes with as large a distance δ as possible, as small
output length m as possible, and of course we’d like both Alice and Bob to be able to carry
the encoding and decoding efficiently. The following lemma shows that, ignoring issues of
computational efficiency, pretty good error correcting codes exist:

Lemma 19.6 (Gilbert-Varshamov Bound) For every δ < 1/2 and sufficiently large n, there

exists a function E : {0, 1}n → {0, 1}n/(1−H(δ))
that is an error correcting code with distance

δ, where H(δ) = δ log(1/δ) + (1− δ) log(1/(1− δ)).2 ♦

Proof: We prove a slightly weaker statement: the existence of a δ-distance ECC E :
{0, 1}n → {0, 1}m where m = 2n/(1 − H(δ)) instead of m = n/(1 −H(δ)). To do so, we

2H(δ) is called the Shannon entropy function. It is not hard to see that H(1/2) = 1, H(0) = 0, and
H(δ) ∈ (0, 1) for every δ ∈ (0, 1/2).
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Note 19.7 (High dimensional geometry)

While we are normally used to geometry in two or three dimensions, we can get some
intuition on error correcting codes by considering the geometry of high dimensional spaces.
Perhaps the strongest effect of high dimension is the following: compare the volume of the
cube with all sides 1 and the ball of radius 1/4. In one dimension, the ratio between these
volumes is 1/(1/2) = 2, in two dimensions it is 1/(π/42) = 16/π, while in three dimensions
it is 1/(4/3π/43) = 48/π. As the number of dimension grows, this ratio grows exponentially
in the number of dimensions. (The volume of a ball of radius r in m dimensions is roughly
πm/2

⌊m/2⌋!r
m.) Similarly for any two radii r1 > r2, the volume of the m-dimension ball of radius

r1 is exponentially larger than the volume of the r2-radius ball.
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This intuition lies behind the existence of an error correcting code with, say, distance 1/4
mapping n bit strings into m = 5n bit strings. We can have 2m/5 codewords that are all of
distance at least 1/4 from one another because, also in the discrete setting the volume (i.e.,
number of points contained) of the radius-1/4 ball is exponentially smaller than the volume
of the cube {0, 1}n. Therefore, we can “pack” 2m/5 such balls within the cube.

simply choose E at random. That is, we choose 2n random strings y1, y2, . . . , y2n ∈ {0, 1}m
and E maps the input x ∈ {0, 1}n (which we can identify with a number in [2n]) to the
string yx.

It suffices to show that the probability that for some i < j with i, j ∈ [2n], ∆(yi, yj) < δ
is less than 1. But for every string yi, the number of strings that are of distance at most δ
to it is

(

m
⌈δm⌉

)

which is less than 0.99 · 2H(δ)m for m sufficiently large (see Appendix A) and

so for every j > i, the probability that yj falls in this ball is bounded by 0.99 · 2H(δ)m/2m.

Since there are at most 22n such pairs i, j, we only need to show that 0.99 · 22n 2H(δ)m

2m < 1,
which is indeed the case for our choice of m. By a slightly more clever argument, we can
prove the lemma as stated: see Exercise 19.9. It turns out that as δ tends to zero, there do
exist codes with smaller values of m than n/(1−H(δ)), but it is not known whether or not
Lemma 19.6 is optimal for δ tending to 1/2. �

Why half? Lemma 19.6 only provides codes of distance δ for δ < 1/2 and you might
wonder whether this is inherent or perhaps codes of even greater distance exist. It turns
out we can have codes of distance 1/2 but only if we allow m to be exponentially larger
than n (i.e., m ≥ 2n−1). For every δ > 1/2, if n is sufficiently large then there is no ECC
E : {0, 1}n → {0, 1}m that has distance δ, no matter how large m is. Both these bounds
are explored in Exercise 19.10.

19.2.1 Explicit codes

The mere existence of an error correcting code is not sufficient for most applications: we
need to be able to actually compute them. For this we need to show an explicit function
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E : {0, 1}n → {0, 1}m that is an error correcting satisfying the following properties:

Efficient encoding There is a poly(m) time algorithm to compute E(x) from x.

Efficient decoding There is a polynomial time algorithm to compute x from every y such
that ∆(y,E(x)) < ρ for some ρ. For this to be possible, the number ρ must be less
than δ/2, where δ is the distance of E: see Exercise 19.11.

We now describe some explicit functions that are error correcting codes.

19.2.2 Walsh-Hadamard Code.

For two strings x, y ∈ {0, 1}n, we define x⊙ y =
∑n

i=1 xiyi (mod 2). The Walsh-Hadamard

code is the function WH : {0, 1}n → {0, 1}2
n

that maps every string x ∈ {0, 1}n into the

string z ∈ {0, 1}2
n

satisfying zy = x ⊙ y for every y ∈ {0, 1}n (where zy denotes the yth

coordinate of z, identifying {0, 1}n with [2n] in some canonical way).

Claim 19.8 The function WH is an error correcting code of distance 1/2. ♦

Proof: First, note that WH is a linear function. That is, WH(x + y) = WH(x) + WH(y),
where x + y denotes the componentwise addition of x and y modulo 2 (i.e., bitwise XOR).
Thus, for every x 6= y ∈ {0, 1}n the number of 1’s in the string WH(x)+WH(y) = WH(x+y)
is equal to the number of coordinates on which WH(x) and WH(y) differ. Thus, it suffices
to show that for every w 6= 0n, at least half of the coordinates in WH(w) are 1. Yet this
follows from the random subsum principle (Claim A.31) that says that the probability that
w ⊙ y = 1 for y ∈

R
{0, 1}n is exactly 1/2. �

19.2.3 Reed-Solomon Code

The Walsh-Hadamard code has a serious drawback: its output size is exponential in the
input size. By Lemma 19.6 we know that we can do much better (at least if we’re willing
to tolerate a distance slightly smaller than 1/2). To get towards explicit codes with better
output, we’ll make a detour via codes with non-binary alphabet.

Definition 19.9 For every finite set Σ and x, y ∈ Σm, we define ∆(x, y) = 1
m |{i : xi 6= yi}|.

We say that E : Σn → Σm is an error correcting code with distance δ over alphabet Σ if for
every x 6= y ∈ Σn, ∆(E(x), E(y)) ≥ δ. ♦

Allowing a larger alphabet makes the problem of constructing codes easier. For example,
every ECC with distance δ over the binary ({0, 1}) alphabet automatically implies an ECC
with the same distance over the alphabet {0, 1, 2, 3}: just encode strings over {0, 1, 2, 3} as
strings over {0, 1} in the obvious way. However, the other direction does not work: if we
take an ECC over {0, 1, 2, 3} and transform it into a code over {0, 1} in the natural way,
the distance might grow from δ to 2δ (see Exercise 19.12). The Reed-Solomon code is a
construction of an error correcting code that can use as its alphabet any sufficiently large
field F:

Definition 19.10 (Reed-Solomon code) Let F be a field and n,m numbers satisfying n ≤
m ≤ |F|. The Reed-Solomon code from Fn to Fm is the function RS : Fn → Fm that on

input a0, . . . , an−1 ∈ Fn outputs the string z0, . . . , zm−1 where zj =
∑n−1
i=0 aif

i
j , and fj

denotes the jth element of F under some ordering. ♦

Note that an equivalent way of defining the Reed Solomon code is that it takes as input
a description of the n− 1 degree polynomial A(x) =

∑n−1
i=1 aix

i and outputs the evaluation
of A on the points f0, . . . , fm−1.

Lemma 19.11 The Reed-Solomon code RS : Fn → Fm has distance 1− n
m . ♦
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Proof: As in the case of Walsh-Hadamard code, the function RS is also linear in the sense
that RS(a + b) = RS(a) + RS(b) (where addition is taken to be componentwise addition
in F). Thus, as before we only need to show that for every a 6= 0n, RS(a) has at most n
coordinates that are zero. But this immediate from the fact that a nonzero n − 1 degree
polynomial has at most n roots (see Appendix A). �

19.2.4 Reed-Muller Codes.

Both the Walsh-Hadamard and and the Reed-Solomon code are special cases of the following
family of codes known as Reed-Muller codes:

Definition 19.12 (Reed-Muller codes) Let F be a finite field, and let ℓ, d be numbers with

d < |F|. The Reed Muller code with parameters F, ℓ, d is the function RM : F(ℓ+dd ) → F|F|
ℓ

that maps every ℓ-variable polynomial P over F of total degree d to the values of P on all
the inputs in Fℓ.

That is, the input is a polynomial of the form

P (x1, . . . , xℓ) =
∑

i1+i2+...+iℓ≤ℓ
ci1,...,iℓx

i1
1 x

i2
2 · · ·xiℓℓ

specified by the vector of
(

ℓ+d
d

)

coefficients {ci1,...,iℓ} and the output is the sequence {P (x1, . . . , xℓ)}
for every x1, . . . , xℓ ∈ F. ♦

Setting ℓ = 1 one obtains the Reed-Solomon code (for m = |F|), while setting d = 1 and
F = GF(2) one obtains a slight variant of the Walsh-Hadamard code (i.e., the code that
maps every x ∈ {0, 1}n into a 2 · 2n long string z satisfying zy,a = x ⊙ y + a (mod 2) for
every y ∈ {0, 1}n,a ∈ {0, 1}). The Schwartz-Zippel Lemma (Lemma A.36 in Appendix A)
shows that the Reed-Muller code is an ECC with distance 1− d/|F|. Note that this implies
the previously stated bounds for the Walsh-Hadamard and Reed-Solomon codes.

19.2.5 Concatenated codes

The Walsh-Hadamard code has the drawback of exponential-sized output and the Reed-
Solomon code has the drawback of a non-binary alphabet. We now show we can combine
them both to obtain a code without neither of these drawbacks:

Definition 19.13 If RS is the Reed-Solomon code mapping Fn to Fm (for some n,m,F) and

WH is the Walsh-Hadamard code mapping {0, 1}log |F|
to {0, 1}2

log |F|

= {0, 1}|F|, then the

code WH ◦ RS maps {0, 1}n log |F| to {0, 1}m|F| in the following way:

1. View RS as a code from {0, 1}n log |F|
to Fm and WH as a code from F to {0, 1}|F| using

the canonical representation of elements in F as strings in {0, 1}log |F|.

2. For every input x ∈ {0, 1}n log |F|, WH◦RS(x) is equal to WH(RS(x)1), . . . ,WH(RS(x)m)
where RS(x)i denotes the ith symbol of RS(x).

Note that the code WH ◦ RS can be computed in time polynomial in n,m and |F|. We
now analyze its distance:

Claim 19.14 Let δ1 = 1 − n/m be the distance of RS and δ2 = 1/2 be the distance of WH.
Then WH ◦ RS is an ECC of distance δ1δ2. ♦

Proof: Let x, y be two distinct strings in {0, 1}log |F|n. If we set x′ = RS(x′) and y′ = RS(y′)
then ∆(x′, y′) ≥ δ1. If we let x′′ (resp. y′′) to be the binary string obtained by applying WH
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x

E1:{0,1}n-->Σm

E2 E2 E2:Σ-->{0,1}k

E2
oE1:{0,1}n-->{0,1}km

E1(x)1 E1(x)m

.....

E2(E1(x)1) E2(E1(x)m)

Figure 19.3 If E1,E2 are ECC’s such that E1 : {0, 1}n → Σm and E2 : σ → {0, 1}k,

then the concatenated code E : {0, 1}n → {0, 1}nk maps x into the sequence of blocks
E2(E1(x)1), . . . , E2(E1(x)m).

to each of these blocks, then whenever two blocks are distinct, the corresponding encoding
will have distance δ2, and so δ(x′′, y′′) ≥ δ1δ2. �

Because for every k ∈ N, there exists a finite field |F| of size in [k, 2k] (e.g., take a
prime in [k, 2k] or a power of two) we can use this construction to obtain, for every n, a

polynomial-time computable ECC E : {0, 1}n → {0, 1}20n
2

of distance 0.4.
Both Definition 19.13 and Lemma 19.14 easily generalize for codes other than Reed-

Solomon and Hadamard. Thus, for every two ECC’s E1 : {0, 1}n → Σm and E2 : Σ →
{0, 1}k their concatenation E2 ◦ E1 is a code from {0, 1}n to {0, 1}mk that has distance at
least δ1δ2 where δ1 (resp. δ2) is the distance of E1 (resp. E2), see Figure 19.3. In particular,
using a different binary code than WH, it is known how to use concatenation to obtain a
polynomial-time computable ECC E : {0, 1}n → {0, 1}m of constant distance δ > 0 such
that m = O(n), see Exercise 19.18.

19.3 Efficient decoding.

To actually use an error correcting code to store and retrieve information, we need a way
to efficiently decode a message x from its encoding E(x) even if this encoding has been
corrupted in some fraction ρ of its coordinates. We now show how to do this for the Reed-
Solomon code and for concatenated codes.

19.3.1 Decoding Reed-Solomon

Recall that the Reed-Solomon treats its input as describing a polynomial and outputs the
values of this polynomial on m inputs. We know (see Theorem A.35 in Appendix A) that a
univariate degree d polynomial can be interpolated from any d+1 values. Here we consider
a robust version of this procedure, whereby we wish to recover the polynomial from m values
of which ρm are “faulty” or “noisy”.

Theorem 19.15 (Unique decoding for Reed-Solomon [BW86])
There is a polynomial-time algorithm that given a list (a1, b1), . . . , (am, bm) of pairs of
elements of a finite field F such that there is a d-degree polynomial G : F → F satisfying
G(ai) = bi for t of the numbers i ∈ [m], with t > m

2 + d
2 , recovers G.

Since Reed-Solomon is an ECC with distance 1− d
m , Theorem 19.15 means that we can

efficiently recover the correct polynomial from a version corrupted in ρ places as long as
ρ is smaller than half the distance. This is optimal in the sense that once the fraction of
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errors is larger than half the distance we are no longer guaranteed the existence of a unique
solution.
Proof of Theorem 19.15.: As a warmup, we start by considering the case that the
number of errors is very small. (This setting is still sufficiently strong for many applications.)

Randomized interpolation: the case of t ≥ (1− 1
2(d+1))m

Assume that t is quite large: t > (1 − 1
2(d+1) )m. In this case, we can just select d + 1

pairs (x1, y1), . . . , (xd+1, yd+1) at random from the set {(ai, bi)} and use standard polynomial
interpolation to compute the unique a d-degree polynomial P such that P (xj) = yj for all
j ∈ [d + 1]. We then check whether P agrees with at least t pairs of the entire sequence
and if so we output P (otherwise we try again). By the union bound, the probability that
xj 6= G(yj) for one of the d + 1 chosen pairs is at most (d + 1)m−t

t ≤ 1/2, and hence with
probability at least 1/2 it will be the case that P = G.

Berlekamp-Welch Procedure: the case of t ≥ m
2 + d

2 + 1
We now prove Theorem 19.15 using a procedure known as the Berlekamp-Welch decoding.

For simplicity of notations, we assume that m = 4d and t = 3d. However, the proof
generalizes to any parameters m, d, t satisfying t > m

2 + d
2 , see Exercise 19.13. Thus, we

assume that there exists a d-degree polynomial G such that

G(ai) = bi for at least 3d of i’s in [m] = [4d]. (8)

We will use the following decoding procedure:

1. Find a degree 2d polynomial C(x) and a degree-d nonzero polynomial E(x) such that:

C(ai) = biE(ai) for every i ∈ [m] (9)

This can be done by considering (9) as a set of 4d linear equations with the unknowns
being the 2d+ 1 coefficients of C(x) and the d+ 1 coefficients of E. These equations
have a solution with nonzero E(x) since one can define E(x) to a nonzero polynomial
that is equal to zero on every ai such that G(ai) 6= bi (under our assumption (8) there
are at most d such places).3

2. Divide C by E: get a polynomial P such that C(x) = E(x)P (x) (we will show that
E divides C without remainder). Output P .

We know by (8) and (9) that C(x) = G(x)E(x) for at least 3d values, meaning that
C(x) − G(x)E(x) is a degree 2d polynomial with at least 3d roots. This means that
this polynomial is identically zero (i.e., C(x) = G(x)E(x) for every x ∈ F). Thus it
does indeed hold that G = C/E.

�

19.3.2 Decoding concatenated codes.

Decoding concatenated codes can be achieved through the natural algorithm. Recall that
if E1 : {0, 1}n → Σm and E2 : Σ → {0, 1}k are two ECC’s then E2 ◦ E1 maps every string
x ∈ {0, 1}n to the string E2(E1(x)1) · · ·E2(E1(x)n). Suppose that we have a decoder for
E1 (resp. E2) that can handle ρ1 (resp. ρ2) errors. Then, we have a decoder for E2 ◦ E1

that can handle ρ2ρ1 errors. The decoder, given a string y ∈ {0, 1}mk composed of m blocks

y1, . . . , ym ∈ {0, 1}k, first decodes each block yi to a symbol zi in Σ, and then uses the
decoder of E1 to decode z1, . . . , zm. The decoder can indeed handle ρ1ρ2 errors since if
∆(y,E2 ◦ E1(x)) ≤ ρ1ρ2 then at most ρ1 of the blocks of y are of distance at least ρ2 from
the corresponding block of E2 ◦ E1(x).

3One can efficiently find such a solution by trying to solve the equations after adding to them an equation
of the form Ej = ej where Ej is the jth coefficient of E(x) and ej is a nonzero element of F. The number
of such possible equations is polynomial and at least one of them will result in a satisfiable set of equations.
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Figure 19.4 An ECC allows us to map a string x to E(x) such as x can be reconstructed
from a corrupted version of E(x). The idea is to treat a function f : {0, 1}n → {0, 1}
as a string in {0, 1}2n , encode it using an ECC to a function f̂ . Intuitively, f̂ should be

hard on the average case if f was hard on the worst case, since an algorithm to solve f̂
with probability 1 − ρ could be transformed (using the ECC’s decoding algorithm) to an
algorithm computing f on every input.

19.4 Local decoding and hardness amplification

We now show the connection between error correcting codes and hardness amplification.
The idea is actually quite simple (see also Figure 19.4). A function f : {0, 1}n → {0, 1} can

be viewed as a binary string of length N = 2n. Suppose we encode f to a string f̂ ∈ {0, 1}M
using an ECC mapping {0, 1}N to {0, 1}M with distance larger than, say, 0.2. Then we can

view f̂ as a function from {0, 1}logM to {0, 1} and at least in principle it should be possible

to recover f from a corrupted version of f̂ where, say, at most 10% of the locations have
been modified. In other words, if it is possible to compute f̂ with probability at least 0.9
then it should be possible to compute f exactly. Taking the contrapositive this means that
if f is hard to compute in the worst-case then f̂ is hard to compute in the average case!

To make this idea work we need to show we can transform every circuit that correctly
computes many bits of f̂ into a circuit that correctly computes all the bits of f . This is
formalized using a local decoder (see Figure 19.5), which is a decoding algorithm that given
random access to a (possibly corrupted) codeword y′ close to E(x) can compute any any
desired bit of the original input x. Since we are interested in the circuits that could be of
size as small as poly(n)— in other words, polylogarithmic in N = 2n —this must also be the
running time of the local decoder.

Definition 19.16 (Local decoder)
Let E : {0, 1}n → {0, 1}m be an ECC and let ρ and q be some numbers. A local decoder for
E handling ρ errors is an algorithm D that, given random access to a string y such that
∆(y,E(x)) < ρ for some (unknown) x ∈ [n], and an index j ∈ N, runs for polylog(m) time
and outputs xj with probability at least 2/3.

The constant 2/3 is arbitrary and can be replaced with any constant larger than 1/2, since
the probability of getting a correct answer can be amplified by repetition. We also note that
Definition 19.16 can be easily generalized for codes with larger (i.e., non binary) alphabet.
Local decoding may also be useful in applications of ECC’s that have nothing to do with
hardness amplification (e.g., if we use ECC’s to encode a huge file, we may want to be able
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Figure 19.5 A local decoder gets access to a corrupted version of E(x) and an index i and
computes from it xi (with high probability).

to efficiently recover part of the file without decoding it in its entirety). The connection
between local decoders and hardness amplification is encapsulated in the following theorem:

Theorem 19.17 (Hardness amplification from local decoding)
Suppose that there exists an ECC with polynomial-time encoding algorithm and a local
decoding algorithm handling ρ errors. Suppose also that there is f ∈ E with Hwrs(f)(n) ≥
S(n) for some function S : N→ N satisfying S(n) ≥ n. Then, there exists ǫ > 0 and f̂ ∈ E

with Havg
1−ρ(f̂)(n) ≥ S(ǫn)ǫ

We leave the proof of Theorem 19.17, which follows the ideas described above, as Exer-
cise 19.14. We now show local decoder algorithms for several explicit codes.

19.4.1 Local decoder for Walsh-Hadamard.

The following is a two-query local decoder for the Walsh-Hadamard code that handles ρ
errors for every ρ < 1/4. This fraction of errors we handle is best possible, as it can be easily
shown that there cannot exist a local (or non-local) decoder for a binary code handling ρ
errors for every ρ ≥ 1/4.

Theorem 19.18 For every ρ < 1/4, the walsh-Hadamard code has a local decoder handling
ρ errors. ♦

Proof: Theorem 19.18 is proven by the following algorithm:

Walsh-Hadamard Local Decoder for ρ < 1/4:

Input: j ∈ [n], random access to a function f : {0, 1}n → {0, 1} such that Pry[g(y) 6=
x⊙ y] ≤ ρ for some ρ < 1/4 and x ∈ {0, 1}n.

Output: A bit b ∈ {0, 1}. (Our goal: xj = b.)

Operation: Let ej be the vector in {0, 1}n that is equal to 0 in all the coordinates except
for the jth and equal to 1 on the jth coordinate. The algorithm chooses y ∈

R
{0, 1}n

and outputs f(y) + f(y+ ej) (mod 2) (where y+ ej denotes componentwise addition
modulo 2, or equivalently, flipping the jth coordinate of y).

Analysis: Since both y and y + ej are uniformly distributed (even though they are de-
pendent), the union bound implies that with probability 1 − 2ρ, f(y) = x ⊙ y and
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Lx

x

Figure 19.6 Given access to a corrupted version of a polynomial P : Fℓ → F, to compute
P (x) we pass a random line Lx through x, and use Reed-Solomon decoding to recover the
restriction of P to the line Lx.

f(y + ej) = x⊙ (y + ej). But by the bilinearity of the operation ⊙, this implies that
f(y) + f(y + ej) = x ⊙ y + x ⊙ (y + ej) = 2(x ⊙ y) + x ⊙ ej = x ⊙ ej (mod 2). Yet,
x ⊙ ej = xj and so with probability 1 − 2ρ, the algorithm outputs the right value.
(The success probability can be amplified by repetition.) �

This algorithm can be modified to locally compute not just xi = x ⊙ ej but in fact the
value x⊙ z for every z ∈ {0, 1}n. Thus, we can use it to compute not just every bit of the
original message x but also every bit of the uncorrupted codeword WH(x). This property
is sometimes called the self correction property of the Walsh-Hadamard code. �

19.4.2 Local decoder for Reed-Muller

We now show a local decoder for the Reed-Muller code. It runs in time polynomial in ℓ
and d, which, for an appropriate setting of the parameters, is polylogarithmic in the output
length of the code:

Theorem 19.19 For every field |F|, numbers d, ℓ and there is a poly(|F|, ℓ, d)-time local
decoder for the Reed-Muller code with parameters F, d, ℓ handling (1− d

|F|)/6 errors.

That is, there is a poly(|F|, ℓ, d)-time algorithm D that given random access to a function
f : Fℓ → F that agrees with some degree d polynomial P on a 1− (1− d

|F|)/6 fraction of the

inputs and x ∈ Fℓ outputs P (x) with probability at least 2/3. ♦

Proof: Recall that the input to a Reed-Muller code is an ℓ-variable d-degree polynomial
P over some field F. When we discussed the code before, we assumed that this polynomial
is represented as the list of its coefficients. However, below it will be more convenient for
us to assume that the polynomial is represented by a list of its values on its first

(

d+ℓ
ℓ

)

inputs according to some canonical ordering. Using standard interpolation, we still have
a polynomial-time encoding algorithm even given this representation. Thus, it suffices to
show an algorithm that, given access to a corrupted version of P , computes P (x) for every
x ∈ Fℓ. We now show such an algorithm:

Reed-Muller Local Decoder for ρ ≤ (1− d
|F|)/6.

Input: A string x ∈ Fℓ, random access to a function f such that Prx∈Fℓ [P (x) 6= f(x)] < ρ,
where P : Fℓ → F is an ℓ-variable degree-d polynomial.

Output: y ∈ F (Goal: y = P (x).)

Operation: 1. Let Lx be a random line passing through x. That is Lx = {x+ tz : t ∈ F}
for a random z ∈ Fℓ.



338 19 Hardness Amplification and Error Correcting Codes

x

E1:{0,1}n-->Σm

E2 E2 E2:Σ-->{0,1}k

E2
oE1:{0,1}n-->{0,1}km

E1(x)1 E1(x)m

.....

E2(E1(x)1) E2(E1(x)m)

E1 decoder

E2 decoder E2 decoder

q1 queries

O(q2 log q1) queries

Figure 19.7 To locally decode a concatenated code E2 ◦E1 we run the decoder for E1 using
the decoder for E2. The crucial observation is that if y is within ρ1ρ2 distance to E2 ◦E1(x)
then at most a ρ1 fraction of the blocks in y are of distance more than ρ2 the corresponding
block in E2 ◦ E1(x).

2. Query f on all the |F| points of Lx to obtain a set of points {(t, f(x+ tz))} for
every t ∈ F.

3. Run the Reed-Solomon decoding algorithm to obtain the univariate polynomial
Q : F → F such that Q(t) = f(x + tz) for the largest number of t’s (see Fig-
ure 19.6).4

4. Output Q(0).

Analysis: For every d-degree ℓ-variable polynomial P , the univariate polynomial Q(t) =
P (x + tz) has degree at most d. Thus, to show that the Reed-Solomon decoding
works, it suffices to show that with probability at least 2/3, the number of points on
w ∈ Lx for which f(w) 6= P (w) is less than (1 − d/|F|)/2. Yet, for every t 6= 0, the
point x+ tz where z is chosen at random in Fℓ is uniformly distributed (independently
of x), and so the expected number of points on Lx for which f and P differ is at
most ρ|F|. By the Markov inequality, the probability that there will be more than
3ρ|F| < (1− d/|F|)|F|/2 such points is at most 2/3 and hence Reed-Solomon decoding
will be successful with probability 2/3. In this case, we obtain the correct polynomial
q that is the restriction of Q to the line Lx and hence q(0) = P (x).

�

19.4.3 Local decoding of concatenated codes.

As the following lemma shows, given two locally decodable ECC’s E1 and E2, we can locally
decode their concatenation E1 ◦ E2:

Lemma 19.20 Let E1 : {0, 1}n → Σm and E2 : Σ → {0, 1}k be two ECC’s with local
decoders of q1 (resp. q2) queries with respect to ρ1 (resp. ρ2) errors. Then there is an
O(q1q2 log q1 log |Σ|)-query local decoder handling ρ1ρ2 errors for the concatenated code

E = E2 ◦ E1 : {0, 1}n → {0, 1}mk. ♦

Proof: We prove the lemma using the natural algorithm. Namely, we run the decoder for
E1, but answer its queries using the decoder for E2 (see Figure 19.7).

Local decoder for concatenated code: ρ < ρ1ρ2

4If ρ is sufficiently small, (e.g., ρ < 1/(10d)), then we can use the simpler randomized Reed-Solomon
decoding procedure described in Section 19.3.
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Input: An index i ∈ [n], random access to a string y ∈ {0, 1}km such that ∆(y,E1◦E2(x)) <
ρ1ρ2 for some x ∈ {0, 1}n.

Output: b ∈ {0, 1}n (Goal: b = xi)

Operation: Simulate the actions of the decoder for E1, whenever the decoder needs access
to the jth symbol of E1(x), use the decoder of E2 with O(q2 log q1 log |Σ|) queries
applied to the jth block of y to recover all the bits of this symbol with probability at
least 1− 1/(10q1).

Analysis: The crucial observation is that at most a ρ1 fraction of the length k blocks
in y can be of distance more than ρ2 from the corresponding blocks in E2 ◦ E1(x).
Therefore, with probability at least 0.9, all our q1 answers to the decoder of E1 are
consistent with the answer it would receive when accessing a string that is of distance
at most ρ1 from a codeword of E1.

�

19.4.4 Putting it all together.

We now have the ingredients to prove our second main theorem of this chapter: transfor-
mation of a hard-on-the-worst-case function into a function that is “mildly” hard on the
average case.

Theorem 19.21 (Worst-case hardness to mild hardness)
Let S : N → N and f ∈ E such that Hwrs(f)(n) ≥ S(n) for every n. Then there exists a
function g ∈ E and a constant c > 0 such that H0.99

avg
(g)(n) ≥ S(n/c)/nc for every sufficiently

large n.

Proof: For every n, we treat the restriction of f to {0, 1}n as a string f ′ ∈ {0, 1}N where

N = 2n. We then encode this string f ′ using a suitable error correcting code E : {0, 1}N →
{0, 1}N

C

for some constant C > 1. We will define the function g on every input x ∈ {0, 1}Cn
to output the xth coordinate of E(f ′).5 For the function g to satisfy the conclusion of the
theorem, all we need is for the code E to satisfy the following properties:

1. For every x ∈ {0, 1}N , E(x) can be computed in poly(N) time.

2. There is a local decoding algorithm for E that uses polylog(N) running time and
queries and can handle a 0.01 fraction of errors.

But this can be achieved using a concatenation of a Walsh-Hadamard code with a Reed-
Muller code of appropriate parameters:

1. Let RM denote the Reed-Muller code with the following parameters:

• The field F is of size log5N .

• The number of variables ℓ is equal to logN/ log logN .

• The degree is equal to log2N .

RM takes an input of length at least (dℓ )
ℓ > N (and so using padding we can assume

its input is {0, 1}n). Its output is of size |F|ℓ ≤ poly(n). Its distance is at least
1− 1/ logN .

5By padding with zeros as necessary, we can assume that all the inputs to g are of length that is a
multiple of C.
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2. Let WH denote the Walsh-Hadamard code from {0, 1}logF = {0, 1}5 log logN
to {0, 1}|F| =

{0, 1}log
5N .

Our code will be WH ◦ RM. Combining the local decoders for Walsh-Hadamard and
Reed-Muller we get the desired result. �

Combining Theorem 19.21 with Yao’s XOR Lemma (Theorem 19.2), we get the following
corollary:

Corollary 19.22 Let S : N→ N be a monotone and time-constructible function. Then there
is some ǫ > 0 such that if there exists f ∈ E with Hwrs(f)(n) ≥ S(n) for every n then there

exists f̂ ∈ E with ACH(f)(n) ≥ S(
√
n)ǫ. ♦

Proof: By Theorem 19.21, under this assumption there exists a function g ∈ E with
H0.99

avg
(g)(n) ≥ S′(n) = S(n)/ poly(n), where we can assume S′(n) ≥

√

S(n) for sufficiently
large n (otherwise S is polynomial and the theorem is trivial). Consider the function g⊕k

where k = c logS′(n) for a sufficiently small constant c. By Yao’s XOR Lemma, on inputs of
length kn, it cannot be computed with probability better than 1/2+2−cS

′(n)/1000 by circuits
of size S′(n). Since S(n) ≤ 2n, kn <

√
n, and hence we get that Havg(g

⊕k) ≥ Sc/2000. �

19.5 List decoding

While Corollary 19.22 is extremely surprising in the qualitative sense (transforming worst-
case hardness to average-case hardness) it is still not fully satisfying quantitatively because
it loses quite a bit in the circuit size when moving from a worst-case hard to an average-case
hard function. In particular, even if we start with a function f that is hard in the worst-case
for 2Ω(n)-sized circuits, we only end up with a function f̂ that is hard on the average case
for 2Ω(

√
n)-sized circuits. This can make a difference in some applications, and in particular

it falls short of what we will need to fully derandomize BPP under worst-case assumptions
in Chapter 20.

Our approach to obtain stronger worst-case to average-case reduction will be to bypass
the XOR Lemma, and use error correcting codes to get directly from worst-case hardness to
a function that is hard to compute with probability slightly better than 1/2. However, this
idea seems to run into a fundamental difficulty: if f is worst-case hard, then it seems hard
to argue that the encoding of f , under any error correcting code is hard to compute with
probability 0.6. The reason is that any binary error-correcting code has to have distance at
most 1/2 but the decoding algorithms work for at most half the distance and hence cannot
recover a string f from E(f) if the latter was corrupted in more than a 1/4 of its locations
(i.e., from a string with less than 0.75 agreement with E(f)).

This seems like a real obstacle, and indeed was considered as such in many contexts
where ECC’s were used, until the realization of the importance of the following insight:
“If y is obtained by corrupting E(x) in, say, a 0.4 fraction of the coordinates (where E is
some ECC with good enough distance) then, while there may be more than one codeword
within distance 0.4 to y, there can not be too many such codewords.” Formally, we have the
following theorem:

Theorem 19.23 (Johnson Bound [Joh62]) If E : {0, 1}n → {0, 1}m is an ECC with distance
at least 1/2− ǫ, then for every x ∈ {0, 1}m, and δ ≥ √ǫ, there exist at most 1/(2δ2) vectors
y1, . . . , yℓ such that ∆(x, yi) ≤ 1/2− δ for every i ∈ [ℓ]. ♦

Proof: Suppose that x, y1, . . . , yℓ satisfy this condition, and define ℓ vectors z1, . . . , zℓ in
Rm as follows: for every i ∈ [ℓ] and k ∈ [m], set zi,k to equal +1 if yk = xk and set it to
equal −1 otherwise. Under our assumptions, for every i ∈ [ℓ],

m
∑

k=1

zi,k ≥ 2δm , (10)
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since zi agrees with x on an 1/2 + δ fraction of its coordinates. Also, for every i 6= j ∈ [ℓ],

〈zi, zj〉 =
m
∑

k=1

zi,kzj,k ≤ 2ǫm ≤ 2δ2m (11)

since E is a code of distance at least 1/2− ǫ.
We will show that (10) and (11) together imply that ℓ ≤ 1/(2δ2). Indeed, set w =

∑ℓ
i=1 zi. On one hand, by (11)

〈w,w〉 =
ℓ
∑

i=1

〈zi, zi〉+
∑

i6=j
〈zi, zj〉 ≤ ℓm+ ℓ22δ2m.

On the other hand, by (10),
∑

k wk =
∑

i,j zi,j ≥ 2δmℓ and hence 〈w,w〉 ≥ |∑k wk|2/m ≥
4δ2mℓ2, since for every c, the vector w ∈ Rm with minimal two-norm satisfying

∑

k wk = c
is the uniform vector (c/m, c/m, . . . , c/m). Thus 4δ2mℓ2 ≤ ℓm + 2ℓ2δ2m, implying that
ℓ ≤ 1/(2δ2). �

19.5.1 List decoding the Reed-Solomon code

In many contexts, obtaining a list of candidate messages from a corrupted codeword can be
just as good as unique decoding. For example, we may have some outside information on
which messages are likely to appear, allowing us to know which of the messages in the list
is the correct one. However, to take advantage of this we need an efficient algorithm that
computes this list. Such an algorithm was discovered in 1996 by Sudan for the popular and
important Reed-Solomon code. It can recover a polynomial size list of candidate codewords

given a length m Reed-Solomon codeword that is corrupted in up to a 1 − 2
√

d
m fraction

of the coordinates. Note that this tends to 1 as m/d grows, whereas the Berlekamp-Welch
algorithm of Section 19.3 (as is the case with any other unique decoding algorithm) cannot
handle a fraction of errors that is more than half the distance.

Theorem 19.24 (List decoding for the Reed-Solomon code [Sud96])
There is a polynomial-time algorithm that given a set {(ai, bi)}mi=1 of pairs in F2, returns
the list of all degree d polynomials G such that the number of i’s for which g(ai) = bi is
more than 2

√
dm.

Proof: We prove Theorem 19.24 via the following algorithm:

Reed-Solomon List Decoding: t > 2
√
dm.

1. Find a nonzero bivariate polynomial Q(x, y) of degree at most
√
dm in x and at most

√

m/d in y such that Q(bi, ai) = 0 for every i ∈ [m].

We can express this condition as m linear equations in the (
√
dm+1)(

√

m/d+1) > m
coefficients of Q. Since these equations are homogeneous (right side equalling zero)
and there are more unknowns than equations, this system has a nonzero solution that
can be found using gaussian elimination.

2. Factor Q(x, y) using an efficient polynomial factorization algorithm (see [VG99]). For
every factor of the form (P (x) − y) check whether P (x) has degree at most d and
agrees with {(ai, bi)}mi=1 in at least t places. If so, output P .

Indeed, if G(x) agrees with {(ai, bi)}mi=1 in more than t places then (G(x) − y) is a
factor of Q(x, y). To see this note that Q(G(x), x) is a univariate polynomial of degree
at most

√
dm + d

√

m/d = 2
√
dm < t which has at least t zeroes and hence it is

identically zero. It follows that G(x) − y divides Q(x, y) (see Exercise 19.16).

�
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19.6 Local list decoding: getting to BPP = P.

Analogously to Section 19.4, to actually use list decoding for hardness amplification, we need
to provide local list decoding algorithms for the codes we use. Fortunately, such algorithms
are known for the Walsh-Hadamard code, the Reed-Muller code, and their concatenation.
The definition of local list decoding below is somewhat subtle, and deserves a careful reading.

Definition 19.25 (Local list decoder) Let E : {0, 1}n → {0, 1}m be an ECC and let ρ = 1−ǫ
for ǫ > 0. An algorithm D is called a local list decoder for E handling ρ errors, if for every
x ∈ {0, 1}n and y ∈ {0, 1}m satisfying ∆(E(x), y) ≤ ρ, there exists a number i0 ∈ [poly(n/ǫ)]
such that for every j ∈ [m], on inputs i0, j and with random access to y, D runs for
poly(log(m)/ǫ) time and outputs xj with probability at least 2/3. ♦

One can think of the number i0 as the index of x in the list of poly(n/ǫ) candidate
messages output by L. As is the case for Definition 19.16, Definition 19.25 can be easily
generalized to codes with non-binary alphabet.

19.6.1 Local list decoding of the Walsh-Hadamard code.

It turns out we already encountered a local list decoder for the Walsh-Hadamard code: the
proof of the Goldreich-Levin Theorem (Theorem 9.12) provided an an algorithm that given
access to a “black box” that computes the function y 7→ x ⊙ y (for x, y ∈ {0, 1}n) with
probability 1/2 + ǫ, computes a list of values x1, . . . , xpoly(n/ǫ) such that xi0 = x for some i0.
In Chapter 9 we used this algorithm to find the correct value of x from that list by checking
it against the value f(x) (where f is a one-way permutation). This is a good example
showing how we can use outside information to narrow the list of candidates codewords
obtained from a list-decoding algorithm.

19.6.2 Local list decoding of the Reed-Muller code

We now present an algorithm for local list decoding of the Reed-Muller code. Recall that the
codeword of this code is the list of evaluations of a d-degree ℓ-variable polynomial P : Fℓ → F
and the task of the local decoder is to compute P (x) on a given point x ∈ Fℓ.

Theorem 19.26 (Reed-Muller local list decoder [BF90, Lip91, BFNW93, STV99]) The Reed-Muller
code has a local list decoder handling 1− 10

√

d/|F| errors.

That is, for every F, ℓ, d there is a poly(|F|, d, ℓ)-time algorithm D that given random access
to a function f : Fℓ → F, an index i ∈ Fℓ+1 and an input x ∈ Fℓ satisfies: if f agrees with
a degree-d polynomial P : Fℓ → F on 10

√

d/|F| fraction of the inputs then there exists
i0 ∈ Fℓ+1 such that Pr[Df (i0, x) = P (x)] ≥ 2/3 for every x. ♦

Proof: To be a valid local list decoder, given the index i0, the algorithm should output
P (x) with high probability for every x ∈ Fℓ. Below we describe a relaxed decoder that is
only guaranteed to output the right value for most (i.e., a 0.9 fraction) of the x’s in Fℓ.
One can transform this algorithm to a valid local list decoder by combining it with the
Reed-Muller local decoder described in Section 19.4.2. Thus, Theorem 19.26 is proven via
the following algorithm:

Reed-Muller Local List Decoder for ρ ≤ 1− 10
√

d/|F|

Inputs: • Random access to a function f such that Prx∈Fℓ [P (x) = f(x)] > 10
√

d/|F|
where P : Fℓ → F is an ℓ-variable d-degree polynomial. We assume that |F| > d4

and d is sufficiently large (e.g., d > 1000 will do). This can always be ensured in
our applications.

• An index i0 ∈ [|F|ℓ+1] which we interpret as a pair (x0, y0) with x0 ∈ Fℓ, y0 ∈ F,
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• A string x ∈ Fℓ.

Output: y ∈ F (For some pair (x0, y0), it should hold that P (x) = y with probability at
least 0.9 over the algorithm’s coins and x chosen at random from Fℓ.)

Operation: 1. Let Lx,x0 be a random degree 3 curve passing through x, x0. That is,
we find a random degree 3 univariate polynomial q : F → Fℓ such that q(0) = x
and q(r) = x0 for some random r ∈ F, and set Lx,x0 = {q(t) : t ∈ F}. (See
Figure 19.8.)

2. Query f on all the |F| points of Lx,x0 to obtain the set S of the |F| pairs
{(t, f(q(t)) : t ∈ F)}.

3. Run Sudan’s Reed-Solomon list decoding algorithm to obtain a list g1, . . . , gk of
all degree 3d polynomials that have at least 8

√

d|F| agreement with the pairs in
S.

4. If there is a unique i such that gi(r) = y0 then output gi(0). Otherwise, halt
without outputting anything.

Lx,x0

x

x0

Figure 19.8 Given access to a corrupted version of a polynomial P : Fℓ → F and some
index (x0, y0), to compute P (x) we pass a random degree-3 curve Lx,x0 through x and x0,
and use Reed-Solomon list decoding to recover a list of candidates for the restriction of P
to the curve Lx,x0 . If only one candidate satisfies that its value on x0 is y0, then we use
this candidate to compute P (x).

We will show that for every f : Fℓ → F that agrees with an ℓ-variable degree d polynomial
on a 10

√

d/|F| fraction of its input, and every x ∈ Fℓ, if x0 is chosen at random from Fℓ and
y0 = P (x0), then with probability at least 0.9 (over the choice of x0 and the algorithm’s
coins) the above decoder will output P (x). By a standard averaging argument, this implies
that there exist a pair (x0, y0) such that given this pair, the algorithm outputs P (x) for a
0.9 fraction of the x’s in Fℓ.

For every x ∈ Fℓ, the following fictitious algorithm can be easily seen to have an identical
output to the output of our decoder on the inputs x, a random x0 ∈R

Fℓ and y0 = P (x0):

1. Choose a random degree 3 curve L that passes through x. That is, L = {q(t) : t ∈ F}
where q : F→ Fℓ is a random degree 3 polynomial satisfying q(0) = x.

2. Obtain the list g1, . . . , gm of all univariate polynomials over F such that for every i,
there are at least 6

√

d|F| values of t such that gi(t) = f(q(t)).

3. Choose a random r ∈ F. Assume that you are given the value y0 = P (q(r)).

4. If there exists a unique i such that gi(r) = y0 then output gi(0). Otherwise, halt
without an input.

Yet, this fictitious algorithm will output P (x) with probability at least 0.9. Indeed,
since all the points other than x on a random degree 3 curve passing through x are pairwise
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independent, Chebyshev’s inequality implies that with probability at least 0.99, the function
f will agree with the polynomial P on at least 8

√

d|F| points on this curve. Thus the list
g1, . . . , gm we obtain in Step 2 contains the polynomial g : F→ F defined as g(t) = P (q(t)).
We leave it as Exercise 19.15 to show that there can not be more than

√

|F |/4d polynomials
in this list. Since two 3d-degree polynomials can agree on at most 3d + 1 points, with

probability at least 1− (3d+1)
√

|F |/4d
|F| > 0.99, if we choose a random r ∈ F, then g(r) 6= gi(r)

for every gi 6= g in this list. Thus, with this probability, we will identify the polynomial g
and output the value g(0) = P (x). �

19.6.3 Local list decoding of concatenated codes.

If E1 : {0, 1}n → Σm and E2 : Σ → {0, 1}k are two codes that are locally list decodable

then so is the concatenated code E2 ◦ E1 : {0, 1}n → {0, 1}mk. As in Section 19.4.3, the
idea is to simply run the local decoder for E1 while answering its queries using the decoder
of E2. More concretely, assume that the decoder for E1 takes an index in the set I1 and can
handle 1 − ǫ1 errors, and that E2 takes an index in I2 and can handle 1/2− ǫ2 errors. Our
decoder for E2 ◦E1 will take a pair of indices i1 ∈ I1 and i2 ∈ I2 and run the decoder for E1

with the index i1, and whenever this decoder makes a query answer it using the decoder E2

with the index i2. (See Section 19.4.3.) We claim that this decoder can handle 1/2− ǫ1ǫ2|I2|
number of errors. Indeed, if y agrees with some codeword E2 ◦E1(x) on an ǫ1ǫ2|I2| fraction
of the coordinates then there are ǫ1|I2| blocks on which it has at least 1/2 + ǫ2 agreement
with the blocks this codeword. Thus, by an averaging argument, there exists an index i2
such that given i2, the output of the E2 decoder agrees with E1(x) on ǫ1 symbols, implying
that there exists an index i1 such that given (i1, i2) and every coordinate j, the combined
decoder will output xj with high probability.

19.6.4 Putting it all together.

As promised, we can use local list decoding to transform a function that is merely worst-case
hard into a function that cannot be computed with probability significantly better than 1/2:

Theorem 19.27 (Worst-case hardness to strong hardness)
Let f ∈ E be such that Hwrs(f)(n) ≥ S(n) for some time-constructible non-decreasing S : N→
N. Then there exists a function g ∈ E and a constant c > 0 such that Havg(g)(n) ≥ S(n/c)1/c

for every sufficiently large n.

Proof sketch: As in Section 19.4.4, for every n, we treat the restriction of f to {0, 1}n
as a string f ′ ∈ {0, 1}N where N = 2n and encode it using the concatenation of a Reed-
Muller code with the Walsh-Hadamard code. For the Reed-Muller code we use the following
parameters:

• The field F is of size S(n)1/100. (We may assume without loss of generality that
S(n) > n1000 as otherwise the theorem is trivial.)

• The degree d is of size log2N .

• The number of variables ℓ is 2 logN/ logS(n).

The function g is obtained by applying this encoding to f . Given a circuit of size
S(n)1/100 that computes g with probability better than 1/2 + 1/S(n)1/50, we will be able to
transform it, in S(n)O(1) time, to a circuit computing f perfectly. We hardwire the index
i0 to this circuit as part of its description. �
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What have we learned?

• Yao’s XOR Lemma allows us to amplify hardness by transforming a Boolean function
with only mild hardness (cannot be computed with say 0.99 success) into a Boolean
function with strong hardness (cannot be computed with 0.51 success).

• An error correcting code is a function that maps every two strings into a pair of strings
that differ on many of their coordinates. An error correcting code with a local decoding
algorithm can be used to transform a function hard in the worst-case into a function
that is mildly hard on the average case.

• A code over the binary alphabet can have distance at most 1/2. A code with distance δ
can be uniquely decoded up to δ/2 errors. List decoding allows to a decoder to handle
almost a δ fraction of errors, at the expense of returning not a single message but a
short list of candidate messages.

• We can transform a function that is merely hard in the worst case to a function that
is strongly hard in the average case using the notion of local list decoding of error
correcting codes.

Chapter notes and history

Yao’s XOR Lemma was first stated and proven by Yao in oral presentations of his paper [Yao82a].
Since then several proofs have been published with the first one by Levin in [Lev87] (see the survey
[GNW95]). Russell Impagliazzo’s hardcore lemma was proven in [Imp95b]; the proof of Section 19.1.2
is due to Noam Nisan.

The study of error correcting codes is an extremely beautiful and useful field, and we have
barely scratched its surface here. This field was initiated by two roughly concurrent seminal papers
of Shannon [Sha48] and Hamming [Ham50]. The lecture notes of Madhu Sudan (available from his
home page) provide a good starting point for theoretical computer scientists; see also the survey
[Sud01].

Reed-Solomon codes were invented in 1960 by Irving Reed and Gustave Solomon [RS60]. The
first efficient decoding algorithm for Reed-Solomon codes was by Peterson [Pet60]. (Interestingly,
this algorithm is one of the first non-trivial polynomial-time algorithms invented, preceding even
the formal definition of the class P.) The algorithm presented in Section 19.3 is a simplification
due to Gemmell and Sudan [GS92] of the Berlekamp-Welch decoder [BW86].

Reed-Muller codes were invented by Muller [Mul54] with the first decoder given by Reed
[Ree54]. The first Reed-Muller local decoders were given by Beaver and Feigenbaum [BF90] and
Lipton [Lip91], who observed this implies a worst-case to average-case connection for the Permanent
(see also Section 8.6.2). Babai, Fortnow, and Lund [BFL90] observed that by taking multilinear
extensions, such connections also hold for PSPACE and EXP, and Babai et al [BFNW93] showed
that this allows for derandomization from worst-case assumptions. The Reed-Muller local decoding
algorithm of Section 19.4.2 is due to Gemmell et al [GLR+91].

The first list-decoding algorithm for Reed-Solomon codes was given by Sudan [Sud96] and was
subsequently improved by Guruswami and Sudan [GS98]. Recently, Parvaresh and Vardy [PV05]
showed a list-decoding algorithm handling even more errors for a variant of the Reed-Solomon code,
a result that was further improved by Guruswami and Rudra [GR06], achieving an optimal tradeoff
between rate and list decoding radius for large alphabets.

The quantitatively strong hardness amplification (Theorem 19.27) was first shown by Impagli-
azzo and Wigderson [IW97] that gave a derandomized version of Yao’s XOR Lemma. Our presen-
tation follows the alternative proof by Sudan, Trevisan and Vadhan [STV99] who were the first to
make an explicit connection between error correcting codes and hardness amplification, and also
the first to explicitly define local list decoding and use it for hardness amplification. The first local
list decoding algorithm for the Walsh-Hadamard code was given by Goldreich and Levin [GL89]
(although the result is not explicitly described in these terms there). The Reed-Muller local list
decoding algorithm of Section 19.6 is a variant of the algorithm of [STV99].
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The question raised in Problem 19.8 is treated in O’Donnell [O’D04], where a hardness amplifi-
cation lemma is given for NP. For a sharper result, see Healy, Vadhan, and Viola [HVV04].

Exercises

19.1 LetX1, . . . ,Xn be independent random variables such thatXi is equal to 1 with probability 1−δ and
equal to 0 with probability δ. Let X =

∑k
i=1Xi (mod 2). Prove that Pr[X = 1] = 1/2 + (1− 2δ)k.

H463

19.2 Prove that if there exists a δ-density distribution H such that Prx∈
R

H [C(x) = f(x)] ≤ 1/2 + e for

every circuit C of size at most S with S ≤
√

ǫ2δ2n/100, then there exists a subset I ⊆ {0, 1}n of

size at least δ
2
2n such that

Pr
x∈

R
I
[C(x) = f(x)] ≤ 1/2 + 2ǫ

for every circuit C of size at most S. H464

19.3 Let H be an δ-density distribution over {0, 1}n (i.e., Pr[H = x] ≤ 1/(δ2n) for every x ∈ {0, 1}n).

(a) Let G be the distribution defined by Pr[G = x] = (2−n − δ Pr[H = x])/(1 − δ) for every
x ∈ {0, 1}n. Prove that G is indeed a distribution (i.e., all probabilities are non-negative and
sum up to 1).

(b) Let U be the following distribution: with probability δ pick an element from H and with
probability 1 − δ pick an element from G. Prove that U is the uniform distribution.

H464

19.4 Complete the proof of Impagliazzo’s Hardcore Lemma (Lemma 19.3) for general k.

19.5 Prove the hyperplane separation theorem in the following form: If C,D ⊆ Rm are two disjoint
convex set with C closed and D compact (i.e., closed and bounded) then there exists a nonzero
vector z ∈ Rm and a number a ∈ R such that

x ∈ C ⇒ 〈x, z〉 ≥ a

y ∈ D ⇒ 〈y, z〉 ≤ a

H464

19.6 Prove the Min-Max Theorem (see Note 19.4) using the hyperplane separation theorem as stated in
Exercise 19.5. H464

19.7 ([CG85]) We say that a distribution D over {0, 1}n is K-flat if D is the uniform distribution over

a subset of {0, 1}n with size at least K. Prove that for every k, every 2−k-density distribution
H is a convex combination of 2n−k-flat distributions. That is, there are N 2n−k-flat distributions
D1, . . . , DN and non-negative numbers α1, . . . , αN such that

∑

i αi = 1 and H is equivalent to the
distribution obtained by picking i with probability αi and then picking a random element from Di.
H464

19.8 Suppose we know that NP contains a function that is weakly hard for all polynomial-size circuits.
Can we use the XOR Lemma to infer the existence of a strongly hard function in NP? Why or
why not?

19.9 For every δ < 1/2 and sufficiently large n, prove that there exists a function E : {0, 1}n →
{0, 1}n/(1−H(δ)) that is an error correcting code with distance δ, where H(δ) = δ log(1/δ) + (1 −
δ) log(1/(1 − δ)). H464

19.10 Show that for every E : {0, 1}n → {0, 1}m that is an error correcting code of distance 1/2, 2n < 10m.
Show if E is an error correcting code of distance δ > 1/2, then 2n < 10/(δ − 1/2). H464

19.11 Let E : {0, 1}n → {0, 1}m be an ECC such that there exist two distinct strings x1, x2 ∈ {0, 1}m

with ∆(E(x1), E(x2)) ≤ δ. Prove that there’s no decoder for E handling δ/2 or more errors. That
is, show that there is no function D : {0, 1}m → {0, 1}n such that for every x ∈ {0, 1}m and y with
∆(y,E(x)) ≤ δ/2, D(y) = x.

19.12 Let E : {0, 1}n → {0, 1}m be a δ-distance ECC. Transform E to a code E′ : {0, 1, 2, 3}n/2 →
{0, 1, 2, 3}m/2 in the obvious way. Show that E′ has distance δ. Show that the opposite direction is

not true: show an example of a δ-distance ECC E′ : {0, 1, 2, 3}n/2 → {0, 1, 2, 3}m/2 such that the
corresponding binary code has distance 2δ.

19.13 Prove Theorem 19.15 as stated. That is show how to recover a d-degree polynomial G from a
sequence of pairs (a1, b1), . . . , (am, bm) agreeing with G in t places whenever t ≥ m

2
+ d

2
+ 1.
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19.14 Prove Theorem 19.17. H464

19.15 Let f : F → F be any function. Suppose integer d ≥ 0 and number ǫ satisfy ǫ > 2
√

d
|F| . Prove

that there are at most 2/ǫ degree d polynomials that agree with f on at least an ǫ fraction of its
coordinates. H464

19.16 Prove that if Q(x, y) is a bivariate polynomial over some field F and P (x) is a univariate polynomial
over F such that Q(P (x), x) is the zero polynomial then Q(x, y) = (y − P (x))A(x, y) for some
polynomial A(x, y). H464

19.17 (Linear codes) We say that an ECC E : {0, 1}n → {0, 1}m is linear if for every x, x′ ∈ {0, 1}n,
E(x + x′) = E(x) + E(x′) where + denotes componentwise addition modulo 2. A linear ECC E
can be described by an m × n matrix A such that (thinking of x as a column vector) E(x) = Ax
for every x ∈ {0, 1}n.

(a) Prove that the distance of a linear ECC E is equal to the minimum over all nonzero x ∈ {0, 1}n

of the fraction of 1’s in E(x).

(b) Prove that for every δ > 0, there exists a linear ECC E : {0, 1}n → {0, 1}1.1n/(1−H(δ)) with
distance δ, where H(δ) = δ log(1/δ) + (1 − δ) log(1/(1 − δ)). H464

(c) Prove that for some δ > 0 there is an ECC E : {0, 1}n → {0, 1}poly(n) of distance δ with
polynomial-time encoding and decoding mechanisms. (You need to know about the field
GF(2k) to solve this, see Appendix A.) H464

(d) We say that a linear code E : {0, 1}n → {0, 1}m is ǫ-biased if for every non-zero x ∈ {0, 1}n,
the fraction of 1’s in E(x) is between 1/2 − ǫ and 1/2 + ǫ. Prove that for every ǫ > 0, there

exists an ǫ-biased linear code E : {0, 1}n → {0, 1}poly(n/ǫ) with a polynomial-time encoding
algorithm.

19.18 Recall that for every m there is field F = GF(2m) of 2m elements such that we can represent
each element of F as a vector in GF(2)m with addition in F corresponding to bitwise XOR (see
Appendix A). Thus for every a ∈ F, the operation x 7→ a × x (where × denotes multiplication in
F) is a linear operation in GF(2)m. Moreover, this operation is efficiently computable given the
description of a.

(a) Prove that for every nonzero x ∈ F , if we choose a uniformly in F then a × x is distributed
uniformly over F.

(b) Prove that for every nonzero x ∈ F , the probability over a random a ∈R F that a × x has at

most m/10 ones in its representation as an m-bit vector is less than 2−m/10. Conclude that

there exists a ∈ F such that the function that maps x ∈ {0, 1}m/10 to a × (x ◦ 00.9m) (where
◦ denotes concatenation) is an error correcting code with distance at least 0.1.

(c) Show that there exists constants c, δ > 0 such that for every n there is an explicit error
correcting code E : {0, 1}n → {0, 1}cn of distance at least δ. H464
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Chapter 20

Derandomization

“God does not play dice with the universe”
Albert Einstein

“Anyone who considers arithmetical methods of producing random digits is, of
course, in a state of sin.”
John von Neumann, quoted by Knuth 1981

Randomization is an exciting and powerful paradigm in computer science and, as we saw
in Chapter 7, often provides the simplest or most efficient algorithms for many computational
problems. In fact, in some areas of Computer Science, such as distributed algorithms and
cryptography, randomization is proven to be necessary to achieve certain tasks or achieve
them efficiently. Thus it’s natural to conjecture (as many scientists initially did) that at
least for some problems, randomization is inherently necessary: one cannot replace the
probabilistic algorithm with a deterministic one without a significant loss of efficiency. One
concrete version of this conjecture would be that BPP * P (see Chapter 7 for definition of
BPP). Surprisingly, recent research has provided more and more evidence that this is likely
not to hold. As we will see in this chapter, under very reasonable complexity assumptions,
there is in fact a way to derandomize (i.e., transform into a deterministic algorithm) every
probabilistic algorithm of the BPP type with only a polynomial loss of efficiency. Thus
today most researchers believe that BPP = P. We note that this need not imply that
randomness is useless in every setting —we already saw in Chapter 8 its crucial role in the
definition of interactive proofs.

In Section 20.1 we define pseudorandom generators, which will serve as our main tool
for derandomizing probabilistic algorithms. Their definition is a relaxation of the definition
of secure pseudorandom generators in Chapter 9. This relaxation will allow us to construct
such generators with better parameters and under weaker assumptions than what is possible
for secure pseudorandom generators. In Section 20.2 we provide a construction of such
pseudorandom generators under the assumptions that there exist explicit functions with
high average-case circuit complexity. In Chapter 19 we show how to provide a construction
that merely requires high worst-case circuit complexity.

While the circuit lower bounds we assume are widely believed to be true, they also seem
to be very difficult to prove. This raises the question of whether assuming or proving such
lower bounds is necessary to obtain derandomization. In Section 20.3 we show that it’s
possible to obtain at least a partial derandomization result based only on the assumption
that BPP 6= EXP. Alas, as we show in Section 20.4, full derandomization of BPP will
require proving circuit lower bounds.

Even though we still cannot prove sufficiently strong circuit lower bounds, just as in
cryptography, we can use conjectured hard problems for derandomization instead of prov-
able hard problems, and to a certain extent end up with a win-win situation: if the con-
jectured hard problem is truly hard then the derandomization will be successful; and if the
derandomization fails then it will lead us to an algorithm for the conjectured hard problem.
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Example 20.1 (Polynomial identity testing)
We explain the notion of derandomization with an example. One algorithm that
we would like to derandomize is the one described in Section 7.2.3 for testing
if a given polynomial (represented in the form of an arithmetic circuit) is the
identically zero polynomial. If P is an n-variable nonzero polynomial of total
degree d over a large enough finite field F (|F| > 10d will do) then most of
the vectors u ∈ Fn will satisfy P (u) 6= 0 (see Lemma 7.5). Therefore, checking
whether P ≡ 0 can be done by simply choosing a random u ∈

R
Fn and applying p

on u. In fact, it is easy to show that there exists a set of m2-vectors u1, . . . ,um
2

such that for every such nonzero polynomial P that can be computed by a size
m arithmetic circuit, there exists an i ∈ [m2] for which P (ui) 6= 0.
This suggests a natural approach for a deterministic algorithm: show a deter-
ministic algorithm that for every m ∈ N, runs in poly(m) time and outputs a

set u1, . . . ,um
2

of vectors satisfying the above property. This shouldn’t be too
difficult— after all the vast majority of the sets of vectors have this property, so
how hard can it be to find a single one? Surprisingly this turns out to be quite
hard: without using complexity assumptions, we do not know how to obtain such
a set, and in Section 20.4 we will see that in fact obtaining such a set (or even
any other deterministic algorithm for this problem) will imply some nontrivial
circuit lower bounds.

20.1 Pseudorandom Generators and Derandomization

The main tool we will use for derandomization is a pseudorandom generator. This is a twist
on the definition of a cryptographically secure pseudorandom generator we saw in Chapter 9,
with the main difference that here we will allow the generator to run in exponential time (and
in particular allow the generator more time than the distinguisher). Another difference is
that we consider non-uniform distinguishers— in other words, circuits— rather than Turing
machines, as was done in Chapter 9. (This second difference is not an essential one. As
mentioned in the notes at the end of Chapter 9, we could have used circuits there as well.)

Definition 20.2 (Pseudorandom generators)
A distribution R over {0, 1}m is (S, ǫ)-pseudorandom (for S ∈ N, ǫ > 0) if for every circuit
C of size at most S,

∣

∣

∣Pr[C(R) = 1]− Pr[C(Um) = 1]
∣

∣

∣ < ǫ ,

where Um denotes the uniform distribution over {0, 1}m.

Let S : N → N be some function. A 2n-time computable function G : {0, 1}∗ → {0, 1}∗ is
an S(ℓ)-pseudorandom generator if |G(z)| = S(|z|) for every z ∈ {0, 1}∗ and for every ℓ ∈ N
the distribution G(Uℓ) is (S(ℓ)3, 1/10)-pseudorandom.

?

C

$$$

$$$$$$$$$$$$$$$$

G

m m
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The choices of the constants 3 and 1/10 in the definition of an S(ℓ)-pseudorandom gen-
erator are arbitrary and made for convenience. To avoid annoying cases, we will restrict
our attention to S(ℓ)-pseudorandom generators for functions S : N → N that are time-
constructible and non-decreasing (i.e., S(ℓ′) ≥ S(ℓ) for ℓ′ ≥ ℓ).

20.1.1 Derandomization using pseudorandom generators

The relation between pseudorandom generators and simulating probabilistic algorithms is
rather straightforward:

Lemma 20.3 Suppose that there exists an S(ℓ)-pseudorandom generator for a time-constructible
non-decreasing S : N→ N. Then for every polynomial-time computable function ℓ : N→ N,
BPTIME(S(ℓ(n))) ⊆ DTIME(2cℓ(n)) for some constant c. ♦

Before proving Lemma 20.3 it is instructive to see what derandomization results it implies
for various values of S. This is observed in the following simple corollary, left as Exercise 20.1:

Corollary 20.4 1. If there exists a 2ǫℓ-pseudorandom generator for some constant ǫ > 0
then BPP = P.

2. If there exists a 2ℓ
ǫ

-pseudorandom generator for some constant ǫ > 0 then BPP ⊆
QuasiP = DTIME(2polylog(n)).

3. If for every c > 1 there exists an ℓc-pseudorandom generator then BPP ⊆ SUBEXP =
∩ǫ>0DTIME(2n

ǫ

). ♦

Proof of Lemma 20.3: A language L is in BPTIME(S(ℓ(n))) if there is an algorithm
A that on input x ∈ {0, 1}n runs in time cS(ℓ(n)) for some constant c, and satisfies

Pr
r∈

R
{0,1}m

[A(x, r) = L(x)] ≥ 2/3 , (1)

where m ≤ S(ℓ(n)) and we define L(x) = 1 if x ∈ L and L(x) = 0 otherwise.
The main idea is that if we replace the truly random string r with the string G(z)

produced by picking a random z ∈ {0, 1}ℓ(n), then an algorithm such as A that runs in
only S(ℓ) time cannot detect this switch most of the time, and so the probability 2/3 in
the previous expression does not drop below 2/3 − 0.1 > 0.5. Thus to derandomize A, we
do not need to enumerate over all r ∈ {0, 1}m: it suffices to enumerate over all the strings

G(z) for z ∈ {0, 1}ℓ(n)
and check whether or not the majority of these make A accept. This

derandomized algorithm runs in 2O(ℓ(n)) time instead of the trivial 2m time.
Now we make this formal. On input x ∈ {0, 1}n, our deterministic algorithm B will go

over all z ∈ {0, 1}ℓ(n), compute A(x,G(z)) and output the majority answer.1 We claim that
for n sufficiently large, the fraction of z’s such that A(x,G(z)) = L(x) is at least 2/3− 0.1.
This suffices to prove that L ∈ DTIME(2cℓ(n)) as we can “hardwire” into the algorithm
the correct answer for finitely many inputs.

Suppose this is false and there exists an infinite sequence of x’s for which Pr[A(x,G(z)) =
L(x)] < 2/3 − 0.1. Then there exists a distinguisher for the pseudorandom generator: just
use the Cook-Levin transformation (e.g., as in the proof of Theorem 6.6) to construct a
circuit computing the function r 7→ A(x, r), where x is hardwired into the circuit. (This
“hardwiring” is the place in the proof where we use non-uniformity.) This circuit has size
O(S(ℓ(n)))2 which is smaller than S(ℓ(n))3 for sufficiently large n. �

The proof of Lemma 20.3 shows why it is OK to allow the pseudorandom generator
in Definition 20.2 to run in time exponential in its seed length. The reason is that the
derandomized algorithm enumerates over all possible seeds of length ℓ, and thus would
take exponential (in ℓ) time even if the generator itself were to run in less than exp(ℓ) time.

1If m < S(ℓ(n)) then A(x,G(z)) denotes the output of A on input x using the first m bits of G(z) for its
random choices.
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Notice also that allowing the generator exp(ℓ) time means that it has to “fool” distinguishers
that run for less time than it does. By contrast, the definition of cryptographically secure
pseudorandom generators (Definition 9.8 in Chapter 9) required the generator to run in some
fixed polynomial time, and yet fool arbitrary polynomial-time distinguishers. This difference
in these definitions stems from the intended usage. In the cryptographic setting the generator
is used by honest users and the distinguisher is the adversary attacking the system — and
it is reasonable to assume the attacker can invest more computational resources than those
needed for normal/honest use of the system. In derandomization, the generator is used by
the derandomized algorithm and the ”distinguisher” is the probabilistic algorithm that is
being derandomized. In this case it is reasonable to allow the derandomized algorithm more
running time than the original probabilistic algorithm. Of course, allowing the generator to
run in exponential time potentially makes it easier to prove their existence compared with
secure pseudorandom generators, and this indeed appears to be the case. If we relaxed the
definition even further and made no efficiency requirements then showing the existence of
such generators becomes almost trivial (see Exercise 20.2) but they no longer seem useful
for derandomization.

We will construct pseudorandom generators based on complexity assumptions, using
quantitatively stronger assumptions to obtain quantitatively stronger pseudorandom gen-
erators (i.e., S(ℓ)-pseudorandom generators for larger functions S). The strongest (though
still reasonable) assumption will yield a 2Ω(ℓ)-pseudorandom generator, thus implying that
BPP = P.

20.1.2 Hardness and Derandomization

We construct pseudorandom generators under the assumptions that certain explicit func-
tions are hard. In this chapter we use assumptions about average-case hardness, but using
the results of Chapter 19 we will be able to also construct pseudorandom generators assum-
ing only worst-case hardness. Both worst-case and average-case hardness refer to the size
of the minimum Boolean circuit computing the function. Recall that we define the average-
case hardness of a function f : {0, 1}n → {0, 1}, denoted by Havg(f), to be the largest number
S such that Prx∈R{0,1}n [C(x) = f(x)] < 1/2 + 1/S for every Boolean circuit C on n inputs

with size at most S (see Definition 19.1). For f : {0, 1}∗ → {0, 1}, we let Havg(f)(n) denote
the average-case hardness of the restriction of f to {0, 1}n.

Example 20.5
Here are some examples of functions and their conjectured or proven hardness:

1. If f : {0, 1}∗ → {0, 1} is a random function (i.e., for every x ∈ {0, 1}∗ we
choose f(x) using an independent unbiased coin) then with high probability,
both the worst-case and average-case hardness of f are exponential (see
Exercise 20.3). In particular, with probability tending to 1 as n grows,
both Hwrs(f)(n) and Havg(f)(n) exceed 20.99n.

2. If f ∈ BPP then, since BPP ⊆ P/poly, both Hwrs(f) and Havg(f) are bounded
by some polynomial.

3. It seems reasonable to believe that 3SAT has exponential worst-case hard-
ness; that is, Hwrs(3SAT) ≥ 2Ω(n). A weaker assumption is that NP * P/poly,
in which case Hwrs(3SAT) is not bounded by any polynomial. The average
case complexity of 3SAT for uniformly chosen inputs is unclear, and in any
case is dependent upon the way we choose to represent formulae as strings.

4. Under widely believed cryptographic assumptions, NP contains functions
that are hard on the average. If g is a one-way permutation (as defined
in Chapter 9) that cannot be inverted with polynomial probability by
polynomial-sized circuits, then by Theorem 9.12, the function f that maps
the pair x, r ∈ {0, 1}n to g−1(x) ⊙ r (where x ⊙ r =

∑n
i=1 xiri (mod 2))

has super-polynomial average-case hardness: Havg(f) ≥ nω(1).
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The main theorem of this section uses hard-on-the average functions to construct pseu-
dorandom generators:

Theorem 20.6 (PRGs from average-case hardness)
Let S : N→ N be time-constructible and non-decreasing. If there exists f ∈ DTIME(2O(n))

such that Havg(f)(n) ≥ S(n) for every n then exists an S(δℓ)δ-pseudorandom generator for
some constant δ > 0.

Combining this result with Theorem 19.27 of Chapter 19 we obtain the following theorem
that gives even stronger evidence (given the plethora of plausible hard functions mentioned
above) for the conjecture that derandomizing probabilistic algorithms is possible:

Theorem 20.7 (Derandomization under worst-case assumptions)
Let S : N→ N be time-constructible and non-decreasing. If there exists f ∈ DTIME(2O(n))

such that Hwrs(f)(n) ≥ S(n) for every n then exists an S(δℓ)δ-pseudorandom generator for
some constant δ > 0. In particular, the following corollaries hold:

1. If there exists f ∈ E = DTIME(2O(n)) and ǫ > 0 such that Hwrs(f) ≥ 2ǫn then
BPP = P.

2. If there exists f ∈ E = DTIME(2O(n)) and ǫ > 0 such that Hwrs(f) ≥ 2n
ǫ

then
BPP ⊆ QuasiP.

3. If there exists f ∈ E = DTIME(2O(n)) such that Hwrs(f) ≥ nω(1) then BPP ⊆
SUBEXP.

We can replace E with EXP = DTIME(2poly(n)) in Corollaries 2 and 3 above. Indeed,
for every f ∈ DTIME(2n

c

), let g be the function that on input x ∈ {0, 1}∗ outputs f applied
to the first |x|1/c bits of x. Then, g is in DTIME(2n) and satisfies Havg(g)(n) ≥ Havg(f)(n1/c).

Therefore, if there exists f ∈ EXP with Havg(f) ≥ 2n
δ

then there there exists a constant

δ′ > 0 and a function g ∈ E with Havg(g) ≥ 2n
δ′

, and so we can replace E with EXP in
Corollary 2. A similar observation holds for Corollary 3. Note that EXP contains many
classes we believe to have hard problems, such as NP, PSPACE, ⊕P and more.

Remark 20.8
Nisan and Wigderson [NW88] were the first to show a pseudorandom generator from average-
case hardness, but they did not prove Theorem 20.6 as it is stated above. Rather, The-
orem 20.6 was proven by Umans [Uma03] following a long sequence of works including
[BFNW93, IW97, ISW99, STV99, SU01]. Nisan and Wigderson only proved that under the same
assumptions there exists an S′(ℓ)-pseudorandom generator, where S′(ℓ) = S(n)δ for some
constant δ > 0 and n satisfying n ≥ δ

√

ℓ logS(n). Note that this bound is still sufficient to
derive all three corollaries above. It is this weaker version we prove in this book.

20.2 Proof of Theorem 20.6: Nisan-Wigderson Construction

How can we use a hard function to construct a pseudorandom generator? As a warmup
we start with two “toy examples”. We first show how to use a hard function to construct
a pseudorandom generator whose output is only a single bit longer than its input. Then
we show how to obtain such a generator whose output is two bits longer than the input.
Of course, neither of these suffices to prove Theorem 20.6 but they do give insight into the
connection between hardness and randomness.
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20.2.1 Two toy examples

Extending the input by one bit using Yao’s Theorem.

The following Lemma uses a hard function to construct a “toy” generator that extends its
input by a single bit:

Lemma 20.9 (One-bit generator) Suppose that there exist f ∈ E with Havg(f) ≥ n4. Then,
there exists an S(ℓ)-pseudorandom generator G for S(ℓ) = ℓ+ 1. ♦

Proof: The generator G is very simple: for every z ∈ {0, 1}ℓ, we set

G(z) = z ◦ f(z)

(where ◦ denotes concatenation). G clearly satisfies the output length and efficiency re-
quirements of an (ℓ+1)-pseudorandom generator. To prove that its output is ((ℓ+1)3, 1/10)-
pseudorandom we use Yao’s Theorem from Chapter 9 showing that pseudorandomness is
implied by unpredictability:2

Theorem 20.10 (Theorem 9.11, restated) Let Y be a distribution over {0, 1}m. Suppose
that there exist S > 10n and ǫ > 0 such that for every circuit C of size at most 2S and
i ∈ [m],

Pr
r∈

R
Y
[C(r1, . . . , ri−1) = ri] ≤

1

2
+

ǫ

m

Then Y is (S, ǫ)-pseudorandom. ♦

By Theorem 20.10, to prove Lemma 20.9 it suffices to show that there does not exist a
circuit C of size 2(ℓ+ 1)3 < ℓ4 and a number i ∈ [ℓ + 1] such that

Pr
r=G(Uℓ)

[C(r1, . . . , ri−1) = ri] >
1
2 + 1

20(ℓ+1) . (2)

However, for every i ≤ ℓ, the ith bit of G(z) is completely uniform and independent from the
first i− 1 bits, and hence cannot be predicted with probability larger than 1/2 by a circuit
of any size. For i = ℓ+ 1, Equation (2) becomes,

Pr
z∈R{0,1}ℓ

[C(z) = f(z)] >
1

2
+

1

20(ℓ+ 1)
>

1

2
+

1

ℓ4
,

which cannot hold under the assumption that Havg(f) ≥ n4. �

Extending the input by two bits using the averaging principle.

We continue to progress in “baby steps” and consider the next natural toy problem: con-
structing a pseudorandom generator that extends its input by two bits. This is obtained in
the following Lemma:

Lemma 20.11 (Two-bit generator) Suppose that there exists f ∈ E with Havg(f) ≥ n4.
Then, there exists an (ℓ+2)-pseudorandom generator G. ♦

Proof: The construction is again very natural: for every z ∈ {0, 1}ℓ, we set

G(z) = z1 · · · zℓ/2 ◦ f(z1, . . . , zℓ/2) ◦ zℓ/2+1 · · · zℓ ◦ f(zℓ/2+1, . . . , zℓ) .

Again, the efficiency and output length requirements are clearly satisfied. To show G(Uℓ)
is ((ℓ + 2)3, 1/10)-pseudorandom, we again use Theorem 20.10, and so need to prove that
there does not exists a circuit C of size 2(ℓ+ 1)3 and i ∈ [ℓ+ 2] such that

Pr
r=G(Uℓ)

[C(r1, . . . , ri−1) = ri] >
1

2
+

1

20(ℓ+ 2)
. (3)

2Although this theorem was stated and proved in Chapter 9 for the case of uniform Turing machines,
the proof extends to the case of circuits; see Exercise 20.5.
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Once again, (3) cannot occur for those indices i in which the ith output of G(z) is truly
random, and so the only two cases we need to consider are i = ℓ/2 + 1 and i = ℓ + 2.
Equation (3) cannot hold for i = ℓ/2 + 1 for the same reason as in Lemma 20.9. For
i = ℓ+ 2, Equation (3) becomes:

Pr
r,r′∈R{0,1}ℓ/2

[C(r ◦ f(r) ◦ r′) = f(r′)] >
1

2
+

1

20(ℓ+ 2)
(4)

This may seem somewhat problematic to analyze since the input to C contains the bit
f(r), which C could not compute on its own (as f is a hard function). Couldn’t it be that
the input f(r) helps C in predicting the bit f(r′)? The answer is NO, and the reason is
that r′ and r are independent. Formally, we use the following principle (see Section A.2.2
in the appendix):

The Averaging Principle: If A is some event depending on two independent
random variables X,Y , then there exists some x in the range of X such that
PrY [A(x, Y )] ≥ PrX,Y [A(X,Y )].

Applying this principle here, if (4) holds then there exists a string r ∈ {0, 1}ℓ/2 such that

Pr
r′∈R{0,1}ℓ/2

[C(r, f(r), r′) = f(r′)] >
1

2
+

1

20(ℓ+ 2)
.

(Note that this probability is now only over the choice of r′.) If this is the case, we can
“hardwire” the ℓ/2 + 1 bits r ◦ f(r) (as fixing r to some constant also fixes f(r)) to the
circuit C and obtain a circuit D of size at most 2(ℓ+ 2)3 < (ℓ/2)4 such that

Pr
r′∈R{0,1}ℓ/2

[D(r′) = f(r′)] >
1

2
+

1

20(ℓ+ 2)
,

contradicting the hardness of f . �

Beyond two bits:

A generator that extends the output by two bits is still useless for our goals. We can
generalize the proof of Lemma 20.11 to obtain a generator G that extends its input by k
bits setting

G(z1, . . . , zℓ) = z1 ◦ f(z1) ◦ z2 ◦ f(z2) · · · zk ◦ f(zk) , (5)

where zi is the ith block of ℓ/k bits in z. However, no matter how big we set k and no
matter how hard the function f is, we cannot get in this way a generator that expands its
input by a multiplicative factor larger than two. Note that to prove Theorem 20.6 we need
a generator whose output might even be exponentially larger than the input! Clearly, we
need a new idea.

20.2.2 The NW Construction

The new idea is still inspired by the construction (5), but instead of taking z1, . . . , zk to be
independently chosen strings (or equivalently, disjoint pieces of the input z), we take them
to be partly dependent (non-disjoint pieces) by using combinatorial designs. Doing this will
allow us to take k so large that we can drop the actual inputs from the generator’s output
and use only f(z1) ◦ f(z2) · · · ◦ f(zk). The proof of correctness is similar to the above toy
examples and uses Yao’s technique, except the fixing of the input bits has to be done more
carefully because of dependence among the strings.
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Definition 20.12 (NW Generator)
Let I = {I1, . . . , Im} be a family of subsets of [ℓ] with |Ij | = n for every j, and let f :

{0, 1}n → {0, 1}. The (I, f)-NW generator is the function NW
f
I : {0, 1}ℓ → {0, 1}m that

maps every z ∈ {0, 1}ℓ to

NW
f
I(z) = f(z

I1
) ◦ f(z

I2
) · · · ◦ f(z

Im
) , (6)

where for z ∈ {0, 1}ℓ and I ⊆ [ℓ], z
I

denotes the restriction of z to the coordinates in I.

Ij Ij+1

f f

Conditions on the set systems and function.

We will see that in order for the generator to produce pseudorandom outputs, the function
f must display some hardness, and the family of subsets should come from a combinatorial
design, defined as follows:

Definition 20.13 (Combinatorial designs) Let d, n, ℓ satisfy ℓ > n > d. A family I =
{I1, . . . , Im} of subsets of [ℓ] is an (ℓ, n, d)-design if |Ij | = n for every j and |Ij ∩ Ik| ≤ d for
every j 6= k. ♦

The next lemma (whose proof we defer to the end of this section) yields sufficiently
efficient constructions of such designs:

Lemma 20.14 (Construction of designs) There is an algorithm A that on input 〈ℓ, d, n〉
where n > d and ℓ > 10n2/d, runs for 2O(ℓ) steps and outputs an (ℓ, n, d)-design I containing
2d/10 subsets of [ℓ]. ♦

The next lemma shows that if f is a hard function and I is a design with sufficiently
good parameters, then NW

f
I(Uℓ) is indeed a pseudorandom distribution:

Lemma 20.15 (Pseudorandomness using the NW generator) If I is an (ℓ, n, d)-design with

|I| = 2d/10 and f : {0, 1}n → {0, 1} satisfies Havg(f) > 22d then the distribution NW
f
I(Uℓ) is

(Havg(f)/10, 1/10)-pseudorandom. ♦

Proof: Let S = Havg(f). By Yao’s Theorem, to show that NW
f
I(Uℓ) is (S/10, 1/10)-pseudorandom

it suffices to prove that for every i ∈ [2d/10] there does not exist an S/2-sized circuit C such
that

Pr
Z∼Uℓ

R=NW
f
I(Z)

[C(R1, . . . , Ri−1) = Ri] ≥
1

2
+

1

10 · 2d/10 . (7)

For contradiction’s sake, assume that (7) holds for some circuit C and some i. Plugging in

the definition of NW
f
I , (7) becomes:

Pr
Z∼Uℓ

[C(f(Z
I1

), · · · , f(Z
Ii−1

)) = f(Z
Ii

)] ≥ 1

2
+

1

10 · 2d/10 . (8)

Letting Z1 and Z2 denote the two independent variables corresponding to the coordinates
of Z in Ii and [ℓ] \ Ii respectively, (8) becomes:

Pr
Z1∼Un
Z2∼Uℓ−n

[C(f1(Z1, Z2), . . . , fi−1(Z1, Z2)) = f(Z1)] ≥
1

2
+

1

10 · 2d/10 , (9)
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where for every j ∈ [2d/10], fj applies f to the coordinates of Z1 corresponding to Ij ∩ Ii
and the coordinates of Z2 corresponding to Ij \ Ii. By the averaging principle, if (9) holds

then there exists a string z2 ∈ {0, 1}ℓ−n such that

Pr
Z1∼Un

[C(f1(Z1, z2), . . . , fi−1(Z1, z2)) = f(Z1)] ≥
1

2
+

1

10 · 2d/10 . (10)

We may now appear to be in some trouble, since all of fj(Z1, z2) for j ≤ i − 1 do depend
upon Z1, one might worry that they together contain enough information about Z1 and so
a circuit could potentially predict fi(Z1) after seeing all of them. To prove that this fear is
baseless we use the fact that I is a design and f is a sufficiently hard function.

Since |Ij∩Ii| ≤ d for j 6= i, the function Z1 7→ fj(Z1, z2) (for the fixed string z2) depends
at most d coordinates of Z1 and hence can be trivially computed by a d2d-sized circuit (or
even O(2d/d) sized circuit, see Exercise 6.1). Thus if (9) holds then there exists a circuit B
of size 2d/10 · d2d + S/2 < S such that

Pr
Z1∼Un

[B(Z1) = f(Z1)] ≥
1

2
+

1

10 · 2d/10 >
1

2
+

1

S
. (11)

But this contradicts the fact that S = Havg(f). �

The proof of Lemma 20.15 shows that if NW
f
I(Uℓ) is distinguishable from the uniform

distribution U2d/10 by some circuit D, then there exists a circuit B (of size polynomial in the
size of D and in 2d) that computes the function f with probability noticeably larger than
1/2. The construction of this circuit B actually uses the circuit D as a black-box, invoking
it on some chosen inputs. This property of the NW generator (and other constructions
of pseudorandom generators) turned out to be useful in several settings. In particular,
Exercise 20.7 uses it to show that under plausible complexity assumptions, the complexity
class AM (containing all languages with a constant round interactive proof, see Chapter 8)
is equal to NP. We will also use this property in Chapter 21 to construct randomness
extractors based on pseudorandom generators.

Putting it all together: Proof of Theorem 20.6 from Lemmas 20.14 and 20.15

As noted in Remark 20.8, we do not prove here Theorem 20.6 as stated but only the weaker
statement, that given f ∈ DTIME(2O(n)) and S : N → N with Havg(f) ≥ S, we can
construct an S′(ℓ)-pseudorandom generator, where S′(ℓ) = S(n)ǫ for some ǫ > 0 and n

satisfying n ≥ ǫ
√

ℓ logS(n). On input z ∈ {0, 1}ℓ, our generator will operate as follows:

• Set n to be the largest number such that ℓ > 100n2

log S(n) . Thus, ℓ ≤ 100(n+1)2

logS(n+1) ≤ 200n2

logS(n) ,

and hence n ≥
√

ℓ logS(n)/200.

• Set d = log S(n)/10.

• Run the algorithm of Lemma 20.14 to obtain an (ℓ, n, d)-design I = {I1, . . . , I2d/5}.

• Output the first S(n)1/40 bits of NW
f
I(z).

This generator makes 2d/5 invocations of f , taking a total of 2O(n)+d steps. By possibly
reducing n by a constant factor, we can ensure the running time is bounded by 2ℓ. Moreover,
since 2d ≤ S(n)1/10, Lemma 20.15 implies that the distribution NWf (Uℓ) is (S(n)/10, 1/10)-
pseudorandom. �

Construction of combinatorial designs.

All that is left to complete the proof is to show the construction of combinatorial designs
with the required parameters:
Proof of Lemma 20.14 (construction of combinatorial designs): On inputs
ℓ, d, n with ℓ > 10n2/d, our Algorithm A will construct an (ℓ, n, d)-design I with 2d/10 sets
using the simple greedy strategy:
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Start with I = ∅ and after constructing I = {I1, . . . , Im} for m < 2d/10, search
all subsets of [ℓ] and add to I the first n-sized set I satisfying the following
condition (*): |I ∩ Ij | ≤ d for every j ∈ [m].

Clearly, A runs in poly(m)2ℓ = 2O(ℓ) time and so we only need to prove it never gets
stuck. In other words, it suffices to show that if ℓ = 10n2/d and {I1, . . . , Im} is a collection
of n-sized subsets of [ℓ] for m < 2d/10, then there exists an n-sized subset I ⊆ [ℓ] satisfying
(*). We do so by showing that if we pick I at random by choosing independently every
element x ∈ [ℓ] to be in I with probability 2n/ℓ then:

Pr[|I| ≥ n] ≥ 0.9 (12)

For every j ∈ [m], Pr[|I ∩ Ij | ≥ d] ≤ 0.5 · 2−d/10 (13)

Because the expected size of I is 2n, while the expected size of the intersection I ∩ Ij
is 2n2/ℓ < d/5, both (13) and (12) follow from the Chernoff bound. Yet, because m ≤
2d/10, together these two conditions imply that with probability at least 0.4, the set I will
simultaneously satisfy (*) and have size at least n. Since we can always remove elements
from I without damaging (*), this completes the proof. �

20.3 Derandomization under uniform assumptions

Circuit lower bounds are notoriously hard to prove. Despite decades of effort, at the moment
we do not know of a single function in NP requiring more than 5n-sized circuits to compute,
not to mention super-linear or super-polynomial circuits. A natural question is whether
such lower bounds are necessary to achieve derandomization.3 Note that pseudorandom
generators as in Definition 20.2 can be easily shown to imply circuit lower bounds: see
Exercise 20.4. However, there could potentially be a different way to show BPP = P
without constructing pseudorandom generators.

The following result shows that to some extent this is possible: one can get a non-trivial
derandomization of BPP under a uniform hardness assumption. Namely, that BPP 6=
EXP.

Theorem 20.16 (Uniform derandomization [IW98])
Suppose that BPP 6= EXP. Then for every L ∈ BPP there exists a subexponential (i.e.,

2n
o(1)

) time deterministic algorithm A such that for infinitely many n’s

Pr
x∈

R
{0,1}n

[A(x) = L(x)] ≥ 1− 1/n .

This means that unless randomness is a panacea, and every problem with an exponential
time algorithm (including 3SAT, TQBF, the permanent, etc..) can be solved in probabilistic
polynomial time, we can at least partially derandomize BPP: obtain a subexponential
deterministic simulation that succeeds well in the average-case. In fact, the conclusion of
Theorem 20.16 can be considerably strengthened: we can find an algorithm A that will solve
L with probability 1−1/n not only for inputs chosen according to the uniform distribution,
but on inputs chosen according to every distribution that can be sampled in polynomial
time. Thus, while this deterministic simulation may sometimes fail, it is hard to find inputs
on which it does!
Proof sketch of Theorem 20.16: We only sketch the proof of Theorem 20.16 here. We
start by noting that we may assume in the proof that EXP ⊆ P/poly, since otherwise there

3Note that we do not know much better lower bounds for Turing machines either. However, a-priori it
seems that a result such as BPP 6= exp may be easier to prove than circuit lower bounds, and that a natural
first step to proving such a result is to get derandomization results without assuming such lower bounds.
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is some problem in EXP with superpolynomial circuit complexity, and such a problem can
be used to build a pseudorandom generator that is strong enough to imply the conclusion
of the Theorem. (This follows from Theorem 20.7 and Exercise 20.8.) Next, note that if
EXP ⊆ P/poly then EXP is contained in the polynomial hierarchy (see Theorem 6.20 and
also Lemma 20.18 below). But that implies EXP = PH and hence we can conclude from
Toda’s and Valiant’s theorems (Theorems 17.14 and 17.11) that the permanent function
perm is EXP-complete under polynomial-time reductions. In addition, the Lemma hypoth-
esis implies that perm is not in BPP. This is a crucial point in the proof since perm is a
very special function that is downward self-reducible (see Chapter 8).

The next idea is to build a pseudorandom generatorG with super-polynomial output size
using the permanent as a hard function. We omit the details, but this can be done following
the proofs of Theorems 19.27 and 20.6 (one needs to handle the fact that the permanent’s
output is not a single bit, but this can be handled for example using the Goldreich-Levin
Theorem of Chapter 9). Looking at the proof of correctness for this pseudorandom generator
G, it can be shown to yield an algorithm T to transform for every n a distinguisher D
between G’s output ) and the uniform distribution into a polynomial-sized circuit Cn that
computes permn (which this denotes the restriction of the permanent to length n inputs).
This algorithm T is similar to the transformation shown in the proof of the standard NW
generator (proof of Theorem 20.6): the only reason it is not efficient is that it requires
computing the hard function (in this case the permanent) on several randomly chosen inputs,
which are then “hardwired” into the distinguisher.4

Suppose for the sake of contradiction that the conclusion of Theorem 20.16 is false. This
means that there is a probabilistic algorithm A whose derandomization using G fails with
noticeable probability (over the choice of a random input) for all but finitely many input
lengths. This implies that not only there is a sequence of polynomial-sized circuits {Dn}
distinguishing the output of G from the uniform distribution on all but finitely many input
lengths, but in fact there is a probabilistic polynomial-time algorithm that on input 1n will
find such a circuit Dn with probability at least 1/n (Exercise 20.9). We now make the
simplifying assumption that this probabilistic algorithm in facts finds such a distinguisher
Dn with high probability, say at least 1− 1/n2.5 Plugging this into the proof of pseudoran-
domness for the generator G, this means that there exists a probabilistic polynomial-time
algorithm T that can “learn” the permanent function: given oracle access to permn (the
restriction of perm to length n inputs) the algorithm T runs in poly(n) time and produces
a poly(n)-sized circuit computing permn.

But using T we can come up with a probabilistic polynomial-time algorithm for the
permanent that doesn’t use any oracle! To compute the permanent on length n inputs, we
compute inductively the circuits C1, . . . , Cn. Given the circuit Cn−1 we can compute the
permanent on length n inputs using the permanent’s downward self-reducibility property
(see Section 8.6.2 and the proof of Lemma 20.19 below), and so implement the oracle to
T that allows us to build the circuit Cn. Since we assumed BPP 6= EXP, and under
EXP ⊆ P/poly the permanent is EXP-complete, we get a contradiction.�

20.4 Derandomization requires circuit lower bounds

Section 20.3 shows that circuit lower bounds imply derandomization. However, circuit lower
bounds have proved tricky, so one can hope that derandomization could somehow be done
without circuit lower bounds. In this section we show this is not the case: proving that
BPP = P or even that a specific problem in BPP (namely the problem ZEROP of testing

4The proof of Theorem 20.6 only showed that there exists some inputs that when these inputs and their
answers are“hardwired” into the distinguisher then we get a circuit computing the hard function. However,
because the proof used the probabilistic method / averaging argument, it’s not hard to show that with good
probability random inputs will do.

5This gap can be handled using the fact that the permanent is a low-degree polynomial and hence has
certain self-correction / self-testing properties, see sections 8.6.2 and 19.4.2.
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whether a given polynomial is identically zero) will imply super-polynomial lower bounds
for either Boolean or arithmetic circuits. Depending upon whether you are an optimist or
a pessimist, you can view this either as evidence that derandomizing BPP is difficult, or,
as a reason to double our efforts to derandomize BPP since once we do so we’ll get “two
for the price of one”: both derandomization and circuit lower bounds.

Recall (Definition 16.7) that we say that a function f defined over the integers is in
AlgPZ

/poly
(or just AlgP/poly

for short) if f can be computed by a polynomial size algebraic

circuit whose gates are labeled by +, −, and ×.6 We let perm denote the problem of
computing the permanent of matrices over the integers. Recall also the Polynomial Identity
Testing (ZEROP) problem in which the input consists of a polynomial represented by an
arithmetic circuit computing it and we have to decide if it is the identically zero polynomial
(see Example 20.1 and Section 7.2.3). The problem ZEROP is in coRP ⊆ BPP and we will
show that if it is in P then some super-polynomial circuit lower bounds hold:

Theorem 20.17 (Derandomization implies lower bounds [KI03])
If ZEROP ∈ P then either NEXP * P/poly or perm /∈ AlgP/poly

.

The Theorem is known to be true even if its hypothesis is relaxed to ZEROP ∈ ∩δ>0NTIME(2n
δ

).
Thus, even a derandomization of BPP to subexponential non-deterministic time would still
imply super-polynomial circuit lower bounds. The proof of Theorem 20.17 relies on many
results described earlier in the book.(This is a good example of “third generation” complex-
ity results that use a clever combination of both “classical” results from the 60’s and 70’s
and newer results from the 1990’s.) Our first ingredient is the following lemma:

Lemma 20.18 ([BFL90],[BFNW93]) EXP ⊆ P/poly ⇒ EXP = MA. ♦

Recall that MA is the class of languages that can be proven by a one round interactive
proof between two players Arthur and Merlin (see Definition 8.10).

Proof of Lemma 20.18: Suppose EXP ⊆ P/poly. By Meyer’s Theorem
(Theorem 6.20), in this case EXP collapses to the second level Σp

2 of the poly-
nomial hierarchy. Hence under our assumptions Σp

2 = PH = PSPACE = IP =
EXP ⊆ P/poly. Thus every L ∈ EXP has an interactive proof, and further-
more, since our assumption implies that EXP = PSPACE, we can just use the
interactive proof for TQBF, for which the prover is a PSPACE machine and
(given that we assume PSPACE ⊆ P/poly) can be replaced by a polynomial
size circuit family {Cn}. Now we see that the interactive proof can actually be
carried out in one round: given an input x of length n, Merlin will send Arthur

a polynomial size circuit C, which is supposed to be circuit Cn for the prover’s
strategy for L. Then Arthur simulates the interactive proof for L, using C as the
prover and tossing coins to simulate the verifier. Note that if the input is not in
the language, then no prover has a decent chance of convincing the verifier, and
in particular this holds for the prover described by C. Thus we have described
an MA protocol for L implying that EXP ⊆MA and hence that EXP = MA.
�

Our second lemma connects the complexity of identity testing and the permanent to the
power of the class Pperm:

Lemma 20.19 If ZEROP ∈ P and perm ∈ AlgP/poly
then Pperm ⊆NP. ♦

6The results below extend also to circuits that are allowed to work over the rational or real numbers and
use division.
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Proof of Lemma 20.19: Suppose perm has algebraic circuits of size nc, and
that ZEROP has a polynomial-time algorithm. Let L be a language that is
decided by an nd-time TM M using queries to a perm-oracle. We construct an
NP machine N for L.

Suppose x is an input of size n. Clearly, M ’s computation on x makes queries
to perm of size at most m = nd. So N will use nondeterminism as follows: it
guesses a sequence of m algebraic circuits C1, C2, . . . , Cm where Ci has size ic.
The hope is that Ci solves perm on i×imatrices, andN will verify this in poly(m)
time. The verification starts by verifying C1, which is trivial. Inductively, having
verified the correctness of C1, . . . , Ct−1, one can verify that Ct is correct using
downward self-reducibility, namely, that for a t× t matrix A,

perm(A) =

t
∑

i=1

a1iperm(A1,i),

where A1,i is the (t−1)×(t−1) sub-matrix of A obtained by removing the 1st row
and ith column of A. Thus if circuit Ct−1 is known to be correct, then the cor-
rectness of Ct can be checked by substituting Ct(A) for perm(A) and Ct−1(A1,i)
for perm(A1,i): this yields an identity involving algebraic circuits with t2 inputs
which can be verified deterministically in poly(t) time using the algorithm for
ZEROP. Proceeding this way N verifies the correctness of C1, . . . , Cm and then
simulates Mperm on input x using these circuits. �

The heart of the proof of Theorem 20.17 is the following lemma, which is interesting in
its own right:

Lemma 20.20 ([IKW01]) NEXP ⊆ P/poly ⇒ NEXP = EXP. ♦

Proof: We prove the contrapositive. That is, we assume that NEXP 6= EXP and will
prove thsat NEXP * P/poly. Let L ∈ NEXP \ EXP (such a language exists under our
assumption). Since L ∈ NEXP there exists a constant c > 0 and a relation R such that

x ∈ L⇔ ∃y ∈ {0, 1}2
|x|c

s.t. R(x, y) holds ,

where we can test whether R(x, y) holds in, say, time 2|x|
10c

.
We now consider the following approach to try to solve L in exponential deterministic

time. For every constant D > 0, let MD be the following machine: on input x ∈ {0, 1}n
enumerate over all possible Boolean circuits C of size n100D that take nc inputs and have a
single output. For every such circuit let tt(C) be the 2n

c

-long string that corresponds to the
truth table of the function computed by C. If R(x, tt(C)) holds then halt and output 1. If

this does not hold for any of the circuits then output 0. Since MD runs in time 2n
101D+nc ,

under our assumption that L 6∈ EXP, MD does not solve L and hence for every D there
exists an infinite sequence of inputs XD = {xi}i∈N on which MD(xi) outputs 0 even though
xi ∈ L (note that MD can only make one-sided errors). This means that for every string x in
the sequence XD and every y such that R(x, y) holds, the string y represents the truth table
of a function on nc bits that cannot be computed by circuits of size n100D, where n = |x|.
Using the pseudorandom generator based on worst-case assumptions (Theorem 20.7), we can
use such a string y to obtain an ℓD-pseudorandom generator. This method is called the “easy
witness” method [Kab00], because it shows that unless the input x has a witness/certificate
y (i.e., string satisfying R(x, y) = 1) that is “easy” in the sense that it can be computed by
a small circuit, then any certificate for x can be used for derandomization.

Now, if NEXP ⊆ P/poly then EXP ⊆ P/poly and then by Lemma 20.18 EXP ⊆MA.
That is, every language in EXP has a proof system where Merlin proves that an n-bit
string is in the language by sending a proof which Arthur then verifies using a probabilistic
algorithm of at most nD steps for some constant D. Yet, if n is the input length of some
string in the sequence XD and we are given x ∈ XD with |x| = n, then we can replace Arthur

by non-deterministic poly(nD)2n
10c

time algorithm that does not toss any coins: Arthur will



362 20 Derandomization

guess a string y such that R(x, y) holds and then use y as a function for a pseudorandom
generator to verify Merlin’s proof.

This means that there is an absolute constant c > 0 such that every language in EXP
can be decided on infinitely many inputs by an NTIME(2n

c

) time algorithm using n bits
of advice, and hence (since we assume NEXP ⊆ P/poly) by a size nc

′

circuit family for
an absolute constant c′. But using standard diagonalization we can easily come up with a

language in DTIME(2O(nc
′
)) ⊆ EXP that cannot be computed by such a circuit family on

almost every input. �

It might seem that Lemma 20.20 should have an easier proof that goes along the lines
of the proof of Lemma 20.18 (EXP ⊆ P/poly ⇒ EXP = MA) but instead of using the
interactive proof for TQBF uses the multi-prover interactive proof system for NEXP. How-
ever, we do not know how to implement the provers’ strategies for this latter system in
NEXP. Intuitively, the problem arises from the fact that a NEXP statement may have
several certificates, and it is not clear how we can ensure all provers use the same one.

We now have all the ingredients for the proof of Theorem 20.17.

Proof of Theorem 20.17: For contradiction’s sake, assume that the following are all
true:

ZEROP ∈ P (14)

NEXP ⊆ P/poly, (15)

perm ∈ AlgP/poly
. (16)

Statement (15) together with Lemmas 20.18 and 20.20 imply that NEXP = EXP = MA.
Now recall that MA ⊆ PH, and that by Toda’s Theorem (Theorem 17.14) PH ⊆ P#P.
Recall also that by Valiant’s Theorem (Theorem 17.11) perm is #P-complete. Thus, under
our assumptions

NEXP ⊆ Pperm. (17)

Since we assume that ZEROP ∈ P, Lemma 20.19 together with statements (16) and (17)
implies that NEXP ⊆ NP, contradicting the Nondeterministic Time Hierarchy Theorem
(Theorem 3.2). Thus the three statements (14), (15) and (14) cannot be simultaneously
true. �

What have we learned?

• Under the assumption of certain circuit lower bounds, there exist pseudorandom gen-
erator that can derandomize every probabilistic algorithm.

• In particular, if we make the reasonable assumption that there exists a function in E
with exponentially large average-case circuit complexity, then BPP = P.

• Proving that BPP = P will require to prove at least some type of circuit lower bounds.

Chapter notes and history

As mentioned in the notes to Chapter 9, pseudorandom generators were first studied in the con-
text of cryptography, by Shamir [Sha81], Blum-Micali [BM82], and Yao [Yao82a]. In particular
Yao was the first to point out their potential uses for derandomizing BPP. He showed that
if secure pseudorandom generators exist then BPP can be partially derandomized, specifically,
BPP ⊆ ∩ǫ>0DTIME(2nǫ ). In their seminal paper [NW88], Nisan and Wigderson showed that
such derandomization is possible under significantly weaker complexity assumptions, and that un-
der some plausible assumptions it may even be possible to achieve full derandomization of BPP,
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namely, to show BPP = P. Since then a large body of work by was devoted to improving the
derandomization and weakening the assumptions (see also the notes to Chapter 19). In particular
it was shown that worst-case hardness assumptions suffice for derandomization (see Chapter 19 and
its notes). A central goal of this line of work was achieved by Impagliazzo and Wigderson [IW97],
who showed that if E has a function with exponential circuit complexity then BPP = P.

A pseudorandom generator with optimal dependence on the hardness assumptions (Theo-
rem 20.6) was given by Umans [Uma03] (see Remark 20.8). Interestingly, this pseudorandom gen-
erator is based directly on worst-case (as opposed to average-case) hardness (and indeed uses the
local-decoding techniques originating from the works on hardness amplification). Umans’ construc-
tion, which uses the Reed-Muller code described in Chapter 19, is based on a previous paper of
Shaltiel and Umans [SU01] that constructed a hitting set generator (a relaxation of a pseudorandom
generator) with the same parameters. Andreev, Clementi, and Rolim [ACR96] showed that such
hitting set generators suffice for the application of derandomizing BPP (see [GVW00] for a simpler
proof).

Impagliazzo and Wigderson [IW98] gave the first derandomization result based on the uniform
hardness of a function in EXP (i.e., Theorem 20.16), a result that gave hope that perhaps the
proof of BPP = P (or at least BPP 6= EXP) will not have to wait for progress on circuit lower
bounds. Alas, Impagliazzo, Kabanets and Wigderson [IKW01] showed that derandomizing MA (or
equivalently, the promise-problem version of BPP) would imply lower bounds for NEXP, while
Kabanets and Impagliazzo [KI03] proved Theorem 20.17. That is, they showed that some circuit
lower bounds would follow even from derandomizing BPP.

Exercises

20.1 Verify Corollary 20.4.

20.2 Show that there exists a number ǫ > 0 and a function G : {0, 1}∗ → {0, 1}∗ that satisfies all of
the conditions of a 2ǫn-pseudorandom generator per Definition 20.2, save for the computational
efficiency condition. H464

20.3 Show by a counting argument (i.e., probabilistic method) that for every large enough n there is a

function f :{0, 1}n → {0, 1}, such that Havg(f) ≥ 2n/10.

20.4 Prove that if there exists a an S(ℓ)-pseudorandom generator then there exists a function f ∈
DTIME(2O(n)) such that Hwrs(f)(n) ≥ S(n). H464

20.5 Prove Theorem 20.10.

20.6 Prove that if there exists f ∈ E and ǫ > 0 such that Havg(f)(n) ≥ 2ǫn for every n ∈ N, then
MA = NP. H464

20.7 We define an oracle Boolean circuit to be a Boolean circuit that have special gates with unbounded
fan-in that are marked ORACLE. For a Boolean circuit C and language O ⊆ {0, 1}∗, we define by
CO(x) the output of C on x, where the operation of the oracle gates when fed input q is to output
1 iff q ∈ O.

(a) Prove that if every f ∈ E can be computed by a polynomial-size circuits with oracle to SAT,
then the polynomial hierarchy collapses.

(b) For a function f : {0, 1}∗ → {0, 1} and O ⊆ {0, 1}∗, define Havg
O(f) to be the function that

maps every n ∈ N to the largest S such that Prx∈R{0,1}n [CO(x) = f(x)] ≤ 1/2 + 1/S. Prove

that if there exists f ∈ E and ǫ > 0 with Havg
3SAT(f) ≥ 2ǫn then AM = NP.

20.8 Prove that if EXP * P/poly then the conclusions of Theorem 20.16 hold. H464

20.9 Let G : {0, 1}∗ → {0, 1}∗ be an S(ℓ)-length candidate pseudorandom generator that fails to de-
randomize a particular BPP algorithm A on the average case. That is, letting L ∈ BPP be the
language such that Pr[A(x) = L(x)] ≥ 2/3, it holds that for every sufficiently large n, with proba-
bility at least 1/n over the choice of x ∈R {0, 1}n, Pr[A(x;G(Uℓ(n))) = L(x)] ≤ 1/2 (we let ℓ(n) be
such that S(ℓ(n)) = m(n) where m(n) denotes the length of random tape used by A on inputs of
length n). Prove that there exists a probabilistic polynomial-time algorithm D that on input 1n

outputs a circuit Dn such that with probability at least 1/(2n) over the randomness of D,

‖E[Dn(G(Uℓ(n))] − E[Dn(Um(n))]‖ > 0.1 .

H464

20.10 (van Melkebeek 2000, see [IKW01]) Prove that if NEXP = MA then NEXP ⊆ P/poly.
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Chapter 21

Pseudorandom constructions:
expanders and extractors

“How difficult could it be to find hay in a haystack?”
Howard Karloff

The probabilistic method is a powerful method to show the existence of objects (e.g.,
graphs, functions) with certain desirable properties. We have already seen it used in Chap-
ter 6 to show the existence of functions with high circuit complexity, in Chapter 19 to
show the existence of good error correcting codes, and in several other places in this book.
But sometimes the mere existence of an object is not enough: we need an explicit and
efficient construction. This chapter provides such constructions for two well-known (and
related) families of pseudorandom objects, expanders and extractors. They are important
in computer science because they can often be used to replace (or reduce) the amount of
randomness needed in certain settings. This is reminiscent of derandomization, the topic
of Chapter 20, and indeed we will see several connections to derandomization throughout
the chapter. However, a big difference between Chapter 20 and this one is that all re-
sults proven here are unconditional, in other words do not rely on unproven assumptions.
Another topic that is related to expanders is constructions of error correcting-codes and
related hardness-amplification results which we saw in Chapter 19. For a brief discussion
of the many deep and fascinating connections between codes, expanders, pseudorandom
generators, and extractors, see the Chapter notes.

Expanders are graphs whose connectivity properties (how many edges lie between every
two sets A,B of vertices) are similar to those of “random” graphs —in this sense they are
“pseudorandom” or “like random.” Expanders have found a vast number of applications
ranging from fast sorting networks, to counterexamples in metric space theory, to proving the
PCP Theorem. The study of expanders is closely tied to study of eigenvalues of adjacency
matrices. In Section 21.1 we lay the groundwork for this study, showing how random
walks on graphs can be analyzed in terms of the adjacency matrix’s eigenvalues. Then
in Section 21.2 we give two equivalent definitions for expander graphs. We also describe
their use in randomness-efficient error reduction of probabilistic algorithms. In Section 21.3
we show an explicit construction of expander graphs. Finally, in Section 21.4, we use this
construction to show a deterministic logspace algorithm for undirected graph connectivity.

Our second example of an explicit construction concerns the following issue: while ran-
domized algorithms are modeled using a sequence of unbiased and independent coin tosses,
real-life randomness sources are imperfect and have correlations and biases. Philosophically
speaking, it is unclear if there is even a single source of unbiased random bits in the universe.
Therefore researchers have tried to quantify ways in which a source of random bits could be
imperfect and still be used to run randomized algorithms.

In Section 21.5 we define weakly random sources. This definition encapsulates the mini-
mal notion of “randomness” that still allows an imperfect source to be used in randomized
algorithms. We also define randomness extractors (or extractors for short)— algorithms
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that extract unbiased random bits from such a source — and give explicit constructions
for them. One philosophical consequence of these results is that the model of randomized
polynomial-time Turing machines (and the associated classes like BPP) is realistic if and
only if weakly random sources exist in the real world.

In Section 21.6 we use extractors to derandomize probabilistic logspace computations,
albeit at the cost of some increase in the space requirement. We emphasize that in contrast
to the results of Chapters 19 and 20, this derandomization (as well as all the other results
of this chapter) is unconditional and uses no unproven assumptions.

Both the constructions and analysis of this chapter are somewhat involved. You might
wonder why should coming up with explicit construction be so difficult. After all, a proof
of existence via the probabilistic method shows not only that an object with the desired
property exists but in fact the vast majority of objects have the property. As Karloff said
(see quote above), how difficult can it be to find a single one? But perhaps it’s not so
surprising this task is so difficult: after all, we know that almost all Boolean functions have
exponential circuit complexity, but finding even a single one in NP with this property will
show that P 6= NP!

21.1 Random walks and eigenvalues

In this section we study random walks on graphs. Using elementary linear algebra we relate
eigenvalues of the graph’s adjacency matrix to the behavior of the random walk on that
graph. As a corollary we obtain the proof of correctness for the random-walk space-efficient
algorithm for undirected connectivity described in Section 7.7. We restrict ourselves here to
regular graphs, in which every vertex has the same degree. However, we do allow our graphs
to have self-loops and parallel edges. Most of the definitions and results can be suitably
generalized to undirected graphs that are not regular.

Some linear algebra. We will use some basic properties of the linear space Rn. These are
covered in Section A.5 of the appendix, but here is a quick review. If u,v ∈ Rn are two
vectors, then their inner product is defined as 〈u,v〉 =

∑n
i=1 uivi. We say that u and v are

orthogonal, denoted by u ⊥ v, if 〈u,v〉 = 0. The L2-norm of a vector v ∈ Rn, denoted by
‖v‖

2
is defined as

√

〈v,v〉 =
√
∑n
i=1 v2

i . A vector whose L2-norm equals 1 is called a unit
vector. A simple but useful fact is the Pythagorean Theorem, that says that if u and v are
orthogonal then ‖u + v‖2

2
= ‖u‖2

2
+ ‖v‖2

2
. The L1-norm of v, denoted by |v|

1
is defined as

∑n
i=1 |vi|. Both these norms satisfy the basic properties (1) ‖v‖ > 0 with ‖v‖ = 0 iff v

is the all zero vector, (2) ‖αv‖ = |α|‖v‖ for every α ∈ R, and (3) ‖u + v‖ ≤ ‖u‖ + ‖v‖.
The relation between these norms is captured in the following claim, whose proof is left as
Exercise 21.1:

Claim 21.1 For every vector v ∈ Rn,

|v|
1
/
√
n ≤ ‖v‖

2
≤ |v|

1
. ♦

21.1.1 Distributions as vectors and the parameter λ(G).

Let G be a d-regular n-vertex graph and let p be some probability distribution over the
vertices of G. We can think of p as a (column) vector in Rn where pi is the probability that
vertex i is obtained by the distribution. Note that the L1-norm of p is equal to 1. Now let q
represent the distribution of the following random variable: choose a vertex i in G according
to p, then take a random neighbor of i in G. We can easily compute q, since the probability
qj that j is chosen is equal to the sum over all of j’s neighbors i of the probability pi that
i is chosen times 1/d (since vertex i touches d edges, for each edge i j the probability that
conditioned on i being chosen then the next move will take this edge is 1/d). Thus q = Ap,
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where A = A(G) is the matrix such that for every two vertices i, j of G, Ai,j is equal to the
number of edges between i and j divided by d. (In other words, A is equal to the adjacency
matrix of G multiplied by 1/d.) We call A the random-walk matrix of G. Note that A is a
symmetric matrix1 with all its entries between 0 and 1, and the sum of entries in each row
and column is exactly one. Such a matrix is called a symmetric stochastic matrix.

The relation between the matrixA and random walks on the graphG is straightforward—
for every ℓ ∈ N and i ∈ [n], the vector Aℓei (where ei is the vector that has 1 in the ith

coordinate and zero everywhere else) represents the distribution Xℓ of the last step in an
ℓ-step random walk starting from the ith vertex.

Definition 21.2 (The parameter λ(G).)
Denote by 1 the vector (1/n, 1/n, . . . , 1/n) corresponding to the uniform distribution. De-

note by 1⊥ the set of vectors perpendicular to 1 (i.e., v ∈ 1⊥ if 〈v,1〉 = (1/n)
∑

i vi = 0).
The parameter λ(A), denoted also as λ(G), is the maximum value of ‖Av‖

2
over all vectors

v ∈ 1⊥ with ‖v‖
2

= 1.

Relation to eigenvalues. The value λ(G) is called the second largest eigenvalue of G. The
reason is that since A is a symmetric matrix, we can find an orthogonal basis of eigenvectors
v1, . . . ,vn with corresponding eigenvalues λ1, . . . , λn (see Section A.5.3) which we can sort
to ensure |λ1| ≥ |λ2| . . . ≥ |λn|. Note that A1 = 1. Indeed, for every i, (A1)i is equal
to the inner product of the ith row of A and the vector 1 which (since the sum of entries
in the row is one) is equal to 1/n. Thus, 1 is an eigenvector of A with the corresponding
eigenvalue equal to 1. One can show that a symmetric stochastic matrix has all eigenvalues
with absolute value at most 1 (see Exercise 21.5) and hence we can assume λ1 = 1 and
v1 = 1. Also, because 1⊥ = Span{v2, . . . ,vn}, the value λ above will be maximized by
(the normalized version of) v2, and hence λ(G) = |λ2|. The quantity 1 − λ(G) is called
the spectral gap of the graph. We note that some texts define the parameter λ(G) using
the standard (un-normalized) adjacency matrix (rather than the random-walk matrix), in
which case λ(G) is a number between 0 and d and the spectral gap is defined to be d−λ(G).
Knowledge of basic facts on eigenvalues and eigenvectors (all covered in the appendix) can
serve as useful background for this chapter, but is not strictly necessary to follow the results
and proofs.

One reason that λ(G) is an important parameter is the following lemma:

Lemma 21.3 Let G ba an n-vertex regular graph and p a probability distribution over G’s
vertices, then

‖Aℓp− 1‖
2
≤ λℓ ♦

Proof: By the definition of λ(G), ‖Av‖2 ≤ λ‖v‖2 for every v ⊥ 1. Note that if v ⊥ 1
then Av ⊥ 1 since 〈1, Av〉 = 〈A†1,v〉 = 〈1,v〉 = 0 (as A = A† and A1 = 1). Thus A maps
the subspace 1⊥ to itself. Note that the eigenvectors that are different from 1 span this
subspace, and A shrinks each of these eigenvectors by at least λ factor in ℓ2 norm. Hence
A must shrink every vector in 1⊥ by at least λ. Thus Aℓ shrinks every vector in 1⊥ by a
factor at least λℓ and we conclude λ(Aℓ) ≤ λ(A)ℓ. (In fact, using the eigenvalue definition
of λ, it can be shown that λ(Aℓ) = λ(A)ℓ.)

Let p be some vector. We can break p into its components in the spaces parallel and
orthogonal to 1 and express it as p = α1 + p′ where p′ ⊥ 1 and α is some number. If p is
a probability distribution then α = 1 since the sum of coordinates in p′ is zero. Therefore,

Aℓp = Aℓ(1 + p′) = 1 +Aℓp′

1A matrix A is symmetric if Ai,j = Aj,i for every i, j. That is, A = A† where A† denotes the transpose
of A (see Section A.5).
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Since 1 and p′ are orthogonal, ‖p‖2
2

= ‖1‖2
2

+ ‖p′‖2
2

and in particular ‖p′‖
2
≤ ‖p‖

2
.

Since p is a probability vector, ‖p‖
2
≤ |p|

1
= 1 (see Claim 21.1). Hence ‖p′‖

2
≤ 1 and

‖Aℓp− 1‖
2

= ‖Aℓp′‖
2
≤ λℓ (1)

�

It turns out that every connected graph has a noticeable spectral gap:

Lemma 21.4 If G is a regular connected graph with self-loops at each vertex, then λ(G) ≤
1− 1

12n2 . ♦

Proof: Let ǫ = 1
6n2 , let u ⊥ 1 be a unit vector and let v = Au. We need to prove that

‖v‖
2
≤ 1− ǫ/2 and for this it suffices to prove that 1−‖v‖2

2
≥ ǫ. (Indeed, if ‖v‖

2
> 1− ǫ/2

then ‖v‖2
2
> 1− ǫ and hence 1−‖v‖2

2
< ǫ.) Since u is a unit vector, 1−‖v‖2

2
= ‖u‖2

2
−‖v‖2

2
.

We claim that this is equal to
∑

i,j Ai,j(ui − vj)
2 where i, j range from 1 to n. Indeed,

∑

i,j

Ai,j(ui − vj)
2 =

∑

i,j

Ai,ju
2
i − 2

∑

i,j

Ai,juivj +
∑

i,j

Ai,jv
2
j =

‖u‖2
2
− 2〈Au,v〉+ ‖v‖2

2
= ‖u‖2

2
− 2‖v‖2

2
+ ‖v‖2

2
= ‖u‖2

2
− ‖v‖2

2
,

where these equalities are due to the sum of each row and column in A equalling one, and
to ‖v‖2

2
= 〈v,v〉 = 〈Au,v〉 =

∑

i,j Ai,juivj .

Thus it suffices to show
∑

i,j Ai,j(ui−vj)
2 ≥ ǫ. Since u is a unit vector with coordinates

summing to zero, there must exist vertices i, j such that ui > 0,uj < 0 and at least one
of these coordinates has absolute value ≥ 1√

n
, meaning that ui − uj ≥ 1√

n
. Furthermore,

because G is connected there is a path between i and j containing at most D + 1 vertices
(where D is the diameter of the graph2 G). By renaming vertices, let’s assume that i = 1,
j = D + 1 and the coordinates 2, 3, . . . , D correspond to the vertices on this path in order.
Now, we have

1√
n
≤ u1 − uD+1 = (u1 − v1) + (v1 − u2) + . . .+ (vD − uD+1) ≤

u1 − uD+1 = |u1 − v1|+ |v1 − u2|+ . . .+ |vD − uD+1| ≤
√

(u1 − v1)2 + (v1 − u2)2 + . . .+ (vD − uD+1)2
√

2D + 1 , (2)

where the last inequality follows by relating the L2 and L1 norms of the vector (u1−v1,v1−
u2, . . . ,vD − uD+1) using Claim 21.1. But this means that

∑

i,j

Ai,j(ui − vj)
2 ≥ 1

dn(2D+1) , (3)

since the left hand side of (3) is a sum of non-negative terms and (2) implies that the terms of
the form Ai,i(ui−vi)

2 and Ai,i+1(vi−ui+1)
2 (for i = 1, . . . , D) contribute at least 1

dn(2D+1)

to this sum (both Ai,i and Ai,i+1 are at least 1/d since they correspond to self-loops and
edges of the graph).

Plugging in the trivial bound D ≤ n − 1 this already shows that λ(G) ≤ 1 − 1
4dn2 . To

prove the lemma as stated, we use the fact (left as Exercise 21.4) that for every d-regular
connected graph, D ≤ 3n/(d+ 1). �

The proof can be strengthened to show a similar result for every connected non-bipartite
graph (not just those with self-loops at every vertex). Note that this condition is essential:
if A is the random-walk matrix of a bipartite graph then one can find a vector v such that
Av = −v (Exercise 21.3).

2The diameter of a graph G is the maximum distance (i.e., length of shortest path) between any pair of
vertices in G. Note that the diameter of a connected n-vertex graph is always at most n− 1.
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21.1.2 Analysis of the randomized algorithm for undirected connectivity.

Together, lemmas 21.3 and 21.4 imply that, at least for regular graphs, if s is connected
to t then a sufficiently long random walk from s will hit t in polynomial time with high
probability:

Corollary 21.5 Let G be a d-regular n-vertex graph with all vertices having a self-loop. Let
s be a vertex in G. Let ℓ > 24n2 logn and let Xℓ denote the distribution of the vertex of
the ℓth step in a random walk from s. Then, for every t connected to s, Pr[Xℓ = t] > 1

2n .♦

Proof: By Lemmas 21.3 and 21.4 , if we consider the restriction of an n-vertex graph G to
the connected component of s, then for every probability vector p over this component and
ℓ ≥ 13n2, ‖Aℓp−1‖2 < (1− 1

12n2 )24n
2 logn < 1

n2 , where 1 here is the uniform distribution over
this component. But this means that in particular for every coordinate i, |Aℓp − 1|i < 1

n2

and hence every element in the connected component appears in Aℓp with probability at
least 1/n− 1/n2 ≥ 1/(2n). �

Note that Corollary 21.5 implies that if we repeat the 24n2 logn walk for O(n log n)
times (or equivalently, if we take a walk of, say, length 100n3 log2 n) then we will hit every
vertex t connected to s with high probability.

21.2 Expander graphs.

Expander graphs are extremely useful combinatorial objects, which we encounter several
times in the book. They can be defined in two equivalent ways. At a high level, these two
equivalent definitions can be described as follows:

• Combinatorial definition: A constant-degree regular graph G is an expander if for
every subset S of less than half of G’s vertices, a constant fraction of the edges touching
S are from S to its complement in G; see Figure 21.1.

• Algebraic expansion: A constant-degree regular graphG is an expander if its parameter
λ(G) bounded away from 1 by some constant. That is, λ(G) ≤ 1− ǫ for some constant
ǫ > 0.

Grid is not an expander:�
1/2

)

Figure 21.1 In an edge expander, every subset S of the vertices that is not too big has at
least Ω(|S|) edges to neighbors outside the set. The grid (and every other planar graph) is
not an edge expander as a k × k square in the grid has only O(k) neighbors outside it.

What do we mean by a constant? By constant we refer to a number that is independent
of the size of the graph. We will typically talk about graphs that are part of an infinite
family of graphs, and so by constant we mean a value that is the same for all graphs in the
family, regardless of their size. Below we make the definitions more precise, and show their
equivalence.
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21.2.1 The Algebraic Definition

The Algebraic definition of expanders is as follows:

Definition 21.6 ((n, d, λ)-expander graphs.)
If G is an n-vertex d-regular G with λ(G) ≤ λ for some number λ < 1 then we say that G
is an (n, d, λ)-graph.
A family of graphs {Gn}n∈N is an expander graph family if there are some constants d ∈ N
and λ < 1 such that for every n, Gn is an (n, d, λ)-graph.

Many texts use simply the name (n, d, λ)-graphs for such graphs. Also, as mentioned
above, some texts use un-normalized adjacency matrices, and so have λ range between 0 and

d. The smallest λ can be for a d-regular n-vertex graph is (1−o(1))2
√
d−1
d where o(1) denotes

a function tending to 0 as the number of vertices grows. This is called the Alon-Boppana
bound and graphs meeting this bound are called Ramanujan graphs (see also Exercises 21.9
and 21.10).

Explicit constructions. As we will see in Section 21.2.2, it is not hard to show that expander
families exist using the probabilistic method. But this does not yield explicit constructions
of such graphs which are often needed for applications. We say that an expander family
{Gn}n∈N is explicit if there is a polynomial-time algorithm that on input 1n outputs the
adjacency matrix of Gn (or, equivalently, the random-walk matrix). We say that the family
is strongly explicit if there is a polynomial-time algorithm that on inputs 〈n, v, i〉 where
v ∈ [n], i ∈ [d] outputs the (index of the) ith neighbor of v. Note that in the strongly
explicit case, the lengths of the algorithm’s inputs and outputs are O(log n) and so it runs
in time polylog(n).

Fortunately, several explicit and strongly explicit constructions of expander graphs are
known. Some of these constructions are very simple and efficient, but their analysis is
highly non-trivial and uses relatively deep mathematics.3 In Section 21.3 we will see a
strongly explicit construction of expanders with elementary analysis. This construction also
introduces a tool that we’ll use to derandomize the random-walk algorithm for UPATH in
Section 21.4.

21.2.2 Combinatorial expansion and existence of expanders.

We now describe a combinatorial criterion that is roughly equivalent to Definition 21.6. One
advantage of this criterion is that it makes it easy to prove that a non-explicit expander
family exists using the probabilistic method. It is also quite useful in several applications.

Definition 21.7 (Combinatorial (edge) expansion)
An n-vertex d-regular graph G = (V,E) is called an (n, d, ρ)-combinatorial edge expander if
for every subset S of vertices satisfying |S| ≤ n/2,

|E(S, S)| ≥ ρd|S| ,

where S denotes the complement of S and for subsets S, T of vertices, E(S, T ) denotes the
set of edges i j with i ∈ S and j ∈ T .

3An example is the following 3-regular expander graph: the vertices are the numbers 0 to p− 1 for some
prime p, and each number x is connected to x+ 1,x− 1 and x−1 modulo p (letting 0−1 = 0). The analysis
uses some deep results in mathematics (i.e., Selberg’s 3/16 Theorem), see Section 11.1.2 in [HLW06].
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Note that in this case the bigger ρ is the better the expander. We will often use the
shorthand “edge expander” (dropping the prefix “combinatorial”). Also we’ll loosely use the
term “expander” for any (n, d, ρ)-combinatorial edge expander with ρ a positive constant
(independent of n). Using the probabilistic method, one can prove the following theorem:
(Exercise 21.11 asks you to prove a slightly weaker version)

Theorem 21.8 (Existence of expanders) Let ǫ > 0 be any constant. Then there exists d =
d(ǫ) and N ∈ N such that for every n > N there exists an (n, d, 1/2− ǫ) edge expander. ♦

Theorem 21.8 is tight in the sense that there is no (n, d, ρ) edge expander for ρ > 1/2
(Exercise 21.13). The following theorem relates combinatorial expansion with our previous
Definition 21.6

Theorem 21.9 (Combinatorial vs. algebraic expansion)
1. If G is an (n, d, λ)-expander graph then it is an (n, d, (1 − λ)/2)-edge expander.

2. If G is an (n, d, ρ) edge expander then its second largest eigenvalue (without taking

absolute values) is at most 1 − ρ2

2 . If furthermore G has all self loops then it is an

(n, d, 1− ǫ)-expander where ǫ = min
{

2
d ,

ρ2

2

}

.

The condition that G has all the self-loops of Theorem 21.9 is used again to rule out
bipartite graphs, which can be very good edge expanders but have one eigenvalue equal to
−1 and hence a spectral gap of zero.

21.2.3 Algebraic expansion implies combinatorial expansion.

The first part of Theorem 21.9 follows immediately from the following lemma:

Lemma 21.10 Let G be an (n, d, λ) graph, S a subset of G’s vertices and T its complement.
Then

|E(S, T )| ≥ (1− λ) d|S||T |
|S|+ |T | . ♦

Proof: Let x ∈ Rn denote the following vector:

xi =











+|T | i ∈ S
−|S| i ∈ T
0 otherwise

.

Note that ‖x‖2
2

= |S||T |2 + |T ||S|2 = |S||T |(|S|+ |T |) and x ⊥ 1.
Let Z =

∑

i,j Ai,j(xi − xj)2. On the one hand Z = 2
d |E(S, T )|(|S| + |T |)2, since every

edge i j with i ∈ S and j ∈ T appears twice in this sum, each time contributing 1
d (|S|+ |T |)2

to the total. On the other hand,

Z =
∑

i,j

Ai,jx
2
i − 2

∑

Ai,jxixj +
∑

i,j

Ai,jx
2
j = 2‖x‖2

2
− 2〈x, Ax〉

(using the fact that A’s rows and columns sum up to one). Since x ⊥ 1 and ‖Ax‖2 ≤ λ‖x‖2 ,
we get that

1
d |E(S, T )|(|S|+ |T |)2 ≥ (1 − λ)‖x‖2

2
.

Plugging in ‖x‖2
2

= |S||T |(|S|+ |T |) completes the proof. �

Algebraic expansion also allows us to obtain an estimate on the number of edges between
not-too-small subsets S and T , even if they are not disjoint:
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Lemma 21.11 (Expander Mixing Lemma) Let G = (V,E) be an (n, d, λ)-expander graph.
Let S, T ⊆ V , then

∣

∣

∣

∣

|E(S, T )| − d

n
|S||T |

∣

∣

∣

∣

≤ λd
√

|S||T | ♦

The Mixing Lemma gives a good idea of why expanders are “pseudorandom.” In a random
d-regular graph, we would expect |E(S, T )| to be about d

n |S||T |. The Lemma says that in
an expander, |E(S, T )| is close to this expectation for all S, T that are sufficiently large. We
leave the proof of Lemma 21.11 as Exercise 21.14.

21.2.4 Combinatorial Expansion Implies Algebraic Expansion

We now prove the second part of Theorem 21.9. Let G = (V,E) be an n-vertex d-regular
graph such that for every subset S ⊆ V with |S| ≤ n/2, there are ρ|S| edges between S and
S = V \ S, and let A be G’s random-walk matrix.

Let λ be the second largest eigenvalue of A (not taking absolute values). We need to
prove that λ ≤ 1 − ρ2/2. By the definition of an eigenvalue there exists a vector u ⊥ 1
such that Au = λu. Write u = v + w where v is equal to u on the coordinates on which
u is positive and equal to 0 otherwise, and w is equal to u on the coordinates on which u
is negative, and equal to 0 otherwise. (Since u ⊥ 1, both v and w are nonzero.) We can
assume that v is nonzero on at most n/2 of its coordinates (otherwise take −u instead of
u). Let Z =

∑

i,j Ai,j(v
2
i −v2

j ). Part 2 of the theorem (except for the “furthermore” clause)
follows immediately from the following two claims:

Claim 1: Z ≥ 2ρ‖v‖2
2
.

Claim 2: Z ≤
√

8(1− λ)‖v‖2
2
.

Proof of Claim 1: Sort the coordinates of v so that v1 ≥ v2 ≥ · · · ≥ vn (with vi = 0

for i > n/2). Then, using v2
i − v2

j =
∑j+1
k=i(v

2
k − v2

k+1),

Z =
∑

i,j

Ai,j(v
2
i − v2

j ) = 2
∑

i<j

Ai,j

j−1
∑

k=i

(v2
k − v2

k+1) .

Note that every term (v2
k − v2

k+1) appears in this sum once (with a weight of 2/d) per each

edge i j such that i ≤ k < j. Since vk = 0 for k > n/2, this means that

Z = 2
d

n/2
∑

k=1

|E({1..k} , {k + 1..n})|(v2
k − v2

k+1) ≥ 2
d

n/2
∑

k=1

ρk(v2
k − v2

k+1) ,

by G’s expansion. But, rearranging the terms (and using the fact that vk = 0 for k > n/2),
the last sum is equal to

2
ddρ

n/2
∑

k=1

kv2
k − (k − 1)v2

k = 2

n
∑

k=1

v2
k = 2ρ‖v‖2

2
.

�

Proof of Claim 2: Since Au = λu and 〈v,w〉 = 0,

〈Av,v〉 + 〈Aw,v〉 = 〈A(v + w),v〉 = 〈Au,v〉 = 〈λ(v + w),v〉 = λ‖v‖2
2
.

Since 〈Aw,v〉 is not positive, 〈Av,v〉/‖v‖2
2
≥ λ, meaning that

1− λ ≥ 1− 〈Av,v〉
‖v‖2

2

=
‖v‖2

2
− 〈Av,v〉
‖v‖2

2

=

∑

i,j Ai,j(vi − vj)
2

2‖v‖2
2

, (4)
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where the last equality is due to
∑

i,j Ai,j(vi − vj)
2 =

∑

i,j Ai,jv
2
i − 2

∑

i,j Ai,jvivj +
∑

i,j Ai,jv
2
j = 2‖v‖2

2
−2〈Av,v〉. (We use here the fact that each row and column of A sums

to one.)

Multiply both numerator and denominator of the last term in (4) by
∑

i,j Ai,j(v
2
i +v2

j ).
The new numerator is





∑

i,j

Ai,j(vi − vj)
2









∑

i,j

Ai,j(vi + vj)
2



 ≥





∑

i,j

Ai,j(vi − vj)(vi + vj)





2

.

using the Cauchy-Schwartz inequality.4 Hence, using (a− b)(a+ b) = a2 − b2,

1−λ ≥

(

∑

i,j Ai,j(v
2
i − v2

j )
)2

2‖v‖2
2

∑

i,j Ai,j(vi + vj)2
=

Z2

2‖v‖2
2

(

∑

i,j Ai,jv
2
i + 2

∑

i,j Ai,jvivj +
∑

i,j Ai,jv
2
j

) =

Z2

2‖v‖2
2

(

2‖v‖2
2
+ 2〈Av,v〉

) ≥ Z2

8‖v‖4
2

,

where the last inequality is due to the fact that A is a symmetric stochastic matrix, and
hence ‖Av‖

2
≤ ‖v‖

2
for every v, implying that 〈Av,v〉 ≤ ‖v‖2

2
.

The “furthermore” part is obtained by noticing that adding all the self-loops to a d− 1-
regular graph is equivalent to transforming its random-walk matrix A into the matrix d−1

d A+
1
dI where I is the identity matrix. Since A’s smallest eigenvalue (not taking absolute values)

is at least −1, the new smallest eigenvalue is at least − d−1
d + 1

d = −1 + 2
d .�

21.2.5 Error reduction using expanders.

Before constructing expanders, let us see one application for them in the area of probabilistic
algorithms. Recall that in Section 7.4.1 we saw that we can reduce the error of a probabilistic
algorithm from, say, 1/3 to 2−Ω(k) by executing it k times independently and taking the
majority value. If the algorithm utilized m random coins, this procedure will use m · k
random coins, and it seems hard to think of a way to save on randomness. Nonetheless,
using expanders we can obtain such error reduction using only m+O(k) random coins.

The idea is simple: take an expander graph G from a strongly explicit family that is
an (M = 2m, d, 1/10)-expander graph for some constant d. (Note that we can use graph
powering to transform any explicit expander family into an expander family with parameter
λ < 1/10; see also Section 21.3.) Choose a vertex v1 at random, and take a length k−1 long
random walk on G to obtain vertices v2, . . . , vk (note that choosing a random neighbor of a
vertex requires O(log d) = O(1) random bits). Invoke the algorithm k times using v1, . . . , vk
for the random coins (we identify the set [M ] of vertices with the set {0, 1}m of possible
random coins for the algorithm) and output the majority answer.

To keep things simple, we analyze here only the case of algorithms with one-sided error.
For example, consider an RP algorithm that will never output “accept” if the input is not
in the language, and for inputs in the language will output “accept” with probability 1/2
(the case of a coRP algorithm is analogous). For such an algorithm the procedure will
output “accept” if the algorithm accepts even on a single set of coins vi. If the input is
not in the language, the procedure will never accept. If the input is in the language, then
let B ⊆ [M ] denote the “bad” set of coins on which the algorithms rejects. We know that
|B| ≤ M

3 . Plugging in β = 1/3 and λ = 1/10 in the following theorem immediately implies
that the probability the above procedure will reject an input in the language is bounded by
2−Ω(k):

4The Cauchy-Schwartz inequality says that for every two vectors x,y, 〈x,y〉 ≤ ‖x‖2‖y‖2 . Here we index
over (i, j), and use xi,j =

√

Ai,j(v2
i − v2

j ) and yi,j =
√

Ai,j(v2
i + v2

j ).
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Theorem 21.12 (Expander walks)
Let G be an (n, d, λ) graph, and let B ⊆ [n] satisfying |B| ≤= βn for some β ∈ (0, 1). Let
X1, . . . , Xk be random variables denoting a k − 1-step random walk in G from X1, where
X1 is chosen uniformly in [n]. Then,

Pr[∀1≤i≤kXi ∈ B] ≤ ((1− λ)
√

β + λ)k−1 .

Note that if λ and β are both constants smaller than 1 then so is the expression (1−λ)√β+λ.

Proof: For 1 ≤ i ≤ k, let Bi be the event that Xi ∈ B. Note that the probability we’re
trying to bound is

Pr[∧ki=1Bi] = Pr[B1] Pr[B2|B1] · · ·Pr[Bk|B1, . . . , Bk−1] . (5)

Denote by B the linear transformation from Rn to Rn that “zeroes out” the coordinates that
are not in B. That is, for every i ∈ [n], (Bu)i = ui if i ∈ B and (Bu)i = 0 otherwise. It’s not
hard to verify that for every probability vector p over [n], Bp is a vector whose coordinates
sum up to the probability that a vertex i is chosen according to p is in B. Furthermore, if
we normalize the vector Bp to sum up to one, we get the probability vector corresponding
to the conditional distribution of p conditioned on the event that the vertex chosen this way
is in B.

Thus, if we let 1 = (1/n, . . . , 1/n) denote the uniform distribution over [n] and pi ∈ RN
be the distribution of Xi conditioned on the events B1, . . . , Bi, then

p1 =
1

Pr[B1]
B1

p2 =
1

Pr[B2|B1]

1

Pr[B1]
BAB1

and more generally

pi =
1

Pr[Bi|Bi−1 . . . B1] · · ·Pr[B1]
(BA)i−1B1 .

Since every probability vector p satisfies |p|
1

= 1, it follows that the probability on the LHS
of (5) is equal to

|(B̂A)k−1B̂1|
1
. (6)

Using the relation between the L1 and L2 norms (Claim 21.1) we can bound (6) by showing

‖(B̂A)k−1B1‖
2
≤ ((1−λ)

√
β+λ)k−1

√
n

. (7)

To prove (7), we will use the following definition and Lemma:

Definition 21.13 (Spectral norm) For every matrix A, the spectral norm of A, denoted by
‖A‖, is defined as the maximum of ‖Av‖

2
over all vectors v satisfying ‖v‖

2
= 1. ♦

Exercises 21.5 and 21.6 ask you to prove that the spectral norm of every random-walk
matrix is 1, and that for every two n by n matrices A,B, ‖A + B‖ ≤ ‖A‖ + ‖B‖ and
‖AB‖ ≤ ‖A‖‖B‖.

Lemma 21.14 Let A be a random-walk matrix of an (n, d, λ)-expander graph G. Let J be
the random-walk matrix of the n-clique with self loops (i.e., Ji,j = 1/n for every i, j). Then

A = (1− λ)J + λC (8)

where ‖C‖ ≤ 1. ♦
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Note that for every probability vector p, Jp is the uniform distribution, and so this
lemma tells us that in some sense, we can think of a step on a (n, d, λ)-expander graph as
going to the uniform distribution with probability 1−λ, and to a different distribution with
probability λ. This is of course completely inaacurate, as a step on a d-regular graph will
only go the one of the d neighbors of the current vertex, but we’ll see that for the purposes
of our analysis, the condition (8) will be just as good.5

Proof of Lemma 21.14: Indeed, simply define C = 1
λ(A− (1− λ)J). We need to prove

‖Cv‖2 ≤ ‖v‖2 for very v. Decompose v as v = u + w where u = α1 for some α ∈ R
and w ⊥ 1. Since A1 = 1 and J1 = 1 we get that Cu = 1

λ(u − (1 − λ)u) = u. Now, let
w′ = Aw. Then ‖w′‖

2
≤ λ‖w‖

2
and, as we saw in the proof of Lemma 21.3, w′ ⊥ 1. In

other words, the sum of the coordinates of w is zero, meaning that Jw = 0. We get that
Cw = 1

λw
′. Since w′ ⊥ u, ‖Cv‖2

2
= ‖u + 1

λw
′‖2

2
= ‖u‖2

2
+ ‖ 1

λw
′‖2

2
≤ ‖u‖2

2
+ ‖w‖2

2
= ‖v‖2

2
,

where we use twice the Pythagorean theorem that for u ⊥ w, ‖u + w‖2
2

= ‖u‖2
2
+ ‖w‖2

2
. �

Returning to the proof of Theorem 21.12, we can writeBA = B
(

(1−λ)J+λC
)

, and hence
‖BA‖ ≤ (1−λ)‖BJ‖+λ‖BC‖. Since J ’s output is always a vector of the form α1, and it can

be easily verified that ‖B1‖2 =
√

βn
n2 =

√
β√
n

=
√
β‖1‖2, ‖BJ‖ =

√
β. Also, because B is an

operation that merely zeros out some parts of its input, ‖B‖ ≤ 1 implying that ‖BC‖ ≤ 1.

Thus, ‖BA‖ ≤ (1− λ)√β + λ. This means that ‖(BA)k−1B1‖
2
≤ ((1 − λ)√β + λ)k−1

√
β√
n
,

establishing (7). �

The success of the error reduction procedure for two-sided error algorithms is obtained by
the following theorem, whose proof we omit (but see Exercise 21.12):

Theorem 21.15 (Expander Chernoff Bound)
Let G be an (n, d, λ)-expander graph and B ⊆ [n] with |B| = βN . Let X1, . . . , Xk be
random variables denoting a k − 1-step random walk in G (where X1 is chosen uniformly).
For every i ∈ [k], define Bi to be 1 if Xi ∈ B and 0 otherwise. Then, for every δ > 0,

Pr
[

|
∑k
i=1 Bi
k − β| > δ

]

< 2e(1−λ)δ2k/4

21.3 Explicit construction of expander graphs

We now show a construction of a very explicit expander graph family. The main tools in our
construction will be several types of graph products. A graph product is an operation that
takes two graphs G,G′ and outputs a graph H . Typically we’re interested in the relation
between properties of the graphs G,G′ and the properties of the resulting graph H . In this
section we will mainly be interested in three parameters: the number of vertices (denoted n),
the degree (denoted d), and the 2nd largest eigenvalue of the random-walk matrix (denoted
λ), and study how different products affect these parameters. We then use these products
to obtain a construction of a strongly explicit expander graph family. In the next section
we will use the same products to show a deterministic logspace algorithm for undirected
connectivity.

21.3.1 Rotation maps.

Thus far we usually represented a graph via its adjacency matrix, or as in this chapter, via
its random-walk matrix. If the graph is d-regular we can also represent it via its rotation

5Algebraically, the reason (8) is not equivalent to going to the uniform distribution in each step with
probability 1 − λ is that C is not necessarily a stochastic matrix, and may have negative entries.
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map. If G is an n-vertex degree-d graph this involves giving a number from 1 to d to each
neighbor of each vertex, and then letting a rotation map Ĝ be a function from [n]× [d] to
[n] × [d] that maps a pair 〈v, i〉 to 〈u, j〉 where u is the ith neighbor of v and v is the jth
neighbor of u. Clearly, this map is a permutation (i.e., is one-to-one and onto) of [n]× [d].
The reader may wonder why one should not renumber the neighbors at each node so that
Ĝ(u, i) = (v, i) (i.e., v is the ith neighbor of u iff u is the ith neighbor of v). This is indeed
possible but it requires some global computation that will turn out to be too complicated in
the scenarios we will be interested in, where the graph is constructed by some space-bounded
computation.

Below we will describe graph products, which is usually a way to map two graphs into
one. We use whichever graph representation happens to be most natural, but it would
be a good exercise for the reader to to work out the equivalent descriptions in the other
representations (e.g., in terms of random-walk matrices and rotation maps).

21.3.2 The matrix/path product

G: (n,d,λ)-graph λ )-graph : ( λλ )-graph

For every two n-vertex graphs G,G′ with degrees d, d′ and random-walk matrices A,A′,
the graph G′G is the graph described by the random-walk matrix A′A. That is, G′G has
an edge (u, v) for every length 2-path from u to v where the first step in the path is taken
on an edge of G and the second is on an edge of G′. Note that G has n vertices and degree
dd′. Typically, we are interested in the case G = G′, where it is called graph squaring. More
generally, we denote by Gk the graph G · G · · ·G (k times). We have already encountered
this case before in Lemma 21.3, and similar analysis yields the following lemma (whose proof
we leave as Exercise 21.8):

Lemma 21.16 (Matrix product improves expansion) λ(G′G) ≤ λ(G′)λ(G′) ♦

Note that one can easily compute the rotation map of G′G using the rotation maps of
G and G′.

21.3.3 The tensor product

G: (n,d,λ)-graph λ )-graph : ( {λ,λ })-graphx

Let G and G′ be two graphs with n (resp n′) vertices and d (resp. d′) degree, and let
Ĝ : [n]× [d]→ [n]× [d] and Ĝ′ : [n′]× [d′]→ [n′]× [d′] denote their respective rotation maps.
The tensor product of G and G′, denoted G⊗G′, is the graph over nn′ vertices and degree

dd′ whose rotation map Ĝ⊗G′ is the permutation over ([n]× [n′])× ([d] × [d′]) defined as
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follows
Ĝ⊗G′(〈u, v〉, 〈i, j〉) = 〈u′, v′〉, 〈i′, j′〉 ,

where (u′, i′) = Ĝ(u, i) and (v′, j′) = Ĝ′(v, j). That is, the vertex set of G⊗G′ consists of
pairs of vertices, one from G and the other from G′, and taking a the step 〈i, j〉 on G⊗G′

from the vertex 〈u, v〉 is akin to taking two independent steps: move to the pair 〈u′, v′〉
where u′ is the ith neighbor of u in G and v′ is the ith neighbor of v in G′.

In terms of random-walk matrices, the tensor product is also quite easy to describe. If
A = (ai,j) is the n×n random-walk matrix of G and A′ = (a′i′,j′) is the n′×n′ random-walk
matrix of G′, then the random-walk matrix of G⊗G′, denoted as A⊗A′, will be an nn′×nn′

matrix that in the 〈i, i′〉th row and the 〈j, j′〉 column has the value ai,j ·a′i′,j′ . That is, A⊗A′

consists of n2 copies of A′, with the (i, j)th copy scaled by ai,j :

A⊗A′ =











a1,1A
′ a1,2A

′ . . . a1,nA
′

a2,1A
′ a2,2A

′ . . . a2,nA
′

...
...

an,1A
′ an,2A

′ . . . an,nA
′











The tensor product can also be described in the language of graphs as having a cluster
of n′ vertices in G⊗G′ for every vertex of G. Now if, u and v are two neighboring vertices
in G, we will put a bipartite version of G′ between the cluster corresponding to u and the
cluster corresponding to v in G. That is, if (i, j) is an edge in G′ then there is an edge
between the ith vertex in the cluster corresponding to u and the jth vertex in the cluster
corresponding to v.

Lemma 21.17 (Tensor product preserves expansion) Let λ = λ(G) and λ′ = λ(G′) then
λ(G⊗G′) ≤ max{λ, λ′}. ♦

One intuition for this bound is the following: taking a T step random walk on the graph
G ⊗ G′ is akin to taking two independent random walks on the graphs G and G′. Hence,
if both walks converge to the uniform distribution within T steps, then so will the walk on
G⊗G′.

Proof of Lemma 21.17: This is immediate from some basic facts about tensor products
and eigenvalues (see Exercise 21.22). If λ1, . . . , λn are the eigenvalues of A (where A is
the random-walk matrix of G) and λ′1, . . . , λ

′
n′ are the eigenvalues of A′ (where A′ is the

random-walk matrix of G′), then the eigenvalues of A⊗A′ are all numbers of the form λi ·λ′j ,
and hence the largest ones apart from 1 are of the form 1 · λ(G′) or λ(G) · 1 �

We note that one can show that λ(G ⊗ G′) ≤ λ(G) + λ(G′) without relying on any
knowledge of eigenvalues (see Exercise 21.23). Even this weaker bound suffices for our
applications.

21.3.4 The replacement product

G: (n,D,1-ε)-graph D,d,1-ε )-graph : (nD,2d,1-εε /4)-graphR

In both the matrix and tensor products, the degree of the resulting graph is larger than
the degree of the input graphs. The following product will enable us to reduce the degree



378 21 Pseudorandom constructions: expanders and extractors

of one of the graphs. Let G,G′ be two graphs such that G has n vertices and degree D, and
G′ has D vertices and degree d. The balanced replacement product (below we use simply
replacement product for short) of G and G′ is denoted by G©R G′ is the nn′-vertex 2d-degree
graph obtained as follows:

1. For every vertex u of G, the graph G©R G′ has a copy of G′ (including both edges and
vertices).

2. If u, v are two neighboring vertices in G then we place d parallel edges between the
ith vertex in the copy of G′ corresponding to u and the jth vertex in the copy of G′

corresponding to v, where i is the index of v as a neighbor of u and j is the index of
u as a neighbor of v in G. (That is, taking the ith edge out of u leads to v and taking
the jth edge out of v leads to u.)

Some texts use the term “replacement product” for the variant of this product that uses
only a single edge (as opposed to d parallel edges) in Item 2 above. The addition of parallel
edges ensures that a random step from a vertex v in G©R G′ will move with probability 1/2
to a neighbor within the same cluster and with probability 1/2 to a neighbor outside the
cluster.

The replacement product also has a simple description in terms of rotation maps: since

G©R G′ has nD vertices and 2d degree, its rotation map ˆG©R G′ can be thought of as a
permutation over ([n] × [D]) × ([d] × {0, 1}) that takes four inputs u, v, i, b where u ∈ [n],
v ∈ [D], i ∈ [d] and b ∈ {0, 1}. If b = 0 then it outputs u, Ĝ′(v, i), b and if b = 1 then it
outputs Ĝ(u, v), i, b. That is, depending on whether b is equal to 0 or 1, the rotation map
either treats v as a vertex of G′ or as an edge label of G.

In the language of random-walk matrices the replacement product is described as follows:

A©R A′ = 1/2Â+ 1/2(In ⊗A′) , (9)

where A,A′ denote the random-walk matrices of G and G′ respectively, and Â denotes the
permutation matrix corresponding to the rotation map of G. That is, Â is an (nD)× (nD)
matrix whose (i, j)th column is all zeroes except a single 1 in the (i′, j′)th place where
(i′, j′) = Ĝ(i, j).

If D ≫ d then the replacement product’s degree will be significantly smaller than G’s
degree. The following Lemma shows that this dramatic degree reduction does not cause too
much of a deterioration in the graph’s expansion:

Lemma 21.18 (Expansion of replacement product) If λ(G) ≤ 1− ǫ and λ(H) ≤ 1 − δ then

λ(G©R H) ≤ 1− ǫδ2

24 . ♦

The intuition behind Lemma 21.18 is the following: think of the input graph G as a good
expander whose only drawback is that it has a too high degree D. This means that a k step
random walk on G′ requires O(k logD) random bits. However, as we saw in Section 21.2.5,
sometimes we can use fewer random bits if we use an expander. So a natural idea is to
generate the edge labels for the walk by taking a walk using a smaller expander G′ that has
D vertices and degree d ≪ D. The definition of G©R G′ is motivated by this intuition: a
random walk on G©R G′ is roughly equivalent to using an expander walk on G′ to generate
labels for a walk on G. In particular, each step a walk over G©R G′ can be thought of as
tossing a coin and then, based on its outcome, either taking a a random step on G′, or using
the current vertex of G′ as an edge label to take a step on G. Another way to gain intuition
on the replacement product is to solve Exercise 21.24, that analyzes the combinatorial (edge)
expansion of the resulting graph as a function of the edge expansion of the input graphs.

Proof of Lemma 21.18: It suffices to show that λ(G©R H)3 ≤ 1 − ǫδ2

8 . Since for every

graph F , λ(F k) = λ(F )k, we will do so by showing λ((G©R H)3) ≤ 1 − ǫδ2

8 . Let A be the

n×n random-walk matrix of G (with Â the (nD)×(nD) permutation matrix corresponding
to the rotation map Ĝ), let B be the D ×D random-walk matrix of H , and let C be the
random-walk matrix of (G©R H)3. Then, (9) implies that

C = (1/2Â+ 1/2(In ⊗B))3 , (10)
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Now Lemma 21.14 implies that B = (1− δ)B′ + δJD for some matrix B′ with norm at most
1 (where JD is the D×D all 1/D matrix). We plug this into (10), expand all terms and then
collect together all the terms except for the one corresponding to 1/2δ(In⊗J)1/2Â1/2δ(In⊗J).
The reader can verify that all terms correspond to matrices of norm at most 1 and hence
(10) becomes

C = (1− δ2

8 )C′ + δ2

8 (In ⊗ JD)Â(In ⊗ JD) , (11)

where C′ is some (nD) × (nD) matrix of norm at most 1. The lemma will follow from the
following claim:

Claim: (In ⊗ JD)Â(In ⊗ JD) = A⊗ JD
Proof: Indeed, the left-hand side is the random-walk matrix of the graph on nD vertices
on which a step from a vertex (i, j) corresponds to: 1) choosing a random k ∈ [D] 2) letting
i′ be the kth neighbor of i in G 3) choosing j′ at random in [D] moving to the vertex (i, k).
We can equivalently describe this as going to a random neighbor i′ of i in G and choosing
j′ at random in [D], which is the graph corresponding to the matrix A⊗ JD. �

The claim concludes the proof since λ(A ⊗ JD) ≤ max{λ(A), λ(JD)} = max{λ(A), 0}.
The lemma follows by plugging this into (11) and using the fact that λ(C′) ≤ 1 for every
matrix of norm at most 1. �

21.3.5 The actual construction.

We now use the three graph products of described above to show a strongly explicit con-
struction of an expander graph family. That is, we prove the following theorem:

Theorem 21.19 (Explicit construction of expanders)
There exists a strongly explicit (λ, d)-expander family for some constants d ∈ N and λ < 1.

Note that using the matrix/graph product, Theorem 21.19 can be improved to yield a
strongly explicit (λ, d)-expander family for every λ > 0 (albeit at the expense of allowing d
to be an arbitrarily large constant depending on λ.

Proof: We will start by showing something slightly weaker: a very explicit family of graphs
{Gk} where Gk is not a graph on k vertices but on roughly ck vertices for some constant c.
That is, rather than showing a family of graphs for every size n, we will only show a family
of graphs that contains a graph of size n for every n that is a power of c. We will then
sketch how the construction can be improved to yield a graph family containing a graph of
every size n.

The construction is recursive: we start by a finite size graph G1 (which we can find using
brute force search), and construct the graph Gk from the graph Gk−1. On a high level the
construction is as follows: each of the three products will serve a different purpose in the
construction. The Tensor product allows us to takeGk−1 and increase its number of vertices,
at the expense of increasing the degree and possibly some deterioration in the expansion. The
replacement product allows us to dramatically reduce the degree at the expense of additional
deterioration in the expansion. Finally, we use the Matrix/Path product to regain the loss
in the expansion at the expense of a mild increase in the degree. The actual definition is as
follows:

• Let H be a (D = (2d)100, d, 0.01)-expander graph, which we can find using brute force
search. (We choose d to be a large enough constant that such a graph exists) We
let G1 be a ((2d)100, 2d, 1/2)-expander graph and G2 be a ((2d)200, 2d, 1/2)-expander
graphs (again, such graphs can be easily found via brute force).
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• For k > 2 define
Gk =

(

G⌊k−1
2

⌋ ⊗G⌊ k−1
2

⌋

)

.

We prove the following claim:

Claim: For every k, Gk is a ((2d)100k, 2d, 1− 1/50)-expander graph. Furthermore, there is
a poly(k)-time algorithm that given a label of a vertex i in Gk and an index j in [2d] finds
the jth neighbor of i in Gk.

Proof: We prove the first part by induction. Verify directly that it holds for k = 1, 2.
For k > 2, if we let nk be the number of vertices of Gk then nk = n2

⌊(k−1)/2⌋(2d)
100. By

induction we assume n⌊(k−1)/2⌋ = (2d)100⌊(k−1)/2⌋ which implies that nk = (2d)100k (using
the fact that 2 ⌊(k − 1)/2⌋ + 1 = k). It’s also easy to verify that Gk has degree 2d for
every j: if G has degree 2d then G ⊗ G has degree (2d)2, (G ⊗ G)50) has degree (2d)100

and (G ⊗ G)50)©R H has degree (2d). The eigenvalue analysis also follows by induction: if
λ(G) ≤ 1−1/50 then λ(G⊗G)50 ≤ 1/e < 1/2. Hence, by Lemma 21.18, λ((G⊗G)50©R H) ≤
1− 1/2(0.99)2/24 ≤ 1− 1/50.

For the furthermore part, note that there is a natural algorithm to compute the neigh-
borhood function of Gk that makes 100 recursive calls to the neighborhood function of
G⌊(k−1)/2⌋, thus running in time roughly nlog 100. �

The above construction and analysis yields an expander graph family containing an n
vertex graph for every n of the form ck for some constant c. The proof of Theorem 21.19 is
completed by observing that one can transform an (n, d, λ)-expander graph to an (n′, cd, λ′)-
expander graph (where λ′ < 1 is a constant depending on λ, d) for any n/c ≤ n′ ≤ n by
joining together into a “mega-vertex” sets of at most c vertices (Exercise 21.16). �

Remark 21.20
The quantitative bounds obtained from the proof of Theorem 21.19 are pretty bad, both in
terms of the relation between degree and expansion and the running time (in particular the
initial brute force search alone will take more than 2100 steps). This is partly because for
pedagogical reasons we chose to present this construction in its simplest form, without cover-
ing various known optimizations. However, even with these optimizations this construction
is not the most efficient known.

There are different known constructions of expanders that are highly practical and ef-
ficient (e.g., [LPS86, Mar88]). However, their analysis typically uses deep facts in number
theory. Also, the replacement product (and its close cousin, the zig-zag product) have found
applications beyond the proof of Theorem 21.15. One such application is the determinis-
tic logspace algorithm for undirected connectivity described in the next section. Another
application is a construction of combinatorial vertex expanders with a greater expansion of
small sets that what is implied by the parameter λ ([CRVW02], see also Exercise 21.15).

21.4 Deterministic logspace algorithm for undirected connectivity.

This section describes a recent result of Reingold, showing that at least the most famous
randomized logspace algorithm, the random walk algorithm for the problem UPATH of s-t-
connectivity in undirected graphs (see Chapter 7) can be completely “derandomized.”

Theorem 21.21 (Reingold’s Theorem)
UPATH ∈ L.

Reingold describes a set of poly(n) walks starting from s such that if s is connected to
t then one of the walks is guaranteed to hit t. The existence of such a small set of walks
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can be shown using the probabilistic method and Corollary 21.5. The point here is that
Reingold’s enumeration of walks can be carried out deterministically in logspace.

Proof outline. As before we are interested in undirected graphs that may have parallel
edges. We restrict our attention to checking connectivity for d-regular graphs for say d = 4.
This is without loss of generality: if a vertex has degree d′′ < 3 we add a self-loop of
multiplicity to bring the degree up to d, and if the vertex has degree d′ ≥ 3 we can replace
it by a cycle of d′ vertices, and each of the d′ edges that were incident to the old vertex then
attach to one of the cycle nodes. Of course, a logspace machine does not have space to store
the modified graph, but it can pretend that these modifications have taken place, since it
can perform them on the fly whenever it accesses the graph. (To put this more formally,
the transformation is implicitly computable in logspace as per Definition 4.16.) In fact, the
proof below will perform a series of other local modifications on the graph, each with the
property that the logspace algorithm can perform them on the fly.

We start by observing that checking connectivity in expander graphs is easy. Specifically,
if every connected component in G is an expander, then there is a number ℓ = O(log n)
such that if s and t are connected then they are connected with a path of length at most
ℓ. Indeed, Lemma 21.3 implies that in every n-vertex regular graph G, the distribution
of the ℓth vertex in a random walk is within

√
nλℓ statistical (or L1) distance from the

uniform distribution. In particular this means that if each connected component H of G
is an expander graph, having λ(H) bounded away from 1, then a random walk of length
ℓ = O(log n) from a vertex u in H will reach every vertex of H with positive probability.

The idea behind Reingold’s algorithm is to transform the graph G (in an implicitly
computable in logspace way) to a graph G′ such that every connected component in G
becomes an expander in G′, but two vertices that were not connected will stay unconnected.

21.4.1 The logspace algorithm for connectivity (proof of Theorem 21.21)

By adding more self-loops we may assume that the input graph G is of degree d50 for some
constant d that is sufficiently large to ensure the existence of a (d50, d/2, 0.01)-expander
graph H . Since the size of H is constant, we can store all of it in memory using O(1) bits.6

Let G0 = G and for k ≥ 1, define Gk = (Gk−1©R H)50, where ©R denotes the balanced
replacement product defined in Section 21.3.4.

If Gk−1 is an N -vertex graph with degree d50, then Gk−1©R H is a d50N -vertex graph
with degree d and thus Gk = (Gk−1©R H)50 is a d50N -vertex graph with degree d. Note
also that if two vertices were connected (resp., disconnected) in Gk−1, then they are still
connected (resp., disconnected) in Gk. The key observation that the graph G10 logn is an
expander, and therefore an easy instance of UPATH. Specifically, we have:

Claim: For every k, Gk is an (d50kn, d20,max{1−1/20, 2k/(12n2)})-graph, where n denotes
the number of vertices in G = G0.

Proof: Indeed, by Lemmas 21.16 and 21.18, for every ǫ < 1/20 and D-degree graph F , if
λ(F ) ≤ 1− ǫ then λ(F©R H) ≤ 1− ǫ/25 and hence λ

(

(F©R H)50
)

≤ 1−2ǫ. By Lemma 21.4,
every connected component of G has expansion parameter at most 1− 1

12n2 (note that n is
at least as large as the number of vertices in the connect component). It follows that for
k = 10 logn, in the graph Gk every connected component has expansion parameter at most
max{1− 1/20, 2k/(12n2)} = 1− 1/20. �

Since G10 logn is an expander, to find whether a pair of vertices s, t are connected in
G10 logn we simply need to enumerate over all paths in G10 logn that start at s and have
length ℓ = O(log n), and see whether any one of these hits t. The catch is of course that the
graph provided to our algorithm is G, not G10 log n. A simpler question is whether, given
G, our algorithm can perform even a single step of a random walk on Gk for k = 10 logn.

6We can either use an explicit construction of such a graph or simply find it using an exhaustive search
among all graphs of this size.
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Specifically, given a description of a vertex s in Gk and an index i ∈ [d20], it has to compute
the ith neighbor of s in Gk using only logarithmic space. It is easy to see that if we can
perform this single step in logarithmic space, then we can just as easily perform ℓ steps as
well by repeating the single step again and again while keeping a counter, and reusing the
same space to compute each step.

The graph Gk is equal to (Gk−1©R H)50 and thus it suffices to show that we can take
a single step in the graph Gk−1 ©R H in logspace (we can then repeat the same process
for 50 times). Now by the definition of the replacement product, a vertex in Gk−1©R H
is represented by a pair 〈u, v〉 where u is a vertex of Gk−1 and v is a vertex of H . The
index of a neighbor of 〈u, v〉 is represented by a pair 〈b, i〉 where b ∈ {0, 1} and i ∈ [d/2].
If b = 0 then the 〈b, i〉th neighbor of 〈u, v〉 is 〈u, v′〉 where v′ is the ith neighbor of v′ in
H . If b = 1 then the 〈b, i〉th neighbor of 〈u, v〉 is the pair 〈u′, v′〉 denoting the result of
applying Gk−1’s rotation map to 〈u, v〉. (That is, u′ is the vth neighbor of u in Gk−1, and v′

is the index of u as a neighbor of u′ in Gk−1.) This description already implies an obvious
recursive algorithm to compute the rotation map of Gk. Letting sk denotes the space needed
to compute a rotation map of Gk by this algorithm, we see that sk satisfies the equation
sk = sk−1 +O(1), implying that s10 logn = O(log n).7�

21.5 Weak Random Sources and Extractors

Suppose, that despite any philosophical difficulties, we are happy with probabilistic algo-
rithms, and see no need to “derandomize” them, especially at the expense of some unproven
assumptions. We still need to tackle the fact that real world sources of randomness and
unpredictability rarely, if ever, behave as a sequence of perfectly uncorrelated and unbiased
coin tosses. Can we still execute probabilistic algorithms using real-world “weakly random”
sources?

21.5.1 Min Entropy

For starters, we try to define what we could mean by a weakly random source. Historically
speaking, several definitions were proposed, which are recalled in Example 21.23. The
following definition (due to D. Zuckerman) encompasses all previous definitions.

Definition 21.22 Let X be a random variable. The min entropy of X , denoted by H∞(X),
is the largest real number k such that Pr[X = x] ≤ 2−k for every x in the range of X .

If X is a distribution over {0, 1}n with H∞(X) ≥ k then it is called an (n, k)-source. ♦

It is not hard to see that if X is a random variable over {0, 1}n then H∞(X) ≤ n
with H∞(X) = n if and only if X is distributed according to the uniform distribution Un.
Our goal in this section is to be able to execute probabilistic algorithms given access to a
distribution X with H∞(X) as small as possible. It can be shown that min entropy is a
minimal requirement in the sense that a general simulation of a probabilistic algorithm that
uses k random bits requires access to a distribution X that is (close to) having min entropy
at least k (see Exercise 21.18).

Example 21.23
We will now see that min entropy is a pretty general notion, and can allow us
to model many other models of “imperfectly random” sources. Here are some
examples for distributions X over {0, 1}n.

7When implementing the algorithm one needs to take care not to make a copy of the input when invoking
the recursive procedure, but rather have all procedure operate on a globally accessible memory that contains
the index k and the vertex and edge labels; otherwise we’d get an O(logn log logn)-space algorithm. For
more details see the original paper [Rei05] or [Gol08, Section 5.2.4].
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• (von Neumann’s model: biased coins) X is composed of n independent coin
tosses, each outputting 1 with probability δ < 1/2 and 0 with probability
1− δ. It is easily checked that8 H∞(X) = log(1/(1− δ))n.

• (Santha-Vazirani sources) X has the property that for every i ∈ [n], and

every string x ∈ {0, 1}i−1, conditioned on X1 = x1, . . . , Xi−1 = xi−1 it
holds that both Pr[Xi = 0] and Pr[Xi = 1] are between δ and 1 − δ. This
generalizes von Neumann’s model and can model sources such as stock
market fluctuations, where current measurements do have some limited
dependence on the previous history. It is easily checked that H∞(X) ≥
log(1/(1− δ))n.

• (Bit fixing and generalized bit fixing sources) In a bit-fixing source, there is a
subset S ⊆ [n] with |S| = k such that X ’s bits in the coordinates given by S

are uniformly distributed over {0, 1}k, and X ’s bits in the coordinates given
by [n]\S is a fixed string (say the all-zeros string). Then H∞(X) = k. The
same holds if X ’s projection to [n]\S is a fixed deterministic function of its
projection to S, in which case we say thatX is a generalized bit-fixing source.
For example, if the bits in the odd positions of X are independent and
uniform and for every even position 2i, X2i = X2i−1 then H∞(X) =

⌈

n
2

⌉

.
This may model a scenario where we measure some real world data at too
high a rate (think of measuring every second a physical event that changes
only every minute).

• (Linear subspaces) If X is the uniform distribution over a linear subspace
of GF(2)n of dimension k, then H∞(X) = k. (In this case X is actually a
generalized bit-fixing source — can you see why?)

• (Uniform over subset) If X is the uniform distribution over a set S ⊆ {0, 1}n
with |S| = 2k then H∞(X) = k. As we will see, this is a very general case
that “essentially captures” all distributions X with H∞(X) = k.

21.5.2 Statistical distance

Next we formalize what it means to extract random —more precisely, almost random— bits
from an (n, k) source. We will use the notion of statistical distance (see Section A.2.6 in the
appendix) to qualify when two distributions are close to one another. Recall that if X and
Y are two distributions over some domain Ω then the statistical distance between X and Y ,
denoted by ∆(X,Y ) is equal to

max
f :Ω→{0,1}

|E[f(X)]− E[f(Y )]| . (12)

It is also known that ∆(X,Y ) = 1/2|x − y|1 , where x and y are the vectors in RΩ that
represent the distributionsX and Y respectively. For any ǫ > 0, we say that two distribution
X and Y are ǫ-closedenoted X ≈ǫ Y , if ∆(X,Y ) ≤ ǫ.

21.5.3 Definition of randomness extractors

We can now define randomness extractors - these are functions that transform an (n, k)
source into an almost uniform distribution. The extractor uses a small number of additional
truly random bits, called a seed and denoted by d in the definition below.

8In fact, as n grows X is close to a distribution with min-entropy H(δ)n where H is the Shannon entropy
function defined as H(δ) = δ log 1

δ
+ (1 − δ) log 1

1−δ
. The same holds for Santha-Vazirani sources defined

below. See [DFR+07] for this and more general results of this form.
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Definition 21.24 (Randomness extractors)
A function Ext : {0, 1}n×{0, 1}d → {0, 1}m is a (k, ǫ) extractor if for any (n, k)-sourceX , the
distribution Ext(X,Ud) is ǫ-close to Um. (For every ℓ, Uℓ denotes the uniform distribution

over {0, 1}ℓ.)

Why an additional input? Our stated motivation for extractors is to execute probabilistic
algorithms without access to perfect unbiased coins. Yet, it seems that an extractor is not
sufficient for this task, as we only guarantee that its output is close to uniform if it is given
an an additional seed that is uniformly distributed. We have two answers to this objection.
First, note that the requirement of an additional input is necessary: for every function
Ext : {0, 1}n → {0, 1}m and every k ≤ n − 1 there exists an (n, k)-source X such that the
first bit of Ext(X) is constant (i.e, is equal to some value b ∈ {0, 1} with probability 1),
and so is at least of statistical distance 1/2 from the uniform distribution (Exercise 21.17).
Second, if the length t of the second input is sufficiently short (e.g., t = O(log n)) then, for
the purposes of simulating probabilistic algorithms, we can do without any access to true
random coins, by enumerating over all the 2t possible inputs. Clearly, d has to be somewhat
short for the extractor to be non-trivial. The completely trivial case is when d ≥ m, in
which case the extractor can simply ignore its first input and output the seed!

21.5.4 Existence proof for extractors.

It turns out that at least if we ignore issues of computational efficiency, very good extractors
exist:

Theorem 21.25 For every k, n ∈ N and ǫ > 0, there exists a (k, ǫ)-extractor Ext : {0, 1}n ×
{0, 1}d → {0, 1}k with d = logn+ 2 log(1/ǫ) +O(1) ♦

Proof: Call an (n, k) source X flat if X is the uniform distribution over a 2k-sized subset
of {0, 1}n. In Exercise 19.7 it is shown that every (n, k) source can be expressed as a convex
combination of flat (n, k)-sources. Because the statistical distance of a convex combination
of distributions Y1, . . . , YN from a distribution U is at most the maximum of ∆(Yi, X)
(Exercise 21.19), it suffices to show a function Ext such that Ext(X,Ud) is close to the
uniform distribution when X is an (n, k)-flat source.

We will prove the existence of such an extractor by the probabilistic method, choosing
Ext as a random function from {0, 1}n×{0, 1}d → {0, 1}k. Let X be an (n, k) flat source and

let f be a function from {0, 1}k → {0, 1}. If we choose Ext at random then the expectation
E[f(Ext(X,Ud))] is obtained by evaluating f on 2k × 2d random points, and hence by the
Chernoff bound the probability that this expectation deviates from E[f(Uk)] by more than ǫ

is bounded by 2−2k+d/4ǫ2 . This means that if d > logn+2 log(1/e)+3 then this probability

is bounded by 2−2n(2k). But the number of flat distributions is at most (2n)2
k

and the

number of functions from {0, 1}k → {0, 1} is 22k and hence the union bound implies that
there is a choice of Ext guaranteeing

|E[f(Ext(X,Ud))]− E[f(Uk)]| < ǫ

for every (n, k)-flat source and function f : {0, 1}k → {0, 1}. In other words, Ext(X,Ud) is
ǫ-close to Uk for every (n, k)-flat source and hence for every (n, k)-source. �

This extractor is optimal in the sense that there is an absolute constant c such that every
(k, ǫ) extractor that is non-trivial (has output longer than seed length and ǫ < 1/2) must
satisfy d ≥ log(n− k) + 2 log(1/ǫ)− c [NZ93, RTS97].
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21.5.5 Extractors based on hash functions

The non-explicit extractor of Theorem 21.25 is not very useful: for most applications we need
explicit extractors— namely extractors computable in polynomial time. One such explicit
extractor (though with a long seed length) can be obtained using pairwise independent hash
functions.

Recall (Section 8.2.2) that a collection H of functions from {0, 1}n to {0, 1}m is pairwise
independent if for every x 6= x′ in {0, 1}n and y, y′ ∈ {0, 1}m, the probability that h(x) = y
and h(x′) = y′ for a random h ∈

R
H is 2−2m. There are known construction of such

collections where each function h can be described by a string of length n +m (we abuse
notation and call this string also h). Choosing a random function from the collection is done
by choosing a random string in {0, 1}n+m. The next famous lemma shows that with an
appropriate setting of parameters, the map x, h 7→ h(x)◦h (where ◦ denotes concatenation)
is an extractor. This is not a superb extractor in terms of parameter values but it is useful
in many settings.

Lemma 21.26 (Leftover hash lemma [BBR88, ILL89]) Let m = k− 2 log(1/ǫ), then for every
(n, k) source X ,

∆(H(X) ◦H,Un ◦H) < ǫ ,

where H denotes a randomly chosen (description of) function in a pairwise independent
hash function collection from {0, 1}n to {0, 1}m. ♦

Proof: We study the collision probability of H(X)◦H , where we identify H with Uℓ where
ℓ = n +m is the length of description of the hash function. That is, the probability that
h(x)◦h = h′(x′)◦h′ for random h, h′ ∈

R
H and x, x′ ∈

R
X . This is bounded by the probability

that h = h′ (which is equal to 2−ℓ) times the probability that h(x) = h(x′). The latter is
bounded by 2−k (a bound on the probability that x = x′ implies by the fact that X is an
(n, k)-source) plus 2−m (the probability that h(x) = h(x′) for a random h ∈

R
H and x 6= x′).

Thus the collision probability of (H(X), H) is at most 2−ℓ(2−k + 2−m) = 2−(ℓ+m) + 2−ℓ−k.

Now, treat this distribution as a probability vector p ∈ R2ℓ+m . Then the collision
probability is precisely the L2-norm of p squared. We can write p = 1 + w where 1 is the
probability vector corresponding to the distribution Un ◦H = Un+ℓ and w is orthogonal to
1. (For a general vector p we’d only be able to write p = α1+w for some α ∈ R, but since
p is a probability vector it must hold that α = 1, as otherwise the entries of the righthand
side will not sum up to one.) Thus by the Pythagorean Theorem ‖p‖2

2
= ‖u‖2

2
+ ‖w‖2

2
, and

since ‖u‖2
2

= 2−ℓ−m we get that

‖w‖2
2

= ‖p− 1‖2
2
≤ 2−ℓ−m .

Using the relation between the L1 and L2 norms (Claim 21.1), we see that

∆(H(X) ◦H,Uℓ+m) = 1/2|p− 1|1 ≤ 1/22(m+ℓ)/2‖v− 1‖2 ≤
2k/2+ℓ/2−log(1/ǫ)2−k/2−ℓ/2 < ǫ .

�

21.5.6 Extractors based on random walks on expanders

We can also construct explicit extractors using expander graphs:

Lemma 21.27 Let ǫ > 0. For every n and k ≤ n there exists an explicit (k, ǫ)-extractor
Ext : {0, 1}n × {0, 1}t→ {0, 1}n, where t = O(n− k + log 1/ǫ). ♦

Proof: Suppose X is an (n, k)-source and we are given a sample a from it. Let G be a
(2n, d, 1/2)-expander graph for some constant d (see Definition 21.6 and Theorem 21.19).
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Let z be a truly random seed of length t = log d(n/2 − k/2 + log 1/ǫ+ 1) = O(n − k +
log 1/ǫ). We interpret z as a random walk in G of length ℓ = n/2−k/2+ log1/ǫ+1 starting
from the node whose label is a. (That is, we think of z as ℓ labels in [d] specifying the steps
taken in the walk.) The output Ext(a, z) of the extractor is the label of the final node on
the walk.

Following the proof of Lemma 21.3 (see Equation (1)) we see that, letting p denote the
probability vector corresponding to X and A the random-walk matrix of G,

‖Aℓp− 1‖
2
≤ 2−ℓ‖p− 1‖

2
.

But since X is an (n, k) source, ‖p‖2
2

(which is equal to the collision probability of X) is

at most 2−k, and hence in particular ‖p− 1‖
2
≤ ‖p‖

2
+ ‖1‖

2
≤ 2−k/2 + 2−n/2 ≤ 2−k/2+1.

Thus for our choice of ℓ,

‖Aℓp− 1‖2 ≤ 2−n/2+k/2−log(1/ǫ)+12−k/2+1 ≤ ǫ2−n/2 ,

which completes the proof using the relation between the L1 and L2 norms. �

21.5.7 Extractors from pseudorandom generators

For many years explicit constructions of randomness extractors fell quite a bit behind the
parameters achieved by the optimal non-explicit construction of Theorem 21.25. For exam-
ple, we did not have explicit extractors that allowed us to run any randomized polynomial
time algorithm using ∼ k bits using an (n, k) source where k = nǫ for arbitrarily small
constant ǫ > 0. (Generally, the smaller k is as a function of n, the harder the problem of
constructing extractors; intuitively if n ≫ k then it’s harder to “distill” the k bits of ran-
domness that are hidden in the n-bit input.) To realize this goal, one should try to design
an extractor that uses a seed of O(log n) bits to extract from an (n, nǫ)-source at least a
polynomial number of bits (i.e., at least nδ bits for some δ > 0).9 In 1999 Trevisan showed
how to do this using an improved extractor construction. But more interesting than the
result itself was Trevisan’s idea: he showed that pseudorandom generators such as the ones
we’ve seen in Chapters 20 and 19, when viewed in the right way, are in fact also randomness
extractors. This was very surprising, since these pseudorandom generators rely on hardness
assumptions (such as the existence of a function in E with high circuit complexity). Thus it
would seem that these generators will not be useful in the context of randomness extractors,
where we are looking for constructions with unconditional analysis and are not willing to
make any unproven assumptions.

But thinking further, we realize that the above-mentioned difference between the two
notions arises due to the type of “adversary” or “distinguisher” they have to work against.
For a generator, the set of possible adversaries is the class of computationally limited al-
gorithms (i.e., those that can be computed by circuits of some prescribed size). For an
extractor, on the other hand, the set of adversaries is the set of all Boolean functions. The
reason is that an extractor needs to produce a distribution D on {0, 1}m whose statistical
difference from Um is at most ǫ, meaning that |Prx∈D[D(x) = 1]− Prx∈Um [D(x) = 1]| ≤ ǫ
for every function D : {0, 1}m → {0, 1}.

Trevisan noticed further that while we normally think of a pseudorandom generator G
as having only one input, we can think of it as a function that takes two inputs: a short
seed and the truth table of a candidate hard function f . While our theorems state that
the pseudorandom generator works if f is a hard function, the proofs of these theorems
are actually constructive: they transform a distinguisher D that distinguishes between the
generator’s output and a random string into a small circuit A that computes the function
f . This circuit A uses the distinguisher D as a black-box. Therefore we can apply this
transformation even when the distinguisher D is an arbitrary function that is not necessarily
computable by a small circuit. This is the heart of Trevisan’s argument.

9The work of Ta-Shma [TS96] did come close to this goal, achieving such an extractor with slightly
super-logarithmic seed length.
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Concretely, to make this all work we will need the stronger constructions of pseudo-
random generators (e.g. of Theorem 20.7) that start with functions with high worst-case
complexity. If there is a distinguisher D that distinguishes the output of such a generator
from the uniform distribution, then the proof of correctness of the generator gives a way
to compute the candidate hard function f on every input. Formally, we have the following
theorem: (Below Gf refers to the algorithm G using f as a black box.)

Theorem 21.28 (Constructive version of Theorem 20.7)
For every time-constructible function S : N → N (the “security parameter”), there is a
constant c and algorithms G and R satisfying the following:

• On input a function f : {0, 1}ℓ → {0, 1} and a string z ∈ {0, 1}cℓ, algorithm G runs in
2O(ℓ) time and outputs a string Gf (z) of length m = S(ℓ)1/c.

• If D : {0, 1}m → {0, 1} is a function such that
∣

∣E[D(Gf (Ucℓ))]− E[D(Um)]
∣

∣ > 1/10

then there is an advice string a of length at most S(ℓ)1/4 such that on every input x,
RD(a, x) = f(x) and furthermore R runs in time at most S(ℓ)1/4.

The algorithm R mentioned in the theorem is just the reduction that is implicit in the
proof of correctness of the pseudorandom generator in Chapter 20.

The following is Trevisan’s extractor construction. Let G be as in Theorem 21.28. Let
X be an (n, k)-source. Assume without loss of generality that n is a power of 2, and n = 2ℓ.
Let S(ℓ), the “security parameter”, stand for k. Given any string f from the source and

the seed z ∈ {0, 1}c logn
, the extractor interprets f as a function from {0, 1}ℓ to {0, 1} and

outputs

Ext(f, z) = Gf (z) . (13)

Thus given a string of length n and a seed of size c logn, Ext produces S(ℓ)1/c = k1/c bits.
Let us show that Ext is an extractor.

Claim 21.29 For every k, n, the function Ext defined in (13) is a (k, 1/5)-extractor. ♦

Proof: Suppose otherwise, that there is a (k, n)-source X and a Boolean function D that
distinguishes between Ext(X,Ucℓ) and Um with bias at least 1/5, where m = S(ℓ)1/c. Then,
with probability at least 1/10 over f ∈

R
X , function D distinguishes between Gf (Ucℓ) and

Um with bias at least 1/10. Let’s call an f for which this happens “bad”. Note that for every

bad f there exists an advice string a ∈ {0, 1}k
1/4

such that f is computed by the algorithm
x 7→ RD(a, x). Since RD is a deterministic algorithm, this means that the number of bad

f ’s is at most the number of choices for a, which is 2k
1/4

. But since X is a k-source, it
assigns probability not more than 2−k to any particular string. Hence the probability of a

random f being bad is at most 2k
1/4

2−k ≪ 1/10, and we’ve arrived at a contradiction to the
assumption that D is a good distinguisher. �

Remark 21.30
Readers mystified by this construction should try to look inside the generator G to get a
better understanding. The extractor Ext turns out to do be very simple. Given a string
f ∈ {0, 1}n from the weak random source, the extractor first applies an error-correcting

code (specifically, one that is list decodable) to f to get a string f̂ ∈ {0, 1}poly(n)
. Intuitively

speaking, this has the effect of “smearing out”the randomness over the entire string. The
extractor then selects a subset of the coordinates of f̂ using the construction of the Nisan-
Wigderson generator (see Section 20.2.2). That is, treating f̂ as a Boolean function on

s = O(log n) bits, we use a seed z of size t = O(s) and output f̂(zI1) ◦ · · · ◦ f̂(zIm), where
I1, . . . , Im are s-sized subsets of [t] that form a combinatorial design (see Definition 20.13).
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21.6 Pseudorandom generators for space bounded computation

We now show how extractors can be used to obtain a pseudorandom generator for space-
bounded randomized computation, which allows randomized logspace computations to be
run with O(log2 n) random bits. We stress that this generator does not use any unproven
assumptions.

The goal here will be to derandomize randomized logspace computations, in other words,
classes such as BPL and RL. Recall from Chapter 4 the notion of a configuration graph for
a space-bounded TM. If we fix an input of size n for a logspace machine, then the configu-
ration graph has size poly(n). If the logspace machine is randomized, then it uses random
coin tosses to make transitions within the configuration graph (i.e., each configuration has
two outgoing edges, and each is taken with probability 1/2). To derandomize this compu-
tation we will replace the random string used by the logspace machine with the output of
a “pseudorandom generator” (albeit one tailormade for fooling logspace computations) and
show that the logspace machine cannot “tell the difference” (i.e., the probability it ends up
in an accepting state at the end is not very different).

Theorem 21.31 (Nisan’s pseudorandom generator [Nis90])
For every d there is a c > 0 and a poly(n)-time computable function g : {0, 1}c log2 n →
{0, 1}n

d

(the “pseudorandom generator”) such that for every space-bounded machine M
that has a configuration graph of size ≤ nd on inputs of size n:

∣

∣

∣

∣

∣

Pr
r∈{0,1}nd

[M(x, r) = 1]− Pr
z∈{0,1}c log2 n

[M(x, g(z)) = 1]

∣

∣

∣

∣

∣

<
1

10
. (14)

By trying all possible choices for the O(log2 n)-bit input for the generator g in Nisan’s
theorem, we can simulate every algorithm in BPL in O(log2 n) space. Note that Savitch’s
theorem (Theorem 4.14) also implies that BPL ⊆ SPACE(log2 n) but it doesn’t yield
such a pseudorandom generator. In fact Theorem 21.31 can be strengthened to show that
BPL can be decided using simultaneously polynomial time and space O(log2 n), though we
will not prove it here. Saks and Zhou [SZ95] improved Nisan’s ideas to show that BPL ⊆
SPACE(log1.5 n), which leads many experts to conjecture that BPL = L (i.e., randomness
does not help logspace computations at all). Indeed, we’ve seen in Section 21.4 that the
famous random-walk algorithm for undirected connectivity can be derandomized in logspace.

The main intuition behind Nisan’s construction —and also the conjecture BPL = L—
is that the logspace machine has one-way access to the random string and only O(log n) bits
of memory. So it can only “remember” O(log n) of the random bits it has seen. To exploit
this we will use the following simple lemma, which shows how to recycle a random string
about which only a little information is known.

Lemma 21.32 (Recycling lemma) Let f : {0, 1}n → {0, 1}s be any function and Ext :
{0, 1}n × {0, 1}t → {0, 1}m be a (k, ǫ/2)-extractor, where k = n− (s+ 1)− log 1

ǫ . Then,

∆(f(X) ◦ Um , f(X) ◦ Ext(X,Ut)) < ǫ ,

where X is a random variable distributed uniformly in {0, 1}n. ♦

To understand why we call it the Recycling Lemma, focus on the case s≪ n and n = m.
Suppose we use a random string X of length n to produce f(X). Since f(X) has length
s ≪ n, typically each string in {0, 1}s will have many preimages under f . Thus anybody
looking at f(X) has only very little information about X . More formally, for every fixed
choice of f(X), the set of X that map to this value can be viewed as a weak random source.
The Lemma says that applying an appropriate extractor (whose random seed z can have
length as small as t = O(s+ log(1/ǫ)) if we use Lemma 21.27) on X we can get a new m-bit
string Ext(X, z) that looks essentially random, even to somebody who knows f(X).
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Proof: For v ∈ {0, 1}s we denote by Xv the random variable that is uniformly distributed
over the set f−1(v). Then we can express ∆(f(X) ◦W, f(X) ◦ Ext(X, z)) as

=
1

2

∑

v,w

∣

∣

∣Pr[f(X) = v ∧W = w]− Pr
z

[f(X) = v ∧ Ext(X, z) = w]
∣

∣

∣

=
∑

v

Pr[f(X) = v] ·∆(W,Ext(Xv, z)) (15)

Let V =
{

v : Pr[f(X) = v] ≥ ǫ/2s+1
}

. If v ∈ V , then we can view Xv as a (n, k)-source,
where k ≥ n − (s + 1) − log 1

ǫ . Thus by definition of an extractor, Ext(Xv, r) ≈ǫ/2 W and
hence the contributions from v ∈ V sum to at most ǫ/2. The contributions from v 6∈ V are
upperbounded by

∑

v 6∈V Pr[f(X) = v] ≤ 2s × ǫ
2s+1 = ǫ/2. The lemma follows. �

Now we describe how the Recycling Lemma is useful in Nisan’s construction. Let M be a
logspace machine. Fix an input of size n. Then for some d ≥ 1 the graph of all configurations
of M on this input has ≤ nd configurations and runs in time L ≤ nd. Assume without loss
of generality —since unneeded random bits can always be ignored— that M uses 1 random
bit at each step. Assume also (by giving M a separate worktape that maintains a time
counter), that the configuration graph is leveled: it has L levels, with level i containing
configurations obtainable at time i. The first level contains only the start node and the last
level contains two nodes, “accept” and “reject;” every other level has W = nd nodes. Each
level i node has two outgoing edges to level i+ 1 nodes and the machine’s computation at
this node involves using the next bit in the random string to pick one of these two outgoing
edges. We sometimes call L the length of the configuration graph and W the width.

start configuration
accept

reject

runs that reach conf. V

conf V

Time

Configuration Graph for Machine Q

Figure 21.2 Configuration graph for machine M

For simplicity we first describe how to reduce the number of random bits by a factor
2. Think of the L steps of the computation as divided in two halves, each consuming L/2
random bits. Suppose we use some random string X of length L/2 to run the first half,
and the machine is now at node v in the middle level. The only information known about
X at this point is the index of v, which is a string of length d log n. We may thus view

the first half of the branching program as a (deterministic) function that maps {0, 1}L/2
bits to {0, 1}d logn

bits. The Recycling Lemma allows us to use a random seed of length
O(log n) to recycle X to get an almost-random string Ext(X, z) of length L/2, which can be
used in the second half of the computation. Thus we can run L steps of computation using
L/2 + O(log n) bits, a saving of almost a factor 2. Using a similar idea recursively, Nisan’s
generator runs L steps using O(log n logL) random bits.

Now we formally define Nisan’s generator.
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Definition 21.33 (Nisan’s generator) For some r > 0 let Extk :{0, 1}kr × {0, 1}r → {0, 1}kr
be an extractor function for each k ≥ 0. For every integer k ≥ 0 the associated Nisan

generator Gk : {0, 1}kr → {0, 1}2k is defined recursively as (where |a| = (k − 1)r, |z| = r)

Gk(a ◦ z) =







z1 (i.e., first bit of z) k = 1

Gk−1(a) ◦Gk−1(Extk−1(a, z)) k > 1
♦

Now we use this generator to prove Theorem 21.31. We only need to show that the
probability that the machine goes from the start node to the “accept” node is similar
for truly random strings and pseudorandom strings. However, we will prove a stronger
statement involving intermediate steps as well.

If nodes u is a node in the configuration graph, and s is a string of length 2k, then we
denote by fu,2k(s) the node that the machine reaches when started in u and its random
string is s. Thus if s comes from some distribution D, we can define a distribution fu,2k(D)
on nodes that are 2k levels further from u.

Lemma 21.34 Let r = O(log n) be such that for each k ≤ d log n, Extk :{0, 1}kr×{0, 1}r →
{0, 1}kr is a (kr − 2d logn, ǫ)-extractor. For every machine of the type described in the
previous paragraphs, and every node u in its configuration graph:

∆(fu,2k(U2k), fu,2k(Gk(Ukr))) ≤ 3kǫ, (16)

where Ul denotes the uniform distribution on {0, 1}l. ♦

To prove Theorem 21.31 from Lemma 21.34 let u = u0, the start configuration, and
2k = L, the length of the entire computation. Choose 3kǫ < 1/10 (say), which means
log 1/ǫ = O(logL) = O(log n). Using the extractor of Section 21.5.6 as Extk, we can let
r = O(log n) and so the seed length kr = O(r logL) = O(log2 n).
Proof of Lemma 21.34: Let ǫk denote the maximum value of the left hand side of (16)
over all machines. The lemma is proved if we can show inductively that ǫk ≤ 2ǫk−1+2ǫ. The
case k = 1 is trivial. At the inductive step, we need to upper bound the distance between
two distributions fu,2k(D1), fu,2k(D4), for which we introduce two distributions D2,D3 and
use triangle inequality (which holds since ∆(·, ·) is a distance function on distributions):

∆(fu,2k(D1), fu,2k(D4)) ≤
3
∑

i=1

∆(fu,2k(Di), fu,2k(Di+1)) . (17)

The distributions will be:

D1 = U2k

D4 = Gk(Ukr)

D2 = U2k−1 ◦Gk−1(U(k−1)r)

D3 = Gk−1(U(k−1)r) ◦Gk−1(U
′
(k−1)r) (U,U ′ are identical but independent).

We bound the summands in (17) one by one.

Claim 1: ∆(fu,2k(D1)− fu,2k(D2)) ≤ ǫk−1.
Denote Pr[fu,2k−1(U2k−1) = w] by pu,w and Pr[fu,2k−1(Gk−1(U(k−1)r)) = w] by qu,w. Ac-
cording to the inductive assumption,

1

2

∑

w

|pu,w − qu,w| = ∆(fu,2k−1(U2k−1), fu,2k−1(Gk−1(U(k−1)r))) ≤ ǫk−1.

Since D1 = U2k may be viewed as two independent copies of U2k−1 we have

∆(fu,2k(D1), fu,2k(D2)) =
∑

v

1

2

∣

∣

∣

∣

∣

∑

w

puwpwv −
∑

w

puwqwv

∣

∣

∣

∣

∣
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where w, v denote nodes 2k−1 and 2k levels respectively from u

=
∑

w

puw
1

2

∑

v

|pwv − qwv|

≤ ǫk−1 (using inductive hypothesis and
∑

w

puw = 1)

Claim 2: ∆(fu,2k(D2), fu,2k(D3)) ≤ ǫk−1.

The proof is similar to the previous case and is omitted.

Claim 3: ∆(fu,2k(D3), fu,2k(D4)) ≤ 2ǫ.

We use the Recycling Lemma. Let gu : {0, 1}(k−1)r → [1,W ] be defined as gu(a) =
fu,2k−1(Gk−1(a)). (To put it in words, apply the Nisan generator to the seed a and use
the result as a random string for the machine, using u as the start node. Output the node
you reach after 2k−1 steps.) Let X,Y ∈ U(k−1)r and z ∈ Ur. According to the Recycling
Lemma,

gu(X) ◦ Y ≈ǫ gu(X) ◦ Extk−1(X, z),

and then Part 5 of Lemma A.21 implies that the equivalence continues to hold if we apply
a (deterministic) function to the second string on both sides. Thus

gu(X) ◦ gw(Y ) ≈ǫ gu(X) ◦ gw(Extk−1(X, z))

for all nodes w that are 2k−1 levels after u. The left distribution corresponds to fu,2k(D3)
(by which we mean that Pr[fu,2k(D3) = v] =

∑

w Pr[gu(X) = w∧gw(Y ) = v]) and the right
one to fu,2k(D4) and the proof is completed. �

What have we learned?

• Often we can easily show that a random object has certain attractive properties,
but it’s non-trivial to come up with an explicit construction of an object with these
properties. Yet, once found, such explicit constructions are often extremely useful.

• The behavior of random walks on a graph is tightly related to the eigenvalues of its
adjacency matrix (or, equivalently, its normalized version— the random-walk matrix).

• An expander graph family is a collection of constant-degree graphs whose second
largest eigenvalue is bounded away from 1. Such families can be shown to exist using
the probabilistic method, but we also know of explicit constructions.

• An ℓ-step random walk on an expander graph is to a certain extend “pseudorandom”
and behaves similarly to ℓ randomly chosen vertices under certain measures. This
fact has been found useful in a variety of setting, from the randomness efficient error
reduction procedure for BPP to the logspace algorithm for undirected connectivity.

• Extractors are functions that transform a distribution with a large min-entropy into
(close to) the uniform distribution.

• Pseudorandom generators with a “black-box” analysis of their correctness can be used
to construct randomness extractors, even though the latter are based on no unproven
assumptions or lower bounds.

Chapter notes and history

Expanders were first defined by Bassalygo and Pinsker [BP73] and Pinsker [Pin73] proved their
existence using the probabilistic method. They were motivated by the question of finding explicit
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graphs to replace the random graphs in an error-correcting code construction by Gallager [Gal63].
Margulis [Mar73] gave the first explicit construction of an expander family although he did not give
any bound on the parameter λ(G) of graphs G in the family except to prove it is bounded away
from 1. Gabber and Galil [GG79] improved Margulis’s analysis and gave an explicit bound on λ(G),
a bound that was later improved by Jimbo and Marouka [JM85]. Lubotzky, Phillips and Sarnak
[LPS86] and Margulis [Mar88] constructed Ramanujan graphs, that are expander with an optimal
dependence between the parameter λ and their degree. The Alon-Boppanna lower bound on the
second eigenvalue of a d-regular graph was first stated in [Alo86]; a tight bound on the o(1) error
term was given in [Nil04].

The relation between the algebraic (eigenvalue-based) and combinatorial definitions of ex-
panders was developed by Dodziuk, Alon and Milman, and Alon in the papers [Dod84, AM84,
AM85, Alo86]. Sinclair and Jerrum [SJ88] generalized this relation to the case of general reversible
Markov chains. All of these results can be viewed as a discrete version of a result by Cheeger [Che70]
on compact Riemannian manifolds.

Lemma 21.4 (every connected graph has some spectral gap) is from Alon and Sudakov [AS00a]
and is an improved version of a result appearing as Problem 11.29 in Lovász’s book [Lov07].
Lemma 21.11 (Expander Mixing Lemma) is from Alon and Chung [AC86] (though there it’s stated
with T = V \ S).

Karp, Pippenger and Sipser [KPS85] were the first to use expanders for derandomization, specif-
ically showing how to use them to reduce the error of an RP-algorithm from 1/3 to 1/

√
k using

only O(k) additional random bits. Ajtai, Komlos, and Szemeredi [AKS87] were the first to use
random walks on expander graphs for derandomization in their result that every RL algorithm
using less log2 n/ log log n random bits can be simulated in deterministic log space. Cohen and
Wigderson [CW89] and Impagliazzo-Zuckerman [IZ89] independently showed how to use the [AKS87]
analysis to reduce the error of both RP and BPP algorithms as described in Section 21.2.5 (er-
ror reduction from 1/3 to 2−k using O(k) additional bits). An improved analysis of such walks
was given by Gillman [Gil93] who proved the Expander Chernoff Bound (Theorem 21.15). Some
additional improvements were given in [Kah97, WX05, Hea06].

The explicit construction of expanders presented in Section 21.3 is due to Reingold, Vadhan and
Wigderson [RVW00], although our presentation follows [RV05, RTV06]. The expansion properties
of the replacement product were also analyzed in a particular case of products of two cubes by
Gromov [Gro83] and for general graphs (in a somewhat different context) by Martin and Randall
[MR00].

Hoory, Linial and Wigderson [HLW06] give an excellent introduction to expander graphs and
their computer science applications. The Alon-Spencer book [AS00b] also contains several results
on expanders.

The problem of randomness extraction was first considered in the 1950s by von Neumann [vN51]
who wanted to extract randomness from biased (but independent) random coins. This was generl-
ized to Markov chains by Blum [Blu84]. Santha and Vazirani [SV84] studied extraction for the much
more general class now known as “Santha Vazirani sources” (see Exercise 21.23), that necessitates
adding a seed and allowing the output to have some small statistical distance from the uniform.
Vazirani and Vazirani [VV85] showed how to simulate RP using a Santha-Vazirani source. Chor
and Goldreich [CG85] improved the analysis of [SV84, VV85] and generalized further the class of
sources. In particular they introduced the notion of min-entropy, and studied block sources, where
each block has significant min-entropy even conditioned on the previous block. They also studied
extraction from several (two or more) independent sources of high min-entropy (i.e., (k, n) sources
for k > n/2). Zuckerman [Zuc90] put forward the goal of simulating probabilistic algorithms using a
single source of high min-entropy and observed this generalizes all models that had been studied to
date. (See [SZ94] for an account of various models considered by previous researchers.) Zuckerman
also gave the first simulation of probabilistic algorithms from (k, n) sources assuming k = Ω(n). We
note that extractors were also used implicitly in an early work of Sipser [Sip86] who showed certain
conditional derandomization results under the assumption that certain (variants of) extractors exist
(though he described them in a different way).

Extractors (albeit with long seed length) were also implicitly constructed and used in cryptog-
raphy, using pairwise independent hash functions and the leftover hash lemma (Lemma 21.26) of
Impagliazzo, Levin, and Luby [ILL89] and a related precursor by Bennett, Brassard and Robert
[BBR88]. Nisan [Nis90] then showed that hashing (in particular the [VV85] generator) could be used
to obtain provably good pseudorandom generators for logspace. Nisan and Zuckerman [NZ93] first
defined extractors. They also gave a new extractor construction and used it to achieve their result
that in general the amount of randomness used by a probabilistic algorithm can be reduced from
polynomial to linear in the algorithm’s space complexity. Since then a long sequence of beautiful
works was dedicated to improving the parameters of extractors, on the way discovering many impor-
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tant tools that were used in other areas of theoretical computer science. In particular, Guruswami
et al [GUV07] (slightly improving over Lu et al [LRVW03]) constructed an extractor that has both
seed length and output length within a constant factor of the optimal non-explicit extractor of
Theorem 21.25. See [Sha02] for a good (though slightly outdated) survey on extractor constructions
and their applications.

Trevisan’s [Tre99] insight about using pseudorandom generators to construct extractors (see
Section 21.5.7) has now been greatly extended. It is now understood that three combinatorial
objects studied in three different fields are very similar: pseudorandom generators (cryptography
and derandomization), extractors (weak random sources) and list-decodable error-correcting codes
(coding theory and information theory). Constructions of any one of these objects often gives
constructions of the other two. See the survey by Vadhan [Vad07].

Theorem 21.31 is by Nisan [Nis90], who also showed that all of BPL can be simulated us-
ing polynomial-time and O(log2 n) space. The proof we presented is by Impagliazzo, Nisan, and
Wigderson [INW94], with the extractor-based viewpoint due to Raz and Reingold [RR99]. Saks and
Zhou [SZ95] extended Nisan’s techniques to show an O(log1.5 n)-space algorithm for every problem
in BPL.

As perhaps the most important example of an RL problem, undirected connectivity has re-
ceived special attention in the literature. Nisan, Szemeredi and Wigderson [NSW92] gave the first
deterministic algorithm for undirected connectivity using o(log2n) space, specifically O(log1.5 n); as
mentioned above this result was later generalized to all of RL by [SZ95]. Armoni et al [ATSWZ97]
improved the bound for undirected connectivity to O(log4/3 n) space. The deterministic space com-
plexity of undirected connectivity was finally resolved by Reingold [Rei05] who showed that it lies
in L (Theorem 21.21). Trifonov [Tri05] proved concurrently and independently the slightly weaker
result of an O(log n log log n)-space algorithm for this problem.

Exercises

21.1 Prove Claim 21.1 using the Cauchy-Schwartz Inquality— |〈u,v〉| ≤ ‖u‖2‖v‖2 for every two vectors
u,v ∈ Rn.

21.2 (a) Prove Hölder’s Inequality (see Section A.5.4): For every p, q with 1
p

+ 1
q

= 1, ‖u‖p‖v‖q ≥
∑n

i=1 |uivi|. Note that the Cauchy-Schwartz Inequality is the special case of Hölder’s Inequal-
ity with p = q = 2. H464

(b) For a vector v ∈ Rn, define ‖v‖∞ = maxi∈[n] |vi|. Show that this is a norm and that for every
v,

‖v‖∞ = lim
p→∞

(

n
∑

i=1

|vi|p
)1/p

.

(c) Prove that ‖v‖2 ≤
√

|v|1‖v‖∞ for every vector v ∈ Rn. H464

21.3 Prove that if G is an n-vertex bipartite graph then there exists a vector v ∈ Rn such that Av = −v
where A is the random-walk matrix of G.

21.4 Prove that for every n-vertex d-regular graph G, the diameter of G (maximum over all pairs of
distinct vertices i, j in G of the length of the shortest path in G between i and j) is at most
3n/(d + 1). H465

21.5 Recall that the spectral norm of a matrix A, denoted ‖A‖, is defined as the maximum of ‖Av‖2

for every unit vector v. Let A be a symmetric stochastic matrix: i.e., A = A† and every row and
column of A has non-negative entries summing up to one. Prove that ‖A‖ ≤ 1. H465

21.6 Let A,B be two n× n matrices.

(a) Prove that ‖A+B‖ ≤ ‖A‖ + ‖B‖.
(b) Prove that ‖AB‖ ≤ ‖A‖‖B‖.

21.7 Let A,B be two symmetric stochastic matrices. Prove that λ(A+B) ≤ λ(A) + λ(B).

21.8 Prove Lemma 21.16. H465

21.9 (a) Prove that if a probability distribution X has support of size at most d, its collision probability
is at least 1/d.

(b) Prove that if G is an (n, d, λ)-graph and X is the distribution over a random neighbor of the
first vertex, then the collision probability of X is at most λ2 + 1/n.
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(c) Prove that λ ≥
√

1
d
− 1

n
= 1√

d
+ o(1) (where o(1) is a term that tends to 0 with n).

21.10 Recall that the trace of a Matrix A, denoted tr(A), is the sum of the entries along its diagonal.

(a) Prove that if an n× n matrix A has eigenvalues λ1, . . . , λn, then tr(A) =
∑n

i=1 λi.

(b) Prove that if A is a random-walk matrix of an n-vertex graph G, and k ≥ 1, then tr(Ak) is
equal to n times the probability that a if we select a vertex i uniformly at random and take
a k step random walk from i, then we end up back in i.

(c) Prove that for every d-regular graph G, k ∈ N and vertex i of G, the probability that a path
of length k from i ends up back in i is at least as large as the corresponding probability in
Td, where Td is the complete (d− 1)-ary tree of depth k rooted at i. (That is, every internal
vertex has degree d— one parent and d− 1 children.)

(d) Prove that for even k the probability that a path of length k from the root of Td ends up back

at v is at least 2k−k log d/2−o(k). H465

(e) Prove that for every n-vertex d-degree graph G, λ(G) ≥ 2√
d
(1 + o(1)), where o(1) denotes a

term, depending on n and d that tends to 0 as n grows. H465

21.11 Let an n, d random graph be an n-vertex graph chosen as follows: choose d random permutations
π1, . . . , πd from [n] to [n]. Let the the graph G contains an edge (u, v) for every pair u, v such that
v = πi(u) for some 1 ≤ i ≤ d. Prove that a random n, d graph is an (n, 2d, 1

10
) edge expander with

probability 1 − o(1) (i.e., tending to one with n). H465

21.12 In this exercise we show how to extend the error reduction procedure of Section 21.2.5 to two-sided
(BPP) algorithms.

(a) Prove that under the conditions of Theorem 21.12, for every subset I ⊆ [k],

Pr[∀1≤i≤IXi ∈ B] ≤ ((1 − λ)
√

β + λ)|I|−1 .

(b) Conclude that if |B| < n/10 and λ < 1/100 then the probability that there exists a subset

I ⊆ [k] such that |I | > k/10 and ∀1≤i≤IXi ∈ B is at most 2−k/100.

(c) Use this to show a procedure that transforms every BPP algorithm A that uses m coins and
decides a language L with probability 0.9 into an algorithm B that uses m+O(k) coins and
decides the language L with probability 1 − 2−k.

21.13 Prove that for every n-vertex d-regular graph, there exists a subset S of n/2 vertices, such that
E(S, S̄) ≤ dn/4. Conclude that there does not exist an (n, d, ρ) edge expander for ρ > 1/2. H465

21.14 Prove the Expander Mixing Lemma (Lemma 21.11). H465

21.15 [Tan84] A graph where |Γ(S)| ≤ c|S| for every not-too-big set S (say, |S| ≤ n/(10d)) is said to have
vertex expansion c. This exercise shows that graphs with the minimum possible second eigenvalue
2√
d
(1 + o(1)) have vertex expansion roughly d/4. It is known that such graphs have in fact vertex

expansion roughly d/2 [Kah92], and there are counterexamples showing this is tight. In contrast,
random d-regular graphs have vertex expansion (1 − o(1))d.

(a) Prove that if p is a probability vector then ‖p‖2
2

is equal to the probability that if i and j are
chosen from p, then i = j.

(b) Prove that if s is the probability vector denoting the uniform distribution over some subset
S of vertices of a graph G with random-walk matrix A, then ‖Ap‖2

2
≥ 1/|Γ(S)|, where Γ(S)

denotes the set of S’s neighbors.

(c) Prove that if G is an (n, d, λ)-expander graph, and S is a subset of ǫn vertices, then

|Γ(S)| ≥ |S|
2λ2 ((1 − ǫ)2 − 2ǫ/λ2)

.

H465

21.16 If G is a graph and S is a subset of G’s vertices then by contracting S we mean transforming G
into a graph H where all of S’s members are replaced by a single vertex s with an edge s v in
H for every edge u v in G where u ∈ S. Let G be an (n, d, ρ) edge expander, and let H be the
n′ = n− (c− 1)k vertex cd degree graph obtained by taking k disjoint c-sized subsets S1, . . . , Sk of
G’s vertices and contracting them, and then adding self loops to the other vertices to ensure that
the graph is regular. Prove that H is an (n′, cd, ρ/(2c)) edge expander. Use this to complete the
proof of Theorem 21.19. H465

21.17 Prove that for every function Ext : {0, 1}n → {0, 1}m and there exists an (n, n− 1)-source X and a
bit b ∈ {0, 1} such that Pr[Ext(X)1 = b] = 1 (where Ext(X)1 denotes the first bit of Ext(X)). Prove
that this implies that ∆(Ext(X), Um) ≥ 1/2.
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21.18 (a) Show that there is a deterministic poly(n)-time algorithm A that given an input distributed
according to the distribution X with H∞(X) ≥ n100 and black box access to any function
f : {0, 1}n → {0, 1} outputs 1 with probability at least 0.99 if E[f(Un)] ≥ 2/3 and outputs
0 with probability at least 0.99 if E[f(Un)] ≤ 1/3. We call such an algorithm a function
approximator.

(b) Show that there is no deterministic polynomial-time function approximator A without getting
an additional randomized input (i.e., there is no deterministic function approximator). H465

(c) Show that for every probability distribution X, if ∆(X,Y ) > 1/10 for every Y with H∞(Y ) ≥
n/2, then there is no polynomial-time function approximator that gets X as an input. Con-
clude that access to a high min entropy distribution is necessary for black-box simulation of
BPP algorithms. H465

21.19 . Say that a distribution Y is a convex combination of distributions Y1, . . . , YN if there exist some
non-negative numbers α1, . . . , αN summing up to 1 such that Y is the distribution obtained by
picking i with probability αi and sampling an element from Yi. Prove that if this is the case then
for every distribution X,

∆(X,Y ) ≤
∑

i

αi∆(X,Yi) ≤ max
i

∆(X,Yi) .

H465

21.20 Suppose Boolean function f is (S, ǫ)-hard and let D be the distribution on m-bit strings defined
by picking inputs x1, x2, . . . , xm uniformly at random and outputting f(x1)f(x2) · · · f(xm). Show
that the statistical distance between D and the uniform distribution is at most ǫm.

21.21 Prove Lemma 21.26.

21.22 Let A be an n × n matrix with eigenvectors u1, . . . ,un and corresponding values λ1, . . . , λn. Let
B be an m ×m matrix with eigenvectors v1, . . . ,vm and corresponding values α1, . . . , αm. Prove
that the matrix A⊗B has eigenvectors ui ⊗ vj and corresponding values λi · αj .

21.23 Prove that for every two graphs G,G′, λ(G⊗G′) ≤ λ(G)+λ(G′) without using the fact that every
symmetric matrix is diagonalizable. H465

21.24 Let G be an n-vertex D-degree graph with ρ edge expansion for some ρ > 0. (That is, for every a
subset S of G’s vertices of size at most n/2, the number of edges between S and its complement is
at least ρd|S|.) Let G′ be a D-vertex d-degree graph with ρ′ edge expansion for some ρ′ > 0. Prove
that G©R G′ has at least ρ2ρ′/1000 edge expansion. H465
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Chapter 22

Proofs of PCP Theorems and the
Fourier Transform Technique

We saw in Chapter 11 that the PCP Theorem implies that computing approximate solutions
to many optimization problems is NP-hard. This chapter gives a complete proof of the PCP
Theorem. In Chapter 11 we also mentioned that the PCP Theorem does not suffice for
proving several other similar results, for which we need stronger (or simply different) “PCP
Theorems”. In this chapter we survey some such results and their proofs. The two main
results are Raz’s parallel repetition theorem (see Section 22.3) and H̊astad’s 3-bit PCP
theorem (Theorem 22.16). Raz’s theorem leads to strong hardness results for the 2CSP

problem over large alphabets. H̊astad’s theorem shows that certificates for NP languages
can be probabilistically checked by examining only 3 bits in them. One of the consequences
of H̊astad’s result is that computing a (7/8 + ǫ)-approximation for the MAX-3SAT problem
is NP-hard for every ǫ > 0. Since we know that 7/8-approximation is in fact possible in
polynomial time (see Example 11.2 and Exercise 11.3), this shows (assuming P 6= NP) that
the approximability of MAX-3SAT has an abrupt transition from easy to hard at 7/8. Such
a result is called a threshold result, and threshold results are now known for a few other
problems.

H̊astad’s result builds on the other results we have studied, including the (standard)
PCP Theorem, and Raz’s theorem. It also uses H̊astad’s method of analysing the verifier’s
acceptance probability using Fourier transforms. Such Fourier analysis has also proved
useful in other areas in theoretical computer science. We introduce this technique in Sec-
tion 22.5 by using it to show the correctness of the linearity testing algorithm of Section 11.5,
which completes the proof of the result NP ⊆ PCP(poly(n), 1) in Section 11.5. We then
use Fourier analysis to prove H̊astad’s 3-bit PCP Theorem.

In Section 22.8 we prove the hardness of approximating the SET-COVER problem. In
Section 22.2.3 we prove that computing n−ǫ-approximation to MAX-INDSET in NP-hard.
In Section 22.9 we briefly survey other PCP Theorems that have been proved, including
those that assume the so-called unique games conjecture.

22.1 Constraint satisfaction problems with non-binary alphabet

In this chapter we will often use the problem qCSPW , which is defined by extending the
definition of qCSP in Definition 11.11 from binary alphabet to an alphabet of size W .

Definition 22.1 (qCSPW ) For integers q,W ≥ 1 the qCSPW problem is defined analo-
gously to the qCSP problem of Definition 11.11, except the underlying alphabet is [W ] =
{1, 2, . . . ,W} instead of {0, 1}. Thus constraints are functions mapping [W ]q to {0, 1}.

For ρ < 1 we define -GAPqCSPWρ analogously to the definition of ρ-GAPqCSP for binary
alphabet (see Definition 11.13). ♦
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Example 22.2
3SAT is the subcase of qCSPW where q = 3, W = 2, and the constraints are
OR’s of the involved literals.
Similarly, the NP-complete problem 3COL can be viewed as a subcase of 2CSP3

instances where for each edge (i, j), there is a constraint on the variables ui, uj
that is satisfied iff ui 6= uj . The graph is 3-colorable iff there is a way to assign
a number in {0, 1, 2} to each variable such that all constraints are satisfied.

22.2 Proof of the PCP Theorem

This section proves the PCP Theorem. We present Dinur’s proof [Din06], which simplifies
half of the original proof of [AS92, ALM+92]. Section 22.2.1 gives an outline of the main steps.
Section 22.2.2 describes one key step, Dinur’s gap amplification technique. Section 22.2.5
describes the other key step, which is from the original proof of the PCP Theorem [ALM+92]

and its key ideas were presented in the proof of NP ⊆ PCP(poly(n), 1) in Section 11.5.

22.2.1 Proof outline for the PCP Theorem.

As we have seen, the PCP Theorem is equivalent to Theorem 11.14, stating that ρ-GAPqCSP

is NP-hard for some constants q and ρ < 1. Consider the case that ρ = 1 − ǫ where ǫ is
not necessarily a constant but can be a function of m (the number of constraints). Since
the number of satisfied constraints is always a whole number, if ϕ is unsatisfiable then
val(ϕ) ≤ 1 − 1/m. Hence, the gap problem (1−1/m)-GAP3CSP is a generalization of 3SAT

and is NP hard. The idea behind the proof is to start with this observation, and iteratively
show that (1−ǫ)-GAPqCSP is NP-hard for larger and larger values of ǫ, until ǫ is as large
as some absolute constant independent of m. This is formalized in the following definition
and lemma.

Definition 22.3 Let f be a function mapping CSP instances to CSP instances. We say that
f is a CL-reduction (short for complete linear-blowup reduction) if it is polynomial-time
computable and for every CSP instance ϕ, satisfies:

Completeness: If ϕ is satisfiable then so is f(ϕ).

Linear blowup: If m is the number of constraints in ϕ then the new qCSP instance f(ϕ)
has at most Cm constraints and alphabet W , where C and W can depend on the arity
and the alphabet size of ϕ (but not on the number of constraints or variables). ♦

Lemma 22.4 (PCP Main Lemma)
There exist constants q0 ≥ 3, ǫ0 > 0, and a CL-reduction f such that for every q0CSP-
instance ϕ with binary alphabet, and every ǫ < ǫ0, the instance ψ = f(ϕ) is a q0CSP (over
binary alphabet) satisfying

val(ϕ) ≤ 1− ǫ⇒ val(ψ) ≤ 1− 2ǫ

Lemma 22.4 can be succinctly described as follows:

Arity Alphabet Constraints Value
Original q0 binary m 1− ǫ

⇓ ⇓ ⇓ ⇓
Lemma 22.4 q0 binary Cm 1− 2ǫ
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This lemma allows us to easily prove the PCP Theorem.

Proving Theorem 11.5 from Lemma 22.4. Let q0 ≥ 3 be as stated in Lemma 22.4. As
already observed, the decision problem q0CSP is NP-hard. To prove the PCP Theorem
we give a reduction from this problem to GAP q0CSP. Let ϕ be a q0CSP instance. Let
m be the number of constraints in ϕ. If ϕ is satisfiable then val(ϕ) = 1 and otherwise
val(ϕ) ≤ 1− 1/m. We use Lemma 22.4 to amplify this gap. Specifically, apply the function
f obtained by Lemma 22.4 to ϕ a total of logm times. We get an instance ψ such that
if ϕ is satisfiable then so is ψ, but if ϕ is not satisfiable (and so val(ϕ) ≤ 1 − 1/m) then
val(ψ) ≤ 1−min{2ǫ0, 1− 2logm/m} = 1− 2ǫ0. Note that the size of ψ is at most C logmm,
which is polynomial in m. Thus we have obtained a gap-preserving reduction from L to the
(1−2ǫ0)-GAP q0CSP problem, and the PCP theorem is proved. �

The rest of this section proves Lemma 22.4 by combining two transformations: the first
transformation amplifies the gap (i.e., fraction of violated constraints) of a given CSP in-
stance, at the expense of increasing the alphabet size. The second transformation reduces
back the alphabet to binary, at the expense of a modest reduction in the gap. The trans-
formations are described in the next two lemmas.

Lemma 22.5 (Gap Amplification [Din06])
For every ℓ, n ∈ N, there exist numbers W ∈ N, ǫ0 > 0 and a CL-reduction gℓ,q such that
for every qCSP instance ϕ with binary alphabet, the instance ψ = gℓ,q(ϕ) has arity only 2,
uses alphabet of size at most W and satisfies:

val(ϕ) ≤ 1− ǫ⇒ val(ψ) ≤ 1− ℓǫ

for every ǫ < ǫ0.

Lemma 22.6 (Alphabet Reduction)
There exists a constant q0 and a CL- reduction h such that for every CSP instance ϕ, if ϕ
had arity two over a (possibly non-binary) alphabet {0..W−1} then ψ = h(ϕ) has arity q0
over a binary alphabet and satisfies:

val(ϕ) ≤ 1− ǫ⇒ val(h(ϕ)) ≤ 1− ǫ/3

Lemmas 22.5 and 22.6 together imply Lemma 22.4 by setting f(ϕ) = h(g6,q0(ϕ)). Indeed,
if ϕ was satisfiable then so will f(ϕ). If val(ϕ) ≤ 1−ǫ, for ǫ < ǫ0 (where ǫ0 the value obtained
in Lemma 22.5 for ℓ = 6, q = q0) then val(g6,q0(ϕ)) ≤ 1 − 6ǫ and hence val(h(g6,q0(ϕ))) ≤
1− 2ǫ. This composition is described in the following table:

Arity Alphabet Constraints Value
Original q0 binary m 1− ǫ

⇓ ⇓ ⇓ ⇓
Lemma 22.5 (ℓ = 6 , q = q0) 2 W Cm 1− 6ǫ

⇓ ⇓ ⇓ ⇓
Lemma 22.6 q0 binary C′Cm 1− 2ǫ

22.2.2 Dinur’s Gap Amplification: Proof of Lemma 22.5

To prove Lemma 22.5, we need to exhibit a function g that maps a qCSP instance to
a 2CSPW instance over a larger alphabet {0..W−1} in a way that increases the fraction
of violated constraints. In the proof verification viewpoint (Section 11.3), the fraction of
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violated constraints is merely the soundness parameter. So at first sight, our task merely
seems to be reducing the “soundness” parameter of a PCP verifier, which as already noted
(in the Remarks following Theorem 11.5) can be easily done by repeating the verifier’s
operation 2 (or more generally, k) times. The problem with this trivial idea is that the CSP

instance corresponding to k repeated runs of the verifier is not another 2CSP instance, but
an instance of arity 2k since the verifier’s decision depends upon 2k different entries in the
proof. In the next chapter, we will see another way of “repeating” the verifier’s operation
using parallel repetition, which does result in 2CSP instances, but greatly increases the size
of the CSP instance. By contrast, here we desire a CL-reduction, which means the size
must only increase by a constant factor. The key to designing such a CL-reduction is
walks in expander graphs, which we describe separately first in Section 22.2.3 since it is of
independent interest.

22.2.3 Expanders, walks, and hardness of approximating INDSET

Dinur’s proof uses expander graphs, which are described in Chapter 21. Here we recap
the facts about expanders used in this chapter, and as illustration we use them to prove a
hardness result for MAX-INDSET.

In Chapter 21 we define a parameter λ(G) ∈ [0, 1], for every regular graph G (see
Definition 21.2). For every c ∈ (0, 1), we call a regular graph G satisfying λ(G) ≤ c a c-
expander graph. If c < 0.9, we drop the prefix c and simply call G an expander graph. (The
choice of the constant 0.9 is arbitrary.) As shown in Chapter 21, for every constant c ∈ (0, 1)
there is a constant d and an algorithm that given input n ∈ N , runs in poly(n) time and
outputs the adjacency matrix of an n-vertex d-regular c-expander (see Theorem 21.19).

The main property we need in this chapter is that for every regular graph G = (V,E)
and every S ⊆ V with |S| ≤ |V |/2,

Pr
(u,v)∈E

[u ∈ S, v ∈ S] ≤ |S||V |

(

1

2
+
λ(G)

2

)

(1)

(Exercise 22.1) Another property we use is that λ(Gℓ) = λ(G)ℓ for every ℓ ∈ N, where
Gℓ is obtained by taking the adjacency matrix of G to the ℓth power (i.e., an edge in Gℓ

corresponds to an (ℓ−1)-step path in G). Thus (1) also implies that

Pr
(u,v)∈E(Gℓ)

[u ∈ S, v ∈ S] ≤ |S||V |

(

1

2
+
λ(G)ℓ

2

)

(2)

Example 22.7
As an application of random walks in expanders, we describe how to prove a
stronger version of the hardness of approximation result for INDSET in Theo-
rem 11.15. This is done using the next Lemma, which immediately implies (since
m = poly(n)) that there is some ǫ > 0 such that computing n−ǫ-approximation
to MAX-INDSET is NP-hard in graphs of size n. (See Section 22.9.2 for a sur-
vey of stronger hardness results for MAX-INDSET.) Below, α̃(F ) denotes the
fractional size of the largest independent set in F . It is interesting to note
how this Lemma gives a more efficient version of the “self-improvement” idea of
Theorem 11.15.

Lemma 22.8 For every λ > 0 there is a polynomial-time computable reduction
f that maps every n-vertex graph F into an m-vertex graph H such that

(α̃(F )− 2λ)logn ≤ α̃(H) ≤ (α̃(F ) + 2λ)log n

Proof: We use random walks to define a more efficient version of the “graph
product” used in the proof of Corollary 11.17. Let G be an expander on n nodes
that is d-regular (where d is some constant independent of n) and let λ = λ(G).
For notational ease we assume G,F have the same set of vertices. We will map
F into a graph H of ndlogn−1 vertices in the following way:



22.2 Proof of the PCP Theorem 401

• The vertices of H correspond to all the (logn−1)-step paths in the λ-
expander G.

• We put an edge between two vertices u, v of H corresponding to the paths
〈u1, . . . , ulogn〉 and 〈v1, . . . , vlogn〉 if there exists an edge in G between two
vertices in the set {u1, . . . , ulogn, v1, . . . , vlogn}.

It is easily checked that for any independent set in H if we take all vertices of F
appearing in the corresponding walks, then that constitutes an independent set
in F . From this observation the proof is concluded using Exercise 22.2. � ♦

22.2.4 Dinur’s Gap-amplification

We say that a qCSPW instance ϕ is “nice” if it satisfies the following properties:

Property 1: The arity q of ϕ is 2 (though the alphabet may be non binary).

Property 2: Let the constraint graph of ϕ be the graph G with vertex set [n] where for
every constraint of ϕ depending on the variables ui, uj, the graph G has the edge (i, j).
We allowG to have parallel edges and self-loops. Then G is d-regular for some constant
d (independent of the alphabet size) and at every node, half the edges incident to it
are self-loops.

Property 3: The constraint graph is an expander. That is, λ(G) ≤ 0.9.

It turns out that when proving Lemma 22.5 we may assume without loss of generality
that the CSP instance ϕ is nice, since there is a relatively simple CL reduction mapping
arbitrary qCSP instances to “nice” instances. (See Section 22.A; we note that these CL
reductions will actually lose a factor depending on q in the soundness gap, but we can
regain this factor by choosing a large enough value for t in Lemma 22.9 below.) The rest of
the proof consists of a “powering” operation for nice 2CSP instances. This is described in
the following lemma:

Lemma 22.9 (Powering) There is an algorithm that given any 2CSPW instance ψ satisfying
Properties 1 through 3 and an integer t ≥ 1 produces an instance ψt of 2CSP such that:

1. ψt is a 2CSPW ′ -instance with alphabet size W ′ < W d5t , where d denote the degree
of ψ’s constraint graph. The instance ψt has dt+

√
t+1n constraints, where n is the

number of variables in ψ.

2. If ψ is satisfiable then so is ψt.

3. For every ǫ < 1
d
√
t
, if val(ψ) ≤ 1− ǫ then val(ψt) ≤ 1− ǫ′ for ǫ′ =

√
t

105dW 4 ǫ.

4. The formula ψt is produced from ψ in time polynomial in m and W dt . ♦

Proof: Let ψ be a 2CSPW -instance with n variables and m = nd constraints, and as
before let G denote the constraint graph of ψ. To prove Lemma 22.9, we first show how
we construct the formula ψt from ψ. The main idea is a certain “powering” operation on
constraint graphs using random walks of a certain length.

Construction of ψt. The formula ψt will have the same number of variables as ψ. The
new variables y = y1, . . . , yn take values over an alphabet of size W ′ = W d5t , and thus a
value of a new variable yi is a d5t-tuple of values in {0..W−1}. To avoid confusion in the rest
of the proof, we reserve the term “variable” for these new variables, and say “old variables”
if we mean the variables of ψ.
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We will think of a value of variable yi as giving a value in {0..W−1} to every old variable
uj where j can be reached from i using a path of at most t+

√
t steps in G (see Figure 22.1).

In other words it gives an assignment for every uj such that j is in the ball of radius t+
√
t

and center i in G. Since graph G is d-regular, the number of such nodes is at most dt+
√
t+1,

which is less than d5t, so this information can indeed be encoded using an alphabet of size
W ′.

Below, we will often say that an assignment to yi “claims” a certain value for the old
variable uj . Of course, the assignment to a different variable yi′ could claim a different
value for uj ; these potential inconsistences make the rest of the proof nontrivial. In fact,
the constraints in the 2CSPW ′ instance ψt are designed to reveal such consistencies.

k

i

t+t 1/2

t+t 1/2t+t 1/2

Figure 22.1 The CSP ψt consists of n variables taking values in an alphabet of size W d5t
.

An assignment to a new variable yi encodes an assignment to all old variables of ψ corre-
sponding to nodes that are in a ball of radius t +

√
t around i in ψ’s constraint graph. An

assignment y1, . . . , yn to ψt may be inconsistent in the sense that if j falls in the intersection
of two such balls centered at i and i′, then yi and yi′ may claim different values for ui.

For every (2t+1)-step path p = 〈i1, . . . , i2t+2〉 in G, we have one corresponding constraint
Cp in ψt (see Figure 22.2). The constraint Cp depends on the variables yi1 and yi2t+2 (so
we do indeed produce an instance of 2CSPW ′) and outputs False if (and only if) there is
some j ∈ [2t+ 1] such that:

1. ij is in the t+
√
t-radius ball around i1.

2. ij+1 is in the t+
√
t-radius ball around i2t+2

3. If w denotes the value yi1 claims for uij and w′ denotes the value yi2t+2 claims for
uij+1 , then the pair (w,w′) violates the constraint in ψ that depends on uij and uij+1 .

A few observations are in order. First, the time to produce this 2CSPW ′ instance is
polynomial in m and W dt , so part 4 of Lemma 22.5 is trivial. Second, for every assignment
to the old variables u1, u2, . . . , un we can “lift” it to a canonical assignment to y1, . . . , yn by
simply assigning to each yi the vector of values assumed by uj ’s that lie in a ball of radius
t +
√
t and center i in G. If the assignment to the uj’s was a satisfying assignment for ψ,

then this canonical assignment satisfies ψt, since it will satisfy all constraints encountered
in walks of length 2t+ 1 in G. Thus part 2 of Lemma 22.5 is also trivial. This leaves part
3 of the Lemma, the most difficult part. We have to show that if val(ψ) ≤ 1− ǫ then every
assignment to the yi’s satisfies at most 1 − ǫ′ fraction of constraints in ψt, where ǫ < 1

d
√
t

and ǫ′ =
√
t

105dW 4 ǫ.

The plurality assignment. To prove part 3 of the lemma, we show how to transform every
assignment y for ψt into an assignment u for ψ and then argue that if u violates a “few”
(i.e., ǫ fraction) of ψ’s constraints then y violates “many” (i.e., ǫ′ = Ω(

√
tǫ) fraction) of

constraints of ψt.
From now on, let us fix some arbitrary assignment y = y1, . . . , yn to ψt’s variables.

As already noted, the values yi’s may be mutually inconsistent and not correspond to any
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t+
t1

/2

t
t

2t+1

t+
t 1/2

i

k

Figure 22.2 ψt has one constraint for every path of length 2t + 1 in ψ’s constraint graph,
checking that the views of the balls centered on the path’s two endpoints are consistent with
one another and the constraints of ψ.

obvious assignment for the old variable uj ’s. The following notion is key because it tries to
extract a single assignment for the old variables.

For every variable ui of ψ, we define the random variable Zi over {0, . . . ,W − 1} to be
the result of the following process: starting from the vertex i, take a t step random walk
in G to reach a vertex k, and output the value that yk claims for ui. We let zi denote the
most likely value of Zi. If more than one value is most likely, we break ties arbitrarily. We
call the assignment z1, . . . , zn the plurality assignment (see Figure 22.3). Note that Zi = zi
with probability at least 1/W .

t+
t1

/2

t

i

k

Figure 22.3 An assignment y for ψt induces a plurality assignment u for ψ in the following
way: ui gets the most likely value that is claimed for it by yk, where k is obtained by taking
a t-step random walk from i in the constraint graph of ψ.

Since val(ψ) ≤ 1− ǫ, every assignment for ψ fails to satisfy ǫ fraction of the constraints,
and this is therefore also true for the plurality assignment. Hence there exists a set F of
ǫm = ǫnd/2 constraints in ψ that are violated by the assignment z = z1, . . . , zn. We will
use this set F to show that at least an ǫ′ fraction of ψt’s constraints are violated by the
assignment y.
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Analysis. The rest of the proof defines events in the following probability space: we pick a
(2t+1)-step path, denoted 〈i1, . . . , i2t+2〉, in G from among all such paths (in other words,
pick a random constraint of ψt). For j ∈ {1, 2, . . . , 2t+ 1}, say that the jth edge in the
path, namely (ij , ij+1), is truthful if yi1 claims the plurality value for ij and yi2t+2 claims
the plurality value for ij+1. Observe that if the path has an edge that is truthful and also
lies in F , then by definition of F the constraint corresponding to that path is unsatisfied.
Our goal is to show that at least ǫ′ fraction of the paths have such edges.

The proof will follow the following sequence of claims:

Claim 22.10 For each edge e of G and each j ∈ {1, 2, . . . , 2t+ 1},

Pr[e is the j’th edge of the path] =
1

|E| =
2

nd
.

Proof: It is easily checked that in a d-regular graph if we take a random starting point i1
and pick a random path of length 2t + 1 going of it, then the j’th edge on a random path
is also a random edge of G. �

The next claim shows that edges that are roughly in the middle of the path (specifically,
in the interval of size δ

√
t in the middle) are quite likely to be truthful.

Claim 22.11 Let δ < 1
100W . For each edge e of G and each j ∈

{

t, t, . . . , t+ δ
√
t
}

,

Pr[jth edge of path is truthful |e is the jth edge] ≥ 1

2W 2
.

Proof: The main intuition is that since half the edges of G are self-loops, a random walk
of length in [t− δ

√
t, t+ δ

√
t] is statistically very similar to a random walk of length t.

Formally, the lemma is proved by slightly inverting the viewpoint of how the path is
picked. By the previous claim the set of walks of length 2t+ 1 that contain e = (ij , ij+1) at
the jth step can be generated by concatenating a random walk of length j out of ij and a
random walk of length 2t− j out of ij+1 (where the two walks are chosen independently).
Let i1 and i2t+2 denote the endpoints of these two walks. Then we need to show that

Pr[yi1 claims plurality value for ij
∧

yi2t+2 claims plurality value for ij+1] ≥
1

2W 2
. (3)

Since the plurality assignment was defined using walks of length exactly t, it follows that
if j is precisely t, then the expression on the left hand side in (3) is at least 1/W × 1/W =
1/W 2. (This crucially uses that the walks to yi1 and yi2t+2 are independently chosen.)

However, here j varies in
{

t, t+ 1, . . . , t+ δ
√
t
}

, so these random walks have lengths

between t − δ
√
t and t + δ

√
t. We nevertheless show that the expression cannot be too

different from 1/W 2 for each j.
Since half the edges incident to each vertex are self-loops, we can think of an ℓ-step

random walk from a vertex i as follows: (1) throw ℓ coins and let Sℓ denote the number of
the coins that came up “heads” (2) take Sℓ “real” (non self-loop) steps on the graph. Recall
that Sℓ, the number of heads in ℓ tosses, is distributed according to the familiar binomial
distribution.

It can be shown that the distributions St and St+δ
√
t are within statistical distance at

most 10δ for every δ, t (see Exercise 22.3). In other words,

1

2

∑

m

∣

∣Pr[St = m]− Pr[St+δ
√
t = m]

∣

∣ ≤ 10δ.

It follows that the distribution of the endpoint of a t-step random walk out of e will be
statistically close to the endpoint of a (t+ δ

√
t)-step random walk, and the same is true for

the (t− δ
√
t)-step random walk. Thus the expression on the left hand side of (3) is at least

(
1

W
− 10δ)(

1

W
− 10δ) ≥ 1

2W 2
,
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which completes the proof. �

Now let V be the random variable denoting the number of edges among the middle δ
√
t

edges that are truthful and in F . Since it is enough for a path to contain one such edge for
the corresponding constraint to be violated, our goal is to to show that Pr[V > 0] ≥ ǫ′.

The previous two claims imply that the chance that any particular one of the edges in

the interval of size δ
√
t is truthful and in F is |F |

|E| ×
1

2W 2
. Hence linearity of expectations

implies:

E[V ] ≥ δ
√
t× |F ||E| ×

1

2W 2
=
δ
√
tǫ

2W 2
.

This shows that E[V ] is high, but we are not done since the expectation could be high
and yet V could still be 0 for most of the walks. To rule this out, we consider the second
moment. This calculation is the only place we use the fact that the contraint graph is an
expander.

Claim 22.12 E[V 2] ≤ 30ǫδ
√
td. ♦

Proof: Let random variable V ′ denote the number of edges in the middle interval that are
in F . Since V counts the number of edges that are in F and are truthful, V ≤ V ′. It suffices
to show E[V ′2] ≤ 30ǫδ

√
td. To prove this we use the mixing property of expanders and the

fact that F contains ǫ fraction of the edges.
Specifically, for j ∈

{

t, t, . . . , t+ δ
√
t
}

let Ij be an indicator random variable that is 1 if
the jth edge is in F and 0 otherwise. Then V ′ =

∑

j∈{t,t,...,t+δ√t} Ij . Let S be the set of

vertices that have at least one end point in F , implying |S| /n ≤ dǫ.

E[V ′2] = E[
∑

j,j′

IjIj′ ]

= E[
∑

j

I2
j ] + E[

∑

j 6=j′
IjIj′ ]

= ǫδ
√
t+ E[

∑

j 6=j′
IjIj′ ] (linearity of expectation and Claim 22.10)

= ǫδ
√
t+ 2

∑

j<j′

Pr[(jth edge is in F ) ∧ (j′th edge is in F )]

≤ ǫδ
√
t+ 2

∑

j<j′

Pr[(jth vertex of walk lies in S) ∧ (j′th vertex of walk lies in S)]

≤ ǫδ
√
t+ 2

∑

j<j′

ǫd(ǫd+ (λ(G))j
′−j) (using (2))

≤ ǫδ
√
t+ 2ǫ2δ

√
td2 + 2ǫδ

√
td
∑

k≥1

(λ(G))k

≤ ǫδ
√
t+ 2ǫ2δ

√
td2 + 20ǫδ

√
td (using λ(G) ≤ 0.9)

≤ 30ǫδ
√
td (using ǫ < 1

d
√
t
, an assumption of Lemma 22.9) .

�

Finally, since Pr[V > 0] ≥ E[V ]2/E[V 2] for any nonnegative random variable (see Exer-

cise 22.4), we conclude that Pr[V > 0] ≥
√
t

105dW 4 ǫ = ǫ′, and Lemma 22.9 is proved. �

22.2.5 Alphabet Reduction: Proof of Lemma 22.6

Interestingly, the main component in the proof of Lemma 22.6 is the exponential-sized PCP
of Section 11.5 (An alternative proof is explored in Exercise 22.5.)

Let ϕ be a 2CSP instance as in the statement of Lemma 22.6, with n variables u1, u2, . . . , un,
alphabet {0..W−1} andm constraints C1, C2, . . . , Cm. Think of each variable as taking values
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that are bit strings in {0, 1}logW . Then if constraint Cs involves variables say ui, uj we may
think of it as a circuit applied to the bit strings representing ui, uj where the constraint is
said to be satisfied iff this circuit outputs 1. Say ℓ is an upper bound on the size of this
circuit over all constraints. Note that ℓ is at most 22 logW < W 4. We will assume without
loss of generality that all circuits have the same size.

The idea in alphabet reduction will be to write a small CSP instance for each of these
circuits, and replace each old variable by a set of new variables. This technique from [AS92]

was called verifier composition, and more recently, a variant was called PCP’s of proximity,
and both names stem from the “proof verification” view of PCP’s (see Section 11.2). We
state the result (a simple corollary of Theorem 11.19) first in the verification viewpoint and
then translate into the CSP viewpoint.

Corollary 22.13 (PCP of proximity) There exists a verifier V that given any circuit C with
2k input wires and size ℓ has the following property:

1. If u1,u2 are strings of k bits each such that u1◦u2 is a satisfying assignment for circuit
C, then there is a string π3 of size 2poly(ℓ) such that V accepts WH(u1) ◦WH(u2) ◦π3

with probability 1.

2. For every three bit strings π1, π2, π3, where π1 and π2 have size 2k, if V accepts
π1◦π2◦π3 with probability at least 1/2, then π1, π2 are 0.99-close to WH(u1), WH(u2)
respectively for some k-bit strings u1,u2 where u1 ◦ u2 is a satisfying assignment for
circuit C.

3. V runs in poly(ℓ) time, uses poly(ℓ) random bits and examines only O(1) bits in the
provided strings. ♦

Before giving the proof, we describe how it allows us to do alphabet reduction, as
promised. First we note that in the CSP viewpoint of Corollary 22.13,(see Table 11.1)
the variables are the bits of π1, π2, π3, and V can be represented as a CSP instance of size
2poly(ℓ) in these new variables. The arity of the constraints is the number of bits that the
verifier reads in the proof, which is some fixed constant independent of W and ǫ. The fraction
of satisfied constraints is the acceptance probability of the verifier.

Returning to the instance whose alphabet size we want to reduce, we replace each original
variable ui from the alphabet {0, . . . ,W − 1} by a sequence Ui = (Ui,1, . . . , Ui,2W ) of 2W

binary-valued variables, which in a valid assignment would be an encoding of ui using
the Walsh-Hadamard code. For each old constraint Cs(ui, uj) we apply the constraint
satisfaction view of Corollary 22.13, using Cs as the circuit whose assignment is being
verified. Thus for each original constraint Cs we have a vector of 2poly(ℓ) new binary-valued
variables Πs, which plays the role of π3 in Corollary 22.13, whereas Ui, Uj play the role
of π1, π2 respectively. The set of new constraints corresponding to Cs is denoted Cs. As
already noted the arity of the new constraints is some fixed constant independent of W, ǫ.

The overall CSP instance is the union of these constraints ∪ms=1Cs; see Figure 22.4.
Clearly, if the old instance was satisfiable then so is this union. Now we show that if
some assignment satisfies more than 1 − ǫ/3 fraction of the new constraints, then we can
construct an assignment for the original instance that satisfies more than 1−ǫ fraction of its
constraints. This is done by “decoding” the assignment for each each set of new variables
Ui by the following rule: if Ui is 0.99-close to some linear function WH(ai) then use ai as the
assignment for the old variable ui, and otherwise use an arbitrary string. Now consider how
well we did on any old constraint Cs(ui, uj). If the decodings ai, aj of Ui, Uj do not satisfy
Cs then Corollary 22.13 implies that at least 1/2 the constraints of Cs were not satisfied
anyway. Thus if δ is the fraction of old constraints that are not satisfied, then δ/2 ≤ ǫ/3,
implying δ < 2ǫ/3, and the Lemma is proved.

To finish, we prove Corollary 22.13.

Proof: (of Corollary 22.13) The proof uses the reduction from CKT-SAT to QUADEQ (see
Section 11.5.2 and Exercise 11.15). This reduction transforms a circuit C with ℓ wires
(where “inputs” are considered as wires in the circuit) to an instance of QUADEQ of with
ℓ variables and O(ℓ) equations where the variables in the QUADEQ instance correspond to
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Original instance: 

constraints:

variables:
(over alphabet [W])

u1 u2 u3
...... un

C1 C2 Cm

Transformed instance: 

constraints:

variables:
(over alphabet {0.1}) U1=WH(u1)

...... ......

U2=WH(u2) Un=WH(un) Π1
Πm

... ... ...

cluster 1 cluster 2 cluster m

.......

Figure 22.4 The alphabet reduction transformation maps a 2CSP instance ϕ over alphabet
{0..W−1} into a qCSP instance ψ over the binary alphabet. Each variable of ϕ is mapped to
a block of binary variables that in the correct assignment will contain the Walsh-Hadamard
encoding of this variable. Each constraint Cℓ of ϕ depending on variables ui, uj is mapped
to a cluster of constraints corresponding to all the PCP of proximity constraints for Cℓ.
These constraint depend on the encoding of ui and uj , and on additional auxiliary variables
that in the correct assignment contain the PCP of proximity proof that these are indeed
encoding of values that make the constraint Cℓ true.

values of wires in the circuit. Thus every solution to the QUADEQ instance has ℓ bits, of
which the first k bits give a satisfying assignment to the circuit.

The verifier expects π3 to contain whatever our verifier of Theorem 11.19 expects in the
proof for this instance of QUADEQ, namely, a linear function f that is WH(w), and another
linear function g that is WH(w ⊗ w) where w satisfies the QUADEQ instance. The verifier
checks these functions as described in the proof of Theorem 11.19.

However, in the current setting our verifer is also given strings π1, π2, which we think of
as functions π1, π2 :GF(2)k → GF(2). The verifier checks that both are 0.99-close to linear
functions, say π̃1, π̃2. Then to check that f̃ encodes a string whose first 2k bits are the same
as the string encoded by π̃1, π̃2, the verifier does the following concatenation test, which uses
the properties of the Walsh-Hadamard code.

Concatenation test. We are given three linear functions π1, π2, f that encode strings of
lengths k, k, and ℓ respectively. Denoting by u and v the strings encoded by π1, π2 respec-
tively (that is, π1 = WH(u) and π2 = WH(v)), and by w the string encoded by f , we have
to check by examining only O(1) bits in these functions that u◦v is the same as the first 2k
bits of w. By the random subsum principle, the following simple test rejects with probability
1/2 if this is not the case. Pick random x,y ∈ {0, 1}k, and denote by XY ∈ GF(2)ℓ the
string whose first k bits are x, the next k bits are y and the remaining bits are all 0. Accept
if f(XY = π1(x) + π2(y) and else reject. �

22.3 Hardness of 2CSPW : Tradeoff between gap and alphabet size

The problem 2CSPW often plays a role in proofs of advanced PCP theorems. The (standard)
PCP theorem implies that there is some constant W and some ν < 1 such that computing
ν-approximation to 2CSPW is NP-hard (see Definition 22.1).

Corollary 22.14 (of PCP Theorem) There is some ν < 1 and someW such that GAP 2CSPW (ν)
is NP-hard. ♦

For advanced PCP theorems we would like to prove the same result for smaller ν, without
making W too large. (Note: if W is allowed to be exp(n) then the problem is NP-hard
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even for ν = 0!) At first glance the “gap amplification” of Lemma 22.5 seems relevant, but
that doesn’t suffice because first, it cannot lower ν below some fixed constant, and second,
because it greatly increases the alphabet size. The next theorem gives the best tradeoff
possible (up to the value of c) between these two parameters. For further constructions of
PCP’s, it is useful to restrict attention to a special subclass of 2CSP instances, which have
the so-called projection property. This means that for each constraint ϕr(y1, y2) and each
value of y1, there is a unique value of y2 such that ϕr(y1, y2) = 1. Another way to state this
is that for each constraint ϕr there is a function h : [W ] → [W ] such that the constraint is
satisfied by (u, v) iff h(u) = v.

A 2CSP instance is said to be regular if every variable appears in the same number of
constraints.

Theorem 22.15 (Raz [Raz95b]) There is a c > 1 such that for every t > 1, GAP 2CSPW (ǫ)
is NP-hard for ǫ = 2−t,W = 2ct, and this is true also for 2CSP instances that are regular
and have the projection property. ♦

A weaker version of this theorem, with a somewhat simpler proof, was obtained by Feige
and Kilian [FK93]. This weaker version is sufficient for many applications, including for
H̊astad’s 3-bit PCP theorem (see Section 22.4 below).

22.3.1 Idea of Raz’s proof: Parallel Repetition

Let ϕ be the 2CSPW instances produced by the reduction of Corollary 22.14. For some ν < 1
it has the property that either val(ϕ) = 1 or val(ϕ) = ν < 1 but deciding which case holds
is hard. There is an obvious “powering” idea for trying to lower the gap while maintaining
the arity at 2. Let ϕ∗t denote the following instance. Its variables are t-tuples of variables
of ϕ. Its constraints correspond to t-tuples of constraints, in the sense that for every t-tuple
of constraints ϕ1(y1, z1), ϕ2(y2, 2), . . . , ϕt(yt, zt) the new instance has a constraint of arity
2 involving the new variables (y1, y2, . . . , yt) and (z1, z2, . . . , zt) and the Boolean function
describing this constraint is simply

t
∧

i=1

ϕi(yi, zi).

(To put it in words, the new constraint is satisfied iff all the t constituent constraints are.)
In the verification viewpoint, this new 2CSP instance corresponds to running the verifier

in parallel t times, hence Raz’s theorem is also called the parallel repetition theorem.
It is easy to convert a satisfying assignment for ϕ into one for ϕ∗t by taking t-tuples of the

values. Furthermore, given an assignment for ϕ that satisfies ν fraction of the constraints,
it is easy to see that the assignment that forms t-tuples of these values satisfies at least νt

fraction of the constraints of ϕ∗t. It seemed “obvious” to researchers that no assignment
can do better. Then a simple counterexample was found, whereby more than νt fraction
of constraints in ϕ∗t could be satisfied (see Exercise 22.6). Raz shows, however, that no
assignment can satisfy more than νct fraction of the constraints of ϕ∗t, where c depends upon
the alphabet sizeW . The proof is quite difficult, though there have been some simplifications
(see the chapter notes and the book’s web site).

22.4 Håstad’s 3-bit PCP Theorem and hardness of MAX-3SAT

In Chapter 11 we showed NP = PCP(log n, 1), in other words certificates for membership
in NP languages can be checked by examining O(1) bits in them. Now we are interested
in keeping the number of query bits as low as possible, while keeping the soundness around
1/2. The next Theorem shows that the number of query bits can be reduced to 3, and
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furthermore the verifier’s decision process consists of simply looking at the parity of these
three bits.

Theorem 22.16 (H̊astad’s 3-bit PCP [H̊as97])
For every δ > 0 and every language L ∈ NP there is a PCP-verifier V for L making three
(binary) queries having completeness parameter 1 − δ and soundness parameter at most
1/2 + δ.
Moreover, the tests used by V are linear. That is, given a proof π ∈ {0, 1}m, V chooses
a triple (i1, i2, i3) ∈ [m]3 and b ∈ {0, 1} according to some distribution and accepts iff
πi1 + πi2 + πi3 = b (mod 2).

22.4.1 Hardness of approximating MAX-3SAT

We first note that Theorem 22.16 is intimately connected to the hardness of approximating a
problem called MAX-E3LIN, which is a subcase of 3CSP2 in which the constraints specify the
parity of triples of variables. Another way to think of such an instance is that it gives a set
of linear equations mod 2 where each equation has at most 3 variables. We are interested
in determining the largest subset of equations that are simultaneously satisfiable. We claim
that Theorem 22.16 implies that (1/2 + ν)-approximation to this problem is NP-hard for
every ν > 0. This is a threshold result since the problem has a simple 1/2-approximation
algorithm. (It uses observations similar to those we made in context of MAX-3SAT in
Chapter 11; a random assignment satisfies, in the expectation, half of the constraints, and
this observation can be turned into a deterministic algorithm that satisfies at least 1/2 of
the equations.)

To prove our claim about the hardness of MAX-E3LIN, we convert the verifier of Theo-
rem 22.16 into an equivalent CSP by the recipe of Section 11.3. Since the verifier imposes
parity constraints on triples of bits in the proof, the equivalent CSP instance is an instance
of MAX-E3LIN where either 1 − δ fraction of the constraints are satisfiable, or at most
1/2 + δ are. Since distinguishing between the two cases is NP-hard, we conclude that it

is NP-hard to compute a ρ-approximation to MAX-E3LIN where ρ = 1/2+δ
1−δ . Since δ > 0

is allowed to be arbitrarily small, ρ can be arbitrarily close to 1/2 and we conclude that
(1/2 + ν)-approximation is NP-hard for every ν > 0.

Also note that the fact that completeness is strictly less than 1 in Theorem 22.16 is
inherent if P 6= NP, since determining if there is a solution satisfying all of the equations
(in other words, the satisfiability problem for MAX-E3LIN) is possible in polynomial time
using Gaussian elimination

Now we prove a hardness result for MAX-3SAT, which as mentioned earlier, is also a
threshold result.

Corollary 22.17 For every ǫ > 0, computing (7/8+ǫ)-approximation to MAX-3SAT is NP-
hard. ♦

Proof: We reduce MAX-E3LIN to MAX-3SAT. Take the instance of MAX-E3LIN produced
by the above reduction, where we are interested in determining whether (1− ν) fraction of
the equations can be satisfied or at most 1/2+ν are. Represent each linear constraint by four
3CNF clauses in the obvious way. For example, the linear constraint a+b+c = 0 (mod 2)
is equivalent to the clauses (a ∨ b ∨ c), (a ∨ b ∨ c), (a ∨ b ∨ c), (a ∨ b ∨ c). If a, b, c satisfy the
linear constraint, they satisfy all 4 clauses and otherwise they satisfy at most 3 clauses. We
conclude that in one case at least (1 − ǫ) fraction of clauses are simultaneously satisfiable,
and in the other case at most 1 − (1

2 − ν) × 1
4 = 7

8 + ν
4 fraction are. The ratio between

the two cases tends to 7/8 as ν decreases. Since Theorem 22.16 implies that distinguishing
between the two cases is NP-hard for every constant ν, the result follows. �
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22.5 Tool: the Fourier transform technique

Theorem 22.16 is proved using Fourier analysis. The continuous Fourier transform is ex-
tremely useful in mathematics and engineering. Likewise, the discrete Fourier transform has
found many uses in algorithms and complexity, in particular for constructing and analyzing
PCP’s. The Fourier transform technique for PCP’s involves calculating the maximum ac-
ceptance probability of the verifier using Fourier analysis of the functions presented in the
proof string. (See Note 22.21 for a broader perspective of uses of discrete Fourier trans-
forms in combinatorial and probabilistic arguments.) It is delicate enough to give “tight”
inapproximability results for MAX-INDSET, MAX-3SAT, and many other problems.

To introduce the technique we start with a simple example: analysis of the linearity
test over GF(2) (i.e., proof of Theorem 11.21). We then introduce the Long Code and show
how to test for membership in it. These ideas are then used to prove H̊astad’s 3-bit PCP
Theorem.

22.5.1 Fourier transform over GF(2)n

The Fourier transform over GF(2)n is a tool to study functions on the Boolean hypercube.
In this chapter, it will be useful to use the set {+1,−1} = {±1} instead of {0, 1}. To
transform {0, 1} to {±1}, we use the mapping b 7→ (−1)b (i.e., 0 7→ +1 , 1 7→ −1). Thus we
write the hypercube as {±1}n instead of the more usual {0, 1}n. Note this maps the XOR
operation (i.e., addition in GF(2)) into the multiplication operation over R.

The set of functions from {±1}n to R defines a 2n-dimensional Hilbert space (i.e., a
vector space with an associated inner product) as follows. Addition and multiplication by
a scalar are defined in the natural way: (f + g)(x) = f(x) + g(x) and (αf)(x) = αf(x) for
every f, g : {±1}n → R, α ∈ R. We define the inner product of two functions f, g, denoted
〈f, g〉, to be Ex∈{±1}n [f(x)g(x)]. (This is the expectation inner product.)

The standard basis for this space is the set {ex}x∈{±1}n , where ex(y) is equal to 1 if y =
x, and equal to 0 otherwise. This is an orthogonal basis, and every function f : {±1}n → R
can be represented in this basis as f =

∑

x axex. For every x ∈ {±1}n, the coefficient ax is
equal to f(x).

The Fourier basis is an alternative orthonormal basis that contains, for every subset
α ⊆ [n], a function χα where χα(x) =

∏

i∈α xi. (We define χ∅ to be the function that
is 1 everywhere). This basis is actually the Walsh-Hadamard code (see Section 11.5.1) in
disguise: the basis vectors correspond to the linear functions over GF(2). To see this, note
that every linear function of the form b 7→ a ⊙ b (with a,b ∈ {0, 1}n) is mapped by our
transformation to the function taking x ∈ {±1}n to

∏

i s.t. ai=1 xi. To check that the Fourier

basis is indeed an orthonormal basis for R2n , note that the random subsum principle implies
that for every α, β ⊆ [n], 〈χα, χβ〉 = δα,β where δα,β is equal to 1 iff α = β and equal to 0
otherwise.

Remark 22.18
Note that in the {−1, 1} view, the basis functions can be viewed as multilinear polynomials
(i.e., multivariate polynomials whose degree in each variable is 1). Thus the fact that every
real-valued function f :{−1, 1}n has a Fourier expansion can also be phrased as “Every such
function can be represented by a multilinear polynomial.” This is very much in the same
spirit as the polynomial representations used in Chapters 8 and 11.

Since the Fourier basis is an orthonormal basis, every function f : {±1}n → R can be

represented as f =
∑

α⊆[n] f̂αχα. We call f̂α the αth Fourier coefficient of f . We will often
use the following simple lemma:

Lemma 22.19 Every two functions f, g :{±1}n → R satisfy

1. 〈f, g〉 =∑α f̂αĝα.

2. (Parseval’s Identity) 〈f, f〉 = ∑α f̂
2
α .
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Proof: The second property follows from the first. To prove the first we expand

〈f, g〉 = 〈
∑

α

f̂αχα,
∑

β

ĝβχβ〉 =
∑

α,β

f̂αĝβ〈χα, χβ〉 =
∑

α,β

f̂αĝβδα,β =
∑

α

f̂αĝα

�

Example 22.20
Some examples for the Fourier transform of particular functions:

1. The majority function on 3 variables (i.e., the function MAJ(u1, u2, u3)
that outputs +1 if and only if at least two of its inputs are +1, and −1
otherwise) can be expressed as 1/2u1 + 1/2u2 + 1/2u3 − 1/2u1u2u3. Thus, it
has four Fourier coefficients equal to 1/2 and the rest are equal to zero.

2. If f(u1, u2, . . . , un) = ui (i.e., f is a coordinate function, a concept we will

see again in context of long codes) then f = χ{i} and so f̂{i} = 1 and f̂α = 0
for α 6= {i}.

3. If f is a random Boolean function on n bits, then each f̂α is a random
variable that is a sum of 2n binomial variables (equally likely to be 1,−1)
and hence looks like a normally distributed variable with standard deviation
2n/2 and mean 0. Thus with high probability, all 2n Fourier coefficients have

values in [−poly(n)

2n/2
, poly(n)

2n/2
].

22.5.2 The connection to PCPs: High level view

In the PCP context we are interested in Boolean-valued functions, i.e., those from GF (2)n

to GF (2). Under our transformation they turn into functions from {±1}n to {±1}. Thus,
we say that f :{±1}n → R is Boolean if f(x) ∈ {±1} for every x ∈ {±1}n. Note that if f
is Boolean then 〈f, f〉 = Ex[f(x)2] = 1.

On a high level, we use the Fourier transform in the soundness proofs for PCP’s to show
that if the verifier accepts a proof π with high probability then π is “close to” being “well-
formed” (where the precise meaning of “close-to” and “well-formed” is context dependent).
Usually we relate the acceptance probability of the verifier to an expectation of the form
〈f, g〉 = Ex[f(x)g(x)], where f and g are Boolean functions arising from the proof. We
then use techniques similar to those used to prove Lemma 22.19 to relate this acceptance
probability to the Fourier coefficients of f, g, allowing us to argue that if the verifier’s test
accepts with high probability, then f and g have few relatively large Fourier coefficients.
This will provide us with some nontrivial useful information about f and g, since in a
“generic” or random function, all the Fourier coefficient are small and roughly equal.

22.5.3 Analysis of the linearity test over GF (2)

We will now prove Theorem 11.21, thus completing the proof of the PCP Theorem. Recall
that the linearity test is provided a function f : GF(2)n → GF(2) and has to determine
whether f has significant agreement with a linear function. To do this it picks x,y ∈ GF(2)n

randomly and accepts iff f(x + y) = f(x) + f(y).
Now we rephrase this test using {±1} instead of GF(2), so linear functions turn into

Fourier basis functions. For every two vectors x,y ∈ {±1}n, we denote by xy their compo-
nentwise multiplication. That is, xy = (x1y1, . . . , xnyn). Note that for every basis function
χα(xy) = χα(x)χα(y).

For two Boolean functions f, g, their inner product 〈f, g〉 is equal to the fraction of
inputs on which they agree minus the fraction of inputs on which they disagree. It follows
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that for every ǫ ∈ [0, 1] and functions f, g : {±1}n → {±1}, f has agreement 1
2 + ǫ

2 with
g iff 〈f, g〉 = ǫ. Thus, if f has a large Fourier coefficient then it has significant agreement
with some Fourier basis function, or in the GF(2) worldview, f is close to some linear
function. This means that Theorem 11.21 concerning the correctness of the linearity test
can be rephrased as follows:

Theorem 22.22 Suppose that f : {±1}n → {±1} satisfies Prx,y[f(xy) = f(x)f(y)] ≥ 1
2 +ǫ.

Then, there is some α ⊆ [n] such f̂α ≥ 2ǫ. ♦

Proof: We can rephrase the hypothesis as Ex,y[f(xy)f(x)f(y)] ≥ (1
2 + ǫ) − (1

2 − ǫ) = 2ǫ.
We note that from now on we do not need f to be Boolean, but merely to satisfy 〈f, f〉 = 1.

Expressing f by its Fourier expansion,

2ǫ ≤ E
x,y

[f(xy)f(x)f(y)] = E
x,y

[(
∑

α

f̂αχα(xy))(
∑

β

f̂βχβ(x))(
∑

γ

f̂γχγ(y))].

Since χα(xy) = χα(x)χα(y) this becomes

= E
x,y

[
∑

α,β,γ

f̂αf̂β f̂γχα(x)χα(y)χβ(x)χγ(y)].

Using linearity of expectation:

=
∑

α,β,γ

f̂αf̂β f̂γ E
x,y

[χα(x)χα(y)χβ(x)χγ(y)]

=
∑

α,β,γ

f̂αf̂β f̂γ E
x

[χα(x)χβ(x)] E
y

[χα(y)χγ(y)]

(because x,y are independent).

By orthonormality Ex[χα(x)χβ(x)] = δα,β, so we simplify to

=
∑

α

f̂3
α

≤ (max
α

f̂α)× (
∑

α

f̂2
α) = max

α
f̂α ,

since
∑

α f̂
2
α = 〈f, f〉 = 1. Hence maxα f̂α ≥ 2ǫ and the theorem is proved. �

22.6 Coordinate functions, Long code and its testing

H̊astad’s 3-bit PCP Theorem uses a coding method called the long code. Let W ∈ N. We
say that f : {±1}W → {±1} is a coordinate function if there is some w ∈ [W ], such that
f(x1, x2, . . . , xW ) = xw ; in other words, f = χ{w}.1 (Aside: Unlike the previous section,
here we use W instead of n for the number of variables; the reason is to be consistent with
our use of W for the alphabet size in 2CSPW in Section 22.7.)

Definition 22.23 (Long Code) The long code for [W ] encodes each w ∈ [W ] by the table of

all values of the function χ{w} :{±1}[W ] → {±1}. ♦
1Some texts call such a function a dictatorship function, since one variable (“the dictator”) completely

determines the outcome. The name comes from social choice theory, which studies different election setups.
That field has also been usefully approached using Fourier analysis ideas described in Note 22.21.
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Note 22.21 (Self-correlated functions, isoperimetry, phase transitions)

Although it is surprising to see Fourier transforms used in proofs of PCP Theorems, in
retrospect this is quite natural. We try to put this in perspective, and refer the reader to
the survey of Kalai and Safra [KS06] and the web-based lecture notes of O’Donnell, Mossell
and others for further background on this topic.
Classically, Fourier tranforms are very useful in proving results of the following form: “If a
function is correlated with itself in some structured way, then it belongs to some small family
of functions.” In the PCP setting, the “self-correlation” of a function f : {0, 1}n → {0, 1}
means that if we run some designated verifier on f that examines only a few bits in it,
then this verifier accepts with reasonable probability. For example, in the linearity test over
GF(2), the acceptance probability of the test is Ex,y[Ix,y] where Ix,y is an indicator random
variable for the event f(x) + f(y) = f(x+ y).
Another classical use of Fourier transforms is study of Isoperimetry, which is the study of
subsets of “minimum surface area.” A simple example is the fact that of all connected regions
in R2 with a specified area, the circle has the minimum perimeter. Again, isoperimetry can
be viewed as a study of “self-correlation”, by thinking of the characteristic function of the
set in question, and realizing that the “perimeter” of “surface” of the set consists of points
in space where taking a small step in some direction causes the value of this function to
switch from 1 to 0.
H̊astad’s “noise” operator of Section 22.7 appears in works of mathematicians Nelson,
Bonamie, Beckner, and others on hypercontractive estimates, and the general theme is again
one of identifying properties of functions based upon their “self-correlation” behavior. One
considers the correlation of the function f with the function Tρ(f) obtained by (roughly
speaking) computing at each point the average value of f in a small ball around that point.
One can show that the norms of f and Tρ(f) are related — not used in H̊astad’s proof but
very useful in the PCP Theorems surveyed in Section 22.9; see also Exercise 22.10 for a
small taste.
Fourier transforms and especially hypercontractivity estimates have also proved useful in
study of phase transitions in random graphs (e.g., see Friedgut [Fri99]). The simplest case is
the graph model G(n, p) whereby each possible edge is included in the graph independently
with probability p. A phase transition is a value of p at which the graph goes from almost
never having a certain property to almost always having that property. For example, it is
known that there is some constant c such that around p = c logn/n the probability of the
graph being connected suddenly jumps from close to 0 to close to 1. Fourier transforms are
useful to study phase transition because a phase transition is as an isoperimetry problem
on a “Graph” (with a capital G) where each “Vertex” is an n-vertex graph, and an “Edge”
between two “Vertices” means that one of the graphs is obtained by adding a few edges to
the graph. Note that adding a few edges corresponds to raising the value of p by a little.
Finally, we mention some interesting uses of Fourier transforms in the results mentioned in
Sections 22.9.4 and 22.9.5. These involve isoperimetry on the hypercube {0, 1}n. One can
study isoperimetry in a graph setting by defining “surface area” of a subset of vertices as the
“number of edges leaving the set,” or some other notion, and then try to study isoperimetry
in such settings. The Fourier transform can be used to prove isoperimetry theorems about
hypercube and hypercube-like graphs. The reason is that a subset S ⊆ {0, 1}n is nothing
but a Boolean function that is 1 on S and −1 elsewhere. Assuming the graph is D-regular,
and |S| = 2n−1

E(x,y): edge[f(x)f(y)] =
1

2nD

(

|E(S, S)|+
∣

∣S, S
∣

∣− 2
∣

∣E(S, S)
∣

∣

)

,

which implies that the fraction of edges of S that leave the set is 1/2−E[f(x)f(y)]/2. This
kind of expression can be analysed using the Fourier transform; see Exercise 22.11.b.
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Note that w, normally written using logW bits, is being represented using a table of
2W bits, a doubly exponential blowup! This inefficiency is the reason for calling the code
“long.”

The problem of testing for membership in the Long Code is defined by analogy to the
earlier test for the Walsh-Hadamard code. We are given a function f :{±1}W → {±1}, and

wish to determine if f has good agreement with χ{w} for some w, namely, whether f̂{w} is
significant. Such a test is described in Exercise 22.5, but it is not sufficient for the proof
of H̊astad’s Theorem, which requires a test using only three queries. Below we show such
a three query test albeit at the expense of achieving the following weaker guarantee: if the
test passes with high probability then f has a good agreement with a function χα where
|α| is small (but not necessarily equal to 1). This weaker conclusion will be sufficient in the
proof of Theorem 22.16.

Let ρ > 0 be some arbitrarily small constant. The test picks two uniformly random
vectors x,y ∈

R
{±1}W and then a vector z ∈ {±1}W according to the following distribution:

for every coordinate i ∈ [W ], with probability 1− ρ we choose zi = +1 and with probability
ρ we choose zi = −1. Thus with high probability, about ρ fraction of coordinates in z are
−1 and the other 1− ρ fraction are +1. We think of z as a “noise” vector. The test accepts
iff f(x)f(y) = f(xyz). Note that the test is similar to the linearity test except for the use
of the noise vector z.

Suppose f = χ{w}. Then since b · b = 1 for b ∈ {±1},

f(x)f(y)f(xyz) = xwyw(xwywzw) = 1 · zw.

Hence the test accepts iff zw = 1 which happens with probability 1 − ρ. We now prove a
certain converse:

Lemma 22.24 If the test accepts with probability 1/2 + δ then
∑

α f̂
3
α(1− 2ρ)|α| ≥ 2δ. ♦

Proof: If the test accepts with probability 1/2+ δ then E[f(x)f(y)f(xyz)] = 2δ. Replacing
f by its Fourier expansion, we have

2δ ≤ E
x,y,z



(
∑

α

f̂αχα(x)) · (
∑

β

f̂βχβ(y)) · (
∑

γ

f̂γχγ(xyz))





= E
x,y,z





∑

α,β,γ

f̂αf̂β f̂γχα(x)χβ(y)χγ(x)χγ(y)χγ(z)





=
∑

α,β,γ

f̂αf̂β f̂γ E
x,y,z

[χα(x)χβ(y)χγ(x)χγ(y)χγ(z)] .

Orthonormality implies the expectation is 0 unless α = β = γ, so this is

=
∑

α

f̂3
α E

z
[χα(z)]

Now Ez[χα(z)] = Ez

[
∏

w∈α zw
]

which is equal to
∏

w∈α E[zw] = (1− 2ρ)|α| because each
coordinate of z is chosen independently. Hence we get that

2δ ≤
∑

α

f̂3
α(1− 2ρ)|α| . �

The conclusion of Lemma 22.24 is reminiscent of the calculation in the proof of Theo-
rem 22.22, except for the extra factor (1 − 2ρ)|α|. This factor depresses the contribution

of f̂α for large α, allowing us to conclude that the small α’s must contribute a lot. This is
formalized in the following corollary (which is a simple calculation and left as Exercise 22.8).

Corollary 22.25 If f passes the long code test with probability 1/2+δ, then for k = 1
2ρ log 1

ǫ ,

there exists α with |α| ≤ k such that f̂α ≥ 2δ − ǫ. ♦
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22.7 Proof of Theorem 22.16

We now prove H̊astad’s’ Theorem. The starting point is the 2CSPW instance ϕ given by
Theorem 22.15, so we know that ϕ is either satisfiable, or we can satisfy at most ǫ fraction
of the constraints, where ǫ is arbitrarily small. Let W be the alphabet size, n be the number
of variables and m the number of constraints. We think of an assignment as a function π
from [n] to [W ]. Since the 2CSP instance has the projection property, we can think of each
constraint ϕr as being equivalent to some function h : [W ] → [W ], where the constraint is
satisfied by assignment π iff π(j) = h(π(i)).

H̊astad’s verifier uses the long code, but expects these encodings to be bifolded, a technical
property we now define and is motivated by the observation that coordinate functions satisfy
χ{w}(−v) = −χ{w}(v) for every vector v.

Definition 22.26 A function f : {±1}W → {±1} is bifolded if for all v ∈ {±1}W , f(−v) =
−f(v). ♦

(Aside: In mathematics we would call such a function odd but the term “folding” is more
standard in the PCP literature where it has a more general meaning.)

Whenever the PCP proof is supposed to contain a codeword of the long code, we may
assume without loss of generality that the function is bifolded. The reason is that the verifier
can identify, for each pair of inputs v,−v, one designated representative —say the one whose
first coordinate is +1— and just define f(−v) to be −f(v). One benefit —though of no
consequence in the proof— of this convention is that bifolded functions require only half as
many bits to represent. We will use the following fact:

Lemma 22.27 If f : {±1}W → {±1} is bifolded and f̂α 6= 0 then |α| must be an odd
number (and in particular, nonzero). ♦

Proof: By definition,

f̂α = 〈f, χα〉 = E
v
[f(v)

∏

i∈α
vi] .

If |α| is even then
∏

i∈α vi =
∏

i∈α(−vi). So if f is bifolded, the contributions corresponding
to v and −v cancel each other and the entire expectation is 0. �

Håstad’s verifier. Now we describe H̊astad’s verifier VH . VH expects the proof π̃ to consist
of a satisfying assignment to ϕ where the value of each of the n variables is encoded using
the (bifolded) long code. Thus the proof consists n2W bits (rather, n2W−1 if we take the

bifolding into account), which VH treats as n functions f1, f2, . . . , fn each mapping {±1}W
to {±1}. The verifier VH randomly picks a constraint, say ϕr(i, j), in the 2CSPW instance.
Then VH tries to check (while reading only three bits!) that functions fi, fj encode two
values in [W ] that would satisfy ϕr, in other words, they encode two values w, u satisfying
h(w) = u where h : [W ] → [W ] is the function describing constraint ϕr. Now we describe
this test, which is reminiscent of the long code test we saw earlier.

The Basic Håstad Test.
Given: Two functions f, g :{±1}W → {±1}. A function h : [W ]→ [W ].
Goal: Check if f, g are long codes of two values w, u such that h(w) = u.
Test: For u ∈ [W ] let h−1(u) denote the set {w : h(w) = u}. Note that the

sets
{

h−1(u) : u ∈ [W ]
}

form a partition of [W ]. For a string y ∈ {±1}W we

define H−1(y) as the string in {±1}W such that for every w ∈ [W ], the wth
bit of H−1(y) is yh(w). In other words, for each u ∈ [W ], the bit yu appears
in H−1(y) in all coordinates corresponding to h−1(u). VH chooses uniformly

at random v,y ∈ {±1}W and chooses z ∈ {±1}W by letting zi = +1 with
probability 1− ρ and zi = −1 with probability ρ. It then accepts if

f(v)g(y) = f(H−1(y)vz) (4)

and rejects otherwise.
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Translating back from {±1} to {0, 1}, note that VH ’s test is indeed linear, as it accepts iff
π̃[i1] + π̃[i2] + π̃[i3] = b for some i1, i2, i3 ∈ [n2W ] and b ∈ {0, 1}. (The bit b can indeed
equal 1 because of the way VH ensures the bifolding property.)

Now since ρ, ǫ can be arbitrarily small the next claim suffices to prove the Theorem.
(Specifically, making ρ = ǫ1/3 makes the completeness parameter at least 1 − ǫ1/3 and the
soundness at most 1/2 + ǫ1/3.)

Claim 22.28 (Main) If ϕ is satisfiable, then there is a proof which VH accepts with prob-
ability 1 − ρ. If val(ϕ) ≤ ǫ then VH accepts no proof with probability more than 1/2 + δ
where δ =

√

ǫ/ρ. ♦

The rest of the section is devoted to proving Claim 22.28.

Completeness part; easy. If ϕ is satisfiable, then take any satisfying assignment π : [n]→
[W ] and form a proof for VH containing the bifolded long code encodings of the n values.
(As already noted, coordinate functions are bifolded.) To show that VH accepts this proof
with probability 1−ρ, it suffices to show that the Basic H̊astad Test accepts with probability
1− ρ for every constraint.

Suppose f, g are long codes of two integers w, u satisfying h(w) = u. Then, using the
fact that for x ∈ {±1}, x2 = 1,

f(v)g(y)f(H−1(y)vz) = vwyu(H−1(y)wvwzw)

= vwyu(yh(w)vwzw) = zw.

Hence VH accepts iff zw = 1, which happens with probability 1− ρ.

Soundness of VH ; more difficult. We first show that if the Basic H̊astad Test accepts two
functions f, g with probability significantly more than 1/2, then the Fourier transforms of
f, g must be correlated. To formalize this we define for α ⊆ [W ],

h2(α) =
{

u ∈ [W ] :
∣

∣h−1(u) ∩ α
∣

∣ is odd
}

(5)

Notice in particular that for every t ∈ h2(α) there is at least one w ∈ α such that h(w) = t.
In the next Lemma δ is allowed to be negative. It is the only place where we use the

bifolding property.

Lemma 22.29 Let f, g : {±1}W → {±1}, be bifolded functions and h : [W ]→ [W ] be such
that they pass the Basic H̊astad Test (4) with probability at least 1/2 + δ. Then

∑

α⊆[W ],α6=∅
f̂2
αĝh2(α)(1 − 2ρ)|α| ≥ 2δ (6)

♦

Proof: By hypothesis, f, g are such that E[f(v)f(vH−1(y)z)g(y)] ≥ 2δ. Replacing f, g by
their Fourier expansions we get:

2δ ≤ = E
v,y,z



(
∑

α

f̂αχα(v))(
∑

β

ĝβχβ(y))(
∑

γ

f̂γχγ(vH−1(y)z))





=
∑

α,β,γ

f̂αĝβ f̂γ E
v,y,z

[

χα(v)χβ(y)χγ(v)χγ(H−1(y))χγ(z)
]

.

By orthonormality this simplifies to

=
∑

α,β

f̂2
αĝβ E

y,z

[

χβ(y)χα(H−1(y))χα(z)
]

=
∑

α,β

f̂2
αĝβ(1− 2ρ)|α| E

y

[

χα(H−1(y)χβ(y)
]

(7)
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since χα(z) = (1 − 2ρ)|α|, as noted in our analysis of the long code test. Now we have

E
y
[χα(H−1(y))χβ(y)] = E

y
[
∏

w∈α
H−1(y)w

∏

u∈β
yu]

= E
y
[
∏

w∈α
yh(w)

∏

u∈β
yu],

which is 1 if h2(α) = β and 0 otherwise. Hence (7) simplifies to

∑

α

f̂2
αĝh2(α)(1− 2ρ)|α|.

Finally we note that since the functions are assumed to be bifolded, the Fourier coefficients
f̂∅ and ĝ∅ are zero. Thus those terms can be dropped from the summation and the Lemma
is proved. �

The following Lemma completes the proof of the Claim 22.28 and hence of H̊astad’s 3-bit
PCP Theorem.

Lemma 22.30 Suppose ϕ is an instance of 2CSPW such that val(ϕ) < ǫ. If ρ, δ satisfy
ρδ2 > ǫ then verifier VH accepts any proof with probability at most 1/2 + δ. ♦

Proof: Suppose VH accepts a proof π̃ of length n2W with probability at least 1/2 + δ.
We give a probabilistic construction of an assignment π to the variables of ϕ such that the
expected fraction of satisfied constraints is at least ρδ2, whence it follows by the probabilistic
method that a specific assignment π exists that lives up to this expectation. This contradicts
the hypothesis if ρδ2 > ǫ.

The distribution from which π is chosen. We can think of π̃ as providing, for every i ∈ [n],

a function fi : {±1}W → {±1}. The probabilistic construction of assignment π comes in
two steps: we first use fi to define a distribution Di over [W ] as follows: select α ⊆ [W ]

with probability f̂2
α where f = fi and then select w at random from α. This is well-defined

because
∑

α f̂
2
α = 1 and (due to bifolding) the fourier coefficient f∅ corresponding to the

empty set is 0. We then pick π[i] by drawing a random sample from distribution Di. Thus
the assignment π is a random element of the product distribution

∏m
i=1Di. We wish to

show

E
π
[ E
r∈[m]

[π satisfies rth constraint]] ≥ ρδ2. (8)

The analysis. For every constraint ϕr where r ∈ [m] denote by 1/2 + δr the conditional
probability that the Basic H̊astad Test accepts π̃, conditioned on VH having picked ϕr.
(Note: δr could be negative.) Then the acceptance probability of VH is Er[

1
2 + δr] and hence

Er[δr] = δ. We show that

Pr
π

[π satisfies ϕr] ≥ ρδ2r , (9)

whence it follows that the left hand side of (8) is (by linearity of expectation) at least
ρEr∈[m][δ

2
r ]. SinceE[X2] ≥ E[X ]2 for any random variable, this in turn is at least ρ(Er[δr])

2 ≥
ρδ2. Thus to finish the proof it only remains to prove (9).

Let ϕr(i, j) be the rth constraint and let h be the function describing this constraint, so
that

π satisfies ϕr iff h(π[i]) = π[j].

Let Ir be the indicator random variable for the event h(π[i] = π[j]). From now on we use
the shorthand f = fi and g = fj . What is the chance that a pair of assignments π[i] ∈

R
Di

and π[j] ∈
R
Dj will satisfy π[j] = h(π[i])? Recall that we pick these values by choosing α

with probability f̂2
α, β with probability ĝ2

β and choosing π[i] ∈
R
α, π[j] ∈

R
β. Assume that α

is picked first. The conditional probability that β = h2(α) is ĝ2
h2(α). If β = h2(α), we claim
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that the conditional probability of satisfying the constraint is at least 1/ |α|. The reason is
that by definition, h2(α) consists of u such that

∣

∣h−1(u) ∩ α
∣

∣ is odd, and an odd number
cannot be 0! Thus regardless of which value π[j] ∈ h2(α) we pick, there exists w ∈ α with
h(w) = π[j], and the conditional probability of picking such a w as π[i] is at least 1/ |α|.
Thus, we have that

∑

α

1

|α| f̂
2
αĝ

2
h2(α) ≤ E

Di,Dj
[Ir] (10)

This is similar to (but not quite the same as) the expression in Lemma 22.29, according
to which

2δr ≤
∑

α

f̂2
αĝh2(α)(1− 2ρ)|α|.

However, since one can easily see that (1 − 2ρ)|α| ≤ 2
√

ρ |α|
we have

2δr ≤
∑

α

f̂2
α

∣

∣ĝh2(α)

∣

∣

2
√

ρ |α|
.

Rearranging,

δr
√
ρ ≤

∑

α

f̂2
α

∣

∣ĝh2(α)

∣

∣

1√
|α|
.

Applying the Cauchy-Schwartz inequality,
∑

i aibi ≤ (
∑

i a
2
i )

1/2(
∑

i b
2
i )

1/2, with f̂α
∣

∣ĝπ2(α)

∣

∣

1√
|α|

playing the role of the ai’s and f̂α playing that of the bi’s, we obtain

δr
√
ρ ≤

∑

α

f̂2
α

∣

∣ĝh2(α)

∣

∣

1√
|α|
≤
(

∑

α

f̂2
α

)1/2(
∑

α

f̂α
2
ĝ2
h2(α)

1
|α|

)1/2

(11)

Since
∑

α f̂
2
α = 1, by squaring (11) and combining it with (10) we get that for every r,

δ2rρ ≤ E
Di,Dj

[Ir ],

which proves (9) and finishes the proof. �

22.8 Hardness of approximating SET-COVER

In the SET-COVER problem we are given a ground set U and a collection of its subsets
S1, S2, . . . , Sn whose union is U , and we desire the smallest subcollection I such that
∪i∈ISi = U . Such a subcollection is called a set cover and its size is |I|. An algorithm
is said to ρ-approximate this problem, where ρ < 1 if for every instance it finds a set cover
of size at most OPT/ρ, where OPT is the size of the smallest set cover.

Theorem 22.31 ([LY94]) If for any constant ρ > 0 there is an algorithm that ρ-approximates
SET-COVER then P = NP. Specifically for every ǫ,W > 0 there is a polynomial-time
transformation f from 2CSPW instances to instances of SET-COVER such that if the 2CSPW
instance is regular and satisfies the projection property then

val(ϕ) = 1⇒ f(ϕ) has a set cover of size N

val(ϕ) < ǫ⇒ f(ϕ) has no set cover of size
N

4
√
ǫ
,

where N depends upon ϕ. ♦
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Actually one can prove a somewhat stronger result; see the note at the end of the proof.
The proof needs the following gadget.

Definition 22.32 ((k, ℓ)-set gadget) A (k, ℓ)-set gadget consists of a ground set B and some
of its subsets C1, C2, . . . , Cℓ with the following property: every collection of at most k sets
out of C1, C1, C2, C2, . . . , Cℓ, Cℓ that is a set cover for B must include both Ci and Ci for
some i. ♦

The following Lemma is left as Exercise 22.13.

Lemma 22.33 There is an algorithm that given any k, ℓ, runs in time poly(m, 2ℓ) and
outputs a (k, ℓ)-set gadget. ♦

We can now prove Theorem 22.31. We give a reduction from 2CSPW , specifically, the
instances obtained from Theorem 22.15.

Let ϕ be an instance of 2CSPW such that either val(ϕ) = 1 or val(ϕ) < ǫ where ǫ is some
arbitrarily small constant. Suppose it has n variables and m constraints. Let Γi denote the
set of constraints in which the ith variable is the first variable, and ∆i the set of constraints
in which it is the second variable.

The construction. Construct a (k,W )-set gadget (B;C1, C2, . . . , CW ) where k > 2/
√
ǫ.

Since variables take values in [W ], we can associate a set Cu with each variable value u.
The instance of SET-COVER is as follows. The ground set is [m]×B, which we will think

of as m copies of B, one for each constraint of ϕ. The number of subsets is nW ; for each
variable i ∈ [n] and value u ∈ [W ] there is a subset Si,u which is the union of the following
sets: {r}×Cu for each r ∈ ∆i and {r}×B\Ch(u) for each r ∈ Γi. The use of complementary
sets like this is at the root of how the gadget allows 2CSP (with projection property) to be
encoded as SET-COVER.

The analysis. If the 2CSPW instance is satisfiable then we exhibit a set cover of size n.
Let π : [n]→W be any satisfying assignment where π(i) is the value of the ith variable. We
claim that the collection of n subsets given by

{

Si,π[i] : i ∈ [n]
}

is a set cover. It suffices to
show that their union contains {r} × B for each constraint r. But this is trivial since if i is
the first variable of constraint r and j the second variable, then by definition Sj,π[j] contains
{r} × Cπ[j] and Si,π[i] contains {r} × B \ Cπ[j], and thus Si,π[i] ∪ Sj,π[j] contains {r} × B.

Conversely, suppose less than ǫ fraction of the constraints in the 2CSPW instance are
simultaneously satisfiable. We claim that every set cover must have at least nT sets, for
T = 1

4
√
ǫ
. For contradiction’s sake suppose a set cover of size less than nT exists. Let

us probabilistically construct an assignment for the 2CSPW instance as follows. For each
variable i, say that a value u is associated with it if Si,u is in the set cover. We pick a
value for i by randomly picking one of the values associated with it. It suffices to prove the
following claim since our choice of k ensures that 8T < k.

claim: If 8T < k then the expected number of constraints satisfied by this assignment is
more than m

16T 2 .
Proof: Call a variable good if it has less than 4T values associated with it. The average
number of values associated per variable is less than T , so less than 1/4 of the variables
have more than 4T values associated with them. Thus less than 1/4 of the variables are not
good.

Since the 2CSP instance is regular, each variable occurs in the same number of clauses.
Thus the fraction of constraints containing a variable that is not good is less than 2×1/4 =
1/2. Thus for more than 1/2 of the constraints both variables in them are good. Let r
be such a constraint and i, j be the variables in it. Then {r} × B is covered by the union
of ∪uSi,u and ∪vSj,v where the unions are over values associated with the variables i, j
respectively. Since 8T < k, the definition of a (k,W )-set gadget implies that any cover
of B by less than 8T sets must contain two sets that are complements of one another. We
conclude that there are values u, v associated with i, j respectively such that h(u) = v. Thus
when we randomly construct an assignment by picking for each variable one of the values
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associated with it, these values are picked with probability at least 1/4T × 1/4T = 1/16T 2,
and then the rth constraint gets satisfied. The claim (and hence Theorem 22.31) now follows
by linearity of expectation. �

Remark 22.34
The same proof actually can be used to prove a stronger result: there is a constant c > 0
such that if there is an algorithm that α-approximates SET-COVER for α = c/ logn then
NP ⊆ DTIME(nO(logn)). The idea is to use Raz’s parallel repetition theorem where the
number of repetitions t is superconstant so that the soundness is 1/ logn. However, the
running time of the reduction is nO(t), which is slightly superpolynomial.

22.9 Other PCP Theorems: A Survey

As mentioned in the introduction, proving inapproximability results for various problems
often requires proving new PCP Theorems. We already saw one example, namely, H̊astad’s
3-bit PCP Theorem. Now we survey some other variants of the PCP Theorem that have
been proved.

22.9.1 PCP’s with sub-constant soundness parameter

The way we phrased Theorem 22.15, the soundness is an arbitrary small constant 2−t. From
the proof of the theorem it was clear that the reduction used to prove this NP-hardness
runs in time nt (since it forms all t-tuples of constraints). Thus if t is larger than a constant,
the running time of the reduction is superpolynomial. Nevertheless, several hardness results
use superconstant values of t. They end up not showing NP-hardness, but instead showing
the nonexistence of a good approximation algorithms assuming NP does not have say nlogn

time deterministic algorithms (this is still a very believable assumption). We mentioned this
already in Remark 22.34 at the end of Section 22.8.

It is still an open problem to prove the NP-hardness of 2CSP for a factor ρ that is smaller
than any constant. If instead of 2CSP one looks at 3CSP or 4CSP then one can achieve low
soundness using larger alphabet size, while keeping the running time polynomial [RS97].
Often these suffice in applications.

22.9.2 Amortized query complexity

Some applications require binary-alphabet PCP systems enjoying a tight relation between
the number of queries (which can be an arbitrarily large constant) and the soundness pa-
rameter. The relevant parameter here turns out to be the free bit complexity [FK93, BS94].
This parameter is defined as follows. Suppose the number of queries is q. After the verifier
has picked its random string, and picked a sequence of q addresses, there are 2q possible se-
quences of bits that could be contained in those addresses. If the verifier accepts for only t of
those sequences, then we say that the free bit parameter is log t (note that this number need
not be an integer). In fact, for proving hardness result for MAX-INDSET and MAX-CLIQUE,
it suffices to consider the amortized free bit complexity [BGS95]. This parameter is defined
as lims→0 fs/ log(1/s), where fs is the number of free bits needed by the verifier to ensure
the soundness parameter is at most s (with completeness at least say 1/2). H̊astad con-
structed systems with amortized free bit complexity tending to zero [H̊as96]. That is, for
every ǫ > 0, he gave a PCP-verifier for NP that uses O(log n) random bits and ǫ amortized
free bits. The completeness is 1. He then used this PCP system to show (borrowing the
basic framework from [FGL+91, FK93, BS94, BGS95]) that MAX-INDSET (and so, equivalently,
MAX-CLIQUE) is NP-hard to n−1+ǫ-approximate for arbitrarily small ǫ > 0.
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22.9.3 2-bit tests and powerful fourier analysis

Recent advances on H̊astad’s line of work consist of using more powerful ideas from Fourier
analysis. The Fourier analysis in H̊astad’s proof hardly uses the fact that the functions
being tested are Boolean. However, papers of Kahn, Kalai, Linial [KKL88], Friedgut [Fri99],
and Bourgain [Bou02] have led to important new insights into the Fourier coefficients of
Boolean functions, which in turn have proved useful in analysing PCP verifiers. (See also
Note 22.21.) The main advantage is for designing verifiers that read only 2 bits in the
proof, which arise while proving hardness results for a variety of graph problems such as
VERTEX-COVER, MAX-CUT and SPARSEST-CUT.

These new results follow H̊astad’s overall idea, namely, to show that if the verifier accepts
some provided functions with good probability, then the function has a few large fourier
coefficients (see Corollary 22.25 for example). However, H̊astad’s analysis (even for the long
code test in Section 22.6) inherently requires the verifier to query 3 bits in the proof, and we
briefly try to explain why. For simplicity we focus on the long code test. We did a simple
analysis of the long code test to arrive at the conclusion of Lemma 22.24:

∑

α

f̂3
α(1− 2ρ)|α| ≥ 2δ,

where 1/2 + δ is the probability that the verifier accepts the function. From this fact,
Corollary 22.25 concludes that at least one fourier coefficient has value at least c = c(δ, ρ) >
0. This is a crucial step because it lets us conclude that f has some (admittedly very weak)
connection with some small number of codewords in the long code.

One could design an analogous 2-bit test. The first part of the above analysis still goes
through but in the conclusion the cubes get replaced by squares:

∑

α

f̂2
α(1− 2ρ)|α| ≥ 2δ. (12)

For a non-Boolean function this condition is not enough to let us conclude that some fourier
coefficient of f has value at least c = c(δ, ρ) > 0. However, the following lemma of Bourgain
allows such a conclusion if f is Boolean. We say that a function f : {0, 1}n → {0, 1} is a
k-junta if it depends only on k of the n variables. Note that Parseval’s identity implies that
at least one fourier coefficient of a k-junta is 1/2k/2. The next Lemma implies that if a
boolean function f is such that the LHS of (12) is at least 1− ρt where t > 1/2 , then f is
close to a k-junta for a small k.

Lemma 22.35 ([Bou02]) For every ǫ, δ > 0 and integer r there is a constant k = k(r, ǫ, δ)
such that if

∑

α:|α|>r
f̂2
α <

1

r1/2+ǫ
,

then f has agreement 1− δ with a k-junta. ♦

We suspect that there will be many other uses of fourier analysis in PCP constructions.

22.9.4 Unique games and threshold results

H̊astad’s ideas led to determination of the approximation threshold for several problems.
But the status of other problems such as VERTEX-COVER and MAX-CUT remained open. In
2002 Khot [Kho02] proposed a new complexity theoretic conjecture called the unique games
conjecture (UGC) that is stronger than P 6= NP but still consistent with current knowledge.
This conjecture concerns a special case of 2CSPW in which the constraint function is a
permutation on [W ]. In other words, if the constraint ϕr involves variables i, j, the constraint
function h is a bijective mapping from [W ] to [W ]. Then assignment u1, u2, . . . , un to the
variables satisfies this constraint iff uj = h(ui). According to UGC, for every constants
ǫ, δ > 0 there is a domain size W = W (ǫ, δ) such that there is no polynomial-time algorithm
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that given such an instance of 2CSPW with val(·) ≥ 1 − ǫ produces an assignment that
satisfies δ fraction of constraints.2

Khot suggested that current algorithmic techniques seem unable to design such an al-
gorithm (an insight that seems to have been confirmed by lack of progress in the last few
years, despite much effort). He also showed that this conjecture implies several strong re-
sults about hardness of approximation. The reason in a nutshell is that the Fourier analysis
technique of H̊astad (fortified with the above-mentioned discoveries regarding Fourier anal-
ysis of Boolean functions) can be sharpened if one starts with the instances of 2CSPW with
the uniqueness constraint.

Subsequently, a slew of results have shown optimal or threshold results about hardness of
approximation (often using some of the advanced fourier analysis mentioned above) assum-
ing UGC is true.f For instance UGC implies that there is no polynomial-time algorithm that
computes a 1/2 + δ-approximation to VERTEX-COVER for any δ > 0 [KR08], and similarly
no algorithm that computes a 0.878-approximation to MAX-CUT [KKMO05, MOO05]. Both
of these lead to threshold results since these ratios are also the ones achieved by the current
approximation algorithms.

Thus it is of great interest to prove or disprove the unique games conjecture. Algo-
rithms designers have tried to disprove the conjecture using clever tools from semidefinite
programming, and currently the conjecture seems truly on the fine line between being true
and being false. It is known that it will suffice to restrict attention to the further subcase
where the constraint function h is linear —i.e., the constraints are linear equations mod W
in two variables.

22.9.5 Connection to Isoperimetry and Metric Space Embeddings

A metric space (X, d) consists of set of points X and a function d mapping pairs of points
to nonnegative real numbers satisfying (a) d(i, j) = 0 iff i = j. (b) d(i, j) + d(j, k) ≥
d(i, k) (triangle inequality). An embedding of space (X, d) into space (Y, d′) is a function
f : X → Y . Its distortion is the maximum over all point pairs {i, j} of the quantities
d′(f(i),f(j))

d(i,j) , d(i,j)
d′(f(i),f(j)) . It is of great interest in algorithm design (and in mathematics) to

understand the minimum distortion required to embed one family of metric spaces into
another. One interesting subcase is where the host space (Y, d′) is a subset of the ℓ1 metric
space on ℜn for some n (in other words, distance d′ is defined using the ℓ1 norm). Bourgain
showed that every n-point metric space embeds in ℓ1 with distortion O(log n). This fact is
important in design of algorithms for graph partitioning problems such as SPARSEST-CUT.
In that context, a metric called ℓ22 had been identified. Goemans and Linial conjectured that
this metric would be embeddable in ℓ1 with distortion O(1). If the conjecture were true we
would have an O(1)-approximation algorithm for SPARSEST-CUT. Khot and Vishnoi [KV05]

disproved the conjecture, using a construction of an interesting ℓ22 metric that is inspired by
the advanced PCP Theorems discussed in this chapter. The main idea is that since there
is an intimate relationship between ℓ1 metrics and cuts, one has to construct a graph whose
cut structure and isoperimetry properties are tightly controlled. So Khot and Vishnoi use
a hypercube-like graph, and use Fourier analysis to show its isoperimetry properties. (See
Note 22.21.)

Their work has inspired other results about lower bounds on the distortions of metric
embeddings.

Chapter notes and history

As mentioned in the notes to Chapter 11, the PCP Theorem was proved in 1992 in the early versions
of the papers [AS92, ALM+92]. The AS-ALMSS proof of the PCP Theorem resisted simplification

2In fact, Khot phrased the UGC as the even stronger conjecture that solving this problem is NP-hard.
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for over a decade. The overall idea of that proof (as indeed in MIP = NEXP) is similar to the
proof of Theorem 11.19. (Indeed, Theorem 11.19 is the only part of the original proof that still
survives in our writeup.) However, in addition to using encodings based upon the Walsh-Hadamard
code the proof also used encodings based upon low degree multivariate polynomials. These have
associated procedures analogous to the linearity test and local decoding, though the proofs of
correctness are a fair bit harder. The proof also drew intuition from the topic of self-testing and
self-correcting programs [BLR90, RS92], which was surveyed in Section 8.6. The alphabet reduction
in the AS-ALMSS proof was also somewhat more complicated. A draft writeup of the original proof
is available on this book’s website. (We dropped it from the published version in favor of Dinur’s
proof but feel it is interesting in its own right and may be useful in future research.)

Dinur’s main contribution in simplifying the proof is the gap amplification lemma (Lemma 22.5),
which allows one to iteratively improve the soundness parameter of the PCP from very close to
1 to being bounded away from 1 by some positive constant. This allows her to use a simpler
alphabet reduction. In fact, the alphabet reduction is the only part of the proof that now uses
the “proof verification” viewpoint, and one imagines that in a few years this too will be replaced
by a purely combinatorial construction. A related open problem is to find a Dinur-style proof of
MIP = NEXP.

We also note that Dinur’s general strategy is somewhat reminiscent of the zig-zag construction
of expander graphs and Reingold’s deterministic logspace algorithm for undirected connectivity
described in Chapter 20, which suggests that more connections are waiting to be made between
these different areas of research.

As mentioned in the notes at the end of Chapter 11, Papadimitriou and Yannakakis [PY88]
had shown around 1988 that if it is NP-hard to ρ-approximate MAX-3SAT for some ρ < 1 then it
is also NP-hard to ρ′-approximate a host of other problems where ρ′ depends upon the problem.
Thus after the discovery of the PCP Theorem, attention turned towards determining the exact
approximation threshold for problems; see for example [BS94, BGS95]. H̊astad’s threshold results
for MAX-CLIQUE [H̊as96] and MAX-3SAT [H̊as97] came a few years later and represented a quantum
jump in our understanding.

The issue of parallel repetition comes from the paper of Fortnow, Rompel, and Sipser [FRS88]
that erroneously claimed that val(ϕ∗t) = val(ϕ)t for every 2CSP ϕ and t ∈ N. However, Fort-
now [For89] soon found a counter example (see Exercise 22.6). Papers Lapidot and Shamir [LS91],
Feige-Lovasz [FL92], which predate Raz’s paper, imply hardness results for 2CSP but the running
time of the reduction is superpolynomial. Verbitsky [Ver94] and Feige and Kilian [FK93] proved
weaker versions of Raz’s Theorem (Theorem 22.15). Raz’s proof of the parallel repetition is based
on an extension of techniques developed by Razborov [Raz90] in the context of communication
complexity. The proof is beautiful but quite complex, though recently Holenstein [Hol07] gave
some simplifications for Raz’s proof; a writeup of this simplified proof is available from this book’s
website.

The hardness result for INDSET in Lemma 22.8 can be improved so that for all ǫ > 0, n−1+ǫ-
approximation in NP-hard in graphs with n vertices. This result is due to [H̊as96], which caps
a long line of other work [FGL+91, AS92, ALM+92, BS94, BGS95]. The use of expanders in the
reduction of Lemma 22.8 is from [AFWZ95]. Note that a 1/n-approximation is trivial: just output
a single vertex, which is always an independent set. Thus this result can be viewed as a threshold
result.

The hardness of SET-COVER is due to Lund and Yannakakis [LY94], which was also the first
paper to implicitly use 2CSPW with projection property; the importance of this problem was
identified in [Aro94, ABSS93], where it was called label cover used to prove other results. This
problem is now ubiquitous in PCP literature.

A threshold result for SET-COVER was shown by Feige [Fei96]: computing (1 + δ)/ lnn approx-
imation is hard for every δ > 0, whereas we know a simple 1/ lnn-approximation algorithm.

See Arora and Lund [AL95] for a survey circa 1995 of how to prove the basic results about
hardness of approximation. See Khot [Kho05] for a more recent survey about the results that use
fourier analysis.

Exercises

22.1 Prove Equation (1). H465

22.2 Let G = (V,E) be a λ-expander graph for some λ ∈ (0, 1). Let S be a subset of V with |S| = β|V |
for some β ∈ (0, 1). Let (X1, . . . , Xℓ) be a tuple of random variables denoting the vertices of a
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uniformly chosen (ℓ−1)-step path in G. Then, prove that

(β − 2λ)k ≤ Pr[∀i∈[ℓ]Xi ∈ S] ≤ (β + 2λ)k

H465

22.3 Let St be the binomial distribution over t balanced coins. That is, Pr[St = k] =
(

t
k

)

2−t. Prove that
for every δ < 1, the statistical distance (see Section A.2.6) of St and St+δ

√
t is at most 10δ. H465

22.4 Prove that for every non-negative random variable V , Pr[V > 0] ≥ E[V ]2/E[V 2].

H465

22.5 In this problem we explore an alternative approach to the Alphabet Reduction Lemma (Lemma 22.6)
using Long Codes instead of Welsh-Hadamard codes. We already saw that the long-code for a set

{0, . . . ,W − 1} is the function LC : {0, . . . ,W − 1} → {0, 1}2W such that for every i ∈ {0..W−1}
and a function f : {0..W−1} → {0, 1}, (where we identify f with an index in [2w ]) the f th position

of LC(i), denoted by LC(i)f , is f(i). We say that a function L : {0, 1}2W → {0, 1} is a long-code
codeword if L = LC(i) for some i ∈ {0..W−1}.

(a) Prove that LC is an error-correcting code with distance half. That is, for every i 6= j ∈ {0..W−1},
the fractional Hamming distance of LC(i) and LC(j) is half.

(b) Prove that LC is locally-decodable. That is, show an algorithm that given random access to a

function L : 2{0,1}W → {0, 1} that is (1−ǫ)-close to LC(i) and f : {0..W−1} → {0, 1} outputs
LC(i)f with probability at least 0.9 while making at most 2 queries to L.

(c) Let L = LC(i) for some i ∈ {0..W−1}. Prove the for every f : {0..W−1} → {0, 1}, L(f) =

1 − L(f), where f is the negation of f (i.e. , f(i) = 1 − f(i) for every i ∈ {0..W−1}).

(d) Let T be an algorithm that given random access to a function L : 2{0,1}W → {0, 1}, does the
following:

(a) Choose f to be a random function from {0..W−1} → {0, 1}.
(b) If L(f) = 1 then output True.

(c) Otherwise, choose g : {0..W−1} → {0, 1} as follows: for every i ∈ {0..W−1}, if f(i) = 0
then set g(i) = 0 and otherwise set g(i) to be a random value in {0, 1}.

(d) If L(g) = 0 then output True; otherwise output False.

Prove that if L is a long-code codeword (i.e., L = LC(i) for some i) then T outputs True
with probability one.

Prove that if L is a linear function that is non-zero and not a long code codeword then T
outputs True with probability at most 0.9.

(e) Prove that LC is locally testable. That is, show an algorithm that given random access to a

function L : {0, 1}W → {0, 1} outputs True with probability one if L is a long-code codeword
and outputs False with probability at least 1/2 if L is not 0.9-close to a long-code codeword,
while making at most a constant number of queries to L. H466

(f) Using the test above, give an alternative proof for the Alphabet Reduction Lemma (Lemma 22.6).
H466

22.6 ([For89, Fei91]) Consider the following 2CSP instance ϕ on an alphabet of size 4 (which we identify

with {0, 1}2). The instance ϕ has 4 variables x0,0, x0,1, x1,0, x1,1 and four constraints C0,0, C0,1, C1,0, C1,1.
The constraint Ca,b looks at the variables x0,a and x1,b and outputs TRUE if and only if x0,a = x1,b

and x0,a ∈ {0a, 1b}.

(a) Prove that val(ϕ∗2) = val(ϕ), where ϕ∗t denotes the 2CSP over alphabet W t that is the t-times
parallel repeated version of ϕ as in Section 22.3.1. H466

(b) Prove that for every t, val(ϕ∗t) ≥ val(ϕ)t/2.

22.7 (Solvability of Unique Games) We encountered unique games in Section 22.9.4; it is a special case
of 2CSPW in which the constraint function h is a permutation on [W ]. In other words, if constraint
ϕr involves variables i, j, then assignment u1, u2, . . . , un to the variables satisfies this constraint iff
uj = h(ui). Prove that there is a polynomial-time algorithm that given such an instance, finds a
satisfying assignment if one exists.

22.8 Prove Corollary 22.25.

22.9 Prove that the PCP system resulting from the proof of Claim 22.36 (Chapter 11) satisfies the
projection property.
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22.10 This question explores the notion of noise-senstivity of Boolean functions, which ties in to the
discussion in Note 22.21. Let f : {±1}n → {±1} and let I ⊆ [n]. Let MI be the following
distribution: we choose z ∈R MI by for i ∈ I , choose zi to be +1 with probability 1/2 and −1 with
probability 1/2 (independently of other choices), for i 6∈ I choose zi = +1. We define the variation
of f on I to be Prx∈R{±1}n,z∈RMI

[f(x) 6= f(xz)].

Suppose that the variation of f on I is less than ǫ. Prove that there exists a function g : {±1}n →
R such that (1) g does not depend on the coordinates in I and (2) g is 10ǫ-close to f (i.e.,
Prx∈R{±1}n [f(x) 6= g(x)] < 10ǫ). Can you come up with such a g that outputs values in {±1} only?

22.11 For f : {±1}n → {±1} and x ∈ {±1}n we define Nf (x) to be the number of coordinates i such that

if we let y to be x flipped at the ith coordinate (i.e., y = xei where ei has −1 in the ith coordinate
and +1 everywhere else) then f(x) 6= f(y). We define the average sensitivity of f , denoted by
as(f) to be the expectation of Nf (x) for x ∈R {±1}n.

(a) Prove that for every balanced function f : {±1}n → {±1} (i.e., Pr[f(x) = +1] = 1/2),
as(f) ≥ 1.

(b) Let f be balanced function from {±1}n to {±1} with as(f) = 1. Prove that f is a coordinate
function or its negation (i.e., f(x) = xi or f(x) = −xi for some i ∈ [n] and for every
x ∈ {±1}n). (Restatement using the language of isoperimetry as in Note 22.21: If a subset
of half the vertices of the hypercube {0, 1}n has exactly 2n−1 edges leaving it, then there is
some i such that this subset is simply the set of vertices where xi = 0 (or xi = 1).)

22.12 ([KM91]) This exercise asks you to give an alternative proof of the Goldreich-Levin Theorem 9.12
using Fourier analysis.

(a) For every function f : {±1}n → R, denote f̃α⋆ =
∑

β∈{0,1}n−k f̂
2
α◦β , where ◦ denotes con-

catenation and we identify strings in {0, 1}n and subsets of [n] in the obvious way. Prove
that

f̃0k⋆ = E
x,x′∈R{0,1}k
y∈

R
{0,1}n−k

[f(x ◦ y)f(x′ ◦ y)]

H466

(b) Prove that for every α ∈ {0, 1}k,

f̃α⋆ = E
x,x′∈R{0,1}k
y∈

R
{0,1}n−k

[f(x ◦ y)f(x′ ◦ y)χα(x)χα(x′)] (13)

H466

(c) Show an algorithm Estimate that given α ∈ {0, 1}k, ǫ > 0 and oracle access to f : {±1}n →
{±1}, runs in time poly(n, 1/ǫ) and outputs an estimate of fα within ǫ accuracy with proba-
bility 1 − ǫ. H466

(d) Show an algorithm LearnFourier that given ǫ > 0 and oracle access to f : {±1}n → {±1},
runs in poly(n, 1/ǫ) time and outputs a set L of poly(1/ǫ) strings such that with probability

at least 0.9, for every α ∈ {0, 1}n, if |f̂α| > ǫ then α ∈ L. H466

(e) Show that the above algorithm implies Theorem 9.12.

22.13 Prove Lemma 22.33, albeit using a randomized algorithm. H466

22.14 Derandomize the algorithm of the previous exercise. H466

22.15 ([ABSS93]) In Problem 11.16 we explored the approximability of the problem of finding the largest
feasible subsystem in a system of linear equations over the rationals. Show that there is an ǫ > 0
such that computing an n−ǫ-approximation to this problem is NP-hard. H466

22.16 ([PY88]) Suppose we restrict attention to MAX-3SAT in which each variable appears in at most 5
clauses. Show that there is still a constant ρ < 1 such that computing a ρ-aproximation to this
problem is NP-hard. H466

22.17 ([PY88]) In the MAX-CUT problem we are given a graph G = (V,E) and seek to partition the
vertices into two sets S, S such that we maximize the number of edges

∣

∣E(S, S)
∣

∣ between them.
Show that there is still a constant ρ < 1 such that computing a ρ-aproximation to this problem is
NP-hard.
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22.A Transforming qCSP instances into “nice” instances.

We can transform a qCSP-instance ϕ into a “nice” 2CSP-instance ψ through the following
three claims:

Claim 22.36 There is a CL- reduction mapping any qCSP instance ϕ into a 2CSP2q instance
ψ such that

val(ϕ) ≤ 1− ǫ⇒ val(ψ) ≤ 1− ǫ/q ♦

Proof: Given a qCSP-instance ϕ over n variables u1, . . . , un with m constraints, we con-
struct the following 2CSP2q formula ψ over the variables u1, . . . , un, y1, . . . , ym. Intuitively,
the yi variables will hold the restriction of the assignment to the q variables used by the ith

constraint, and we will add constraints to check consistency: that is to make sure that if the
ith constraint depends on the variable uj then uj is indeed given a value consistent with yi.
Specifically, for every ϕi of ϕ that depends on the variables u1, . . . , uq, we add q constraints
{ψi,j}j∈[q] where ψi,j(yi, uj) is true iff yi encodes an assignment to u1, . . . , uq satisfying ϕi
and uj is in {0, 1} and agrees with the assignment yi. Note that the number of constraints
in ψ is qm.

Clearly, if ϕ is satisfiable then so is ψ. Suppose that val(ϕ) ≤ 1−ǫ and let u1, . . . , uk, y1, . . . , ym
be any assignment to the variables of ψ. There exists a set S ⊆ [m] of size at least ǫm such
that the constraint ϕi is violated by the assignment u1, . . . , uk. For any i ∈ S there must
be at least one j ∈ [q] such that the constraint ψi,j is violated. �

Claim 22.37 There is an absolute constant d and a CL- reduction mapping any 2CSPW
instance ϕ into a 2CSPW instance ψ such that

val(ϕ) ≤ 1− ǫ⇒ val(ψ) ≤ 1− ǫ/(100Wd).

and the constraint graph of ψ is d-regular. That is, every variable in ψ appears in exactly
d constraints. ♦

Proof: Let ϕ be a 2CSPW instance, and let {Gn}n∈N be an explicit family of d-regular
expanders. Our goal is to ensure that each variable appears in ϕ at most d + 1 times (if
a variable appears less than that, we can always add artificial constraints that touch only
this variable). Suppose that ui is a variable that appears in k constraints for some n > 1.
We will change ui into k variables y1

i , . . . , y
k
i , and use a different variable of the form yji in

the place of ui in each constraint ui originally appeared in. We will also add a constraint

requiring that yji is equal to yj
′

i for every edge (j, j′) in the graph Gk. We do this process
for every variable in the original instance, until each variable appears in at most d equality
constraints and one original constraint. We call the resulting 2CSP-instance ψ. Note that
if ϕ has m constraints then ψ will have at most m+ dm constraints.

Clearly, if ϕ is satisfiable then so is ψ. Suppose that val(ϕ) ≤ 1 − ǫ and let y be any
assignment to the variables of ψ. We need to show that y violates at least ǫm

100W of the
constraints of ψ. Recall that for each variable ui that appears k times in ϕ, the assignment
y has k variables y1

i , . . . , y
k
i . We compute an assignment u to ϕ’s variables as follows: ui is

assigned the plurality value of y1
i , . . . , y

k
i . We define ti to be the number of yji ’s that disagree

with this plurality value. Note that 0 ≤ ti ≤ k(1 − 1/W ) (where W is the alphabet size).
If
∑n

i=1 ti ≥ ǫ
4m then we are done. Indeed, by (1) (see Section 22.2.3), in this case we will

have at least
∑n

i=1
ti

10W ≥ ǫ
40Wm equality constraints that are violated.

Suppose now that
∑n

i=1 ti <
ǫ
4m. Since val(ϕ) ≤ 1 − ǫ, there is a set S of at least ǫm

constraints violated in ϕ by the plurality assignment u. All of these constraints are also
present in ψ and since we assume

∑n
i=1 ti <

ǫ
4m, at most half of them are given a different

value by the assignment y than the value given by u. Thus the assignment y violates at
least ǫ

2m constraints in ψ. �

Claim 22.38 There is an absolute constant d and a CL-reduction mapping any 2CSPW
instance ϕ with d′-regular constraint graph for d ≥ d′ into a 2CSPW instance ψ such that

val(ϕ) ≤ 1− ǫ⇒ val(ψ) ≤ 1− ǫ/(10d)
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and the constraint graph of ψ is a 4d-regular expander, with half the edges coming out of
each vertex being self-loops. ♦

Proof: There is a constant d and an explicit family {Gn}n∈N of graphs such that for every
n, Gn is a d-regular n-vertex 0.1-expander graph (See Section 22.2.3).

Let ϕ be a 2CSP-instance as in the claim’s statement. By adding self loops, we can
assume that the constraint graph has degree d (this can at worst decrease the gap by factor
of d). We now add “null” constraints (constraints that always accept) for every edge in
the graph Gn. In addition, we add 2d null constraints forming self-loops for each vertex.
We denote by ψ the resulting instance. Adding these null constraints reduces the fraction
of violated constraints by a factor at most four. Moreover, because any regular graph
H satisfies λ(H) ≤ 1 and because of λ’s subadditivity (see Exercise 21.7, Chapter 21),
λ(ψ) ≤ 3

4 + 1
4λ(Gn) ≤ 0.9 where by λ(ψ) we denote the parameter λ of ψ’s constraint graph.

�
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Chapter 23

Why are circuit lower bounds so
difficult?

Why have we not been able to prove strong lower bounds for general circuits? Despite
the dramatic success in proving lower bounds on restricted circuit classes as described in
Chapter 14, we seem utterly at a loss comes to showing limitations of general Boolean
circuits.

In 1994 Razborov and Rudich [RR94] described what they view as the main technical
limitation of current approaches for proving circuit lower bounds. They defined a notion
of “natural mathematical proofs” for a circuit lower bound. They pointed out that current
lower bound arguments involve such mathematical proofs, and showed that obtaining strong
lower bound with such proof techniques would violate a stronger form of the P 6= NP
conjecture —specifically, the conjecture that strong one-way functions exist which cannot be
inverted by algorithms running in subexponential time. Since current evidence suggests that
such strong one-way functions do exist (factoring integers, discrete log, etc., as described in
Chapter 9), we conclude that current techniques are inherently incapable of proving strong
lower bounds on general circuits.

The Razborov-Rudich result may be viewed as a modern analogue of the 1970’s results
on the limits of diagonalization (see Chapter 3). What is particularly striking is that com-
putational complexity (namely, the existence of strong one-way functions) is used here to
shed light on a metamathematical question about computational complexity: “Why have
we been unable to prove P 6= NP?” This is a good example of our claim at the start of the
book that computational tractability has an intimate connection with issues of mathematical
tractability amd proveability.

This chapter is organized as follows. We define natural proofs in Section 23.1, and then in
Section 23.2 we discuss why they are indeed “natural” . We then prove in Section 23.3 that
under widely-believed assumptions, such techniques will not be able to prove NP * P/poly.

Can we design lower bound techniques that circumvent the “natural proof barrier?”
We describe an interesting such example in Section 23.4. We end in Section 23.5 with
some philosophical musings on the meaning of the natural proof barrier, and our personal
viewpoint.

23.1 Definition of natural proofs

Let f : {0, 1}n → {0, 1} be some Boolean function and c ≥ 1 be some number. Any proof
that f does not have nc-sized circuits can be viewed as exhibiting some property that f has,
and that every function with an nc-sized circuit does not possess. That is, such a proof can
be viewed as providing a predicate P on Boolean functions such that P(f) = 1 but

P(g) = 0 for every g ∈ SIZE(nc) . (1)
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We call the condition (1) nc-usefulness. We say such a predicate P is natural if it satisfies
in addition the following two conditions:

Constructiveness: There is an 2O(n) time algorithm that on input (the truth table of) a
function g : {0, 1}n → {0, 1} outputs P(g). Note that the truth table has size 2n, so
this algorithm runs in time that is polynomial in its input size.

Largeness: The probability that a random function g : {0, 1}n → {0, 1} satisfies P(g) = 1
is at least 1/n.

We will discuss in Section 23.2 the motivation behind these conditions, but for now note
that the largeness condition does not contradict the nc-usefulness condition since only a very
small fraction of functions have polynomial-sized circuits (see the proof of Theorem 6.21).
The following theorem says that, under reasonable assumptions, natural proofs cannot be
used to prove that a function is not in P/poly:

Theorem 23.1 (Natural proofs [RR94])
Suppose that sub-exponentially strong one-way functions exist. Then there exists a constant
c ∈ N such that there is no nc-useful natural predicate P .

One-way functions were defined in Chapter 9 (Section 9.2) and by a sub-exponentially
strong one-way function we mean one that resists inverting even by a 2n

ǫ

-time adversary
for some fixed ǫ > 0. It is widely believed that such one-way functions exist. We defer the
proof of Theorem 23.1 to Section 23.3, but first discuss why such predicates do deserve the
name “natural”.

Example 23.2
To develop some understanding of the definition of natural proofs, let us consider
two predicates.
The first is P(g) = 1 iff g is a Boolean function on n bits that has circuit com-
plexity more than nlogn. This predicate is nc-useful for every constant c since
nc = o(nlog n). The predicate also satisfies largeness since a random Boolean
function satisfies it with probability almost 1 (see the proof of Theorem 6.21).
However, we do not know if this predicate is constructive, since the trival al-
gorithm for computing it would involve enumerating all circuits of size nlogn,

which requires 2n
logn

time.
The second example is P ′(g) = 1 iff g correctly solves the decision problem
3SAT on inputs of size n. This function is constructive: to compute it, simply
enumerate all inputs of size n, and verify using a trivial 2n-time algorithm for
3SAT that g gives the correct answer on all inputs. If 3SAT 6∈ SIZE(nc) (an open
problem of course) then P ′ satisfies nc-usefulness since it is 0 on all functions
in SIZE(nc). However, P ′ does not satisfy largeness since it is 1 for only one
function.

23.2 What’s so natural about natural proofs?

Now we recall some of the circuit lower bounds we proved earlier and check that they
implicitly involve natural proofs. (This of course is the justification for the name “natural.”)
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Example 23.3 (AC0)
The result that the parity function is not computable in AC0 (Section 14.1)

involved the following steps: (a) Showing that every AC0 circuit can be simpli-
fied by restricting at most n− nǫ input bits so that it then becomes a constant
function and (b) Showing that the parity function cannot be made constant by
restricting at most n− nǫ of its input bits.
Clearly, we can verify whether the property defined in (a) holds for a function
f : {0, 1}n → {0, 1} in 2O(n) time — just enumerate all possible choices for the
subsets of variables and all ways of setting them to 0/1. Thus, this proof satisfies
the “constructiveness” condition. Moreover, it’s not hard to show that a random
function also cannot be made constant by fixing at most n− nǫ of its input bits
(see Exercise 23.2), and so this proof satisfies the “largeness’ condition as well.

Example 23.4 (Two-party communication complexity)
To prove that f has high 2-party communication complexity, it suffices to prove
that the n×n matrix M(f) introduced in Chapter 13 (namely, one whose (x, y)
entry is f(x, y)) has no large subrectangle that is monochromatic. Now imagine
the algorithmic complexity of checking this condition, where the input to the al-
gorithm is M(f) (i.e., a string of length 22n). The statement “M(f) has no k× l
monochromatic rectangle” is a coNP statement, and in fact is coNP-complete
for general f (it’s equivalent to the bipartite clique problem). However, the
lower bound methods considered in Chapter 13 such as computing the rank or
eigenvalues involve polynomial-time computation, which mean that they satisfy
the “constructiveness” condition. The lower bound method using discrepancy
is actually not a polynomial-time computation, but discrepancy can also be ap-
proximated within a factor O(1) in polynomial time (see the notes of Chapter 13)
and hence this proof satisfies the “constructiveness” condition as well.
Moreover, all of the conditions used in these lower bounds, namely having small
second-largest eigenvalue, high rank, or low discrepancy, are satisfied by a ran-
dom matrix with high probability, and hence all these proofs satisfy the “large-
ness” condition as well.

We see that many lower bounds do use natural proofs, and in fact it turns out that all
the known “combinatorial” circuit lower bounds are natural (e.g., lower bounds such as the
ones in chapters 12–16 that argue directly about the structure of circuits or protocols). But
is there a more general principle at work here? Is there some inherent reason why lower
bounds should satisfy the constructiveness and largeness conditions?

23.2.1 Why constructiveness?

Note that there is an old controversy within mathematics about “nonconstructive” proofs,
whereby the existence of an object is established (usually by some argument about infinite
sets) without giving an explicit algorithm for constructing the object. Most mathematicians
today are completely comfortable with nonconstructive proofs.

In the context of natural proofs, we are insisting upon a much stronger form of “constructiveness”—
the proof must not only yield a finite algorithm, but in fact a polynomial-time algorithm.
Many proofs that would be “constructive” for a mathematician would be nonconstructive
under our definition. Surprisingly, even with this stricter definition, proofs in combinatorial
mathematics are usually constructive, and the same is true of current circuit lower bounds
as well.

In fact, circuit lower bounds usually rely upon techniques from combinatorics and in
general, combinatorics techniques tend to be constructive in our sense of the word. In
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V

V V

x1 x1 x2 xnx2 xn.  .  .

Figure 23.1 A Boolean formula.

a few cases, combinatorial results initially proved “nonconstructively” later turned out to
have constructive proofs: a famous example is the Lovàsz Local Lemma (discovered in
1975 [EL75]; algorithmic version discovered in 1991 [Bec91]). The same is true for several
circuit lower bounds— Razborov and Rudich found a “naturalized” version of the lower
bound for ACC0[q] of Section 14.2, and Raz [Raz00] gave a natural proof (presented in
Section 13.3) of the lower bound for multiparty communication complexity originally proved
non-constructively by Babai et al in 1992 [BNS89].

Though non-constructive techniques do exist is combinatorics— probabilistic method,
nullstellensatz, topological arguments, etc.— we have not been able to use them to find
better lower bounds for explicit functions. For speculative musings on these topics, please
see Section 23.5.

23.2.2 Why largeness?

Why should a lower bound for a specific function, whether it’s parity or 3SAT, use a property
that holds with good probability for a random function as well? Below, we try to formalize
this. The intuition in a nutshell is that every proof that a specific function f0 : {0, 1}n →
{0, 1} does not have a size S circuit, actually implies that at least half of the functions from
{0, 1}n to {0, 1} do not have a circuit of size S/2 − 10. The reason is that if we choose a
random g : {0, 1}n → {0, 1}, and write f0 = (f0 ⊕ g)⊕ g (where g ⊕ h denotes the function
that maps every input x to g(x)⊕h(x)), then we see that if both (f0⊕g) and g have circuits
of size < S/2− 10 then f0 has a circuit of size < S. Since both g and (f0⊕ g) are uniformly
distributed, it follows that a lower bound on the circuit complexity of f0 implies a lower
bound on the complexity of half the functions.

23.2.3 Natural proofs from complexity measures

More generally, a large class of lower bound techniques turns out to yield properties that
simultaneously satisfy the constructiveness and largeness properties (i.e., are natural). For
concreteness, let us focus on Boolean formulae (see Figure 23.1), that are Boolean circuits
where gates have indegree 2 and outdegree 1. It is tempting to prove a lower bound using
some kind of induction. Suppose we have a function that we believe to be “complicated,” in
the sense that it requires a large Boolean formula to compute. Since the function computed
at the output is “complicated”, at least one of the functions on the incoming edges to
the output gate should also be “pretty complicated” (after all those two functions can
be combined with a single gate to produce a “complicated” function). Now we try to
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formalize this intuition, and point out why one ends up proving a lower bound on the
formula complexity of random functions.

The most obvious way to formalize a “complicatedness” is as a function µ that maps
every Boolean function on {0, 1}n to a nonnegative integer. We say that µ is a formal
complexity measure if it satisfies the following properties: First, the measure is low for
trivial functions: µ(xi) ≤ 1 and µ(x̄i) ≤ 1 for all i. Second, we require that

• µ(f ∧ g) ≤ µ(f) + µ(g) for all f, g; and

• µ(f ∨ g) ≤ µ(f) + µ(g) for all f, g.

For instance, the following function ρ is trivially a formal complexity measure

ρ(f) = 1 + the smallest formula size for f. (2)

In fact, it is easy to prove the following by induction.

Theorem 23.5 If µ is any formal complexity measure, then µ(f) is a lower bound on the
formula complexity of f . ♦

Thus to formalize the inductive approach outlined earlier, it suffices to define a measure µ
such that, say, µ(3SAT) is super-polynomial. For example, one could try “fraction of inputs
for which the function agrees with the 3SAT function” or some suitably modified version of
this. In general, one imagines that defining a measure that lets us prove a good lower bound
for 3SAT would involve some deep observation about the 3SAT function. The next lemma
seems to show, however, that even though all we care about is the 3SAT function, our lower
bound necessarily must reason about random functions.

Lemma 23.6 Suppose µ is a formal complexity measure and there exists a function f :
{0, 1}n → {0, 1} such that µ(f) ≥ S for some large number S. Then for at least 1/4 of all
functions g : {0, 1}n → {0, 1} we must have µ(g) ≥ S/4. ♦

Proof: The proof follows by the same observation as above. For a random function g :
{0, 1}n → {0, 1}, we can write f = h ⊕ g where h = f ⊕ g. So f = (h̄ ∧ g) ∨ (h ∧ ḡ) and
µ(f) ≤ µ(g) + µ(g) + µ(h) + µ(h). But if more than 3/4 of the functions have measure less
than S/4, then by the union bound with positive probability all four functions g, h, g, h will
have measure less than S/4, implying that µ(f) < S and contradicting our assumption. �

In fact, the following stronger theorem holds:

Theorem 23.7 If µ(f) > S then for all ǫ > 0 and for at least 1 − ǫ of all functions g we
have that,

µ(g) ≥ Ω

(

S

(n+ log(1/ǫ))2

)

. ♦

The idea behind the proof of the theorem is to write f as the Boolean combination of a
small number of functions and then proceed similarly as in the proof of the lemma. These
results mean that every lower bound that is obtained through a 2O(n)-time computable
formal complexity measure µ will be natural.

23.3 Proof of Theorem 23.1

Now we prove Theorem 23.1. We will use the key fact from Section 9.5.1 that we can build
from every pseudorandom generator a pseudorandom function family. Recall that this is a
family of functions {fs}s∈{0,1}∗ , where for s ∈ {0, 1}m, fs is a function from {0, 1}m to {0, 1}.
This family has the following two properties: (a) there is a polynomial-time algorithm that
given s, x outputs fs(x) and (b) no polynomial-time algorithm can distinguish with non-
negligible probability between oracle access to the function fs(·) for a randomly chosen
s ∈

R
{0, 1}m and oracle access to a random function from {0, 1}m to {0, 1}.
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Since pseudorandom generators can be based on any one-way function [HILL99], we can
obtain such a family from this assumption as well. In fact, one can verify by going over
these reductions that if we start from a one-way function that cannot be inverted by 2n

ǫ

-
time algorithms for some constant ǫ > 0 then we obtain a pseudorandom function family
{fs}s∈{0,1}∗ such that fs(·) for s ∈

R
{0, 1}m cannot be distinguished from a random function

by 2m
ǫ′

-time algorithms for some constant ǫ′.

What does all this have to do with natural proofs? Suppose P is a natural property
on n-bit functions that is nc-useful. It is an algorithm (albeit one running in 2O(n) time)
that (a) outputs 0 on functions with circuit complexity lower than nc. (b) outputs 1 on
a nonnegligible fraction of functions. Thus one can hope that such an algorithm allows us
some nonnegligible chance of distinguishing a pseudorandom function from a truly random
function, and this is what we show now.

Let {fs} be a 2m
ǫ

-secure pseudorandom function collection as described earlier. We use
the natural property P to design an algorithm that distinguishes between a random function
from {0, 1}m to {0, 1} and fs (to both of which it has oracle access) with nonnegligible
probability.

Given oracle access to an unknown function h (which could either be fs for some s or
a random function), the distinguisher lets n be mǫ/2 and constructs the truth table of the
function g from {0, 1}n to {0, 1} defined as: g(x) = h(x0m−n). Constructing this truth
table only requires 2O(n) time. Then the distinguisher runs algorithm P on this function,
and outputs whatever P does. Now consider the two cases under consideration. In one case,
the provided function h was a random function, and so this new function g is also a random
function on {0, 1}n. Hence the probability that P outputs 1 is at least 1/n. In the other
case, the provided function h was fs for some s. Then function g has circuit complexity at
most nc since the map s, x 7→ fs(x) can be computed in poly(m) time, and hence the map
x 7→ g(x) is computable by circuit of size poly(m) = nc that has s “hardwired” into it. (To
be sure, the distinguisher does not know s or this circuit; we are only asserting that the
circuit exists.) Hence P given the truth table for g must output 0.

Thus the distinguisher distinguishes between fs and a random function with probability
at least 1/n and furthermore does so in 2O(n) time, which is less than 2m

ǫ

. Viewed con-
trapositively, this implies that if the pseudorandom function was subexponentially strong,
then the natural property cannot exist. �

23.4 An “unnatural” lower bound

Can we prove circuit lower bounds using proofs that are not natural? Here we show an inter-
esting example that uses (among other ideas) simple old diagonalization! After presenting
the result we comment more on why it is not natural.

To present this result we’ll need the notion of a promise problem, which is a partially
defined Boolean function from {0, 1}∗ to {0, 1}. That is, we can think of such a problem
as a function f : {0, 1}∗ → {0, 1,⊥} where ⊥ represents “undefined”. We say that an
algorithm A solves a promise problem f , if whenever f(x) ∈ {0, 1} then A(x) = f(x), but
we make no requirement on A’s output when f(x) = ⊥. We can generalize the definition
of every complexity class to promise problems, and in particular denote by PromiseMA
the corresponding generalization of the class MA defined in Section 8.2. That is, a promise
problem f is in PromiseMA if there is a probabilistic polynomial-time algorithm A and
a polynomial p(·) such that for every x ∈ {0, 1}∗, (a) if f(x) = 1 then there exists y ∈
{0, 1}p(|x|) such that Pr[A(x, y) = 1] ≥ 2/3 and (b) if f(x) = 0 then for every y ∈ {0, 1}p(|x|),
Pr[A(x, y) = 1] ≤ 1/3. We have the following lower bound:
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Theorem 23.8 ([San07])
For every c ∈ N,

PromiseMA * SIZE(nc) ,

where SIZE(nc) denotes the set of promise problems with nc-sized circuits.

Proof: Recall that in the interactive proof for PSPACE shown in Section 8.3, the prover al-
gorithm can be implemented itself in polynomial space. This means that if L is a PSPACE-
complete problem, then there is an interactive proof for L where the prover can prove that
a string x is in L using polynomial time and oracle access to the language L itself. In fact,
it turns out that there is a such a language L0 where on inputs of length n the prover needs
only to make queries of length at most n [TV02]. This means that if this language L0 can
be decided by a circuit of size S(n), then the prover can simply send this circuit, which a
probabilistic verifier can then use to run the interactive protocol on its own. Therefore, we
see that if L0 ∈ SIZE(S(n)) then there’s a poly(S(n))-time MA protocol for L0. (We saw
similar reasoning in Theorem 8.22 and Lemma 20.18.)

Define S(n) to be one plus the size of the smallest circuit that solves L0 on length-n
inputs. Now if S(n) ≤ poly(n), this means that PSPACE ⊆ MA but in this case MA
clearly has a language outside of SIZE(nc) for every c (see Exercise 6.5 of Chapter 6). In fact,
the same reasoning holds even if there’s a constant c such that S(n) ≤ nc infinitely often,
and so we may assume that S(n) = nω(1). Note that L0 has a poly(S(n))-time MA protocol
but has no S(n)-sized circuit. If only S(n) was time constructible, we could “scale down”

this separation by defining the language L1 to be {x01S(|x|)1/c−|x|−1 : x ∈ L0}, implying
that L1 is in MA but not in SIZE(nc). Unfortunately, we cannot assume that S(n) is time
constructible and hence cannot ensure that L1 is in MA. Nonetheless, we can define the

following promise problem f1: it is defined only on inputs of the form y = x01S(|x|)1/c−|x|−1

and on such inputs f1(y) = L0(x). It’s not hard to see that f1 ∈ PromiseMA \SIZE(nc).
�

This proof is unnatural because underlying it is the proof that PSPACE * SIZE(nc)
which uses diagonalization - an inherently unnatural technique that focuses on one very spe-
cific function and hence violates the largeness condition. Alternatively, one can also view
a diagonalization proof as showing that a function has the property that it disagrees with
every small circuit on some input— a property that satisfies largeness but not construc-
tiveness. In fact, Theorem 23.1 shows that there are no natural proofs for Theorem 23.8,
unless subexponentially strong one-way functions do not exist. It is also known that this
lower bound does not relativize [Aar06]. Unfortunately, “pushing down” these diagonaliza-
tion/arithmetization based techniques to obtain a lower bound on a function in NP seems
very hard.

23.5 A philosophical view

We think that the natural proof idea and other negative results of this nature are very
valuable. When one is stuck on a difficult question, it is useful to try to prove that it can’t
be solved, or can’t be solved with particular methods. This can give additional insight on
the question that might otherwise be very hard to obtain. By understanding the obstacles,
we know what we’ll have to tackle or bypass to solve certain problems, and this has proven
to be extremely useful countless times in complexity theory and theoretical computer science
at large. In this case, the natural proofs paradigm shows that any complexity class that
has a plausible pseudorandom function generator is going to pose a problem to known lower
bound techniques. Since even low classes like NC1 and TC0 contain plausible pseudorandom
functions, one gets a fairly good understanding of why the project of proving lower bounds
ground to a halt at the class ACC0.
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However, perhaps natural proofs have been so successful at encompassing known lower
bound techniques, that this discouraged researchers from thinking too hard about circuit
lower bounds. This need not be the case. There are techniques in combinatorics that do
not satisfy either the constructiveness or the largeness properties. Personally, we feel that
the constructiveness property may be easier to get around, and one sees this already in the
nonnatural proof of the previous section. Looking more broadly at combinatorics, a relevant
example is Lovàsz’s lower bound of the chromatic number of the Kneser graph [Lov78]. Lower
bounding the chromatic number is coNP-complete in general. Lovàsz gives a topological
proof (using the famous Borsuk-Ulam fixed point theorem) that determines the chromatic
number of the Kneser graph exactly. From his proof one can indeed obtain an algorithm
for solving chromatic number on all graphs([MZ04]) —but it runs in PSPACE for general
graphs! So if this were a circuit lower bound we could call it “nonconstructive.” Nevertheless,
Lovàsz’s reasoning for the particular case of the Kneser graph is not overly complicated
because the graph is highly symmetrical. This suggests we should not blindly trust the
intuition that “nonconstructive ≡ difficult.” We should also remember the lesson learned
from the results on limitations of relativizing techniques (Section 3.4). We’ve seen that one
new non-relativizing technique— arithemtization— allowed us to prove a host of results in
Chapters 8, 11, etc. that cannot be proven using relativizing techniques. It may very well
be that a single new “unnatural” technique will open the floodgates for a great many lower
bounds.

Chapter notes and history

The observation that circuit lower bounds may unwittingly end up reasoning about random func-
tions first appears in Razborov [Raz89]’s result about the limitations of the method of approxima-
tion. We did not cover the full spectrum of ideas in the Razborov-Rudich paper [RR94], where it is
observed that candidate pseudorandom function generators exist even in the class TC0, which lies
between ACC0 and NC1. Thus natural proofs will probably not allow us to separate even TC0

from P. Razborov’s observation about submodular measures in Exercise 23.4 below is important
because many existing approaches for formula complexity use submodular measures; thus they will
fail to even prove superlinear lower bounds. The lower bound of Section 23.4 is due to Santhanam
[San07]; similar techniques were first used to show hierarchy theorems for probabilistic algorithms
with small advice [Bar02, FS04, GST04].

In contrast with our limited optimism, Razborov himself expresses (in the introduction to [Raz03b])
a view that the obstacle posed by the natural proofs observation is very serious. He observes that
existing lower bound approaches use weak theories of arithmetic such as Bounded Arithmetic. He
conjectures that any circuit lower bound attempt in such a logical system must be natural (and
hence unlikely to work). But there are several theorems even in discrete mathematics use reasoning
(e.g., fixed point theorems like Borsuk-Ulam) that does not seem to be formalizable in Bounded
Arithmetic, which is our reason for optimism. Some researchers are far more pessimistic: they fear
that P versus NP may be independent of mathematics (say, of Zermelo-Fraenkel set theory). See
Aaronson’s survey [Aar03] for more on this issue.

Very recently, Aaronson and Wigderson [AW08] showed a new obstacles for complexity results
called algebraization. A complexity class separation C * D cannot be solved using “algebrizing

techniques” if there is there is an oracle O such that CÕ ⊆ DO, where Õ denotes the low degree
extension of the Boolean function O to a larger field or ring such as the integers. Roughly speaking,
algebrizing techniques capture all results such as IP = PSPACE and the PCP theorems that
are proven by arithmetization. In particular, the lower bound of Section 23.4 uses algebrizing
techniques, but [AW08] show that one cannot prove even a superlinear lower bound on NP using
such techniques.

Exercises

23.1 Prove Theorem 23.7.
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23.2 Prove that a random function g : {0, 1}n → {0, 1} satisfies P(g) = 1 with high probability, where P
is the property, defined in Example 23.3, that for no fixing of n− nǫ of g’s turns g into a constant
function.

23.3 Prove Wigderson’s observation: There is no natural proof that the DISCRETE LOG problem (i.e.,
given a prime p, and g, y ∈ Z∗

p, with g 6= 1, find x ∈ Z∗
p such that y = gp (mod p)) requires circuits

of 2nǫ size for some constant ǫ > 0. H466

23.4 (Razborov [Raz92]) A submodular complexity measure is a complexity measure that satisfies µ(f ∨
g) + µ(f ∧ g) ≤ µ(f) + µ(g) for all functions f, g. Show that for every n-bit function fn, such a
measure satisfies µ(fn) = O(n). H466

23.5 Let L be the language containing all triples 〈ϕ,P, i〉 such that the ith bit of ϕ (mod P ) is equal
to 1, where P is a number and ϕ is an expression involving constants, the arithmetic operations
+,−, · and sum and product quantifiers of the form

∑

xi∈{0,1} or
∏

xi∈{0,1}, satisfying the following

property: if we sort x1, . . . , xn according to their order of appearance in ϕ, then for every variable
xi there is at most a single

∏

quantifier involving xj (for j > i) appearing before the last occurrence
of xi in ϕ. Show that L is PSPACE complete and furthermore, there is an interactive proof for L
where the prover algorithm runs in polynomial time using an oracle for L, and when proving that
some x ∈ {0, 1}n is in L it uses queries of length at most n to its oracle. H466
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Appendix A

Mathematical Background.

This appendix reviews the mathematical notions used in this book. However, most of these
are only used in few places, and so the reader might want to only quickly review Sections A.1
and A.2, and come back to the other sections as needed. In particular, apart from proba-
bility, the first part of the book essentially requires only comfort with mathematical proofs
and some very basic notions of discrete math.

The topics described in this appendix are covered in greater depth in many texts and
online sources. Almost all of the mathematical background needed is covered in a good
undergraduate “discrete math for computer science” course as currently taught at many
computer science departments. Some good sources for this material are the lecture notes
by Papadimitriou and Vazirani [PV06], and the book of Rosen [Ros06].

The mathematical tool we use most often is discrete probability. Alon and Spencer
[AS00b] is a great resource in this area. Also, the books of Mitzenmacher and Upfal [MU05]

and Motwani and Raghavan [MR95] cover probability from a more algorithmic perspective.

Although knowledge of algorithms is not strictly necessary for this book, it would be
quite useful. It would be helpful to review either one of the two recent books by Dasgupta
et al [DPV06] and Kleinberg and Tardos [KT06] or the earlier text by Cormen et al [CLRS01].
This book does not require prior knowledge of computability and automata theory, but some
basic familiarity with that theory could be useful: see Sipser’s book [Sip96] for an excellent
introduction. See Shoup’s book [Sho05] for a computer-science introduction to algebra and
number theory.

Perhaps the mathematical prerequisite needed for this book is a certain level of com-
fort with mathematical proofs. The fact that a mathematical proof has to be absolutely
convincing does not mean that it has to be overly formal and tedious. It just has to be
clearly written, and contain no logical gaps. When you write proofs try to be clear and
concise, rather than using too much formal notation. Of course, to be absolutely convinced
that some statement is true, we need to be certain of what that statement means. This
why there is a special emphasis in mathematics (and this book) on very precise definitions.
Whenever you read a definition, try to make sure you completely understand it, perhaps
by working through some simple examples. Oftentimes, understanding the meaning of a
mathematical statement is more than half the work to prove that it is true.

A.1 Sets, Functions, Pairs, Strings, Graphs, Logic.

Sets. A set contains a finite or infinite number of elements, without repetition or re-
spect to order, for example {2, 17, 5}, N = {1, 2, 3, . . .} (the set of natural numbers),
[n] = {1, 2, . . . , n} (the set of natural numbers from 1 ro n), R (the set of real numbers). For
a finite set A, we denote by |A| the number of elements in A. Some operations on sets are:
(1) union: A∪B = {x : x ∈ A or x ∈ B}, (2) intersection : A∩B = {x : x ∈ A and x ∈ B},
and (3) set difference: A \B = {x : x ∈ A and x 6∈ B}.
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Functions. We say that f is a function from a set A to B, denoted by f : A → B, if it
maps any element of A into an element of B. If B and A are finite, then the number of
possible functions from A to B is |B||A|. We say that f is one to one if for every x,w ∈ A
with x 6= w, f(x) 6= f(w). If A,B are finite, the existence of such a function implies that
|A| ≤ |B|. We say that f is onto if for every y ∈ B there exists x ∈ A such that f(x) = y.
If A,B are finite, the existence of such a function implies that |A| ≥ |B|. We say that f is a
permutation if it is both one-to-one and onto. For finite A,B, the existence of a permutation
from A to B implies that |A| = |B|.

Pairs and tuples. If A,B are sets, then the A × B denotes the set of all ordered pairs
〈a, b〉 with a ∈ A, b ∈ B. Note that if A,B are finite then |A × B| = |A| · |B|. We can
define similarly A×B ×C to be the set of ordered triples 〈a, b, c〉 with a ∈ A, b ∈ B, c ∈ C.
For n ∈ N, we denote by An the set A × A × · · · × A (n times). We will often use the
set {0, 1}n, consisting of all length-n sequences of bits (i.e., length n strings), and the set

{0, 1}∗ = ∪n≥0 {0, 1}n ({0, 1}0 has a single element: a binary string of length zero, which
we call the empty word and denote by ε). As mentioned in Section 0.1 we can represent
various objects (numbers, graphs, matrices, etc...) as binary strings, and use xxy (not to be
confused with the floor operator ⌊x⌋) to denote the representation of x. Moreover, we often
drop the xy symbols and use x to denote both the object and its representation.

Graphs. A graph G consists of a set V of vertices (which we often assume is equal to the
set [n] = {1, . . . , n} for some n ∈ N) and a set E of edges, which consists of unordered pairs
(i.e., size two subsets) of elements in V . We denote the edge {u, v} of the graph by u v.
For v ∈ V , the neighbors of v are all the vertices u ∈ V such that u v ∈ E. In a directed
graph, the edges consist of ordered pairs of vertices, and to stress this we sometimes denote
the edge 〈u, v〉 in a directed graph by −→u v. One can represent an n-vertex graph G by its

adjacency matrix which is an n × n matrix A such that Ai,j is equal to 1 if the edge
−→
i j

is present in G ith and is equal to 0 otherwise. One can think of an undirected graph as
a directed graph G that satisfies that for every u, v, G contains the edge −→u v if and only
if it contains the edge −→v u. Hence, one can represent an undirected graph by an adjecancy
matrix that is symmetric (Ai,j = Aj,i for every i, j ∈ [n]).

Boolean operators. A Boolean variable is a variable that can be either True or False
(we sometimes identify True with 1 and False with 0). We can combine variables via the
logical operations AND (∧), OR (∨) and NOT (¬, sometimes also denoted by an overline), to
obtain Boolean formulae. For example, the following is a Boolean formulae on the variables
u1, u2, u3: (u1∧u2)∨¬(u3∧u1). The definitions of the operations are the usual: a∧b = True
if a = True and b = True and is equal to False otherwise; a = ¬a = True if a = False
and is equal to False otherwise; a ∨ b = ¬(a ∨ b). We sometimes use other Boolean
operators such as the XOR (⊕) operator, but they can be always replaced with the equivalent
expression using ∧,∨,¬ (e.g., a ⊕ b = (a ∧ b) ∨ (a ∧ b)). If ϕ is a formulae in n variables
u1, . . . , un, then for any assignment of values u ∈ {False,True}n (or equivalently, {0, 1}n),
we denote by ϕ(u) the value of ϕ when its variables are assigned the values in u. We say
that ϕ is satisfiable if there exists a u such that ϕ(u) = True.

Quantifiers. We will often use the quantifiers ∀ (for all) and ∃ (exists). That is, if ϕ is
a condition that can be True or False depending on the value of a variable x, then we
write ∀xϕ(x) to denote the statement that ϕ is True for every possible value that can be
assigned to x. If A is a set then we write ∀x∈Aϕ(x) to denote the statement that ϕ is True
for every assignment for x from the set A. The quantifier ∃ is defined similarly. Formally,
we say that ∃xϕ(x) holds if and only if ¬(∀x¬ϕ(x)) holds.

Big-Oh Notation. We will often use the big-Oh notation (i.e., O,Ω,Θ, o, ω) as defined in
Section 0.3.
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A.2 Probability theory

A finite probability space is a finite set Ω = {ω1, . . . , ωN} along with a set of numbers

p1, . . . , pN ∈ [0, 1] such that
∑N
i=1 pi = 1. A random element is selected from this space

by choosing ωi with probability pi. If x is chosen from the sample space Ω then we denote
this by x ∈

R
Ω. If no distribution is specified then we use the uniform distribution over the

elements of Ω (i.e., pi = 1
N for every i).

An event over the space Ω is a subset A ⊆ Ω and the probability that A occurs, denoted
by Pr[A], is equal to

∑

i:ωi∈A pi. To give an example, the probability space could be that

of all 2n possible outcomes of n tosses of a fair coin (i.e., Ω = {0, 1}n and pi = 2−n for
every i ∈ [2n]) and the event A can be that the number of coins that come up “heads” (or,
equivalently, 1) is even. In this case, Pr[A] = 1/2 (exercise). The following simple bound
—called the union bound—is often used in the book. For every set of events A1, A2, . . . , An,

Pr[∪ni=1Ai] ≤
n
∑

i=1

Pr[Ai]. (1)

Inclusion exclusion principle. The union bound is a special case of a more general principle.
Indeed, note that if the sets A1, . . . , An are not disjoint then the probability of ∪iAi could be
smaller than

∑

i Pr[Ai] since we are overcounting elements that appear in more than one set.
We can correct this by substracting

∑

i<j Pr[Ai ∩Aj ] but then we might be undercounting,
since we subtracted elements that appear in at least 3 sets too many times. Continuing this
process we get

Claim A.1 (Inclusion-Exclusion principle) For every A1, . . . , An,

Pr[∪ni=1Ai] =
n
∑

i=1

Pr[Ai]−
∑

1≤i<j≤n
Pr[Ai ∩Aj ] + · · ·+ (−1)n−1 Pr[A1 ∩ · · · ∩An] .

Moreover, this is an alternating sum which means that if we take only the first k summands
of the right hand side, then this upper bounds the left-hand side if k is odd, and lower
bounds it if k is even. ♦

We sometimes use the following corollary of this claim, known as the Bonefforni Inequal-
ity:

Corollary A.2 For every events A1, . . . , An,

Pr[∪ni=1Ai] ≥
n
∑

i=1

Pr[Ai]−
∑

1≤i<j≤n
Pr[Ai ∩Aj ]

♦

A.2.1 Random variables and expectations.

A random variable is a mapping from a probability space to R. For example, if Ω is as
above (i.e., the set of all possible outcomes of n tosses of a fair coin), then we can denote
by X the number of coins that came up heads.

The expectation of a random variable X , denoted by E[X ], is its weighted average. That

is, E[X ] =
∑N

i=1 piX(ωi). The following simple claim follows from the definition:

Claim A.3 (Linearity of expectation) For X,Y random variables over a space Ω, denote by
X + Y the random variable that maps ω to X(ω) + Y (ω). Then,

E[X + Y ] = E[X ] + E[Y ] ♦



442 A Mathematical Background.

This claims implies that the random variable X from the example above has expectation
n/2. Indeed X =

∑n
i=1Xi where Xi is equal to 1 if the ith coins came up heads and is equal

to 0 otherwise. But clearly, E[Xi] = 1/2 for every i.
For a real number α and a random variable X , we define αX to be the random variable

mapping ω to α ·X(ω). Note that E[αX ] = αE[X ].

Example A.4
Suppose that we choose k random numbers x1, . . . , xk independently in [n].
What is the expected number of collisions : unordered pairs {i, j} such that
xi = xj? For every i 6= j, define the random variable Yi,j to equal 1 if xi = xj
and 0 otherwise. Since for every choice of xi, the probability that xj = xi is 1/n,
we have that E[Yi,j ] = 1/n. The number of collisions is the sum of Yi,j over all
i 6= j in [k]. Thus, by linearity of expectation the expected number of collisions
is

∑

1≤i<j≤n
E[Yi,j ] =

(

k

2

)

1

n
.

This means that we expect at least one collision once
(

k
2

)

≥ n, which happens

once k is larger than roughly
√

2n. This fact is often known as the birthday
paradox because it explains the seemingly strange phenomenon that a class of
more than 27 or so students is quite likely to have a pair of students sharing the
same birthday, even though there are 365 days in the year.
Note that in contrast, if k ≪ √n then by the union bound, the probability there
will be even one collision is at most

(

k
2

)

/n≪ 1.

Notes: (1) We sometimes also consider random variables whose range is not R, but other
sets such as C or {0, 1}n. (2) Also, we often identify a random variable X over the sample
space Ω with the distribution X(ω) for ω ∈

R
Ω. For example, we may use both Prx∈

R
X [x2 =

1] and Pr[X2 = 1] to denote the probability that for ω ∈
R

Ω, X(ω)2 = 1.

A.2.2 The averaging argument

The following simple fact can be surprisingly useful:

The Averaging Argument : If a1, a2, . . . , an are some numbers whose average is c
then some ai ≥ c.

Equivalently, we can state this in probabilistic terms as follows:

Lemma A.5 (“The Probabilistic Method”) If X is a random variable which takes values
from a finite set and E[X ] = µ then the event “X ≥ µ” has nonzero probability. ♦

The following two facts are also easy to verify

Lemma A.6 If a1, a2, . . . , an ≥ 0 are numbers whose average is c then the fraction of ai’s
that are at least kc is at most 1/k. ♦

Lemma A.7 (“Markov’s inequality”) Any non-negative random variable X satisfies

Pr (X ≥ k E[X ]) ≤ 1

k
. ♦

Can we give any meaningful upper bound on the probability that X is much smaller
than its expectation? Yes, if X is bounded.

Lemma A.8 If a1, a2, . . . , an are numbers in the interval [0, 1] whose average is ρ then at
least ρ/2 of the ai’s are at least as large as ρ/2. ♦
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Proof: Let γ be the fraction of i’s such that ai ≥ ρ/2. Then the average of the ai’s is
bounded by γ · 1 + (1− γ)ρ/2. Hence, ρ ≤ γ + ρ/2, implying γ ≥ ρ/2. �

More generally, we have

Lemma A.9 If X ∈ [0, 1] and E[X ] = µ then for any c < 1 we have

Pr[X ≤ cµ] ≤ 1− µ
1− cµ .

Example A.10
Suppose you took a lot of exams, each scored from 1 to 100. If your average
score was 90 then in at least half the exams you scored at least 80.

A.2.3 Conditional probability and independence

If we already know that an event B happened, this reduces the space from Ω to Ω ∩ B,
where we need to scale the probabilities by 1/Pr[B] so they will sum up to one. Thus,
the probability of an event A conditioned on an event B, denoted Pr[A|B], is equal to
Pr[A ∩B]/Pr[B] (where we always assume that B has positive probability).

We say that two events A,B are independent if Pr[A∩B] = Pr[A] Pr[B]. Note that this
implies that Pr[A|B] = Pr[A] and Pr[B|A] = Pr[B]. We say that a set of events A1, . . . , An
are mutually independent if for every subset S ⊆ [n],

Pr[∩i∈SAi] =
∏

i∈S
Pr[Ai] . (2)

We say that A1, . . . , An are k-wise independent if (2) holds for every S ⊆ [n] with |S| ≤ k.
We say that two random variables X,Y are independent if for every x, y ∈ R, the events

{X = x} and {Y = y} are independent. We generalize similarly the definition of mutual
independence and k-wise independence to sets of random variables X1, . . . , Xn. We have
the following claim:

Claim A.11 If X1, . . . , Xn are mutually independent then

E[X1 · · ·Xn] =

n
∏

i=1

E[Xi]
♦

Proof:

E[X1 · · ·Xn] =
∑

x

xPr[X1 · · ·Xn = x] =

∑

x1,...,xn

x1 · · ·xn Pr[X1 = x1 and X2 = x2 · · · and Xn = xn] = (by independence)

∑

x1,...,xn

x1 · · ·xn Pr[X1 = x1] · · ·Pr[Xn = xn] =

(
∑

x1

x1 Pr[X1 = x1])(
∑

x2

x2 Pr[X2 = x2]) · · · (
∑

xn

xn Pr[Xn = xn]) =

n
∏

i=1

E[Xi]

where the sums above are over all the possible real numbers that can be obtained by applying
the random variables or their products to the finite set Ω. �
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A.2.4 Deviation upper bounds

Under various conditions, one can give better upper bounds on the probability of a random
variable “straying too far” from its expectation. These upper bounds are usually derived
by clever use of Markov’s inequality.

The variance of a random variable X is defined to be Var[X ] = E[(X − E(X))2]. Note
that since it is the expectation of a non-negative random variable, Var[X ] is always non-
negative. Also, using linearity of expectation, we can derive that Var[X ] = E[X2]− (E[X ])2.
The standard deviation of a variable X is defined to be

√

Var[X ].
The first bound is Chebyshev’s inequality, useful when only the variance is known.

Lemma A.12 (Chebyshev inequality) If X is a random variable with standard deviation σ,
then for every k > 0,

Pr[|X − E[X ]| > kσ] ≤ 1/k2 ♦

Proof: Apply Markov’s inequality to the random variable (X − E[X ])2, noting that by
definition of variance, E[(X − E[X ])2] = σ2. �

Chebyshev’s inequality is often useful in the case that X is equal to
∑n

i=1Xi for pairwise
independent random variables X1, . . . , Xn. This is because of the following claim, that is
left as an exercise:

Claim A.13 If X1, . . . , Xn are pairwise independent then

Var(
n
∑

i=1

Xi) =
n
∑

i=1

Var(Xi)
♦

The next inequality has many names, and is widely known in theoretical computer
science as the Chernoff bound (see also Note 7.11. It considers scenarios of the following
type. Suppose we toss a fair coin n times. The expected number of heads is n/2. How
tightly is this number concentrated? Should we be very surprised if after 1000 tosses we
have 625 heads? The bound we present is slightly more general, since it concerns n different
coin tosses of possibly different expectations (the expectation of a coin is the probability of
obtaining “heads”; for a fair coin this is 1/2). These are sometimes known as Poisson trials.

Theorem A.14 (“Chernoff” bounds) Let X1, X2, . . . , Xn be mutually independent random
variables over {0, 1} (i.e., Xi can be either 0 or 1) and let µ =

∑n
i=1 E[Xi]. Then for every

δ > 0,

Pr[
n
∑

i=1

Xi ≥ (1 + δ)µ] ≤
[

eδ

(1 + δ)(1+δ)

]µ

. (3)

Pr[

n
∑

i=1

≤ (1− δ)µ] ≤
[

e−δ

(1− δ)(1−δ)
]µ

. (4)

♦
Often, we will only use the following corollary:

Corollary A.15 Under the above conditions, for every c > 0

Pr

[∣

∣

∣

∣

∣

n
∑

i=1

Xi − µ
∣

∣

∣

∣

∣

≥ cµ
]

≤ 2 · e−min{c2/4,c/2}µ .

In particular this probability is bounded by 2−Ω(µ) (where the constant in the Ω notation
depends on c). ♦

Proof: Surprisingly, the Chernoff bound is also proved using the Markov inequality. We
only prove the first inequality; the second inequality can be proved similarly. We introduce
a positive dummy variable t, and observe that

E[exp(tX)] = E[exp(t
∑

i

Xi)] = E[
∏

i

exp(tXi)] =
∏

i

E[exp(tXi)], (5)
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where exp(z) denotes ez and the last equality holds because the Xi r.v.s are independent.
Now,

E[exp(tXi)] = (1− pi) + pie
t,

therefore,

∏

i

E[exp(tXi)] =
∏

i

[1 + pi(e
t − 1)] ≤

∏

i

exp(pi(e
t − 1))

= exp(
∑

i

pi(e
t − 1)) = exp(µ(et − 1)),

(6)

as 1 + x ≤ ex. Finally, apply Markov’s inequality to the random variable exp(tX), viz.

Pr[X ≥ (1 + δ)µ] = Pr[exp(tX) ≥ exp(t(1 + δ)µ)] ≤ E[exp(tX)]

exp(t(1 + δ)µ)
=

exp((et − 1)µ)

exp(t(1 + δ)µ)
,

using (5), (6) and the fact that t is positive. Since t is a dummy variable, we can choose any
positive value we like for it. Simple calculus shows that the right hand side is minimized for
t = ln(1 + δ) and this leads to the theorem statement. �

So, if all n coin tosses are fair (Heads has probability 1/2) then the the probability of

seeing N heads where |N − n/2| > a
√
n is at most 2e−a

2/4. In particular, the chance of
seeing at least 625 heads in 1000 tosses of an unbiased coin is less than 5.3× 10−7.

A.2.5 Some other inequalities.

Jensen’s inequality.

The following inequality, generalizing the inequality E[X2] ≥ E[X ]2, is also often useful:

Lemma A.16 (Jensen’s Inequality) A function f : R → R is convex if for every p ∈ [0, 1]
and x, y ∈ R, f(px+ (1− p)y) ≤ p · f(x) + (1− p) · f(y). For every random variable X and
convex function f , f(E[X ]) ≤ E[f(X)]. ♦

Approximating the binomial coefficient

Of special interest is the Binomial random variable Bn denoting the number of coins that
come up “heads” when tossing n fair coins. For every k, Pr[Bn = k] = 2−n

(

n
k

)

where
(

n
k

)

= n!
k!(n−k)! denotes the number of size-k subsets of [n]. Clearly,

(

n
k

)

≤ nk, but sometimes

we will need a better estimate for
(

n
k

)

and use the following approximation:

Claim A.17 For every n, k < n,
(

n
k

)k ≤
(

n
k

)

≤
(

ne
k

)k ♦

The best approximation can be obtained via Stirling’s formula:

Lemma A.18 (Stirling’s formula) For every n,

√
2πn

(n

e

)n

e
1

12n+1 < n! <
√

2πn
(n

e

)n

e
1

12n ♦

It can be proven by taking natural logarithms and approximating lnn! = ln(1 ·2 · · ·n) =
∑n

i=1 ln i by the integral
∫ n

1
lnxdx = n lnn− n+ 1. It implies the following corollary:

Corollary A.19 For every n ∈ N and α ∈ [0, 1],

(

n

αn

)

= (1±O(n−1)) 1√
2πnα(1−α)

2H(α)n

where H(α) = α log(1/α)+(1−α) log(1/(1−α)) and the constants hidden in the O notation
are independent of both n and α. ♦
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More useful estimates.

The following inequalities can be obtained via elementary calculus:

• For every x ≥ 1,
(

1− 1
x

)x ≤ 1
e ≤

(

1− 1
x+1

)x

• For every k,
∑n

i=1 i
k = Θ

(

nk+1

k+1

)

• For every k > 1,
∑∞
i=1 n

−k < O(1).

• For every c, ǫ > 0,
∑∞

i=1
nc

(1+ǫ)n < O(1).

• For every n,
∑n

i=1
1
n = lnn±O(1)

A.2.6 Statistical distance

The following notion of when two distributions are close to one another is often very useful.

Definition A.20 (Statistical Distance) Let Ω be some finite set. For two random variables
X and Y with range Ω, their statistical distance (also known as variation distance) is defined
as ∆(X,Y ) = maxS⊆Ω{|Pr[X ∈ S]− Pr[Y ∈ S]|}. ♦

Some texts use the name total variation distance for the statistical distance. The next
lemma gives some useful properties of this distance:

Lemma A.21 Let X,Y, Z be any three distributions taking values in the finite set Ω. Then,

1. ∆(X,Y ) ∈ [0, 1] where ∆(X) = ∆(Y ) iff X is identical to Y .

2. (Triangle inequality) ∆(X,Z) ≤ ∆(X,Y ) + ∆(Y, Z).

3. ∆(X,Y ) = 1
2

∑

x∈Ω |Pr[X = x]− Pr[Y = x]| .

4. ∆(X,Y ) ≥ ǫ iff there is a Boolean function f :Ω→ {0, 1} such that |E[f(X)]− E[f(Y )]| ≥
ǫ.

5. For every finite set Ω′ and function f : Ω → Ω′, ∆(f(X), f(Y )) ≤ ∆(X,Y ). (Here
f(X) is a distribution on Ω′ obtained by taking a sample of X and applying f .)

Note that Item 3 means that ∆(X,Y ) is equal to the L1-distance ofX and Y divided by 2
(see Section A.5.4 below). That is, if we think ofX as a vector in RΩ whereXω = Pr[X = ω],
and define for every vector v ∈ RΩ, |v|

1
=
∑

ω∈Ω |vω |, then ∆(X,Y ) = 1/2|X − Y |
1
.

Proof of Lemma A.21: We start with Item 3. For every pairs of distributions X,Y over
{0, 1}n let S be the set of strings x such that Pr[X = x] > Pr[X = y]. Then it is easy to
see that this choice of S maximizes the quantity b(S) = Pr[X ∈ S]− Pr[Y ∈ S] and in fact
b(S) = ∆(X,Y ) since if we had a set T with b(T ) < −b(S) then the complement T of T
would satisfy b(T ) > b(S). But,

∑

x∈{0,1}n
|Pr[X = x]− Pr[Y = x]| =

∑

x∈S
Pr[X = x]− Pr[Y = x] +

∑

x 6∈S
Pr[Y = x]− Pr[X = x] =

Pr[X ∈ S]− Pr[Y ∈ S] + (1 − Pr[Y ∈ S])− (1 − Pr[X ∈ S]) =

2 Pr[X ∈ S]− 2 Pr[Y ∈ S] ,

establishing Item 3.



A.3 Number theory and groups 447

The triangle inequality (Item 2) follows immediately from Item 3 since ∆(X,Y ) = 1/2|X−
Y |

1
and the L1 norm satisfies the triangle inequality. Item 3 also implies Item 1 since

|X − Y |1 = 0 iff X = Y and |X − Y |1 ≤ ‖X‖+ |Y |1 = 1 + 1.
Item 4 is just a rephrasing of the definition of statistical distance, identifying a set

S ⊆ {0, 1}n with the function f : {0, 1}n → {0, 1} such that f(x) = 1 iff x ∈ S. Item 5
follows from Item 4 noting that if ∆(X,Y ) ≤ ǫ then |E[g(f(X))]− E[g(f(Y ))]| ≤ ǫ for every
function g. �

A.3 Number theory and groups

The integers are the set Z = {0,±1,±2, . . .} while the natural numbers are the subset
N = {0, 1, 2, . . .}.1 A basic fact is that we can divide any integer n by an nonzero integer
k to obtain ℓ, r such that n = kℓ + r and r ∈ {0, . . . , n− 1}. If r = 0 then we say that
k divides n and denote this by k|n. The factors of n are the set of positive integers that
divide n.

The greatest common divisor of two integers n,m, denoted by gcd(n,m) is the largest
integers d such that d|n and d|m. We say that n and m are co-prime if their greatest
common divisor is equal to 1. The following basic facts are not hard to verify:

• If a nonzero integer c divides both n and m then c|d.

• The greatest common divisor of n and m is the smallest positive integer d such that
there exist integers x, y satisfying nx+my = d.

• There is a polynomial-time (i.e., polylog(n,m)-time) algorithm that on input n,m
outputs the greatest common divisor d of n,m and the integers x, y satisfying nx +
my = d. (This algorithm is known as Euclid’s Algorithm.)

A number p > 1 is prime if its only factors are 1 and p. The following basic facts are
known about prime numbers:

• Every positive integer n can be written uniquely (up to ordering) as a product of prime
numbers. This is called the prime factorization of n.

• If gcd(p, a) = 1 and p|ab then p|b. In particular, if a prime p divides a · b then either
p|a or p|b.

A fundamental question in number theory is how many primes exist. A celebrated result
is:

Theorem A.22 (The Prime Number Theorem (Hadamard, de la Vallée Poussin 1896)) For
n > 1, let π(n) denote the number of primes between 1 and n then

π(n) =
n

lnn
(1± o(1)) ♦

The original proofs of the prime number theorem used rather deep mathematical tools,
and in fact people have conjectured that this is inherently the case. But in 1949 both Erdös
and Selberg (independently) found elementary proofs for this theorem. For most computer
science applications, the following weaker statement proven by Chebychev suffices:

Theorem A.23 π(n) = Θ( n
logn ) ♦

Proof: Consider the number
(

2n
n

)

= 2n!
n!n! . By Stirling’s formula we know that log

(

2n
n

)

=

(1 − o(1))2n and in particular n ≤ log
(

2n
n

)

≤ 2n. Also, all the prime factors of
(

2n
n

)

are

1Some texts exclude 0 in N; in most cases this does not any difference.
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between 0 and 2n, and each factor p cannot appear more than k =
⌊

log 2n
log p

⌋

times. Indeed,

for every n, the number of times p appears in the factorization of n! is
∑

i

⌊

n
pi

⌋

, since we

get
⌊

n
p

⌋

times a factor p in the factorizations of {1, . . . , n},
⌊

n
p2

⌋

times a factor of the form

p2, etc... Thus the number of times p appears in the factorization of
(

2n
n

)

= (2n)!
n!n! is equal

to
∑

i

⌊

2n
pi

⌋

− 2
⌊

n
pi

⌋

: a sum of at most k elements (since pk+1 > 2n) each of which is either

0 or 1.

Thus,
(

2n
n

)

≤∏1≤p≤2n
p prime

p

⌊

log 2n
log p

⌋

. Taking logs we get that

n ≤ log

(

2n

n

)

≤
∑

1≤p≤2n
p prime

⌊

log 2n
log p

⌋

log p ≤
∑

1≤p≤2n
p prime

log 2n = π(2n) log 2n ,

establishing π(n) = Ω( n
logn ).

To prove that π(n) = O( n
logn ), we define the function ϑ(n) =

∑

1≤p≤n
p prime

log p. It suffices

to prove that ϑ(n) = O(n) (exercise!). But since all the primes between n+1 and 2n divide
(

2n
n

)

at least once,
(

2n
n

)

≥∏n+1≤p≤2n
p prime

p. Taking logs we get

2n ≥ log

(

2n

n

)

≥
∑

n+1≤p≤2n
p prime

log p = ϑ(2n)− ϑ(n) ,

thus getting a recursive equation ϑ(2n) ≤ ϑ(n) + 2n which solves to ϑ(n) = O(n). �

A.3.1 Groups.

A group is an abstraction that captures some properties of mathematical objects such as
the integers, matrices, functions and more. Formally, a group is a set that has a binary
operation, say ⋆, defined on it that is associative and has an inverse. That is, (G, ⋆) is a
group if

1. For every a, b, c ∈ G , (a ⋆ b) ⋆ c = a ⋆ (b ⋆ c)

2. There exists a special element id ∈ G such that a ⋆ id = a for every a ∈ G, and for
every a ∈ G there exists b ∈ G such that a ⋆ b = b ⋆ a = id. (This element b is called
the inverse of a, and is often denote as a−1 or −a.)

Examples for groups are the integers, with addition being the group operation (and
zero the identity element), the non-zero real numbers with multiplication being the group
operation(and one the identity element), and the set of functions from a domain A to itself,
with function composition being the group operation.

Often, it is natural to use additive (+) or multiplicative (·) notation to denote the group
operation rather than ⋆. In these cases we will use ℓa (or respectively aℓ) to denote the
result of applying the operation to a ℓ times.

A.3.2 Finite groups

A group is finite if it has a finite number of elements. We denote by |G| the number of
elements of G. Examples for finite groups are the following:

• The group Zn of the integers from 0 to n−1 with the operation being addition modulo
n. In particular Z2 is the set {0, 1} with the XOR operation.



A.3 Number theory and groups 449

• The group Sn of the permutations on [n], with the operation being function composi-
tion.

• The group (Z2)
n of n-bit strings with the operation being bitwise XOR. More gen-

erally for every two groups G and H , we can define the group G ×H to be a group
whose elements are pairs 〈g, h〉 with g ∈ G and h ∈ H and with the group operation
corresponding to applying the group operations of G and H componentwise. Similarly,
we define Gn to be the group G×G× · · · ×G (n times).

• For every n, the group Z∗
n consists of the set {k : 1 ≤ k ≤ n− 1 , gcd(k, n) = 1} and

the operation of multiplication modulo n. Note that if gcd(k, n) = 1 then there exist
x, y such that kx + ny = 1 or in other words kx = 1 (mod n), meaning that x is the
inverse of k modulo n. This also means that we can find this inverse in polynomial
time using Euclid’s algorithm. The size of Z∗

n is denoted by ϕ(n) and the function ϕ
is known as Euler’s Quotient function. Note that if n is prime then ϕ(n) = n− 1. It
is known that for every n > 6, ϕ(n) ≥ √n.

A subgroup of G is a subset of G that is itself a group (i.e., closed under the group
operation and taking inverses). The following result is often quite useful

Theorem A.24 If G is a finite group and H is a subgroup of G then |H | divides |G|. ♦

Proof: Consider the family of sets of the form aH = {ah : h ∈ H} for all a ∈ G (we’re
using here multiplicative notation for the group). It is easy to see that the map x 7→ ax
is one-to-one and hence |aH | = |H | for every a. Hence it will suffice to show that we can
partition G into disjoint sets from this family. Yet this family clearly covers G (as a ∈ aH
for every a ∈ G) and hence it suffices to show that for every a, b either aH = bH or aH and
bH are disjoint. Indeed, suppose that there exist x, y ∈ H such that ax = by then for every
element az ∈ aH , we have that az = (byx−1)z and since yx−1z ∈ H we get that az ∈ bH .
�

Corollary A.25 (Fermat’s Little Theorem) For every n and x ∈ {1, . . . , n− 1}, xϕ(n) = 1
(mod n). In particular, if n is prime then xn−1 = 1 (mod n). ♦

Proof: Consider the set H =
{

xℓ : ℓ ∈ Z
}

. This is clearly a subgroup of Z∗
n and hence |H |

divides ϕ(n). But the size of H is simply the smallest number k such that xk = 1 (mod n).
Indeed, there must be such a number since, because Z∗

n, if we consider the sequence of
numbers 1, x, x2, x3, . . . then eventually we get i, j such that xi = xj for i < j, meaning
that xi−j = 1 (mod n). Thus, the above sequence looks like 1, x, x2, . . . , xk−1, 1, x, x2, . . .,
meaning that |H | = k.

Since x|H| = 1 (mod n), obviously taking x to the power ϕ(n) (which is a multiple of
|H |) yields also 1 modulo n. �

The order of an element x of a group G is the smallest integer k such that xk is equal to
the identity element. The proof above shows that in a finite group G, every element has a
finite order and furthermore this order divides the size of G. An element x of G with order
|G| is called a generator of G, since in this case the subgroup

{

x, x1, x2, . . .
}

is all of G.2 If a
group G has a generator then we say that G is cyclic. An example for a simple cyclic group
is the group Zn of the numbers {0, . . . , n− 1} with addition modulo n, that is generated by
the element 1 (and also by any other element that is co-prime to n— exercise).

A.3.3 The Chinese Remainder Theorem

Let n = pq where p, q are co-prime. The Chinese Remainder Theorem (CRT) says that
the group Z∗

n (multiplicative group modulo n) is isomorphic to the group Z∗
p × Z∗

q (pairs of
numbers with multiplication done componentwise modulo p and q respectively).

2A more general definition (that works also for infinite groups) is that x is a generator of G if the subgroup
{

xℓ : ℓ ∈ Z
}

is equal to G.
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Theorem A.26 If n = pq where p, q coprime then function f that maps x to 〈x (mod p), x
(mod q)〉 is one-to-one on Z∗

n. Furthermore f is an isomorphism in the sense that f(xy) =
f(x)f(y) (where multiplication on the left hand side is modulo n and on the right hand side
is componentwise modulo p and q respectively). ♦

Proof: The furthermore part can be easily verified and so we focus on showing that f is
one-to-one. We need to show that if f(x) = f(x′) then x = x′. Since f(x−x′) = f(x)−f(x′),
it suffices to show that if x = 0 (mod p) (i.e., p|x) and x = 0 (mod q) (i.e., q|x) then x = 0
(mod n) (i.e., pq|x). Yet, assume that p|x and write x = pk. Then since gcd(p, q) = 1 and
q|x we know that q|k, meaning that pq|x. �

The Chinese Remainder Theorem can be easily generalized to show that for every n =
p1p2 . . . pk, where all the pi’s are co-prime, there is an isomorphism between Z∗

n to Z∗
p1 ×

· · · × Z∗
pk , meaning that for every n, the group Z∗

n is isomorphic to a product of groups of

the form Z∗
q for q a prime power (i.e., number of the form pℓ for prime p). In fact, it can

be generalized even further to show that every Abelian group G is isomorphic to a product
G1 × G2 × · · · ×Gk where all the Gi’s are cyclic. (This can be viewed as a generalization
of the CRT because all the groups of the form Z∗

q for q a power of an odd prime are cyclic,
and all groups of the form Z∗

2k are either cyclic or products of two cyclic groups.)

A.4 Finite fields

A field is a set F that has an addition (+) and multiplication (·) operations that behave in
the expected way: satisfy associative, commutative and distributive laws, have both additive
and multiplicative inverses, and neutral elements 0 and 1 for addition and multiplication
respectively. In other words, F is a field if it is an Abelian group with the operation + and an
identity element 0, and has an additional operation · such that F\{0} and · forms an Abelian
group, and furthermore the two operation satisfy the distributive rule a(b+ c) = ab+ ac.

Familiar fields are the real numbers (R), the rational numbers (Q) and the complex
numbers (C), but there are also finite fields. Recall that for a prime p, the set {0, . . . , p− 1}
is an Abelian group with the addition modulo p operation and the set {1, . . . , p− 1} is an
Abelian group with the multiplication modulo p operation. Hence {0, . . . , p− 1} form a
field with these two operations, which we denote by GF(p). The simplest example for such
a field is the field GF(2) consisting of {0, 1} where multiplication is the AND (∧) operation
and addition is the XOR operation.

Every finite field F has a number ℓ such that for every x ∈ F , x+ x+ · · ·+ x (ℓ times)
is equal to the zero element of F (exercise). This number ℓ is called the characteristic of F.
For every prime q, the characteristic of GF(q) is equal to q.

A.4.1 Non-prime fields.

One can see that if n is not prime, then the set {0, . . . , n− 1} with addition and multipli-
cation modulo n is not a field, as there exist two non-zero elements x, y in this set such
that x · y = n = 0 (mod n). Nevertheless, there are finite fields of size n for non-prime
n. Specifically, for every prime q, and k ≥ 1, there exists a field of qk elements, which we
denote by GF(qk). We will very rarely need to use such fields in this book, but still provide
an outline of their construction below.

For every prime q and k there exists an irreducible degree k polynomial P over the field
GF(q) (P is irreducible if it cannot be expressed as the product of two polynomials P ′, P ′′

of lower degree). We then let GF(qk) be the set of all k− 1-degree polynomials over GF(q).
Each such polynomial can be represented as a vector of its k coefficients. We perform both
addition and multiplication modulo the polynomial P . Note that addition corresponds
to standard vector addition of k-dimensional vectors over GF(q), and both addition and
multiplication can be easily done in poly(n, log q) time (we can reduce a polynomial S
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modulo a polynomial P using a similar algorithm to long division of numbers). It turns out
that no matter how we choose the irreducible polynomial P , we will get the same field, up
to renaming of the elements. There is a deterministic poly(q, k)-time algorithm to obtain
an irreducible polynomial of degree k over GF(q). There are also probabilistic algorithms
(and deterministic algorithms whose analysis relies on unproven assumptions) that obtain
such a polynomial in poly(log q, k) time (see the book [Sho05]).

For us, the most important example of a finite field is GF(2k), which consists of the

set {0, 1}k, with addition being component-wise XOR, and multiplication being polynomial
multiplication via some irreducible polynomial which we can find in poly(k) time. In fact,
we will mostly not even be interested in the multiplicative structure of GF(2k) and only use
the addition operation (i.e., use it as the vector space GF(2)k, see below).

A.5 Basic facts from linear algebra

For F a field and n ∈ N, we denote by Fn the set of n-length tuples (or vectors) of elements
of F. If u,v ∈ Fn and x ∈ F then we denote by u+v the vector obtained by componentwise
addition of u and v and by xu the vector obtained by multiplying each entry of u by x.

A set of vectors u1, . . . ,uk in Fn is linearly independent if the only solution to the
equation x1u

1 + · · · + xku
k = 0 (where 0 denotes the all-zero vector) is x1 = x2 = · · · =

xk = 0. It can be shown that if u1, . . . ,uk are linearly independent then k ≤ n (exercise).
A set of n linearly independent vectors in Fn is called a basis of Fn. It is not hard to
see that if u1, . . . ,un is a basis of Fn then every vector v ∈ Fn can be expressed as a
linear combination v =

∑

i xiu
i of the vectors u1, . . . ,un and furthermore this expression

is unique. The standard basis of Fn is the set e1, . . . , en, where eij is equal to 1 if j = i and
to 0 otherwise.

A subset S ⊆ Fn is called a subspace if it is closed under addition and scalar multiplication
(i.e., u,v ∈ S and x, y ∈ F implies that xu + yv ∈ S). The dimension of S, denoted by
dim(S) is defined to be the maximum number k such that there are k linearly independent
vectors in S. Such a set of dim(S) linearly independent vectors in S is called a basis and
one can see that every vector in S can be expressed as a linear combination of the vectors
in the basis.

A function f : Fn → Fm is linear if f(u + v) = f(u) + f(v). It’s not hard to verify that
the following hold for every linear function f :

• If u1, . . . ,un is a basis for Fn then for every v ∈ Fn, f(v) =
∑

i xif(ui) where
x1, . . . , xn are the elements such that v =

∑

xiu
i. Thus, to know f ’s value at every

point it suffices to know its value on the basis elements.

• The set Im(f) = {f(v) : v ∈ Fn} is a subspace of Fm.

• The set Ker(f) = {v : f(v) = 0} is a subspace of Fn.

• dim(Im(f)) + dim(Ker(f)) = n

A linear function f : Fn → Fm is often described by an m × n matrix A whose ith

column is f(ei). The multiplication of an m × n matrix A and an n × k matrix B is the
n × k matrix C = AB where Ci,j =

∑

ℓ∈[n]Ai,ℓBℓ,j . One can verify that if A describes a

function f : Fn → Fm and B describes a function g : Fk → Fn then C describes the function
h : Fk → Fm mapping v to f(g(v)). It can also be verified that if we identify members of
Fn with n× 1 matrices (i.e., column vectors) then f(v) = Av.

The determinant of an n×nmatrixA, denoted by det(A) is equal to
∑

σ∈Sn(−1)sgn(σ)
∏n
i=1 Ai,σ(i)

where Sn denotes the group of permutations over [n] and sgn(σ) is equal to 1 if the number
of pairs 〈i, j〉 such that i < j but σ(i) > σ(j) is odd, and is equal to 0 otherwise. We have
the following two facts:

• det(AB) = det(A) det(B). This can be verified by direct computation.
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• If A is an upper triangular matrix (i.e., Ai,j = 0 whenever i > j) then det(A) =
A1,1A2,2 · · ·An,n. Indeed, for a permutation σ to give a non-zero contribution to the
determinant in this case it must satisfy σ(i) ≥ i for every i, which means that it is the
identity permutation.

Together these two rules give a polynomial-time algorithm to compute the determinant
of a matrix A by following the well known Gaussian elimination algorithm to express A as
E1E2 · · ·EmD where the Ei’s are elementary matrices (multiplication by which corresponds
to switching two columns, multiplying a column by a field element, or adding one column
to another) and the D is upper diagonal. Since the determinant is easy to compute for all
these matrices, we can compute the determinant of A as well.

The following lemma relates the determinant of a matrix to the function it represents:

Lemma A.27 For a function f : Fn → Fn represented by an n× n matrix A, the following
conditions are equivalent:

• The columns of A are a basis for Fn.

• f is one-to-one.

• dim(Im(f)) = n.

• dim(Ker(f)) = 0.

• det(A) 6= 0.

• There exists v ∈ Fn such that the equation Ax = v has exactly one solution.

• For every v ∈ Fn, the equation Ax = v has exactly one solution.

Furthermore, if f is one-to-one then the mapping f−1 is linear and is represented by an

n×nmatrix A−1 whose (i, j)th entry is
det(A−(i,j))

det(A) , where A−(i,j) denotes the (n−1)×(n−1)

matrix obtained by removing the ith row and jth column from A. ♦

A.5.1 Inner product

The vector spaces Rn and Cn have an additional structure that is often quite useful.3 An
inner product over Cn to be a function mapping two vectors u,v to a complex number 〈u,v〉
satisfying the following conditions:

• 〈xu + yw,v〉 = x〈u,v〉 + y〈w,v〉

• 〈v,u〉 = 〈u,v〉 where z denotes complex conjugation (i.e., if z = a+ib then z = a−ib).

• For every u, 〈u,u〉 is a non-negative real number with 〈u,u〉 = 0 iff u = 0.

The two examples for inner products we will use are the standard inner product mapping
x,y ∈ Cn to

∑n
i=1 xiyi and the expectation or normalized inner product mapping x,y ∈ Cn

to 1
n

∑n
i=1 xiyi. We can also define inner products over the space Rn, in which case we drop

the conjugation.
If 〈u,v〉 = 0 we say that u and v are orthogonal and denote this by u ⊥ v. We have the

following result:

Lemma A.28 If non-zero vectors u1, . . . ,uk satisfy ui ⊥ uj for all i 6= j then they are
linearly independent. ♦

3The reason we restrict ourselves to these fields is that they have characteristic zero which means that
there does not exist a number k ∈ N and nonzero a ∈ F such that ka = 0 (where ka is the result of adding a
to itself k times). You can check that if there is such a number for a field F then there will not be an inner
product over Fn.
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Proof: Suppose that
∑

i xiu
i = 0 and consider take an inner product of this vector with

itself. We get that

0 = 〈
∑

i

xiu
i,
∑

j

xju
j〉 =

∑

i,j

xixj〈ui,uj〉 =
∑

i

|xi|2〈ui,uj〉 , (7)

where the last equality follows from the fact that 〈ui,uj〉 = 0 for i 6= j. But unless all
the xi’s are zero, the righthand side of (7) is strictly positive. (Recall that for a complex
number x = a+ ib, |x| =

√
a2 + b2 and |x|2 = xx.) �

A set u1, . . . ,un of nonzero vectors in Cn satisfying 〈ui,uj〉 = 0 for i 6= j is called an
orthogonal basis of Cn. If in addition 〈ui,ui〉 = 1 for all i then we say this is an orthonormal
basis. An orthonormal basis consists of n linearly independent vectors and hence as its name
implies is a basis of Cn, meaning that every vector v can be expressed as v =

∑

i xiu
i. By

taking an inner product of this equality with ui, one can see that xi = 〈v,ui〉
The following identity (that can be viewed as a generalization of the Pythagorean theo-

rem) is often useful:

Lemma A.29 (Parseval’s identity) If u1, . . . ,un is an orthonormal basis for Cn, then for
every v,

〈v,v〉 =

n
∑

i=1

|xi|2 ,

where x1, . . . , xn are the numbers such that v =
∑

i xiu
i. ♦

Proof: As in the proof of Lemma A.28,

〈v,v〉 = 〈
∑

i

xiu
i,
∑

j

xju
j〉 =

∑

i

|xi|2〈ui,ui〉 . �

Vector spaces with an inner product are known as Hilbert spaces.

A.5.2 Dot product

Even in a field F that doesn’t have an inner product, we can define the dot product of two
vectors u,v ∈ Fn, denoted by u ⊙ v, as

∑n
i=1 uivi. For every subspace S ⊆ Fn, we define

S⊥ = {u : u⊙ v = 0∀v ∈ S}. We leave the following simple claim as an exercise:

Claim A.30 dim(S) + dim(S⊥) = n ♦

In particular for every nonzero vector u ∈ Fn, the subspace u⊥ of vectors v satisfying
u ⊙ v = 0 has dimension n − 1 and hence cardinality |F|n−1. As a corollary we get the
following very useful fact:

Claim A.31 (The random subsum principle) For every nonzero u ∈ GF(2) (the field {0, 1}
with addition and multiplication modulo 2):

Pr
v∈

R
GF(2)n

[u⊙ v = 0] = 1/2
♦

A.5.3 Eigenvectors and eigenvalues

If A is an n × n complex matrix and v ∈ Cn is a nonzero vector, we say that v is an
eigenvector of A if there exists λ ∈ C such that Av = λv. We say that A is diagonalizable
if there is a basis v1, . . . ,vn of eigenvectors for A. In other words, there is an invertible
matrix P such that PAP−1 is a diagonal matrix.
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Note that A has an eigenvector with eigenvalue λ if and only if the matrix A − λI
is non-invertible, where I is the identity matrix. Thus in particular λ is a root of the
polynomial p(x) = det(A − xI). Thus the fundamental Theorem of Algebra (that every
complex polynomial has as many roots as the degree) that every square matrix has at least
one eigenvector. (A non-invertible matrix has an eigenvector zero.)

For a matrix A, the conjugate transpose of A, denoted A∗, is the matrix such that for
every i, j, A∗

i,j = Aj,i where denotes the complex conjugate operation. We say that an
n×n matrix A is Hermitian if A = A∗. An Hermitian matrix with only real entries is called
symmetric. That is, a real matrix is symmetric if A = A† where † is the transpose operation
(i.e., A†

i,j = Aj,i). An equivalent condition (exercise) is that A is Hermitian if and only if

〈Au,v〉 = 〈u, Av〉 . (8)

An important useful fact about Hermitian matrices is the following theorem:

Theorem A.32 If A is an n× n Hermitian matrix then there exists an orthogonal basis of
eigenvectors for A. ♦
Proof: We prove this by induction on n. We know that A has one eigenvector v with
eigenvalue λ. Now let S = v⊥ be the n − 1 dimensional space of all vectors orthogonal to
v. We claim that for every u ∈ S, Au ∈ S. Indeed, if 〈u,v〉 = 0 then

〈Au,v〉 = 〈u, Av〉 = λ〈u,v〉 = 0 .

Thus the restriction of A to S is an n − 1 dimensional linear operator satisfying (8)
and hence by induction this restriction has an orthogonal basis of eigenvectors v2, . . . ,vn.
Adding v to this set we get an n-dimensional orthogonal basis of eigenvectors for A. �

Note that if A is real and symmetric then all its eigenvalues must be real also (with no
imaginary components). Indeed, if Av = λv then

λ〈v,v〉 = 〈Av,v〉 = 〈v, Av〉 = λ〈v,v〉 ,
meaning that for a nonzero v, λ = λ. This implies that the eigenvectors, that are obtained
by solving a linear equation with real coefficients, are also real.

A.5.4 Norms

A norm of a vector in Cn is a function mapping a vector v to a real number ‖v‖ satisfying:

• For every v, ‖v‖ ≥ 0 with ‖v‖ = 0 iff v = 0.

• If x ∈ C then ‖xv‖ = |x|‖v‖.
• (Triangle inequality) For every u,v, ‖u + v‖ ≤ ‖u‖+ ‖v‖.
For every v ∈ Cn and number p ≥ 1, the Lp norm of v, denoted ‖v‖

p
, is equal to

(
∑n

i=1 |vi|p)
1/p

. One particularly interesting case is p = 2, the so-called Euclidean norm, in

which ‖v‖
2

=
√
∑n
i=1 |vi|2 =

√

〈v,v〉. Another interesting case is p = 1, where we use the
single bar notation and denote |v|1 =

∑n
i=1 |vi|. Another case is p = ∞, where we denote

‖v‖
∞

= limp→∞ ‖v‖p = maxi∈[n] |vi|.
Some relations between the different norms can be derived from the Hölder inequality,

stating that for every p, q with 1
p + 1

q = 1, ‖u‖
p
‖v‖

q
≥∑n

i=1 |uivi|. To prove it, note that
by simple scaling, it suffices to consider norm one vectors, and so it enough to show that
if ‖u‖p = ‖v‖q = 1 then

∑n
i=1 |ui||vi| ≤ 1. But

∑n
i=1 |ui||vi| =

∑n
i=1 |ui|p(1/p)|vi|q(1/q) ≤

∑n
i=1

1
p |ui|p + 1

q |vi|q = 1
p + 1

q = 1, where the last inequality uses the fact that for every

a, b > 0 and α ∈ [0, 1], aαb1−α ≤ αa+ (1− α)b.
The Hölder inequality implies the following relations between the L2, L1 and L∞ norms

of every vector (see Exercise 21.2):

|v|
1
/
√
n ≤ ‖v‖

2
≤
√

|v|
1
‖v‖

∞
(9)

Vector spaces with a norm are sometimes known as Banach spaces.
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A.5.5 Metric spaces

For any set Ω and d : Ω2 → R, we say that d is a metric on Ω if it satisfies the following
conditions:

1. d(x, y) ≥ 0 for every x, y ∈ Ω where d(x, y) = 0 if and only if x = y.

2. d(x, y) = d(y, x) for every x, y ∈ Ω.

3. (Triangle Inequality) For every x, y, z ∈ Ω, d(x, z) ≤ d(x, y) + d(y, z).

That is, d(x, y) denotes the distance between x and y according to some measure. If Ω is
a vector space with a norm then the function d(x, y) = ‖x− y‖ is a metric over Ω, but there
are other examples for metrics that do not come from any norm. For example, for every
graph G we can define a metric over the vertex set of G by letting the distance of x and y
be the length of the shortest path between them. Various metric spaces and the relations
between them have found recently many applications in theoretical computer science, see
Chapter 15 of [Mat02] for a good survey.

A.6 Polynomials

We list some basic facts about univariate polynomials.

Theorem A.33 A nonzero polynomial of degree d has at most d distinct roots. ♦

Proof: Suppose p(x) =
∑d

i=0 cix
i has d + 1 distinct roots α1, . . . , αd+1 in some field F.

Then
d
∑

i=0

αij · ci = p(αj) = 0,

for j = 1, . . . , d+ 1. This means that the system Ay = 0 with

A =









1 α1 α2
1 . . . αd1

1 α2 α2
2 . . . αd2

. . . . . . . . . . . . . . . . . . . .
1 αd+1 α2

d+1 . . . αdd+1









has a solution y = c. The matrix A is a Vandermonde matrix, and it can be shown that

detA =
∏

i>j

(αi − αj),

which is nonzero for distinct αi. Hence rankA = d + 1. The system Ay = 0 has therefore
only a trivial solution — a contradiction to c 6= 0. �

This theorem has an interesting corollary:

Corollary A.34 For every finite field F, the multiplicative group F∗ is cyclic. ♦

Proof: The fact that the polynomial xk − 1 has at most k roots implies that the group F∗

has the property (*) that for every k the number of elements x satisfying xk = 1 is always
at most k. We will prove by induction that every group G satisfying (*) is cyclic.

Let n = |G|. We consider three cases:

• n is prime. In this case every element of G has either order 1 or order n. Since the
only element with order 1 is the identity element, we see that G has an element of
order n— G is cyclic.
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• n = pc for some prime p and c > 1. In this case if there is no element of order n,
then all the orders must divide pc−1. We get n = pc elements x such that xp

c−1

= 1,
violating (*).

• n = pq for co-prime p and q. In this case let H and F be two subgroups of G defined
as follows: H = {a : ap = 1} and F = {b : bq = 1}. Then |H | ≤ p < n and |F | ≤ q < n
and also as subgroups ofG bothH and F satisfy (*). Thus by the induction hypothesis
both H and F are cyclic and have generators a and b respectively. We claim that ab
generates the entire group G. Indeed, let c be any element in G. Since p, q are
coprime, there are x, y such that xq + yp = 1 and hence c = cxq+yp. But (cxq)p = 1
and (cyp)q = 1 and hence c is a product of an element of H and an element of F , and
hence c = aibj for some i ∈ {0, . . . , p− 1} and j ∈ {0, . . . , q − 1}. Thus, to show that
c = (ab)z for some z all we need to do is to find z such that z = i (mod p) and z = j
(mod q), but this can be done using the Chinese Remainder Theorem.

�

Theorem A.35 For any set of pairs (a1, b1), . . . , (ad+1, bd+1) there exists a unique polyno-
mial g(x) of degree at most d such that g(ai) = bi for all i = 1, 2, . . . , d+ 1. ♦

Proof: The requirements are satisfied by Lagrange Interpolating Polynomial:

d+1
∑

i=1

bi ·
∏

j 6=i(x− aj)
∏

j 6=i(ai − aj)
.

If two polynomials g1(x), g2(x) satisfy the requirements then their difference p(x) = g1(x)−
g2(x) is of degree at most d, and is zero for x = a1, . . . , ad+1. Thus, from the previous
theorem, polynomial p(x) must be zero and polynomials g1(x), g2(x) identical. �

The following elementary result is usually attributed to Schwartz and Zippel in the
computer science community, though it was certainly known earlier (see e.g. DeMillo and
Lipton [DLne]).

Lemma A.36 If a polynomial p(x1, x2, . . . , xm) over F = GF (q) is nonzero and has total
degree at most d, then

Pr[p(a1..am) 6= 0] ≥ 1− d

q
,

where the probability is over all choices of a1..am ∈ F . ♦

Proof: We use induction on m. If m = 1 the statement follows from Theorem A.33.
Suppose the statement is true when the number of variables is at most m− 1. Then p can
be written as

p(x1, x2, . . . , xm) =
d
∑

i=0

xi1pi(x2, . . . , xm),

where pi has total degree at most d − i. Since p is nonzero, at least one of pi is nonzero.
Let k be the largest i such that pi is nonzero. Then by the inductive hypothesis,

Pr
a2,a3,...,am

[pi(a2, a3, . . . , am) 6= 0] ≥ 1− d− k
q

.

Whenever pi(a2, a3, . . . , am) 6= 0, p(x1, a2, a3, . . . , am) is a nonzero univariate polynomial
of degree k, and hence becomes 0 only for at most k values of x1. Hence

Pr[p(a1..am) 6= 0] ≥ (1− k

q
)(1− d− k

q
) ≥ 1− d

q
,

and the induction is completed. �



Hints for selected exercises

Chapter 0

0.2 Answers are: (a) n (b) n2 (c) 2n (d) log n (e) n (f) n log n (g) nlog 3 (h) n2.

Chapter 1

1.1 Follow the gradeschool algorithms.

1.5 Use the proof of Claim 1.6.

1.6 show that the universal TM U obtained by the proof of Theorem 1.9 can be tweaked to be
oblivious.

1.12.b By possibly changing from S to its complement, we may assume that the empty function ∅
(that is not defined on any input) is in S there is some function f that is defined on some
input x that is not in S . Use this to show that an algorithm to compute fS can compute the
function HALTx which outputs 1 on input α iff Mα halts on input x. Then reduce computing
HALT to computing HALTx thereby deriving Rice’s Theorem from Theorem 1.11.

Chapter 2

2.2 CONNECTED and 2COL are shown to be in P in Exercise 1.14 (though 2COL is called BIPARTITE

there). 3COL is shown to be NP-complete in Exercise 2.21, and hence it is unlikely that it
is in P.

2.3 First show that for every rational matrix A, the determinant of A can always be represented
using a number of bits that is polynomial in the representation of A. Then use Cramer’s rule
for expressing the solution of linear equations in terms of determinants.

2.4 Use the previous question.

2.5 The certificate that n is prime is the list of prime factors q1, . . . , qℓ of n − 1 along with the
corresponding numbers a1, . . . , aℓ and (recursive) primality certificates for q1, . . . , qℓ.

2.6 A simulation in O(|α|t log t) time can be obtained by a straightforward adaptation of the
proof of Theorem 1.9. To do a more efficient simulation, the main idea is to first run a
simulation of M without actually reading the contents of the work tapes, but rather simply
non-deterministically guessing these contents, and writing those guesses down. Then, go over
tape by tape and verify that all guesses were consistent.

2.11 Why is this language in NP? Is Boolean satisfiability a mathematical statement?

2.13.a Modify the machine M so that it clears up its work tape before outputting a 1 and moves
both heads to one end of the tape. Then the final snapshot and head locations are unique.

2.15 Reduce from INDSET.

2.17 For Exactly One 3SAT replace each occurrence of a literal vi in a clause C by a new variable
zi,C and clauses and auxiliary variables ensuring that if vi is True then zi,C is allowed to
be either True or False but if vi is false then zi,C must be False. The approach for the
reduction of Exactly One 3SAT to SUBSET SUM is that given a formula ϕ, we map it to a
SUBSET SUM instance by mapping each possible literal ui to the number

∑

j∈Si
(2n)j where

Si is the set of clauses that the literal ui satisfies, and setting the target T to be
∑m

j=1(2n)j

. An additional trick is required to ensure that the solution to the subset sum instance will
not include two literals that correspond to a variable and its negation.
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2.19 Reduce from SAT

2.20 You can express the constraint x ∈ {0, 1} using the equation x2 = x.

2.21 Reduce from 3SAT.

2.22 Reduce from SAT.

2.30 If there is a nc time reduction from 3SAT to a unary language L, then this reduction can only
map size n instances of 3SAT to some string of the form 1i where i ≤ nc. Use this observation
to obtain a polynomial-time algorithm for SAT using the downward self reducibility argument
of Theorem 2.18.

2.31 Start with an exponential-time recursive algorithm for SUBSET SUM, and show that in this
case you can make it into a polynomial-time algorithm by storing previously computed values
in a table.

Chapter 3

3.6.a To compute H(n) we need to (1) compute H(i) on every i ≤ log n, (2) simulate at most
log log nmachines on inputs of lengths at most log n for less than log log n(log n)log log n = o(n)
steps, and (3) compute SAT on inputs of size at most log n. Thus, if T (n) denotes the time
to compute H(n), then T (n) ≤ log nT (log n) +O(n2), and hence T (n) = O(n2).

3.6.b If f is the reduction from SAT to SATH that runs in time O(ni), let N be the number such
that H(n) > i for n > N . The following recursive algorithm A solves SAT in polynomial
time: on input a formula ϕ, if |ϕ| ≤ N then compute the output using brute force; otherwise

compute x = f(ϕ). If x is not of the form ψ01nH(|ψ|)

then output False . Otherwise, output
A(ψ).

Chapter 4

4.6 The proof of the Cook-Levin Theorem in Chapter 2 used oblivious TMs. You need to verify
that the construction of oblivious TMs implied in Remark 1.7 and Exercise 1.5 is such that
the position of the head at any step can be computed in logarithmic space.

4.7 Use the previous exercise

Chapter 5

5.1 Use the NP-completeness of SAT.

5.7 The nontrivial direction EXP ⊆ APSPACE uses ideas similar to those in the proof of Theo-
rem 5.11.

5.13.b Reduce from Σ3-3SAT. Also, the collection S produced by your reduction can use the same
set multiple times.

Chapter 6

6.1.a Use the equation f(x1, . . . , xn) = xn ∧ f(x1, . . . , xn−1, 1) ∨ xn ∧ f(x1, . . . , xn−1, 0) to build
recursively a O(2n) circuit for f .

6.1.b There only 22k functions on k bits, which means that we can trivially use 22k · (k22k ) gates
to compute every possible such function on x1, . . . , xk. But after we have done this, we can
use the recursive circuit of the previous item only for n− k levels of the recursion, using up
O(2n−k) gates. Setting k to equal, say, log n− 2 gives the result.

6.5 Keep in mind the proof of the existence of functions with high circuit complexity, and try to
show that you can compute, say, the lexicographically smallest such function using a constant
number of quantifier alternations.

6.7 Keep the previous problem in mind.
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6.9 Show a recursive exponential-time algorithm S that on input a n-variable formula ϕ and a
string v ∈ {0, 1}n outputs 1 iff ϕ has a satisfying assignment v such that v > u when both
are interpreted as the binary representation of a number in [2n]. Use the reduction from SAT

to L to prune possibilities in the recursion tree of S.

6.12.a You can use a different processor to compute each entry of AB.

6.12.b Use repeated squaring: A2k = (A2k−1

)2.

6.12.c Let A be the adjacency matrix of a graph. What is the meaning of the (i, j)th entry of An?

6.13 A formula may be viewed —once we exclude the input nodes—as a directed binary tree, and
in a binary tree of size m there is always a node whose removal leaves subtrees of size at most
2m/3 each.

6.16 First design NC circuits for matrix multiplication and then, using fast exponentiation, for
computing Ar in poly(log n + log r) depth. Then use the fact that the determinant is the
product of the eigenvalues, and that trace(Ar) is the sum of the rth power of the eigenvalues.
Then use manipulations of the symmetric functions of eigenvalues.

6.19 In your reduction, express the CIRCUIT-EVAL problem as a linear program and use the fact
that x∨ y = 1 iff x+ y ≥ 1. Be careful; the variables in a linear program are real-valued and
not Boolean!

Chapter 7

7.3 Use the binary representation of n and repeated squaring.

7.4 Use the fact that if B1, . . . , Bk are k independent events each occurring with probability at
most p, then the probability that ∧i∈[n]Bi occurs is at most pn.

7.5 Think of the real number ρ as an advice string. How can its bits be recovered?

7.8 Follow the ideas of the proof of the Karp-Lipton Theorem (Theorem 6.19).

7.9 Try to compute the probability that the machine ends up in the accept configuration using
either dynamic programming or matrix multiplication.

7.11.c Consider the infinite random walk starting from u. If Eu > K then by standard bounds
(e.g., Chernoff), u appears in less than a 2/K fraction of the places in this walk.

7.11.d Start with the case k = 1 (i.e., u and v are connected by an edge), the case of k > 1 can be
reduced to this using linearity of expectation. Note that the expectation of a random variable
X over N is equal to

∑

m∈N
Pr[X ≥ m] and so it suffices to show that the probability that an

ℓn2-step random walk from u does not hit v decays exponentially with ℓ.

Chapter 8

8.1.c Use IP = PSPACE.

8.5 First note that in the current set lower bound protocol we can have the prover choose the hash
function. Consider the easier case of constructing a protocol to distinguish between the case
|S| ≥ K and |S| ≤ 1

c
K where c > 2 can be even a function of K. If c is large enough the we

can allow the prover to use several hash functions h1, . . . , hi, and it can be proven that if i is
large enough we’ll have ∪ihi(S) = {0, 1}k. The gap can be increased by considering instead
of S the set Sℓ, that is the ℓ times Cartesian product of S.

8.7 Start by showing that MAM ⊆ AM, where MAM denotes the class of languages that can
be proven by a 3-message protocol in which the prover sends one message, the verifier sends
random coins, and then the prover sends another message (see Footnote 2). We can change
an MAM protocol to an AM protocol by having the verifier send its random coins as the
first message. This will not harm completeness. Show that if we first use parallel repetition to
reduce the soundness error to a low enough value (as a function of the length of the prover’s
messages) then the new protocol will still be sound.

8.8.a Show that in this case there is at most a blowup of 2 in the degree due to a product operation
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8.8.b If ψ is not already of this form and has a fragment of the form ∀xj ....∀xj′p(xi, ...) where
j′ > j > i and p is some formula involving xi and possibly other variables, then we can
introduce a new variable yi and change the formula to the equivalent form∀xj∃yis.t.(yi =
xi)AND....∀xj′p(yi, ...). Apply this procedure iteratively from right to left.

8.13 Show how to simulate poly(n) provers using two. In this simulation, one of the provers plays
the role of all m(n) provers, and the other prover is asked to simulate one of the provers,
chosen randomly from among the m(n) provers. Then repeat this a few times.

Chapter 9

9.2 Can all the distributions of the form EUn(x) have the same support?

9.4 Define D to be the following distribution over {0, 1}n+10: choose y at random from EUn(0n+5),
choose k at random in {0, 1}n, and let x = Dk(y). Show a function A such that if we set
x0 = 0n+10 and (11) fails for every x1, then for every x ∈ {0, 1}n+10, Pr[D = x] > 2−n.
Derive from this a contradiction.

9.6.a Use padding.

9.7 Show that if X2 = Y 2 (mod M) and X 6= ±Y (mod M) then one can find a factor of M by
computing the greatest common denominator (gcd) of M and X − Y . Then show that you
can find such a pair X,Y using an invertion algorithm.

9.8 For every prime p, generator g of Z∗
p, and x ∈ {0, .., p− 1}, if we choose y ∈

R
{0, .., p− 1} then

gxgy (mod p) is uniformly distributed in Z∗
p.

9.9.b For the algorithm B use A(EUn(0m)).

9.9.c Use the same algorithm B as above.

9.10 Use the ideas of the proof of Theorem 9.13.

9.13 You need to show that a certain determinant is nonzero.

9.16 Prove this first for the case where the language 3COL is replaced by L = {(y, r, b) : ∃x s.t. y =
f(x), b = r ⊙ x}, where f is a one-way permutation.

Chapter 10

10.2 First prove that Condition 3 holds iff Condition 1 holds iff Condition 4 holds. This follows
almost directly from the definition of the inner product and the fact that for every matrices
A,B it holds that (AB)∗ = B∗A∗ and (A∗)∗ = A. Then prove that Condition 3 implies
Condition 2, which follows from the fact that the norm is invariant under a change of basis.
Finally, prove that Condition 2 implies Condition 3 by showing that if two orthogonal unit
vectors v,u are mapped to non-orthogonal unit vectors v′,u′, then the norm of the vector
u + v is not preserved.

10.5 Add another qubit to the register with the semantic that when this qubit is zero, all amplitudes
correspond to the real part of the amplitudes in the original algorithm and when it is one,
the amplitudes correspond to the imaginary part of the amplitudes of the original algorithm.

10.10 Start by solving the case that x = 2k for some k. Then, show an algorithm for general x by
using x’s binary expansion.

10.12 Use the fact that if N and A are co-prime then there are whole numbers α, β such that
αN + βA = 1 and multiply this equation by B.

10.15 let d = gcd(r,M), r′ = r/d and M ′ = M/d. Now use the same argument as in the case
that M and r are coprime to argue that there exist Ω( r

d log r
) values x ∈ ZM′ satisfying this

condition, and that if x satisfies it then so does x+ cM for every c.
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Chapter 11

11.3 Show that a random assignment is expected to satisfy at least a 7/8 fraction of the clauses, and
then use Markov’s inequality to show that the probability of satisfying at least a 7/8−1/(2m)
fraction (where m is the number of clauses) is at least 1/poly(m).

11.4 Use the method of conditional expectation. Given any partial assignment to the variables
u1, . . . , ui, one can compute in polynomial time the expectation of the fraction of clauses
satisfied if the variables ui+1, . . . , un are chosen at random. There is a way to assign values
to the variables u1, u2, . . . in order so that the invariant that this expectation is at least 7/8
is always maintained. (Another approach for obtaining a deterministic algorithm is to select
the assignment using a 3-wise independent sample space; see hint to Exercise 11.14.))

11.8 Use the hypothesis to infer a downward-self-reducibility property for SAT.

11.9 Design a verifier for 3SAT. The trivial idea would be that the proof contains a satisfying
assignment and the verifier randomly picks a clause and reads the corresponding three bits
in the proof to check if the clause is satisfied. This doesn’t work. Why? The better idea is to
require the “proof” to contain many copies of the satisfying assignment. The verifiers uses
pairwise independence to run the previous test on these copies —which may or may not be
the same string.

11.11 The Cook-Levin reduction actually transforms every x ∈ {0, 1}∗ into a formula almost all
of whose clauses are satisfiable since almost all of the clauses are various consistency checks
that are satisfied by the transcript of the execution of the corresponding TM M on x and
every string u, even if M(x, u) = 0.

11.12 First show that the problem can be solved exactly using dynamic programming in time
poly(n,m) if all the numbers involved are in the set [m]. Then, show one can obtain an
approximation algorithm by keeping only the O(log(1/ǫ) + log n) most significant bits of
every number.

11.14 As in Exercise 11.4, the randomized algorithm can be derandomized using either the method
of conditional expectation or using q-wise independent functions. These can be obtained by
generalizing the construction of pairwise independent hash functions from Section 8.2.2 to
use a polynomials of degree q − 1 over GF(2n) instead of linear functions.

11.15 Show you can express satisfiability for SAT formulas using quadratic equations.

11.16 Reduce from MAX-3SAT.

Chapter 12

12.1 Let x1, . . . , xn be such that f(xi) 6= f(xi
i), prove that for every k, there is a set X of at least

n/2k of the xi’s such that the decision tree sees the same answers for its first k queries on
every member of X.

12.2 Use induction.

Chapter 13

13.3 Show that there is no one-tape TM M solving PAL such that for every input of the form
xn/2 · · ·x10

nx1 · · ·xn/2, and every index i ∈ [n/2 + 1, .., 3n/2 − 1], M travels less than o(n)
times between the ith and i + 1th cells of its tape. Otherwise by letting Alice simulate M ’s
execution when its head is in the first i cells, and Bob simulate M when the head is in the
rest of the tape, we can design a communication complexity protocol for equality that uses
o(n) communication for more than 2n/2/n inputs.

13.4 As in the previous question, make this into a communication complexity protocol, where Alice
and Bob transmit to one another the contents of the working tape. (This time the input tape
is read only.) Create a “buffer zone” of zeroes, forcing the machine to take n steps just to
transmit every message between Alice and Bob.
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13.5 Arbitrarily number the rectangles in the monochromatic tiling and let N = χ(f). Define
graphs GR, GC on {1, . . . , N} where {i, j} is an edge in GR (resp., GC) iff rectangles i, j
share a row (resp., column). Let degR(·) and degC(·) denote degrees in these graphs. At each
step, the row player tries to look for a rectangle i containing his input with degL(i) ≤ 3|GR|/4
and sends such an index i if it exists. Both players then remove from GL, GC all vertices that
are not neighbors of i. Similarly, the column player tries to find a column j containing his
input such that degC(j) ≤ 3|GC |/4. We claim if either such an i, j can be found, it represents
progress— can you see why? Furthermore, can you show they will always find such i, j? It
may be helpful to note that in a N-vertex graph with minimum degree at least N/2+1, each
two vertices have a common neighbor.

13.6 First, show that for every two matrices A,B, rank(A + B) ≤ rank(A) + rank(B), implying
that if A =

∑ℓ
i=1 αiBi for rank-1 matrices B1, . . . , Bℓ then rank(A) ≤ ℓ. Then, use the fact

that if A has rank at most ℓ then it has ℓ rows such that all other rows are linear combination
of these rows to express A as a sum of ℓ rank-1 matrices B1, . . . , Bℓ (the rows of the matrix
Bi will be scalar multiples of some row of A).

13.9 Use the fact that M ′ = J − 2M where J is the all 1’s matrix.

13.10 Transform the problem to ±1 first and compute rank over the reals. Could you prove this
by taking rank in GF(2)?

13.11 Lower bound the rank.

13.12 Use the fact that −1a⊙b − 1a′⊙b − 1a⊙b′ − 1a′⊙b′ = −1(a+a′)⊙(b+b′).

13.15 Use the fingerprinting technique encountered in Section 7.2.3.

13.16 To turn the circuit into a communication protocol, imagine two players, OR and AND. The
OR player gets an input such that f(x) = 0 and the AND player gets one where f(y) = 1.
They know that their inputs differ on at least one bit, and use the circuit to figure out which
bit this is. They both evaluate the circuit on their inputs. If the top gate is an OR then the
OR player sees both incoming wires as 0, whereas the AND player sees at least one incoming
wire with a 1 on it. So the AND player communicates a bit about which wire this was. They
continue this way down the tree.

To turn a communication protocol into a circuit you have to do something similar and use
induction.

13.19 Reduce the task to a communication complexity protocol for disjointness, where Alice sees
the first, say, n/4 inputs and Bob sees the rest.

Chapter 14

14.1 Each gate in the old circuit gets a twin that computes its negation.

14.3 Start with the trivial representation of f as a CNF that has a clause per each assignment x
such that f(x) = 0. Then show that each clause C can be replaced with a clause D which is
contains at most s of C’s literals while still ensuring that if f(x) = 0 then D(x) = 0 for one
of the reduced clauses D.

14.4 Use the equality
(

n
t+k

)

=
(

n
t

)(

n−t
k

)

/
(

t+k
t

)

and the estimate
(

n
k

)k ≤
(

n
k

)

≤
(

en
k

)k
.

14.10 Show that if I ⊆ [ℓ] and x1 < x2 < . . . < xm is an increasing sequence of numbers in [2ℓ − 1]
such that for every i, the most significant bit in which xi and xi−1 differ is not in I , then the
sequence x′

1, . . . , x
′
m is still increasing, where x′

i is obtained from xi by “zeroing out” all the
bits in I . Conclude that m ≤ 2ℓ−|I|.

Chapter 15

15.1 Try to mimic the obvious exponential-time algorithm for finding a satisfying assignment for
ϕ.

15.2.a For every j, let dj(c) be zero if the jth clause C̃j in the “stripped” refutation can be derived
using the y variables only. Show (1) that every dj(c) can be computed by an O(S2)-sized
monotone circuit in c and (2) that we can set I(c) = dS(c) in the proof of Theorem 15.4.
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15.2.b Use the assignment z′i = ¬zi and the function I ′ = ¬I to reduce to the previous case.

15.4 The difficult part is completeness. A simpler subcase is when the set of axioms include
0 ≤ Xi ≤ 1. In this case, try to prove that the derivation rule with D restricted to the value
2 suffices. As warmup in this case, first try to prove that all resolution proofs can be recast
as cutting planes proofs of essentially the same size that only involve D = 2.

15.6 For i ≤ n+ 1, j ≤ n, have a variable xij that is 1 iff i maps to j.

Chapter 16

16.4.a Start by proving this for n’s that are powers of k. If n = kℓ then you can decompose a
kℓ ×kℓ matrix into k2 blocks of size kℓ−1— use recursion to multiply blocks and the program
Πk to combine the results of the recursion.

16.4.b We don’t have a good intuition how to find this program, but since these are just 2 × 2
matrices, one can do so by trial and error.

16.6.c First use the fact that the determinant of A can be expressed in terms of the determinant
of its minors to show that p(x) = (A1,1 − x) det(M − xI)+ rADJ(M − xI)c, where for every
matrix B, ADJ(B) is the matrix whose i, jth entry is equal to (−1)i+j times the determinant
of the minor of B with the ith row and jth column removed (i.e., for nonsingular B, ADJ(B) =
det(B)B−1). Then use the Caley-Hamilton Theorem (that says that qM (M) is equal to the
zero matrix) to express the coefficients of the matrix-valued polynomial ADJ(M −xI) using
the coefficients of qA and powers of M .

16.8 See Example 16.9.

16.10 First show that it suffices to compute k! where k is the smallest nontrivial factor of n, and
in fact it suffices to compute s! where s is a power of 2 larger than k.

Then, noting that
(

2r
r

)

= (2r)!

(r!)2
, it suffices to compute

(

2r
r

)

for arbitrary r. But this is just

one of the terms of (t2 + 1)2r. How large does t need to be before
(

2r
r

)

can be “read out” of
(t2 + 1)2r using an appropriate mod operation?

Chapter 17

17.5 Use hashing and ideas similar to those in the proof of Toda’s theorem, where we also needed to
estimate the size of a set of strings. If you find this question difficult you might want to come
back to it after seeing the Goldwasser-Sipser set lower bound protocol of Chapter 8. To make
the algorithm deterministic use the ideas of the proof that BPP ⊆ PH (Theorem 7.15).

17.6 Use the proof of Lemma 17.17.

17.7 Real numbers can be approximated by rationals, so it suffices to prove this in the case where
the matrices representing the quantum operations only involve rational numbers.

Chapter 18

18.1 A 3-colorable graph better not contain a complete graph on 4 vertices.

18.2 The probability that a random graph has a independent set of size at least k is at most
(

n
k

)

2−(k2).

18.5 Construct a sampleable distribution D on CNF formulae such that it’s possible to compute
the number of satisfying assignments of a formula ϕ from the probability of ϕ in D.

18.6 Use the fact that for every non-negative random variable X and d ≥ 1, E[Xd] ≥ E[X]d.

Chapter 19

19.1 Define Yi = (−1)Xi and Y =
∏k

i=1 Yi. Then, use the fact that the expectation of a product
of independent random variables is the product of their expectations.
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19.2 Choose x ∈ {0, 1}n to be in I with probability δ2n Pr[H = x]. Prove that (1) Pr[|I | ≥
δ
2
2n] > 1/2 and (2) for every circuit C, if we define SUCESSC(I) to be the probability

that C(x) = f(x) for a random x ∈ I then the probability (over the choice of I) that
SUCCESSC(I) ≥ 1/2 + 2ǫ is smaller than 1/22−S .

19.3 It might help to look at G,H,U as 2n-dimensional vectors of probabilities.

19.5 Take z to be the shortest vector of the form x − y for x ∈ C and y ∈ D (z can be shown to
exist and be non-zero using the fact that C,D are closed and D is compact, which means
that we can restrict attention to the intersection of C with a sufficiently large ball).

19.6 Note that maxq minp qAp > c if and only if the convex set D =
{

Ap : p ∈ [0, 1]n
∑

i pi = 1
}

does not intersect with the convex set C =
{

x ∈ Rm : ∀i∈[m]xi ≤ c
}

. Use the Hyperplane
Separating Theorem to show that this implies the existence of a probability vector q such
that 〈q,y〉 ≥ c for every y ∈ D.

19.7 Assume that there is a 2−k-density distribution that is outside of this convex set and use the
separating hyperplane theorem to derive a contradiction, by rearranging the terms of the
distribution according to their inner product with the normal of the hyperplane, and shifting
weight until we get a flat distribution.

19.9 Use a greedy strategy, to select the codewords of E one by one, never adding a codeword that
is within distance δ to previous ones. When will you get stuck?

19.10 Follow the proof of the Johnson bound and present the problem as asking how many unit
vectors in Rm you can have such that every pair of vectors is pretty far apart.

19.14 See the discussion before the theorem’s statement and the proof of Theorem 19.21.

19.15 The first polynomial describes f in an ǫ fraction of points say S1, the second polynomial
describes f in ǫ− d/|F| fraction of points S2 where S1 ∩ S2 = ∅, etc.

19.16 Think of Q(x, y) as a univariate polynomial in y with its coefficients being polynomials in
x (i.e., elements in the ring F[x]). Then, divide Q(x, y) by y − P (x) to obtain Q(x, y) =
(y−P (x))A(x, y)+R(x, y) where the remainder R(x) has y−degree smaller than (y−P (x)).

19.17.b Use the probabilistic method - show this holds for a random matrix.

19.17.c Use the concatenation of Reed-Solomon over GF(2k) with the Walsh-Hadamard code.

19.18.c Use concatenation of Reed-Solomon code with the binary code obtained in the previous
item. Note that we only apply the binary code on inputs of length O(log n) and hence can
allow exponential-time encoding and decoding algorithms.

Chapter 20

20.2 show that if for every n, a random function mapping n bits to 2n/10 bits will have desired
properties with high probabilities.

20.4 Let G be a pseudorandom generator and consider the following function f : on input x ∈
{0, 1}ℓ+1, f(x) = 1 iff there exists z ∈ {0, 1}ℓ such that G(z) = x.

20.6 Use Theorem 20.6.

20.8 Show that the proofs Theorems 20.6 and 19.27 imply that given a function f ∈ EXP
with Havg(f) that is not bounded from above by any polynomial, one can obtain an S(ℓ)-
pseudorandom generator for a function S that is also not bounded from above by any poly-
nomial (and hence for every polynomial p, S(ℓ) > p(ℓ) for infinitely many ℓ’s).

20.9 Use the fact that the algorithm D can with high probability compute a circuit that decides
the language L.

Chapter 21

21.2.a Use the fact that the log function is concave (has negative second derivative) implying that
for a, b > 0, α log a+ (1 − α) log b ≤ log(αa+ (1 − α)b).

21.2.c The expression |v|2
1

=
∑

i,j |vi||vj | includes all terms occurring in ‖v‖2
2

plus additional
non-negative terms.
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21.4 Show that for every shortest path between two vertices, if we pick any third vertex in the path
then the d+ 1-sized neighborhoods of all the picked vertices are disjoint.

21.5 first show that ‖A‖ is at most say n2. Then, prove that for every k ≥ 1, Ak is also stochastic
and ‖A2kv‖2 ≥ ‖Akv‖2

2
using the equality 〈w, Bz〉 = 〈B†w, z〉 and the inequality 〈w, z〉 ≤

‖w‖2‖z‖2 .

21.8 Use the fact that if A is a random-walk matrix of a graph and v ⊥ 1 then Av ⊥ 1.

21.10.d Such a path is obtained by taking k/2 moves away from the root and k/2 moves back.
We have d − 1 choices for every move away from the root, and so this gives us a factor
2k log d/2. The choices of when to make the “back moves” give us an additional factor of
roughly

(

k
k/2

)

= 2k−o(k). In fact we have to be more careful since we can’t make a “back
move” when we’re already in the root and so have to ensure that we place the moves in a
way so that at any point in time we never made more “back moves” than “away moves”.
This can be ensured by fixing the first t moves to be “away” moves and the last t moves to
be “back moves”— for t = 100 log k

√
k (which is o(k)) this ensures the vast majority of the

(

k−2t
k/2−2t

)

= 2k−o(k) choices for placing the remaining k/2 − 2t “back moves” will not result
in an invalid path. Alternatively we can observe that the number of valid paths is exactly
the number of length k valid expressions involving only opening and closing parenthesis. If
can be shown that this number is equal to 1

k/2+1

(

k
k/2

)

(this is known as the k/2th Catalan

number).

21.10.e Use the previous items to show that, 1 + (n− 1)λk ≥ n2k−k log d/2−o(k). The bound follows
by taking logs of both sides.

21.11 For every set S ⊆ n with |S| ≤ n/2, try to bound probability that the number of edges
between S and S̄ deviates strongly from its expectation.

21.13 Use the probabilistic method - choose S to be a random n/2-sized subset of the vertices. For
every pair of distinct vertices u, v, the probability that u ∈ S and v ∈ S̄ or vice versa is at
most 1/2 (it would be exactly half if we chose S with replacements). Hence, since there are
dn/2 edges in the graph, the expected value of in E(S, S̄) is at most dn/4.

21.14 You can use Lemma 21.14.

21.15.c Show that if s is the uniform distribution over S then ‖As‖2
2
≤ 1/n+ λ2(ǫn+ 1/n).

21.16 A subset S of at most n′/2 vertices inH corresponds to a subset S′ of size at most (1−1/(2c))n
vertices in G. Use G’s expansion to argue about the number of edges between the complement
of S′ and S.

21.18.b Show that any deterministic function must query the function an exponential number of
times.

21.18.c Show that under this condition there is a set S of size at most 2n/2 such that Pr[X ∈ S] ≥
1/20.

21.19 Represent distributions over an M -element domain as vectors in Rm, and use the triangle
inequality for the L1 norm.

21.23 Use Lemma 21.14.

21.24 Every subset of the replacement product of G and G′ can be thought of as n subsets of the
individual clusters. Treat differently the subsets that take up more than 1 − ρ/10 portion of
their clusters and those that take up less than that. For the former use the expansion of G,
while for the latter use the expansion of G′.

Chapter 22

22.1 Use Lemma 21.10 with T = V \ S.

22.2 The upper bound is implied by Theorem 21.12. The lower bound can be proven using similar
techniques.

22.3 approximate the binomial coefficient using Stirling’s formula for approximating factorials.

22.4 Consider the random variable V ′ defined as V conditioned on V > 0, and use the inequality
E[V ′2] ≥ E[V ′]2.
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22.5.e use the test T above combined with linearity testing, self correction, and a simple test to
rule out the constant zero function.

22.5.f To transform a 2CSPW formula ϕ over n variables into a qCSP ψ over binary alphabet, use

2W variables u1
j , . . . , u

2W

j for each variable uj of ϕ. In the correct proof these variables will

contain the long code encoding of uj . Then, add a set of 2W2

variables y1
i , . . . , y

2W
2

i for each
constraint ϕi of ϕ. In the correct proof these variables will contain the long code encoding
of the assignment for the constraint ϕi. For every constraint of ϕ, ψ will contain constraints
for testing the long code of both the x and y variables involved in the constraint, testing
consistency between the x variables and the y variables, and testing that the y variables
actually encode a satisfying assignment.

1 val(ϕ) = val(ϕ∗2) = 1/2.

22.12.a Express the function f in the Fourier basis, and use the basic properties of the characters
and the fact that x,x′ and y are independent.

22.12.b Reduce to the previous case by considering the function g(x ◦ y) = f(x ◦ y)χα(x).

22.12.c You can estimate the expectation in (13) by evaluating the corresponding functions on
randomly chosen inputs.

22.12.d Think of the full depth-n binary labeled by binary strings of length ≤ n (with the root
being the empty word and the two children of α are α0 and α1), then by Parseval you can
show that at any level of this tree there can be at most 1/ǫ2 strings α such that f̃α⋆ ≥ ǫ.
Use the procedure Estimate to prune this tree from the root to the leaves, throwing away all
branches α for which f̃α⋆ < 10ǫ. At the end output the remaining leaves.

22.13 Show that a randomly chosen family of subsets suffices.

22.14 Requires constructions of ǫ-biased random variables, which have not been covered in this
book, though cab be obtained from linear error correcting codes.

22.15 Think of ways to “amplify” the gap of a constant factor in Problem 11.16. You need to
combine equations to get new equations.

22.16 Introduce a bunch of new variables for each variable that occurs in more than 5 clauses.
Design a “gadget” consisting of new clauses that force this bunch of new variables to have
the same value in the optimum assignment. You might need to use an expander. This is
essentially the same problem as Claim 22.37.

Chapter 23

23.3 If DISCRETE LOG is hard on worst-case inputs with respect to a particular prime p then it
is hard on most inputs with respect to this prime p, and then it can be used to construct
pseudorandom functions (assuming p is used as non-uniform advice).

23.4 It suffices to prove this when fn is a random function. Use induction on the number of
variables, and the fact that both fn and fn are random functions.

23.5 See Exercise 8.8.
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[EL75] P. Erdős and L. Lovász. Problems and results on 3-chromatic hypergraphs and some related
questions. In Infinite and finite sets (Colloq., Keszthely, 1973; dedicated to P. Erdős on
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[KT06] J. Kleinberg and É. Tardos. Algorithm Design. Pearson Studium, 2006.

[Kuc95] L. Kucera. Expected complexity of graph partitioning problems. Discrete Applied Mathemat-
ics, 57(2-3):193–212, 1995.

[KUW85] R. M. Karp, E. Upfal, and A. Wigderson. Constructing a perfect matching is in random NC.
Combinatorica, 6:35–48, 1986. Prelim version STOC ’85.

[KV89] M. Kearns and L. Valiant. Cryptographic limitations on learning Boolean formulae and finite
automata. J. ACM, 41(1):67–95, 1994. Prelim version STOC ’89.

[KV94] M. J. Kearns and U. V. Vazirani. An Introduction to Computational Learning Theory. MIT
Press, 1994.

[KV05] S. Khot and N. K. Vishnoi. The unique games conjecture, integrality gap for cut problems
and embeddability of negative type metrics into l1. In FOCS, pages 53–62. IEEE, 2005.

[KVS02] A. Y. Kitaev, M. Vyalyi, and A. Shen. Classical and Quantum computation. AMS Press,
2002.

[KW88] M. Karchmer and A. Wigderson. Monotone circuits for connectivity require super-logarithmic
depth. SIAM Journal on Discrete Mathematics, 3(2):255–265, May 1990. Prelim version
STOC ’88.

[Lad75] R. E. Ladner. On the structure of polynomial time reducibility. J. ACM, 22(1):155–171, Jan.
1975.

[Lauer] C. Lautemann. BPP and the polynomial hierarchy. Inf. Process. Lett., 17(4):215–217, 1983,
November.

[Lea05] D. Leavitt. The man who knew too much: Alan Turing and the invention of the computer.
Great discoveries. W. W. Norton & Co., 2005.

[Lei91] F. T. Leighton. Introduction to parallel algorithms and architectures: array, trees, hypercubes.
Morgan Kaufmann, 1991.

[Lev73] L. A. Levin. Universal sequential search problems. PINFTRANS: Problems of Information
Transmission (translated from Problemy Peredachi Informatsii (Russian)), 9, 1973.

[Lev86] L. A. Levin. Average case complete problems. SIAM J. Comput, 15(1):285–286, Feb. 1986.

[Lev87] L. A. Levin. One-way functions and pseudorandom generators. Combinatorica, 7(4):357–363,
1987.

[LFKN90] C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Algebraic methods for interactive proof
systems. J. ACM, 39(4):859–868, 1992, October. Prelim version FOCS ’90.



482 BIBLIOGRAPHY

[Lip90] R. J. Lipton. Efficient checking of computations. In 7th Annual Symposium on Theoretical
Aspects of Computer Science, volume 415 of lncs, pages 207–215. Springer, 22–24 Feb. 1990.

[Lip91] R. J. Lipton. New directions in testing. In Distributed Computing and Cryptography, volume 2
of DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pages 191–
202. American Mathematics Society, 1991.

[Liv06] N. Livne. All natural NPC problems have average-case complete versions. In ECCCTR:
Electronic Colloquium on Computational Complexity, technical reports, 2006.

[LLKS85] E. L. Lawler, J. K. Lenstra, A. H. G. R. Kan, and D. B. Shmoys, editors. The Traveling
Salesman Problem. John Wiley, 1985.

[LLMP90] A. K. Lenstra, H. W. Lenstra, Jr., M. S. Manasse, and J. M. Pollard. The number field sieve.
In STOC, pages 564–572. ACM, 14–16 May 1990.

[Llo06] S. Lloyd. Programming the universe: A quantum computer scientist takes on the cosmos.
Knopf, 2006.
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[Tar88] É. Tardos. The gap between monotone and non-monotone circuit complexity is exponential.
Combinatorica, 8(1):141–142, 1988.

[Tod91] S. Toda. PP is as hard as the polynomial-time hierarchy. SIAM J. Comput, 20(5):865–877,
1991.

[Tra84] B. A. Trakhtenbrot. A survey of Russian approaches to perebor (brute-force search) algo-
rithms. Annals of the History of Computing, 6(4):384–400, Oct./Dec. 1984. Also contains a
good translation of [Lev73].

[Tre99] L. Trevisan. Extractors and pseudorandom generators. J. ACM, 48(4):860–879, July 2001.
Prelim version STOC ’99.

[Tre05] L. Trevisan. Inapproximability of combinatorial optimization problems. In V. Paschos, editor,
Optimisation Combinatiore, volume 2. Hermes, 2005. English version available from author’s
web page.

[Tri05] V. Trifonov. An O(log n log log n) space algorithm for undirected st-connectivity. In STOC,
pages 626–633. ACM, 2005.

[TS96] A. Ta-Shma. On extracting randomness from weak random sources. In STOC, pages 276–285.
ACM, May 1996.

[Tur36] A. M. Turing. On computable numbers, with an application to the entscheidungsproblem. In
Proceedings, London Mathematical Society,, pages 230–265, 1936. Published as Proceedings,
London Mathematical Society,, volume 2, number 42.

[TV02] L. Trevisan and S. Vadhan. Pseudorandomness and average-case complexity via uniform
reductions. Computational Complexity, 2002. Proceedings. 17th IEEE Annual Conference
on, pages 103–112, 2002.

[TV06] T. Tao and V. H. Vu. Additive Combinatorics. Cambridge University Press, 2006.

[Uma01] C. Umans. The minimum equivalent DNF problem and shortest implicants. J. Comput. Syst.
Sci., 63, 2001.

[Uma03] C. Umans. Pseudo-random generators for all hardnesses. J. Comput. Syst. Sci., 67(2):419–
440, 2003.

[Urq87] A. Urquhart. Hard examples for resolution. J. ACM, 34(1):209–219, 1987.

[Vad99] S. Vadhan. A Study of Statistical Zero-Knowledge Proofs. PhD thesis, Massachusetts Institute
of Technology, Aug. 1999. Updated version to be published by Springer-Verlag (est. 2008).

[Vad00] S. Vadhan. On transformation of interactive proofs that preserve the prover’s complexity. In
STOC, pages 200–207. ACM, 2000.

[Vad07] S. Vadhan. The unified theory of pseudorandomness. SIGACT News, 38(2), 2007.

[Val75a] L. G. Valiant. Graph-theoretic properties in computational complexity. J. Comput. Syst.
Sci., 13(3):278–285, Dec. 1976. Prelim version STOC’ 75.

[Val75b] L. G. Valiant. On non-linear lower bounds in computational complexity. In STOC, pages
45–53. ACM, 1975.

[Val79a] L. G. Valiant. Completeness classes in algebra. In STOC, pages 249–261. ACM, 1979.



488 BIBLIOGRAPHY

[Val79b] L. G. Valiant. The complexity of computing the permanent. Theoretical Computer Science,
8(2):189–201, 1979.

[Val79c] L. G. Valiant. The complexity of enumeration and reliability problems. SIAM J. Comput,
8(3):410–421, 1979.

[Val84] L. G. Valiant. A theory of the learnable. Commun. ACM, 27(11):1134–1142, 1984.

[Vaz01] V. V. Vazirani. Approximation Algorithms. Springer-Verlag, 2001.

[vDMV01] W. van Dam, M. Mosca, and U. Vazirani. How powerful is adiabatic quantum computation?
In FOCS, pages 279–287. IEEE, Oct. 14–17 2001.

[Ver94] O. Verbitsky. Towards the parallel repetition conjecture. In Structure in Complexity Theory
Conference, pages 304–307, 1994.

[VG99] J. Von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University Press,
1999.

[vN45] J. von Neumann. First draft of a report on the EDVAC. Report for the u.s. army ordinance
department, University of Pensylvania, 1945. Reprinted in part in Brian Randell, ed. The
Origins of Digital Computers: Selected Papers, Springer Verlag, 1982.

[vN51] J. von Neumann. Various techniques used in connection with random digits. Applied Math
Series, 12:36–38, 1951.

[VSBR81] L. G. Valiant, S. Skyum, S. Berkowitz, and C. Rackoff. Fast parallel computation of poly-
nomials using few processors. SIAM J. Comput, 12(4):641–644, Nov. 1983. Prelim version
Mathematical Foundations of CS ’81.

[VV85] U. V. Vazirani and V. V. Vazirani. Random polynomial time is equal to slightly-random
polynomial time. In FOCS, pages 417–428. IEEE, 1985.

[VV86] L. G. Valiant and V. V. Vazirani. NP is as easy as detecting unique solutions. Theor. Comput.
Sci., 47(1):85–93, 1986.

[vzG88] J. von zur Gathen. Algebraic complexity theory. Annual Reviews Computer Science, 1988.

[vzGG99] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University Press,
1999.

[Wat03] J. Watrous. PSPACE has constant-round quantum interactive proof systems. Theor. Comput.
Sci, 292(3):575–588, 2003.

[Weg87] I. Wegener. The complexity of Boolean functions. Wiley-Teubner Series in Computer Sci-
ence, 1987. Online version available from http://eccc.hpi-web.de/eccc-local/ECCC-Books/

wegener_book_readme.html.

[Wel93] D. J. A. Welsh. Complexity: knots, colourings and counting. Cambridge University Press,
1993.

[Wig06] A. Wigderson. P, NP and mathematics - a computational complexity perspectivy. In Pro-
ceedings of ICM’ 06, 2006.

[Wil05] R. Williams. Better time-space lower bounds for SAT and related problems. In IEEE Con-
ference on Computational Complexity, pages 40–49. IEEE, 2005.

[WX05] A. Wigderson and D. Xiao. A randomness-efficient sampler for matrix-valued functions and
applications. In FOCS, pages 397–406. IEEE, 2005. See also correction in ECCC TR05-107
Revision 01.

[WZ82] W. K. Wooters and W. H. Zurek. A single quantum cannot be cloned. Nature, 299:802f, Oct.
1982.

[Yam97] P. Yam. Bringing schroedinger’s cat back to life. Scientific American, pages 124–129, June
1997.

[Yan88] M. Yannakakis. Expressing combinatorial optimization problems by linear programs. J.
Comput. Syst. Sci., 43(3):441–466, 1991. Prelim version STOC ’88.

[Yao79] A. C. C. Yao. Some complexity questions related to distributive computing(prelim report).
In STOC, pages 209–213. ACM, 1979.

[Yao82a] A. C. C. Yao. Theory and applications of trapdoor functions. In FOCS, pages 80–91. IEEE,
3–5 Nov. 1982.

[Yao82b] A. C. C. Yao. Protocols for secure computations. In FOCS, pages 160–164. IEEE, 3–5 Nov.
1982.

[Yao85] A. C. C. Yao. Separating the polynomial-time hierarchy by oracles. In FOCS, pages 1–10.
IEEE, 1985.

[Yao87] A. C. C. Yao. Lower bounds to randomized algorithms for graph properties. J. Comput. Syst.
Sci., 42(3):267–287, 1991. Prelim version FOCS’ 87.



BIBLIOGRAPHY 489

[Yao90] A. C. C. Yao. On ACC and threshold circuits. In FOCS, volume II, pages 619–627. IEEE,
22–24 Oct. 1990.

[Yao93] A. C. C. Yao. Quantum circuit complexity. In FOCS, pages 352–361. IEEE, 1993.

[Yao94] A. C. C. Yao. Decision tree complexity and betti numbers. In STOC, pages 615–624. ACM,
1994.

[Zak83] S. Zak. A Turing machine time hierarchy. Theoretical Computer Science, 26(3):327–333, Oct.
1983.

[Zuc90] D. Zuckerman. General weak random sources. In FOCS, volume II, pages 534–543. IEEE,
22–24 Oct. 1990.


